RTEMS 4.11Annotated Report
Sat Jul 14 17:29:11 2012
020086e8 <_API_extensions_Run_postdriver>:
/*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
20086e8: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
20086ec: 39 00 80 75 sethi %hi(0x201d400), %i4
20086f0: fa 07 20 14 ld [ %i4 + 0x14 ], %i5 ! 201d414 <_API_extensions_List>
20086f4: b8 17 20 14 or %i4, 0x14, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
20086f8: b8 07 20 04 add %i4, 4, %i4
20086fc: 80 a7 40 1c cmp %i5, %i4
2008700: 02 80 00 09 be 2008724 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
2008704: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
2008708: c2 07 60 08 ld [ %i5 + 8 ], %g1
200870c: 9f c0 40 00 call %g1
2008710: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2008714: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2008718: 80 a7 40 1c cmp %i5, %i4
200871c: 32 bf ff fc bne,a 200870c <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2008720: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED
2008724: 81 c7 e0 08 ret
2008728: 81 e8 00 00 restore
0200872c <_API_extensions_Run_postswitch>:
/*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
200872c: 9d e3 bf a0 save %sp, -96, %sp
2008730: 39 00 80 75 sethi %hi(0x201d400), %i4
2008734: fa 07 20 14 ld [ %i4 + 0x14 ], %i5 ! 201d414 <_API_extensions_List>
2008738: 37 00 80 75 sethi %hi(0x201d400), %i3
200873c: b8 17 20 14 or %i4, 0x14, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2008740: b8 07 20 04 add %i4, 4, %i4
2008744: 80 a7 40 1c cmp %i5, %i4
2008748: 02 80 00 09 be 200876c <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
200874c: b6 16 e0 50 or %i3, 0x50, %i3
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
2008750: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2008754: 9f c0 40 00 call %g1
2008758: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
200875c: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2008760: 80 a7 40 1c cmp %i5, %i4
2008764: 32 bf ff fc bne,a 2008754 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
2008768: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED
200876c: 81 c7 e0 08 ret
2008770: 81 e8 00 00 restore
02011d54 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2011d54: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2011d58: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2011d5c: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2011d60: 80 8e e0 03 btst 3, %i3
2011d64: 02 80 00 0b be 2011d90 <_CORE_message_queue_Initialize+0x3c>
2011d68: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
allocated_message_size += sizeof(uint32_t);
2011d6c: 96 06 e0 04 add %i3, 4, %o3
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2011d70: 96 0a ff fc and %o3, -4, %o3
}
if (allocated_message_size < maximum_message_size)
2011d74: 80 a6 c0 0b cmp %i3, %o3
2011d78: 08 80 00 08 bleu 2011d98 <_CORE_message_queue_Initialize+0x44><== ALWAYS TAKEN
2011d7c: ba 02 e0 10 add %o3, 0x10, %i5
return false;
2011d80: b0 10 20 00 clr %i0 <== NOT EXECUTED
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2011d84: b0 0e 20 01 and %i0, 1, %i0
2011d88: 81 c7 e0 08 ret
2011d8c: 81 e8 00 00 restore
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2011d90: 96 10 00 1b mov %i3, %o3
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
2011d94: ba 02 e0 10 add %o3, 0x10, %i5
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
2011d98: 90 10 20 00 clr %o0
2011d9c: 92 10 00 1a mov %i2, %o1
2011da0: 94 10 20 00 clr %o2
2011da4: 40 00 41 7d call 2022398 <__muldi3>
2011da8: 96 10 00 1d mov %i5, %o3
if ( x > SIZE_MAX )
2011dac: 80 a2 20 00 cmp %o0, 0
2011db0: 34 bf ff f5 bg,a 2011d84 <_CORE_message_queue_Initialize+0x30>
2011db4: b0 10 20 00 clr %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2011db8: 40 00 0c a2 call 2015040 <_Workspace_Allocate>
2011dbc: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2011dc0: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2011dc4: 80 a2 20 00 cmp %o0, 0
2011dc8: 02 bf ff ee be 2011d80 <_CORE_message_queue_Initialize+0x2c><== NEVER TAKEN
2011dcc: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2011dd0: 90 06 20 60 add %i0, 0x60, %o0
2011dd4: 94 10 00 1a mov %i2, %o2
2011dd8: 7f ff ff c6 call 2011cf0 <_Chain_Initialize>
2011ddc: 96 10 00 1d mov %i5, %o3
*/
RTEMS_INLINE_ROUTINE bool _CORE_message_queue_Is_priority(
CORE_message_queue_Attributes *the_attribute
)
{
return
2011de0: c4 06 40 00 ld [ %i1 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2011de4: 82 06 20 50 add %i0, 0x50, %g1
2011de8: 84 18 a0 01 xor %g2, 1, %g2
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2011dec: 80 a0 00 02 cmp %g0, %g2
2011df0: 84 06 20 54 add %i0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
2011df4: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2011df8: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
2011dfc: 90 10 00 18 mov %i0, %o0
head->previous = NULL;
2011e00: c0 26 20 54 clr [ %i0 + 0x54 ]
2011e04: 92 60 3f ff subx %g0, -1, %o1
2011e08: 94 10 20 80 mov 0x80, %o2
2011e0c: 96 10 20 06 mov 6, %o3
2011e10: 40 00 0a 3a call 20146f8 <_Thread_queue_Initialize>
2011e14: b0 10 20 01 mov 1, %i0
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2011e18: b0 0e 20 01 and %i0, 1, %i0
2011e1c: 81 c7 e0 08 ret
2011e20: 81 e8 00 00 restore
02008a94 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2008a94: 9d e3 bf a0 save %sp, -96, %sp
* This routine returns true if thread dispatch indicates
* that we are in a critical section.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Dispatch_in_critical_section(void)
{
if ( _Thread_Dispatch_disable_level == 0 )
2008a98: 3b 00 80 74 sethi %hi(0x201d000), %i5
2008a9c: c2 07 62 30 ld [ %i5 + 0x230 ], %g1 ! 201d230 <_Thread_Dispatch_disable_level>
2008aa0: 80 a0 60 00 cmp %g1, 0
2008aa4: 02 80 00 20 be 2008b24 <_CORE_mutex_Seize+0x90>
2008aa8: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2008aac: 80 a6 a0 00 cmp %i2, 0
2008ab0: 02 80 00 2d be 2008b64 <_CORE_mutex_Seize+0xd0>
2008ab4: 90 10 00 18 mov %i0, %o0
2008ab8: 03 00 80 74 sethi %hi(0x201d000), %g1
2008abc: c2 00 63 70 ld [ %g1 + 0x370 ], %g1 ! 201d370 <_System_state_Current>
2008ac0: 80 a0 60 01 cmp %g1, 1
2008ac4: 38 80 00 2f bgu,a 2008b80 <_CORE_mutex_Seize+0xec>
2008ac8: 90 10 20 00 clr %o0
2008acc: 40 00 12 cf call 200d608 <_CORE_mutex_Seize_interrupt_trylock>
2008ad0: 92 07 a0 54 add %fp, 0x54, %o1
2008ad4: 80 a2 20 00 cmp %o0, 0
2008ad8: 02 80 00 28 be 2008b78 <_CORE_mutex_Seize+0xe4> <== ALWAYS TAKEN
2008adc: 01 00 00 00 nop
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2008ae0: c4 07 62 30 ld [ %i5 + 0x230 ], %g2
2008ae4: 03 00 80 75 sethi %hi(0x201d400), %g1
2008ae8: c2 00 60 5c ld [ %g1 + 0x5c ], %g1 ! 201d45c <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2008aec: 86 10 20 01 mov 1, %g3
2008af0: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
2008af4: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2008af8: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2008afc: 82 00 a0 01 add %g2, 1, %g1
2008b00: c2 27 62 30 st %g1, [ %i5 + 0x230 ]
return _Thread_Dispatch_disable_level;
2008b04: c2 07 62 30 ld [ %i5 + 0x230 ], %g1
2008b08: 7f ff e7 1b call 2002774 <sparc_enable_interrupts>
2008b0c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2008b10: 90 10 00 18 mov %i0, %o0
2008b14: 7f ff ff b9 call 20089f8 <_CORE_mutex_Seize_interrupt_blocking>
2008b18: 92 10 00 1b mov %i3, %o1
2008b1c: 81 c7 e0 08 ret
2008b20: 81 e8 00 00 restore
2008b24: 90 10 00 18 mov %i0, %o0
2008b28: 40 00 12 b8 call 200d608 <_CORE_mutex_Seize_interrupt_trylock>
2008b2c: 92 07 a0 54 add %fp, 0x54, %o1
2008b30: 80 a2 20 00 cmp %o0, 0
2008b34: 02 bf ff fa be 2008b1c <_CORE_mutex_Seize+0x88>
2008b38: 80 a6 a0 00 cmp %i2, 0
2008b3c: 12 bf ff e9 bne 2008ae0 <_CORE_mutex_Seize+0x4c>
2008b40: 01 00 00 00 nop
2008b44: 7f ff e7 0c call 2002774 <sparc_enable_interrupts>
2008b48: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2008b4c: 03 00 80 75 sethi %hi(0x201d400), %g1
2008b50: c2 00 60 5c ld [ %g1 + 0x5c ], %g1 ! 201d45c <_Per_CPU_Information+0xc>
2008b54: 84 10 20 01 mov 1, %g2
2008b58: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
2008b5c: 81 c7 e0 08 ret
2008b60: 81 e8 00 00 restore
2008b64: 40 00 12 a9 call 200d608 <_CORE_mutex_Seize_interrupt_trylock>
2008b68: 92 07 a0 54 add %fp, 0x54, %o1
2008b6c: 80 a2 20 00 cmp %o0, 0
2008b70: 12 bf ff f5 bne 2008b44 <_CORE_mutex_Seize+0xb0> <== NEVER TAKEN
2008b74: 01 00 00 00 nop
2008b78: 81 c7 e0 08 ret
2008b7c: 81 e8 00 00 restore
2008b80: 92 10 20 00 clr %o1
2008b84: 40 00 01 c2 call 200928c <_Internal_error_Occurred>
2008b88: 94 10 20 12 mov 0x12, %o2
02008d08 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2008d08: 9d e3 bf a0 save %sp, -96, %sp
2008d0c: ba 10 00 18 mov %i0, %i5
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2008d10: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2008d14: 40 00 07 bb call 200ac00 <_Thread_queue_Dequeue>
2008d18: 90 10 00 1d mov %i5, %o0
2008d1c: 80 a2 20 00 cmp %o0, 0
2008d20: 02 80 00 04 be 2008d30 <_CORE_semaphore_Surrender+0x28>
2008d24: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
2008d28: 81 c7 e0 08 ret
2008d2c: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2008d30: 7f ff e6 8d call 2002764 <sparc_disable_interrupts>
2008d34: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2008d38: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2008d3c: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
2008d40: 80 a0 40 02 cmp %g1, %g2
2008d44: 1a 80 00 05 bcc 2008d58 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
2008d48: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2008d4c: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2008d50: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2008d54: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2008d58: 7f ff e6 87 call 2002774 <sparc_enable_interrupts>
2008d5c: 01 00 00 00 nop
}
return status;
}
2008d60: 81 c7 e0 08 ret
2008d64: 81 e8 00 00 restore
020088c4 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
20088c4: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
20088c8: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
20088cc: ba 06 20 04 add %i0, 4, %i5
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
20088d0: 80 a6 a0 00 cmp %i2, 0
20088d4: 02 80 00 13 be 2008920 <_Chain_Initialize+0x5c> <== NEVER TAKEN
20088d8: 92 06 bf ff add %i2, -1, %o1
20088dc: 86 10 00 09 mov %o1, %g3
20088e0: 82 10 00 19 mov %i1, %g1
20088e4: 84 10 00 18 mov %i0, %g2
current->next = next;
20088e8: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
20088ec: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
20088f0: 86 00 ff ff add %g3, -1, %g3
20088f4: 84 10 00 01 mov %g1, %g2
20088f8: 80 a0 ff ff cmp %g3, -1
20088fc: 12 bf ff fb bne 20088e8 <_Chain_Initialize+0x24>
2008900: 82 00 40 1b add %g1, %i3, %g1
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
2008904: 40 00 3f 5c call 2018674 <.umul>
2008908: 90 10 00 1b mov %i3, %o0
200890c: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
2008910: fa 22 00 00 st %i5, [ %o0 ]
tail->previous = current;
2008914: d0 26 20 08 st %o0, [ %i0 + 8 ]
2008918: 81 c7 e0 08 ret
200891c: 81 e8 00 00 restore
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
2008920: 10 bf ff fc b 2008910 <_Chain_Initialize+0x4c> <== NOT EXECUTED
2008924: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
02007934 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2007934: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2007938: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
200793c: 7f ff eb 8a call 2002764 <sparc_disable_interrupts>
2007940: f6 06 20 30 ld [ %i0 + 0x30 ], %i3
pending_events = api->pending_events;
2007944: c4 07 40 00 ld [ %i5 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2007948: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
200794c: 86 88 40 02 andcc %g1, %g2, %g3
2007950: 02 80 00 39 be 2007a34 <_Event_Surrender+0x100>
2007954: 09 00 80 75 sethi %hi(0x201d400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2007958: 88 11 20 50 or %g4, 0x50, %g4 ! 201d450 <_Per_CPU_Information>
200795c: f8 01 20 08 ld [ %g4 + 8 ], %i4
2007960: 80 a7 20 00 cmp %i4, 0
2007964: 32 80 00 1c bne,a 20079d4 <_Event_Surrender+0xa0>
2007968: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
200796c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2007970: 80 89 21 00 btst 0x100, %g4
2007974: 02 80 00 30 be 2007a34 <_Event_Surrender+0x100>
2007978: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
200797c: 02 80 00 04 be 200798c <_Event_Surrender+0x58>
2007980: 80 8e e0 02 btst 2, %i3
2007984: 02 80 00 2c be 2007a34 <_Event_Surrender+0x100> <== NEVER TAKEN
2007988: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200798c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2007990: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2007994: c4 27 40 00 st %g2, [ %i5 ]
the_thread->Wait.count = 0;
2007998: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200799c: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
20079a0: 7f ff eb 75 call 2002774 <sparc_enable_interrupts>
20079a4: 01 00 00 00 nop
20079a8: 7f ff eb 6f call 2002764 <sparc_disable_interrupts>
20079ac: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
20079b0: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
20079b4: 80 a0 60 02 cmp %g1, 2
20079b8: 02 80 00 21 be 2007a3c <_Event_Surrender+0x108>
20079bc: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
20079c0: 7f ff eb 6d call 2002774 <sparc_enable_interrupts>
20079c4: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20079c8: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
20079cc: 40 00 0a bc call 200a4bc <_Thread_Clear_state>
20079d0: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20079d4: 80 a6 00 04 cmp %i0, %g4
20079d8: 32 bf ff e6 bne,a 2007970 <_Event_Surrender+0x3c>
20079dc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20079e0: 09 00 80 75 sethi %hi(0x201d400), %g4
20079e4: f8 01 20 b0 ld [ %g4 + 0xb0 ], %i4 ! 201d4b0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
20079e8: 80 a7 20 02 cmp %i4, 2
20079ec: 02 80 00 07 be 2007a08 <_Event_Surrender+0xd4> <== NEVER TAKEN
20079f0: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
20079f4: f8 01 20 b0 ld [ %g4 + 0xb0 ], %i4
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20079f8: 80 a7 20 01 cmp %i4, 1
20079fc: 32 bf ff dd bne,a 2007970 <_Event_Surrender+0x3c>
2007a00: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2007a04: 80 a0 40 03 cmp %g1, %g3
2007a08: 02 80 00 04 be 2007a18 <_Event_Surrender+0xe4>
2007a0c: 80 8e e0 02 btst 2, %i3
2007a10: 02 80 00 09 be 2007a34 <_Event_Surrender+0x100> <== NEVER TAKEN
2007a14: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007a18: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
2007a1c: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2007a20: c4 27 40 00 st %g2, [ %i5 ]
the_thread->Wait.count = 0;
2007a24: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2007a28: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2007a2c: 82 10 20 03 mov 3, %g1
2007a30: c2 21 20 b0 st %g1, [ %g4 + 0xb0 ]
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2007a34: 7f ff eb 50 call 2002774 <sparc_enable_interrupts>
2007a38: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2007a3c: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2007a40: 7f ff eb 4d call 2002774 <sparc_enable_interrupts>
2007a44: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
2007a48: 40 00 0f 64 call 200b7d8 <_Watchdog_Remove>
2007a4c: 90 06 20 48 add %i0, 0x48, %o0
2007a50: b2 16 63 f8 or %i1, 0x3f8, %i1
2007a54: 40 00 0a 9a call 200a4bc <_Thread_Clear_state>
2007a58: 81 e8 00 00 restore
02007a5c <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2007a5c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2007a60: 90 10 00 18 mov %i0, %o0
2007a64: 40 00 0b 96 call 200a8bc <_Thread_Get>
2007a68: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2007a6c: c2 07 bf fc ld [ %fp + -4 ], %g1
2007a70: 80 a0 60 00 cmp %g1, 0
2007a74: 12 80 00 16 bne 2007acc <_Event_Timeout+0x70> <== NEVER TAKEN
2007a78: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2007a7c: 7f ff eb 3a call 2002764 <sparc_disable_interrupts>
2007a80: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007a84: 03 00 80 75 sethi %hi(0x201d400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2007a88: c2 00 60 5c ld [ %g1 + 0x5c ], %g1 ! 201d45c <_Per_CPU_Information+0xc>
2007a8c: 80 a7 40 01 cmp %i5, %g1
2007a90: 02 80 00 11 be 2007ad4 <_Event_Timeout+0x78>
2007a94: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2007a98: 82 10 20 06 mov 6, %g1
2007a9c: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
2007aa0: 7f ff eb 35 call 2002774 <sparc_enable_interrupts>
2007aa4: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007aa8: 90 10 00 1d mov %i5, %o0
2007aac: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2007ab0: 40 00 0a 83 call 200a4bc <_Thread_Clear_state>
2007ab4: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2007ab8: 03 00 80 74 sethi %hi(0x201d000), %g1
2007abc: c4 00 62 30 ld [ %g1 + 0x230 ], %g2 ! 201d230 <_Thread_Dispatch_disable_level>
2007ac0: 84 00 bf ff add %g2, -1, %g2
2007ac4: c4 20 62 30 st %g2, [ %g1 + 0x230 ]
return _Thread_Dispatch_disable_level;
2007ac8: c2 00 62 30 ld [ %g1 + 0x230 ], %g1
2007acc: 81 c7 e0 08 ret
2007ad0: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2007ad4: 03 00 80 75 sethi %hi(0x201d400), %g1
2007ad8: c4 00 60 b0 ld [ %g1 + 0xb0 ], %g2 ! 201d4b0 <_Event_Sync_state>
2007adc: 80 a0 a0 01 cmp %g2, 1
2007ae0: 32 bf ff ef bne,a 2007a9c <_Event_Timeout+0x40>
2007ae4: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2007ae8: 84 10 20 02 mov 2, %g2
2007aec: c4 20 60 b0 st %g2, [ %g1 + 0xb0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2007af0: 10 bf ff eb b 2007a9c <_Event_Timeout+0x40>
2007af4: 82 10 20 06 mov 6, %g1
0200d794 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200d794: 9d e3 bf 98 save %sp, -104, %sp
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200d798: a2 06 60 04 add %i1, 4, %l1
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200d79c: a0 10 00 18 mov %i0, %l0
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
200d7a0: 80 a6 40 11 cmp %i1, %l1
200d7a4: 18 80 00 85 bgu 200d9b8 <_Heap_Allocate_aligned_with_boundary+0x224>
200d7a8: ea 06 20 10 ld [ %i0 + 0x10 ], %l5
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200d7ac: 80 a6 e0 00 cmp %i3, 0
200d7b0: 12 80 00 7c bne 200d9a0 <_Heap_Allocate_aligned_with_boundary+0x20c>
200d7b4: 80 a6 40 1b cmp %i1, %i3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200d7b8: fa 04 20 08 ld [ %l0 + 8 ], %i5
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200d7bc: 80 a4 00 1d cmp %l0, %i5
200d7c0: 02 80 00 18 be 200d820 <_Heap_Allocate_aligned_with_boundary+0x8c>
200d7c4: b8 10 20 00 clr %i4
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200d7c8: ac 10 20 04 mov 4, %l6
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200d7cc: ae 05 60 07 add %l5, 7, %l7
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200d7d0: ac 25 80 19 sub %l6, %i1, %l6
200d7d4: 10 80 00 0b b 200d800 <_Heap_Allocate_aligned_with_boundary+0x6c>
200d7d8: ec 27 bf fc st %l6, [ %fp + -4 ]
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
if ( alignment == 0 ) {
200d7dc: 12 80 00 18 bne 200d83c <_Heap_Allocate_aligned_with_boundary+0xa8>
200d7e0: b0 07 60 08 add %i5, 8, %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200d7e4: 80 a6 20 00 cmp %i0, 0
200d7e8: 12 80 00 4d bne 200d91c <_Heap_Allocate_aligned_with_boundary+0x188><== ALWAYS TAKEN
200d7ec: b8 07 20 01 inc %i4
break;
}
block = block->next;
200d7f0: fa 07 60 08 ld [ %i5 + 8 ], %i5
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200d7f4: 80 a4 00 1d cmp %l0, %i5
200d7f8: 22 80 00 0b be,a 200d824 <_Heap_Allocate_aligned_with_boundary+0x90>
200d7fc: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200d800: c2 07 60 04 ld [ %i5 + 4 ], %g1
200d804: 80 a4 40 01 cmp %l1, %g1
200d808: 0a bf ff f5 bcs 200d7dc <_Heap_Allocate_aligned_with_boundary+0x48>
200d80c: 80 a6 a0 00 cmp %i2, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200d810: fa 07 60 08 ld [ %i5 + 8 ], %i5
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200d814: 80 a4 00 1d cmp %l0, %i5
200d818: 12 bf ff fa bne 200d800 <_Heap_Allocate_aligned_with_boundary+0x6c>
200d81c: b8 07 20 01 inc %i4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200d820: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200d824: 80 a0 40 1c cmp %g1, %i4
200d828: 1a 80 00 03 bcc 200d834 <_Heap_Allocate_aligned_with_boundary+0xa0>
200d82c: b0 10 20 00 clr %i0
stats->max_search = search_count;
200d830: f8 24 20 44 st %i4, [ %l0 + 0x44 ]
}
return (void *) alloc_begin;
200d834: 81 c7 e0 08 ret
200d838: 81 e8 00 00 restore
uintptr_t alignment,
uintptr_t boundary
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
200d83c: e8 04 20 14 ld [ %l0 + 0x14 ], %l4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d840: a4 08 7f fe and %g1, -2, %l2
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200d844: c2 07 bf fc ld [ %fp + -4 ], %g1
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200d848: 84 25 c0 14 sub %l7, %l4, %g2
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200d84c: a4 07 40 12 add %i5, %l2, %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d850: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200d854: b0 00 40 12 add %g1, %l2, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200d858: a4 00 80 12 add %g2, %l2, %l2
200d85c: 40 00 2c 6c call 2018a0c <.urem>
200d860: 90 10 00 18 mov %i0, %o0
200d864: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200d868: 80 a4 80 18 cmp %l2, %i0
200d86c: 1a 80 00 06 bcc 200d884 <_Heap_Allocate_aligned_with_boundary+0xf0>
200d870: a6 07 60 08 add %i5, 8, %l3
200d874: 90 10 00 12 mov %l2, %o0
200d878: 40 00 2c 65 call 2018a0c <.urem>
200d87c: 92 10 00 1a mov %i2, %o1
200d880: b0 24 80 08 sub %l2, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200d884: 80 a6 e0 00 cmp %i3, 0
200d888: 02 80 00 37 be 200d964 <_Heap_Allocate_aligned_with_boundary+0x1d0>
200d88c: 80 a4 c0 18 cmp %l3, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200d890: 86 06 00 19 add %i0, %i1, %g3
200d894: 92 10 00 1b mov %i3, %o1
200d898: 90 10 00 03 mov %g3, %o0
200d89c: 40 00 2c 5c call 2018a0c <.urem>
200d8a0: c6 27 bf f8 st %g3, [ %fp + -8 ]
200d8a4: c6 07 bf f8 ld [ %fp + -8 ], %g3
200d8a8: 90 20 c0 08 sub %g3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200d8ac: 80 a6 00 08 cmp %i0, %o0
200d8b0: 1a 80 00 2c bcc 200d960 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200d8b4: a4 04 c0 19 add %l3, %i1, %l2
200d8b8: 80 a2 00 03 cmp %o0, %g3
200d8bc: 2a 80 00 12 bcs,a 200d904 <_Heap_Allocate_aligned_with_boundary+0x170>
200d8c0: 80 a4 80 08 cmp %l2, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200d8c4: 10 80 00 28 b 200d964 <_Heap_Allocate_aligned_with_boundary+0x1d0>
200d8c8: 80 a4 c0 18 cmp %l3, %i0
200d8cc: 92 10 00 1a mov %i2, %o1
200d8d0: 40 00 2c 4f call 2018a0c <.urem>
200d8d4: 90 10 00 18 mov %i0, %o0
200d8d8: 92 10 00 1b mov %i3, %o1
200d8dc: b0 26 00 08 sub %i0, %o0, %i0
if ( boundary_line < boundary_floor ) {
return 0;
}
alloc_begin = boundary_line - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200d8e0: ac 06 00 19 add %i0, %i1, %l6
200d8e4: 40 00 2c 4a call 2018a0c <.urem>
200d8e8: 90 10 00 16 mov %l6, %o0
200d8ec: 90 25 80 08 sub %l6, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200d8f0: 80 a2 00 16 cmp %o0, %l6
200d8f4: 1a 80 00 1b bcc 200d960 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200d8f8: 80 a6 00 08 cmp %i0, %o0
200d8fc: 1a 80 00 19 bcc 200d960 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200d900: 80 a4 80 08 cmp %l2, %o0
if ( boundary_line < boundary_floor ) {
200d904: 08 bf ff f2 bleu 200d8cc <_Heap_Allocate_aligned_with_boundary+0x138>
200d908: b0 22 00 19 sub %o0, %i1, %i0
return 0;
200d90c: b0 10 20 00 clr %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200d910: 80 a6 20 00 cmp %i0, 0
200d914: 02 bf ff b7 be 200d7f0 <_Heap_Allocate_aligned_with_boundary+0x5c><== ALWAYS TAKEN
200d918: b8 07 20 01 inc %i4
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200d91c: c6 04 20 48 ld [ %l0 + 0x48 ], %g3
stats->searches += search_count;
200d920: c4 04 20 4c ld [ %l0 + 0x4c ], %g2
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200d924: 86 00 e0 01 inc %g3
stats->searches += search_count;
200d928: 84 00 80 1c add %g2, %i4, %g2
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200d92c: c6 24 20 48 st %g3, [ %l0 + 0x48 ]
stats->searches += search_count;
200d930: c4 24 20 4c st %g2, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200d934: 90 10 00 10 mov %l0, %o0
200d938: 92 10 00 1d mov %i5, %o1
200d93c: 94 10 00 18 mov %i0, %o2
200d940: 7f ff ee 07 call 200915c <_Heap_Block_allocate>
200d944: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200d948: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200d94c: 80 a0 40 1c cmp %g1, %i4
200d950: 2a bf ff b9 bcs,a 200d834 <_Heap_Allocate_aligned_with_boundary+0xa0>
200d954: f8 24 20 44 st %i4, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200d958: 81 c7 e0 08 ret
200d95c: 81 e8 00 00 restore
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200d960: 80 a4 c0 18 cmp %l3, %i0
200d964: 18 bf ff ea bgu 200d90c <_Heap_Allocate_aligned_with_boundary+0x178>
200d968: 82 10 3f f8 mov -8, %g1
200d96c: 90 10 00 18 mov %i0, %o0
200d970: a4 20 40 1d sub %g1, %i5, %l2
200d974: 92 10 00 15 mov %l5, %o1
200d978: 40 00 2c 25 call 2018a0c <.urem>
200d97c: a4 04 80 18 add %l2, %i0, %l2
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200d980: 90 a4 80 08 subcc %l2, %o0, %o0
200d984: 02 bf ff 99 be 200d7e8 <_Heap_Allocate_aligned_with_boundary+0x54>
200d988: 80 a6 20 00 cmp %i0, 0
200d98c: 80 a2 00 14 cmp %o0, %l4
200d990: 1a bf ff 96 bcc 200d7e8 <_Heap_Allocate_aligned_with_boundary+0x54>
200d994: 80 a6 20 00 cmp %i0, 0
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
return 0;
200d998: 10 bf ff de b 200d910 <_Heap_Allocate_aligned_with_boundary+0x17c>
200d99c: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200d9a0: 18 80 00 06 bgu 200d9b8 <_Heap_Allocate_aligned_with_boundary+0x224>
200d9a4: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200d9a8: 22 bf ff 84 be,a 200d7b8 <_Heap_Allocate_aligned_with_boundary+0x24>
200d9ac: b4 10 00 15 mov %l5, %i2
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200d9b0: 10 bf ff 83 b 200d7bc <_Heap_Allocate_aligned_with_boundary+0x28>
200d9b4: fa 04 20 08 ld [ %l0 + 8 ], %i5
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
/* Integer overflow occured */
return NULL;
200d9b8: 81 c7 e0 08 ret
200d9bc: 91 e8 20 00 restore %g0, 0, %o0
0200d9d8 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200d9d8: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200d9dc: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200d9e0: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200d9e4: a0 06 40 1a add %i1, %i2, %l0
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200d9e8: ee 06 20 20 ld [ %i0 + 0x20 ], %l7
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200d9ec: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
uintptr_t const min_block_size = heap->min_block_size;
200d9f0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200d9f4: 80 a6 40 10 cmp %i1, %l0
200d9f8: 08 80 00 06 bleu 200da10 <_Heap_Extend+0x38>
200d9fc: e6 06 20 30 ld [ %i0 + 0x30 ], %l3
return false;
200da00: b0 10 20 00 clr %i0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200da04: b0 0e 20 01 and %i0, 1, %i0
200da08: 81 c7 e0 08 ret
200da0c: 81 e8 00 00 restore
if ( extend_area_end < extend_area_begin ) {
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200da10: 90 10 00 19 mov %i1, %o0
200da14: 92 10 00 1a mov %i2, %o1
200da18: 94 10 00 11 mov %l1, %o2
200da1c: 98 07 bf f8 add %fp, -8, %o4
200da20: 7f ff ed 74 call 2008ff0 <_Heap_Get_first_and_last_block>
200da24: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200da28: 80 8a 20 ff btst 0xff, %o0
200da2c: 02 bf ff f5 be 200da00 <_Heap_Extend+0x28>
200da30: ba 10 00 17 mov %l7, %i5
200da34: aa 10 20 00 clr %l5
200da38: ac 10 20 00 clr %l6
200da3c: a4 10 20 00 clr %l2
200da40: 10 80 00 10 b 200da80 <_Heap_Extend+0xa8>
200da44: a8 10 20 00 clr %l4
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200da48: 2a 80 00 02 bcs,a 200da50 <_Heap_Extend+0x78>
200da4c: ac 10 00 1d mov %i5, %l6
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200da50: 80 a7 00 19 cmp %i4, %i1
200da54: 22 80 00 1e be,a 200dacc <_Heap_Extend+0xf4>
200da58: e0 27 40 00 st %l0, [ %i5 ]
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200da5c: 80 a6 40 1c cmp %i1, %i4
200da60: 38 80 00 02 bgu,a 200da68 <_Heap_Extend+0x90>
200da64: aa 10 00 08 mov %o0, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200da68: fa 02 20 04 ld [ %o0 + 4 ], %i5
200da6c: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200da70: ba 02 00 1d add %o0, %i5, %i5
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200da74: 80 a5 c0 1d cmp %l7, %i5
200da78: 22 80 00 1c be,a 200dae8 <_Heap_Extend+0x110>
200da7c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200da80: 80 a7 40 17 cmp %i5, %l7
200da84: 22 80 00 03 be,a 200da90 <_Heap_Extend+0xb8>
200da88: f4 06 20 18 ld [ %i0 + 0x18 ], %i2
200da8c: b4 10 00 1d mov %i5, %i2
uintptr_t const sub_area_end = start_block->prev_size;
200da90: f8 07 40 00 ld [ %i5 ], %i4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200da94: 92 10 00 11 mov %l1, %o1
200da98: 40 00 2c a2 call 2018d20 <.urem>
200da9c: 90 10 00 1c mov %i4, %o0
200daa0: 82 07 3f f8 add %i4, -8, %g1
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200daa4: 80 a6 80 10 cmp %i2, %l0
200daa8: 0a 80 00 69 bcs 200dc4c <_Heap_Extend+0x274>
200daac: 90 20 40 08 sub %g1, %o0, %o0
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200dab0: 80 a6 80 10 cmp %i2, %l0
200dab4: 12 bf ff e5 bne 200da48 <_Heap_Extend+0x70>
200dab8: 80 a4 00 1c cmp %l0, %i4
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200dabc: 80 a7 00 19 cmp %i4, %i1
200dac0: 12 bf ff e7 bne 200da5c <_Heap_Extend+0x84> <== ALWAYS TAKEN
200dac4: a8 10 00 1d mov %i5, %l4
start_block->prev_size = extend_area_end;
200dac8: e0 27 40 00 st %l0, [ %i5 ] <== NOT EXECUTED
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200dacc: fa 02 20 04 ld [ %o0 + 4 ], %i5
200dad0: ba 0f 7f fe and %i5, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200dad4: ba 02 00 1d add %o0, %i5, %i5
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200dad8: 80 a5 c0 1d cmp %l7, %i5
200dadc: 12 bf ff e9 bne 200da80 <_Heap_Extend+0xa8> <== NEVER TAKEN
200dae0: a4 10 00 08 mov %o0, %l2
if ( extend_area_begin < heap->area_begin ) {
200dae4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200dae8: 80 a6 40 01 cmp %i1, %g1
200daec: 3a 80 00 53 bcc,a 200dc38 <_Heap_Extend+0x260>
200daf0: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200daf4: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200daf8: c2 07 bf f8 ld [ %fp + -8 ], %g1
200dafc: c4 07 bf fc ld [ %fp + -4 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200db00: c8 06 20 20 ld [ %i0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200db04: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200db08: e0 20 40 00 st %l0, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200db0c: ba 10 e0 01 or %g3, 1, %i5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200db10: fa 20 60 04 st %i5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200db14: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200db18: 80 a1 00 01 cmp %g4, %g1
200db1c: 08 80 00 41 bleu 200dc20 <_Heap_Extend+0x248>
200db20: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200db24: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200db28: 80 a5 20 00 cmp %l4, 0
200db2c: 02 80 00 4d be 200dc60 <_Heap_Extend+0x288>
200db30: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200db34: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200db38: 92 10 00 1d mov %i5, %o1
200db3c: 40 00 2c 79 call 2018d20 <.urem>
200db40: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200db44: 80 a2 20 00 cmp %o0, 0
200db48: 02 80 00 04 be 200db58 <_Heap_Extend+0x180>
200db4c: c4 05 00 00 ld [ %l4 ], %g2
return value - remainder + alignment;
200db50: b2 06 40 1d add %i1, %i5, %i1
200db54: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200db58: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200db5c: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200db60: 84 25 00 01 sub %l4, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200db64: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200db68: 90 10 00 18 mov %i0, %o0
200db6c: 92 10 00 01 mov %g1, %o1
200db70: 7f ff ff 90 call 200d9b0 <_Heap_Free_block>
200db74: c4 26 7f fc st %g2, [ %i1 + -4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200db78: 80 a4 a0 00 cmp %l2, 0
200db7c: 02 80 00 40 be 200dc7c <_Heap_Extend+0x2a4>
200db80: a0 04 3f f8 add %l0, -8, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200db84: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200db88: a0 24 00 12 sub %l0, %l2, %l0
200db8c: 40 00 2c 65 call 2018d20 <.urem>
200db90: 90 10 00 10 mov %l0, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200db94: c2 04 a0 04 ld [ %l2 + 4 ], %g1
200db98: a0 24 00 08 sub %l0, %o0, %l0
200db9c: 82 20 40 10 sub %g1, %l0, %g1
| HEAP_PREV_BLOCK_USED;
200dba0: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200dba4: 84 04 00 12 add %l0, %l2, %g2
200dba8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200dbac: c2 04 a0 04 ld [ %l2 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200dbb0: 90 10 00 18 mov %i0, %o0
200dbb4: 82 08 60 01 and %g1, 1, %g1
200dbb8: 92 10 00 12 mov %l2, %o1
block->size_and_flag = size | flag;
200dbbc: a0 14 00 01 or %l0, %g1, %l0
200dbc0: 7f ff ff 7c call 200d9b0 <_Heap_Free_block>
200dbc4: e0 24 a0 04 st %l0, [ %l2 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200dbc8: 80 a4 a0 00 cmp %l2, 0
200dbcc: 02 80 00 39 be 200dcb0 <_Heap_Extend+0x2d8>
200dbd0: 80 a5 20 00 cmp %l4, 0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200dbd4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200dbd8: fa 06 20 20 ld [ %i0 + 0x20 ], %i5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200dbdc: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200dbe0: c4 06 20 2c ld [ %i0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200dbe4: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200dbe8: ba 27 40 01 sub %i5, %g1, %i5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200dbec: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
200dbf0: 88 17 40 04 or %i5, %g4, %g4
200dbf4: c8 20 60 04 st %g4, [ %g1 + 4 ]
200dbf8: a6 20 c0 13 sub %g3, %l3, %l3
/* Statistics */
stats->size += extended_size;
200dbfc: 82 00 80 13 add %g2, %l3, %g1
if ( extended_size_ptr != NULL )
200dc00: 80 a6 e0 00 cmp %i3, 0
200dc04: 02 80 00 32 be 200dccc <_Heap_Extend+0x2f4> <== NEVER TAKEN
200dc08: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
*extended_size_ptr = extended_size;
200dc0c: e6 26 c0 00 st %l3, [ %i3 ]
return true;
200dc10: b0 10 20 01 mov 1, %i0
}
200dc14: b0 0e 20 01 and %i0, 1, %i0
200dc18: 81 c7 e0 08 ret
200dc1c: 81 e8 00 00 restore
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200dc20: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200dc24: 80 a0 40 02 cmp %g1, %g2
200dc28: 2a bf ff c0 bcs,a 200db28 <_Heap_Extend+0x150>
200dc2c: c4 26 20 24 st %g2, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200dc30: 10 bf ff bf b 200db2c <_Heap_Extend+0x154>
200dc34: 80 a5 20 00 cmp %l4, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200dc38: 80 a4 00 01 cmp %l0, %g1
200dc3c: 38 bf ff af bgu,a 200daf8 <_Heap_Extend+0x120>
200dc40: e0 26 20 1c st %l0, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200dc44: 10 bf ff ae b 200dafc <_Heap_Extend+0x124>
200dc48: c2 07 bf f8 ld [ %fp + -8 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200dc4c: 80 a6 40 1c cmp %i1, %i4
200dc50: 1a bf ff 99 bcc 200dab4 <_Heap_Extend+0xdc>
200dc54: 80 a6 80 10 cmp %i2, %l0
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
return false;
200dc58: 10 bf ff 6b b 200da04 <_Heap_Extend+0x2c>
200dc5c: b0 10 20 00 clr %i0
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200dc60: 80 a5 a0 00 cmp %l6, 0
200dc64: 02 bf ff c6 be 200db7c <_Heap_Extend+0x1a4>
200dc68: 80 a4 a0 00 cmp %l2, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200dc6c: ac 25 80 02 sub %l6, %g2, %l6
200dc70: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200dc74: 10 bf ff c2 b 200db7c <_Heap_Extend+0x1a4>
200dc78: ec 20 a0 04 st %l6, [ %g2 + 4 ]
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200dc7c: 80 a5 60 00 cmp %l5, 0
200dc80: 02 bf ff d2 be 200dbc8 <_Heap_Extend+0x1f0>
200dc84: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200dc88: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200dc8c: c2 07 bf fc ld [ %fp + -4 ], %g1
200dc90: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200dc94: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200dc98: 84 10 80 03 or %g2, %g3, %g2
200dc9c: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200dca0: c4 00 60 04 ld [ %g1 + 4 ], %g2
200dca4: 84 10 a0 01 or %g2, 1, %g2
200dca8: 10 bf ff c8 b 200dbc8 <_Heap_Extend+0x1f0>
200dcac: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200dcb0: 32 bf ff ca bne,a 200dbd8 <_Heap_Extend+0x200>
200dcb4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200dcb8: d2 07 bf f8 ld [ %fp + -8 ], %o1
200dcbc: 7f ff ff 3d call 200d9b0 <_Heap_Free_block>
200dcc0: 90 10 00 18 mov %i0, %o0
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
heap->last_block,
(uintptr_t) heap->first_block - (uintptr_t) heap->last_block
200dcc4: 10 bf ff c5 b 200dbd8 <_Heap_Extend+0x200>
200dcc8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200dccc: 10 bf ff 4e b 200da04 <_Heap_Extend+0x2c> <== NOT EXECUTED
200dcd0: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED
0200d9c0 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200d9c0: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200d9c4: 80 a6 60 00 cmp %i1, 0
200d9c8: 02 80 00 3c be 200dab8 <_Heap_Free+0xf8>
200d9cc: 82 10 20 01 mov 1, %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d9d0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200d9d4: 40 00 2c 0e call 2018a0c <.urem>
200d9d8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200d9dc: c4 06 20 20 ld [ %i0 + 0x20 ], %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200d9e0: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200d9e4: 90 27 40 08 sub %i5, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200d9e8: 80 a2 00 02 cmp %o0, %g2
200d9ec: 0a 80 00 30 bcs 200daac <_Heap_Free+0xec>
200d9f0: 82 10 20 00 clr %g1
200d9f4: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
200d9f8: 80 a2 00 04 cmp %o0, %g4
200d9fc: 38 80 00 2d bgu,a 200dab0 <_Heap_Free+0xf0>
200da00: b0 08 60 ff and %g1, 0xff, %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200da04: f6 02 20 04 ld [ %o0 + 4 ], %i3
200da08: ba 0e ff fe and %i3, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200da0c: 86 02 00 1d add %o0, %i5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200da10: 80 a0 80 03 cmp %g2, %g3
200da14: 38 80 00 27 bgu,a 200dab0 <_Heap_Free+0xf0> <== NEVER TAKEN
200da18: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
200da1c: 80 a1 00 03 cmp %g4, %g3
200da20: 2a 80 00 24 bcs,a 200dab0 <_Heap_Free+0xf0> <== NEVER TAKEN
200da24: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200da28: f8 00 e0 04 ld [ %g3 + 4 ], %i4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200da2c: 80 8f 20 01 btst 1, %i4
200da30: 02 80 00 1f be 200daac <_Heap_Free+0xec> <== NEVER TAKEN
200da34: 80 a1 00 03 cmp %g4, %g3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200da38: 02 80 00 23 be 200dac4 <_Heap_Free+0x104>
200da3c: b8 0f 3f fe and %i4, -2, %i4
200da40: 82 00 c0 1c add %g3, %i4, %g1
200da44: c2 00 60 04 ld [ %g1 + 4 ], %g1
200da48: 80 88 60 01 btst 1, %g1
200da4c: 12 80 00 1f bne 200dac8 <_Heap_Free+0x108>
200da50: 80 8e e0 01 btst 1, %i3
if ( !_Heap_Is_prev_used( block ) ) {
200da54: 02 80 00 20 be 200dad4 <_Heap_Free+0x114>
200da58: b2 10 20 01 mov 1, %i1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_replace(
Heap_Block *old_block,
Heap_Block *new_block
)
{
Heap_Block *next = old_block->next;
200da5c: c4 00 e0 08 ld [ %g3 + 8 ], %g2
Heap_Block *prev = old_block->prev;
200da60: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
new_block->next = next;
200da64: c4 22 20 08 st %g2, [ %o0 + 8 ]
new_block->prev = prev;
200da68: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200da6c: b8 07 00 1d add %i4, %i5, %i4
next->prev = new_block;
200da70: d0 20 a0 0c st %o0, [ %g2 + 0xc ]
prev->next = new_block;
200da74: d0 20 60 08 st %o0, [ %g1 + 8 ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200da78: 84 17 20 01 or %i4, 1, %g2
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200da7c: f8 22 00 1c st %i4, [ %o0 + %i4 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200da80: c4 22 20 04 st %g2, [ %o0 + 4 ]
}
}
/* Statistics */
--stats->used_blocks;
++stats->frees;
200da84: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200da88: c4 06 20 40 ld [ %i0 + 0x40 ], %g2
++stats->frees;
stats->free_size += block_size;
200da8c: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
}
}
/* Statistics */
--stats->used_blocks;
++stats->frees;
200da90: 82 00 60 01 inc %g1
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200da94: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
stats->free_size += block_size;
200da98: ba 00 c0 1d add %g3, %i5, %i5
}
}
/* Statistics */
--stats->used_blocks;
++stats->frees;
200da9c: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200daa0: c4 26 20 40 st %g2, [ %i0 + 0x40 ]
++stats->frees;
stats->free_size += block_size;
200daa4: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
return( true );
200daa8: 82 10 20 01 mov 1, %g1
200daac: b0 08 60 ff and %g1, 0xff, %i0
200dab0: 81 c7 e0 08 ret
200dab4: 81 e8 00 00 restore
200dab8: b0 08 60 ff and %g1, 0xff, %i0
200dabc: 81 c7 e0 08 ret
200dac0: 81 e8 00 00 restore
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200dac4: 80 8e e0 01 btst 1, %i3
200dac8: 32 80 00 1e bne,a 200db40 <_Heap_Free+0x180>
200dacc: c4 06 20 08 ld [ %i0 + 8 ], %g2
if ( !_Heap_Protection_determine_block_free( heap, block ) ) {
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
200dad0: b2 10 20 00 clr %i1
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
uintptr_t const prev_size = block->prev_size;
200dad4: f4 02 00 00 ld [ %o0 ], %i2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200dad8: b6 22 00 1a sub %o0, %i2, %i3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200dadc: 80 a0 80 1b cmp %g2, %i3
200dae0: 18 bf ff f3 bgu 200daac <_Heap_Free+0xec> <== NEVER TAKEN
200dae4: 82 10 20 00 clr %g1
200dae8: 80 a1 00 1b cmp %g4, %i3
200daec: 2a bf ff f1 bcs,a 200dab0 <_Heap_Free+0xf0> <== NEVER TAKEN
200daf0: b0 08 60 ff and %g1, 0xff, %i0 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200daf4: c4 06 e0 04 ld [ %i3 + 4 ], %g2
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200daf8: 80 88 a0 01 btst 1, %g2
200dafc: 02 bf ff ec be 200daac <_Heap_Free+0xec> <== NEVER TAKEN
200db00: 80 8e 60 ff btst 0xff, %i1
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200db04: 22 80 00 21 be,a 200db88 <_Heap_Free+0x1c8>
200db08: b4 07 40 1a add %i5, %i2, %i2
return _Heap_Free_list_tail(heap)->prev;
}
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
200db0c: c2 00 e0 08 ld [ %g3 + 8 ], %g1
Heap_Block *prev = block->prev;
200db10: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200db14: c6 06 20 38 ld [ %i0 + 0x38 ], %g3
prev->next = next;
200db18: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200db1c: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200db20: 82 00 ff ff add %g3, -1, %g1
200db24: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200db28: b8 07 40 1c add %i5, %i4, %i4
200db2c: b4 07 00 1a add %i4, %i2, %i2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200db30: 82 16 a0 01 or %i2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200db34: f4 26 c0 1a st %i2, [ %i3 + %i2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200db38: 10 bf ff d3 b 200da84 <_Heap_Free+0xc4>
200db3c: c2 26 e0 04 st %g1, [ %i3 + 4 ]
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200db40: 82 17 60 01 or %i5, 1, %g1
200db44: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200db48: c8 00 e0 04 ld [ %g3 + 4 ], %g4
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200db4c: f0 22 20 0c st %i0, [ %o0 + 0xc ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200db50: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200db54: c4 22 20 08 st %g2, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200db58: d0 20 a0 0c st %o0, [ %g2 + 0xc ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200db5c: 84 09 3f fe and %g4, -2, %g2
next_block->prev_size = block_size;
200db60: fa 22 00 1d st %i5, [ %o0 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200db64: c4 20 e0 04 st %g2, [ %g3 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200db68: c4 06 20 3c ld [ %i0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200db6c: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200db70: d0 26 20 08 st %o0, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200db74: 80 a0 40 02 cmp %g1, %g2
200db78: 08 bf ff c3 bleu 200da84 <_Heap_Free+0xc4>
200db7c: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200db80: 10 bf ff c1 b 200da84 <_Heap_Free+0xc4>
200db84: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200db88: 82 16 a0 01 or %i2, 1, %g1
200db8c: c2 26 e0 04 st %g1, [ %i3 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200db90: c2 00 e0 04 ld [ %g3 + 4 ], %g1
next_block->prev_size = size;
200db94: f4 22 00 1d st %i2, [ %o0 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200db98: 82 08 7f fe and %g1, -2, %g1
200db9c: 10 bf ff ba b 200da84 <_Heap_Free+0xc4>
200dba0: c2 20 e0 04 st %g1, [ %g3 + 4 ]
0201257c <_Heap_Get_free_information>:
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
201257c: c2 02 20 08 ld [ %o0 + 8 ], %g1
)
{
Heap_Block *the_block;
Heap_Block *const tail = _Heap_Free_list_tail(the_heap);
info->number = 0;
2012580: c0 22 40 00 clr [ %o1 ]
info->largest = 0;
2012584: c0 22 60 04 clr [ %o1 + 4 ]
info->total = 0;
2012588: c0 22 60 08 clr [ %o1 + 8 ]
for(the_block = _Heap_Free_list_first(the_heap);
201258c: 88 10 20 01 mov 1, %g4
2012590: 9a 10 20 00 clr %o5
2012594: 80 a2 00 01 cmp %o0, %g1
2012598: 12 80 00 04 bne 20125a8 <_Heap_Get_free_information+0x2c> <== ALWAYS TAKEN
201259c: 86 10 20 00 clr %g3
20125a0: 30 80 00 10 b,a 20125e0 <_Heap_Get_free_information+0x64><== NOT EXECUTED
20125a4: 88 10 00 0c mov %o4, %g4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20125a8: c4 00 60 04 ld [ %g1 + 4 ], %g2
20125ac: 98 01 20 01 add %g4, 1, %o4
20125b0: 84 08 bf fe and %g2, -2, %g2
/* As we always coalesce free blocks, prev block must have been used. */
_HAssert(_Heap_Is_prev_used(the_block));
info->number++;
info->total += the_size;
if ( info->largest < the_size )
20125b4: 80 a0 80 0d cmp %g2, %o5
20125b8: 08 80 00 03 bleu 20125c4 <_Heap_Get_free_information+0x48>
20125bc: 86 00 c0 02 add %g3, %g2, %g3
info->largest = the_size;
20125c0: c4 22 60 04 st %g2, [ %o1 + 4 ]
info->largest = 0;
info->total = 0;
for(the_block = _Heap_Free_list_first(the_heap);
the_block != tail;
the_block = the_block->next)
20125c4: c2 00 60 08 ld [ %g1 + 8 ], %g1
info->number = 0;
info->largest = 0;
info->total = 0;
for(the_block = _Heap_Free_list_first(the_heap);
20125c8: 80 a2 00 01 cmp %o0, %g1
20125cc: 32 bf ff f6 bne,a 20125a4 <_Heap_Get_free_information+0x28>
20125d0: da 02 60 04 ld [ %o1 + 4 ], %o5
20125d4: c8 22 40 00 st %g4, [ %o1 ]
20125d8: 81 c3 e0 08 retl
20125dc: c6 22 60 08 st %g3, [ %o1 + 8 ]
20125e0: 81 c3 e0 08 retl <== NOT EXECUTED
0200ae8c <_Heap_Greedy_allocate>:
Heap_Block *_Heap_Greedy_allocate(
Heap_Control *heap,
uintptr_t remaining_free_space
)
{
200ae8c: 9d e3 bf a0 save %sp, -96, %sp
void *free_space = remaining_free_space > 0 ?
_Heap_Allocate( heap, remaining_free_space )
: NULL;
200ae90: b4 10 20 00 clr %i2
200ae94: 80 a6 60 00 cmp %i1, 0
200ae98: 12 80 00 1b bne 200af04 <_Heap_Greedy_allocate+0x78>
200ae9c: b8 10 00 18 mov %i0, %i4
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200aea0: fa 07 20 08 ld [ %i4 + 8 ], %i5
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *current = _Heap_Free_list_first( heap );
Heap_Block *blocks = NULL;
while ( current != free_list_tail ) {
200aea4: 80 a7 00 1d cmp %i4, %i5
200aea8: 22 80 00 12 be,a 200aef0 <_Heap_Greedy_allocate+0x64> <== NEVER TAKEN
200aeac: b0 10 20 00 clr %i0 <== NOT EXECUTED
200aeb0: 10 80 00 03 b 200aebc <_Heap_Greedy_allocate+0x30>
200aeb4: b6 10 20 00 clr %i3
_Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE
);
current->next = blocks;
blocks = current;
current = _Heap_Free_list_first( heap );
200aeb8: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200aebc: d6 07 60 04 ld [ %i5 + 4 ], %o3
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *current = _Heap_Free_list_first( heap );
Heap_Block *blocks = NULL;
while ( current != free_list_tail ) {
_Heap_Block_allocate(
200aec0: 92 10 00 1d mov %i5, %o1
200aec4: 96 0a ff fe and %o3, -2, %o3
200aec8: 94 07 60 08 add %i5, 8, %o2
200aecc: 90 10 00 1c mov %i4, %o0
200aed0: 40 00 00 e0 call 200b250 <_Heap_Block_allocate>
200aed4: 96 02 ff f8 add %o3, -8, %o3
current,
_Heap_Alloc_area_of_block( current ),
_Heap_Block_size( current ) - HEAP_BLOCK_HEADER_SIZE
);
current->next = blocks;
200aed8: f6 27 60 08 st %i3, [ %i5 + 8 ]
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200aedc: c2 07 20 08 ld [ %i4 + 8 ], %g1
: NULL;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *current = _Heap_Free_list_first( heap );
Heap_Block *blocks = NULL;
while ( current != free_list_tail ) {
200aee0: 80 a7 00 01 cmp %i4, %g1
200aee4: 12 bf ff f5 bne 200aeb8 <_Heap_Greedy_allocate+0x2c>
200aee8: b6 10 00 1d mov %i5, %i3
200aeec: b0 10 00 1d mov %i5, %i0
current->next = blocks;
blocks = current;
current = _Heap_Free_list_first( heap );
}
_Heap_Free( heap, free_space );
200aef0: 90 10 00 1c mov %i4, %o0
200aef4: 40 00 1e 01 call 20126f8 <_Heap_Free>
200aef8: 92 10 00 1a mov %i2, %o1
return blocks;
}
200aefc: 81 c7 e0 08 ret
200af00: 81 e8 00 00 restore
* @brief See _Heap_Allocate_aligned_with_boundary() with alignment and
* boundary equals zero.
*/
RTEMS_INLINE_ROUTINE void *_Heap_Allocate( Heap_Control *heap, uintptr_t size )
{
return _Heap_Allocate_aligned_with_boundary( heap, size, 0, 0 );
200af04: 90 10 00 18 mov %i0, %o0
200af08: 92 10 00 19 mov %i1, %o1
200af0c: 94 10 20 00 clr %o2
200af10: 40 00 1d 6f call 20124cc <_Heap_Allocate_aligned_with_boundary>
200af14: 96 10 20 00 clr %o3
200af18: 10 bf ff e2 b 200aea0 <_Heap_Greedy_allocate+0x14>
200af1c: b4 10 00 08 mov %o0, %i2
0200af20 <_Heap_Greedy_free>:
void _Heap_Greedy_free(
Heap_Control *heap,
Heap_Block *blocks
)
{
200af20: 9d e3 bf a0 save %sp, -96, %sp
while ( blocks != NULL ) {
200af24: 80 a6 60 00 cmp %i1, 0
200af28: 02 80 00 09 be 200af4c <_Heap_Greedy_free+0x2c> <== NEVER TAKEN
200af2c: 01 00 00 00 nop
Heap_Block *current = blocks;
blocks = blocks->next;
200af30: fa 06 60 08 ld [ %i1 + 8 ], %i5
_Heap_Free( heap, (void *) _Heap_Alloc_area_of_block( current ) );
200af34: 92 06 60 08 add %i1, 8, %o1
200af38: 40 00 1d f0 call 20126f8 <_Heap_Free>
200af3c: 90 10 00 18 mov %i0, %o0
void _Heap_Greedy_free(
Heap_Control *heap,
Heap_Block *blocks
)
{
while ( blocks != NULL ) {
200af40: b2 97 60 00 orcc %i5, 0, %i1
200af44: 32 bf ff fc bne,a 200af34 <_Heap_Greedy_free+0x14>
200af48: fa 06 60 08 ld [ %i1 + 8 ], %i5
200af4c: 81 c7 e0 08 ret
200af50: 81 e8 00 00 restore
02012648 <_Heap_Iterate>:
void _Heap_Iterate(
Heap_Control *heap,
Heap_Block_visitor visitor,
void *visitor_arg
)
{
2012648: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *current = heap->first_block;
201264c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *end = heap->last_block;
2012650: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
bool stop = false;
while ( !stop && current != end ) {
2012654: 80 a0 40 1c cmp %g1, %i4
2012658: 32 80 00 08 bne,a 2012678 <_Heap_Iterate+0x30> <== ALWAYS TAKEN
201265c: d2 00 60 04 ld [ %g1 + 4 ], %o1
2012660: 30 80 00 10 b,a 20126a0 <_Heap_Iterate+0x58> <== NOT EXECUTED
2012664: 90 1a 20 01 xor %o0, 1, %o0
2012668: 80 8a 20 ff btst 0xff, %o0
201266c: 02 80 00 0d be 20126a0 <_Heap_Iterate+0x58> <== NEVER TAKEN
2012670: 01 00 00 00 nop
2012674: d2 00 60 04 ld [ %g1 + 4 ], %o1
uintptr_t size = _Heap_Block_size( current );
Heap_Block *next = _Heap_Block_at( current, size );
bool used = _Heap_Is_prev_used( next );
stop = (*visitor)( current, size, used, visitor_arg );
2012678: 90 10 00 01 mov %g1, %o0
201267c: 92 0a 7f fe and %o1, -2, %o1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2012680: ba 00 40 09 add %g1, %o1, %i5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2012684: d4 07 60 04 ld [ %i5 + 4 ], %o2
2012688: 96 10 00 1a mov %i2, %o3
201268c: 9f c6 40 00 call %i1
2012690: 94 0a a0 01 and %o2, 1, %o2
{
Heap_Block *current = heap->first_block;
Heap_Block *end = heap->last_block;
bool stop = false;
while ( !stop && current != end ) {
2012694: 80 a7 00 1d cmp %i4, %i5
2012698: 12 bf ff f3 bne 2012664 <_Heap_Iterate+0x1c>
201269c: 82 10 00 1d mov %i5, %g1
20126a0: 81 c7 e0 08 ret
20126a4: 81 e8 00 00 restore
0200dccc <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
200dccc: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200dcd0: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200dcd4: 40 00 2b 4e call 2018a0c <.urem>
200dcd8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200dcdc: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200dce0: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200dce4: 90 20 80 08 sub %g2, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200dce8: 80 a2 00 01 cmp %o0, %g1
200dcec: 0a 80 00 16 bcs 200dd44 <_Heap_Size_of_alloc_area+0x78>
200dcf0: 84 10 20 00 clr %g2
200dcf4: c6 06 20 24 ld [ %i0 + 0x24 ], %g3
200dcf8: 80 a2 00 03 cmp %o0, %g3
200dcfc: 18 80 00 13 bgu 200dd48 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dd00: b0 08 a0 ff and %g2, 0xff, %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200dd04: c8 02 20 04 ld [ %o0 + 4 ], %g4
200dd08: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200dd0c: 90 02 00 04 add %o0, %g4, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200dd10: 80 a0 40 08 cmp %g1, %o0
200dd14: 18 80 00 0d bgu 200dd48 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dd18: 01 00 00 00 nop
200dd1c: 80 a0 c0 08 cmp %g3, %o0
200dd20: 0a 80 00 0a bcs 200dd48 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dd24: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200dd28: c2 02 20 04 ld [ %o0 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
200dd2c: 80 88 60 01 btst 1, %g1
200dd30: 02 80 00 06 be 200dd48 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
200dd34: 90 22 00 19 sub %o0, %i1, %o0
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
200dd38: 84 10 20 01 mov 1, %g2
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
200dd3c: 90 02 20 04 add %o0, 4, %o0
200dd40: d0 26 80 00 st %o0, [ %i2 ]
200dd44: b0 08 a0 ff and %g2, 0xff, %i0
200dd48: 81 c7 e0 08 ret
200dd4c: 81 e8 00 00 restore
02009f2c <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2009f2c: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const page_size = heap->page_size;
2009f30: f6 06 20 10 ld [ %i0 + 0x10 ], %i3
uintptr_t const min_block_size = heap->min_block_size;
2009f34: e0 06 20 14 ld [ %i0 + 0x14 ], %l0
Heap_Block *const first_block = heap->first_block;
2009f38: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009f3c: 80 a6 a0 00 cmp %i2, 0
2009f40: 02 80 00 0c be 2009f70 <_Heap_Walk+0x44>
2009f44: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009f48: 03 00 80 7e sethi %hi(0x201f800), %g1
2009f4c: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 201f890 <_System_state_Current>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009f50: 07 00 80 27 sethi %hi(0x2009c00), %g3
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
2009f54: 82 10 20 01 mov 1, %g1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009f58: 80 a0 a0 03 cmp %g2, 3
2009f5c: 02 80 00 0c be 2009f8c <_Heap_Walk+0x60> <== ALWAYS TAKEN
2009f60: ae 10 e2 c8 or %g3, 0x2c8, %l7
2009f64: b0 08 60 ff and %g1, 0xff, %i0
2009f68: 81 c7 e0 08 ret
2009f6c: 81 e8 00 00 restore
2009f70: 03 00 80 7e sethi %hi(0x201f800), %g1
2009f74: c4 00 60 90 ld [ %g1 + 0x90 ], %g2 ! 201f890 <_System_state_Current>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2009f78: 07 00 80 27 sethi %hi(0x2009c00), %g3
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
2009f7c: 82 10 20 01 mov 1, %g1
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2009f80: 80 a0 a0 03 cmp %g2, 3
2009f84: 12 bf ff f8 bne 2009f64 <_Heap_Walk+0x38>
2009f88: ae 10 e2 c0 or %g3, 0x2c0, %l7
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2009f8c: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2009f90: c8 06 20 1c ld [ %i0 + 0x1c ], %g4
2009f94: c4 06 20 08 ld [ %i0 + 8 ], %g2
2009f98: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2009f9c: 90 10 00 19 mov %i1, %o0
2009fa0: c8 23 a0 5c st %g4, [ %sp + 0x5c ]
2009fa4: f8 23 a0 60 st %i4, [ %sp + 0x60 ]
2009fa8: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
2009fac: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2009fb0: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2009fb4: 92 10 20 00 clr %o1
2009fb8: 96 10 00 1b mov %i3, %o3
2009fbc: 15 00 80 70 sethi %hi(0x201c000), %o2
2009fc0: 98 10 00 10 mov %l0, %o4
2009fc4: 9f c5 c0 00 call %l7
2009fc8: 94 12 a3 b0 or %o2, 0x3b0, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2009fcc: 80 a6 e0 00 cmp %i3, 0
2009fd0: 02 80 00 2a be 200a078 <_Heap_Walk+0x14c>
2009fd4: 80 8e e0 07 btst 7, %i3
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2009fd8: 12 80 00 2f bne 200a094 <_Heap_Walk+0x168>
2009fdc: 90 10 00 10 mov %l0, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2009fe0: 7f ff de e4 call 2001b70 <.urem>
2009fe4: 92 10 00 1b mov %i3, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2009fe8: 80 a2 20 00 cmp %o0, 0
2009fec: 12 80 00 32 bne 200a0b4 <_Heap_Walk+0x188>
2009ff0: 90 07 20 08 add %i4, 8, %o0
2009ff4: 7f ff de df call 2001b70 <.urem>
2009ff8: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2009ffc: 80 a2 20 00 cmp %o0, 0
200a000: 32 80 00 35 bne,a 200a0d4 <_Heap_Walk+0x1a8>
200a004: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a008: ec 07 20 04 ld [ %i4 + 4 ], %l6
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
200a00c: b4 8d a0 01 andcc %l6, 1, %i2
200a010: 22 80 00 38 be,a 200a0f0 <_Heap_Walk+0x1c4>
200a014: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a018: c2 04 60 04 ld [ %l1 + 4 ], %g1
200a01c: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200a020: 82 04 40 01 add %l1, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a024: fa 00 60 04 ld [ %g1 + 4 ], %i5
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
200a028: 80 8f 60 01 btst 1, %i5
200a02c: 02 80 00 0c be 200a05c <_Heap_Walk+0x130>
200a030: 80 a7 00 01 cmp %i4, %g1
);
return false;
}
if (
200a034: 02 80 00 35 be 200a108 <_Heap_Walk+0x1dc>
200a038: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
200a03c: 92 10 20 01 mov 1, %o1
200a040: 15 00 80 71 sethi %hi(0x201c400), %o2
200a044: 9f c5 c0 00 call %l7
200a048: 94 12 a1 28 or %o2, 0x128, %o2 ! 201c528 <__log2table+0x2d8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a04c: 82 10 20 00 clr %g1
200a050: b0 08 60 ff and %g1, 0xff, %i0
200a054: 81 c7 e0 08 ret
200a058: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
200a05c: 90 10 00 19 mov %i1, %o0
200a060: 92 10 20 01 mov 1, %o1
200a064: 15 00 80 71 sethi %hi(0x201c400), %o2
200a068: 9f c5 c0 00 call %l7
200a06c: 94 12 a1 10 or %o2, 0x110, %o2 ! 201c510 <__log2table+0x2c0>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a070: 10 bf ff f8 b 200a050 <_Heap_Walk+0x124>
200a074: 82 10 20 00 clr %g1
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
200a078: 90 10 00 19 mov %i1, %o0
200a07c: 92 10 20 01 mov 1, %o1
200a080: 15 00 80 71 sethi %hi(0x201c400), %o2
200a084: 9f c5 c0 00 call %l7
200a088: 94 12 a0 48 or %o2, 0x48, %o2 ! 201c448 <__log2table+0x1f8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a08c: 10 bf ff f1 b 200a050 <_Heap_Walk+0x124>
200a090: 82 10 20 00 clr %g1
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
200a094: 90 10 00 19 mov %i1, %o0
200a098: 92 10 20 01 mov 1, %o1
200a09c: 15 00 80 71 sethi %hi(0x201c400), %o2
200a0a0: 96 10 00 1b mov %i3, %o3
200a0a4: 9f c5 c0 00 call %l7
200a0a8: 94 12 a0 60 or %o2, 0x60, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a0ac: 10 bf ff e9 b 200a050 <_Heap_Walk+0x124>
200a0b0: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
200a0b4: 90 10 00 19 mov %i1, %o0
200a0b8: 92 10 20 01 mov 1, %o1
200a0bc: 15 00 80 71 sethi %hi(0x201c400), %o2
200a0c0: 96 10 00 10 mov %l0, %o3
200a0c4: 9f c5 c0 00 call %l7
200a0c8: 94 12 a0 80 or %o2, 0x80, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a0cc: 10 bf ff e1 b 200a050 <_Heap_Walk+0x124>
200a0d0: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
200a0d4: 92 10 20 01 mov 1, %o1
200a0d8: 15 00 80 71 sethi %hi(0x201c400), %o2
200a0dc: 96 10 00 1c mov %i4, %o3
200a0e0: 9f c5 c0 00 call %l7
200a0e4: 94 12 a0 a8 or %o2, 0xa8, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a0e8: 10 bf ff da b 200a050 <_Heap_Walk+0x124>
200a0ec: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
200a0f0: 92 10 20 01 mov 1, %o1
200a0f4: 15 00 80 71 sethi %hi(0x201c400), %o2
200a0f8: 9f c5 c0 00 call %l7
200a0fc: 94 12 a0 e0 or %o2, 0xe0, %o2 ! 201c4e0 <__log2table+0x290>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a100: 10 bf ff d4 b 200a050 <_Heap_Walk+0x124>
200a104: 82 10 20 00 clr %g1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200a108: fa 06 20 08 ld [ %i0 + 8 ], %i5
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
200a10c: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
200a110: 80 a6 00 1d cmp %i0, %i5
200a114: 02 80 00 0d be 200a148 <_Heap_Walk+0x21c>
200a118: da 06 20 20 ld [ %i0 + 0x20 ], %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200a11c: 80 a3 40 1d cmp %o5, %i5
200a120: 28 80 00 bf bleu,a 200a41c <_Heap_Walk+0x4f0> <== ALWAYS TAKEN
200a124: e6 06 20 24 ld [ %i0 + 0x24 ], %l3
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
200a128: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
200a12c: 92 10 20 01 mov 1, %o1
200a130: 15 00 80 71 sethi %hi(0x201c400), %o2
200a134: 96 10 00 1d mov %i5, %o3
200a138: 9f c5 c0 00 call %l7
200a13c: 94 12 a1 58 or %o2, 0x158, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a140: 10 bf ff c4 b 200a050 <_Heap_Walk+0x124>
200a144: 82 10 20 00 clr %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
200a148: 27 00 80 71 sethi %hi(0x201c400), %l3
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
200a14c: 25 00 80 71 sethi %hi(0x201c400), %l2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
200a150: aa 10 00 1c mov %i4, %l5
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
200a154: a6 14 e3 88 or %l3, 0x388, %l3
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
200a158: a4 14 a3 70 or %l2, 0x370, %l2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200a15c: 29 00 80 71 sethi %hi(0x201c400), %l4
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a160: ac 0d bf fe and %l6, -2, %l6
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200a164: ba 05 80 15 add %l6, %l5, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200a168: 80 a3 40 1d cmp %o5, %i5
200a16c: 28 80 00 0b bleu,a 200a198 <_Heap_Walk+0x26c> <== ALWAYS TAKEN
200a170: de 06 20 24 ld [ %i0 + 0x24 ], %o7
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
200a174: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
200a178: 92 10 20 01 mov 1, %o1
200a17c: 96 10 00 15 mov %l5, %o3
200a180: 15 00 80 71 sethi %hi(0x201c400), %o2
200a184: 98 10 00 1d mov %i5, %o4
200a188: 9f c5 c0 00 call %l7
200a18c: 94 12 a2 00 or %o2, 0x200, %o2
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
200a190: 10 bf ff 75 b 2009f64 <_Heap_Walk+0x38>
200a194: 82 10 20 00 clr %g1
200a198: 80 a3 c0 1d cmp %o7, %i5
200a19c: 0a bf ff f7 bcs 200a178 <_Heap_Walk+0x24c>
200a1a0: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
200a1a4: 9e 1d 40 11 xor %l5, %l1, %o7
200a1a8: 80 a0 00 0f cmp %g0, %o7
200a1ac: 9a 40 20 00 addx %g0, 0, %o5
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200a1b0: 90 10 00 16 mov %l6, %o0
200a1b4: da 27 bf fc st %o5, [ %fp + -4 ]
200a1b8: 7f ff de 6e call 2001b70 <.urem>
200a1bc: 92 10 00 1b mov %i3, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
200a1c0: 80 a2 20 00 cmp %o0, 0
200a1c4: 02 80 00 18 be 200a224 <_Heap_Walk+0x2f8>
200a1c8: da 07 bf fc ld [ %fp + -4 ], %o5
200a1cc: 80 8b 60 ff btst 0xff, %o5
200a1d0: 12 80 00 8b bne 200a3fc <_Heap_Walk+0x4d0>
200a1d4: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a1d8: de 07 60 04 ld [ %i5 + 4 ], %o7
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200a1dc: 80 8b e0 01 btst 1, %o7
200a1e0: 02 80 00 2b be 200a28c <_Heap_Walk+0x360>
200a1e4: 80 a6 a0 00 cmp %i2, 0
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
200a1e8: 22 80 00 21 be,a 200a26c <_Heap_Walk+0x340>
200a1ec: da 05 40 00 ld [ %l5 ], %o5
(*printer)(
200a1f0: 90 10 00 19 mov %i1, %o0
200a1f4: 92 10 20 00 clr %o1
200a1f8: 94 10 00 12 mov %l2, %o2
200a1fc: 96 10 00 15 mov %l5, %o3
200a200: 9f c5 c0 00 call %l7
200a204: 98 10 00 16 mov %l6, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200a208: 80 a7 00 1d cmp %i4, %i5
200a20c: 02 80 00 51 be 200a350 <_Heap_Walk+0x424>
200a210: aa 10 00 1d mov %i5, %l5
200a214: ec 07 60 04 ld [ %i5 + 4 ], %l6
200a218: da 06 20 20 ld [ %i0 + 0x20 ], %o5
200a21c: 10 bf ff d1 b 200a160 <_Heap_Walk+0x234>
200a220: b4 0d a0 01 and %l6, 1, %i2
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
200a224: 80 a5 80 10 cmp %l6, %l0
200a228: 0a 80 00 69 bcs 200a3cc <_Heap_Walk+0x4a0>
200a22c: 80 8b 60 ff btst 0xff, %o5
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
200a230: 80 a5 40 1d cmp %l5, %i5
200a234: 2a bf ff ea bcs,a 200a1dc <_Heap_Walk+0x2b0>
200a238: de 07 60 04 ld [ %i5 + 4 ], %o7
200a23c: 80 8b 60 ff btst 0xff, %o5
200a240: 22 bf ff e7 be,a 200a1dc <_Heap_Walk+0x2b0>
200a244: de 07 60 04 ld [ %i5 + 4 ], %o7
(*printer)(
200a248: 90 10 00 19 mov %i1, %o0
200a24c: 92 10 20 01 mov 1, %o1
200a250: 96 10 00 15 mov %l5, %o3
200a254: 15 00 80 71 sethi %hi(0x201c400), %o2
200a258: 98 10 00 1d mov %i5, %o4
200a25c: 9f c5 c0 00 call %l7
200a260: 94 12 a2 90 or %o2, 0x290, %o2
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
200a264: 10 bf ff 40 b 2009f64 <_Heap_Walk+0x38>
200a268: 82 10 20 00 clr %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
200a26c: 96 10 00 15 mov %l5, %o3
200a270: 90 10 00 19 mov %i1, %o0
200a274: 92 10 20 00 clr %o1
200a278: 94 10 00 13 mov %l3, %o2
200a27c: 9f c5 c0 00 call %l7
200a280: 98 10 00 16 mov %l6, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
200a284: 10 bf ff e2 b 200a20c <_Heap_Walk+0x2e0>
200a288: 80 a7 00 1d cmp %i4, %i5
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
200a28c: da 05 60 0c ld [ %l5 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a290: de 06 20 08 ld [ %i0 + 8 ], %o7
200a294: 80 a3 c0 0d cmp %o7, %o5
200a298: 02 80 00 3d be 200a38c <_Heap_Walk+0x460>
200a29c: d8 06 20 0c ld [ %i0 + 0xc ], %o4
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
200a2a0: 80 a6 00 0d cmp %i0, %o5
200a2a4: 02 80 00 40 be 200a3a4 <_Heap_Walk+0x478>
200a2a8: 96 15 23 38 or %l4, 0x338, %o3
block->next,
block->next == last_free_block ?
200a2ac: de 05 60 08 ld [ %l5 + 8 ], %o7
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a2b0: 80 a3 00 0f cmp %o4, %o7
200a2b4: 02 80 00 33 be 200a380 <_Heap_Walk+0x454>
200a2b8: 80 a6 00 0f cmp %i0, %o7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200a2bc: 02 80 00 37 be 200a398 <_Heap_Walk+0x46c>
200a2c0: 98 15 23 38 or %l4, 0x338, %o4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a2c4: d6 23 a0 5c st %o3, [ %sp + 0x5c ]
200a2c8: d8 23 a0 64 st %o4, [ %sp + 0x64 ]
200a2cc: de 23 a0 60 st %o7, [ %sp + 0x60 ]
200a2d0: 90 10 00 19 mov %i1, %o0
200a2d4: 92 10 20 00 clr %o1
200a2d8: 15 00 80 71 sethi %hi(0x201c400), %o2
200a2dc: 96 10 00 15 mov %l5, %o3
200a2e0: 94 12 a2 c8 or %o2, 0x2c8, %o2
200a2e4: 9f c5 c0 00 call %l7
200a2e8: 98 10 00 16 mov %l6, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
200a2ec: da 07 40 00 ld [ %i5 ], %o5
200a2f0: 80 a5 80 0d cmp %l6, %o5
200a2f4: 12 80 00 19 bne 200a358 <_Heap_Walk+0x42c>
200a2f8: 80 a6 a0 00 cmp %i2, 0
);
return false;
}
if ( !prev_used ) {
200a2fc: 02 80 00 2d be 200a3b0 <_Heap_Walk+0x484>
200a300: 90 10 00 19 mov %i1, %o0
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200a304: c4 06 20 08 ld [ %i0 + 8 ], %g2
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
200a308: 80 a6 00 02 cmp %i0, %g2
200a30c: 02 80 00 0b be 200a338 <_Heap_Walk+0x40c> <== NEVER TAKEN
200a310: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
200a314: 80 a5 40 02 cmp %l5, %g2
200a318: 02 bf ff bd be 200a20c <_Heap_Walk+0x2e0>
200a31c: 80 a7 00 1d cmp %i4, %i5
return true;
}
free_block = free_block->next;
200a320: c4 00 a0 08 ld [ %g2 + 8 ], %g2
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
200a324: 80 a6 00 02 cmp %i0, %g2
200a328: 12 bf ff fc bne 200a318 <_Heap_Walk+0x3ec>
200a32c: 80 a5 40 02 cmp %l5, %g2
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
200a330: 90 10 00 19 mov %i1, %o0
200a334: 92 10 20 01 mov 1, %o1
200a338: 15 00 80 71 sethi %hi(0x201c400), %o2
200a33c: 96 10 00 15 mov %l5, %o3
200a340: 9f c5 c0 00 call %l7
200a344: 94 12 a3 b0 or %o2, 0x3b0, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a348: 10 bf ff 42 b 200a050 <_Heap_Walk+0x124>
200a34c: 82 10 20 00 clr %g1
}
block = next_block;
} while ( block != first_block );
return true;
200a350: 10 bf ff 05 b 2009f64 <_Heap_Walk+0x38>
200a354: 82 10 20 01 mov 1, %g1
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
200a358: fa 23 a0 5c st %i5, [ %sp + 0x5c ]
200a35c: 90 10 00 19 mov %i1, %o0
200a360: 92 10 20 01 mov 1, %o1
200a364: 15 00 80 71 sethi %hi(0x201c400), %o2
200a368: 96 10 00 15 mov %l5, %o3
200a36c: 94 12 a3 00 or %o2, 0x300, %o2
200a370: 9f c5 c0 00 call %l7
200a374: 98 10 00 16 mov %l6, %o4
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a378: 10 bf ff 36 b 200a050 <_Heap_Walk+0x124>
200a37c: 82 10 20 00 clr %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
200a380: 03 00 80 70 sethi %hi(0x201c000), %g1
200a384: 10 bf ff d0 b 200a2c4 <_Heap_Walk+0x398>
200a388: 98 10 63 90 or %g1, 0x390, %o4 ! 201c390 <__log2table+0x140>
200a38c: 03 00 80 70 sethi %hi(0x201c000), %g1
200a390: 10 bf ff c7 b 200a2ac <_Heap_Walk+0x380>
200a394: 96 10 63 70 or %g1, 0x370, %o3 ! 201c370 <__log2table+0x120>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200a398: 03 00 80 70 sethi %hi(0x201c000), %g1
200a39c: 10 bf ff ca b 200a2c4 <_Heap_Walk+0x398>
200a3a0: 98 10 63 a0 or %g1, 0x3a0, %o4 ! 201c3a0 <__log2table+0x150>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
200a3a4: 17 00 80 70 sethi %hi(0x201c000), %o3
200a3a8: 10 bf ff c1 b 200a2ac <_Heap_Walk+0x380>
200a3ac: 96 12 e3 80 or %o3, 0x380, %o3 ! 201c380 <__log2table+0x130>
return false;
}
if ( !prev_used ) {
(*printer)(
200a3b0: 92 10 20 01 mov 1, %o1
200a3b4: 15 00 80 71 sethi %hi(0x201c400), %o2
200a3b8: 96 10 00 15 mov %l5, %o3
200a3bc: 9f c5 c0 00 call %l7
200a3c0: 94 12 a3 40 or %o2, 0x340, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a3c4: 10 bf ff 23 b 200a050 <_Heap_Walk+0x124>
200a3c8: 82 10 20 00 clr %g1
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
200a3cc: 02 bf ff 9a be 200a234 <_Heap_Walk+0x308> <== NEVER TAKEN
200a3d0: 80 a5 40 1d cmp %l5, %i5
(*printer)(
200a3d4: 90 10 00 19 mov %i1, %o0
200a3d8: 92 10 20 01 mov 1, %o1
200a3dc: 96 10 00 15 mov %l5, %o3
200a3e0: 15 00 80 71 sethi %hi(0x201c400), %o2
200a3e4: 98 10 00 16 mov %l6, %o4
200a3e8: 94 12 a2 60 or %o2, 0x260, %o2
200a3ec: 9f c5 c0 00 call %l7
200a3f0: 9a 10 00 10 mov %l0, %o5
block,
block_size,
min_block_size
);
return false;
200a3f4: 10 bf fe dc b 2009f64 <_Heap_Walk+0x38>
200a3f8: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
200a3fc: 92 10 20 01 mov 1, %o1
200a400: 96 10 00 15 mov %l5, %o3
200a404: 15 00 80 71 sethi %hi(0x201c400), %o2
200a408: 98 10 00 16 mov %l6, %o4
200a40c: 9f c5 c0 00 call %l7
200a410: 94 12 a2 30 or %o2, 0x230, %o2
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
200a414: 10 bf fe d4 b 2009f64 <_Heap_Walk+0x38>
200a418: 82 10 20 00 clr %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200a41c: 80 a4 c0 1d cmp %l3, %i5
200a420: 0a bf ff 43 bcs 200a12c <_Heap_Walk+0x200> <== NEVER TAKEN
200a424: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200a428: da 27 bf fc st %o5, [ %fp + -4 ]
200a42c: 90 07 60 08 add %i5, 8, %o0
200a430: 7f ff dd d0 call 2001b70 <.urem>
200a434: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
200a438: 80 a2 20 00 cmp %o0, 0
200a43c: 12 80 00 36 bne 200a514 <_Heap_Walk+0x5e8> <== NEVER TAKEN
200a440: da 07 bf fc ld [ %fp + -4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a444: c2 07 60 04 ld [ %i5 + 4 ], %g1
200a448: 82 08 7f fe and %g1, -2, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a44c: 82 07 40 01 add %i5, %g1, %g1
200a450: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
200a454: 80 88 60 01 btst 1, %g1
200a458: 12 80 00 27 bne 200a4f4 <_Heap_Walk+0x5c8> <== NEVER TAKEN
200a45c: a4 10 00 1d mov %i5, %l2
200a460: 10 80 00 19 b 200a4c4 <_Heap_Walk+0x598>
200a464: 82 10 00 18 mov %i0, %g1
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
200a468: 80 a6 00 1d cmp %i0, %i5
200a46c: 02 bf ff 37 be 200a148 <_Heap_Walk+0x21c>
200a470: 80 a7 40 0d cmp %i5, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200a474: 0a bf ff 2e bcs 200a12c <_Heap_Walk+0x200>
200a478: 90 10 00 19 mov %i1, %o0
200a47c: 80 a7 40 13 cmp %i5, %l3
200a480: 18 bf ff 2c bgu 200a130 <_Heap_Walk+0x204> <== NEVER TAKEN
200a484: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200a488: da 27 bf fc st %o5, [ %fp + -4 ]
200a48c: 90 07 60 08 add %i5, 8, %o0
200a490: 7f ff dd b8 call 2001b70 <.urem>
200a494: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
200a498: 80 a2 20 00 cmp %o0, 0
200a49c: 12 80 00 1e bne 200a514 <_Heap_Walk+0x5e8>
200a4a0: da 07 bf fc ld [ %fp + -4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200a4a4: de 07 60 04 ld [ %i5 + 4 ], %o7
200a4a8: 82 10 00 12 mov %l2, %g1
200a4ac: 9e 0b ff fe and %o7, -2, %o7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200a4b0: 9e 03 c0 1d add %o7, %i5, %o7
200a4b4: de 03 e0 04 ld [ %o7 + 4 ], %o7
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
200a4b8: 80 8b e0 01 btst 1, %o7
200a4bc: 12 80 00 0e bne 200a4f4 <_Heap_Walk+0x5c8>
200a4c0: a4 10 00 1d mov %i5, %l2
);
return false;
}
if ( free_block->prev != prev_block ) {
200a4c4: d8 07 60 0c ld [ %i5 + 0xc ], %o4
200a4c8: 80 a3 00 01 cmp %o4, %g1
200a4cc: 22 bf ff e7 be,a 200a468 <_Heap_Walk+0x53c>
200a4d0: fa 07 60 08 ld [ %i5 + 8 ], %i5
(*printer)(
200a4d4: 90 10 00 19 mov %i1, %o0
200a4d8: 92 10 20 01 mov 1, %o1
200a4dc: 15 00 80 71 sethi %hi(0x201c400), %o2
200a4e0: 96 10 00 1d mov %i5, %o3
200a4e4: 9f c5 c0 00 call %l7
200a4e8: 94 12 a1 c8 or %o2, 0x1c8, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a4ec: 10 bf fe d9 b 200a050 <_Heap_Walk+0x124>
200a4f0: 82 10 20 00 clr %g1
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
200a4f4: 90 10 00 19 mov %i1, %o0
200a4f8: 92 10 20 01 mov 1, %o1
200a4fc: 15 00 80 71 sethi %hi(0x201c400), %o2
200a500: 96 10 00 1d mov %i5, %o3
200a504: 9f c5 c0 00 call %l7
200a508: 94 12 a1 a8 or %o2, 0x1a8, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a50c: 10 bf fe d1 b 200a050 <_Heap_Walk+0x124>
200a510: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
200a514: 90 10 00 19 mov %i1, %o0
200a518: 92 10 20 01 mov 1, %o1
200a51c: 15 00 80 71 sethi %hi(0x201c400), %o2
200a520: 96 10 00 1d mov %i5, %o3
200a524: 9f c5 c0 00 call %l7
200a528: 94 12 a1 78 or %o2, 0x178, %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200a52c: 10 bf fe c9 b 200a050 <_Heap_Walk+0x124>
200a530: 82 10 20 00 clr %g1
02008604 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
2008604: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2008608: 39 00 80 75 sethi %hi(0x201d400), %i4
200860c: c2 07 20 f4 ld [ %i4 + 0xf4 ], %g1 ! 201d4f4 <_IO_Number_of_drivers>
2008610: ba 10 20 00 clr %i5
2008614: 80 a0 60 00 cmp %g1, 0
2008618: 02 80 00 0b be 2008644 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
200861c: b8 17 20 f4 or %i4, 0xf4, %i4
(void) rtems_io_initialize( major, 0, NULL );
2008620: 90 10 00 1d mov %i5, %o0
2008624: 92 10 20 00 clr %o1
2008628: 40 00 13 d8 call 200d588 <rtems_io_initialize>
200862c: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2008630: c2 07 00 00 ld [ %i4 ], %g1
2008634: ba 07 60 01 inc %i5
2008638: 80 a0 40 1d cmp %g1, %i5
200863c: 18 bf ff fa bgu 2008624 <_IO_Initialize_all_drivers+0x20>
2008640: 90 10 00 1d mov %i5, %o0
2008644: 81 c7 e0 08 ret
2008648: 81 e8 00 00 restore
02008534 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
2008534: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
2008538: 03 00 80 71 sethi %hi(0x201c400), %g1
200853c: 82 10 60 cc or %g1, 0xcc, %g1 ! 201c4cc <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
2008540: f8 00 60 3c ld [ %g1 + 0x3c ], %i4
number_of_drivers = Configuration.maximum_drivers;
2008544: f6 00 60 38 ld [ %g1 + 0x38 ], %i3
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2008548: 80 a7 00 1b cmp %i4, %i3
200854c: 0a 80 00 08 bcs 200856c <_IO_Manager_initialization+0x38>
2008550: fa 00 60 40 ld [ %g1 + 0x40 ], %i5
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
2008554: 03 00 80 75 sethi %hi(0x201d400), %g1
2008558: fa 20 60 f8 st %i5, [ %g1 + 0xf8 ] ! 201d4f8 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
200855c: 03 00 80 75 sethi %hi(0x201d400), %g1
2008560: f8 20 60 f4 st %i4, [ %g1 + 0xf4 ] ! 201d4f4 <_IO_Number_of_drivers>
return;
2008564: 81 c7 e0 08 ret
2008568: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
200856c: 83 2e e0 03 sll %i3, 3, %g1
2008570: b5 2e e0 05 sll %i3, 5, %i2
2008574: b4 26 80 01 sub %i2, %g1, %i2
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
2008578: 40 00 0d 28 call 200ba18 <_Workspace_Allocate_or_fatal_error>
200857c: 90 10 00 1a mov %i2, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2008580: 03 00 80 75 sethi %hi(0x201d400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2008584: 33 00 80 75 sethi %hi(0x201d400), %i1
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2008588: f6 20 60 f4 st %i3, [ %g1 + 0xf4 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
200858c: d0 26 60 f8 st %o0, [ %i1 + 0xf8 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
2008590: 92 10 20 00 clr %o1
2008594: 40 00 1f 78 call 2010374 <memset>
2008598: 94 10 00 1a mov %i2, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
200859c: 80 a7 20 00 cmp %i4, 0
20085a0: 02 bf ff f1 be 2008564 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
20085a4: c8 06 60 f8 ld [ %i1 + 0xf8 ], %g4
* registration. The driver table is now allocated in the
* workspace.
*
*/
void _IO_Manager_initialization(void)
20085a8: 85 2f 20 03 sll %i4, 3, %g2
20085ac: b7 2f 20 05 sll %i4, 5, %i3
20085b0: 82 10 20 00 clr %g1
20085b4: b6 26 c0 02 sub %i3, %g2, %i3
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
_IO_Driver_address_table[index] = driver_table[index];
20085b8: c4 07 40 01 ld [ %i5 + %g1 ], %g2
20085bc: 86 07 40 01 add %i5, %g1, %g3
20085c0: c4 21 00 01 st %g2, [ %g4 + %g1 ]
20085c4: f8 00 e0 04 ld [ %g3 + 4 ], %i4
20085c8: 84 01 00 01 add %g4, %g1, %g2
20085cc: f8 20 a0 04 st %i4, [ %g2 + 4 ]
20085d0: f8 00 e0 08 ld [ %g3 + 8 ], %i4
20085d4: 82 00 60 18 add %g1, 0x18, %g1
20085d8: f8 20 a0 08 st %i4, [ %g2 + 8 ]
20085dc: f8 00 e0 0c ld [ %g3 + 0xc ], %i4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
20085e0: 80 a0 40 1b cmp %g1, %i3
_IO_Driver_address_table[index] = driver_table[index];
20085e4: f8 20 a0 0c st %i4, [ %g2 + 0xc ]
20085e8: f8 00 e0 10 ld [ %g3 + 0x10 ], %i4
20085ec: f8 20 a0 10 st %i4, [ %g2 + 0x10 ]
20085f0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
20085f4: 12 bf ff f1 bne 20085b8 <_IO_Manager_initialization+0x84>
20085f8: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
20085fc: 81 c7 e0 08 ret
2008600: 81 e8 00 00 restore
02009340 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2009340: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2009344: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2009348: 80 a0 60 00 cmp %g1, 0
200934c: 02 80 00 26 be 20093e4 <_Objects_Allocate+0xa4> <== NEVER TAKEN
2009350: ba 10 00 18 mov %i0, %i5
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2009354: b8 06 20 20 add %i0, 0x20, %i4
2009358: 7f ff fd 4b call 2008884 <_Chain_Get>
200935c: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2009360: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2009364: 80 a0 60 00 cmp %g1, 0
2009368: 02 80 00 16 be 20093c0 <_Objects_Allocate+0x80>
200936c: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2009370: 80 a2 20 00 cmp %o0, 0
2009374: 02 80 00 15 be 20093c8 <_Objects_Allocate+0x88>
2009378: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
200937c: c4 07 60 08 ld [ %i5 + 8 ], %g2
2009380: d0 06 20 08 ld [ %i0 + 8 ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2009384: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2009388: 03 00 00 3f sethi %hi(0xfc00), %g1
200938c: 82 10 63 ff or %g1, 0x3ff, %g1 ! ffff <PROM_START+0xffff>
2009390: 90 0a 00 01 and %o0, %g1, %o0
2009394: 82 08 80 01 and %g2, %g1, %g1
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2009398: 40 00 3c f1 call 201875c <.udiv>
200939c: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
20093a0: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
20093a4: 91 2a 20 02 sll %o0, 2, %o0
20093a8: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
20093ac: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
20093b0: 86 00 ff ff add %g3, -1, %g3
20093b4: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
20093b8: 82 00 bf ff add %g2, -1, %g1
20093bc: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
20093c0: 81 c7 e0 08 ret
20093c4: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
20093c8: 40 00 00 10 call 2009408 <_Objects_Extend_information>
20093cc: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20093d0: 7f ff fd 2d call 2008884 <_Chain_Get>
20093d4: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
20093d8: b0 92 20 00 orcc %o0, 0, %i0
20093dc: 32 bf ff e9 bne,a 2009380 <_Objects_Allocate+0x40>
20093e0: c4 07 60 08 ld [ %i5 + 8 ], %g2
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
return NULL;
20093e4: 81 c7 e0 08 ret
20093e8: 91 e8 20 00 restore %g0, 0, %o0
02009408 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
2009408: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
200940c: f4 06 20 34 ld [ %i0 + 0x34 ], %i2
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2009410: e2 16 20 0a lduh [ %i0 + 0xa ], %l1
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2009414: 80 a6 a0 00 cmp %i2, 0
2009418: 02 80 00 a5 be 20096ac <_Objects_Extend_information+0x2a4>
200941c: e0 16 20 10 lduh [ %i0 + 0x10 ], %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2009420: f6 16 20 14 lduh [ %i0 + 0x14 ], %i3
2009424: a1 2c 20 10 sll %l0, 0x10, %l0
2009428: 92 10 00 1b mov %i3, %o1
200942c: 40 00 3c cc call 201875c <.udiv>
2009430: 91 34 20 10 srl %l0, 0x10, %o0
2009434: 91 2a 20 10 sll %o0, 0x10, %o0
2009438: b3 32 20 10 srl %o0, 0x10, %i1
for ( ; block < block_count; block++ ) {
200943c: 80 a6 60 00 cmp %i1, 0
2009440: 02 80 00 a2 be 20096c8 <_Objects_Extend_information+0x2c0><== NEVER TAKEN
2009444: 90 10 00 1b mov %i3, %o0
if ( information->object_blocks[ block ] == NULL ) {
2009448: c2 06 80 00 ld [ %i2 ], %g1
200944c: 80 a0 60 00 cmp %g1, 0
2009450: 02 80 00 a2 be 20096d8 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
2009454: b8 10 00 11 mov %l1, %i4
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2009458: 10 80 00 06 b 2009470 <_Objects_Extend_information+0x68>
200945c: ba 10 20 00 clr %i5
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2009460: c2 06 80 01 ld [ %i2 + %g1 ], %g1
2009464: 80 a0 60 00 cmp %g1, 0
2009468: 22 80 00 08 be,a 2009488 <_Objects_Extend_information+0x80>
200946c: b6 10 20 00 clr %i3
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2009470: ba 07 60 01 inc %i5
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
2009474: b8 07 00 1b add %i4, %i3, %i4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2009478: 80 a6 40 1d cmp %i1, %i5
200947c: 18 bf ff f9 bgu 2009460 <_Objects_Extend_information+0x58>
2009480: 83 2f 60 02 sll %i5, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2009484: b6 10 20 01 mov 1, %i3
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2009488: a1 34 20 10 srl %l0, 0x10, %l0
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
200948c: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2009490: a0 04 00 08 add %l0, %o0, %l0
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2009494: 82 10 63 ff or %g1, 0x3ff, %g1
2009498: 80 a4 00 01 cmp %l0, %g1
200949c: 18 80 00 94 bgu 20096ec <_Objects_Extend_information+0x2e4>
20094a0: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
20094a4: 40 00 3c 74 call 2018674 <.umul>
20094a8: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
20094ac: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
20094b0: 80 a0 60 00 cmp %g1, 0
20094b4: 02 80 00 6a be 200965c <_Objects_Extend_information+0x254>
20094b8: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
20094bc: 40 00 09 49 call 200b9e0 <_Workspace_Allocate>
20094c0: 01 00 00 00 nop
if ( !new_object_block )
20094c4: b4 92 20 00 orcc %o0, 0, %i2
20094c8: 02 80 00 89 be 20096ec <_Objects_Extend_information+0x2e4>
20094cc: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
20094d0: 80 8e e0 ff btst 0xff, %i3
20094d4: 22 80 00 3f be,a 20095d0 <_Objects_Extend_information+0x1c8>
20094d8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
20094dc: b6 06 60 01 add %i1, 1, %i3
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
20094e0: 91 2e e0 01 sll %i3, 1, %o0
20094e4: 90 02 00 1b add %o0, %i3, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
20094e8: 90 04 00 08 add %l0, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
20094ec: 90 02 00 11 add %o0, %l1, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
20094f0: 40 00 09 3c call 200b9e0 <_Workspace_Allocate>
20094f4: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
20094f8: a4 92 20 00 orcc %o0, 0, %l2
20094fc: 02 80 00 7a be 20096e4 <_Objects_Extend_information+0x2dc>
2009500: b7 2e e0 02 sll %i3, 2, %i3
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
2009504: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2009508: 80 a4 40 01 cmp %l1, %g1
200950c: a6 04 80 1b add %l2, %i3, %l3
2009510: 0a 80 00 57 bcs 200966c <_Objects_Extend_information+0x264>
2009514: b6 04 c0 1b add %l3, %i3, %i3
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2009518: 85 2c 60 02 sll %l1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
200951c: 80 a4 60 00 cmp %l1, 0
2009520: 02 80 00 07 be 200953c <_Objects_Extend_information+0x134><== NEVER TAKEN
2009524: 82 10 20 00 clr %g1
local_table[ index ] = NULL;
2009528: c0 20 40 1b clr [ %g1 + %i3 ]
200952c: 82 00 60 04 add %g1, 4, %g1
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2009530: 80 a0 40 02 cmp %g1, %g2
2009534: 32 bf ff fe bne,a 200952c <_Objects_Extend_information+0x124><== NEVER TAKEN
2009538: c0 20 40 1b clr [ %g1 + %i3 ] <== NOT EXECUTED
200953c: b3 2e 60 02 sll %i1, 2, %i1
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2009540: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
2009544: c0 24 80 19 clr [ %l2 + %i1 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2009548: 82 07 00 03 add %i4, %g3, %g1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
200954c: 80 a7 00 01 cmp %i4, %g1
2009550: 1a 80 00 0b bcc 200957c <_Objects_Extend_information+0x174><== NEVER TAKEN
2009554: c0 24 c0 19 clr [ %l3 + %i1 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2009558: 85 2f 20 02 sll %i4, 2, %g2
200955c: 87 28 e0 02 sll %g3, 2, %g3
2009560: 84 06 c0 02 add %i3, %g2, %g2
2009564: 82 10 20 00 clr %g1
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
2009568: c0 20 80 01 clr [ %g2 + %g1 ]
200956c: 82 00 60 04 add %g1, 4, %g1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2009570: 80 a0 40 03 cmp %g1, %g3
2009574: 32 bf ff fe bne,a 200956c <_Objects_Extend_information+0x164>
2009578: c0 20 80 01 clr [ %g2 + %g1 ]
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
200957c: 7f ff e4 7a call 2002764 <sparc_disable_interrupts>
2009580: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2009584: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2009588: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
200958c: f2 06 20 34 ld [ %i0 + 0x34 ], %i1
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2009590: e0 36 20 10 sth %l0, [ %i0 + 0x10 ]
2009594: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2009598: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
200959c: e4 26 20 34 st %l2, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
20095a0: e6 26 20 30 st %l3, [ %i0 + 0x30 ]
information->local_table = local_table;
20095a4: f6 26 20 1c st %i3, [ %i0 + 0x1c ]
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20095a8: 03 00 00 40 sethi %hi(0x10000), %g1
20095ac: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20095b0: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20095b4: a0 10 40 10 or %g1, %l0, %l0
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
20095b8: e0 26 20 0c st %l0, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
20095bc: 7f ff e4 6e call 2002774 <sparc_enable_interrupts>
20095c0: 01 00 00 00 nop
_Workspace_Free( old_tables );
20095c4: 40 00 09 0f call 200ba00 <_Workspace_Free>
20095c8: 90 10 00 19 mov %i1, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
20095cc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20095d0: bb 2f 60 02 sll %i5, 2, %i5
20095d4: f4 20 40 1d st %i2, [ %g1 + %i5 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
20095d8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20095dc: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
20095e0: d2 00 40 1d ld [ %g1 + %i5 ], %o1
20095e4: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
20095e8: 90 07 bf f4 add %fp, -12, %o0
20095ec: 7f ff fc b6 call 20088c4 <_Chain_Initialize>
20095f0: 35 00 00 40 sethi %hi(0x10000), %i2
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
20095f4: 10 80 00 0d b 2009628 <_Objects_Extend_information+0x220>
20095f8: b6 06 20 20 add %i0, 0x20, %i3
the_object->id = _Objects_Build_id(
20095fc: c6 16 20 04 lduh [ %i0 + 4 ], %g3
2009600: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2009604: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2009608: 84 10 80 1a or %g2, %i2, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
200960c: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2009610: 84 10 80 1c or %g2, %i4, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2009614: 90 10 00 1b mov %i3, %o0
2009618: 92 10 00 01 mov %g1, %o1
index++;
200961c: b8 07 20 01 inc %i4
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2009620: 7f ff fc 8e call 2008858 <_Chain_Append>
2009624: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2009628: 7f ff fc 97 call 2008884 <_Chain_Get>
200962c: 90 07 bf f4 add %fp, -12, %o0
2009630: 82 92 20 00 orcc %o0, 0, %g1
2009634: 32 bf ff f2 bne,a 20095fc <_Objects_Extend_information+0x1f4>
2009638: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
200963c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
2009640: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2009644: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2009648: c8 20 c0 1d st %g4, [ %g3 + %i5 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
200964c: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
2009650: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2009654: 81 c7 e0 08 ret
2009658: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
200965c: 40 00 08 ef call 200ba18 <_Workspace_Allocate_or_fatal_error>
2009660: 01 00 00 00 nop
2009664: 10 bf ff 9b b 20094d0 <_Objects_Extend_information+0xc8>
2009668: b4 10 00 08 mov %o0, %i2
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
200966c: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
2009670: b3 2e 60 02 sll %i1, 2, %i1
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2009674: 40 00 1b 03 call 2010280 <memcpy>
2009678: 94 10 00 19 mov %i1, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
200967c: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
2009680: 94 10 00 19 mov %i1, %o2
2009684: 40 00 1a ff call 2010280 <memcpy>
2009688: 90 10 00 13 mov %l3, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
200968c: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2009690: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2009694: 94 02 80 11 add %o2, %l1, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2009698: 90 10 00 1b mov %i3, %o0
200969c: 40 00 1a f9 call 2010280 <memcpy>
20096a0: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
20096a4: 10 bf ff a8 b 2009544 <_Objects_Extend_information+0x13c>
20096a8: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
20096ac: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20096b0: b8 10 00 11 mov %l1, %i4
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20096b4: b6 10 20 01 mov 1, %i3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20096b8: ba 10 20 00 clr %i5
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
20096bc: b2 10 20 00 clr %i1
20096c0: 10 bf ff 72 b 2009488 <_Objects_Extend_information+0x80>
20096c4: a1 2c 20 10 sll %l0, 0x10, %l0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20096c8: b8 10 00 11 mov %l1, %i4 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20096cc: b6 10 20 01 mov 1, %i3 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20096d0: 10 bf ff 6e b 2009488 <_Objects_Extend_information+0x80> <== NOT EXECUTED
20096d4: ba 10 20 00 clr %i5 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
20096d8: b6 10 20 00 clr %i3 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20096dc: 10 bf ff 6b b 2009488 <_Objects_Extend_information+0x80> <== NOT EXECUTED
20096e0: ba 10 20 00 clr %i5 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
20096e4: 40 00 08 c7 call 200ba00 <_Workspace_Free>
20096e8: 90 10 00 1a mov %i2, %o0
20096ec: 81 c7 e0 08 ret
20096f0: 81 e8 00 00 restore
020097a4 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
20097a4: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
20097a8: 80 a6 60 00 cmp %i1, 0
20097ac: 02 80 00 19 be 2009810 <_Objects_Get_information+0x6c>
20097b0: 01 00 00 00 nop
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
20097b4: 40 00 11 67 call 200dd50 <_Objects_API_maximum_class>
20097b8: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
20097bc: 80 a2 20 00 cmp %o0, 0
20097c0: 02 80 00 14 be 2009810 <_Objects_Get_information+0x6c>
20097c4: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20097c8: 0a 80 00 12 bcs 2009810 <_Objects_Get_information+0x6c>
20097cc: 03 00 80 74 sethi %hi(0x201d000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20097d0: b1 2e 20 02 sll %i0, 2, %i0
20097d4: 82 10 61 94 or %g1, 0x194, %g1
20097d8: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20097dc: 80 a0 60 00 cmp %g1, 0
20097e0: 02 80 00 0c be 2009810 <_Objects_Get_information+0x6c> <== NEVER TAKEN
20097e4: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20097e8: f0 00 40 19 ld [ %g1 + %i1 ], %i0
if ( !info )
20097ec: 80 a6 20 00 cmp %i0, 0
20097f0: 02 80 00 08 be 2009810 <_Objects_Get_information+0x6c> <== NEVER TAKEN
20097f4: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20097f8: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
20097fc: 80 a0 60 00 cmp %g1, 0
2009800: 02 80 00 04 be 2009810 <_Objects_Get_information+0x6c>
2009804: 01 00 00 00 nop
return NULL;
#endif
return info;
}
2009808: 81 c7 e0 08 ret
200980c: 81 e8 00 00 restore
{
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
return NULL;
2009810: 81 c7 e0 08 ret
2009814: 91 e8 20 00 restore %g0, 0, %o0
020175e0 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
20175e0: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
20175e4: 80 a6 60 00 cmp %i1, 0
20175e8: 02 80 00 3d be 20176dc <_Objects_Get_name_as_string+0xfc>
20175ec: 80 a6 a0 00 cmp %i2, 0
return NULL;
if ( name == NULL )
20175f0: 02 80 00 3b be 20176dc <_Objects_Get_name_as_string+0xfc>
20175f4: ba 96 20 00 orcc %i0, 0, %i5
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20175f8: 02 80 00 36 be 20176d0 <_Objects_Get_name_as_string+0xf0>
20175fc: 03 00 80 c0 sethi %hi(0x2030000), %g1
information = _Objects_Get_information_id( tmpId );
2017600: 7f ff e2 2e call 200feb8 <_Objects_Get_information_id>
2017604: 90 10 00 1d mov %i5, %o0
if ( !information )
2017608: 80 a2 20 00 cmp %o0, 0
201760c: 02 80 00 34 be 20176dc <_Objects_Get_name_as_string+0xfc>
2017610: 92 10 00 1d mov %i5, %o1
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
2017614: 7f ff e2 69 call 200ffb8 <_Objects_Get>
2017618: 94 07 bf f4 add %fp, -12, %o2
switch ( location ) {
201761c: c2 07 bf f4 ld [ %fp + -12 ], %g1
2017620: 80 a0 60 00 cmp %g1, 0
2017624: 32 80 00 2f bne,a 20176e0 <_Objects_Get_name_as_string+0x100>
2017628: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
201762c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
2017630: c0 2f bf fc clrb [ %fp + -4 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2017634: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
2017638: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
201763c: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
2017640: c4 2f bf fa stb %g2, [ %fp + -6 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2017644: c6 2f bf f8 stb %g3, [ %fp + -8 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
2017648: c8 2f bf f9 stb %g4, [ %fp + -7 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
201764c: c2 2f bf fb stb %g1, [ %fp + -5 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2017650: b2 86 7f ff addcc %i1, -1, %i1
2017654: 02 80 00 25 be 20176e8 <_Objects_Get_name_as_string+0x108><== NEVER TAKEN
2017658: 84 10 00 03 mov %g3, %g2
201765c: 80 a0 e0 00 cmp %g3, 0
2017660: 02 80 00 17 be 20176bc <_Objects_Get_name_as_string+0xdc>
2017664: 86 10 00 1a mov %i2, %g3
2017668: 39 00 80 bc sethi %hi(0x202f000), %i4
201766c: 82 10 20 00 clr %g1
2017670: 10 80 00 06 b 2017688 <_Objects_Get_name_as_string+0xa8>
2017674: b8 17 20 40 or %i4, 0x40, %i4
2017678: fa 49 00 01 ldsb [ %g4 + %g1 ], %i5
201767c: 80 a7 60 00 cmp %i5, 0
2017680: 02 80 00 0f be 20176bc <_Objects_Get_name_as_string+0xdc>
2017684: c4 08 40 04 ldub [ %g1 + %g4 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
2017688: fa 07 00 00 ld [ %i4 ], %i5
201768c: 88 08 a0 ff and %g2, 0xff, %g4
2017690: 88 07 40 04 add %i5, %g4, %g4
2017694: fa 49 20 01 ldsb [ %g4 + 1 ], %i5
2017698: 80 8f 60 97 btst 0x97, %i5
201769c: 12 80 00 03 bne 20176a8 <_Objects_Get_name_as_string+0xc8>
20176a0: 88 07 bf f8 add %fp, -8, %g4
20176a4: 84 10 20 2a mov 0x2a, %g2
20176a8: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
20176ac: 82 00 60 01 inc %g1
20176b0: 80 a0 40 19 cmp %g1, %i1
20176b4: 12 bf ff f1 bne 2017678 <_Objects_Get_name_as_string+0x98>
20176b8: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
20176bc: c0 28 c0 00 clrb [ %g3 ]
_Thread_Enable_dispatch();
20176c0: 7f ff e6 62 call 2011048 <_Thread_Enable_dispatch>
20176c4: b0 10 00 1a mov %i2, %i0
return name;
}
return NULL; /* unreachable path */
}
20176c8: 81 c7 e0 08 ret
20176cc: 81 e8 00 00 restore
return NULL;
if ( name == NULL )
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20176d0: c2 00 63 ec ld [ %g1 + 0x3ec ], %g1
20176d4: 10 bf ff cb b 2017600 <_Objects_Get_name_as_string+0x20>
20176d8: fa 00 60 08 ld [ %g1 + 8 ], %i5
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
20176dc: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
20176e0: 81 c7 e0 08 ret
20176e4: 91 e8 00 1a restore %g0, %i2, %o0
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
20176e8: 10 bf ff f5 b 20176bc <_Objects_Get_name_as_string+0xdc> <== NOT EXECUTED
20176ec: 86 10 00 1a mov %i2, %g3 <== NOT EXECUTED
02019d80 <_Objects_Get_next>:
Objects_Information *information,
Objects_Id id,
Objects_Locations *location_p,
Objects_Id *next_id_p
)
{
2019d80: 9d e3 bf a0 save %sp, -96, %sp
Objects_Control *object;
Objects_Id next_id;
if ( !information )
2019d84: 80 a6 20 00 cmp %i0, 0
2019d88: 02 80 00 29 be 2019e2c <_Objects_Get_next+0xac>
2019d8c: 80 a6 a0 00 cmp %i2, 0
return NULL;
if ( !location_p )
2019d90: 02 80 00 27 be 2019e2c <_Objects_Get_next+0xac>
2019d94: 80 a6 e0 00 cmp %i3, 0
return NULL;
if ( !next_id_p )
2019d98: 02 80 00 25 be 2019e2c <_Objects_Get_next+0xac>
2019d9c: 83 2e 60 10 sll %i1, 0x10, %g1
return NULL;
if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX)
2019da0: 80 a0 60 00 cmp %g1, 0
2019da4: 22 80 00 13 be,a 2019df0 <_Objects_Get_next+0x70>
2019da8: f2 06 20 08 ld [ %i0 + 8 ], %i1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019dac: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2
2019db0: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019db4: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019db8: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019dbc: 90 10 00 18 mov %i0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019dc0: 80 a0 80 01 cmp %g2, %g1
2019dc4: 0a 80 00 13 bcs 2019e10 <_Objects_Get_next+0x90>
2019dc8: 94 10 00 1a mov %i2, %o2
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019dcc: 7f ff d8 7b call 200ffb8 <_Objects_Get>
2019dd0: b2 06 60 01 inc %i1
next_id++;
} while (*location_p != OBJECTS_LOCAL);
2019dd4: c2 06 80 00 ld [ %i2 ], %g1
2019dd8: 80 a0 60 00 cmp %g1, 0
2019ddc: 32 bf ff f5 bne,a 2019db0 <_Objects_Get_next+0x30>
2019de0: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2
*next_id_p = next_id;
2019de4: f2 26 c0 00 st %i1, [ %i3 ]
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
}
2019de8: 81 c7 e0 08 ret
2019dec: 91 e8 00 08 restore %g0, %o0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019df0: c4 16 20 10 lduh [ %i0 + 0x10 ], %g2
2019df4: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019df8: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019dfc: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2019e00: 90 10 00 18 mov %i0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2019e04: 80 a0 80 01 cmp %g2, %g1
2019e08: 1a bf ff f1 bcc 2019dcc <_Objects_Get_next+0x4c> <== ALWAYS TAKEN
2019e0c: 94 10 00 1a mov %i2, %o2
{
*location_p = OBJECTS_ERROR;
2019e10: 82 10 20 01 mov 1, %g1
2019e14: c2 26 80 00 st %g1, [ %i2 ]
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
2019e18: 90 10 20 00 clr %o0
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
2019e1c: 82 10 3f ff mov -1, %g1
2019e20: c2 26 c0 00 st %g1, [ %i3 ]
return 0;
}
2019e24: 81 c7 e0 08 ret
2019e28: 91 e8 00 08 restore %g0, %o0, %o0
{
Objects_Control *object;
Objects_Id next_id;
if ( !information )
return NULL;
2019e2c: 10 bf ff ef b 2019de8 <_Objects_Get_next+0x68>
2019e30: 90 10 20 00 clr %o0
0201ac70 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201ac70: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
201ac74: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201ac78: 92 22 40 02 sub %o1, %g2, %o1
201ac7c: 92 02 60 01 inc %o1
if ( information->maximum >= index ) {
201ac80: 80 a2 40 01 cmp %o1, %g1
201ac84: 18 80 00 09 bgu 201aca8 <_Objects_Get_no_protection+0x38>
201ac88: 93 2a 60 02 sll %o1, 2, %o1
if ( (the_object = information->local_table[ index ]) != NULL ) {
201ac8c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
201ac90: d0 00 40 09 ld [ %g1 + %o1 ], %o0
201ac94: 80 a2 20 00 cmp %o0, 0
201ac98: 02 80 00 05 be 201acac <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
201ac9c: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
201aca0: 81 c3 e0 08 retl
201aca4: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
201aca8: 82 10 20 01 mov 1, %g1
return NULL;
201acac: 90 10 20 00 clr %o0
}
201acb0: 81 c3 e0 08 retl
201acb4: c2 22 80 00 st %g1, [ %o2 ]
02010030 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2010030: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2010034: 80 a6 20 00 cmp %i0, 0
2010038: 12 80 00 06 bne 2010050 <_Objects_Id_to_name+0x20>
201003c: 83 36 20 18 srl %i0, 0x18, %g1
2010040: 03 00 80 c0 sethi %hi(0x2030000), %g1
2010044: c2 00 63 ec ld [ %g1 + 0x3ec ], %g1 ! 20303ec <_Per_CPU_Information+0xc>
2010048: f0 00 60 08 ld [ %g1 + 8 ], %i0
201004c: 83 36 20 18 srl %i0, 0x18, %g1
2010050: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2010054: 84 00 7f ff add %g1, -1, %g2
2010058: 80 a0 a0 02 cmp %g2, 2
201005c: 18 80 00 18 bgu 20100bc <_Objects_Id_to_name+0x8c>
2010060: 83 28 60 02 sll %g1, 2, %g1
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2010064: 05 00 80 c0 sethi %hi(0x2030000), %g2
2010068: 84 10 a0 e4 or %g2, 0xe4, %g2 ! 20300e4 <_Objects_Information_table>
201006c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2010070: 80 a0 60 00 cmp %g1, 0
2010074: 02 80 00 12 be 20100bc <_Objects_Id_to_name+0x8c>
2010078: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
201007c: 85 28 a0 02 sll %g2, 2, %g2
2010080: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2010084: 80 a2 20 00 cmp %o0, 0
2010088: 02 80 00 0d be 20100bc <_Objects_Id_to_name+0x8c> <== NEVER TAKEN
201008c: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2010090: 7f ff ff ca call 200ffb8 <_Objects_Get>
2010094: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2010098: 80 a2 20 00 cmp %o0, 0
201009c: 02 80 00 08 be 20100bc <_Objects_Id_to_name+0x8c>
20100a0: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
20100a4: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
20100a8: b0 10 20 00 clr %i0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
20100ac: 40 00 03 e7 call 2011048 <_Thread_Enable_dispatch>
20100b0: c2 26 40 00 st %g1, [ %i1 ]
20100b4: 81 c7 e0 08 ret
20100b8: 81 e8 00 00 restore
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
20100bc: 81 c7 e0 08 ret
20100c0: 91 e8 20 03 restore %g0, 3, %o0
02009a94 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
2009a94: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
2009a98: f8 16 20 0a lduh [ %i0 + 0xa ], %i4
block_count = (information->maximum - index_base) /
2009a9c: f6 16 20 14 lduh [ %i0 + 0x14 ], %i3
2009aa0: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
2009aa4: 92 10 00 1b mov %i3, %o1
2009aa8: 40 00 3b 2d call 201875c <.udiv>
2009aac: 90 22 00 1c sub %o0, %i4, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2009ab0: 80 a2 20 00 cmp %o0, 0
2009ab4: 02 80 00 36 be 2009b8c <_Objects_Shrink_information+0xf8> <== NEVER TAKEN
2009ab8: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
2009abc: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
2009ac0: c2 01 00 00 ld [ %g4 ], %g1
2009ac4: 80 a6 c0 01 cmp %i3, %g1
2009ac8: 02 80 00 0f be 2009b04 <_Objects_Shrink_information+0x70> <== NEVER TAKEN
2009acc: 82 10 20 00 clr %g1
2009ad0: 10 80 00 07 b 2009aec <_Objects_Shrink_information+0x58>
2009ad4: ba 10 20 04 mov 4, %i5
2009ad8: c4 01 00 1d ld [ %g4 + %i5 ], %g2
2009adc: 80 a6 c0 02 cmp %i3, %g2
2009ae0: 02 80 00 0a be 2009b08 <_Objects_Shrink_information+0x74>
2009ae4: 86 07 60 04 add %i5, 4, %g3
2009ae8: ba 10 00 03 mov %g3, %i5
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2009aec: 82 00 60 01 inc %g1
2009af0: 80 a0 40 08 cmp %g1, %o0
2009af4: 12 bf ff f9 bne 2009ad8 <_Objects_Shrink_information+0x44>
2009af8: b8 07 00 1b add %i4, %i3, %i4
2009afc: 81 c7 e0 08 ret
2009b00: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
2009b04: ba 10 20 00 clr %i5 <== NOT EXECUTED
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2009b08: 35 00 00 3f sethi %hi(0xfc00), %i2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2009b0c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
2009b10: 10 80 00 05 b 2009b24 <_Objects_Shrink_information+0x90>
2009b14: b4 16 a3 ff or %i2, 0x3ff, %i2
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
2009b18: 90 96 e0 00 orcc %i3, 0, %o0
2009b1c: 22 80 00 12 be,a 2009b64 <_Objects_Shrink_information+0xd0>
2009b20: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2009b24: c2 02 20 08 ld [ %o0 + 8 ], %g1
2009b28: 82 08 40 1a and %g1, %i2, %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2009b2c: 80 a0 40 1c cmp %g1, %i4
2009b30: 0a bf ff fa bcs 2009b18 <_Objects_Shrink_information+0x84>
2009b34: f6 02 00 00 ld [ %o0 ], %i3
(index < (index_base + information->allocation_size))) {
2009b38: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
2009b3c: 84 07 00 02 add %i4, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2009b40: 80 a0 40 02 cmp %g1, %g2
2009b44: 3a bf ff f6 bcc,a 2009b1c <_Objects_Shrink_information+0x88>
2009b48: 90 96 e0 00 orcc %i3, 0, %o0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
2009b4c: 40 00 0e a6 call 200d5e4 <_Chain_Extract>
2009b50: 01 00 00 00 nop
}
}
while ( the_object );
2009b54: 90 96 e0 00 orcc %i3, 0, %o0
2009b58: 32 bf ff f4 bne,a 2009b28 <_Objects_Shrink_information+0x94><== ALWAYS TAKEN
2009b5c: c2 02 20 08 ld [ %o0 + 8 ], %g1
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
2009b60: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
2009b64: 40 00 07 a7 call 200ba00 <_Workspace_Free>
2009b68: d0 00 40 1d ld [ %g1 + %i5 ], %o0
information->object_blocks[ block ] = NULL;
2009b6c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
2009b70: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
2009b74: c0 20 40 1d clr [ %g1 + %i5 ]
information->inactive_per_block[ block ] = 0;
2009b78: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
2009b7c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
2009b80: c0 20 c0 1d clr [ %g3 + %i5 ]
information->inactive -= information->allocation_size;
2009b84: 82 20 80 01 sub %g2, %g1, %g1
2009b88: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
2009b8c: 81 c7 e0 08 ret
2009b90: 81 e8 00 00 restore
0200aad8 <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200aad8: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
200aadc: 80 a6 60 00 cmp %i1, 0
200aae0: 02 80 00 4c be 200ac10 <_RBTree_Extract_unprotected+0x138>
200aae4: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
200aae8: c2 06 20 08 ld [ %i0 + 8 ], %g1
200aaec: 80 a0 40 19 cmp %g1, %i1
200aaf0: 02 80 00 56 be 200ac48 <_RBTree_Extract_unprotected+0x170>
200aaf4: 90 10 00 19 mov %i1, %o0
the_rbtree->first[RBT_LEFT] = next;
}
/* Check if max needs to be updated. min=max for 1 element trees so
* do not use else if here. */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
200aaf8: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200aafc: 80 a0 40 19 cmp %g1, %i1
200ab00: 02 80 00 56 be 200ac58 <_RBTree_Extract_unprotected+0x180>
200ab04: 90 10 00 19 mov %i1, %o0
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200ab08: fa 06 60 04 ld [ %i1 + 4 ], %i5
200ab0c: 80 a7 60 00 cmp %i5, 0
200ab10: 22 80 00 5a be,a 200ac78 <_RBTree_Extract_unprotected+0x1a0>
200ab14: f8 06 60 08 ld [ %i1 + 8 ], %i4
200ab18: c2 06 60 08 ld [ %i1 + 8 ], %g1
200ab1c: 80 a0 60 00 cmp %g1, 0
200ab20: 32 80 00 05 bne,a 200ab34 <_RBTree_Extract_unprotected+0x5c>
200ab24: c2 07 60 08 ld [ %i5 + 8 ], %g1
200ab28: 10 80 00 3c b 200ac18 <_RBTree_Extract_unprotected+0x140>
200ab2c: b8 10 00 1d mov %i5, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
200ab30: c2 07 60 08 ld [ %i5 + 8 ], %g1
200ab34: 80 a0 60 00 cmp %g1, 0
200ab38: 32 bf ff fe bne,a 200ab30 <_RBTree_Extract_unprotected+0x58>
200ab3c: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
200ab40: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200ab44: 80 a7 20 00 cmp %i4, 0
200ab48: 02 80 00 48 be 200ac68 <_RBTree_Extract_unprotected+0x190>
200ab4c: 01 00 00 00 nop
leaf->parent = target->parent;
200ab50: c2 07 40 00 ld [ %i5 ], %g1
200ab54: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
200ab58: c4 07 40 00 ld [ %i5 ], %g2
target->parent->child[dir] = leaf;
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200ab5c: c2 06 40 00 ld [ %i1 ], %g1
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
200ab60: c8 00 a0 04 ld [ %g2 + 4 ], %g4
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200ab64: c6 07 60 0c ld [ %i5 + 0xc ], %g3
dir = target != target->parent->child[0];
200ab68: 88 1f 40 04 xor %i5, %g4, %g4
200ab6c: 80 a0 00 04 cmp %g0, %g4
200ab70: 88 40 20 00 addx %g0, 0, %g4
target->parent->child[dir] = leaf;
200ab74: 89 29 20 02 sll %g4, 2, %g4
200ab78: 84 00 80 04 add %g2, %g4, %g2
200ab7c: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200ab80: c4 00 60 04 ld [ %g1 + 4 ], %g2
200ab84: 84 18 80 19 xor %g2, %i1, %g2
200ab88: 80 a0 00 02 cmp %g0, %g2
200ab8c: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = target;
200ab90: 85 28 a0 02 sll %g2, 2, %g2
200ab94: 82 00 40 02 add %g1, %g2, %g1
200ab98: fa 20 60 04 st %i5, [ %g1 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
200ab9c: c2 06 60 08 ld [ %i1 + 8 ], %g1
200aba0: c2 27 60 08 st %g1, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200aba4: c2 06 60 08 ld [ %i1 + 8 ], %g1
200aba8: 80 a0 60 00 cmp %g1, 0
200abac: 32 80 00 02 bne,a 200abb4 <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN
200abb0: fa 20 40 00 st %i5, [ %g1 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200abb4: c2 06 60 04 ld [ %i1 + 4 ], %g1
200abb8: c2 27 60 04 st %g1, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
200abbc: c2 06 60 04 ld [ %i1 + 4 ], %g1
200abc0: 80 a0 60 00 cmp %g1, 0
200abc4: 32 80 00 02 bne,a 200abcc <_RBTree_Extract_unprotected+0xf4>
200abc8: fa 20 40 00 st %i5, [ %g1 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200abcc: c4 06 40 00 ld [ %i1 ], %g2
target->color = the_node->color;
200abd0: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200abd4: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
200abd8: c2 27 60 0c st %g1, [ %i5 + 0xc ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200abdc: 80 a0 e0 00 cmp %g3, 0
200abe0: 32 80 00 06 bne,a 200abf8 <_RBTree_Extract_unprotected+0x120>
200abe4: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
200abe8: 80 a7 20 00 cmp %i4, 0
200abec: 32 80 00 02 bne,a 200abf4 <_RBTree_Extract_unprotected+0x11c>
200abf0: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
200abf4: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
200abf8: c0 26 60 08 clr [ %i1 + 8 ]
200abfc: c0 26 60 04 clr [ %i1 + 4 ]
200ac00: 80 a0 60 00 cmp %g1, 0
200ac04: 02 80 00 03 be 200ac10 <_RBTree_Extract_unprotected+0x138>
200ac08: c0 26 40 00 clr [ %i1 ]
200ac0c: c0 20 60 0c clr [ %g1 + 0xc ]
200ac10: 81 c7 e0 08 ret
200ac14: 81 e8 00 00 restore
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
leaf->parent = the_node->parent;
200ac18: c2 06 40 00 ld [ %i1 ], %g1
200ac1c: c2 27 00 00 st %g1, [ %i4 ]
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200ac20: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200ac24: c6 06 60 0c ld [ %i1 + 0xc ], %g3
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200ac28: c4 00 60 04 ld [ %g1 + 4 ], %g2
200ac2c: 84 18 80 19 xor %g2, %i1, %g2
200ac30: 80 a0 00 02 cmp %g0, %g2
200ac34: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = leaf;
200ac38: 85 28 a0 02 sll %g2, 2, %g2
200ac3c: 82 00 40 02 add %g1, %g2, %g1
200ac40: 10 bf ff e7 b 200abdc <_RBTree_Extract_unprotected+0x104>
200ac44: f8 20 60 04 st %i4, [ %g1 + 4 ]
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Successor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_RIGHT );
200ac48: 40 00 00 eb call 200aff4 <_RBTree_Next_unprotected>
200ac4c: 92 10 20 01 mov 1, %o1
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
RBTree_Node *next;
next = _RBTree_Successor_unprotected(the_node);
the_rbtree->first[RBT_LEFT] = next;
200ac50: 10 bf ff aa b 200aaf8 <_RBTree_Extract_unprotected+0x20>
200ac54: d0 26 20 08 st %o0, [ %i0 + 8 ]
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Predecessor_unprotected(
const RBTree_Node *node
)
{
return _RBTree_Next_unprotected( node, RBT_LEFT );
200ac58: 40 00 00 e7 call 200aff4 <_RBTree_Next_unprotected>
200ac5c: 92 10 20 00 clr %o1
/* Check if max needs to be updated. min=max for 1 element trees so
* do not use else if here. */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
RBTree_Node *previous;
previous = _RBTree_Predecessor_unprotected(the_node);
the_rbtree->first[RBT_RIGHT] = previous;
200ac60: 10 bf ff aa b 200ab08 <_RBTree_Extract_unprotected+0x30>
200ac64: d0 26 20 0c st %o0, [ %i0 + 0xc ]
leaf = target->child[RBT_LEFT];
if(leaf) {
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
200ac68: 7f ff fe d3 call 200a7b4 <_RBTree_Extract_validate_unprotected>
200ac6c: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
200ac70: 10 bf ff bb b 200ab5c <_RBTree_Extract_unprotected+0x84>
200ac74: c4 07 40 00 ld [ %i5 ], %g2
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
200ac78: 80 a7 20 00 cmp %i4, 0
200ac7c: 32 bf ff e8 bne,a 200ac1c <_RBTree_Extract_unprotected+0x144>
200ac80: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
200ac84: 7f ff fe cc call 200a7b4 <_RBTree_Extract_validate_unprotected>
200ac88: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200ac8c: 10 bf ff e6 b 200ac24 <_RBTree_Extract_unprotected+0x14c>
200ac90: c2 06 40 00 ld [ %i1 ], %g1
0200a7b4 <_RBTree_Extract_validate_unprotected>:
)
{
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
200a7b4: c2 02 00 00 ld [ %o0 ], %g1
if(!parent->parent) return;
200a7b8: c4 00 40 00 ld [ %g1 ], %g2
200a7bc: 80 a0 a0 00 cmp %g2, 0
200a7c0: 02 80 00 3f be 200a8bc <_RBTree_Extract_validate_unprotected+0x108>
200a7c4: 01 00 00 00 nop
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200a7c8: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a7cc: 80 a2 00 02 cmp %o0, %g2
200a7d0: 22 80 00 02 be,a 200a7d8 <_RBTree_Extract_validate_unprotected+0x24>
200a7d4: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a7d8: c6 02 20 0c ld [ %o0 + 0xc ], %g3
200a7dc: 80 a0 e0 01 cmp %g3, 1
200a7e0: 02 80 00 32 be 200a8a8 <_RBTree_Extract_validate_unprotected+0xf4>
200a7e4: 9a 10 20 01 mov 1, %o5
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
200a7e8: c6 00 40 00 ld [ %g1 ], %g3
200a7ec: 80 a0 e0 00 cmp %g3, 0
200a7f0: 02 80 00 2e be 200a8a8 <_RBTree_Extract_validate_unprotected+0xf4>
200a7f4: 80 a0 a0 00 cmp %g2, 0
200a7f8: 22 80 00 07 be,a 200a814 <_RBTree_Extract_validate_unprotected+0x60><== NEVER TAKEN
200a7fc: c6 00 a0 08 ld [ %g2 + 8 ], %g3 <== NOT EXECUTED
200a800: c8 00 a0 0c ld [ %g2 + 0xc ], %g4
200a804: 80 a1 20 01 cmp %g4, 1
200a808: 22 80 00 63 be,a 200a994 <_RBTree_Extract_validate_unprotected+0x1e0>
200a80c: d8 00 60 04 ld [ %g1 + 4 ], %o4
_RBTree_Rotate(parent, dir);
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200a810: c6 00 a0 08 ld [ %g2 + 8 ], %g3
200a814: 80 a0 e0 00 cmp %g3, 0
200a818: 22 80 00 07 be,a 200a834 <_RBTree_Extract_validate_unprotected+0x80>
200a81c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a820: c6 00 e0 0c ld [ %g3 + 0xc ], %g3
200a824: 80 a0 e0 01 cmp %g3, 1
200a828: 22 80 00 29 be,a 200a8cc <_RBTree_Extract_validate_unprotected+0x118>
200a82c: c6 00 60 04 ld [ %g1 + 4 ], %g3
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
200a830: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200a834: 80 a0 e0 00 cmp %g3, 0
200a838: 22 80 00 07 be,a 200a854 <_RBTree_Extract_validate_unprotected+0xa0>
200a83c: da 20 a0 0c st %o5, [ %g2 + 0xc ]
200a840: c6 00 e0 0c ld [ %g3 + 0xc ], %g3
200a844: 80 a0 e0 01 cmp %g3, 1
200a848: 22 80 00 21 be,a 200a8cc <_RBTree_Extract_validate_unprotected+0x118>
200a84c: c6 00 60 04 ld [ %g1 + 4 ], %g3
sibling->color = RBT_RED;
200a850: da 20 a0 0c st %o5, [ %g2 + 0xc ]
200a854: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200a858: 80 a0 a0 01 cmp %g2, 1
200a85c: 22 80 00 99 be,a 200aac0 <_RBTree_Extract_validate_unprotected+0x30c>
200a860: c0 20 60 0c clr [ %g1 + 0xc ]
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
200a864: c6 00 40 00 ld [ %g1 ], %g3
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a868: 80 a0 e0 00 cmp %g3, 0
200a86c: 02 80 00 6c be 200aa1c <_RBTree_Extract_validate_unprotected+0x268><== NEVER TAKEN
200a870: 90 10 00 01 mov %g1, %o0
if(!(the_node->parent->parent)) return NULL;
200a874: c4 00 c0 00 ld [ %g3 ], %g2
200a878: 80 a0 a0 00 cmp %g2, 0
200a87c: 02 80 00 69 be 200aa20 <_RBTree_Extract_validate_unprotected+0x26c>
200a880: 84 10 20 00 clr %g2
if(the_node == the_node->parent->child[RBT_LEFT])
200a884: c4 00 e0 04 ld [ %g3 + 4 ], %g2
200a888: 80 a0 40 02 cmp %g1, %g2
200a88c: 22 80 00 0e be,a 200a8c4 <_RBTree_Extract_validate_unprotected+0x110>
200a890: c4 00 e0 08 ld [ %g3 + 8 ], %g2
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a894: 82 10 00 03 mov %g3, %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a898: c6 02 20 0c ld [ %o0 + 0xc ], %g3
200a89c: 80 a0 e0 01 cmp %g3, 1
200a8a0: 32 bf ff d3 bne,a 200a7ec <_RBTree_Extract_validate_unprotected+0x38><== ALWAYS TAKEN
200a8a4: c6 00 40 00 ld [ %g1 ], %g3
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200a8a8: c2 02 00 00 ld [ %o0 ], %g1
200a8ac: c2 00 40 00 ld [ %g1 ], %g1
200a8b0: 80 a0 60 00 cmp %g1, 0
200a8b4: 02 80 00 5f be 200aa30 <_RBTree_Extract_validate_unprotected+0x27c>
200a8b8: 01 00 00 00 nop
200a8bc: 81 c3 e0 08 retl
200a8c0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200a8c4: 10 bf ff f5 b 200a898 <_RBTree_Extract_validate_unprotected+0xe4>
200a8c8: 82 10 00 03 mov %g3, %g1
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
200a8cc: 86 1a 00 03 xor %o0, %g3, %g3
200a8d0: 80 a0 00 03 cmp %g0, %g3
200a8d4: 9a 40 20 00 addx %g0, 0, %o5
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a8d8: 86 1b 60 01 xor %o5, 1, %g3
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
200a8dc: 87 28 e0 02 sll %g3, 2, %g3
200a8e0: 88 00 80 03 add %g2, %g3, %g4
200a8e4: c8 01 20 04 ld [ %g4 + 4 ], %g4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200a8e8: 80 a1 20 00 cmp %g4, 0
200a8ec: 22 80 00 07 be,a 200a908 <_RBTree_Extract_validate_unprotected+0x154>
200a8f0: 9b 2b 60 02 sll %o5, 2, %o5
200a8f4: d8 01 20 0c ld [ %g4 + 0xc ], %o4
200a8f8: 80 a3 20 01 cmp %o4, 1
200a8fc: 22 80 00 4f be,a 200aa38 <_RBTree_Extract_validate_unprotected+0x284>
200a900: d6 00 60 0c ld [ %g1 + 0xc ], %o3
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
200a904: 9b 2b 60 02 sll %o5, 2, %o5
200a908: 98 00 80 0d add %g2, %o5, %o4
200a90c: c8 03 20 04 ld [ %o4 + 4 ], %g4
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
sibling->color = RBT_RED;
200a910: 96 10 20 01 mov 1, %o3
200a914: d6 20 a0 0c st %o3, [ %g2 + 0xc ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200a918: 80 a1 20 00 cmp %g4, 0
200a91c: 02 80 00 15 be 200a970 <_RBTree_Extract_validate_unprotected+0x1bc><== NEVER TAKEN
200a920: c0 21 20 0c clr [ %g4 + 0xc ]
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200a924: 96 01 00 03 add %g4, %g3, %o3
200a928: d4 02 e0 04 ld [ %o3 + 4 ], %o2
200a92c: d4 23 20 04 st %o2, [ %o4 + 4 ]
if (c->child[dir])
200a930: d8 02 e0 04 ld [ %o3 + 4 ], %o4
200a934: 80 a3 20 00 cmp %o4, 0
200a938: 32 80 00 02 bne,a 200a940 <_RBTree_Extract_validate_unprotected+0x18c>
200a93c: c4 23 00 00 st %g2, [ %o4 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a940: d8 00 80 00 ld [ %g2 ], %o4
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200a944: 96 01 00 03 add %g4, %g3, %o3
200a948: c4 22 e0 04 st %g2, [ %o3 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a94c: d6 03 20 04 ld [ %o4 + 4 ], %o3
c->parent = the_node->parent;
200a950: d8 21 00 00 st %o4, [ %g4 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a954: 96 18 80 0b xor %g2, %o3, %o3
c->parent = the_node->parent;
the_node->parent = c;
200a958: c8 20 80 00 st %g4, [ %g2 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a95c: 80 a0 00 0b cmp %g0, %o3
200a960: 84 40 20 00 addx %g0, 0, %g2
200a964: 85 28 a0 02 sll %g2, 2, %g2
200a968: 98 03 00 02 add %o4, %g2, %o4
200a96c: c8 23 20 04 st %g4, [ %o4 + 4 ]
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
sibling->color = parent->color;
200a970: c8 00 60 0c ld [ %g1 + 0xc ], %g4
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[_RBTree_Opposite_direction(dir)])) {
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
200a974: 84 00 40 03 add %g1, %g3, %g2
200a978: c4 00 a0 04 ld [ %g2 + 4 ], %g2
}
sibling->color = parent->color;
200a97c: c8 20 a0 0c st %g4, [ %g2 + 0xc ]
200a980: 88 00 80 03 add %g2, %g3, %g4
200a984: c8 01 20 04 ld [ %g4 + 4 ], %g4
parent->color = RBT_BLACK;
200a988: c0 20 60 0c clr [ %g1 + 0xc ]
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
200a98c: 10 80 00 33 b 200aa58 <_RBTree_Extract_validate_unprotected+0x2a4>
200a990: c0 21 20 0c clr [ %g4 + 0xc ]
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
200a994: c8 20 60 0c st %g4, [ %g1 + 0xc ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
200a998: 88 1b 00 08 xor %o4, %o0, %g4
200a99c: 80 a0 00 04 cmp %g0, %g4
200a9a0: 94 40 20 00 addx %g0, 0, %o2
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200a9a4: 96 1a a0 01 xor %o2, 1, %o3
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200a9a8: 97 2a e0 02 sll %o3, 2, %o3
200a9ac: 98 00 40 0b add %g1, %o3, %o4
200a9b0: c8 03 20 04 ld [ %o4 + 4 ], %g4
200a9b4: 80 a1 20 00 cmp %g4, 0
200a9b8: 02 80 00 1c be 200aa28 <_RBTree_Extract_validate_unprotected+0x274><== NEVER TAKEN
200a9bc: c0 20 a0 0c clr [ %g2 + 0xc ]
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200a9c0: 95 2a a0 02 sll %o2, 2, %o2
200a9c4: 84 01 00 0a add %g4, %o2, %g2
200a9c8: d2 00 a0 04 ld [ %g2 + 4 ], %o1
200a9cc: d2 23 20 04 st %o1, [ %o4 + 4 ]
if (c->child[dir])
200a9d0: c4 00 a0 04 ld [ %g2 + 4 ], %g2
200a9d4: 80 a0 a0 00 cmp %g2, 0
200a9d8: 02 80 00 04 be 200a9e8 <_RBTree_Extract_validate_unprotected+0x234><== NEVER TAKEN
200a9dc: 94 01 00 0a add %g4, %o2, %o2
c->child[dir]->parent = the_node;
200a9e0: c2 20 80 00 st %g1, [ %g2 ]
200a9e4: c6 00 40 00 ld [ %g1 ], %g3
c->child[dir] = the_node;
200a9e8: c2 22 a0 04 st %g1, [ %o2 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a9ec: c4 00 e0 04 ld [ %g3 + 4 ], %g2
c->parent = the_node->parent;
200a9f0: c6 21 00 00 st %g3, [ %g4 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200a9f4: 84 18 40 02 xor %g1, %g2, %g2
200a9f8: 80 a0 00 02 cmp %g0, %g2
200a9fc: 84 40 20 00 addx %g0, 0, %g2
200aa00: 85 28 a0 02 sll %g2, 2, %g2
200aa04: 96 00 40 0b add %g1, %o3, %o3
200aa08: 86 00 c0 02 add %g3, %g2, %g3
c->parent = the_node->parent;
the_node->parent = c;
200aa0c: c8 20 40 00 st %g4, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aa10: c8 20 e0 04 st %g4, [ %g3 + 4 ]
200aa14: 10 bf ff 7f b 200a810 <_RBTree_Extract_validate_unprotected+0x5c>
200aa18: c4 02 e0 04 ld [ %o3 + 4 ], %g2
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
const RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200aa1c: 84 10 20 00 clr %g2 <== NOT EXECUTED
200aa20: 10 bf ff 9e b 200a898 <_RBTree_Extract_validate_unprotected+0xe4>
200aa24: 82 10 00 03 mov %g3, %g1
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200aa28: 10 bf ff 7a b 200a810 <_RBTree_Extract_validate_unprotected+0x5c><== NOT EXECUTED
200aa2c: 84 10 20 00 clr %g2 <== NOT EXECUTED
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200aa30: 81 c3 e0 08 retl
200aa34: c0 22 20 0c clr [ %o0 + 0xc ]
200aa38: 98 00 40 03 add %g1, %g3, %o4
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, _RBTree_Opposite_direction(dir));
sibling = parent->child[_RBTree_Opposite_direction(dir)];
}
sibling->color = parent->color;
200aa3c: d6 20 a0 0c st %o3, [ %g2 + 0xc ]
parent->color = RBT_BLACK;
200aa40: c0 20 60 0c clr [ %g1 + 0xc ]
200aa44: c4 03 20 04 ld [ %o4 + 4 ], %g2
200aa48: 80 a0 a0 00 cmp %g2, 0
200aa4c: 02 bf ff 97 be 200a8a8 <_RBTree_Extract_validate_unprotected+0xf4><== NEVER TAKEN
200aa50: c0 21 20 0c clr [ %g4 + 0xc ]
200aa54: 9b 2b 60 02 sll %o5, 2, %o5
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200aa58: 88 00 80 0d add %g2, %o5, %g4
200aa5c: d8 01 20 04 ld [ %g4 + 4 ], %o4
200aa60: 86 00 40 03 add %g1, %g3, %g3
200aa64: d8 20 e0 04 st %o4, [ %g3 + 4 ]
if (c->child[dir])
200aa68: c6 01 20 04 ld [ %g4 + 4 ], %g3
200aa6c: 80 a0 e0 00 cmp %g3, 0
200aa70: 32 80 00 02 bne,a 200aa78 <_RBTree_Extract_validate_unprotected+0x2c4>
200aa74: c2 20 c0 00 st %g1, [ %g3 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aa78: c6 00 40 00 ld [ %g1 ], %g3
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200aa7c: 9a 00 80 0d add %g2, %o5, %o5
200aa80: c2 23 60 04 st %g1, [ %o5 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aa84: c8 00 e0 04 ld [ %g3 + 4 ], %g4
c->parent = the_node->parent;
200aa88: c6 20 80 00 st %g3, [ %g2 ]
the_node->parent = c;
200aa8c: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aa90: 88 18 40 04 xor %g1, %g4, %g4
200aa94: 80 a0 00 04 cmp %g0, %g4
200aa98: 82 40 20 00 addx %g0, 0, %g1
200aa9c: 83 28 60 02 sll %g1, 2, %g1
200aaa0: 86 00 c0 01 add %g3, %g1, %g3
sibling->child[_RBTree_Opposite_direction(dir)]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200aaa4: c2 02 00 00 ld [ %o0 ], %g1
200aaa8: c4 20 e0 04 st %g2, [ %g3 + 4 ]
200aaac: c2 00 40 00 ld [ %g1 ], %g1
200aab0: 80 a0 60 00 cmp %g1, 0
200aab4: 12 bf ff 82 bne 200a8bc <_RBTree_Extract_validate_unprotected+0x108><== ALWAYS TAKEN
200aab8: 01 00 00 00 nop
200aabc: 30 bf ff dd b,a 200aa30 <_RBTree_Extract_validate_unprotected+0x27c><== NOT EXECUTED
200aac0: c2 02 00 00 ld [ %o0 ], %g1
200aac4: c2 00 40 00 ld [ %g1 ], %g1
200aac8: 80 a0 60 00 cmp %g1, 0
200aacc: 12 bf ff 7c bne 200a8bc <_RBTree_Extract_validate_unprotected+0x108><== ALWAYS TAKEN
200aad0: 01 00 00 00 nop
200aad4: 30 bf ff d7 b,a 200aa30 <_RBTree_Extract_validate_unprotected+0x27c><== NOT EXECUTED
0200b6cc <_RBTree_Find>:
RBTree_Node *_RBTree_Find(
RBTree_Control *the_rbtree,
RBTree_Node *search_node
)
{
200b6cc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
200b6d0: 7f ff e1 c7 call 2003dec <sparc_disable_interrupts>
200b6d4: b8 10 00 18 mov %i0, %i4
200b6d8: b6 10 00 08 mov %o0, %i3
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
200b6dc: fa 06 20 04 ld [ %i0 + 4 ], %i5
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
200b6e0: 80 a7 60 00 cmp %i5, 0
200b6e4: 02 80 00 15 be 200b738 <_RBTree_Find+0x6c> <== NEVER TAKEN
200b6e8: b0 10 20 00 clr %i0
compare_result = the_rbtree->compare_function(the_node, iter_node);
200b6ec: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
200b6f0: 92 10 00 1d mov %i5, %o1
200b6f4: 9f c0 40 00 call %g1
200b6f8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
200b6fc: 83 3a 20 1f sra %o0, 0x1f, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
200b700: 80 a2 20 00 cmp %o0, 0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
200b704: 82 20 40 08 sub %g1, %o0, %g1
200b708: 83 30 60 1f srl %g1, 0x1f, %g1
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
200b70c: 83 28 60 02 sll %g1, 2, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
200b710: 12 80 00 06 bne 200b728 <_RBTree_Find+0x5c>
200b714: 82 07 40 01 add %i5, %g1, %g1
found = iter_node;
if ( the_rbtree->is_unique )
200b718: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
200b71c: 80 a0 a0 00 cmp %g2, 0
200b720: 12 80 00 0a bne 200b748 <_RBTree_Find+0x7c>
200b724: b0 10 00 1d mov %i5, %i0
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
200b728: fa 00 60 04 ld [ %g1 + 4 ], %i5
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
200b72c: 80 a7 60 00 cmp %i5, 0
200b730: 32 bf ff f0 bne,a 200b6f0 <_RBTree_Find+0x24>
200b734: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
return_node = _RBTree_Find_unprotected( the_rbtree, search_node );
_ISR_Enable( level );
200b738: 7f ff e1 b1 call 2003dfc <sparc_enable_interrupts>
200b73c: 90 10 00 1b mov %i3, %o0
return return_node;
}
200b740: 81 c7 e0 08 ret
200b744: 81 e8 00 00 restore
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
return_node = _RBTree_Find_unprotected( the_rbtree, search_node );
_ISR_Enable( level );
200b748: 7f ff e1 ad call 2003dfc <sparc_enable_interrupts>
200b74c: 90 10 00 1b mov %i3, %o0
return return_node;
}
200b750: 81 c7 e0 08 ret
200b754: 81 e8 00 00 restore
0200bb38 <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
200bb38: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
200bb3c: 80 a6 20 00 cmp %i0, 0
200bb40: 02 80 00 0f be 200bb7c <_RBTree_Initialize+0x44> <== NEVER TAKEN
200bb44: 80 a6 e0 00 cmp %i3, 0
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
200bb48: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
200bb4c: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
200bb50: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
200bb54: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
200bb58: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200bb5c: 02 80 00 08 be 200bb7c <_RBTree_Initialize+0x44> <== NEVER TAKEN
200bb60: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert_unprotected(the_rbtree, next);
200bb64: 92 10 00 1a mov %i2, %o1
200bb68: 7f ff ff 0b call 200b794 <_RBTree_Insert_unprotected>
200bb6c: 90 10 00 18 mov %i0, %o0
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200bb70: b6 86 ff ff addcc %i3, -1, %i3
200bb74: 12 bf ff fc bne 200bb64 <_RBTree_Initialize+0x2c>
200bb78: b4 06 80 1c add %i2, %i4, %i2
200bb7c: 81 c7 e0 08 ret
200bb80: 81 e8 00 00 restore
0200acb8 <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200acb8: 9d e3 bf a0 save %sp, -96, %sp
if(!the_node) return (RBTree_Node*)-1;
200acbc: 80 a6 60 00 cmp %i1, 0
200acc0: 02 80 00 9c be 200af30 <_RBTree_Insert_unprotected+0x278>
200acc4: b8 10 00 18 mov %i0, %i4
RBTree_Node *iter_node = the_rbtree->root;
200acc8: fa 06 20 04 ld [ %i0 + 4 ], %i5
int compare_result;
if (!iter_node) { /* special case: first node inserted */
200accc: 80 a7 60 00 cmp %i5, 0
200acd0: 32 80 00 05 bne,a 200ace4 <_RBTree_Insert_unprotected+0x2c>
200acd4: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
the_node->color = RBT_BLACK;
200acd8: 10 80 00 9a b 200af40 <_RBTree_Insert_unprotected+0x288>
200acdc: c0 26 60 0c clr [ %i1 + 0xc ]
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
200ace0: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
200ace4: 92 10 00 1d mov %i5, %o1
200ace8: 9f c0 40 00 call %g1
200acec: 90 10 00 19 mov %i1, %o0
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200acf0: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200acf4: b6 38 00 08 xnor %g0, %o0, %i3
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200acf8: 80 a0 a0 00 cmp %g2, 0
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
200acfc: b7 36 e0 1f srl %i3, 0x1f, %i3
if (!iter_node->child[dir]) {
200ad00: 83 2e e0 02 sll %i3, 2, %g1
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200ad04: 02 80 00 05 be 200ad18 <_RBTree_Insert_unprotected+0x60>
200ad08: 82 07 40 01 add %i5, %g1, %g1
200ad0c: 80 a2 20 00 cmp %o0, 0
200ad10: 02 80 00 8a be 200af38 <_RBTree_Insert_unprotected+0x280>
200ad14: 01 00 00 00 nop
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
200ad18: f0 00 60 04 ld [ %g1 + 4 ], %i0
200ad1c: 80 a6 20 00 cmp %i0, 0
200ad20: 32 bf ff f0 bne,a 200ace0 <_RBTree_Insert_unprotected+0x28>
200ad24: ba 10 00 18 mov %i0, %i5
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
compare_result = the_rbtree->compare_function(
200ad28: c4 07 20 10 ld [ %i4 + 0x10 ], %g2
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200ad2c: b4 06 e0 02 add %i3, 2, %i2
200ad30: 87 2e a0 02 sll %i2, 2, %g3
200ad34: d2 07 00 03 ld [ %i4 + %g3 ], %o1
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200ad38: c0 26 60 08 clr [ %i1 + 8 ]
200ad3c: c0 26 60 04 clr [ %i1 + 4 ]
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
200ad40: f2 20 60 04 st %i1, [ %g1 + 4 ]
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200ad44: 82 10 20 01 mov 1, %g1
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
200ad48: fa 26 40 00 st %i5, [ %i1 ]
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
return iter_node;
RBTree_Direction dir = !_RBTree_Is_lesser( compare_result );
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
200ad4c: c2 26 60 0c st %g1, [ %i1 + 0xc ]
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
compare_result = the_rbtree->compare_function(
200ad50: 9f c0 80 00 call %g2
200ad54: 90 10 00 19 mov %i1, %o0
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
200ad58: 80 a6 e0 00 cmp %i3, 0
200ad5c: 12 80 00 10 bne 200ad9c <_RBTree_Insert_unprotected+0xe4>
200ad60: 80 a2 20 00 cmp %o0, 0
200ad64: 06 80 00 10 bl 200ada4 <_RBTree_Insert_unprotected+0xec>
200ad68: b5 2e a0 02 sll %i2, 2, %i2
200ad6c: c2 06 40 00 ld [ %i1 ], %g1
if (dir != pdir) {
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
}
the_node->parent->color = RBT_BLACK;
g->color = RBT_RED;
200ad70: b4 10 20 01 mov 1, %i2
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200ad74: c4 00 40 00 ld [ %g1 ], %g2
200ad78: 86 90 a0 00 orcc %g2, 0, %g3
200ad7c: 22 80 00 06 be,a 200ad94 <_RBTree_Insert_unprotected+0xdc>
200ad80: c0 26 60 0c clr [ %i1 + 0xc ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200ad84: c8 00 60 0c ld [ %g1 + 0xc ], %g4
200ad88: 80 a1 20 01 cmp %g4, 1
200ad8c: 22 80 00 08 be,a 200adac <_RBTree_Insert_unprotected+0xf4>
200ad90: f6 00 80 00 ld [ %g2 ], %i3
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200ad94: 81 c7 e0 08 ret
200ad98: 81 e8 00 00 restore
compare_result = the_rbtree->compare_function(
the_node,
_RBTree_First(the_rbtree, dir)
);
if ( (!dir && _RBTree_Is_lesser(compare_result)) ||
(dir && _RBTree_Is_greater(compare_result)) ) {
200ad9c: 04 bf ff f4 ble 200ad6c <_RBTree_Insert_unprotected+0xb4>
200ada0: b5 2e a0 02 sll %i2, 2, %i2
the_rbtree->first[dir] = the_node;
200ada4: 10 bf ff f2 b 200ad6c <_RBTree_Insert_unprotected+0xb4>
200ada8: f2 27 00 1a st %i1, [ %i4 + %i2 ]
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
200adac: 80 a6 e0 00 cmp %i3, 0
200adb0: 02 80 00 0c be 200ade0 <_RBTree_Insert_unprotected+0x128> <== NEVER TAKEN
200adb4: c8 00 a0 04 ld [ %g2 + 4 ], %g4
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200adb8: 80 a1 00 01 cmp %g4, %g1
200adbc: 02 80 00 5b be 200af28 <_RBTree_Insert_unprotected+0x270>
200adc0: ba 10 00 04 mov %g4, %i5
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200adc4: 80 a7 60 00 cmp %i5, 0
200adc8: 22 80 00 07 be,a 200ade4 <_RBTree_Insert_unprotected+0x12c>
200adcc: fa 00 60 04 ld [ %g1 + 4 ], %i5
200add0: f8 07 60 0c ld [ %i5 + 0xc ], %i4
200add4: 80 a7 20 01 cmp %i4, 1
200add8: 22 80 00 4f be,a 200af14 <_RBTree_Insert_unprotected+0x25c>
200addc: c0 20 60 0c clr [ %g1 + 0xc ]
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200ade0: fa 00 60 04 ld [ %g1 + 4 ], %i5
RBTree_Direction pdir = the_node->parent != g->child[0];
200ade4: 88 18 40 04 xor %g1, %g4, %g4
200ade8: 80 a0 00 04 cmp %g0, %g4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200adec: ba 1e 40 1d xor %i1, %i5, %i5
RBTree_Direction pdir = the_node->parent != g->child[0];
200adf0: 88 40 20 00 addx %g0, 0, %g4
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200adf4: 80 a0 00 1d cmp %g0, %i5
200adf8: ba 40 20 00 addx %g0, 0, %i5
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200adfc: 80 a7 40 04 cmp %i5, %g4
200ae00: 02 80 00 20 be 200ae80 <_RBTree_Insert_unprotected+0x1c8>
200ae04: 80 a0 00 04 cmp %g0, %g4
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200ae08: b6 60 3f ff subx %g0, -1, %i3
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200ae0c: b7 2e e0 02 sll %i3, 2, %i3
200ae10: b6 00 40 1b add %g1, %i3, %i3
200ae14: fa 06 e0 04 ld [ %i3 + 4 ], %i5
200ae18: 80 a7 60 00 cmp %i5, 0
200ae1c: 02 80 00 16 be 200ae74 <_RBTree_Insert_unprotected+0x1bc> <== NEVER TAKEN
200ae20: b9 29 20 02 sll %g4, 2, %i4
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200ae24: 9e 07 40 1c add %i5, %i4, %o7
200ae28: da 03 e0 04 ld [ %o7 + 4 ], %o5
200ae2c: da 26 e0 04 st %o5, [ %i3 + 4 ]
if (c->child[dir])
200ae30: f6 03 e0 04 ld [ %o7 + 4 ], %i3
200ae34: 80 a6 e0 00 cmp %i3, 0
200ae38: 22 80 00 05 be,a 200ae4c <_RBTree_Insert_unprotected+0x194>
200ae3c: b6 07 40 1c add %i5, %i4, %i3
c->child[dir]->parent = the_node;
200ae40: c2 26 c0 00 st %g1, [ %i3 ]
200ae44: c4 00 40 00 ld [ %g1 ], %g2
c->child[dir] = the_node;
200ae48: b6 07 40 1c add %i5, %i4, %i3
200ae4c: c2 26 e0 04 st %g1, [ %i3 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ae50: f6 00 a0 04 ld [ %g2 + 4 ], %i3
c->parent = the_node->parent;
200ae54: c4 27 40 00 st %g2, [ %i5 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ae58: b6 1e c0 01 xor %i3, %g1, %i3
c->parent = the_node->parent;
the_node->parent = c;
200ae5c: fa 20 40 00 st %i5, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ae60: 80 a0 00 1b cmp %g0, %i3
200ae64: 82 40 20 00 addx %g0, 0, %g1
200ae68: 83 28 60 02 sll %g1, 2, %g1
200ae6c: 84 00 80 01 add %g2, %g1, %g2
200ae70: fa 20 a0 04 st %i5, [ %g2 + 4 ]
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
200ae74: b2 06 40 1c add %i1, %i4, %i1
200ae78: f2 06 60 04 ld [ %i1 + 4 ], %i1
200ae7c: c2 06 40 00 ld [ %i1 ], %g1
}
the_node->parent->color = RBT_BLACK;
200ae80: c0 20 60 0c clr [ %g1 + 0xc ]
g->color = RBT_RED;
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
200ae84: 88 26 80 04 sub %i2, %g4, %g4
200ae88: ba 19 20 01 xor %g4, 1, %i5
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[_RBTree_Opposite_direction(dir)] == NULL) return;
200ae8c: bb 2f 60 02 sll %i5, 2, %i5
200ae90: ba 00 c0 1d add %g3, %i5, %i5
200ae94: c4 07 60 04 ld [ %i5 + 4 ], %g2
200ae98: 80 a0 a0 00 cmp %g2, 0
200ae9c: 02 bf ff b6 be 200ad74 <_RBTree_Insert_unprotected+0xbc> <== NEVER TAKEN
200aea0: f4 20 e0 0c st %i2, [ %g3 + 0xc ]
c = the_node->child[_RBTree_Opposite_direction(dir)];
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
200aea4: 89 29 20 02 sll %g4, 2, %g4
200aea8: 82 00 80 04 add %g2, %g4, %g1
200aeac: f8 00 60 04 ld [ %g1 + 4 ], %i4
200aeb0: f8 27 60 04 st %i4, [ %i5 + 4 ]
if (c->child[dir])
200aeb4: c2 00 60 04 ld [ %g1 + 4 ], %g1
200aeb8: 80 a0 60 00 cmp %g1, 0
200aebc: 32 80 00 02 bne,a 200aec4 <_RBTree_Insert_unprotected+0x20c>
200aec0: c6 20 40 00 st %g3, [ %g1 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aec4: fa 00 c0 00 ld [ %g3 ], %i5
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200aec8: 88 00 80 04 add %g2, %g4, %g4
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
c->parent = the_node->parent;
200aecc: fa 20 80 00 st %i5, [ %g2 ]
the_node->child[_RBTree_Opposite_direction(dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200aed0: c6 21 20 04 st %g3, [ %g4 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aed4: c8 07 60 04 ld [ %i5 + 4 ], %g4
c->parent = the_node->parent;
the_node->parent = c;
200aed8: c4 20 c0 00 st %g2, [ %g3 ]
200aedc: c2 06 40 00 ld [ %i1 ], %g1
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200aee0: 86 18 c0 04 xor %g3, %g4, %g3
200aee4: 80 a0 00 03 cmp %g0, %g3
200aee8: 86 40 20 00 addx %g0, 0, %g3
200aeec: 87 28 e0 02 sll %g3, 2, %g3
200aef0: ba 07 40 03 add %i5, %g3, %i5
200aef4: c4 27 60 04 st %g2, [ %i5 + 4 ]
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
const RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200aef8: c4 00 40 00 ld [ %g1 ], %g2
200aefc: 86 90 a0 00 orcc %g2, 0, %g3
200af00: 32 bf ff a2 bne,a 200ad88 <_RBTree_Insert_unprotected+0xd0><== ALWAYS TAKEN
200af04: c8 00 60 0c ld [ %g1 + 0xc ], %g4
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200af08: c0 26 60 0c clr [ %i1 + 0xc ] <== NOT EXECUTED
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
200af0c: 81 c7 e0 08 ret <== NOT EXECUTED
200af10: 81 e8 00 00 restore <== NOT EXECUTED
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
200af14: c0 27 60 0c clr [ %i5 + 0xc ]
g->color = RBT_RED;
200af18: f8 20 a0 0c st %i4, [ %g2 + 0xc ]
200af1c: 82 10 00 1b mov %i3, %g1
200af20: 10 bf ff 95 b 200ad74 <_RBTree_Insert_unprotected+0xbc>
200af24: b2 10 00 02 mov %g2, %i1
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
return the_node->parent->child[RBT_RIGHT];
200af28: 10 bf ff a7 b 200adc4 <_RBTree_Insert_unprotected+0x10c>
200af2c: fa 00 a0 08 ld [ %g2 + 8 ], %i5
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
if(!the_node) return (RBTree_Node*)-1;
200af30: 81 c7 e0 08 ret
200af34: 91 e8 3f ff restore %g0, -1, %o0
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( the_rbtree->is_unique && _RBTree_Is_equal( compare_result ) )
200af38: 81 c7 e0 08 ret
200af3c: 91 e8 00 1d restore %g0, %i5, %o0
RBTree_Node *iter_node = the_rbtree->root;
int compare_result;
if (!iter_node) { /* special case: first node inserted */
the_node->color = RBT_BLACK;
the_rbtree->root = the_node;
200af40: f2 26 20 04 st %i1, [ %i0 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
200af44: f2 26 20 0c st %i1, [ %i0 + 0xc ]
200af48: f2 26 20 08 st %i1, [ %i0 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
200af4c: f0 26 40 00 st %i0, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
200af50: c0 26 60 08 clr [ %i1 + 8 ]
200af54: c0 26 60 04 clr [ %i1 + 4 ]
} /* while(iter_node) */
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
200af58: 81 c7 e0 08 ret
200af5c: 91 e8 20 00 restore %g0, 0, %o0
0200af90 <_RBTree_Iterate_unprotected>:
const RBTree_Control *rbtree,
RBTree_Direction dir,
RBTree_Visitor visitor,
void *visitor_arg
)
{
200af90: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE RBTree_Direction _RBTree_Opposite_direction(
RBTree_Direction the_dir
)
{
return (RBTree_Direction) !((int) the_dir);
200af94: 80 a0 00 19 cmp %g0, %i1
200af98: 82 60 3f ff subx %g0, -1, %g1
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
const RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
200af9c: 82 00 60 02 add %g1, 2, %g1
200afa0: 83 28 60 02 sll %g1, 2, %g1
200afa4: fa 06 00 01 ld [ %i0 + %g1 ], %i5
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200afa8: 80 a7 60 00 cmp %i5, 0
200afac: 12 80 00 06 bne 200afc4 <_RBTree_Iterate_unprotected+0x34><== ALWAYS TAKEN
200afb0: 94 10 00 1b mov %i3, %o2
200afb4: 30 80 00 0e b,a 200afec <_RBTree_Iterate_unprotected+0x5c><== NOT EXECUTED
200afb8: 80 8f 20 ff btst 0xff, %i4
200afbc: 02 80 00 0c be 200afec <_RBTree_Iterate_unprotected+0x5c> <== NEVER TAKEN
200afc0: 94 10 00 1b mov %i3, %o2
stop = (*visitor)( current, dir, visitor_arg );
200afc4: 90 10 00 1d mov %i5, %o0
200afc8: 9f c6 80 00 call %i2
200afcc: 92 10 00 19 mov %i1, %o1
current = _RBTree_Next_unprotected( current, dir );
200afd0: 92 10 00 19 mov %i1, %o1
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
stop = (*visitor)( current, dir, visitor_arg );
200afd4: b8 10 00 08 mov %o0, %i4
current = _RBTree_Next_unprotected( current, dir );
200afd8: 40 00 00 07 call 200aff4 <_RBTree_Next_unprotected>
200afdc: 90 10 00 1d mov %i5, %o0
{
RBTree_Direction opp_dir = _RBTree_Opposite_direction( dir );
const RBTree_Node *current = _RBTree_First( rbtree, opp_dir );
bool stop = false;
while ( !stop && current != NULL ) {
200afe0: ba 92 20 00 orcc %o0, 0, %i5
200afe4: 12 bf ff f5 bne 200afb8 <_RBTree_Iterate_unprotected+0x28>
200afe8: b8 1f 20 01 xor %i4, 1, %i4
200afec: 81 c7 e0 08 ret
200aff0: 81 e8 00 00 restore
020081d4 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
20081d4: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
20081d8: 03 00 80 71 sethi %hi(0x201c400), %g1
20081dc: 82 10 61 20 or %g1, 0x120, %g1 ! 201c520 <Configuration_RTEMS_API>
20081e0: fa 00 60 2c ld [ %g1 + 0x2c ], %i5
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
20081e4: 80 a7 60 00 cmp %i5, 0
20081e8: 02 80 00 18 be 2008248 <_RTEMS_tasks_Initialize_user_tasks_body+0x74>
20081ec: f6 00 60 28 ld [ %g1 + 0x28 ], %i3
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
20081f0: 80 a6 e0 00 cmp %i3, 0
20081f4: 02 80 00 15 be 2008248 <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN
20081f8: b8 10 20 00 clr %i4
return_value = rtems_task_create(
20081fc: d4 07 60 04 ld [ %i5 + 4 ], %o2
2008200: d0 07 40 00 ld [ %i5 ], %o0
2008204: d2 07 60 08 ld [ %i5 + 8 ], %o1
2008208: d6 07 60 14 ld [ %i5 + 0x14 ], %o3
200820c: d8 07 60 0c ld [ %i5 + 0xc ], %o4
2008210: 7f ff ff 70 call 2007fd0 <rtems_task_create>
2008214: 9a 07 bf fc add %fp, -4, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
2008218: 94 92 20 00 orcc %o0, 0, %o2
200821c: 12 80 00 0d bne 2008250 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2008220: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
2008224: d4 07 60 18 ld [ %i5 + 0x18 ], %o2
2008228: 40 00 00 0e call 2008260 <rtems_task_start>
200822c: d2 07 60 10 ld [ %i5 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2008230: 94 92 20 00 orcc %o0, 0, %o2
2008234: 12 80 00 07 bne 2008250 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2008238: b8 07 20 01 inc %i4
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
200823c: 80 a7 00 1b cmp %i4, %i3
2008240: 12 bf ff ef bne 20081fc <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN
2008244: ba 07 60 1c add %i5, 0x1c, %i5
2008248: 81 c7 e0 08 ret
200824c: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
2008250: 90 10 20 01 mov 1, %o0
2008254: 40 00 04 0e call 200928c <_Internal_error_Occurred>
2008258: 92 10 20 01 mov 1, %o1
0200d418 <_RTEMS_tasks_Post_switch_extension>:
*/
static void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200d418: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200d41c: fa 06 21 50 ld [ %i0 + 0x150 ], %i5
if ( !api )
200d420: 80 a7 60 00 cmp %i5, 0
200d424: 02 80 00 1e be 200d49c <_RTEMS_tasks_Post_switch_extension+0x84><== NEVER TAKEN
200d428: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200d42c: 7f ff d4 ce call 2002764 <sparc_disable_interrupts>
200d430: 01 00 00 00 nop
signal_set = asr->signals_posted;
200d434: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
200d438: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200d43c: 7f ff d4 ce call 2002774 <sparc_enable_interrupts>
200d440: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200d444: 80 a7 20 00 cmp %i4, 0
200d448: 32 80 00 04 bne,a 200d458 <_RTEMS_tasks_Post_switch_extension+0x40>
200d44c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200d450: 81 c7 e0 08 ret
200d454: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200d458: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200d45c: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200d460: 94 07 bf fc add %fp, -4, %o2
200d464: 37 00 00 3f sethi %hi(0xfc00), %i3
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200d468: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200d46c: 40 00 07 e6 call 200f404 <rtems_task_mode>
200d470: 92 16 e3 ff or %i3, 0x3ff, %o1
(*asr->handler)( signal_set );
200d474: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200d478: 9f c0 40 00 call %g1
200d47c: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
200d480: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200d484: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200d488: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200d48c: 92 16 e3 ff or %i3, 0x3ff, %o1
200d490: 94 07 bf fc add %fp, -4, %o2
200d494: 40 00 07 dc call 200f404 <rtems_task_mode>
200d498: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
200d49c: 81 c7 e0 08 ret
200d4a0: 81 e8 00 00 restore
0200d2a0 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200d2a0: c2 02 21 5c ld [ %o0 + 0x15c ], %g1
while (tvp) {
200d2a4: 80 a0 60 00 cmp %g1, 0
200d2a8: 22 80 00 0c be,a 200d2d8 <_RTEMS_tasks_Switch_extension+0x38>
200d2ac: c2 02 61 5c ld [ %o1 + 0x15c ], %g1
tvp->tval = *tvp->ptr;
200d2b0: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200d2b4: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200d2b8: c8 00 80 00 ld [ %g2 ], %g4
200d2bc: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
200d2c0: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200d2c4: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200d2c8: 80 a0 60 00 cmp %g1, 0
200d2cc: 32 bf ff fa bne,a 200d2b4 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN
200d2d0: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200d2d4: c2 02 61 5c ld [ %o1 + 0x15c ], %g1
while (tvp) {
200d2d8: 80 a0 60 00 cmp %g1, 0
200d2dc: 02 80 00 0d be 200d310 <_RTEMS_tasks_Switch_extension+0x70>
200d2e0: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200d2e4: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200d2e8: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200d2ec: c8 00 80 00 ld [ %g2 ], %g4
200d2f0: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
200d2f4: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200d2f8: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200d2fc: 80 a0 60 00 cmp %g1, 0
200d300: 32 bf ff fa bne,a 200d2e8 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN
200d304: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
200d308: 81 c3 e0 08 retl
200d30c: 01 00 00 00 nop
200d310: 81 c3 e0 08 retl
02036f08 <_Rate_monotonic_Get_status>:
bool _Rate_monotonic_Get_status(
Rate_monotonic_Control *the_period,
Rate_monotonic_Period_time_t *wall_since_last_period,
Thread_CPU_usage_t *cpu_since_last_period
)
{
2036f08: 9d e3 bf 98 save %sp, -104, %sp
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
Timestamp_Control uptime;
#endif
Thread_Control *owning_thread = the_period->owner;
2036f0c: f6 06 20 40 ld [ %i0 + 0x40 ], %i3
/*
* Determine elapsed wall time since period initiated.
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_TOD_Get_uptime( &uptime );
2036f10: 7f ff 63 2d call 200fbc4 <_TOD_Get_uptime>
2036f14: 90 07 bf f8 add %fp, -8, %o0
_Timestamp_Subtract(
2036f18: c4 1f bf f8 ldd [ %fp + -8 ], %g2
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
2036f1c: f8 1e 20 50 ldd [ %i0 + 0x50 ], %i4
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
2036f20: 03 00 81 97 sethi %hi(0x2065c00), %g1
2036f24: 82 10 60 e0 or %g1, 0xe0, %g1 ! 2065ce0 <_Per_CPU_Information>
2036f28: de 00 60 0c ld [ %g1 + 0xc ], %o7
2036f2c: ba a0 c0 1d subcc %g3, %i5, %i5
2036f30: b8 60 80 1c subx %g2, %i4, %i4
2036f34: f8 3e 40 00 std %i4, [ %i1 ]
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2036f38: 88 10 20 01 mov 1, %g4
* Determine cpu usage since period initiated.
*/
used = owning_thread->cpu_time_used;
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
if (owning_thread == _Thread_Executing) {
2036f3c: 80 a3 c0 1b cmp %o7, %i3
2036f40: 02 80 00 05 be 2036f54 <_Rate_monotonic_Get_status+0x4c>
2036f44: f8 1e e0 80 ldd [ %i3 + 0x80 ], %i4
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
}
2036f48: b0 09 20 01 and %g4, 1, %i0
2036f4c: 81 c7 e0 08 ret
2036f50: 81 e8 00 00 restore
2036f54: d8 18 60 20 ldd [ %g1 + 0x20 ], %o4
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2036f58: f0 1e 20 48 ldd [ %i0 + 0x48 ], %i0
2036f5c: 86 a0 c0 0d subcc %g3, %o5, %g3
2036f60: 84 60 80 0c subx %g2, %o4, %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2036f64: ba 87 40 03 addcc %i5, %g3, %i5
2036f68: b8 47 00 02 addx %i4, %g2, %i4
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
2036f6c: 80 a6 00 1c cmp %i0, %i4
2036f70: 14 bf ff f6 bg 2036f48 <_Rate_monotonic_Get_status+0x40> <== NEVER TAKEN
2036f74: 88 10 20 00 clr %g4
2036f78: 02 80 00 09 be 2036f9c <_Rate_monotonic_Get_status+0x94>
2036f7c: 80 a6 40 1d cmp %i1, %i5
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
2036f80: ba a7 40 19 subcc %i5, %i1, %i5
if (used < the_period->cpu_usage_period_initiated)
return false;
*cpu_since_last_period = used - the_period->cpu_usage_period_initiated;
#endif
return true;
2036f84: 88 10 20 01 mov 1, %g4
2036f88: b8 67 00 18 subx %i4, %i0, %i4
}
2036f8c: b0 09 20 01 and %g4, 1, %i0
2036f90: f8 3e 80 00 std %i4, [ %i2 ]
2036f94: 81 c7 e0 08 ret
2036f98: 81 e8 00 00 restore
/*
* The cpu usage info was reset while executing. Can't
* determine a status.
*/
if (_Timestamp_Less_than(&used, &the_period->cpu_usage_period_initiated))
2036f9c: 28 bf ff fa bleu,a 2036f84 <_Rate_monotonic_Get_status+0x7c>
2036fa0: ba a7 40 19 subcc %i5, %i1, %i5
return false;
2036fa4: 10 bf ff e9 b 2036f48 <_Rate_monotonic_Get_status+0x40>
2036fa8: 88 10 20 00 clr %g4
02037348 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2037348: 9d e3 bf 98 save %sp, -104, %sp
203734c: 11 00 81 97 sethi %hi(0x2065c00), %o0
2037350: 92 10 00 18 mov %i0, %o1
2037354: 90 12 23 00 or %o0, 0x300, %o0
2037358: 7f ff 48 a8 call 20095f8 <_Objects_Get>
203735c: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2037360: c2 07 bf fc ld [ %fp + -4 ], %g1
2037364: 80 a0 60 00 cmp %g1, 0
2037368: 12 80 00 17 bne 20373c4 <_Rate_monotonic_Timeout+0x7c> <== NEVER TAKEN
203736c: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2037370: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2037374: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2037378: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
203737c: 80 88 80 01 btst %g2, %g1
2037380: 22 80 00 08 be,a 20373a0 <_Rate_monotonic_Timeout+0x58>
2037384: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2037388: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
203738c: c2 07 60 08 ld [ %i5 + 8 ], %g1
2037390: 80 a0 80 01 cmp %g2, %g1
2037394: 02 80 00 1a be 20373fc <_Rate_monotonic_Timeout+0xb4>
2037398: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
203739c: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
20373a0: 80 a0 60 01 cmp %g1, 1
20373a4: 02 80 00 0a be 20373cc <_Rate_monotonic_Timeout+0x84>
20373a8: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
20373ac: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20373b0: 03 00 81 96 sethi %hi(0x2065800), %g1
20373b4: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 2065ac0 <_Thread_Dispatch_disable_level>
20373b8: 84 00 bf ff add %g2, -1, %g2
20373bc: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ]
return _Thread_Dispatch_disable_level;
20373c0: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1
20373c4: 81 c7 e0 08 ret
20373c8: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20373cc: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
20373d0: 90 10 00 1d mov %i5, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
20373d4: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
20373d8: 7f ff ff 44 call 20370e8 <_Rate_monotonic_Initiate_statistics>
20373dc: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20373e0: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20373e4: 11 00 81 96 sethi %hi(0x2065800), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20373e8: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20373ec: 90 12 23 68 or %o0, 0x368, %o0
20373f0: 7f ff 4f ca call 200b318 <_Watchdog_Insert>
20373f4: 92 07 60 10 add %i5, 0x10, %o1
20373f8: 30 bf ff ee b,a 20373b0 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20373fc: 7f ff 4b 5f call 200a178 <_Thread_Clear_state>
2037400: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
2037404: 10 bf ff f5 b 20373d8 <_Rate_monotonic_Timeout+0x90>
2037408: 90 10 00 1d mov %i5, %o0
02036fac <_Rate_monotonic_Update_statistics>:
}
static void _Rate_monotonic_Update_statistics(
Rate_monotonic_Control *the_period
)
{
2036fac: 9d e3 bf 90 save %sp, -112, %sp
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
2036fb0: c4 06 20 58 ld [ %i0 + 0x58 ], %g2
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
2036fb4: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
/*
* Update the counts.
*/
stats = &the_period->Statistics;
stats->count++;
2036fb8: 84 00 a0 01 inc %g2
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
2036fbc: 80 a0 60 04 cmp %g1, 4
2036fc0: 02 80 00 32 be 2037088 <_Rate_monotonic_Update_statistics+0xdc>
2036fc4: c4 26 20 58 st %g2, [ %i0 + 0x58 ]
stats->missed_count++;
/*
* Grab status for time statistics.
*/
valid_status =
2036fc8: 90 10 00 18 mov %i0, %o0
2036fcc: 92 07 bf f8 add %fp, -8, %o1
2036fd0: 7f ff ff ce call 2036f08 <_Rate_monotonic_Get_status>
2036fd4: 94 07 bf f0 add %fp, -16, %o2
_Rate_monotonic_Get_status( the_period, &since_last_period, &executed );
if (!valid_status)
2036fd8: 80 8a 20 ff btst 0xff, %o0
2036fdc: 02 80 00 21 be 2037060 <_Rate_monotonic_Update_statistics+0xb4>
2036fe0: c4 1f bf f0 ldd [ %fp + -16 ], %g2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
2036fe4: f8 1e 20 70 ldd [ %i0 + 0x70 ], %i4
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
2036fe8: c2 06 20 60 ld [ %i0 + 0x60 ], %g1
2036fec: ba 87 40 03 addcc %i5, %g3, %i5
2036ff0: b8 47 00 02 addx %i4, %g2, %i4
2036ff4: 80 a0 40 02 cmp %g1, %g2
2036ff8: 04 80 00 1c ble 2037068 <_Rate_monotonic_Update_statistics+0xbc>
2036ffc: f8 3e 20 70 std %i4, [ %i0 + 0x70 ]
stats->min_cpu_time = executed;
2037000: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
2037004: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
2037008: 80 a0 40 02 cmp %g1, %g2
203700c: 26 80 00 05 bl,a 2037020 <_Rate_monotonic_Update_statistics+0x74><== NEVER TAKEN
2037010: c4 3e 20 68 std %g2, [ %i0 + 0x68 ] <== NOT EXECUTED
2037014: 80 a0 40 02 cmp %g1, %g2
2037018: 22 80 00 28 be,a 20370b8 <_Rate_monotonic_Update_statistics+0x10c><== ALWAYS TAKEN
203701c: c2 06 20 6c ld [ %i0 + 0x6c ], %g1
/*
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
2037020: c4 1f bf f8 ldd [ %fp + -8 ], %g2
2037024: f8 1e 20 88 ldd [ %i0 + 0x88 ], %i4
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
2037028: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
203702c: ba 87 40 03 addcc %i5, %g3, %i5
2037030: b8 47 00 02 addx %i4, %g2, %i4
2037034: 80 a0 40 02 cmp %g1, %g2
2037038: 14 80 00 1b bg 20370a4 <_Rate_monotonic_Update_statistics+0xf8>
203703c: f8 3e 20 88 std %i4, [ %i0 + 0x88 ]
2037040: 80 a0 40 02 cmp %g1, %g2
2037044: 22 80 00 15 be,a 2037098 <_Rate_monotonic_Update_statistics+0xec><== ALWAYS TAKEN
2037048: c2 06 20 7c ld [ %i0 + 0x7c ], %g1
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
203704c: c2 06 20 80 ld [ %i0 + 0x80 ], %g1 <== NOT EXECUTED
2037050: 80 a0 40 02 cmp %g1, %g2
2037054: 16 80 00 1e bge 20370cc <_Rate_monotonic_Update_statistics+0x120><== ALWAYS TAKEN
2037058: 01 00 00 00 nop
stats->max_wall_time = since_last_period;
203705c: c4 3e 20 80 std %g2, [ %i0 + 0x80 ] <== NOT EXECUTED
2037060: 81 c7 e0 08 ret
2037064: 81 e8 00 00 restore
* Update CPU time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
2037068: 32 bf ff e8 bne,a 2037008 <_Rate_monotonic_Update_statistics+0x5c><== NEVER TAKEN
203706c: c2 06 20 68 ld [ %i0 + 0x68 ], %g1 <== NOT EXECUTED
2037070: c2 06 20 64 ld [ %i0 + 0x64 ], %g1
2037074: 80 a0 40 03 cmp %g1, %g3
2037078: 28 bf ff e4 bleu,a 2037008 <_Rate_monotonic_Update_statistics+0x5c>
203707c: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
stats->min_cpu_time = executed;
2037080: 10 bf ff e1 b 2037004 <_Rate_monotonic_Update_statistics+0x58>
2037084: c4 3e 20 60 std %g2, [ %i0 + 0x60 ]
*/
stats = &the_period->Statistics;
stats->count++;
if ( the_period->state == RATE_MONOTONIC_EXPIRED )
stats->missed_count++;
2037088: c2 06 20 5c ld [ %i0 + 0x5c ], %g1
203708c: 82 00 60 01 inc %g1
2037090: 10 bf ff ce b 2036fc8 <_Rate_monotonic_Update_statistics+0x1c>
2037094: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
* Update Wall time
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
2037098: 80 a0 40 03 cmp %g1, %g3
203709c: 28 bf ff ed bleu,a 2037050 <_Rate_monotonic_Update_statistics+0xa4>
20370a0: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
20370a4: c2 06 20 80 ld [ %i0 + 0x80 ], %g1
20370a8: 80 a0 40 02 cmp %g1, %g2
20370ac: 06 bf ff ec bl 203705c <_Rate_monotonic_Update_statistics+0xb0><== NEVER TAKEN
20370b0: c4 3e 20 78 std %g2, [ %i0 + 0x78 ]
20370b4: 30 80 00 06 b,a 20370cc <_Rate_monotonic_Update_statistics+0x120>
_Timestamp_Add_to( &stats->total_cpu_time, &executed );
if ( _Timestamp_Less_than( &executed, &stats->min_cpu_time ) )
stats->min_cpu_time = executed;
if ( _Timestamp_Greater_than( &executed, &stats->max_cpu_time ) )
20370b8: 80 a0 40 03 cmp %g1, %g3
20370bc: 3a bf ff da bcc,a 2037024 <_Rate_monotonic_Update_statistics+0x78>
20370c0: c4 1f bf f8 ldd [ %fp + -8 ], %g2
stats->max_cpu_time = executed;
20370c4: 10 bf ff d7 b 2037020 <_Rate_monotonic_Update_statistics+0x74>
20370c8: c4 3e 20 68 std %g2, [ %i0 + 0x68 ]
_Timestamp_Add_to( &stats->total_wall_time, &since_last_period );
if ( _Timestamp_Less_than( &since_last_period, &stats->min_wall_time ) )
stats->min_wall_time = since_last_period;
if ( _Timestamp_Greater_than( &since_last_period, &stats->max_wall_time ) )
20370cc: 12 bf ff e5 bne 2037060 <_Rate_monotonic_Update_statistics+0xb4><== NEVER TAKEN
20370d0: 01 00 00 00 nop
20370d4: c2 06 20 84 ld [ %i0 + 0x84 ], %g1
20370d8: 80 a0 40 03 cmp %g1, %g3
20370dc: 2a bf ff e1 bcs,a 2037060 <_Rate_monotonic_Update_statistics+0xb4>
20370e0: c4 3e 20 80 std %g2, [ %i0 + 0x80 ]
20370e4: 30 bf ff df b,a 2037060 <_Rate_monotonic_Update_statistics+0xb4>
0200bb8c <_Scheduler_CBS_Budget_callout>:
Scheduler_CBS_Server **_Scheduler_CBS_Server_list;
void _Scheduler_CBS_Budget_callout(
Thread_Control *the_thread
)
{
200bb8c: 9d e3 bf 98 save %sp, -104, %sp
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server_id server_id;
/* Put violating task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200bb90: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200bb94: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200bb98: 80 a0 40 09 cmp %g1, %o1
200bb9c: 32 80 00 02 bne,a 200bba4 <_Scheduler_CBS_Budget_callout+0x18><== ALWAYS TAKEN
200bba0: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200bba4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200bba8: 80 a0 40 09 cmp %g1, %o1
200bbac: 02 80 00 04 be 200bbbc <_Scheduler_CBS_Budget_callout+0x30><== NEVER TAKEN
200bbb0: 90 10 00 18 mov %i0, %o0
_Thread_Change_priority(the_thread, new_priority, true);
200bbb4: 40 00 01 9b call 200c220 <_Thread_Change_priority>
200bbb8: 94 10 20 01 mov 1, %o2
/* Invoke callback function if any. */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
200bbbc: fa 06 20 88 ld [ %i0 + 0x88 ], %i5
if ( sched_info->cbs_server->cbs_budget_overrun ) {
200bbc0: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200bbc4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200bbc8: 80 a0 a0 00 cmp %g2, 0
200bbcc: 02 80 00 09 be 200bbf0 <_Scheduler_CBS_Budget_callout+0x64><== NEVER TAKEN
200bbd0: 01 00 00 00 nop
_Scheduler_CBS_Get_server_id(
200bbd4: d0 00 40 00 ld [ %g1 ], %o0
200bbd8: 7f ff ff d5 call 200bb2c <_Scheduler_CBS_Get_server_id>
200bbdc: 92 07 bf fc add %fp, -4, %o1
sched_info->cbs_server->task_id,
&server_id
);
sched_info->cbs_server->cbs_budget_overrun( server_id );
200bbe0: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200bbe4: c2 00 60 0c ld [ %g1 + 0xc ], %g1
200bbe8: 9f c0 40 00 call %g1
200bbec: d0 07 bf fc ld [ %fp + -4 ], %o0
200bbf0: 81 c7 e0 08 ret
200bbf4: 81 e8 00 00 restore
0200b6e4 <_Scheduler_CBS_Cleanup>:
#include <rtems/config.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulercbs.h>
int _Scheduler_CBS_Cleanup (void)
{
200b6e4: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b6e8: 39 00 80 7f sethi %hi(0x201fc00), %i4
200b6ec: c2 07 21 bc ld [ %i4 + 0x1bc ], %g1 ! 201fdbc <_Scheduler_CBS_Maximum_servers>
200b6f0: 80 a0 60 00 cmp %g1, 0
200b6f4: 02 80 00 18 be 200b754 <_Scheduler_CBS_Cleanup+0x70> <== NEVER TAKEN
200b6f8: 03 00 80 83 sethi %hi(0x2020c00), %g1
200b6fc: 37 00 80 83 sethi %hi(0x2020c00), %i3
200b700: c4 06 e0 f8 ld [ %i3 + 0xf8 ], %g2 ! 2020cf8 <_Scheduler_CBS_Server_list>
200b704: ba 10 20 00 clr %i5
200b708: b8 17 21 bc or %i4, 0x1bc, %i4
if ( _Scheduler_CBS_Server_list[ i ] )
200b70c: 83 2f 60 02 sll %i5, 2, %g1
200b710: c2 00 80 01 ld [ %g2 + %g1 ], %g1
200b714: 80 a0 60 00 cmp %g1, 0
200b718: 02 80 00 05 be 200b72c <_Scheduler_CBS_Cleanup+0x48>
200b71c: 90 10 00 1d mov %i5, %o0
_Scheduler_CBS_Destroy_server( i );
200b720: 40 00 00 46 call 200b838 <_Scheduler_CBS_Destroy_server>
200b724: 01 00 00 00 nop
200b728: c4 06 e0 f8 ld [ %i3 + 0xf8 ], %g2
int _Scheduler_CBS_Cleanup (void)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b72c: c2 07 00 00 ld [ %i4 ], %g1
200b730: ba 07 60 01 inc %i5
200b734: 80 a0 40 1d cmp %g1, %i5
200b738: 18 bf ff f6 bgu 200b710 <_Scheduler_CBS_Cleanup+0x2c>
200b73c: 83 2f 60 02 sll %i5, 2, %g1
if ( _Scheduler_CBS_Server_list[ i ] )
_Scheduler_CBS_Destroy_server( i );
}
_Workspace_Free( _Scheduler_CBS_Server_list );
return SCHEDULER_CBS_OK;
}
200b740: b0 10 20 00 clr %i0
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( _Scheduler_CBS_Server_list[ i ] )
_Scheduler_CBS_Destroy_server( i );
}
_Workspace_Free( _Scheduler_CBS_Server_list );
200b744: 40 00 08 56 call 200d89c <_Workspace_Free>
200b748: 90 10 00 02 mov %g2, %o0
return SCHEDULER_CBS_OK;
}
200b74c: 81 c7 e0 08 ret
200b750: 81 e8 00 00 restore
200b754: 10 bf ff fb b 200b740 <_Scheduler_CBS_Cleanup+0x5c> <== NOT EXECUTED
200b758: c4 00 60 f8 ld [ %g1 + 0xf8 ], %g2 <== NOT EXECUTED
0200b75c <_Scheduler_CBS_Create_server>:
int _Scheduler_CBS_Create_server (
Scheduler_CBS_Parameters *params,
Scheduler_CBS_Budget_overrun budget_overrun_callback,
rtems_id *server_id
)
{
200b75c: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
Scheduler_CBS_Server *the_server;
if ( params->budget <= 0 ||
200b760: c2 06 20 04 ld [ %i0 + 4 ], %g1
200b764: 80 a0 60 00 cmp %g1, 0
200b768: 04 80 00 30 ble 200b828 <_Scheduler_CBS_Create_server+0xcc>
200b76c: b8 10 00 18 mov %i0, %i4
200b770: c2 06 00 00 ld [ %i0 ], %g1
200b774: 80 a0 60 00 cmp %g1, 0
200b778: 04 80 00 2c ble 200b828 <_Scheduler_CBS_Create_server+0xcc>
200b77c: 03 00 80 7f sethi %hi(0x201fc00), %g1
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b780: c8 00 61 bc ld [ %g1 + 0x1bc ], %g4 ! 201fdbc <_Scheduler_CBS_Maximum_servers>
200b784: 80 a1 20 00 cmp %g4, 0
200b788: 02 80 00 11 be 200b7cc <_Scheduler_CBS_Create_server+0x70><== NEVER TAKEN
200b78c: 37 00 80 83 sethi %hi(0x2020c00), %i3
if ( !_Scheduler_CBS_Server_list[i] )
200b790: fa 06 e0 f8 ld [ %i3 + 0xf8 ], %i5 ! 2020cf8 <_Scheduler_CBS_Server_list>
200b794: c2 07 40 00 ld [ %i5 ], %g1
200b798: 80 a0 60 00 cmp %g1, 0
200b79c: 02 80 00 21 be 200b820 <_Scheduler_CBS_Create_server+0xc4>
200b7a0: b0 10 20 00 clr %i0
200b7a4: 10 80 00 06 b 200b7bc <_Scheduler_CBS_Create_server+0x60>
200b7a8: 82 10 20 00 clr %g1
200b7ac: c6 07 40 02 ld [ %i5 + %g2 ], %g3
200b7b0: 80 a0 e0 00 cmp %g3, 0
200b7b4: 02 80 00 08 be 200b7d4 <_Scheduler_CBS_Create_server+0x78>
200b7b8: b0 10 00 02 mov %g2, %i0
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200b7bc: 82 00 60 01 inc %g1
200b7c0: 80 a0 40 04 cmp %g1, %g4
200b7c4: 12 bf ff fa bne 200b7ac <_Scheduler_CBS_Create_server+0x50>
200b7c8: 85 28 60 02 sll %g1, 2, %g2
if ( !_Scheduler_CBS_Server_list[i] )
break;
}
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
200b7cc: 81 c7 e0 08 ret
200b7d0: 91 e8 3f e6 restore %g0, -26, %o0
*server_id = i;
200b7d4: c2 26 80 00 st %g1, [ %i2 ]
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
200b7d8: 40 00 08 29 call 200d87c <_Workspace_Allocate>
200b7dc: 90 10 20 10 mov 0x10, %o0
the_server = _Scheduler_CBS_Server_list[*server_id];
200b7e0: c2 06 80 00 ld [ %i2 ], %g1
if ( i == _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_FULL;
*server_id = i;
_Scheduler_CBS_Server_list[*server_id] = (Scheduler_CBS_Server *)
200b7e4: d0 27 40 18 st %o0, [ %i5 + %i0 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
200b7e8: c4 06 e0 f8 ld [ %i3 + 0xf8 ], %g2
200b7ec: 83 28 60 02 sll %g1, 2, %g1
200b7f0: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_server )
200b7f4: 80 a0 60 00 cmp %g1, 0
200b7f8: 02 80 00 0e be 200b830 <_Scheduler_CBS_Create_server+0xd4><== NEVER TAKEN
200b7fc: 86 10 3f ff mov -1, %g3
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b800: c4 07 00 00 ld [ %i4 ], %g2
200b804: c4 20 60 04 st %g2, [ %g1 + 4 ]
200b808: c4 07 20 04 ld [ %i4 + 4 ], %g2
the_server->task_id = -1;
200b80c: c6 20 40 00 st %g3, [ %g1 ]
_Workspace_Allocate( sizeof(Scheduler_CBS_Server) );
the_server = _Scheduler_CBS_Server_list[*server_id];
if ( !the_server )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
the_server->parameters = *params;
200b810: c4 20 60 08 st %g2, [ %g1 + 8 ]
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
200b814: f2 20 60 0c st %i1, [ %g1 + 0xc ]
return SCHEDULER_CBS_OK;
200b818: 81 c7 e0 08 ret
200b81c: 91 e8 20 00 restore %g0, 0, %o0
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( !_Scheduler_CBS_Server_list[i] )
200b820: 10 bf ff ed b 200b7d4 <_Scheduler_CBS_Create_server+0x78>
200b824: 82 10 20 00 clr %g1
if ( params->budget <= 0 ||
params->deadline <= 0 ||
params->budget >= SCHEDULER_EDF_PRIO_MSB ||
params->deadline >= SCHEDULER_EDF_PRIO_MSB )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
200b828: 81 c7 e0 08 ret
200b82c: 91 e8 3f ee restore %g0, -18, %o0
the_server->parameters = *params;
the_server->task_id = -1;
the_server->cbs_budget_overrun = budget_overrun_callback;
return SCHEDULER_CBS_OK;
}
200b830: 81 c7 e0 08 ret <== NOT EXECUTED
200b834: 91 e8 3f ef restore %g0, -17, %o0 <== NOT EXECUTED
0200b8b8 <_Scheduler_CBS_Detach_thread>:
int _Scheduler_CBS_Detach_thread (
Scheduler_CBS_Server_id server_id,
rtems_id task_id
)
{
200b8b8: 9d e3 bf 98 save %sp, -104, %sp
Objects_Locations location;
Thread_Control *the_thread;
Scheduler_CBS_Per_thread *sched_info;
the_thread = _Thread_Get(task_id, &location);
200b8bc: 92 07 bf fc add %fp, -4, %o1
200b8c0: 40 00 03 a6 call 200c758 <_Thread_Get>
200b8c4: 90 10 00 19 mov %i1, %o0
/* The routine _Thread_Get may disable dispatch and not enable again. */
if ( the_thread ) {
200b8c8: ba 92 20 00 orcc %o0, 0, %i5
200b8cc: 02 80 00 1e be 200b944 <_Scheduler_CBS_Detach_thread+0x8c>
200b8d0: 01 00 00 00 nop
_Thread_Enable_dispatch();
200b8d4: 40 00 03 94 call 200c724 <_Thread_Enable_dispatch>
200b8d8: 01 00 00 00 nop
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
200b8dc: 03 00 80 7f sethi %hi(0x201fc00), %g1
200b8e0: c2 00 61 bc ld [ %g1 + 0x1bc ], %g1 ! 201fdbc <_Scheduler_CBS_Maximum_servers>
200b8e4: 80 a6 00 01 cmp %i0, %g1
200b8e8: 1a 80 00 17 bcc 200b944 <_Scheduler_CBS_Detach_thread+0x8c>
200b8ec: 03 00 80 83 sethi %hi(0x2020c00), %g1
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
if ( !the_thread )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
/* Server is not valid. */
if ( !_Scheduler_CBS_Server_list[server_id] )
200b8f0: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1 ! 2020cf8 <_Scheduler_CBS_Server_list>
200b8f4: b1 2e 20 02 sll %i0, 2, %i0
200b8f8: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200b8fc: 80 a0 60 00 cmp %g1, 0
200b900: 02 80 00 13 be 200b94c <_Scheduler_CBS_Detach_thread+0x94>
200b904: 01 00 00 00 nop
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
200b908: c4 00 40 00 ld [ %g1 ], %g2
200b90c: 80 a0 80 19 cmp %g2, %i1
200b910: 12 80 00 0d bne 200b944 <_Scheduler_CBS_Detach_thread+0x8c><== NEVER TAKEN
200b914: 84 10 3f ff mov -1, %g2
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b918: c8 07 60 88 ld [ %i5 + 0x88 ], %g4
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b91c: c6 07 60 a0 ld [ %i5 + 0xa0 ], %g3
return SCHEDULER_CBS_ERROR_NOSERVER;
/* Thread and server are not attached. */
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
200b920: c4 20 40 00 st %g2, [ %g1 ]
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
200b924: c4 07 60 a4 ld [ %i5 + 0xa4 ], %g2
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b928: c2 0f 60 9c ldub [ %i5 + 0x9c ], %g1
if ( _Scheduler_CBS_Server_list[server_id]->task_id != task_id )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
_Scheduler_CBS_Server_list[server_id]->task_id = -1;
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
sched_info->cbs_server = NULL;
200b92c: c0 21 20 18 clr [ %g4 + 0x18 ]
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
200b930: c6 27 60 78 st %g3, [ %i5 + 0x78 ]
the_thread->budget_callout = the_thread->Start.budget_callout;
200b934: c4 27 60 7c st %g2, [ %i5 + 0x7c ]
the_thread->is_preemptible = the_thread->Start.is_preemptible;
200b938: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
return SCHEDULER_CBS_OK;
200b93c: 81 c7 e0 08 ret
200b940: 91 e8 20 00 restore %g0, 0, %o0
if ( the_thread ) {
_Thread_Enable_dispatch();
}
if ( server_id >= _Scheduler_CBS_Maximum_servers )
return SCHEDULER_CBS_ERROR_INVALID_PARAMETER;
200b944: 81 c7 e0 08 ret
200b948: 91 e8 3f ee restore %g0, -18, %o0
the_thread->budget_algorithm = the_thread->Start.budget_algorithm;
the_thread->budget_callout = the_thread->Start.budget_callout;
the_thread->is_preemptible = the_thread->Start.is_preemptible;
return SCHEDULER_CBS_OK;
}
200b94c: 81 c7 e0 08 ret
200b950: 91 e8 3f e7 restore %g0, -25, %o0
0200bb2c <_Scheduler_CBS_Get_server_id>:
rtems_id task_id,
Scheduler_CBS_Server_id *server_id
)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200bb2c: 03 00 80 7f sethi %hi(0x201fc00), %g1
200bb30: c6 00 61 bc ld [ %g1 + 0x1bc ], %g3 ! 201fdbc <_Scheduler_CBS_Maximum_servers>
200bb34: 80 a0 e0 00 cmp %g3, 0
200bb38: 02 80 00 11 be 200bb7c <_Scheduler_CBS_Get_server_id+0x50><== NEVER TAKEN
200bb3c: 03 00 80 83 sethi %hi(0x2020c00), %g1
200bb40: c8 00 60 f8 ld [ %g1 + 0xf8 ], %g4 ! 2020cf8 <_Scheduler_CBS_Server_list>
200bb44: 82 10 20 00 clr %g1
#include <rtems/system.h>
#include <rtems/config.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulercbs.h>
int _Scheduler_CBS_Get_server_id (
200bb48: 85 28 60 02 sll %g1, 2, %g2
Scheduler_CBS_Server_id *server_id
)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( _Scheduler_CBS_Server_list[i] &&
200bb4c: c4 01 00 02 ld [ %g4 + %g2 ], %g2
200bb50: 80 a0 a0 00 cmp %g2, 0
200bb54: 22 80 00 07 be,a 200bb70 <_Scheduler_CBS_Get_server_id+0x44>
200bb58: 82 00 60 01 inc %g1
200bb5c: c4 00 80 00 ld [ %g2 ], %g2
200bb60: 80 a0 80 08 cmp %g2, %o0
200bb64: 22 80 00 08 be,a 200bb84 <_Scheduler_CBS_Get_server_id+0x58>
200bb68: c2 22 40 00 st %g1, [ %o1 ]
rtems_id task_id,
Scheduler_CBS_Server_id *server_id
)
{
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
200bb6c: 82 00 60 01 inc %g1
200bb70: 80 a0 40 03 cmp %g1, %g3
200bb74: 12 bf ff f6 bne 200bb4c <_Scheduler_CBS_Get_server_id+0x20>
200bb78: 85 28 60 02 sll %g1, 2, %g2
*server_id = i;
return SCHEDULER_CBS_OK;
}
}
return SCHEDULER_CBS_ERROR_NOSERVER;
}
200bb7c: 81 c3 e0 08 retl
200bb80: 90 10 3f e7 mov -25, %o0
unsigned int i;
for ( i = 0; i<_Scheduler_CBS_Maximum_servers; i++ ) {
if ( _Scheduler_CBS_Server_list[i] &&
_Scheduler_CBS_Server_list[i]->task_id == task_id ) {
*server_id = i;
return SCHEDULER_CBS_OK;
200bb84: 81 c3 e0 08 retl
200bb88: 90 10 20 00 clr %o0
0200bbf8 <_Scheduler_CBS_Initialize>:
}
}
int _Scheduler_CBS_Initialize(void)
{
200bbf8: 9d e3 bf a0 save %sp, -96, %sp
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
200bbfc: 3b 00 80 7f sethi %hi(0x201fc00), %i5
200bc00: d0 07 61 bc ld [ %i5 + 0x1bc ], %o0 ! 201fdbc <_Scheduler_CBS_Maximum_servers>
}
int _Scheduler_CBS_Initialize(void)
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
200bc04: 40 00 07 1e call 200d87c <_Workspace_Allocate>
200bc08: 91 2a 20 02 sll %o0, 2, %o0
200bc0c: 09 00 80 83 sethi %hi(0x2020c00), %g4
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
200bc10: 80 a2 20 00 cmp %o0, 0
200bc14: 02 80 00 10 be 200bc54 <_Scheduler_CBS_Initialize+0x5c> <== NEVER TAKEN
200bc18: d0 21 20 f8 st %o0, [ %g4 + 0xf8 ]
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200bc1c: c6 07 61 bc ld [ %i5 + 0x1bc ], %g3
200bc20: 80 a0 e0 00 cmp %g3, 0
200bc24: 12 80 00 05 bne 200bc38 <_Scheduler_CBS_Initialize+0x40> <== ALWAYS TAKEN
200bc28: 82 10 20 00 clr %g1
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200bc2c: 81 c7 e0 08 ret <== NOT EXECUTED
200bc30: 91 e8 20 00 restore %g0, 0, %o0 <== NOT EXECUTED
200bc34: d0 01 20 f8 ld [ %g4 + 0xf8 ], %o0
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
_Scheduler_CBS_Server_list[i] = NULL;
200bc38: 85 28 60 02 sll %g1, 2, %g2
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
200bc3c: 82 00 60 01 inc %g1
200bc40: 80 a0 40 03 cmp %g1, %g3
200bc44: 12 bf ff fc bne 200bc34 <_Scheduler_CBS_Initialize+0x3c>
200bc48: c0 22 00 02 clr [ %o0 + %g2 ]
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
200bc4c: 81 c7 e0 08 ret
200bc50: 91 e8 20 00 restore %g0, 0, %o0
{
unsigned int i;
_Scheduler_CBS_Server_list = (Scheduler_CBS_Server **) _Workspace_Allocate(
_Scheduler_CBS_Maximum_servers * sizeof(Scheduler_CBS_Server*) );
if ( !_Scheduler_CBS_Server_list )
return SCHEDULER_CBS_ERROR_NO_MEMORY;
200bc54: b0 10 3f ef mov -17, %i0 <== NOT EXECUTED
for (i = 0; i<_Scheduler_CBS_Maximum_servers; i++) {
_Scheduler_CBS_Server_list[i] = NULL;
}
return SCHEDULER_CBS_OK;
}
200bc58: 81 c7 e0 08 ret <== NOT EXECUTED
200bc5c: 81 e8 00 00 restore <== NOT EXECUTED
0200a780 <_Scheduler_CBS_Release_job>:
{
Priority_Control new_priority;
Scheduler_CBS_Per_thread *sched_info =
(Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
Scheduler_CBS_Server *serv_info =
(Scheduler_CBS_Server *) sched_info->cbs_server;
200a780: c2 02 20 88 ld [ %o0 + 0x88 ], %g1
if (deadline) {
200a784: 80 a2 60 00 cmp %o1, 0
200a788: 02 80 00 11 be 200a7cc <_Scheduler_CBS_Release_job+0x4c>
200a78c: c2 00 60 18 ld [ %g1 + 0x18 ], %g1
/* Initializing or shifting deadline. */
if (serv_info)
200a790: 80 a0 60 00 cmp %g1, 0
200a794: 02 80 00 13 be 200a7e0 <_Scheduler_CBS_Release_job+0x60>
200a798: 07 00 80 7b sethi %hi(0x201ec00), %g3
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
200a79c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200a7a0: d2 00 e3 b8 ld [ %g3 + 0x3b8 ], %o1
200a7a4: 92 02 40 02 add %o1, %g2, %o1
200a7a8: 05 20 00 00 sethi %hi(0x80000000), %g2
200a7ac: 92 2a 40 02 andn %o1, %g2, %o1
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
the_thread->cpu_time_budget = serv_info->parameters.budget;
200a7b0: c2 00 60 08 ld [ %g1 + 8 ], %g1
200a7b4: c2 22 20 74 st %g1, [ %o0 + 0x74 ]
the_thread->real_priority = new_priority;
200a7b8: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
200a7bc: 94 10 20 01 mov 1, %o2
200a7c0: 82 13 c0 00 mov %o7, %g1
200a7c4: 40 00 01 43 call 200acd0 <_Thread_Change_priority>
200a7c8: 9e 10 40 00 mov %g1, %o7
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
/* Budget replenishment for the next job. */
if (serv_info)
200a7cc: 80 a0 60 00 cmp %g1, 0
200a7d0: 12 bf ff f8 bne 200a7b0 <_Scheduler_CBS_Release_job+0x30> <== ALWAYS TAKEN
200a7d4: d2 02 20 ac ld [ %o0 + 0xac ], %o1
the_thread->cpu_time_budget = serv_info->parameters.budget;
the_thread->real_priority = new_priority;
200a7d8: 10 bf ff f9 b 200a7bc <_Scheduler_CBS_Release_job+0x3c> <== NOT EXECUTED
200a7dc: d2 22 20 18 st %o1, [ %o0 + 0x18 ] <== NOT EXECUTED
/* Initializing or shifting deadline. */
if (serv_info)
new_priority = (_Watchdog_Ticks_since_boot + serv_info->parameters.deadline)
& ~SCHEDULER_EDF_PRIO_MSB;
else
new_priority = (_Watchdog_Ticks_since_boot + deadline)
200a7e0: 03 00 80 7b sethi %hi(0x201ec00), %g1
200a7e4: c2 00 63 b8 ld [ %g1 + 0x3b8 ], %g1 ! 201efb8 <_Watchdog_Ticks_since_boot>
200a7e8: 92 02 40 01 add %o1, %g1, %o1
200a7ec: 03 20 00 00 sethi %hi(0x80000000), %g1
200a7f0: 10 bf ff f2 b 200a7b8 <_Scheduler_CBS_Release_job+0x38>
200a7f4: 92 2a 40 01 andn %o1, %g1, %o1
0200a7f8 <_Scheduler_CBS_Unblock>:
#include <rtems/score/schedulercbs.h>
void _Scheduler_CBS_Unblock(
Thread_Control *the_thread
)
{
200a7f8: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_CBS_Per_thread *sched_info;
Scheduler_CBS_Server *serv_info;
Priority_Control new_priority;
_Scheduler_EDF_Enqueue(the_thread);
200a7fc: 40 00 00 5b call 200a968 <_Scheduler_EDF_Enqueue>
200a800: 90 10 00 18 mov %i0, %o0
/* TODO: flash critical section? */
sched_info = (Scheduler_CBS_Per_thread *) the_thread->scheduler_info;
serv_info = (Scheduler_CBS_Server *) sched_info->cbs_server;
200a804: c2 06 20 88 ld [ %i0 + 0x88 ], %g1
200a808: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
* Late unblock rule for deadline-driven tasks. The remaining time to
* deadline must be sufficient to serve the remaining computation time
* without increased utilization of this task. It might cause a deadline
* miss of another task.
*/
if (serv_info) {
200a80c: 80 a7 60 00 cmp %i5, 0
200a810: 02 80 00 19 be 200a874 <_Scheduler_CBS_Unblock+0x7c>
200a814: 03 00 80 7b sethi %hi(0x201ec00), %g1
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a818: d2 07 60 04 ld [ %i5 + 4 ], %o1
*/
if (serv_info) {
time_t deadline = serv_info->parameters.deadline;
time_t budget = serv_info->parameters.budget;
time_t deadline_left = the_thread->cpu_time_budget;
time_t budget_left = the_thread->real_priority -
200a81c: d0 00 63 b8 ld [ %g1 + 0x3b8 ], %o0
200a820: f8 06 20 18 ld [ %i0 + 0x18 ], %i4
_Watchdog_Ticks_since_boot;
if ( deadline*budget_left > budget*deadline_left ) {
200a824: 40 00 3e 1b call 201a090 <.umul>
200a828: 90 27 00 08 sub %i4, %o0, %o0
200a82c: d2 06 20 74 ld [ %i0 + 0x74 ], %o1
200a830: b6 10 00 08 mov %o0, %i3
200a834: 40 00 3e 17 call 201a090 <.umul>
200a838: d0 07 60 08 ld [ %i5 + 8 ], %o0
200a83c: 80 a6 c0 08 cmp %i3, %o0
200a840: 24 80 00 0e ble,a 200a878 <_Scheduler_CBS_Unblock+0x80>
200a844: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
/* Put late unblocked task to background until the end of period. */
new_priority = the_thread->Start.initial_priority;
200a848: d2 06 20 ac ld [ %i0 + 0xac ], %o1
if ( the_thread->real_priority != new_priority )
200a84c: 80 a7 00 09 cmp %i4, %o1
200a850: 32 80 00 02 bne,a 200a858 <_Scheduler_CBS_Unblock+0x60>
200a854: d2 26 20 18 st %o1, [ %i0 + 0x18 ]
the_thread->real_priority = new_priority;
if ( the_thread->current_priority != new_priority )
200a858: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
200a85c: 80 a2 00 09 cmp %o0, %o1
200a860: 02 80 00 07 be 200a87c <_Scheduler_CBS_Unblock+0x84>
200a864: 3b 00 80 7c sethi %hi(0x201f000), %i5
_Thread_Change_priority(the_thread, new_priority, true);
200a868: 90 10 00 18 mov %i0, %o0
200a86c: 40 00 01 19 call 200acd0 <_Thread_Change_priority>
200a870: 94 10 20 01 mov 1, %o2
200a874: d0 06 20 14 ld [ %i0 + 0x14 ], %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
200a878: 3b 00 80 7c sethi %hi(0x201f000), %i5
200a87c: ba 17 60 e0 or %i5, 0xe0, %i5 ! 201f0e0 <_Per_CPU_Information>
200a880: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200a884: d2 00 60 14 ld [ %g1 + 0x14 ], %o1
200a888: 03 00 80 78 sethi %hi(0x201e000), %g1
200a88c: c2 00 62 00 ld [ %g1 + 0x200 ], %g1 ! 201e200 <_Scheduler+0x30>
200a890: 9f c0 40 00 call %g1
200a894: 01 00 00 00 nop
200a898: 80 a2 20 00 cmp %o0, 0
200a89c: 04 80 00 0a ble 200a8c4 <_Scheduler_CBS_Unblock+0xcc>
200a8a0: 01 00 00 00 nop
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a8a4: c2 07 60 0c ld [ %i5 + 0xc ], %g1
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
200a8a8: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200a8ac: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a8b0: 80 a0 60 00 cmp %g1, 0
200a8b4: 22 80 00 06 be,a 200a8cc <_Scheduler_CBS_Unblock+0xd4>
200a8b8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a8bc: 82 10 20 01 mov 1, %g1
200a8c0: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ]
200a8c4: 81 c7 e0 08 ret
200a8c8: 81 e8 00 00 restore
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_higher_than( the_thread->current_priority,
_Thread_Heir->current_priority)) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a8cc: 80 a0 60 00 cmp %g1, 0
200a8d0: 12 bf ff fd bne 200a8c4 <_Scheduler_CBS_Unblock+0xcc> <== ALWAYS TAKEN
200a8d4: 82 10 20 01 mov 1, %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a8d8: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED
200a8dc: 30 bf ff fa b,a 200a8c4 <_Scheduler_CBS_Unblock+0xcc> <== NOT EXECUTED
0200a8e0 <_Scheduler_EDF_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_EDF_Allocate(
Thread_Control *the_thread
)
{
200a8e0: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_EDF_Per_thread *schinfo;
sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) );
200a8e4: 40 00 06 c2 call 200c3ec <_Workspace_Allocate>
200a8e8: 90 10 20 18 mov 0x18, %o0
if ( sched ) {
200a8ec: 80 a2 20 00 cmp %o0, 0
200a8f0: 02 80 00 05 be 200a904 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN
200a8f4: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
200a8f8: d0 26 20 88 st %o0, [ %i0 + 0x88 ]
schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info);
schinfo->thread = the_thread;
200a8fc: f0 22 00 00 st %i0, [ %o0 ]
schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
200a900: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
}
return sched;
}
200a904: 81 c7 e0 08 ret
200a908: 91 e8 00 08 restore %g0, %o0, %o0
0200a964 <_Scheduler_EDF_Unblock>:
#include <rtems/score/scheduleredf.h>
void _Scheduler_EDF_Unblock(
Thread_Control *the_thread
)
{
200a964: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Enqueue(the_thread);
200a968: 7f ff ff a8 call 200a808 <_Scheduler_EDF_Enqueue>
200a96c: 90 10 00 18 mov %i0, %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
200a970: 3b 00 80 7c sethi %hi(0x201f000), %i5
200a974: ba 17 60 30 or %i5, 0x30, %i5 ! 201f030 <_Per_CPU_Information>
200a978: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
200a97c: d0 00 60 14 ld [ %g1 + 0x14 ], %o0
200a980: 03 00 80 78 sethi %hi(0x201e000), %g1
200a984: c2 00 61 60 ld [ %g1 + 0x160 ], %g1 ! 201e160 <_Scheduler+0x30>
200a988: 9f c0 40 00 call %g1
200a98c: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
200a990: 80 a2 20 00 cmp %o0, 0
200a994: 26 80 00 04 bl,a 200a9a4 <_Scheduler_EDF_Unblock+0x40>
200a998: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200a99c: 81 c7 e0 08 ret
200a9a0: 81 e8 00 00 restore
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
200a9a4: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200a9a8: c2 08 60 70 ldub [ %g1 + 0x70 ], %g1
200a9ac: 80 a0 60 00 cmp %g1, 0
200a9b0: 22 80 00 06 be,a 200a9c8 <_Scheduler_EDF_Unblock+0x64>
200a9b4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a9b8: 82 10 20 01 mov 1, %g1
200a9bc: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ]
200a9c0: 81 c7 e0 08 ret
200a9c4: 81 e8 00 00 restore
*/
if ( _Scheduler_Is_priority_lower_than(
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200a9c8: 80 a0 60 00 cmp %g1, 0
200a9cc: 12 bf ff f4 bne 200a99c <_Scheduler_EDF_Unblock+0x38> <== ALWAYS TAKEN
200a9d0: 82 10 20 01 mov 1, %g1
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200a9d4: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED
200a9d8: 30 bf ff fa b,a 200a9c0 <_Scheduler_EDF_Unblock+0x5c> <== NOT EXECUTED
0200a974 <_Scheduler_simple_Ready_queue_enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
200a974: 03 00 80 75 sethi %hi(0x201d400), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a978: c2 00 61 e0 ld [ %g1 + 0x1e0 ], %g1 ! 201d5e0 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
200a97c: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
200a980: c2 00 40 00 ld [ %g1 ], %g1
200a984: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
200a988: 80 a0 80 03 cmp %g2, %g3
200a98c: 3a 80 00 08 bcc,a 200a9ac <_Scheduler_simple_Ready_queue_enqueue_first+0x38>
200a990: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
200a994: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
200a998: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
200a99c: 80 a0 80 03 cmp %g2, %g3
200a9a0: 2a bf ff fe bcs,a 200a998 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN
200a9a4: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
200a9a8: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
200a9ac: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
200a9b0: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
200a9b4: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
200a9b8: c4 22 00 00 st %g2, [ %o0 ]
before_node->previous = the_node;
200a9bc: 81 c3 e0 08 retl
200a9c0: d0 20 a0 04 st %o0, [ %g2 + 4 ]
02008a70 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2008a70: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2008a74: 03 00 80 7a sethi %hi(0x201e800), %g1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2008a78: d2 00 63 7c ld [ %g1 + 0x37c ], %o1 ! 201eb7c <Configuration+0x10>
2008a7c: 11 00 03 d0 sethi %hi(0xf4000), %o0
2008a80: 40 00 47 34 call 201a750 <.udiv>
2008a84: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2008a88: 80 a6 20 00 cmp %i0, 0
2008a8c: 02 80 00 2c be 2008b3c <_TOD_Validate+0xcc> <== NEVER TAKEN
2008a90: 82 10 20 00 clr %g1
2008a94: c4 06 20 18 ld [ %i0 + 0x18 ], %g2
2008a98: 80 a2 00 02 cmp %o0, %g2
2008a9c: 28 80 00 26 bleu,a 2008b34 <_TOD_Validate+0xc4>
2008aa0: b0 08 60 01 and %g1, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
2008aa4: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
2008aa8: 80 a0 a0 3b cmp %g2, 0x3b
2008aac: 38 80 00 22 bgu,a 2008b34 <_TOD_Validate+0xc4>
2008ab0: b0 08 60 01 and %g1, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
2008ab4: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
2008ab8: 80 a0 a0 3b cmp %g2, 0x3b
2008abc: 38 80 00 1e bgu,a 2008b34 <_TOD_Validate+0xc4>
2008ac0: b0 08 60 01 and %g1, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
2008ac4: c4 06 20 0c ld [ %i0 + 0xc ], %g2
2008ac8: 80 a0 a0 17 cmp %g2, 0x17
2008acc: 38 80 00 1a bgu,a 2008b34 <_TOD_Validate+0xc4>
2008ad0: b0 08 60 01 and %g1, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
2008ad4: c4 06 20 04 ld [ %i0 + 4 ], %g2
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2008ad8: 80 a0 a0 00 cmp %g2, 0
2008adc: 02 80 00 15 be 2008b30 <_TOD_Validate+0xc0> <== NEVER TAKEN
2008ae0: 80 a0 a0 0c cmp %g2, 0xc
(the_tod->month == 0) ||
2008ae4: 38 80 00 14 bgu,a 2008b34 <_TOD_Validate+0xc4>
2008ae8: b0 08 60 01 and %g1, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2008aec: c6 06 00 00 ld [ %i0 ], %g3
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2008af0: 80 a0 e7 c3 cmp %g3, 0x7c3
2008af4: 28 80 00 10 bleu,a 2008b34 <_TOD_Validate+0xc4>
2008af8: b0 08 60 01 and %g1, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2008afc: c8 06 20 08 ld [ %i0 + 8 ], %g4
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2008b00: 80 a1 20 00 cmp %g4, 0
2008b04: 02 80 00 0b be 2008b30 <_TOD_Validate+0xc0> <== NEVER TAKEN
2008b08: 80 88 e0 03 btst 3, %g3
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2008b0c: 32 80 00 0f bne,a 2008b48 <_TOD_Validate+0xd8>
2008b10: 85 28 a0 02 sll %g2, 2, %g2
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2008b14: 82 00 a0 0d add %g2, 0xd, %g1
2008b18: 05 00 80 75 sethi %hi(0x201d400), %g2
2008b1c: 83 28 60 02 sll %g1, 2, %g1
2008b20: 84 10 a3 78 or %g2, 0x378, %g2
2008b24: c2 00 80 01 ld [ %g2 + %g1 ], %g1
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
if ( the_tod->day > days_in_month )
2008b28: 80 a0 40 04 cmp %g1, %g4
2008b2c: 82 60 3f ff subx %g0, -1, %g1
return false;
return true;
}
2008b30: b0 08 60 01 and %g1, 1, %i0
2008b34: 81 c7 e0 08 ret
2008b38: 81 e8 00 00 restore
2008b3c: b0 08 60 01 and %g1, 1, %i0 <== NOT EXECUTED
2008b40: 81 c7 e0 08 ret <== NOT EXECUTED
2008b44: 81 e8 00 00 restore <== NOT EXECUTED
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2008b48: 03 00 80 75 sethi %hi(0x201d400), %g1
2008b4c: 82 10 63 78 or %g1, 0x378, %g1 ! 201d778 <_TOD_Days_per_month>
2008b50: c2 00 40 02 ld [ %g1 + %g2 ], %g1
if ( the_tod->day > days_in_month )
2008b54: 80 a0 40 04 cmp %g1, %g4
2008b58: 10 bf ff f6 b 2008b30 <_TOD_Validate+0xc0>
2008b5c: 82 60 3f ff subx %g0, -1, %g1
0200a384 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
200a384: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
200a388: f6 06 20 10 ld [ %i0 + 0x10 ], %i3
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
200a38c: 40 00 03 a7 call 200b228 <_Thread_Set_transient>
200a390: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
200a394: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
200a398: 80 a0 40 19 cmp %g1, %i1
200a39c: 02 80 00 05 be 200a3b0 <_Thread_Change_priority+0x2c>
200a3a0: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
200a3a4: 90 10 00 18 mov %i0, %o0
200a3a8: 40 00 03 86 call 200b1c0 <_Thread_Set_priority>
200a3ac: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
200a3b0: 7f ff e0 ed call 2002764 <sparc_disable_interrupts>
200a3b4: 01 00 00 00 nop
200a3b8: b2 10 00 08 mov %o0, %i1
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
200a3bc: f8 07 60 10 ld [ %i5 + 0x10 ], %i4
if ( state != STATES_TRANSIENT ) {
200a3c0: 80 a7 20 04 cmp %i4, 4
200a3c4: 02 80 00 18 be 200a424 <_Thread_Change_priority+0xa0>
200a3c8: 80 8e e0 04 btst 4, %i3
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
200a3cc: 02 80 00 0b be 200a3f8 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
200a3d0: 82 0f 3f fb and %i4, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
200a3d4: 7f ff e0 e8 call 2002774 <sparc_enable_interrupts> <== NOT EXECUTED
200a3d8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
200a3dc: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
200a3e0: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
200a3e4: 80 8f 00 01 btst %i4, %g1 <== NOT EXECUTED
200a3e8: 32 80 00 0d bne,a 200a41c <_Thread_Change_priority+0x98> <== NOT EXECUTED
200a3ec: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED
200a3f0: 81 c7 e0 08 ret
200a3f4: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
200a3f8: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
200a3fc: 7f ff e0 de call 2002774 <sparc_enable_interrupts>
200a400: 90 10 00 19 mov %i1, %o0
200a404: 03 00 00 ef sethi %hi(0x3bc00), %g1
200a408: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
200a40c: 80 8f 00 01 btst %i4, %g1
200a410: 02 bf ff f8 be 200a3f0 <_Thread_Change_priority+0x6c>
200a414: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
200a418: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
200a41c: 40 00 03 38 call 200b0fc <_Thread_queue_Requeue>
200a420: 93 e8 00 1d restore %g0, %i5, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
200a424: 22 80 00 1a be,a 200a48c <_Thread_Change_priority+0x108> <== ALWAYS TAKEN
200a428: c0 27 60 10 clr [ %i5 + 0x10 ]
200a42c: 39 00 80 71 sethi %hi(0x201c400), %i4 <== NOT EXECUTED
200a430: b8 17 21 c0 or %i4, 0x1c0, %i4 ! 201c5c0 <_Scheduler> <== NOT EXECUTED
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
200a434: 7f ff e0 d0 call 2002774 <sparc_enable_interrupts>
200a438: 90 10 00 19 mov %i1, %o0
200a43c: 7f ff e0 ca call 2002764 <sparc_disable_interrupts>
200a440: 01 00 00 00 nop
200a444: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
200a448: c2 07 20 08 ld [ %i4 + 8 ], %g1
200a44c: 9f c0 40 00 call %g1
200a450: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
200a454: 03 00 80 75 sethi %hi(0x201d400), %g1
200a458: 82 10 60 50 or %g1, 0x50, %g1 ! 201d450 <_Per_CPU_Information>
200a45c: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
200a460: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200a464: 80 a0 80 03 cmp %g2, %g3
200a468: 02 80 00 07 be 200a484 <_Thread_Change_priority+0x100>
200a46c: 01 00 00 00 nop
200a470: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
200a474: 80 a0 a0 00 cmp %g2, 0
200a478: 02 80 00 03 be 200a484 <_Thread_Change_priority+0x100>
200a47c: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
200a480: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
200a484: 7f ff e0 bc call 2002774 <sparc_enable_interrupts>
200a488: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
200a48c: 39 00 80 71 sethi %hi(0x201c400), %i4
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
200a490: 80 a6 a0 00 cmp %i2, 0
200a494: 02 80 00 06 be 200a4ac <_Thread_Change_priority+0x128>
200a498: b8 17 21 c0 or %i4, 0x1c0, %i4
200a49c: c2 07 20 28 ld [ %i4 + 0x28 ], %g1
200a4a0: 9f c0 40 00 call %g1
200a4a4: 90 10 00 1d mov %i5, %o0
200a4a8: 30 bf ff e3 b,a 200a434 <_Thread_Change_priority+0xb0>
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
200a4ac: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
200a4b0: 9f c0 40 00 call %g1
200a4b4: 90 10 00 1d mov %i5, %o0
200a4b8: 30 bf ff df b,a 200a434 <_Thread_Change_priority+0xb0>
0200a6d8 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200a6d8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200a6dc: 90 10 00 18 mov %i0, %o0
200a6e0: 40 00 00 77 call 200a8bc <_Thread_Get>
200a6e4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200a6e8: c2 07 bf fc ld [ %fp + -4 ], %g1
200a6ec: 80 a0 60 00 cmp %g1, 0
200a6f0: 12 80 00 09 bne 200a714 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
200a6f4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
200a6f8: 7f ff ff 71 call 200a4bc <_Thread_Clear_state>
200a6fc: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200a700: 03 00 80 74 sethi %hi(0x201d000), %g1
200a704: c4 00 62 30 ld [ %g1 + 0x230 ], %g2 ! 201d230 <_Thread_Dispatch_disable_level>
200a708: 84 00 bf ff add %g2, -1, %g2
200a70c: c4 20 62 30 st %g2, [ %g1 + 0x230 ]
return _Thread_Dispatch_disable_level;
200a710: c2 00 62 30 ld [ %g1 + 0x230 ], %g1
200a714: 81 c7 e0 08 ret
200a718: 81 e8 00 00 restore
0200a71c <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
200a71c: 9d e3 bf 98 save %sp, -104, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
200a720: 27 00 80 74 sethi %hi(0x201d000), %l3
200a724: c2 04 e2 30 ld [ %l3 + 0x230 ], %g1 ! 201d230 <_Thread_Dispatch_disable_level>
200a728: 82 00 60 01 inc %g1
200a72c: c2 24 e2 30 st %g1, [ %l3 + 0x230 ]
return _Thread_Dispatch_disable_level;
200a730: c2 04 e2 30 ld [ %l3 + 0x230 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
200a734: 31 00 80 75 sethi %hi(0x201d400), %i0
200a738: b0 16 20 50 or %i0, 0x50, %i0 ! 201d450 <_Per_CPU_Information>
_ISR_Disable( level );
200a73c: 7f ff e0 0a call 2002764 <sparc_disable_interrupts>
200a740: f2 06 20 0c ld [ %i0 + 0xc ], %i1
while ( _Thread_Dispatch_necessary == true ) {
200a744: c2 0e 20 18 ldub [ %i0 + 0x18 ], %g1
200a748: 80 a0 60 00 cmp %g1, 0
200a74c: 02 80 00 45 be 200a860 <_Thread_Dispatch+0x144>
200a750: 01 00 00 00 nop
heir = _Thread_Heir;
200a754: e0 06 20 10 ld [ %i0 + 0x10 ], %l0
_Thread_Dispatch_necessary = false;
200a758: c0 2e 20 18 clrb [ %i0 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
200a75c: 80 a6 40 10 cmp %i1, %l0
200a760: 02 80 00 40 be 200a860 <_Thread_Dispatch+0x144>
200a764: e0 26 20 0c st %l0, [ %i0 + 0xc ]
200a768: 25 00 80 74 sethi %hi(0x201d000), %l2
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200a76c: 29 00 80 74 sethi %hi(0x201d000), %l4
200a770: a4 14 a2 ac or %l2, 0x2ac, %l2
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200a774: 10 80 00 35 b 200a848 <_Thread_Dispatch+0x12c>
200a778: 23 00 80 74 sethi %hi(0x201d000), %l1
_ISR_Enable( level );
200a77c: 7f ff df fe call 2002774 <sparc_enable_interrupts>
200a780: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
200a784: 40 00 0b f2 call 200d74c <_TOD_Get_uptime>
200a788: 90 07 bf f8 add %fp, -8, %o0
_Timestamp_Subtract(
200a78c: c4 1f bf f8 ldd [ %fp + -8 ], %g2
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
200a790: f4 1e 20 20 ldd [ %i0 + 0x20 ], %i2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a794: f8 1e 60 80 ldd [ %i1 + 0x80 ], %i4
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
200a798: c2 04 80 00 ld [ %l2 ], %g1
const Timestamp64_Control *_start,
const Timestamp64_Control *_end,
Timestamp64_Control *_result
)
{
*_result = *_end - *_start;
200a79c: b6 a0 c0 1b subcc %g3, %i3, %i3
200a7a0: b4 60 80 1a subx %g2, %i2, %i2
static inline void _Timestamp64_implementation_Add_to(
Timestamp64_Control *_time,
const Timestamp64_Control *_add
)
{
*_time += *_add;
200a7a4: ba 87 40 1b addcc %i5, %i3, %i5
200a7a8: b8 47 00 1a addx %i4, %i2, %i4
200a7ac: f8 3e 60 80 std %i4, [ %i1 + 0x80 ]
200a7b0: 80 a0 60 00 cmp %g1, 0
200a7b4: 02 80 00 06 be 200a7cc <_Thread_Dispatch+0xb0> <== NEVER TAKEN
200a7b8: c4 3e 20 20 std %g2, [ %i0 + 0x20 ]
executing->libc_reent = *_Thread_libc_reent;
200a7bc: c4 00 40 00 ld [ %g1 ], %g2
200a7c0: c4 26 61 4c st %g2, [ %i1 + 0x14c ]
*_Thread_libc_reent = heir->libc_reent;
200a7c4: c4 04 21 4c ld [ %l0 + 0x14c ], %g2
200a7c8: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
200a7cc: 90 10 00 19 mov %i1, %o0
200a7d0: 40 00 03 91 call 200b614 <_User_extensions_Thread_switch>
200a7d4: 92 10 00 10 mov %l0, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
200a7d8: 90 06 60 c0 add %i1, 0xc0, %o0
200a7dc: 40 00 04 d8 call 200bb3c <_CPU_Context_switch>
200a7e0: 92 04 20 c0 add %l0, 0xc0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200a7e4: c2 06 61 48 ld [ %i1 + 0x148 ], %g1
200a7e8: 80 a0 60 00 cmp %g1, 0
200a7ec: 02 80 00 0c be 200a81c <_Thread_Dispatch+0x100>
200a7f0: d0 04 62 a8 ld [ %l1 + 0x2a8 ], %o0
200a7f4: 80 a6 40 08 cmp %i1, %o0
200a7f8: 02 80 00 09 be 200a81c <_Thread_Dispatch+0x100>
200a7fc: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200a800: 02 80 00 04 be 200a810 <_Thread_Dispatch+0xf4>
200a804: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200a808: 40 00 04 93 call 200ba54 <_CPU_Context_save_fp>
200a80c: 90 02 21 48 add %o0, 0x148, %o0
_Context_Restore_fp( &executing->fp_context );
200a810: 40 00 04 ae call 200bac8 <_CPU_Context_restore_fp>
200a814: 90 06 61 48 add %i1, 0x148, %o0
_Thread_Allocated_fp = executing;
200a818: f2 24 62 a8 st %i1, [ %l1 + 0x2a8 ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
200a81c: 7f ff df d2 call 2002764 <sparc_disable_interrupts>
200a820: f2 06 20 0c ld [ %i0 + 0xc ], %i1
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
200a824: c2 0e 20 18 ldub [ %i0 + 0x18 ], %g1
200a828: 80 a0 60 00 cmp %g1, 0
200a82c: 02 80 00 0d be 200a860 <_Thread_Dispatch+0x144>
200a830: 01 00 00 00 nop
heir = _Thread_Heir;
200a834: e0 06 20 10 ld [ %i0 + 0x10 ], %l0
_Thread_Dispatch_necessary = false;
200a838: c0 2e 20 18 clrb [ %i0 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
200a83c: 80 a4 00 19 cmp %l0, %i1
200a840: 02 80 00 08 be 200a860 <_Thread_Dispatch+0x144> <== NEVER TAKEN
200a844: e0 26 20 0c st %l0, [ %i0 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
200a848: c2 04 20 78 ld [ %l0 + 0x78 ], %g1
200a84c: 80 a0 60 01 cmp %g1, 1
200a850: 12 bf ff cb bne 200a77c <_Thread_Dispatch+0x60>
200a854: c2 05 21 90 ld [ %l4 + 0x190 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
200a858: 10 bf ff c9 b 200a77c <_Thread_Dispatch+0x60>
200a85c: c2 24 20 74 st %g1, [ %l0 + 0x74 ]
_ISR_Disable( level );
}
post_switch:
_ISR_Enable( level );
200a860: 7f ff df c5 call 2002774 <sparc_enable_interrupts>
200a864: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200a868: c2 04 e2 30 ld [ %l3 + 0x230 ], %g1
200a86c: 82 00 7f ff add %g1, -1, %g1
200a870: c2 24 e2 30 st %g1, [ %l3 + 0x230 ]
return _Thread_Dispatch_disable_level;
200a874: c2 04 e2 30 ld [ %l3 + 0x230 ], %g1
_Thread_Unnest_dispatch();
_API_extensions_Run_postswitch();
200a878: 7f ff f7 ad call 200872c <_API_extensions_Run_postswitch>
200a87c: 01 00 00 00 nop
200a880: 81 c7 e0 08 ret
200a884: 81 e8 00 00 restore
0200f794 <_Thread_Handler>:
* Input parameters: NONE
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200f794: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static bool doneConstructors;
bool doCons;
#endif
executing = _Thread_Executing;
200f798: 03 00 80 75 sethi %hi(0x201d400), %g1
200f79c: fa 00 60 5c ld [ %g1 + 0x5c ], %i5 ! 201d45c <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200f7a0: 3f 00 80 3d sethi %hi(0x200f400), %i7
200f7a4: be 17 e3 94 or %i7, 0x394, %i7 ! 200f794 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200f7a8: d0 07 60 a8 ld [ %i5 + 0xa8 ], %o0
_ISR_Set_level(level);
200f7ac: 7f ff cb f2 call 2002774 <sparc_enable_interrupts>
200f7b0: 91 2a 20 08 sll %o0, 8, %o0
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200f7b4: c4 07 61 48 ld [ %i5 + 0x148 ], %g2
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200f7b8: 03 00 80 73 sethi %hi(0x201cc00), %g1
doneConstructors = true;
200f7bc: 86 10 20 01 mov 1, %g3
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200f7c0: f6 08 62 38 ldub [ %g1 + 0x238 ], %i3
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200f7c4: 80 a0 a0 00 cmp %g2, 0
200f7c8: 02 80 00 0c be 200f7f8 <_Thread_Handler+0x64>
200f7cc: c6 28 62 38 stb %g3, [ %g1 + 0x238 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200f7d0: 39 00 80 74 sethi %hi(0x201d000), %i4
200f7d4: d0 07 22 a8 ld [ %i4 + 0x2a8 ], %o0 ! 201d2a8 <_Thread_Allocated_fp>
200f7d8: 80 a7 40 08 cmp %i5, %o0
200f7dc: 02 80 00 07 be 200f7f8 <_Thread_Handler+0x64>
200f7e0: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200f7e4: 22 80 00 05 be,a 200f7f8 <_Thread_Handler+0x64>
200f7e8: fa 27 22 a8 st %i5, [ %i4 + 0x2a8 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200f7ec: 7f ff f0 9a call 200ba54 <_CPU_Context_save_fp>
200f7f0: 90 02 21 48 add %o0, 0x148, %o0
_Thread_Allocated_fp = executing;
200f7f4: fa 27 22 a8 st %i5, [ %i4 + 0x2a8 ]
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200f7f8: 7f ff ef 06 call 200b410 <_User_extensions_Thread_begin>
200f7fc: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200f800: 7f ff ec 22 call 200a888 <_Thread_Enable_dispatch>
200f804: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
200f808: 80 8e e0 ff btst 0xff, %i3
200f80c: 02 80 00 0c be 200f83c <_Thread_Handler+0xa8>
200f810: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200f814: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
200f818: 80 a0 60 00 cmp %g1, 0
200f81c: 22 80 00 0c be,a 200f84c <_Thread_Handler+0xb8> <== ALWAYS TAKEN
200f820: c2 07 60 8c ld [ %i5 + 0x8c ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200f824: 7f ff ef 0f call 200b460 <_User_extensions_Thread_exitted>
200f828: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200f82c: 90 10 20 00 clr %o0
200f830: 92 10 20 01 mov 1, %o1
200f834: 7f ff e6 96 call 200928c <_Internal_error_Occurred>
200f838: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200f83c: 40 00 33 13 call 201c488 <_init>
200f840: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200f844: 10 bf ff f5 b 200f818 <_Thread_Handler+0x84>
200f848: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200f84c: 9f c0 40 00 call %g1
200f850: d0 07 60 98 ld [ %i5 + 0x98 ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200f854: 10 bf ff f4 b 200f824 <_Thread_Handler+0x90>
200f858: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
0200ab4c <_Thread_Handler_initialization>:
*
* Output parameters: NONE
*/
void _Thread_Handler_initialization(void)
{
200ab4c: 9d e3 bf 98 save %sp, -104, %sp
uint32_t ticks_per_timeslice =
200ab50: 03 00 80 71 sethi %hi(0x201c400), %g1
200ab54: 82 10 60 cc or %g1, 0xcc, %g1 ! 201c4cc <Configuration>
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200ab58: c6 00 60 2c ld [ %g1 + 0x2c ], %g3
* Output parameters: NONE
*/
void _Thread_Handler_initialization(void)
{
uint32_t ticks_per_timeslice =
200ab5c: fa 00 60 18 ld [ %g1 + 0x18 ], %i5
rtems_configuration_get_ticks_per_timeslice();
uint32_t maximum_extensions =
200ab60: f8 00 60 0c ld [ %g1 + 0xc ], %i4
#if defined(RTEMS_MULTIPROCESSING)
uint32_t maximum_proxies =
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
200ab64: 80 a0 e0 00 cmp %g3, 0
200ab68: 02 80 00 21 be 200abec <_Thread_Handler_initialization+0xa0>
200ab6c: c4 00 60 28 ld [ %g1 + 0x28 ], %g2
200ab70: c6 00 60 30 ld [ %g1 + 0x30 ], %g3
200ab74: 80 a0 e0 00 cmp %g3, 0
200ab78: 02 80 00 1d be 200abec <_Thread_Handler_initialization+0xa0><== NEVER TAKEN
200ab7c: 80 a0 a0 00 cmp %g2, 0
INTERNAL_ERROR_CORE,
true,
INTERNAL_ERROR_BAD_STACK_HOOK
);
if ( stack_allocate_init_hook != NULL )
200ab80: 22 80 00 05 be,a 200ab94 <_Thread_Handler_initialization+0x48>
200ab84: 03 00 80 75 sethi %hi(0x201d400), %g1
(*stack_allocate_init_hook)( rtems_configuration_get_stack_space_size() );
200ab88: 9f c0 80 00 call %g2
200ab8c: d0 00 60 08 ld [ %g1 + 8 ], %o0 ! 201d408 <_User_extensions_List>
_Thread_Dispatch_necessary = false;
200ab90: 03 00 80 75 sethi %hi(0x201d400), %g1
200ab94: 82 10 60 50 or %g1, 0x50, %g1 ! 201d450 <_Per_CPU_Information>
200ab98: c0 28 60 18 clrb [ %g1 + 0x18 ]
_Thread_Executing = NULL;
200ab9c: c0 20 60 0c clr [ %g1 + 0xc ]
_Thread_Heir = NULL;
200aba0: c0 20 60 10 clr [ %g1 + 0x10 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Thread_Allocated_fp = NULL;
200aba4: 03 00 80 74 sethi %hi(0x201d000), %g1
200aba8: c0 20 62 a8 clr [ %g1 + 0x2a8 ] ! 201d2a8 <_Thread_Allocated_fp>
#endif
_Thread_Maximum_extensions = maximum_extensions;
200abac: 03 00 80 74 sethi %hi(0x201d000), %g1
200abb0: f8 20 62 b0 st %i4, [ %g1 + 0x2b0 ] ! 201d2b0 <_Thread_Maximum_extensions>
_Thread_Ticks_per_timeslice = ticks_per_timeslice;
200abb4: 03 00 80 74 sethi %hi(0x201d000), %g1
200abb8: fa 20 61 90 st %i5, [ %g1 + 0x190 ] ! 201d190 <_Thread_Ticks_per_timeslice>
#if defined(RTEMS_MULTIPROCESSING)
if ( _System_state_Is_multiprocessing )
maximum_internal_threads += 1;
#endif
_Objects_Initialize_information(
200abbc: 82 10 20 08 mov 8, %g1
200abc0: 11 00 80 74 sethi %hi(0x201d000), %o0
200abc4: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
200abc8: 90 12 23 30 or %o0, 0x330, %o0
200abcc: 92 10 20 01 mov 1, %o1
200abd0: 94 10 20 01 mov 1, %o2
200abd4: 96 10 20 01 mov 1, %o3
200abd8: 98 10 21 60 mov 0x160, %o4
200abdc: 7f ff fb 4a call 2009904 <_Objects_Initialize_information>
200abe0: 9a 10 20 00 clr %o5
200abe4: 81 c7 e0 08 ret
200abe8: 81 e8 00 00 restore
_Configuration_MP_table->maximum_proxies;
#endif
if ( rtems_configuration_get_stack_allocate_hook() == NULL ||
rtems_configuration_get_stack_free_hook() == NULL)
_Internal_error_Occurred(
200abec: 90 10 20 00 clr %o0
200abf0: 92 10 20 01 mov 1, %o1
200abf4: 7f ff f9 a6 call 200928c <_Internal_error_Occurred>
200abf8: 94 10 20 0e mov 0xe, %o2
0200a96c <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
200a96c: 9d e3 bf a0 save %sp, -96, %sp
200a970: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
200a974: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
200a978: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
200a97c: c0 26 61 50 clr [ %i1 + 0x150 ]
200a980: c0 26 61 54 clr [ %i1 + 0x154 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
200a984: c0 26 61 4c clr [ %i1 + 0x14c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
200a988: 90 10 00 19 mov %i1, %o0
200a98c: 40 00 02 36 call 200b264 <_Thread_Stack_Allocate>
200a990: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
200a994: 80 a2 00 1b cmp %o0, %i3
200a998: 0a 80 00 4b bcs 200aac4 <_Thread_Initialize+0x158>
200a99c: 80 a2 20 00 cmp %o0, 0
200a9a0: 02 80 00 49 be 200aac4 <_Thread_Initialize+0x158> <== NEVER TAKEN
200a9a4: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a9a8: c2 06 60 bc ld [ %i1 + 0xbc ], %g1
the_stack->size = size;
200a9ac: d0 26 60 b0 st %o0, [ %i1 + 0xb0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200a9b0: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
200a9b4: 12 80 00 48 bne 200aad4 <_Thread_Initialize+0x168>
200a9b8: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a9bc: 39 00 80 74 sethi %hi(0x201d000), %i4
200a9c0: c2 07 22 b0 ld [ %i4 + 0x2b0 ], %g1 ! 201d2b0 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
200a9c4: f6 26 61 48 st %i3, [ %i1 + 0x148 ]
the_thread->Start.fp_context = fp_area;
200a9c8: f6 26 60 b8 st %i3, [ %i1 + 0xb8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200a9cc: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
200a9d0: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
200a9d4: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200a9d8: 80 a0 60 00 cmp %g1, 0
200a9dc: 12 80 00 46 bne 200aaf4 <_Thread_Initialize+0x188>
200a9e0: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200a9e4: c0 26 61 58 clr [ %i1 + 0x158 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200a9e8: a2 10 20 00 clr %l1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200a9ec: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
200a9f0: 03 00 80 71 sethi %hi(0x201c400), %g1
200a9f4: c4 26 60 a0 st %g2, [ %i1 + 0xa0 ]
the_thread->Start.budget_callout = budget_callout;
200a9f8: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
200a9fc: c2 00 61 d8 ld [ %g1 + 0x1d8 ], %g1
200aa00: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200aa04: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200aa08: f4 2e 60 9c stb %i2, [ %i1 + 0x9c ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
200aa0c: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
the_thread->current_state = STATES_DORMANT;
200aa10: 84 10 20 01 mov 1, %g2
the_thread->Wait.queue = NULL;
200aa14: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
200aa18: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
200aa1c: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
200aa20: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
200aa24: fa 26 60 ac st %i5, [ %i1 + 0xac ]
200aa28: 9f c0 40 00 call %g1
200aa2c: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
200aa30: b8 92 20 00 orcc %o0, 0, %i4
200aa34: 22 80 00 13 be,a 200aa80 <_Thread_Initialize+0x114>
200aa38: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
200aa3c: 90 10 00 19 mov %i1, %o0
200aa40: 40 00 01 e0 call 200b1c0 <_Thread_Set_priority>
200aa44: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200aa48: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200aa4c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
static inline void _Timestamp64_implementation_Set_to_zero(
Timestamp64_Control *_time
)
{
*_time = 0;
200aa50: c0 26 60 80 clr [ %i1 + 0x80 ]
200aa54: c0 26 60 84 clr [ %i1 + 0x84 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200aa58: 83 28 60 02 sll %g1, 2, %g1
200aa5c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200aa60: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
200aa64: 90 10 00 19 mov %i1, %o0
200aa68: 40 00 02 a5 call 200b4fc <_User_extensions_Thread_create>
200aa6c: b0 10 20 01 mov 1, %i0
if ( extension_status )
200aa70: 80 8a 20 ff btst 0xff, %o0
200aa74: 32 80 00 12 bne,a 200aabc <_Thread_Initialize+0x150>
200aa78: b0 0e 20 ff and %i0, 0xff, %i0
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
200aa7c: d0 06 61 4c ld [ %i1 + 0x14c ], %o0
200aa80: 40 00 03 e0 call 200ba00 <_Workspace_Free>
200aa84: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
200aa88: 40 00 03 de call 200ba00 <_Workspace_Free>
200aa8c: d0 06 61 50 ld [ %i1 + 0x150 ], %o0
200aa90: 40 00 03 dc call 200ba00 <_Workspace_Free>
200aa94: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
_Workspace_Free( extensions_area );
200aa98: 40 00 03 da call 200ba00 <_Workspace_Free>
200aa9c: 90 10 00 11 mov %l1, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
200aaa0: 40 00 03 d8 call 200ba00 <_Workspace_Free>
200aaa4: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
200aaa8: 40 00 03 d6 call 200ba00 <_Workspace_Free>
200aaac: 90 10 00 1c mov %i4, %o0
_Thread_Stack_Free( the_thread );
200aab0: 40 00 01 fd call 200b2a4 <_Thread_Stack_Free>
200aab4: 90 10 00 19 mov %i1, %o0
200aab8: b0 0e 20 ff and %i0, 0xff, %i0
200aabc: 81 c7 e0 08 ret
200aac0: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
200aac4: b0 10 20 00 clr %i0
200aac8: b0 0e 20 ff and %i0, 0xff, %i0
200aacc: 81 c7 e0 08 ret
200aad0: 81 e8 00 00 restore
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
200aad4: 40 00 03 c3 call 200b9e0 <_Workspace_Allocate>
200aad8: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
200aadc: b6 92 20 00 orcc %o0, 0, %i3
200aae0: 32 bf ff b8 bne,a 200a9c0 <_Thread_Initialize+0x54>
200aae4: 39 00 80 74 sethi %hi(0x201d000), %i4
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200aae8: a2 10 20 00 clr %l1
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200aaec: 10 bf ff e4 b 200aa7c <_Thread_Initialize+0x110>
200aaf0: b8 10 20 00 clr %i4
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
200aaf4: 90 00 60 01 add %g1, 1, %o0
200aaf8: 40 00 03 ba call 200b9e0 <_Workspace_Allocate>
200aafc: 91 2a 20 02 sll %o0, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
200ab00: a2 92 20 00 orcc %o0, 0, %l1
200ab04: 02 80 00 10 be 200ab44 <_Thread_Initialize+0x1d8>
200ab08: 86 10 00 11 mov %l1, %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200ab0c: e2 26 61 58 st %l1, [ %i1 + 0x158 ]
200ab10: c8 07 22 b0 ld [ %i4 + 0x2b0 ], %g4
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200ab14: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200ab18: 10 80 00 03 b 200ab24 <_Thread_Initialize+0x1b8>
200ab1c: 82 10 20 00 clr %g1
200ab20: c6 06 61 58 ld [ %i1 + 0x158 ], %g3
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
200ab24: 85 28 a0 02 sll %g2, 2, %g2
200ab28: c0 20 c0 02 clr [ %g3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
200ab2c: 82 00 60 01 inc %g1
200ab30: 80 a0 40 04 cmp %g1, %g4
200ab34: 08 bf ff fb bleu 200ab20 <_Thread_Initialize+0x1b4>
200ab38: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
200ab3c: 10 bf ff ad b 200a9f0 <_Thread_Initialize+0x84>
200ab40: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
200ab44: 10 bf ff ce b 200aa7c <_Thread_Initialize+0x110>
200ab48: b8 10 20 00 clr %i4
0200b0fc <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
200b0fc: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
200b100: 80 a6 20 00 cmp %i0, 0
200b104: 02 80 00 13 be 200b150 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
200b108: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
200b10c: fa 06 20 34 ld [ %i0 + 0x34 ], %i5
200b110: 80 a7 60 01 cmp %i5, 1
200b114: 02 80 00 04 be 200b124 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
200b118: 01 00 00 00 nop
200b11c: 81 c7 e0 08 ret <== NOT EXECUTED
200b120: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
200b124: 7f ff dd 90 call 2002764 <sparc_disable_interrupts>
200b128: 01 00 00 00 nop
200b12c: b8 10 00 08 mov %o0, %i4
200b130: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
200b134: 03 00 00 ef sethi %hi(0x3bc00), %g1
200b138: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200b13c: 80 88 80 01 btst %g2, %g1
200b140: 12 80 00 06 bne 200b158 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
200b144: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
200b148: 7f ff dd 8b call 2002774 <sparc_enable_interrupts>
200b14c: 90 10 00 1c mov %i4, %o0
200b150: 81 c7 e0 08 ret
200b154: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200b158: 92 10 00 19 mov %i1, %o1
200b15c: 94 10 20 01 mov 1, %o2
200b160: 40 00 0b 73 call 200df2c <_Thread_queue_Extract_priority_helper>
200b164: fa 26 20 30 st %i5, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
200b168: 90 10 00 18 mov %i0, %o0
200b16c: 92 10 00 19 mov %i1, %o1
200b170: 7f ff ff 35 call 200ae44 <_Thread_queue_Enqueue_priority>
200b174: 94 07 bf fc add %fp, -4, %o2
200b178: 30 bf ff f4 b,a 200b148 <_Thread_queue_Requeue+0x4c>
0200b17c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200b17c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
200b180: 90 10 00 18 mov %i0, %o0
200b184: 7f ff fd ce call 200a8bc <_Thread_Get>
200b188: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200b18c: c2 07 bf fc ld [ %fp + -4 ], %g1
200b190: 80 a0 60 00 cmp %g1, 0
200b194: 12 80 00 09 bne 200b1b8 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
200b198: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200b19c: 40 00 0b 9d call 200e010 <_Thread_queue_Process_timeout>
200b1a0: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
200b1a4: 03 00 80 74 sethi %hi(0x201d000), %g1
200b1a8: c4 00 62 30 ld [ %g1 + 0x230 ], %g2 ! 201d230 <_Thread_Dispatch_disable_level>
200b1ac: 84 00 bf ff add %g2, -1, %g2
200b1b0: c4 20 62 30 st %g2, [ %g1 + 0x230 ]
return _Thread_Dispatch_disable_level;
200b1b4: c2 00 62 30 ld [ %g1 + 0x230 ], %g1
200b1b8: 81 c7 e0 08 ret
200b1bc: 81 e8 00 00 restore
02018254 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
2018254: 9d e3 bf 88 save %sp, -120, %sp
2018258: 21 00 80 ed sethi %hi(0x203b400), %l0
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
201825c: a4 07 bf e8 add %fp, -24, %l2
2018260: b4 07 bf ec add %fp, -20, %i2
2018264: b8 07 bf f4 add %fp, -12, %i4
2018268: a2 07 bf f8 add %fp, -8, %l1
201826c: 33 00 80 ed sethi %hi(0x203b400), %i1
2018270: 27 00 80 ed sethi %hi(0x203b400), %l3
2018274: f4 27 bf e8 st %i2, [ %fp + -24 ]
head->previous = NULL;
2018278: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
201827c: e4 27 bf f0 st %l2, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2018280: e2 27 bf f4 st %l1, [ %fp + -12 ]
head->previous = NULL;
2018284: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2018288: f8 27 bf fc st %i4, [ %fp + -4 ]
201828c: a0 14 22 18 or %l0, 0x218, %l0
2018290: b6 06 20 30 add %i0, 0x30, %i3
2018294: b2 16 60 68 or %i1, 0x68, %i1
2018298: ba 06 20 68 add %i0, 0x68, %i5
201829c: a6 14 e1 20 or %l3, 0x120, %l3
20182a0: ac 06 20 08 add %i0, 8, %l6
20182a4: aa 06 20 40 add %i0, 0x40, %l5
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
20182a8: a8 10 20 01 mov 1, %l4
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
20182ac: e4 26 20 78 st %l2, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20182b0: c2 04 00 00 ld [ %l0 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
20182b4: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20182b8: 90 10 00 1b mov %i3, %o0
20182bc: 92 20 40 09 sub %g1, %o1, %o1
20182c0: 94 10 00 1c mov %i4, %o2
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20182c4: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20182c8: 40 00 12 59 call 201cc2c <_Watchdog_Adjust_to_chain>
20182cc: 01 00 00 00 nop
20182d0: d0 1e 40 00 ldd [ %i1 ], %o0
20182d4: 94 10 20 00 clr %o2
20182d8: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
20182dc: 40 00 4d 92 call 202b924 <__divdi3>
20182e0: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
20182e4: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
20182e8: 80 a2 40 0a cmp %o1, %o2
20182ec: 18 80 00 2b bgu 2018398 <_Timer_server_Body+0x144>
20182f0: ae 10 00 09 mov %o1, %l7
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
20182f4: 80 a2 40 0a cmp %o1, %o2
20182f8: 0a 80 00 20 bcs 2018378 <_Timer_server_Body+0x124>
20182fc: 90 10 00 1d mov %i5, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
2018300: ee 26 20 74 st %l7, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2018304: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2018308: 40 00 02 9f call 2018d84 <_Chain_Get>
201830c: 01 00 00 00 nop
if ( timer == NULL ) {
2018310: 92 92 20 00 orcc %o0, 0, %o1
2018314: 02 80 00 10 be 2018354 <_Timer_server_Body+0x100>
2018318: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201831c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2018320: 80 a0 60 01 cmp %g1, 1
2018324: 02 80 00 19 be 2018388 <_Timer_server_Body+0x134>
2018328: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
201832c: 12 bf ff f6 bne 2018304 <_Timer_server_Body+0xb0> <== NEVER TAKEN
2018330: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2018334: 40 00 12 6f call 201ccf0 <_Watchdog_Insert>
2018338: 90 10 00 1d mov %i5, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
201833c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2018340: 40 00 02 91 call 2018d84 <_Chain_Get>
2018344: 01 00 00 00 nop
if ( timer == NULL ) {
2018348: 92 92 20 00 orcc %o0, 0, %o1
201834c: 32 bf ff f5 bne,a 2018320 <_Timer_server_Body+0xcc> <== NEVER TAKEN
2018350: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2018354: 7f ff dd 2f call 200f810 <sparc_disable_interrupts>
2018358: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
201835c: c2 07 bf e8 ld [ %fp + -24 ], %g1
2018360: 80 a0 40 1a cmp %g1, %i2
2018364: 02 80 00 12 be 20183ac <_Timer_server_Body+0x158> <== ALWAYS TAKEN
2018368: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
201836c: 7f ff dd 2d call 200f820 <sparc_enable_interrupts> <== NOT EXECUTED
2018370: 01 00 00 00 nop <== NOT EXECUTED
2018374: 30 bf ff cf b,a 20182b0 <_Timer_server_Body+0x5c> <== NOT EXECUTED
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2018378: 92 10 20 01 mov 1, %o1 ! 1 <PROM_START+0x1>
201837c: 40 00 11 fc call 201cb6c <_Watchdog_Adjust>
2018380: 94 22 80 17 sub %o2, %l7, %o2
2018384: 30 bf ff df b,a 2018300 <_Timer_server_Body+0xac>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2018388: 90 10 00 1b mov %i3, %o0
201838c: 40 00 12 59 call 201ccf0 <_Watchdog_Insert>
2018390: 92 02 60 10 add %o1, 0x10, %o1
2018394: 30 bf ff dc b,a 2018304 <_Timer_server_Body+0xb0>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2018398: 92 22 40 0a sub %o1, %o2, %o1
201839c: 90 10 00 1d mov %i5, %o0
20183a0: 40 00 12 23 call 201cc2c <_Watchdog_Adjust_to_chain>
20183a4: 94 10 00 1c mov %i4, %o2
20183a8: 30 bf ff d6 b,a 2018300 <_Timer_server_Body+0xac>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
20183ac: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
20183b0: 7f ff dd 1c call 200f820 <sparc_enable_interrupts>
20183b4: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
20183b8: c2 07 bf f4 ld [ %fp + -12 ], %g1
20183bc: 80 a0 40 11 cmp %g1, %l1
20183c0: 12 80 00 0c bne 20183f0 <_Timer_server_Body+0x19c>
20183c4: 01 00 00 00 nop
20183c8: 30 80 00 13 b,a 2018414 <_Timer_server_Body+0x1c0>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
20183cc: f8 20 60 04 st %i4, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
20183d0: c2 27 bf f4 st %g1, [ %fp + -12 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
20183d4: c0 25 e0 08 clr [ %l7 + 8 ]
_ISR_Enable( level );
20183d8: 7f ff dd 12 call 200f820 <sparc_enable_interrupts>
20183dc: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
20183e0: d0 05 e0 20 ld [ %l7 + 0x20 ], %o0
20183e4: c2 05 e0 1c ld [ %l7 + 0x1c ], %g1
20183e8: 9f c0 40 00 call %g1
20183ec: d2 05 e0 24 ld [ %l7 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
20183f0: 7f ff dd 08 call 200f810 <sparc_disable_interrupts>
20183f4: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
20183f8: ee 07 bf f4 ld [ %fp + -12 ], %l7
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
20183fc: 80 a5 c0 11 cmp %l7, %l1
2018400: 32 bf ff f3 bne,a 20183cc <_Timer_server_Body+0x178>
2018404: c2 05 c0 00 ld [ %l7 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2018408: 7f ff dd 06 call 200f820 <sparc_enable_interrupts>
201840c: 01 00 00 00 nop
2018410: 30 bf ff a7 b,a 20182ac <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2018414: c0 2e 20 7c clrb [ %i0 + 0x7c ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2018418: c2 04 c0 00 ld [ %l3 ], %g1
201841c: 82 00 60 01 inc %g1
2018420: c2 24 c0 00 st %g1, [ %l3 ]
return _Thread_Dispatch_disable_level;
2018424: c2 04 c0 00 ld [ %l3 ], %g1
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2018428: d0 06 00 00 ld [ %i0 ], %o0
201842c: 40 00 10 9c call 201c69c <_Thread_Set_state>
2018430: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2018434: 7f ff ff 05 call 2018048 <_Timer_server_Reset_interval_system_watchdog>
2018438: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
201843c: 7f ff ff 17 call 2018098 <_Timer_server_Reset_tod_system_watchdog>
2018440: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2018444: 40 00 0e 1c call 201bcb4 <_Thread_Enable_dispatch>
2018448: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
201844c: 90 10 00 16 mov %l6, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2018450: e8 2e 20 7c stb %l4, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2018454: 40 00 12 86 call 201ce6c <_Watchdog_Remove>
2018458: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
201845c: 40 00 12 84 call 201ce6c <_Watchdog_Remove>
2018460: 90 10 00 15 mov %l5, %o0
2018464: 30 bf ff 92 b,a 20182ac <_Timer_server_Body+0x58>
020180e8 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
20180e8: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
20180ec: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
20180f0: 80 a0 60 00 cmp %g1, 0
20180f4: 02 80 00 05 be 2018108 <_Timer_server_Schedule_operation_method+0x20>
20180f8: ba 10 00 19 mov %i1, %i5
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
20180fc: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2018100: 40 00 03 16 call 2018d58 <_Chain_Append>
2018104: 81 e8 00 00 restore
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2018108: 03 00 80 ed sethi %hi(0x203b400), %g1
201810c: c4 00 61 20 ld [ %g1 + 0x120 ], %g2 ! 203b520 <_Thread_Dispatch_disable_level>
2018110: 84 00 a0 01 inc %g2
2018114: c4 20 61 20 st %g2, [ %g1 + 0x120 ]
return _Thread_Dispatch_disable_level;
2018118: c2 00 61 20 ld [ %g1 + 0x120 ], %g1
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201811c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2018120: 80 a0 60 01 cmp %g1, 1
2018124: 02 80 00 2b be 20181d0 <_Timer_server_Schedule_operation_method+0xe8>
2018128: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
201812c: 02 80 00 04 be 201813c <_Timer_server_Schedule_operation_method+0x54>
2018130: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2018134: 40 00 0e e0 call 201bcb4 <_Thread_Enable_dispatch>
2018138: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
201813c: 7f ff dd b5 call 200f810 <sparc_disable_interrupts>
2018140: 01 00 00 00 nop
2018144: b8 10 00 08 mov %o0, %i4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2018148: 03 00 80 ed sethi %hi(0x203b400), %g1
201814c: d0 18 60 68 ldd [ %g1 + 0x68 ], %o0 ! 203b468 <_TOD>
2018150: 94 10 20 00 clr %o2
2018154: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2018158: 40 00 4d f3 call 202b924 <__divdi3>
201815c: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2018160: c2 06 20 68 ld [ %i0 + 0x68 ], %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2018164: c4 06 20 74 ld [ %i0 + 0x74 ], %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2018168: 86 06 20 6c add %i0, 0x6c, %g3
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
201816c: 80 a0 40 03 cmp %g1, %g3
2018170: 02 80 00 0a be 2018198 <_Timer_server_Schedule_operation_method+0xb0>
2018174: 80 a2 40 02 cmp %o1, %g2
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2018178: 08 80 00 34 bleu 2018248 <_Timer_server_Schedule_operation_method+0x160>
201817c: c8 00 60 10 ld [ %g1 + 0x10 ], %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2018180: 84 22 40 02 sub %o1, %g2, %g2
if (delta_interval > delta) {
2018184: 80 a1 00 02 cmp %g4, %g2
2018188: 08 80 00 03 bleu 2018194 <_Timer_server_Schedule_operation_method+0xac><== NEVER TAKEN
201818c: 86 10 20 00 clr %g3
delta_interval -= delta;
2018190: 86 21 00 02 sub %g4, %g2, %g3
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2018194: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2018198: d2 26 20 74 st %o1, [ %i0 + 0x74 ]
_ISR_Enable( level );
201819c: 7f ff dd a1 call 200f820 <sparc_enable_interrupts>
20181a0: 90 10 00 1c mov %i4, %o0
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20181a4: 90 06 20 68 add %i0, 0x68, %o0
20181a8: 40 00 12 d2 call 201ccf0 <_Watchdog_Insert>
20181ac: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
20181b0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
20181b4: 80 a0 60 00 cmp %g1, 0
20181b8: 12 bf ff df bne 2018134 <_Timer_server_Schedule_operation_method+0x4c>
20181bc: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
20181c0: 7f ff ff b6 call 2018098 <_Timer_server_Reset_tod_system_watchdog>
20181c4: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
20181c8: 40 00 0e bb call 201bcb4 <_Thread_Enable_dispatch>
20181cc: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
20181d0: 7f ff dd 90 call 200f810 <sparc_disable_interrupts>
20181d4: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
20181d8: 05 00 80 ed sethi %hi(0x203b400), %g2
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
20181dc: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
20181e0: c4 00 a2 18 ld [ %g2 + 0x218 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
20181e4: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
20181e8: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
20181ec: 80 a0 40 03 cmp %g1, %g3
20181f0: 02 80 00 08 be 2018210 <_Timer_server_Schedule_operation_method+0x128>
20181f4: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
20181f8: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
if (delta_interval > delta) {
20181fc: 80 a1 00 1c cmp %g4, %i4
2018200: 1a 80 00 03 bcc 201820c <_Timer_server_Schedule_operation_method+0x124>
2018204: 86 10 20 00 clr %g3
delta_interval -= delta;
2018208: 86 27 00 04 sub %i4, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
201820c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2018210: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2018214: 7f ff dd 83 call 200f820 <sparc_enable_interrupts>
2018218: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
201821c: 90 06 20 30 add %i0, 0x30, %o0
2018220: 40 00 12 b4 call 201ccf0 <_Watchdog_Insert>
2018224: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2018228: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
201822c: 80 a0 60 00 cmp %g1, 0
2018230: 12 bf ff c1 bne 2018134 <_Timer_server_Schedule_operation_method+0x4c>
2018234: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2018238: 7f ff ff 84 call 2018048 <_Timer_server_Reset_interval_system_watchdog>
201823c: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2018240: 40 00 0e 9d call 201bcb4 <_Thread_Enable_dispatch>
2018244: 81 e8 00 00 restore
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2018248: 84 01 00 02 add %g4, %g2, %g2
delta_interval += delta;
201824c: 10 bf ff d2 b 2018194 <_Timer_server_Schedule_operation_method+0xac>
2018250: 86 20 80 09 sub %g2, %o1, %g3
0200acf8 <_Timespec_Divide>:
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200acf8: 9d e3 bf 90 save %sp, -112, %sp
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200acfc: fa 06 40 00 ld [ %i1 ], %i5
right += rhs->tv_nsec;
200ad00: d6 06 60 04 ld [ %i1 + 4 ], %o3
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ad04: b9 3f 60 1f sra %i5, 0x1f, %i4
200ad08: 83 2f 20 03 sll %i4, 3, %g1
200ad0c: 9b 2f 60 03 sll %i5, 3, %o5
200ad10: 85 37 60 1d srl %i5, 0x1d, %g2
200ad14: 98 10 80 01 or %g2, %g1, %o4
200ad18: 83 33 60 1b srl %o5, 0x1b, %g1
200ad1c: ad 2b 20 05 sll %o4, 5, %l6
200ad20: af 2b 60 05 sll %o5, 5, %l7
200ad24: ac 10 40 16 or %g1, %l6, %l6
200ad28: 9a a5 c0 0d subcc %l7, %o5, %o5
200ad2c: 83 33 60 1a srl %o5, 0x1a, %g1
200ad30: 98 65 80 0c subx %l6, %o4, %o4
200ad34: ab 2b 60 06 sll %o5, 6, %l5
200ad38: a9 2b 20 06 sll %o4, 6, %l4
200ad3c: 86 a5 40 0d subcc %l5, %o5, %g3
200ad40: a8 10 40 14 or %g1, %l4, %l4
200ad44: 84 65 00 0c subx %l4, %o4, %g2
200ad48: 86 80 c0 1d addcc %g3, %i5, %g3
200ad4c: 83 30 e0 1e srl %g3, 0x1e, %g1
200ad50: 84 40 80 1c addx %g2, %i4, %g2
200ad54: a7 28 e0 02 sll %g3, 2, %l3
200ad58: a5 28 a0 02 sll %g2, 2, %l2
200ad5c: 86 80 c0 13 addcc %g3, %l3, %g3
200ad60: a4 10 40 12 or %g1, %l2, %l2
200ad64: 83 30 e0 1e srl %g3, 0x1e, %g1
200ad68: 84 40 80 12 addx %g2, %l2, %g2
200ad6c: a3 28 e0 02 sll %g3, 2, %l1
200ad70: a1 28 a0 02 sll %g2, 2, %l0
200ad74: 86 80 c0 11 addcc %g3, %l1, %g3
200ad78: a0 10 40 10 or %g1, %l0, %l0
200ad7c: 93 28 e0 02 sll %g3, 2, %o1
200ad80: 84 40 80 10 addx %g2, %l0, %g2
200ad84: 83 30 e0 1e srl %g3, 0x1e, %g1
200ad88: 91 28 a0 02 sll %g2, 2, %o0
200ad8c: 86 80 c0 09 addcc %g3, %o1, %g3
200ad90: 90 10 40 08 or %g1, %o0, %o0
200ad94: bb 28 e0 09 sll %g3, 9, %i5
200ad98: 84 40 80 08 addx %g2, %o0, %g2
200ad9c: b9 30 e0 17 srl %g3, 0x17, %i4
200ada0: 89 28 a0 09 sll %g2, 9, %g4
right += rhs->tv_nsec;
200ada4: 95 3a e0 1f sra %o3, 0x1f, %o2
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ada8: 84 17 00 04 or %i4, %g4, %g2
right += rhs->tv_nsec;
200adac: 96 87 40 0b addcc %i5, %o3, %o3
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200adb0: 82 10 00 1a mov %i2, %g1
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
right += rhs->tv_nsec;
200adb4: 94 40 80 0a addx %g2, %o2, %o2
const struct timespec *lhs,
const struct timespec *rhs,
uint32_t *ival_percentage,
uint32_t *fval_percentage
)
{
200adb8: 88 10 00 1b mov %i3, %g4
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200adbc: f8 06 00 00 ld [ %i0 ], %i4
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
right += rhs->tv_nsec;
if ( right == 0 ) {
200adc0: 80 92 80 0b orcc %o2, %o3, %g0
200adc4: 02 80 00 62 be 200af4c <_Timespec_Divide+0x254> <== ALWAYS TAKEN
200adc8: fa 06 20 04 ld [ %i0 + 4 ], %i5
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200adcc: b2 10 00 1c mov %i4, %i1 <== NOT EXECUTED
200add0: 9f 37 20 1d srl %i4, 0x1d, %o7 <== NOT EXECUTED
200add4: b1 3f 20 1f sra %i4, 0x1f, %i0 <== NOT EXECUTED
200add8: b9 2e 20 03 sll %i0, 3, %i4 <== NOT EXECUTED
200addc: 9b 2e 60 03 sll %i1, 3, %o5 <== NOT EXECUTED
200ade0: 98 13 c0 1c or %o7, %i4, %o4 <== NOT EXECUTED
200ade4: a3 2b 60 05 sll %o5, 5, %l1 <== NOT EXECUTED
200ade8: b9 33 60 1b srl %o5, 0x1b, %i4 <== NOT EXECUTED
200adec: 9a a4 40 0d subcc %l1, %o5, %o5 <== NOT EXECUTED
200adf0: b7 2b 60 06 sll %o5, 6, %i3 <== NOT EXECUTED
200adf4: 9f 33 60 1a srl %o5, 0x1a, %o7 <== NOT EXECUTED
200adf8: a1 2b 20 05 sll %o4, 5, %l0 <== NOT EXECUTED
200adfc: a0 17 00 10 or %i4, %l0, %l0 <== NOT EXECUTED
200ae00: 98 64 00 0c subx %l0, %o4, %o4 <== NOT EXECUTED
200ae04: 9a a6 c0 0d subcc %i3, %o5, %o5 <== NOT EXECUTED
200ae08: b5 2b 20 06 sll %o4, 6, %i2 <== NOT EXECUTED
200ae0c: b4 13 c0 1a or %o7, %i2, %i2 <== NOT EXECUTED
200ae10: 98 66 80 0c subx %i2, %o4, %o4 <== NOT EXECUTED
200ae14: b2 83 40 19 addcc %o5, %i1, %i1 <== NOT EXECUTED
200ae18: b0 43 00 18 addx %o4, %i0, %i0 <== NOT EXECUTED
200ae1c: b7 36 60 1e srl %i1, 0x1e, %i3 <== NOT EXECUTED
200ae20: 85 2e 20 02 sll %i0, 2, %g2 <== NOT EXECUTED
200ae24: 84 16 c0 02 or %i3, %g2, %g2 <== NOT EXECUTED
left += lhs->tv_nsec;
200ae28: fa 27 bf fc st %i5, [ %fp + -4 ] <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ae2c: 87 2e 60 02 sll %i1, 2, %g3 <== NOT EXECUTED
left += lhs->tv_nsec;
200ae30: bb 3f 60 1f sra %i5, 0x1f, %i5 <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ae34: b2 86 40 03 addcc %i1, %g3, %i1 <== NOT EXECUTED
200ae38: b0 46 00 02 addx %i0, %g2, %i0 <== NOT EXECUTED
200ae3c: 85 36 60 1e srl %i1, 0x1e, %g2 <== NOT EXECUTED
left += lhs->tv_nsec;
200ae40: fa 27 bf f8 st %i5, [ %fp + -8 ] <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ae44: 93 2e 60 02 sll %i1, 2, %o1 <== NOT EXECUTED
left += lhs->tv_nsec;
200ae48: f8 1f bf f8 ldd [ %fp + -8 ], %i4 <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ae4c: 92 86 40 09 addcc %i1, %o1, %o1 <== NOT EXECUTED
200ae50: 91 2e 20 02 sll %i0, 2, %o0 <== NOT EXECUTED
200ae54: 90 10 80 08 or %g2, %o0, %o0 <== NOT EXECUTED
200ae58: 85 32 60 1e srl %o1, 0x1e, %g2 <== NOT EXECUTED
200ae5c: 90 46 00 08 addx %i0, %o0, %o0 <== NOT EXECUTED
200ae60: af 2a 60 02 sll %o1, 2, %l7 <== NOT EXECUTED
200ae64: ad 2a 20 02 sll %o0, 2, %l6 <== NOT EXECUTED
200ae68: 86 82 40 17 addcc %o1, %l7, %g3 <== NOT EXECUTED
200ae6c: ac 10 80 16 or %g2, %l6, %l6 <== NOT EXECUTED
200ae70: b7 28 e0 09 sll %g3, 9, %i3 <== NOT EXECUTED
200ae74: 84 42 00 16 addx %o0, %l6, %g2 <== NOT EXECUTED
200ae78: b3 30 e0 17 srl %g3, 0x17, %i1 <== NOT EXECUTED
200ae7c: b5 28 a0 09 sll %g2, 9, %i2 <== NOT EXECUTED
left += lhs->tv_nsec;
200ae80: 86 86 c0 1d addcc %i3, %i5, %g3 <== NOT EXECUTED
/*
* For math simplicity just convert the timespec to nanoseconds
* in a 64-bit integer.
*/
left = lhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
200ae84: 84 16 40 1a or %i1, %i2, %g2 <== NOT EXECUTED
left += lhs->tv_nsec;
200ae88: 84 40 80 1c addx %g2, %i4, %g2 <== NOT EXECUTED
* Put it back in the timespec result.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
200ae8c: b7 28 a0 02 sll %g2, 2, %i3 <== NOT EXECUTED
200ae90: bb 28 e0 02 sll %g3, 2, %i5 <== NOT EXECUTED
200ae94: b5 30 e0 1e srl %g3, 0x1e, %i2 <== NOT EXECUTED
200ae98: ab 2f 60 05 sll %i5, 5, %l5 <== NOT EXECUTED
200ae9c: b8 16 80 1b or %i2, %i3, %i4 <== NOT EXECUTED
200aea0: 92 a5 40 1d subcc %l5, %i5, %o1 <== NOT EXECUTED
200aea4: b7 37 60 1b srl %i5, 0x1b, %i3 <== NOT EXECUTED
200aea8: a9 2f 20 05 sll %i4, 5, %l4 <== NOT EXECUTED
200aeac: a8 16 c0 14 or %i3, %l4, %l4 <== NOT EXECUTED
200aeb0: 90 65 00 1c subx %l4, %i4, %o0 <== NOT EXECUTED
200aeb4: 92 82 40 03 addcc %o1, %g3, %o1 <== NOT EXECUTED
200aeb8: 90 42 00 02 addx %o0, %g2, %o0 <== NOT EXECUTED
200aebc: 85 32 60 1e srl %o1, 0x1e, %g2 <== NOT EXECUTED
200aec0: a5 2a 20 02 sll %o0, 2, %l2 <== NOT EXECUTED
200aec4: a7 2a 60 02 sll %o1, 2, %l3 <== NOT EXECUTED
200aec8: a4 10 80 12 or %g2, %l2, %l2 <== NOT EXECUTED
200aecc: 92 82 40 13 addcc %o1, %l3, %o1 <== NOT EXECUTED
200aed0: 85 32 60 1e srl %o1, 0x1e, %g2 <== NOT EXECUTED
200aed4: 90 42 00 12 addx %o0, %l2, %o0 <== NOT EXECUTED
200aed8: a3 2a 60 02 sll %o1, 2, %l1 <== NOT EXECUTED
200aedc: a1 2a 20 02 sll %o0, 2, %l0 <== NOT EXECUTED
200aee0: 92 82 40 11 addcc %o1, %l1, %o1 <== NOT EXECUTED
200aee4: a0 10 80 10 or %g2, %l0, %l0 <== NOT EXECUTED
200aee8: 85 2a 60 05 sll %o1, 5, %g2 <== NOT EXECUTED
200aeec: 90 42 00 10 addx %o0, %l0, %o0 <== NOT EXECUTED
200aef0: 87 2a 20 05 sll %o0, 5, %g3 <== NOT EXECUTED
200aef4: c8 27 bf f0 st %g4, [ %fp + -16 ] <== NOT EXECUTED
200aef8: bb 32 60 1b srl %o1, 0x1b, %i5 <== NOT EXECUTED
200aefc: c2 27 bf f4 st %g1, [ %fp + -12 ] <== NOT EXECUTED
200af00: 90 17 40 03 or %i5, %g3, %o0 <== NOT EXECUTED
200af04: 40 00 38 50 call 2019044 <__udivdi3> <== NOT EXECUTED
200af08: 92 10 00 02 mov %g2, %o1 <== NOT EXECUTED
*ival_percentage = answer / 1000;
200af0c: 94 10 20 00 clr %o2 <== NOT EXECUTED
* Put it back in the timespec result.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
200af10: b8 10 00 08 mov %o0, %i4 <== NOT EXECUTED
200af14: ba 10 00 09 mov %o1, %i5 <== NOT EXECUTED
*ival_percentage = answer / 1000;
200af18: 40 00 38 4b call 2019044 <__udivdi3> <== NOT EXECUTED
200af1c: 96 10 23 e8 mov 0x3e8, %o3 <== NOT EXECUTED
200af20: c2 07 bf f4 ld [ %fp + -12 ], %g1 <== NOT EXECUTED
*fval_percentage = answer % 1000;
200af24: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
* TODO: Rounding on the last digit of the fval.
*/
answer = (left * 100000) / right;
*ival_percentage = answer / 1000;
200af28: d2 20 40 00 st %o1, [ %g1 ] <== NOT EXECUTED
*fval_percentage = answer % 1000;
200af2c: 94 10 20 00 clr %o2 <== NOT EXECUTED
200af30: 96 10 23 e8 mov 0x3e8, %o3 <== NOT EXECUTED
200af34: 40 00 39 18 call 2019394 <__umoddi3> <== NOT EXECUTED
200af38: 92 10 00 1d mov %i5, %o1 <== NOT EXECUTED
200af3c: c8 07 bf f0 ld [ %fp + -16 ], %g4 <== NOT EXECUTED
200af40: d2 21 00 00 st %o1, [ %g4 ] <== NOT EXECUTED
200af44: 81 c7 e0 08 ret <== NOT EXECUTED
200af48: 81 e8 00 00 restore <== NOT EXECUTED
left += lhs->tv_nsec;
right = rhs->tv_sec * (uint64_t)TOD_NANOSECONDS_PER_SECOND;
right += rhs->tv_nsec;
if ( right == 0 ) {
*ival_percentage = 0;
200af4c: c0 26 80 00 clr [ %i2 ]
*fval_percentage = 0;
200af50: c0 26 c0 00 clr [ %i3 ]
return;
200af54: 81 c7 e0 08 ret
200af58: 81 e8 00 00 restore
0200af5c <_Timespec_Less_than>:
bool _Timespec_Less_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec < rhs->tv_sec )
200af5c: c6 02 00 00 ld [ %o0 ], %g3
200af60: c4 02 40 00 ld [ %o1 ], %g2
200af64: 80 a0 c0 02 cmp %g3, %g2
200af68: 06 80 00 0a bl 200af90 <_Timespec_Less_than+0x34> <== NEVER TAKEN
200af6c: 82 10 20 01 mov 1, %g1
return true;
if ( lhs->tv_sec > rhs->tv_sec )
200af70: 80 a0 c0 02 cmp %g3, %g2
200af74: 14 80 00 07 bg 200af90 <_Timespec_Less_than+0x34>
200af78: 82 10 20 00 clr %g1
return false;
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec < rhs->tv_nsec )
200af7c: c6 02 20 04 ld [ %o0 + 4 ], %g3
200af80: c4 02 60 04 ld [ %o1 + 4 ], %g2
200af84: 80 a0 c0 02 cmp %g3, %g2
200af88: 16 80 00 04 bge 200af98 <_Timespec_Less_than+0x3c> <== ALWAYS TAKEN
200af8c: 82 10 20 01 mov 1, %g1
return true;
return false;
}
200af90: 81 c3 e0 08 retl
200af94: 90 08 60 01 and %g1, 1, %o0
if ( lhs->tv_sec > rhs->tv_sec )
return false;
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec < rhs->tv_nsec )
200af98: 82 10 20 00 clr %g1
return true;
return false;
}
200af9c: 81 c3 e0 08 retl
200afa0: 90 08 60 01 and %g1, 1, %o0
0200c198 <_Timespec_Subtract>:
const struct timespec *end,
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
200c198: c2 02 20 04 ld [ %o0 + 4 ], %g1
200c19c: c4 02 60 04 ld [ %o1 + 4 ], %g2
result->tv_sec = end->tv_sec - start->tv_sec - 1;
200c1a0: c8 02 40 00 ld [ %o1 ], %g4
const struct timespec *end,
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
200c1a4: 80 a0 80 01 cmp %g2, %g1
200c1a8: 06 80 00 07 bl 200c1c4 <_Timespec_Subtract+0x2c> <== NEVER TAKEN
200c1ac: c6 02 00 00 ld [ %o0 ], %g3
result->tv_sec = end->tv_sec - start->tv_sec - 1;
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
} else {
result->tv_sec = end->tv_sec - start->tv_sec;
result->tv_nsec = end->tv_nsec - start->tv_nsec;
200c1b0: 82 20 80 01 sub %g2, %g1, %g1
if (end->tv_nsec < start->tv_nsec) {
result->tv_sec = end->tv_sec - start->tv_sec - 1;
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
} else {
result->tv_sec = end->tv_sec - start->tv_sec;
200c1b4: 86 21 00 03 sub %g4, %g3, %g3
result->tv_nsec = end->tv_nsec - start->tv_nsec;
200c1b8: c2 22 a0 04 st %g1, [ %o2 + 4 ]
if (end->tv_nsec < start->tv_nsec) {
result->tv_sec = end->tv_sec - start->tv_sec - 1;
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
} else {
result->tv_sec = end->tv_sec - start->tv_sec;
200c1bc: 81 c3 e0 08 retl
200c1c0: c6 22 80 00 st %g3, [ %o2 ]
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
result->tv_sec = end->tv_sec - start->tv_sec - 1;
200c1c4: 86 21 00 03 sub %g4, %g3, %g3 <== NOT EXECUTED
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
200c1c8: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 <== NOT EXECUTED
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
result->tv_sec = end->tv_sec - start->tv_sec - 1;
200c1cc: 86 00 ff ff add %g3, -1, %g3 <== NOT EXECUTED
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
200c1d0: 88 11 22 00 or %g4, 0x200, %g4 <== NOT EXECUTED
struct timespec *result
)
{
if (end->tv_nsec < start->tv_nsec) {
result->tv_sec = end->tv_sec - start->tv_sec - 1;
200c1d4: c6 22 80 00 st %g3, [ %o2 ] <== NOT EXECUTED
result->tv_nsec =
(TOD_NANOSECONDS_PER_SECOND - start->tv_nsec) + end->tv_nsec;
200c1d8: 84 00 80 04 add %g2, %g4, %g2 <== NOT EXECUTED
200c1dc: 82 20 80 01 sub %g2, %g1, %g1 <== NOT EXECUTED
)
{
if (end->tv_nsec < start->tv_nsec) {
result->tv_sec = end->tv_sec - start->tv_sec - 1;
result->tv_nsec =
200c1e0: 81 c3 e0 08 retl <== NOT EXECUTED
200c1e4: c2 22 a0 04 st %g1, [ %o2 + 4 ] <== NOT EXECUTED
0200cc48 <_Timestamp64_Divide>:
const Timestamp64_Control *_lhs,
const Timestamp64_Control *_rhs,
uint32_t *_ival_percentage,
uint32_t *_fval_percentage
)
{
200cc48: 9d e3 bf a0 save %sp, -96, %sp
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
200cc4c: d4 1e 40 00 ldd [ %i1 ], %o2
200cc50: 80 92 80 0b orcc %o2, %o3, %g0
200cc54: 22 80 00 2f be,a 200cd10 <_Timestamp64_Divide+0xc8> <== NEVER TAKEN
200cc58: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200cc5c: d0 1e 00 00 ldd [ %i0 ], %o0
200cc60: 83 2a 20 02 sll %o0, 2, %g1
200cc64: 89 32 60 1e srl %o1, 0x1e, %g4
200cc68: 87 2a 60 02 sll %o1, 2, %g3
200cc6c: 84 11 00 01 or %g4, %g1, %g2
200cc70: 83 30 e0 1b srl %g3, 0x1b, %g1
200cc74: 9b 28 e0 05 sll %g3, 5, %o5
200cc78: 99 28 a0 05 sll %g2, 5, %o4
200cc7c: 86 a3 40 03 subcc %o5, %g3, %g3
200cc80: 98 10 40 0c or %g1, %o4, %o4
200cc84: 84 63 00 02 subx %o4, %g2, %g2
200cc88: 92 80 c0 09 addcc %g3, %o1, %o1
200cc8c: 83 32 60 1e srl %o1, 0x1e, %g1
200cc90: 90 40 80 08 addx %g2, %o0, %o0
200cc94: b3 2a 60 02 sll %o1, 2, %i1
200cc98: b1 2a 20 02 sll %o0, 2, %i0
200cc9c: 92 82 40 19 addcc %o1, %i1, %o1
200cca0: b0 10 40 18 or %g1, %i0, %i0
200cca4: 83 32 60 1e srl %o1, 0x1e, %g1
200cca8: 90 42 00 18 addx %o0, %i0, %o0
200ccac: bb 2a 60 02 sll %o1, 2, %i5
200ccb0: b9 2a 20 02 sll %o0, 2, %i4
200ccb4: 92 82 40 1d addcc %o1, %i5, %o1
200ccb8: b8 10 40 1c or %g1, %i4, %i4
200ccbc: 87 32 60 1b srl %o1, 0x1b, %g3
200ccc0: 90 42 00 1c addx %o0, %i4, %o0
200ccc4: 83 2a 60 05 sll %o1, 5, %g1
200ccc8: 85 2a 20 05 sll %o0, 5, %g2
200cccc: 92 10 00 01 mov %g1, %o1
200ccd0: 40 00 37 f8 call 201acb0 <__divdi3>
200ccd4: 90 10 c0 02 or %g3, %g2, %o0
*_ival_percentage = answer / 1000;
200ccd8: 94 10 20 00 clr %o2
* This looks odd but gives the results the proper precision.
*
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
200ccdc: b8 10 00 08 mov %o0, %i4
200cce0: ba 10 00 09 mov %o1, %i5
*_ival_percentage = answer / 1000;
200cce4: 40 00 37 f3 call 201acb0 <__divdi3>
200cce8: 96 10 23 e8 mov 0x3e8, %o3
*_fval_percentage = answer % 1000;
200ccec: 90 10 00 1c mov %i4, %o0
* TODO: Rounding on the last digit of the fval.
*/
answer = (*_lhs * 100000) / *_rhs;
*_ival_percentage = answer / 1000;
200ccf0: d2 26 80 00 st %o1, [ %i2 ]
*_fval_percentage = answer % 1000;
200ccf4: 94 10 20 00 clr %o2
200ccf8: 96 10 23 e8 mov 0x3e8, %o3
200ccfc: 40 00 38 d8 call 201b05c <__moddi3>
200cd00: 92 10 00 1d mov %i5, %o1
200cd04: d2 26 c0 00 st %o1, [ %i3 ]
200cd08: 81 c7 e0 08 ret
200cd0c: 81 e8 00 00 restore
{
Timestamp64_Control answer;
if ( *_rhs == 0 ) {
*_ival_percentage = 0;
*_fval_percentage = 0;
200cd10: c0 26 c0 00 clr [ %i3 ] <== NOT EXECUTED
return;
200cd14: 81 c7 e0 08 ret <== NOT EXECUTED
200cd18: 81 e8 00 00 restore <== NOT EXECUTED
0200b4ac <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
200b4ac: 9d e3 bf a0 save %sp, -96, %sp
200b4b0: 39 00 80 75 sethi %hi(0x201d400), %i4
200b4b4: b8 17 20 08 or %i4, 8, %i4 ! 201d408 <_User_extensions_List>
200b4b8: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200b4bc: 80 a7 40 1c cmp %i5, %i4
200b4c0: 02 80 00 0d be 200b4f4 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
200b4c4: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
200b4c8: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
200b4cc: 80 a0 60 00 cmp %g1, 0
200b4d0: 02 80 00 05 be 200b4e4 <_User_extensions_Fatal+0x38>
200b4d4: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
200b4d8: 92 10 00 19 mov %i1, %o1
200b4dc: 9f c0 40 00 call %g1
200b4e0: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200b4e4: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200b4e8: 80 a7 40 1c cmp %i5, %i4
200b4ec: 32 bf ff f8 bne,a 200b4cc <_User_extensions_Fatal+0x20>
200b4f0: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
200b4f4: 81 c7 e0 08 ret
200b4f8: 81 e8 00 00 restore
0200b358 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
200b358: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
200b35c: 07 00 80 71 sethi %hi(0x201c400), %g3
200b360: 86 10 e0 cc or %g3, 0xcc, %g3 ! 201c4cc <Configuration>
initial_extensions = Configuration.User_extension_table;
200b364: f6 00 e0 48 ld [ %g3 + 0x48 ], %i3
200b368: 3b 00 80 75 sethi %hi(0x201d400), %i5
200b36c: 09 00 80 74 sethi %hi(0x201d000), %g4
200b370: 84 17 60 08 or %i5, 8, %g2
200b374: 82 11 22 34 or %g4, 0x234, %g1
200b378: b4 00 a0 04 add %g2, 4, %i2
200b37c: b8 00 60 04 add %g1, 4, %i4
200b380: f4 27 60 08 st %i2, [ %i5 + 8 ]
head->previous = NULL;
200b384: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
200b388: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
200b38c: f8 21 22 34 st %i4, [ %g4 + 0x234 ]
head->previous = NULL;
200b390: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
200b394: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
200b398: 80 a6 e0 00 cmp %i3, 0
200b39c: 02 80 00 1b be 200b408 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
200b3a0: f4 00 e0 44 ld [ %g3 + 0x44 ], %i2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
200b3a4: 83 2e a0 02 sll %i2, 2, %g1
200b3a8: b9 2e a0 04 sll %i2, 4, %i4
200b3ac: b8 27 00 01 sub %i4, %g1, %i4
200b3b0: b8 07 00 1a add %i4, %i2, %i4
200b3b4: b9 2f 20 02 sll %i4, 2, %i4
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200b3b8: 40 00 01 98 call 200ba18 <_Workspace_Allocate_or_fatal_error>
200b3bc: 90 10 00 1c mov %i4, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200b3c0: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
200b3c4: ba 10 00 08 mov %o0, %i5
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
200b3c8: 40 00 13 eb call 2010374 <memset>
200b3cc: 94 10 00 1c mov %i4, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200b3d0: 80 a6 a0 00 cmp %i2, 0
200b3d4: 02 80 00 0d be 200b408 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
200b3d8: b8 10 20 00 clr %i4
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
200b3dc: 92 10 00 1b mov %i3, %o1
200b3e0: 94 10 20 20 mov 0x20, %o2
200b3e4: 40 00 13 a7 call 2010280 <memcpy>
200b3e8: 90 07 60 14 add %i5, 0x14, %o0
_User_extensions_Add_set( extension );
200b3ec: 40 00 0b 2c call 200e09c <_User_extensions_Add_set>
200b3f0: 90 10 00 1d mov %i5, %o0
200b3f4: b8 07 20 01 inc %i4
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
200b3f8: ba 07 60 34 add %i5, 0x34, %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
200b3fc: 80 a7 00 1a cmp %i4, %i2
200b400: 12 bf ff f7 bne 200b3dc <_User_extensions_Handler_initialization+0x84>
200b404: b6 06 e0 20 add %i3, 0x20, %i3
200b408: 81 c7 e0 08 ret
200b40c: 81 e8 00 00 restore
0200b410 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
200b410: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200b414: 39 00 80 75 sethi %hi(0x201d400), %i4
200b418: fa 07 20 08 ld [ %i4 + 8 ], %i5 ! 201d408 <_User_extensions_List>
200b41c: b8 17 20 08 or %i4, 8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200b420: b8 07 20 04 add %i4, 4, %i4
200b424: 80 a7 40 1c cmp %i5, %i4
200b428: 02 80 00 0c be 200b458 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
200b42c: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
200b430: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
200b434: 80 a0 60 00 cmp %g1, 0
200b438: 02 80 00 04 be 200b448 <_User_extensions_Thread_begin+0x38>
200b43c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
200b440: 9f c0 40 00 call %g1
200b444: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200b448: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200b44c: 80 a7 40 1c cmp %i5, %i4
200b450: 32 bf ff f9 bne,a 200b434 <_User_extensions_Thread_begin+0x24>
200b454: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
200b458: 81 c7 e0 08 ret
200b45c: 81 e8 00 00 restore
0200b4fc <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
200b4fc: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200b500: 39 00 80 75 sethi %hi(0x201d400), %i4
200b504: fa 07 20 08 ld [ %i4 + 8 ], %i5 ! 201d408 <_User_extensions_List>
200b508: b8 17 20 08 or %i4, 8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
200b50c: b8 07 20 04 add %i4, 4, %i4
200b510: 80 a7 40 1c cmp %i5, %i4
200b514: 02 80 00 10 be 200b554 <_User_extensions_Thread_create+0x58><== NEVER TAKEN
200b518: 37 00 80 75 sethi %hi(0x201d400), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
200b51c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
200b520: 80 a0 60 00 cmp %g1, 0
200b524: 02 80 00 08 be 200b544 <_User_extensions_Thread_create+0x48>
200b528: 84 16 e0 50 or %i3, 0x50, %g2
status = (*the_extension->Callouts.thread_create)(
200b52c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200b530: 9f c0 40 00 call %g1
200b534: 92 10 00 18 mov %i0, %o1
_Thread_Executing,
the_thread
);
if ( !status )
200b538: 80 8a 20 ff btst 0xff, %o0
200b53c: 22 80 00 0a be,a 200b564 <_User_extensions_Thread_create+0x68>
200b540: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200b544: fa 07 40 00 ld [ %i5 ], %i5
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
200b548: 80 a7 40 1c cmp %i5, %i4
200b54c: 32 bf ff f5 bne,a 200b520 <_User_extensions_Thread_create+0x24>
200b550: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
200b554: b0 10 20 01 mov 1, %i0
}
200b558: b0 0e 20 01 and %i0, 1, %i0
200b55c: 81 c7 e0 08 ret
200b560: 81 e8 00 00 restore
200b564: b0 0e 20 01 and %i0, 1, %i0
200b568: 81 c7 e0 08 ret
200b56c: 81 e8 00 00 restore
0200b570 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
200b570: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last(
Chain_Control *the_chain
)
{
return _Chain_Tail( the_chain )->previous;
200b574: 39 00 80 75 sethi %hi(0x201d400), %i4
200b578: b8 17 20 08 or %i4, 8, %i4 ! 201d408 <_User_extensions_List>
200b57c: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200b580: 80 a7 40 1c cmp %i5, %i4
200b584: 02 80 00 0d be 200b5b8 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
200b588: 37 00 80 75 sethi %hi(0x201d400), %i3
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
200b58c: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
200b590: 80 a0 60 00 cmp %g1, 0
200b594: 02 80 00 05 be 200b5a8 <_User_extensions_Thread_delete+0x38>
200b598: 84 16 e0 50 or %i3, 0x50, %g2
(*the_extension->Callouts.thread_delete)(
200b59c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200b5a0: 9f c0 40 00 call %g1
200b5a4: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200b5a8: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200b5ac: 80 a7 40 1c cmp %i5, %i4
200b5b0: 32 bf ff f8 bne,a 200b590 <_User_extensions_Thread_delete+0x20>
200b5b4: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
200b5b8: 81 c7 e0 08 ret
200b5bc: 81 e8 00 00 restore
0200b460 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
200b460: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last(
Chain_Control *the_chain
)
{
return _Chain_Tail( the_chain )->previous;
200b464: 39 00 80 75 sethi %hi(0x201d400), %i4
200b468: b8 17 20 08 or %i4, 8, %i4 ! 201d408 <_User_extensions_List>
200b46c: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200b470: 80 a7 40 1c cmp %i5, %i4
200b474: 02 80 00 0c be 200b4a4 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
200b478: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
200b47c: c2 07 60 2c ld [ %i5 + 0x2c ], %g1
200b480: 80 a0 60 00 cmp %g1, 0
200b484: 02 80 00 04 be 200b494 <_User_extensions_Thread_exitted+0x34>
200b488: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
200b48c: 9f c0 40 00 call %g1
200b490: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200b494: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200b498: 80 a7 40 1c cmp %i5, %i4
200b49c: 32 bf ff f9 bne,a 200b480 <_User_extensions_Thread_exitted+0x20>
200b4a0: c2 07 60 2c ld [ %i5 + 0x2c ], %g1
200b4a4: 81 c7 e0 08 ret
200b4a8: 81 e8 00 00 restore
0200be1c <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
200be1c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200be20: 39 00 80 77 sethi %hi(0x201dc00), %i4
200be24: fa 07 23 38 ld [ %i4 + 0x338 ], %i5 ! 201df38 <_User_extensions_List>
200be28: b8 17 23 38 or %i4, 0x338, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200be2c: b8 07 20 04 add %i4, 4, %i4
200be30: 80 a7 40 1c cmp %i5, %i4
200be34: 02 80 00 0d be 200be68 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
200be38: 37 00 80 77 sethi %hi(0x201dc00), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
200be3c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200be40: 80 a0 60 00 cmp %g1, 0
200be44: 02 80 00 05 be 200be58 <_User_extensions_Thread_restart+0x3c>
200be48: 84 16 e3 80 or %i3, 0x380, %g2
(*the_extension->Callouts.thread_restart)(
200be4c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200be50: 9f c0 40 00 call %g1
200be54: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200be58: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200be5c: 80 a7 40 1c cmp %i5, %i4
200be60: 32 bf ff f8 bne,a 200be40 <_User_extensions_Thread_restart+0x24>
200be64: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200be68: 81 c7 e0 08 ret
200be6c: 81 e8 00 00 restore
0200b5c0 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
200b5c0: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200b5c4: 39 00 80 75 sethi %hi(0x201d400), %i4
200b5c8: fa 07 20 08 ld [ %i4 + 8 ], %i5 ! 201d408 <_User_extensions_List>
200b5cc: b8 17 20 08 or %i4, 8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200b5d0: b8 07 20 04 add %i4, 4, %i4
200b5d4: 80 a7 40 1c cmp %i5, %i4
200b5d8: 02 80 00 0d be 200b60c <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
200b5dc: 37 00 80 75 sethi %hi(0x201d400), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
200b5e0: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b5e4: 80 a0 60 00 cmp %g1, 0
200b5e8: 02 80 00 05 be 200b5fc <_User_extensions_Thread_start+0x3c>
200b5ec: 84 16 e0 50 or %i3, 0x50, %g2
(*the_extension->Callouts.thread_start)(
200b5f0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200b5f4: 9f c0 40 00 call %g1
200b5f8: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200b5fc: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200b600: 80 a7 40 1c cmp %i5, %i4
200b604: 32 bf ff f8 bne,a 200b5e4 <_User_extensions_Thread_start+0x24>
200b608: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200b60c: 81 c7 e0 08 ret
200b610: 81 e8 00 00 restore
0200b614 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
200b614: 9d e3 bf a0 save %sp, -96, %sp
200b618: 39 00 80 74 sethi %hi(0x201d000), %i4
200b61c: fa 07 22 34 ld [ %i4 + 0x234 ], %i5 ! 201d234 <_User_extensions_Switches_list>
200b620: b8 17 22 34 or %i4, 0x234, %i4
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
200b624: b8 07 20 04 add %i4, 4, %i4
200b628: 80 a7 40 1c cmp %i5, %i4
200b62c: 02 80 00 0a be 200b654 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
200b630: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
200b634: c2 07 60 08 ld [ %i5 + 8 ], %g1
200b638: 90 10 00 18 mov %i0, %o0
200b63c: 9f c0 40 00 call %g1
200b640: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
200b644: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
200b648: 80 a7 40 1c cmp %i5, %i4
200b64c: 32 bf ff fb bne,a 200b638 <_User_extensions_Thread_switch+0x24>
200b650: c2 07 60 08 ld [ %i5 + 8 ], %g1
200b654: 81 c7 e0 08 ret
200b658: 81 e8 00 00 restore
0200d060 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200d060: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200d064: 7f ff d9 0e call 200349c <sparc_disable_interrupts>
200d068: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200d06c: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200d070: b8 06 20 04 add %i0, 4, %i4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200d074: 80 a0 40 1c cmp %g1, %i4
200d078: 02 80 00 1f be 200d0f4 <_Watchdog_Adjust+0x94>
200d07c: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200d080: 12 80 00 1f bne 200d0fc <_Watchdog_Adjust+0x9c>
200d084: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200d088: 80 a6 a0 00 cmp %i2, 0
200d08c: 02 80 00 1a be 200d0f4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200d090: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200d094: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200d098: 80 a6 80 02 cmp %i2, %g2
200d09c: 1a 80 00 0a bcc 200d0c4 <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN
200d0a0: b6 10 20 01 mov 1, %i3
_Watchdog_First( header )->delta_interval -= units;
200d0a4: 10 80 00 1d b 200d118 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
200d0a8: 84 20 80 1a sub %g2, %i2, %g2 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200d0ac: 02 80 00 12 be 200d0f4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200d0b0: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200d0b4: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200d0b8: 80 a0 80 1a cmp %g2, %i2
200d0bc: 38 80 00 17 bgu,a 200d118 <_Watchdog_Adjust+0xb8>
200d0c0: 84 20 80 1a sub %g2, %i2, %g2
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200d0c4: f6 20 60 10 st %i3, [ %g1 + 0x10 ]
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
200d0c8: b4 26 80 02 sub %i2, %g2, %i2
_Watchdog_First( header )->delta_interval = 1;
_ISR_Enable( level );
200d0cc: 7f ff d8 f8 call 20034ac <sparc_enable_interrupts>
200d0d0: 01 00 00 00 nop
_Watchdog_Tickle( header );
200d0d4: 40 00 00 a8 call 200d374 <_Watchdog_Tickle>
200d0d8: 90 10 00 18 mov %i0, %o0
_ISR_Disable( level );
200d0dc: 7f ff d8 f0 call 200349c <sparc_disable_interrupts>
200d0e0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200d0e4: c2 06 00 00 ld [ %i0 ], %g1
if ( _Chain_Is_empty( header ) )
200d0e8: 80 a7 00 01 cmp %i4, %g1
200d0ec: 12 bf ff f0 bne 200d0ac <_Watchdog_Adjust+0x4c>
200d0f0: 80 a6 a0 00 cmp %i2, 0
}
break;
}
}
_ISR_Enable( level );
200d0f4: 7f ff d8 ee call 20034ac <sparc_enable_interrupts>
200d0f8: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200d0fc: 12 bf ff fe bne 200d0f4 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200d100: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200d104: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200d108: b4 00 80 1a add %g2, %i2, %i2
200d10c: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200d110: 7f ff d8 e7 call 20034ac <sparc_enable_interrupts>
200d114: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200d118: 10 bf ff f7 b 200d0f4 <_Watchdog_Adjust+0x94>
200d11c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
0200b7d8 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200b7d8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200b7dc: 7f ff db e2 call 2002764 <sparc_disable_interrupts>
200b7e0: 01 00 00 00 nop
previous_state = the_watchdog->state;
200b7e4: fa 06 20 08 ld [ %i0 + 8 ], %i5
switch ( previous_state ) {
200b7e8: 80 a7 60 01 cmp %i5, 1
200b7ec: 02 80 00 2a be 200b894 <_Watchdog_Remove+0xbc>
200b7f0: 03 00 80 74 sethi %hi(0x201d000), %g1
200b7f4: 1a 80 00 09 bcc 200b818 <_Watchdog_Remove+0x40>
200b7f8: 80 a7 60 03 cmp %i5, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b7fc: 03 00 80 74 sethi %hi(0x201d000), %g1
200b800: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 201d328 <_Watchdog_Ticks_since_boot>
200b804: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200b808: 7f ff db db call 2002774 <sparc_enable_interrupts>
200b80c: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200b810: 81 c7 e0 08 ret
200b814: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
200b818: 18 bf ff fa bgu 200b800 <_Watchdog_Remove+0x28> <== NEVER TAKEN
200b81c: 03 00 80 74 sethi %hi(0x201d000), %g1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_Next(
Watchdog_Control *the_watchdog
)
{
return ( (Watchdog_Control *) the_watchdog->Node.next );
200b820: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200b824: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200b828: c4 00 40 00 ld [ %g1 ], %g2
200b82c: 80 a0 a0 00 cmp %g2, 0
200b830: 02 80 00 07 be 200b84c <_Watchdog_Remove+0x74>
200b834: 05 00 80 74 sethi %hi(0x201d000), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200b838: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200b83c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
200b840: 84 00 c0 02 add %g3, %g2, %g2
200b844: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200b848: 05 00 80 74 sethi %hi(0x201d000), %g2
200b84c: c4 00 a3 24 ld [ %g2 + 0x324 ], %g2 ! 201d324 <_Watchdog_Sync_count>
200b850: 80 a0 a0 00 cmp %g2, 0
200b854: 22 80 00 07 be,a 200b870 <_Watchdog_Remove+0x98>
200b858: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200b85c: 05 00 80 75 sethi %hi(0x201d400), %g2
200b860: c6 00 a0 58 ld [ %g2 + 0x58 ], %g3 ! 201d458 <_Per_CPU_Information+0x8>
200b864: 05 00 80 74 sethi %hi(0x201d000), %g2
200b868: c6 20 a2 c4 st %g3, [ %g2 + 0x2c4 ] ! 201d2c4 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200b86c: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
200b870: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200b874: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b878: 03 00 80 74 sethi %hi(0x201d000), %g1
200b87c: c2 00 63 28 ld [ %g1 + 0x328 ], %g1 ! 201d328 <_Watchdog_Ticks_since_boot>
200b880: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200b884: 7f ff db bc call 2002774 <sparc_enable_interrupts>
200b888: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200b88c: 81 c7 e0 08 ret
200b890: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b894: c2 00 63 28 ld [ %g1 + 0x328 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
200b898: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200b89c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200b8a0: 7f ff db b5 call 2002774 <sparc_enable_interrupts>
200b8a4: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200b8a8: 81 c7 e0 08 ret
200b8ac: 81 e8 00 00 restore
0200ca7c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200ca7c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200ca80: 7f ff d9 85 call 2003094 <sparc_disable_interrupts>
200ca84: 01 00 00 00 nop
200ca88: b6 10 00 08 mov %o0, %i3
printk( "Watchdog Chain: %s %p\n", name, header );
200ca8c: 11 00 80 74 sethi %hi(0x201d000), %o0
200ca90: 94 10 00 19 mov %i1, %o2
200ca94: 92 10 00 18 mov %i0, %o1
200ca98: 7f ff e1 91 call 20050dc <printk>
200ca9c: 90 12 22 20 or %o0, 0x220, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200caa0: fa 06 40 00 ld [ %i1 ], %i5
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200caa4: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200caa8: 80 a7 40 19 cmp %i5, %i1
200caac: 02 80 00 0f be 200cae8 <_Watchdog_Report_chain+0x6c>
200cab0: 11 00 80 74 sethi %hi(0x201d000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200cab4: 92 10 00 1d mov %i5, %o1
200cab8: 40 00 00 0f call 200caf4 <_Watchdog_Report>
200cabc: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200cac0: fa 07 40 00 ld [ %i5 ], %i5
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200cac4: 80 a7 40 19 cmp %i5, %i1
200cac8: 12 bf ff fc bne 200cab8 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200cacc: 92 10 00 1d mov %i5, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200cad0: 11 00 80 74 sethi %hi(0x201d000), %o0
200cad4: 92 10 00 18 mov %i0, %o1
200cad8: 7f ff e1 81 call 20050dc <printk>
200cadc: 90 12 22 38 or %o0, 0x238, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200cae0: 7f ff d9 71 call 20030a4 <sparc_enable_interrupts>
200cae4: 91 e8 00 1b restore %g0, %i3, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200cae8: 7f ff e1 7d call 20050dc <printk>
200caec: 90 12 22 48 or %o0, 0x248, %o0
200caf0: 30 bf ff fc b,a 200cae0 <_Watchdog_Report_chain+0x64>
0200b7fc <_Workspace_String_duplicate>:
char *_Workspace_String_duplicate(
const char *string,
size_t len
)
{
200b7fc: 9d e3 bf a0 save %sp, -96, %sp
char *dup = _Workspace_Allocate(len + 1);
200b800: 7f ff ff e2 call 200b788 <_Workspace_Allocate>
200b804: 90 06 60 01 add %i1, 1, %o0
if (dup != NULL) {
200b808: ba 92 20 00 orcc %o0, 0, %i5
200b80c: 02 80 00 05 be 200b820 <_Workspace_String_duplicate+0x24> <== NEVER TAKEN
200b810: 92 10 00 18 mov %i0, %o1
dup [len] = '\0';
200b814: c0 2f 40 19 clrb [ %i5 + %i1 ]
memcpy(dup, string, len);
200b818: 40 00 12 a5 call 20102ac <memcpy>
200b81c: 94 10 00 19 mov %i1, %o2
}
return dup;
}
200b820: 81 c7 e0 08 ret
200b824: 91 e8 00 1d restore %g0, %i5, %o0
02008dec <check_and_merge>:
rtems_rbtree_control *chunk_tree,
rtems_rbheap_chunk *a,
rtems_rbheap_chunk *b
)
{
if (b != NULL_PAGE && rtems_rbheap_is_chunk_free(b)) {
2008dec: 80 a2 ff f8 cmp %o3, -8
2008df0: 02 80 00 23 be 2008e7c <check_and_merge+0x90>
2008df4: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008df8: c2 02 c0 00 ld [ %o3 ], %g1
2008dfc: 80 a0 60 00 cmp %g1, 0
2008e00: 22 80 00 1c be,a 2008e70 <check_and_merge+0x84>
2008e04: c4 02 e0 04 ld [ %o3 + 4 ], %g2
if (b->begin < a->begin) {
2008e08: c6 02 e0 18 ld [ %o3 + 0x18 ], %g3
2008e0c: c4 02 a0 18 ld [ %o2 + 0x18 ], %g2
2008e10: 80 a0 c0 02 cmp %g3, %g2
2008e14: 3a 80 00 07 bcc,a 2008e30 <check_and_merge+0x44>
2008e18: c8 02 a0 1c ld [ %o2 + 0x1c ], %g4
2008e1c: 84 10 00 0a mov %o2, %g2
2008e20: c2 02 80 00 ld [ %o2 ], %g1
2008e24: 94 10 00 0b mov %o3, %o2
2008e28: 96 10 00 02 mov %g2, %o3
a = b;
b = t;
}
a->size += b->size;
2008e2c: c8 02 a0 1c ld [ %o2 + 0x1c ], %g4
2008e30: c6 02 e0 1c ld [ %o3 + 0x1c ], %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2008e34: c4 02 e0 04 ld [ %o3 + 4 ], %g2
2008e38: 86 01 00 03 add %g4, %g3, %g3
2008e3c: c6 22 a0 1c st %g3, [ %o2 + 0x1c ]
next->previous = previous;
previous->next = next;
2008e40: c2 20 80 00 st %g1, [ %g2 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
2008e44: c4 20 60 04 st %g2, [ %g1 + 4 ]
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008e48: c2 02 00 00 ld [ %o0 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008e4c: d0 22 e0 04 st %o0, [ %o3 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008e50: d6 22 00 00 st %o3, [ %o0 ]
the_node->next = before_node;
2008e54: c2 22 c0 00 st %g1, [ %o3 ]
rtems_chain_extract_unprotected(&b->chain_node);
add_to_chain(free_chain, b);
_RBTree_Extract_unprotected(chunk_tree, &b->tree_node);
2008e58: 90 10 00 09 mov %o1, %o0
before_node->previous = the_node;
2008e5c: d6 20 60 04 st %o3, [ %g1 + 4 ]
2008e60: 92 02 e0 08 add %o3, 8, %o1
2008e64: 82 13 c0 00 mov %o7, %g1
2008e68: 40 00 07 1c call 200aad8 <_RBTree_Extract_unprotected>
2008e6c: 9e 10 40 00 mov %g1, %o7
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2008e70: 80 a0 a0 00 cmp %g2, 0
2008e74: 32 bf ff e6 bne,a 2008e0c <check_and_merge+0x20> <== NEVER TAKEN
2008e78: c6 02 e0 18 ld [ %o3 + 0x18 ], %g3 <== NOT EXECUTED
2008e7c: 81 c3 e0 08 retl
02008a0c <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2008a0c: 9d e3 bf 98 save %sp, -104, %sp
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2008a10: 40 00 01 8e call 2009048 <_Chain_Get>
2008a14: 90 10 00 18 mov %i0, %o0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2008a18: 92 10 20 00 clr %o1
2008a1c: ba 10 00 08 mov %o0, %i5
2008a20: 94 10 00 1a mov %i2, %o2
2008a24: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2008a28: 80 a7 60 00 cmp %i5, 0
2008a2c: 12 80 00 0a bne 2008a54 <rtems_chain_get_with_wait+0x48>
2008a30: 96 07 bf fc add %fp, -4, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
2008a34: 7f ff fc e9 call 2007dd8 <rtems_event_receive>
2008a38: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
2008a3c: 80 a2 20 00 cmp %o0, 0
2008a40: 02 bf ff f4 be 2008a10 <rtems_chain_get_with_wait+0x4> <== NEVER TAKEN
2008a44: 01 00 00 00 nop
timeout,
&out
);
}
*node_ptr = node;
2008a48: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
2008a4c: 81 c7 e0 08 ret
2008a50: 91 e8 00 08 restore %g0, %o0, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2008a54: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
2008a58: fa 26 c0 00 st %i5, [ %i3 ]
return sc;
}
2008a5c: 81 c7 e0 08 ret
2008a60: 91 e8 00 08 restore %g0, %o0, %o0
0200998c <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
200998c: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2009990: 03 00 80 86 sethi %hi(0x2021800), %g1
2009994: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 20219e8 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2009998: ba 10 00 18 mov %i0, %i5
rtems_device_major_number major_limit = _IO_Number_of_drivers;
200999c: 03 00 80 86 sethi %hi(0x2021800), %g1
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
20099a0: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
20099a4: c8 00 62 84 ld [ %g1 + 0x284 ], %g4
if ( rtems_interrupt_is_in_progress() )
20099a8: 80 a0 a0 00 cmp %g2, 0
20099ac: 12 80 00 20 bne 2009a2c <rtems_io_register_driver+0xa0>
20099b0: b0 10 20 12 mov 0x12, %i0
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
20099b4: 80 a6 a0 00 cmp %i2, 0
20099b8: 02 80 00 22 be 2009a40 <rtems_io_register_driver+0xb4>
20099bc: 80 a6 60 00 cmp %i1, 0
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
20099c0: 02 80 00 20 be 2009a40 <rtems_io_register_driver+0xb4>
20099c4: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
20099c8: c4 06 40 00 ld [ %i1 ], %g2
20099cc: 80 a0 a0 00 cmp %g2, 0
20099d0: 22 80 00 19 be,a 2009a34 <rtems_io_register_driver+0xa8>
20099d4: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
20099d8: 80 a1 00 1d cmp %g4, %i5
20099dc: 08 80 00 14 bleu 2009a2c <rtems_io_register_driver+0xa0>
20099e0: b0 10 20 0a mov 0xa, %i0
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
20099e4: 05 00 80 85 sethi %hi(0x2021400), %g2
20099e8: c8 00 a3 c0 ld [ %g2 + 0x3c0 ], %g4 ! 20217c0 <_Thread_Dispatch_disable_level>
20099ec: 88 01 20 01 inc %g4
20099f0: c8 20 a3 c0 st %g4, [ %g2 + 0x3c0 ]
return _Thread_Dispatch_disable_level;
20099f4: c4 00 a3 c0 ld [ %g2 + 0x3c0 ], %g2
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
20099f8: 80 a7 60 00 cmp %i5, 0
20099fc: 02 80 00 13 be 2009a48 <rtems_io_register_driver+0xbc>
2009a00: 39 00 80 86 sethi %hi(0x2021800), %i4
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
2009a04: c8 07 22 88 ld [ %i4 + 0x288 ], %g4 ! 2021a88 <_IO_Driver_address_table>
2009a08: 85 2f 60 03 sll %i5, 3, %g2
2009a0c: b7 2f 60 05 sll %i5, 5, %i3
2009a10: 82 26 c0 02 sub %i3, %g2, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009a14: f2 01 00 01 ld [ %g4 + %g1 ], %i1
2009a18: 80 a6 60 00 cmp %i1, 0
2009a1c: 02 80 00 3a be 2009b04 <rtems_io_register_driver+0x178>
2009a20: 82 01 00 01 add %g4, %g1, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
2009a24: 40 00 08 45 call 200bb38 <_Thread_Enable_dispatch>
2009a28: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
2009a2c: 81 c7 e0 08 ret
2009a30: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009a34: 80 a0 a0 00 cmp %g2, 0
2009a38: 12 bf ff e9 bne 20099dc <rtems_io_register_driver+0x50>
2009a3c: 80 a1 00 1d cmp %g4, %i5
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
2009a40: 81 c7 e0 08 ret
2009a44: 91 e8 20 09 restore %g0, 9, %o0
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
2009a48: c8 00 62 84 ld [ %g1 + 0x284 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2009a4c: 80 a1 20 00 cmp %g4, 0
2009a50: 02 80 00 33 be 2009b1c <rtems_io_register_driver+0x190> <== NEVER TAKEN
2009a54: c2 07 22 88 ld [ %i4 + 0x288 ], %g1
2009a58: 30 80 00 04 b,a 2009a68 <rtems_io_register_driver+0xdc>
2009a5c: 80 a7 40 04 cmp %i5, %g4
2009a60: 02 80 00 24 be 2009af0 <rtems_io_register_driver+0x164>
2009a64: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009a68: c4 00 40 00 ld [ %g1 ], %g2
2009a6c: 80 a0 a0 00 cmp %g2, 0
2009a70: 32 bf ff fb bne,a 2009a5c <rtems_io_register_driver+0xd0>
2009a74: ba 07 60 01 inc %i5
2009a78: c4 00 60 04 ld [ %g1 + 4 ], %g2
2009a7c: 80 a0 a0 00 cmp %g2, 0
2009a80: 32 bf ff f7 bne,a 2009a5c <rtems_io_register_driver+0xd0>
2009a84: ba 07 60 01 inc %i5
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2009a88: fa 26 80 00 st %i5, [ %i2 ]
2009a8c: 85 2f 60 03 sll %i5, 3, %g2
if ( m != n )
2009a90: 80 a1 00 1d cmp %g4, %i5
2009a94: 02 80 00 18 be 2009af4 <rtems_io_register_driver+0x168> <== NEVER TAKEN
2009a98: b7 2f 60 05 sll %i5, 5, %i3
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2009a9c: c8 00 c0 00 ld [ %g3 ], %g4
2009aa0: c2 07 22 88 ld [ %i4 + 0x288 ], %g1
2009aa4: 84 26 c0 02 sub %i3, %g2, %g2
2009aa8: c8 20 40 02 st %g4, [ %g1 + %g2 ]
2009aac: c8 00 e0 04 ld [ %g3 + 4 ], %g4
2009ab0: 82 00 40 02 add %g1, %g2, %g1
2009ab4: c8 20 60 04 st %g4, [ %g1 + 4 ]
2009ab8: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2009abc: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2009ac0: c4 20 60 08 st %g2, [ %g1 + 8 ]
2009ac4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2009ac8: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2009acc: c4 20 60 0c st %g2, [ %g1 + 0xc ]
2009ad0: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2009ad4: b0 10 00 1d mov %i5, %i0
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2009ad8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
2009adc: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
2009ae0: 40 00 08 16 call 200bb38 <_Thread_Enable_dispatch>
2009ae4: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
2009ae8: 40 00 20 30 call 2011ba8 <rtems_io_initialize>
2009aec: 81 e8 00 00 restore
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2009af0: fa 26 80 00 st %i5, [ %i2 ]
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2009af4: 40 00 08 11 call 200bb38 <_Thread_Enable_dispatch>
2009af8: b0 10 20 05 mov 5, %i0
return sc;
2009afc: 81 c7 e0 08 ret
2009b00: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2009b04: c2 00 60 04 ld [ %g1 + 4 ], %g1
2009b08: 80 a0 60 00 cmp %g1, 0
2009b0c: 12 bf ff c6 bne 2009a24 <rtems_io_register_driver+0x98>
2009b10: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2009b14: 10 bf ff e2 b 2009a9c <rtems_io_register_driver+0x110>
2009b18: fa 26 80 00 st %i5, [ %i2 ]
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2009b1c: 10 bf ff f6 b 2009af4 <rtems_io_register_driver+0x168> <== NOT EXECUTED
2009b20: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
0200ab34 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
200ab34: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
200ab38: 80 a6 20 00 cmp %i0, 0
200ab3c: 02 80 00 23 be 200abc8 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
200ab40: 37 00 80 7e sethi %hi(0x201f800), %i3
200ab44: b6 16 e3 f8 or %i3, 0x3f8, %i3 ! 201fbf8 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200ab48: b4 06 e0 0c add %i3, 0xc, %i2
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200ab4c: c2 06 c0 00 ld [ %i3 ], %g1
200ab50: 80 a0 60 00 cmp %g1, 0
200ab54: 22 80 00 1a be,a 200abbc <rtems_iterate_over_all_threads+0x88>
200ab58: b6 06 e0 04 add %i3, 4, %i3
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
200ab5c: f8 00 60 04 ld [ %g1 + 4 ], %i4
if ( !information )
200ab60: 80 a7 20 00 cmp %i4, 0
200ab64: 22 80 00 16 be,a 200abbc <rtems_iterate_over_all_threads+0x88>
200ab68: b6 06 e0 04 add %i3, 4, %i3
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200ab6c: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1
200ab70: 86 90 60 00 orcc %g1, 0, %g3
200ab74: 22 80 00 12 be,a 200abbc <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
200ab78: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED
200ab7c: ba 10 20 01 mov 1, %i5
the_thread = (Thread_Control *)information->local_table[ i ];
200ab80: c4 07 20 1c ld [ %i4 + 0x1c ], %g2
200ab84: 83 2f 60 02 sll %i5, 2, %g1
200ab88: c2 00 80 01 ld [ %g2 + %g1 ], %g1
if ( !the_thread )
200ab8c: 90 90 60 00 orcc %g1, 0, %o0
200ab90: 02 80 00 05 be 200aba4 <rtems_iterate_over_all_threads+0x70>
200ab94: ba 07 60 01 inc %i5
continue;
(*routine)(the_thread);
200ab98: 9f c6 00 00 call %i0
200ab9c: 01 00 00 00 nop
200aba0: c6 17 20 10 lduh [ %i4 + 0x10 ], %g3
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200aba4: 83 28 e0 10 sll %g3, 0x10, %g1
200aba8: 83 30 60 10 srl %g1, 0x10, %g1
200abac: 80 a0 40 1d cmp %g1, %i5
200abb0: 3a bf ff f5 bcc,a 200ab84 <rtems_iterate_over_all_threads+0x50>
200abb4: c4 07 20 1c ld [ %i4 + 0x1c ], %g2
200abb8: b6 06 e0 04 add %i3, 4, %i3
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200abbc: 80 a6 c0 1a cmp %i3, %i2
200abc0: 32 bf ff e4 bne,a 200ab50 <rtems_iterate_over_all_threads+0x1c>
200abc4: c2 06 c0 00 ld [ %i3 ], %g1
200abc8: 81 c7 e0 08 ret
200abcc: 81 e8 00 00 restore
020097a8 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
20097a8: 9d e3 bf a0 save %sp, -96, %sp
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
20097ac: 80 a6 a0 00 cmp %i2, 0
20097b0: 02 80 00 21 be 2009834 <rtems_object_get_class_information+0x8c>
20097b4: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
20097b8: 93 2e 60 10 sll %i1, 0x10, %o1
20097bc: 90 10 00 18 mov %i0, %o0
20097c0: 40 00 07 8b call 200b5ec <_Objects_Get_information>
20097c4: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
20097c8: 80 a2 20 00 cmp %o0, 0
20097cc: 02 80 00 1a be 2009834 <rtems_object_get_class_information+0x8c>
20097d0: 82 10 20 0a mov 0xa, %g1
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
20097d4: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20097d8: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
20097dc: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
20097e0: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20097e4: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
20097e8: c4 26 a0 04 st %g2, [ %i2 + 4 ]
info->auto_extend = obj_info->auto_extend;
20097ec: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20097f0: 80 a1 20 00 cmp %g4, 0
20097f4: 02 80 00 12 be 200983c <rtems_object_get_class_information+0x94><== NEVER TAKEN
20097f8: c8 26 a0 08 st %g4, [ %i2 + 8 ]
20097fc: fa 02 20 1c ld [ %o0 + 0x1c ], %i5
2009800: 86 10 20 01 mov 1, %g3
2009804: 82 10 20 01 mov 1, %g1
2009808: 84 10 20 00 clr %g2
if ( !obj_info->local_table[i] )
200980c: 87 28 e0 02 sll %g3, 2, %g3
2009810: c6 07 40 03 ld [ %i5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2009814: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
2009818: 80 a0 00 03 cmp %g0, %g3
200981c: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2009820: 80 a1 00 01 cmp %g4, %g1
2009824: 1a bf ff fa bcc 200980c <rtems_object_get_class_information+0x64>
2009828: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
200982c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
2009830: 82 10 20 00 clr %g1
}
2009834: 81 c7 e0 08 ret
2009838: 91 e8 00 01 restore %g0, %g1, %o0
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
200983c: 84 10 20 00 clr %g2 <== NOT EXECUTED
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
return RTEMS_SUCCESSFUL;
2009840: 82 10 20 00 clr %g1 <== NOT EXECUTED
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
2009844: 10 bf ff fc b 2009834 <rtems_object_get_class_information+0x8c><== NOT EXECUTED
2009848: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] <== NOT EXECUTED
02015758 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2015758: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
201575c: 80 a6 20 00 cmp %i0, 0
2015760: 12 80 00 04 bne 2015770 <rtems_partition_create+0x18>
2015764: 82 10 20 03 mov 3, %g1
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2015768: 81 c7 e0 08 ret
201576c: 91 e8 00 01 restore %g0, %g1, %o0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
return RTEMS_INVALID_NAME;
if ( !starting_address )
2015770: 80 a6 60 00 cmp %i1, 0
2015774: 02 bf ff fd be 2015768 <rtems_partition_create+0x10>
2015778: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
201577c: 80 a7 60 00 cmp %i5, 0
2015780: 02 bf ff fa be 2015768 <rtems_partition_create+0x10> <== NEVER TAKEN
2015784: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2015788: 02 bf ff f8 be 2015768 <rtems_partition_create+0x10>
201578c: 82 10 20 08 mov 8, %g1
2015790: 80 a6 a0 00 cmp %i2, 0
2015794: 02 bf ff f5 be 2015768 <rtems_partition_create+0x10>
2015798: 80 a6 80 1b cmp %i2, %i3
201579c: 0a bf ff f3 bcs 2015768 <rtems_partition_create+0x10>
20157a0: 80 8e e0 07 btst 7, %i3
20157a4: 12 bf ff f1 bne 2015768 <rtems_partition_create+0x10>
20157a8: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
20157ac: 12 bf ff ef bne 2015768 <rtems_partition_create+0x10>
20157b0: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
20157b4: 03 00 80 ed sethi %hi(0x203b400), %g1
20157b8: c4 00 61 20 ld [ %g1 + 0x120 ], %g2 ! 203b520 <_Thread_Dispatch_disable_level>
20157bc: 84 00 a0 01 inc %g2
20157c0: c4 20 61 20 st %g2, [ %g1 + 0x120 ]
return _Thread_Dispatch_disable_level;
20157c4: c2 00 61 20 ld [ %g1 + 0x120 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
20157c8: 23 00 80 ec sethi %hi(0x203b000), %l1
20157cc: 40 00 13 d6 call 201a724 <_Objects_Allocate>
20157d0: 90 14 63 14 or %l1, 0x314, %o0 ! 203b314 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
20157d4: a0 92 20 00 orcc %o0, 0, %l0
20157d8: 02 80 00 1a be 2015840 <rtems_partition_create+0xe8>
20157dc: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
20157e0: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
20157e4: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
20157e8: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
20157ec: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
20157f0: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
20157f4: 40 00 56 c2 call 202b2fc <.udiv>
20157f8: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20157fc: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2015800: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2015804: 96 10 00 1b mov %i3, %o3
2015808: b8 04 20 24 add %l0, 0x24, %i4
201580c: 40 00 0d 6e call 2018dc4 <_Chain_Initialize>
2015810: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2015814: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2015818: a2 14 63 14 or %l1, 0x314, %l1
201581c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2015820: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2015824: 85 28 a0 02 sll %g2, 2, %g2
2015828: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
201582c: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2015830: 40 00 19 21 call 201bcb4 <_Thread_Enable_dispatch>
2015834: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2015838: 10 bf ff cc b 2015768 <rtems_partition_create+0x10>
201583c: 82 10 20 00 clr %g1
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
2015840: 40 00 19 1d call 201bcb4 <_Thread_Enable_dispatch>
2015844: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2015848: 10 bf ff c8 b 2015768 <rtems_partition_create+0x10>
201584c: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
02015980 <rtems_partition_return_buffer>:
rtems_status_code rtems_partition_return_buffer(
rtems_id id,
void *buffer
)
{
2015980: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Partition_Control *)
2015984: 11 00 80 ec sethi %hi(0x203b000), %o0
2015988: 92 10 00 18 mov %i0, %o1
201598c: 90 12 23 14 or %o0, 0x314, %o0
2015990: 40 00 14 ca call 201acb8 <_Objects_Get>
2015994: 94 07 bf fc add %fp, -4, %o2
register Partition_Control *the_partition;
Objects_Locations location;
the_partition = _Partition_Get( id, &location );
switch ( location ) {
2015998: c2 07 bf fc ld [ %fp + -4 ], %g1
201599c: 80 a0 60 00 cmp %g1, 0
20159a0: 12 80 00 19 bne 2015a04 <rtems_partition_return_buffer+0x84>
20159a4: ba 10 00 08 mov %o0, %i5
)
{
void *starting;
void *ending;
starting = the_partition->starting_address;
20159a8: d0 02 20 10 ld [ %o0 + 0x10 ], %o0
20159ac: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
20159b0: 82 02 00 01 add %o0, %g1, %g1
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
20159b4: 80 a6 40 01 cmp %i1, %g1
20159b8: 18 80 00 15 bgu 2015a0c <rtems_partition_return_buffer+0x8c><== NEVER TAKEN
20159bc: 80 a6 40 08 cmp %i1, %o0
20159c0: 0a 80 00 13 bcs 2015a0c <rtems_partition_return_buffer+0x8c>
20159c4: 01 00 00 00 nop
offset = (uint32_t) _Addresses_Subtract(
the_buffer,
the_partition->starting_address
);
return ((offset % the_partition->buffer_size) == 0);
20159c8: d2 07 60 18 ld [ %i5 + 0x18 ], %o1
20159cc: 40 00 56 f8 call 202b5ac <.urem>
20159d0: 90 26 40 08 sub %i1, %o0, %o0
starting = the_partition->starting_address;
ending = _Addresses_Add_offset( starting, the_partition->length );
return (
_Addresses_Is_in_range( the_buffer, starting, ending ) &&
20159d4: 80 a2 20 00 cmp %o0, 0
20159d8: 12 80 00 0d bne 2015a0c <rtems_partition_return_buffer+0x8c>
20159dc: 90 07 60 24 add %i5, 0x24, %o0
RTEMS_INLINE_ROUTINE void _Partition_Free_buffer (
Partition_Control *the_partition,
Chain_Node *the_buffer
)
{
_Chain_Append( &the_partition->Memory, the_buffer );
20159e0: 40 00 0c de call 2018d58 <_Chain_Append>
20159e4: 92 10 00 19 mov %i1, %o1
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
20159e8: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
20159ec: b0 10 20 00 clr %i0
switch ( location ) {
case OBJECTS_LOCAL:
if ( _Partition_Is_buffer_valid( buffer, the_partition ) ) {
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
20159f0: 82 00 7f ff add %g1, -1, %g1
_Thread_Enable_dispatch();
20159f4: 40 00 18 b0 call 201bcb4 <_Thread_Enable_dispatch>
20159f8: c2 27 60 20 st %g1, [ %i5 + 0x20 ]
20159fc: 81 c7 e0 08 ret
2015a00: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2015a04: 81 c7 e0 08 ret
2015a08: 91 e8 20 04 restore %g0, 4, %o0
_Partition_Free_buffer( the_partition, buffer );
the_partition->number_of_used_blocks -= 1;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
2015a0c: 40 00 18 aa call 201bcb4 <_Thread_Enable_dispatch>
2015a10: b0 10 20 09 mov 9, %i0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015a14: 81 c7 e0 08 ret
2015a18: 81 e8 00 00 restore
0203716c <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
203716c: 9d e3 bf 98 save %sp, -104, %sp
2037170: 11 00 81 97 sethi %hi(0x2065c00), %o0
2037174: 92 10 00 18 mov %i0, %o1
2037178: 90 12 23 00 or %o0, 0x300, %o0
203717c: 7f ff 49 1f call 20095f8 <_Objects_Get>
2037180: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2037184: c2 07 bf fc ld [ %fp + -4 ], %g1
2037188: 80 a0 60 00 cmp %g1, 0
203718c: 12 80 00 0d bne 20371c0 <rtems_rate_monotonic_period+0x54>
2037190: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2037194: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2037198: 39 00 81 97 sethi %hi(0x2065c00), %i4
203719c: b8 17 20 e0 or %i4, 0xe0, %i4 ! 2065ce0 <_Per_CPU_Information>
20371a0: c2 07 20 0c ld [ %i4 + 0xc ], %g1
20371a4: 80 a0 80 01 cmp %g2, %g1
20371a8: 02 80 00 08 be 20371c8 <rtems_rate_monotonic_period+0x5c>
20371ac: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20371b0: 7f ff 4c e5 call 200a544 <_Thread_Enable_dispatch>
20371b4: b0 10 20 17 mov 0x17, %i0
20371b8: 81 c7 e0 08 ret
20371bc: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20371c0: 81 c7 e0 08 ret
20371c4: 91 e8 20 04 restore %g0, 4, %o0
if ( !_Thread_Is_executing( the_period->owner ) ) {
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
20371c8: 12 80 00 0e bne 2037200 <rtems_rate_monotonic_period+0x94>
20371cc: 01 00 00 00 nop
switch ( the_period->state ) {
20371d0: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
20371d4: 80 a0 60 04 cmp %g1, 4
20371d8: 18 80 00 06 bgu 20371f0 <rtems_rate_monotonic_period+0x84><== NEVER TAKEN
20371dc: b0 10 20 00 clr %i0
20371e0: 83 28 60 02 sll %g1, 2, %g1
20371e4: 05 00 81 7d sethi %hi(0x205f400), %g2
20371e8: 84 10 a3 48 or %g2, 0x348, %g2 ! 205f748 <CSWTCH.23>
20371ec: f0 00 80 01 ld [ %g2 + %g1 ], %i0
id,
NULL
);
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20371f0: 7f ff 4c d5 call 200a544 <_Thread_Enable_dispatch>
20371f4: 01 00 00 00 nop
20371f8: 81 c7 e0 08 ret
20371fc: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
2037200: 7f ff 2c cd call 2002534 <sparc_disable_interrupts>
2037204: 01 00 00 00 nop
2037208: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
203720c: f6 07 60 38 ld [ %i5 + 0x38 ], %i3
2037210: 80 a6 e0 00 cmp %i3, 0
2037214: 02 80 00 1c be 2037284 <rtems_rate_monotonic_period+0x118>
2037218: 80 a6 e0 02 cmp %i3, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
203721c: 02 80 00 2e be 20372d4 <rtems_rate_monotonic_period+0x168>
2037220: 80 a6 e0 04 cmp %i3, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
2037224: 12 bf ff e5 bne 20371b8 <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
2037228: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
203722c: 7f ff ff 60 call 2036fac <_Rate_monotonic_Update_statistics>
2037230: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
2037234: 7f ff 2c c4 call 2002544 <sparc_enable_interrupts>
2037238: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
203723c: 82 10 20 02 mov 2, %g1
2037240: 92 07 60 10 add %i5, 0x10, %o1
2037244: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
2037248: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
203724c: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2037250: 11 00 81 96 sethi %hi(0x2065800), %o0
2037254: 7f ff 50 31 call 200b318 <_Watchdog_Insert>
2037258: 90 12 23 68 or %o0, 0x368, %o0 ! 2065b68 <_Watchdog_Ticks_chain>
203725c: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
2037260: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
2037264: 03 00 81 85 sethi %hi(0x2061400), %g1
2037268: c2 00 63 30 ld [ %g1 + 0x330 ], %g1 ! 2061730 <_Scheduler+0x34>
203726c: 9f c0 40 00 call %g1
2037270: b0 10 20 06 mov 6, %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
2037274: 7f ff 4c b4 call 200a544 <_Thread_Enable_dispatch>
2037278: 01 00 00 00 nop
203727c: 81 c7 e0 08 ret
2037280: 81 e8 00 00 restore
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
2037284: 7f ff 2c b0 call 2002544 <sparc_enable_interrupts>
2037288: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
203728c: 90 10 00 1d mov %i5, %o0
2037290: 7f ff ff 96 call 20370e8 <_Rate_monotonic_Initiate_statistics>
2037294: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
2037298: 82 10 20 02 mov 2, %g1
203729c: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20372a0: 03 00 80 dc sethi %hi(0x2037000), %g1
20372a4: 82 10 63 48 or %g1, 0x348, %g1 ! 2037348 <_Rate_monotonic_Timeout>
the_watchdog->id = id;
20372a8: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20372ac: 92 07 60 10 add %i5, 0x10, %o1
20372b0: 11 00 81 96 sethi %hi(0x2065800), %o0
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20372b4: c0 27 60 18 clr [ %i5 + 0x18 ]
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20372b8: 90 12 23 68 or %o0, 0x368, %o0
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
20372bc: c0 27 60 34 clr [ %i5 + 0x34 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20372c0: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20372c4: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20372c8: 7f ff 50 14 call 200b318 <_Watchdog_Insert>
20372cc: b0 10 20 00 clr %i0
20372d0: 30 bf ff c8 b,a 20371f0 <rtems_rate_monotonic_period+0x84>
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
20372d4: 7f ff ff 36 call 2036fac <_Rate_monotonic_Update_statistics>
20372d8: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20372dc: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20372e0: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20372e4: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
20372e8: 7f ff 2c 97 call 2002544 <sparc_enable_interrupts>
20372ec: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20372f0: c2 07 20 0c ld [ %i4 + 0xc ], %g1
20372f4: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20372f8: 90 10 00 01 mov %g1, %o0
20372fc: 13 00 00 10 sethi %hi(0x4000), %o1
2037300: 7f ff 4e e7 call 200ae9c <_Thread_Set_state>
2037304: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2037308: 7f ff 2c 8b call 2002534 <sparc_disable_interrupts>
203730c: 01 00 00 00 nop
local_state = the_period->state;
2037310: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
2037314: f6 27 60 38 st %i3, [ %i5 + 0x38 ]
_ISR_Enable( level );
2037318: 7f ff 2c 8b call 2002544 <sparc_enable_interrupts>
203731c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2037320: 80 a6 a0 03 cmp %i2, 3
2037324: 22 80 00 06 be,a 203733c <rtems_rate_monotonic_period+0x1d0>
2037328: d0 07 20 0c ld [ %i4 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
203732c: 7f ff 4c 86 call 200a544 <_Thread_Enable_dispatch>
2037330: b0 10 20 00 clr %i0
2037334: 81 c7 e0 08 ret
2037338: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
203733c: 7f ff 4b 8f call 200a178 <_Thread_Clear_state>
2037340: 13 00 00 10 sethi %hi(0x4000), %o1
2037344: 30 bf ff fa b,a 203732c <rtems_rate_monotonic_period+0x1c0>
02028ce0 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2028ce0: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2028ce4: 80 a6 60 00 cmp %i1, 0
2028ce8: 02 80 00 48 be 2028e08 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
2028cec: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2028cf0: 13 00 81 72 sethi %hi(0x205c800), %o1
2028cf4: 9f c6 40 00 call %i1
2028cf8: 92 12 62 28 or %o1, 0x228, %o1 ! 205ca28 <_TOD_Days_per_month+0x68>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2028cfc: 90 10 00 18 mov %i0, %o0
2028d00: 13 00 81 72 sethi %hi(0x205c800), %o1
2028d04: 9f c6 40 00 call %i1
2028d08: 92 12 62 48 or %o1, 0x248, %o1 ! 205ca48 <_TOD_Days_per_month+0x88>
(*print)( context, "--- Wall times are in seconds ---\n" );
2028d0c: 90 10 00 18 mov %i0, %o0
2028d10: 13 00 81 72 sethi %hi(0x205c800), %o1
2028d14: 9f c6 40 00 call %i1
2028d18: 92 12 62 70 or %o1, 0x270, %o1 ! 205ca70 <_TOD_Days_per_month+0xb0>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2028d1c: 90 10 00 18 mov %i0, %o0
2028d20: 13 00 81 72 sethi %hi(0x205c800), %o1
2028d24: 9f c6 40 00 call %i1
2028d28: 92 12 62 98 or %o1, 0x298, %o1 ! 205ca98 <_TOD_Days_per_month+0xd8>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2028d2c: 90 10 00 18 mov %i0, %o0
2028d30: 13 00 81 72 sethi %hi(0x205c800), %o1
2028d34: 9f c6 40 00 call %i1
2028d38: 92 12 62 e8 or %o1, 0x2e8, %o1 ! 205cae8 <_TOD_Days_per_month+0x128>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028d3c: 39 00 81 97 sethi %hi(0x2065c00), %i4
2028d40: b8 17 23 00 or %i4, 0x300, %i4 ! 2065f00 <_Rate_monotonic_Information>
2028d44: fa 07 20 08 ld [ %i4 + 8 ], %i5
2028d48: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2028d4c: 80 a7 40 01 cmp %i5, %g1
2028d50: 18 80 00 2e bgu 2028e08 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
2028d54: 35 00 81 72 sethi %hi(0x205c800), %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2028d58: 27 00 81 72 sethi %hi(0x205c800), %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2028d5c: 25 00 81 72 sethi %hi(0x205c800), %l2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2028d60: 37 00 81 77 sethi %hi(0x205dc00), %i3
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2028d64: b4 16 a3 38 or %i2, 0x338, %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2028d68: a6 14 e3 50 or %l3, 0x350, %l3
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2028d6c: a4 14 a3 70 or %l2, 0x370, %l2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2028d70: 10 80 00 06 b 2028d88 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2028d74: b6 16 e3 f8 or %i3, 0x3f8, %i3
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2028d78: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028d7c: 80 a0 40 1d cmp %g1, %i5
2028d80: 0a 80 00 22 bcs 2028e08 <rtems_rate_monotonic_report_statistics_with_plugin+0x128>
2028d84: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2028d88: 90 10 00 1d mov %i5, %o0
2028d8c: 40 00 37 a6 call 2036c24 <rtems_rate_monotonic_get_statistics>
2028d90: 92 07 bf c8 add %fp, -56, %o1
if ( status != RTEMS_SUCCESSFUL )
2028d94: 80 a2 20 00 cmp %o0, 0
2028d98: 32 bf ff f8 bne,a 2028d78 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
2028d9c: c2 07 20 0c ld [ %i4 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2028da0: 92 07 bf b0 add %fp, -80, %o1
2028da4: 40 00 38 12 call 2036dec <rtems_rate_monotonic_get_status>
2028da8: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2028dac: d0 07 bf b0 ld [ %fp + -80 ], %o0
2028db0: 94 07 bf a0 add %fp, -96, %o2
2028db4: 7f ff 9a 33 call 200f680 <rtems_object_get_name>
2028db8: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2028dbc: d8 1f bf c8 ldd [ %fp + -56 ], %o4
2028dc0: 92 10 00 1a mov %i2, %o1
2028dc4: 94 10 00 1d mov %i5, %o2
2028dc8: 90 10 00 18 mov %i0, %o0
2028dcc: 9f c6 40 00 call %i1
2028dd0: 96 07 bf a0 add %fp, -96, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2028dd4: c2 07 bf c8 ld [ %fp + -56 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2028dd8: 94 07 bf a8 add %fp, -88, %o2
2028ddc: 90 07 bf e0 add %fp, -32, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2028de0: 80 a0 60 00 cmp %g1, 0
2028de4: 12 80 00 0b bne 2028e10 <rtems_rate_monotonic_report_statistics_with_plugin+0x130>
2028de8: 92 10 00 1b mov %i3, %o1
(*print)( context, "\n" );
2028dec: 9f c6 40 00 call %i1
2028df0: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028df4: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2028df8: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028dfc: 80 a0 40 1d cmp %g1, %i5
2028e00: 1a bf ff e3 bcc 2028d8c <rtems_rate_monotonic_report_statistics_with_plugin+0xac><== ALWAYS TAKEN
2028e04: 90 10 00 1d mov %i5, %o0
2028e08: 81 c7 e0 08 ret
2028e0c: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2028e10: 40 00 03 27 call 2029aac <_Timespec_Divide_by_integer>
2028e14: 92 10 00 01 mov %g1, %o1
(*print)( context,
2028e18: d0 07 bf d4 ld [ %fp + -44 ], %o0
2028e1c: 40 00 ac c1 call 2054120 <.div>
2028e20: 92 10 23 e8 mov 0x3e8, %o1
2028e24: aa 10 00 08 mov %o0, %l5
2028e28: d0 07 bf dc ld [ %fp + -36 ], %o0
2028e2c: 40 00 ac bd call 2054120 <.div>
2028e30: 92 10 23 e8 mov 0x3e8, %o1
2028e34: c2 07 bf a8 ld [ %fp + -88 ], %g1
2028e38: a2 10 00 08 mov %o0, %l1
2028e3c: d0 07 bf ac ld [ %fp + -84 ], %o0
2028e40: e0 07 bf d0 ld [ %fp + -48 ], %l0
2028e44: e8 07 bf d8 ld [ %fp + -40 ], %l4
2028e48: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2028e4c: 40 00 ac b5 call 2054120 <.div>
2028e50: 92 10 23 e8 mov 0x3e8, %o1
2028e54: 96 10 00 15 mov %l5, %o3
2028e58: 98 10 00 14 mov %l4, %o4
2028e5c: 9a 10 00 11 mov %l1, %o5
2028e60: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2028e64: 92 10 00 13 mov %l3, %o1
2028e68: 94 10 00 10 mov %l0, %o2
2028e6c: 9f c6 40 00 call %i1
2028e70: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2028e74: d2 07 bf c8 ld [ %fp + -56 ], %o1
2028e78: 94 07 bf a8 add %fp, -88, %o2
2028e7c: 40 00 03 0c call 2029aac <_Timespec_Divide_by_integer>
2028e80: 90 07 bf f8 add %fp, -8, %o0
(*print)( context,
2028e84: d0 07 bf ec ld [ %fp + -20 ], %o0
2028e88: 40 00 ac a6 call 2054120 <.div>
2028e8c: 92 10 23 e8 mov 0x3e8, %o1
2028e90: a8 10 00 08 mov %o0, %l4
2028e94: d0 07 bf f4 ld [ %fp + -12 ], %o0
2028e98: 40 00 ac a2 call 2054120 <.div>
2028e9c: 92 10 23 e8 mov 0x3e8, %o1
2028ea0: c2 07 bf a8 ld [ %fp + -88 ], %g1
2028ea4: a0 10 00 08 mov %o0, %l0
2028ea8: d0 07 bf ac ld [ %fp + -84 ], %o0
2028eac: ea 07 bf e8 ld [ %fp + -24 ], %l5
2028eb0: e2 07 bf f0 ld [ %fp + -16 ], %l1
2028eb4: 92 10 23 e8 mov 0x3e8, %o1
2028eb8: 40 00 ac 9a call 2054120 <.div>
2028ebc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2028ec0: 92 10 00 12 mov %l2, %o1
2028ec4: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2028ec8: 94 10 00 15 mov %l5, %o2
2028ecc: 90 10 00 18 mov %i0, %o0
2028ed0: 96 10 00 14 mov %l4, %o3
2028ed4: 98 10 00 11 mov %l1, %o4
2028ed8: 9f c6 40 00 call %i1
2028edc: 9a 10 00 10 mov %l0, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028ee0: 10 bf ff a6 b 2028d78 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
2028ee4: c2 07 20 0c ld [ %i4 + 0xc ], %g1
02028f00 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
2028f00: 9d e3 bf a0 save %sp, -96, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2028f04: 03 00 81 96 sethi %hi(0x2065800), %g1
2028f08: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 2065ac0 <_Thread_Dispatch_disable_level>
2028f0c: 84 00 a0 01 inc %g2
2028f10: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ]
return _Thread_Dispatch_disable_level;
2028f14: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028f18: 39 00 81 97 sethi %hi(0x2065c00), %i4
2028f1c: b8 17 23 00 or %i4, 0x300, %i4 ! 2065f00 <_Rate_monotonic_Information>
2028f20: fa 07 20 08 ld [ %i4 + 8 ], %i5
2028f24: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2028f28: 80 a7 40 01 cmp %i5, %g1
2028f2c: 18 80 00 09 bgu 2028f50 <rtems_rate_monotonic_reset_all_statistics+0x50><== NEVER TAKEN
2028f30: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
2028f34: 40 00 00 09 call 2028f58 <rtems_rate_monotonic_reset_statistics>
2028f38: 90 10 00 1d mov %i5, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028f3c: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2028f40: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2028f44: 80 a0 40 1d cmp %g1, %i5
2028f48: 1a bf ff fb bcc 2028f34 <rtems_rate_monotonic_reset_all_statistics+0x34>
2028f4c: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2028f50: 7f ff 85 7d call 200a544 <_Thread_Enable_dispatch>
2028f54: 81 e8 00 00 restore
02008fb4 <rtems_rbheap_allocate>:
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
2008fb4: 9d e3 bf a0 save %sp, -96, %sp
void *ptr = NULL;
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
2008fb8: fa 06 20 30 ld [ %i0 + 0x30 ], %i5
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008fbc: 90 10 00 19 mov %i1, %o0
2008fc0: 40 00 43 a2 call 2019e48 <.urem>
2008fc4: 92 10 00 1d mov %i5, %o1
if (excess > 0) {
2008fc8: 80 a2 20 00 cmp %o0, 0
2008fcc: 02 80 00 26 be 2009064 <rtems_rbheap_allocate+0xb0> <== ALWAYS TAKEN
2008fd0: b6 10 00 19 mov %i1, %i3
value += alignment - excess;
2008fd4: ba 06 40 1d add %i1, %i5, %i5 <== NOT EXECUTED
2008fd8: b6 27 40 08 sub %i5, %o0, %i3 <== NOT EXECUTED
2008fdc: 80 a6 c0 19 cmp %i3, %i1 <== NOT EXECUTED
2008fe0: 82 60 3f ff subx %g0, -1, %g1 <== NOT EXECUTED
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
uintptr_t alignment = control->alignment;
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
2008fe4: 80 88 60 ff btst 0xff, %g1
2008fe8: 02 80 00 1d be 200905c <rtems_rbheap_allocate+0xa8> <== NEVER TAKEN
2008fec: 80 a6 60 00 cmp %i1, 0
2008ff0: 02 80 00 1b be 200905c <rtems_rbheap_allocate+0xa8>
2008ff4: 82 06 20 04 add %i0, 4, %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2008ff8: fa 06 00 00 ld [ %i0 ], %i5
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_chunk *big_enough = NULL;
while (current != tail && big_enough == NULL) {
2008ffc: 80 a7 40 01 cmp %i5, %g1
2009000: 02 80 00 17 be 200905c <rtems_rbheap_allocate+0xa8>
2009004: 01 00 00 00 nop
rtems_rbheap_chunk *free_chunk = (rtems_rbheap_chunk *) current;
if (free_chunk->size >= size) {
2009008: f8 07 60 1c ld [ %i5 + 0x1c ], %i4
200900c: 80 a6 c0 1c cmp %i3, %i4
2009010: 38 80 00 10 bgu,a 2009050 <rtems_rbheap_allocate+0x9c>
2009014: fa 07 40 00 ld [ %i5 ], %i5
uintptr_t aligned_size = align_up(alignment, size);
if (size > 0 && size <= aligned_size) {
rtems_rbheap_chunk *free_chunk = search_free_chunk(free_chain, aligned_size);
if (free_chunk != NULL) {
2009018: 80 a7 60 00 cmp %i5, 0
200901c: 02 80 00 10 be 200905c <rtems_rbheap_allocate+0xa8> <== NEVER TAKEN
2009020: 80 a7 00 1b cmp %i4, %i3
uintptr_t free_size = free_chunk->size;
if (free_size > aligned_size) {
2009024: 18 80 00 12 bgu 200906c <rtems_rbheap_allocate+0xb8>
2009028: 01 00 00 00 nop
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
200902c: c4 07 40 00 ld [ %i5 ], %g2
previous = the_node->previous;
2009030: c2 07 60 04 ld [ %i5 + 4 ], %g1
ptr = (void *) new_chunk->begin;
}
} else {
rtems_chain_extract_unprotected(&free_chunk->chain_node);
rtems_chain_set_off_chain(&free_chunk->chain_node);
ptr = (void *) free_chunk->begin;
2009034: f0 07 60 18 ld [ %i5 + 0x18 ], %i0
next->previous = previous;
2009038: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
200903c: c4 20 40 00 st %g2, [ %g1 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Set_off_chain(
Chain_Node *node
)
{
node->next = node->previous = NULL;
2009040: c0 27 60 04 clr [ %i5 + 4 ]
2009044: c0 27 40 00 clr [ %i5 ]
}
}
}
return ptr;
}
2009048: 81 c7 e0 08 ret
200904c: 81 e8 00 00 restore
{
rtems_chain_node *current = rtems_chain_first(free_chain);
const rtems_chain_node *tail = rtems_chain_tail(free_chain);
rtems_rbheap_chunk *big_enough = NULL;
while (current != tail && big_enough == NULL) {
2009050: 80 a0 40 1d cmp %g1, %i5
2009054: 32 bf ff ee bne,a 200900c <rtems_rbheap_allocate+0x58> <== NEVER TAKEN
2009058: f8 07 60 1c ld [ %i5 + 0x1c ], %i4 <== NOT EXECUTED
return big_enough;
}
void *rtems_rbheap_allocate(rtems_rbheap_control *control, size_t size)
{
void *ptr = NULL;
200905c: 81 c7 e0 08 ret
2009060: 91 e8 20 00 restore %g0, 0, %o0
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
if (excess > 0) {
2009064: 10 bf ff e0 b 2008fe4 <rtems_rbheap_allocate+0x30>
2009068: 82 10 20 01 mov 1, %g1
if (free_chunk != NULL) {
uintptr_t free_size = free_chunk->size;
if (free_size > aligned_size) {
rtems_rbheap_chunk *new_chunk = get_chunk(control);
200906c: 7f ff ff 46 call 2008d84 <get_chunk>
2009070: 90 10 00 18 mov %i0, %o0
if (new_chunk != NULL) {
2009074: b4 92 20 00 orcc %o0, 0, %i2
2009078: 02 bf ff f9 be 200905c <rtems_rbheap_allocate+0xa8> <== NEVER TAKEN
200907c: b8 27 00 1b sub %i4, %i3, %i4
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
2009080: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
rtems_rbheap_chunk *new_chunk = get_chunk(control);
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
2009084: f8 27 60 1c st %i4, [ %i5 + 0x1c ]
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
2009088: f6 26 a0 1c st %i3, [ %i2 + 0x1c ]
if (new_chunk != NULL) {
uintptr_t new_free_size = free_size - aligned_size;
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
200908c: b8 07 00 01 add %i4, %g1, %i4
2009090: c0 26 a0 04 clr [ %i2 + 4 ]
2009094: f8 26 a0 18 st %i4, [ %i2 + 0x18 ]
2009098: c0 26 80 00 clr [ %i2 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert_unprotected(tree, &chunk->tree_node);
200909c: 90 06 20 18 add %i0, 0x18, %o0
20090a0: 40 00 07 06 call 200acb8 <_RBTree_Insert_unprotected>
20090a4: 92 06 a0 08 add %i2, 8, %o1
free_chunk->size = new_free_size;
new_chunk->begin = free_chunk->begin + new_free_size;
new_chunk->size = aligned_size;
rtems_chain_set_off_chain(&new_chunk->chain_node);
insert_into_tree(chunk_tree, new_chunk);
ptr = (void *) new_chunk->begin;
20090a8: f0 06 a0 18 ld [ %i2 + 0x18 ], %i0
20090ac: 81 c7 e0 08 ret
20090b0: 81 e8 00 00 restore
020091f8 <rtems_rbheap_extend_descriptors_with_malloc>:
/* Do nothing */
}
void rtems_rbheap_extend_descriptors_with_malloc(rtems_rbheap_control *control)
{
20091f8: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
rtems_rbheap_chunk *chunk = malloc(sizeof(*chunk));
20091fc: 7f ff ec 91 call 2004440 <malloc> <== NOT EXECUTED
2009200: 90 10 20 20 mov 0x20, %o0 <== NOT EXECUTED
if (chunk != NULL) {
2009204: 80 a2 20 00 cmp %o0, 0 <== NOT EXECUTED
2009208: 02 80 00 07 be 2009224 <rtems_rbheap_extend_descriptors_with_malloc+0x2c><== NOT EXECUTED
200920c: 84 06 20 0c add %i0, 0xc, %g2 <== NOT EXECUTED
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2009210: c2 06 20 0c ld [ %i0 + 0xc ], %g1 <== NOT EXECUTED
after_node->next = the_node;
2009214: d0 26 20 0c st %o0, [ %i0 + 0xc ] <== NOT EXECUTED
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2009218: c4 22 20 04 st %g2, [ %o0 + 4 ] <== NOT EXECUTED
before_node = after_node->next;
after_node->next = the_node;
the_node->next = before_node;
200921c: c2 22 00 00 st %g1, [ %o0 ] <== NOT EXECUTED
before_node->previous = the_node;
2009220: d0 20 60 04 st %o0, [ %g1 + 4 ] <== NOT EXECUTED
2009224: 81 c7 e0 08 ret <== NOT EXECUTED
2009228: 81 e8 00 00 restore <== NOT EXECUTED
020090b4 <rtems_rbheap_free>:
_RBTree_Extract_unprotected(chunk_tree, &b->tree_node);
}
}
rtems_status_code rtems_rbheap_free(rtems_rbheap_control *control, void *ptr)
{
20090b4: 9d e3 bf 80 save %sp, -128, %sp
20090b8: b4 10 00 18 mov %i0, %i2
rtems_status_code sc = RTEMS_SUCCESSFUL;
if (ptr != NULL) {
20090bc: 80 a6 60 00 cmp %i1, 0
20090c0: 02 80 00 2a be 2009168 <rtems_rbheap_free+0xb4>
20090c4: b0 10 20 00 clr %i0
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
20090c8: fa 06 a0 1c ld [ %i2 + 0x1c ], %i5
#define NULL_PAGE rtems_rbheap_chunk_of_node(NULL)
static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key)
{
rtems_rbheap_chunk chunk = { .begin = key };
20090cc: c0 27 bf fc clr [ %fp + -4 ]
20090d0: c0 27 bf e0 clr [ %fp + -32 ]
20090d4: c0 27 bf e4 clr [ %fp + -28 ]
20090d8: c0 27 bf e8 clr [ %fp + -24 ]
20090dc: c0 27 bf ec clr [ %fp + -20 ]
20090e0: c0 27 bf f0 clr [ %fp + -16 ]
20090e4: c0 27 bf f4 clr [ %fp + -12 ]
20090e8: f2 27 bf f8 st %i1, [ %fp + -8 ]
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
20090ec: 80 a7 60 00 cmp %i5, 0
20090f0: 02 80 00 3e be 20091e8 <rtems_rbheap_free+0x134> <== NEVER TAKEN
20090f4: b8 06 a0 18 add %i2, 0x18, %i4
20090f8: b6 10 20 00 clr %i3
compare_result = the_rbtree->compare_function(the_node, iter_node);
20090fc: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
2009100: 92 10 00 1d mov %i5, %o1
2009104: 9f c0 40 00 call %g1
2009108: 90 07 bf e8 add %fp, -24, %o0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
200910c: 83 3a 20 1f sra %o0, 0x1f, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
2009110: 80 a2 20 00 cmp %o0, 0
RTEMS_INLINE_ROUTINE bool _RBTree_Is_greater(
int compare_result
)
{
return compare_result > 0;
2009114: 82 20 40 08 sub %g1, %o0, %g1
2009118: 83 30 60 1f srl %g1, 0x1f, %g1
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
200911c: 83 28 60 02 sll %g1, 2, %g1
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
compare_result = the_rbtree->compare_function(the_node, iter_node);
if ( _RBTree_Is_equal( compare_result ) ) {
2009120: 12 80 00 06 bne 2009138 <rtems_rbheap_free+0x84>
2009124: 82 07 40 01 add %i5, %g1, %g1
found = iter_node;
if ( the_rbtree->is_unique )
2009128: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
200912c: 80 a0 a0 00 cmp %g2, 0
2009130: 12 80 00 10 bne 2009170 <rtems_rbheap_free+0xbc> <== ALWAYS TAKEN
2009134: b6 10 00 1d mov %i5, %i3
break;
}
RBTree_Direction dir =
(RBTree_Direction) _RBTree_Is_greater( compare_result );
iter_node = iter_node->child[dir];
2009138: fa 00 60 04 ld [ %g1 + 4 ], %i5
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
200913c: 80 a7 60 00 cmp %i5, 0
2009140: 32 bf ff f0 bne,a 2009100 <rtems_rbheap_free+0x4c>
2009144: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
return rtems_rbheap_chunk_of_node(
2009148: ba 06 ff f8 add %i3, -8, %i5
if (ptr != NULL) {
rtems_chain_control *free_chain = &control->free_chunk_chain;
rtems_rbtree_control *chunk_tree = &control->chunk_tree;
rtems_rbheap_chunk *chunk = find(chunk_tree, (uintptr_t) ptr);
if (chunk != NULL_PAGE) {
200914c: 80 a7 7f f8 cmp %i5, -8
2009150: 02 80 00 06 be 2009168 <rtems_rbheap_free+0xb4>
2009154: b0 10 20 04 mov 4, %i0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_node_off_chain(
const Chain_Node *node
)
{
return (node->next == NULL) && (node->previous == NULL);
2009158: c2 06 ff f8 ld [ %i3 + -8 ], %g1
200915c: 80 a0 60 00 cmp %g1, 0
2009160: 02 80 00 06 be 2009178 <rtems_rbheap_free+0xc4>
2009164: b0 10 20 0e mov 0xe, %i0
sc = RTEMS_INVALID_ID;
}
}
return sc;
}
2009168: 81 c7 e0 08 ret
200916c: 81 e8 00 00 restore
static rtems_rbheap_chunk *find(rtems_rbtree_control *chunk_tree, uintptr_t key)
{
rtems_rbheap_chunk chunk = { .begin = key };
return rtems_rbheap_chunk_of_node(
2009170: 10 bf ff f7 b 200914c <rtems_rbheap_free+0x98>
2009174: ba 06 ff f8 add %i3, -8, %i5
2009178: c2 06 ff fc ld [ %i3 + -4 ], %g1
200917c: 80 a0 60 00 cmp %g1, 0
2009180: 12 bf ff fa bne 2009168 <rtems_rbheap_free+0xb4> <== NEVER TAKEN
2009184: 92 10 20 00 clr %o1
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
2009188: 40 00 07 9b call 200aff4 <_RBTree_Next_unprotected>
200918c: 90 10 00 1b mov %i3, %o0
2009190: 92 10 20 01 mov 1, %o1
2009194: b2 10 00 08 mov %o0, %i1
2009198: 40 00 07 97 call 200aff4 <_RBTree_Next_unprotected>
200919c: 90 10 00 1b mov %i3, %o0
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
20091a0: 92 10 00 1c mov %i4, %o1
static rtems_rbheap_chunk *get_next(
const rtems_rbheap_chunk *chunk,
RBTree_Direction dir
)
{
return rtems_rbheap_chunk_of_node(
20091a4: 96 02 3f f8 add %o0, -8, %o3
if (chunk != NULL_PAGE) {
if (!rtems_rbheap_is_chunk_free(chunk)) {
rtems_rbheap_chunk *pred = get_next(chunk, RBT_LEFT);
rtems_rbheap_chunk *succ = get_next(chunk, RBT_RIGHT);
check_and_merge(free_chain, chunk_tree, chunk, succ);
20091a8: 94 10 00 1d mov %i5, %o2
20091ac: 7f ff ff 10 call 2008dec <check_and_merge>
20091b0: 90 10 00 1a mov %i2, %o0
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
20091b4: c2 06 80 00 ld [ %i2 ], %g1
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
20091b8: f4 26 ff fc st %i2, [ %i3 + -4 ]
before_node = after_node->next;
after_node->next = the_node;
20091bc: fa 26 80 00 st %i5, [ %i2 ]
the_node->next = before_node;
20091c0: c2 26 ff f8 st %g1, [ %i3 + -8 ]
before_node->previous = the_node;
20091c4: fa 20 60 04 st %i5, [ %g1 + 4 ]
add_to_chain(free_chain, chunk);
check_and_merge(free_chain, chunk_tree, chunk, pred);
20091c8: 90 10 00 1a mov %i2, %o0
20091cc: 92 10 00 1c mov %i4, %o1
20091d0: 94 10 00 1d mov %i5, %o2
20091d4: 96 06 7f f8 add %i1, -8, %o3
20091d8: 7f ff ff 05 call 2008dec <check_and_merge>
20091dc: b0 10 20 00 clr %i0
20091e0: 81 c7 e0 08 ret
20091e4: 81 e8 00 00 restore
sc = RTEMS_INVALID_ID;
}
}
return sc;
}
20091e8: 81 c7 e0 08 ret <== NOT EXECUTED
20091ec: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
02008e84 <rtems_rbheap_initialize>:
uintptr_t area_size,
uintptr_t alignment,
rtems_rbheap_extend_descriptors extend_descriptors,
void *handler_arg
)
{
2008e84: 9d e3 bf a0 save %sp, -96, %sp
rtems_status_code sc = RTEMS_SUCCESSFUL;
if (alignment > 0) {
2008e88: 80 a6 e0 00 cmp %i3, 0
2008e8c: 12 80 00 04 bne 2008e9c <rtems_rbheap_initialize+0x18>
2008e90: 82 10 20 0a mov 0xa, %g1
} else {
sc = RTEMS_INVALID_NUMBER;
}
return sc;
}
2008e94: 81 c7 e0 08 ret
2008e98: 91 e8 00 01 restore %g0, %g1, %o0
#include <stdlib.h>
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008e9c: 90 10 00 19 mov %i1, %o0
2008ea0: 92 10 00 1b mov %i3, %o1
2008ea4: 40 00 43 e9 call 2019e48 <.urem>
2008ea8: b4 06 40 1a add %i1, %i2, %i2
if (excess > 0) {
2008eac: 80 a2 20 00 cmp %o0, 0
2008eb0: 32 80 00 09 bne,a 2008ed4 <rtems_rbheap_initialize+0x50>
2008eb4: a0 06 40 1b add %i1, %i3, %l0
2008eb8: 82 10 20 01 mov 1, %g1
uintptr_t begin = (uintptr_t) area_begin;
uintptr_t end = begin + area_size;
uintptr_t aligned_begin = align_up(alignment, begin);
uintptr_t aligned_end = align_down(alignment, end);
if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) {
2008ebc: 80 88 60 ff btst 0xff, %g1
2008ec0: 12 80 00 0b bne 2008eec <rtems_rbheap_initialize+0x68> <== ALWAYS TAKEN
2008ec4: a0 10 00 19 mov %i1, %l0
insert_into_tree(chunk_tree, first);
} else {
sc = RTEMS_NO_MEMORY;
}
} else {
sc = RTEMS_INVALID_ADDRESS;
2008ec8: 82 10 20 09 mov 9, %g1 <== NOT EXECUTED
} else {
sc = RTEMS_INVALID_NUMBER;
}
return sc;
}
2008ecc: 81 c7 e0 08 ret
2008ed0: 91 e8 00 01 restore %g0, %g1, %o0
static uintptr_t align_up(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
if (excess > 0) {
value += alignment - excess;
2008ed4: a0 24 00 08 sub %l0, %o0, %l0
2008ed8: 80 a4 00 19 cmp %l0, %i1
2008edc: 82 60 3f ff subx %g0, -1, %g1
uintptr_t begin = (uintptr_t) area_begin;
uintptr_t end = begin + area_size;
uintptr_t aligned_begin = align_up(alignment, begin);
uintptr_t aligned_end = align_down(alignment, end);
if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) {
2008ee0: 80 88 60 ff btst 0xff, %g1
2008ee4: 02 bf ff fa be 2008ecc <rtems_rbheap_initialize+0x48>
2008ee8: 82 10 20 09 mov 9, %g1
2008eec: 80 a6 40 1a cmp %i1, %i2
2008ef0: 1a bf ff f7 bcc 2008ecc <rtems_rbheap_initialize+0x48>
2008ef4: 82 10 20 09 mov 9, %g1
return value;
}
static uintptr_t align_down(uintptr_t alignment, uintptr_t value)
{
uintptr_t excess = value % alignment;
2008ef8: 90 10 00 1a mov %i2, %o0
2008efc: 40 00 43 d3 call 2019e48 <.urem>
2008f00: 92 10 00 1b mov %i3, %o1
return value - excess;
2008f04: b4 26 80 08 sub %i2, %o0, %i2
uintptr_t begin = (uintptr_t) area_begin;
uintptr_t end = begin + area_size;
uintptr_t aligned_begin = align_up(alignment, begin);
uintptr_t aligned_end = align_down(alignment, end);
if (begin < end && begin <= aligned_begin && aligned_begin < aligned_end) {
2008f08: 80 a4 00 1a cmp %l0, %i2
2008f0c: 1a bf ff e2 bcc 2008e94 <rtems_rbheap_initialize+0x10>
2008f10: 82 10 20 09 mov 9, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008f14: 82 06 20 04 add %i0, 4, %g1
head->next = tail;
2008f18: c2 26 00 00 st %g1, [ %i0 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008f1c: 82 06 20 0c add %i0, 0xc, %g1
head->next = tail;
head->previous = NULL;
tail->previous = head;
2008f20: c2 26 20 14 st %g1, [ %i0 + 0x14 ]
the_rbtree->permanent_null = NULL;
the_rbtree->root = NULL;
the_rbtree->first[0] = NULL;
the_rbtree->first[1] = NULL;
the_rbtree->compare_function = compare_function;
the_rbtree->is_unique = is_unique;
2008f24: 82 10 20 01 mov 1, %g1
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008f28: 84 06 20 10 add %i0, 0x10, %g2
2008f2c: c2 2e 20 2c stb %g1, [ %i0 + 0x2c ]
{
the_rbtree->permanent_null = NULL;
the_rbtree->root = NULL;
the_rbtree->first[0] = NULL;
the_rbtree->first[1] = NULL;
the_rbtree->compare_function = compare_function;
2008f30: 03 00 80 23 sethi %hi(0x2008c00), %g1
2008f34: 82 10 61 74 or %g1, 0x174, %g1 ! 2008d74 <chunk_compare>
head->next = tail;
head->previous = NULL;
2008f38: c0 26 20 04 clr [ %i0 + 4 ]
2008f3c: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
tail->previous = head;
2008f40: f0 26 20 08 st %i0, [ %i0 + 8 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
2008f44: c0 26 20 10 clr [ %i0 + 0x10 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2008f48: c4 26 20 0c st %g2, [ %i0 + 0xc ]
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
2008f4c: c0 26 20 18 clr [ %i0 + 0x18 ]
the_rbtree->root = NULL;
2008f50: c0 26 20 1c clr [ %i0 + 0x1c ]
the_rbtree->first[0] = NULL;
2008f54: c0 26 20 20 clr [ %i0 + 0x20 ]
the_rbtree->first[1] = NULL;
2008f58: c0 26 20 24 clr [ %i0 + 0x24 ]
rtems_rbheap_chunk *first = NULL;
rtems_chain_initialize_empty(free_chain);
rtems_chain_initialize_empty(&control->spare_descriptor_chain);
rtems_rbtree_initialize_empty(chunk_tree, chunk_compare, true);
control->alignment = alignment;
2008f5c: f6 26 20 30 st %i3, [ %i0 + 0x30 ]
control->handler_arg = handler_arg;
2008f60: fa 26 20 38 st %i5, [ %i0 + 0x38 ]
control->extend_descriptors = extend_descriptors;
2008f64: f8 26 20 34 st %i4, [ %i0 + 0x34 ]
first = get_chunk(control);
2008f68: 7f ff ff 87 call 2008d84 <get_chunk>
2008f6c: 90 10 00 18 mov %i0, %o0
first->begin = aligned_begin;
first->size = aligned_end - aligned_begin;
add_to_chain(free_chain, first);
insert_into_tree(chunk_tree, first);
} else {
sc = RTEMS_NO_MEMORY;
2008f70: 82 10 20 1a mov 0x1a, %g1
control->alignment = alignment;
control->handler_arg = handler_arg;
control->extend_descriptors = extend_descriptors;
first = get_chunk(control);
if (first != NULL) {
2008f74: 80 a2 20 00 cmp %o0, 0
2008f78: 02 bf ff c7 be 2008e94 <rtems_rbheap_initialize+0x10>
2008f7c: 92 10 00 08 mov %o0, %o1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008f80: c2 06 00 00 ld [ %i0 ], %g1
first->begin = aligned_begin;
first->size = aligned_end - aligned_begin;
2008f84: b4 26 80 10 sub %i2, %l0, %i2
control->handler_arg = handler_arg;
control->extend_descriptors = extend_descriptors;
first = get_chunk(control);
if (first != NULL) {
first->begin = aligned_begin;
2008f88: e0 22 20 18 st %l0, [ %o0 + 0x18 ]
first->size = aligned_end - aligned_begin;
2008f8c: f4 22 20 1c st %i2, [ %o0 + 0x1c ]
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008f90: f0 22 20 04 st %i0, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008f94: d0 26 00 00 st %o0, [ %i0 ]
the_node->next = before_node;
2008f98: c2 22 00 00 st %g1, [ %o0 ]
before_node->previous = the_node;
2008f9c: d0 20 60 04 st %o0, [ %g1 + 4 ]
static void insert_into_tree(
rtems_rbtree_control *tree,
rtems_rbheap_chunk *chunk
)
{
_RBTree_Insert_unprotected(tree, &chunk->tree_node);
2008fa0: 92 02 60 08 add %o1, 8, %o1
2008fa4: 40 00 07 45 call 200acb8 <_RBTree_Insert_unprotected>
2008fa8: 90 06 20 18 add %i0, 0x18, %o0
uintptr_t alignment,
rtems_rbheap_extend_descriptors extend_descriptors,
void *handler_arg
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
2008fac: 10 bf ff ba b 2008e94 <rtems_rbheap_initialize+0x10>
2008fb0: 82 10 20 00 clr %g1
02016f38 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2016f38: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
2016f3c: 80 a6 60 00 cmp %i1, 0
2016f40: 12 80 00 04 bne 2016f50 <rtems_signal_send+0x18>
2016f44: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016f48: 81 c7 e0 08 ret
2016f4c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2016f50: 90 10 00 18 mov %i0, %o0
2016f54: 40 00 13 65 call 201bce8 <_Thread_Get>
2016f58: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2016f5c: c2 07 bf fc ld [ %fp + -4 ], %g1
2016f60: 80 a0 60 00 cmp %g1, 0
2016f64: 12 80 00 20 bne 2016fe4 <rtems_signal_send+0xac>
2016f68: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2016f6c: fa 02 21 50 ld [ %o0 + 0x150 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
2016f70: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2016f74: 80 a0 60 00 cmp %g1, 0
2016f78: 02 80 00 1e be 2016ff0 <rtems_signal_send+0xb8>
2016f7c: 01 00 00 00 nop
if ( asr->is_enabled ) {
2016f80: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
2016f84: 80 a0 60 00 cmp %g1, 0
2016f88: 02 80 00 1e be 2017000 <rtems_signal_send+0xc8>
2016f8c: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2016f90: 7f ff e2 20 call 200f810 <sparc_disable_interrupts>
2016f94: 01 00 00 00 nop
*signal_set |= signals;
2016f98: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
2016f9c: b2 10 40 19 or %g1, %i1, %i1
2016fa0: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2016fa4: 7f ff e2 1f call 200f820 <sparc_enable_interrupts>
2016fa8: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
2016fac: 03 00 80 ed sethi %hi(0x203b400), %g1
2016fb0: 82 10 63 50 or %g1, 0x350, %g1 ! 203b750 <_Per_CPU_Information>
2016fb4: c4 00 60 08 ld [ %g1 + 8 ], %g2
2016fb8: 80 a0 a0 00 cmp %g2, 0
2016fbc: 02 80 00 06 be 2016fd4 <rtems_signal_send+0x9c>
2016fc0: 01 00 00 00 nop
2016fc4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2016fc8: 80 a7 00 02 cmp %i4, %g2
2016fcc: 02 80 00 15 be 2017020 <rtems_signal_send+0xe8> <== ALWAYS TAKEN
2016fd0: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2016fd4: 40 00 13 38 call 201bcb4 <_Thread_Enable_dispatch>
2016fd8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2016fdc: 10 bf ff db b 2016f48 <rtems_signal_send+0x10>
2016fe0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2016fe4: 82 10 20 04 mov 4, %g1
}
2016fe8: 81 c7 e0 08 ret
2016fec: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
2016ff0: 40 00 13 31 call 201bcb4 <_Thread_Enable_dispatch>
2016ff4: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
2016ff8: 10 bf ff d4 b 2016f48 <rtems_signal_send+0x10>
2016ffc: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2017000: 7f ff e2 04 call 200f810 <sparc_disable_interrupts>
2017004: 01 00 00 00 nop
*signal_set |= signals;
2017008: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
201700c: b2 10 40 19 or %g1, %i1, %i1
2017010: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
2017014: 7f ff e2 03 call 200f820 <sparc_enable_interrupts>
2017018: 01 00 00 00 nop
201701c: 30 bf ff ee b,a 2016fd4 <rtems_signal_send+0x9c>
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
if ( asr->is_enabled ) {
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
2017020: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2017024: 30 bf ff ec b,a 2016fd4 <rtems_signal_send+0x9c>
0200f404 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200f404: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200f408: 80 a6 a0 00 cmp %i2, 0
200f40c: 02 80 00 3b be 200f4f8 <rtems_task_mode+0xf4>
200f410: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200f414: 21 00 80 75 sethi %hi(0x201d400), %l0
200f418: a0 14 20 50 or %l0, 0x50, %l0 ! 201d450 <_Per_CPU_Information>
200f41c: fa 04 20 0c ld [ %l0 + 0xc ], %i5
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200f420: c4 0f 60 70 ldub [ %i5 + 0x70 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200f424: c2 07 60 78 ld [ %i5 + 0x78 ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200f428: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200f42c: f8 07 61 50 ld [ %i5 + 0x150 ], %i4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200f430: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200f434: 80 a0 60 00 cmp %g1, 0
200f438: 12 80 00 40 bne 200f538 <rtems_task_mode+0x134>
200f43c: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200f440: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
200f444: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200f448: 7f ff f2 18 call 200bca8 <_CPU_ISR_Get_level>
200f44c: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200f450: a3 2c 60 0a sll %l1, 0xa, %l1
200f454: 90 14 40 08 or %l1, %o0, %o0
old_mode |= _ISR_Get_level();
200f458: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200f45c: 80 8e 61 00 btst 0x100, %i1
200f460: 02 80 00 06 be 200f478 <rtems_task_mode+0x74>
200f464: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200f468: 83 36 20 08 srl %i0, 8, %g1
200f46c: 82 18 60 01 xor %g1, 1, %g1
200f470: 82 08 60 01 and %g1, 1, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200f474: c2 2f 60 70 stb %g1, [ %i5 + 0x70 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200f478: 80 8e 62 00 btst 0x200, %i1
200f47c: 12 80 00 21 bne 200f500 <rtems_task_mode+0xfc>
200f480: 80 8e 22 00 btst 0x200, %i0
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200f484: 80 8e 60 0f btst 0xf, %i1
200f488: 12 80 00 27 bne 200f524 <rtems_task_mode+0x120>
200f48c: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200f490: 80 8e 64 00 btst 0x400, %i1
200f494: 02 80 00 14 be 200f4e4 <rtems_task_mode+0xe0>
200f498: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200f49c: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
200f4a0: b1 36 20 0a srl %i0, 0xa, %i0
200f4a4: b0 1e 20 01 xor %i0, 1, %i0
200f4a8: b0 0e 20 01 and %i0, 1, %i0
if ( is_asr_enabled != asr->is_enabled ) {
200f4ac: 80 a6 00 01 cmp %i0, %g1
200f4b0: 22 80 00 0e be,a 200f4e8 <rtems_task_mode+0xe4>
200f4b4: 03 00 80 74 sethi %hi(0x201d000), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200f4b8: 7f ff cc ab call 2002764 <sparc_disable_interrupts>
200f4bc: f0 2f 20 08 stb %i0, [ %i4 + 8 ]
_signals = information->signals_pending;
200f4c0: c4 07 20 18 ld [ %i4 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
200f4c4: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
information->signals_posted = _signals;
200f4c8: c4 27 20 14 st %g2, [ %i4 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200f4cc: c2 27 20 18 st %g1, [ %i4 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200f4d0: 7f ff cc a9 call 2002774 <sparc_enable_interrupts>
200f4d4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200f4d8: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
200f4dc: 80 a0 00 01 cmp %g0, %g1
200f4e0: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200f4e4: 03 00 80 74 sethi %hi(0x201d000), %g1
200f4e8: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201d370 <_System_state_Current>
200f4ec: 80 a0 a0 03 cmp %g2, 3
200f4f0: 02 80 00 1f be 200f56c <rtems_task_mode+0x168>
200f4f4: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
200f4f8: 81 c7 e0 08 ret
200f4fc: 91 e8 00 01 restore %g0, %g1, %o0
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
200f500: 22 bf ff e1 be,a 200f484 <rtems_task_mode+0x80>
200f504: c0 27 60 78 clr [ %i5 + 0x78 ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200f508: 03 00 80 74 sethi %hi(0x201d000), %g1
200f50c: c2 00 61 90 ld [ %g1 + 0x190 ], %g1 ! 201d190 <_Thread_Ticks_per_timeslice>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200f510: 80 8e 60 0f btst 0xf, %i1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200f514: c2 27 60 74 st %g1, [ %i5 + 0x74 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200f518: 82 10 20 01 mov 1, %g1
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200f51c: 02 bf ff dd be 200f490 <rtems_task_mode+0x8c>
200f520: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200f524: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200f528: 7f ff cc 93 call 2002774 <sparc_enable_interrupts>
200f52c: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200f530: 10 bf ff d9 b 200f494 <rtems_task_mode+0x90>
200f534: 80 8e 64 00 btst 0x400, %i1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200f538: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200f53c: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200f540: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200f544: 7f ff f1 d9 call 200bca8 <_CPU_ISR_Get_level>
200f548: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200f54c: a3 2c 60 0a sll %l1, 0xa, %l1
200f550: 90 14 40 08 or %l1, %o0, %o0
old_mode |= _ISR_Get_level();
200f554: b6 12 00 1b or %o0, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200f558: 80 8e 61 00 btst 0x100, %i1
200f55c: 02 bf ff c7 be 200f478 <rtems_task_mode+0x74>
200f560: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200f564: 10 bf ff c2 b 200f46c <rtems_task_mode+0x68>
200f568: 83 36 20 08 srl %i0, 8, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
200f56c: 80 88 e0 ff btst 0xff, %g3
200f570: 12 80 00 0a bne 200f598 <rtems_task_mode+0x194>
200f574: c4 04 20 0c ld [ %l0 + 0xc ], %g2
200f578: c6 04 20 10 ld [ %l0 + 0x10 ], %g3
200f57c: 80 a0 80 03 cmp %g2, %g3
200f580: 02 bf ff de be 200f4f8 <rtems_task_mode+0xf4>
200f584: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200f588: c4 08 a0 70 ldub [ %g2 + 0x70 ], %g2
200f58c: 80 a0 a0 00 cmp %g2, 0
200f590: 02 bf ff da be 200f4f8 <rtems_task_mode+0xf4> <== NEVER TAKEN
200f594: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200f598: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
200f59c: c2 2c 20 18 stb %g1, [ %l0 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200f5a0: 7f ff ec 5f call 200a71c <_Thread_Dispatch>
200f5a4: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200f5a8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200f5ac: 81 c7 e0 08 ret
200f5b0: 91 e8 00 01 restore %g0, %g1, %o0
0200c890 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200c890: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200c894: 80 a6 60 00 cmp %i1, 0
200c898: 02 80 00 08 be 200c8b8 <rtems_task_set_priority+0x28>
200c89c: 80 a6 a0 00 cmp %i2, 0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200c8a0: 03 00 80 83 sethi %hi(0x2020c00), %g1
200c8a4: c4 08 61 a8 ldub [ %g1 + 0x1a8 ], %g2 ! 2020da8 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200c8a8: 80 a6 40 02 cmp %i1, %g2
200c8ac: 18 80 00 1e bgu 200c924 <rtems_task_set_priority+0x94>
200c8b0: 82 10 20 13 mov 0x13, %g1
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200c8b4: 80 a6 a0 00 cmp %i2, 0
200c8b8: 02 80 00 1b be 200c924 <rtems_task_set_priority+0x94>
200c8bc: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200c8c0: 90 10 00 18 mov %i0, %o0
200c8c4: 40 00 0a 05 call 200f0d8 <_Thread_Get>
200c8c8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200c8cc: c2 07 bf fc ld [ %fp + -4 ], %g1
200c8d0: 80 a0 60 00 cmp %g1, 0
200c8d4: 12 80 00 16 bne 200c92c <rtems_task_set_priority+0x9c>
200c8d8: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200c8dc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200c8e0: 80 a6 60 00 cmp %i1, 0
200c8e4: 02 80 00 0d be 200c918 <rtems_task_set_priority+0x88>
200c8e8: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200c8ec: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200c8f0: 80 a0 60 00 cmp %g1, 0
200c8f4: 02 80 00 06 be 200c90c <rtems_task_set_priority+0x7c>
200c8f8: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200c8fc: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200c900: 80 a6 40 01 cmp %i1, %g1
200c904: 1a 80 00 05 bcc 200c918 <rtems_task_set_priority+0x88> <== ALWAYS TAKEN
200c908: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200c90c: 92 10 00 19 mov %i1, %o1
200c910: 40 00 08 a4 call 200eba0 <_Thread_Change_priority>
200c914: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200c918: 40 00 09 e3 call 200f0a4 <_Thread_Enable_dispatch>
200c91c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
200c920: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200c924: 81 c7 e0 08 ret
200c928: 91 e8 00 01 restore %g0, %g1, %o0
200c92c: 81 c7 e0 08 ret
200c930: 91 e8 00 01 restore %g0, %g1, %o0
020066e0 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
20066e0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
20066e4: 80 a6 60 00 cmp %i1, 0
20066e8: 02 80 00 1e be 2006760 <rtems_task_variable_delete+0x80>
20066ec: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
20066f0: 90 10 00 18 mov %i0, %o0
20066f4: 40 00 08 89 call 2008918 <_Thread_Get>
20066f8: 92 07 bf fc add %fp, -4, %o1
switch (location) {
20066fc: c2 07 bf fc ld [ %fp + -4 ], %g1
2006700: 80 a0 60 00 cmp %g1, 0
2006704: 12 80 00 19 bne 2006768 <rtems_task_variable_delete+0x88>
2006708: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
200670c: c2 02 21 5c ld [ %o0 + 0x15c ], %g1
while (tvp) {
2006710: 80 a0 60 00 cmp %g1, 0
2006714: 02 80 00 10 be 2006754 <rtems_task_variable_delete+0x74>
2006718: 01 00 00 00 nop
if (tvp->ptr == ptr) {
200671c: c4 00 60 04 ld [ %g1 + 4 ], %g2
2006720: 80 a0 80 19 cmp %g2, %i1
2006724: 32 80 00 09 bne,a 2006748 <rtems_task_variable_delete+0x68>
2006728: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
200672c: 10 80 00 18 b 200678c <rtems_task_variable_delete+0xac>
2006730: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2006734: 80 a0 80 19 cmp %g2, %i1
2006738: 22 80 00 0e be,a 2006770 <rtems_task_variable_delete+0x90>
200673c: c4 02 40 00 ld [ %o1 ], %g2
2006740: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
2006744: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
2006748: 80 a2 60 00 cmp %o1, 0
200674c: 32 bf ff fa bne,a 2006734 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
2006750: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2006754: 40 00 08 64 call 20088e4 <_Thread_Enable_dispatch>
2006758: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
200675c: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2006760: 81 c7 e0 08 ret
2006764: 91 e8 00 01 restore %g0, %g1, %o0
2006768: 81 c7 e0 08 ret
200676c: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
2006770: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
2006774: 40 00 00 2e call 200682c <_RTEMS_Tasks_Invoke_task_variable_dtor>
2006778: 01 00 00 00 nop
_Thread_Enable_dispatch();
200677c: 40 00 08 5a call 20088e4 <_Thread_Enable_dispatch>
2006780: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2006784: 10 bf ff f7 b 2006760 <rtems_task_variable_delete+0x80>
2006788: 82 10 20 00 clr %g1 ! 0 <PROM_START>
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
200678c: 92 10 00 01 mov %g1, %o1
2006790: 10 bf ff f9 b 2006774 <rtems_task_variable_delete+0x94>
2006794: c4 22 21 5c st %g2, [ %o0 + 0x15c ]
02006798 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
2006798: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
200679c: 80 a6 60 00 cmp %i1, 0
20067a0: 02 80 00 1b be 200680c <rtems_task_variable_get+0x74>
20067a4: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !result )
20067a8: 80 a6 a0 00 cmp %i2, 0
20067ac: 02 80 00 18 be 200680c <rtems_task_variable_get+0x74>
20067b0: 90 10 00 18 mov %i0, %o0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
20067b4: 40 00 08 59 call 2008918 <_Thread_Get>
20067b8: 92 07 bf fc add %fp, -4, %o1
switch (location) {
20067bc: c2 07 bf fc ld [ %fp + -4 ], %g1
20067c0: 80 a0 60 00 cmp %g1, 0
20067c4: 12 80 00 14 bne 2006814 <rtems_task_variable_get+0x7c>
20067c8: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
20067cc: c2 02 21 5c ld [ %o0 + 0x15c ], %g1
while (tvp) {
20067d0: 80 a0 60 00 cmp %g1, 0
20067d4: 32 80 00 07 bne,a 20067f0 <rtems_task_variable_get+0x58>
20067d8: c4 00 60 04 ld [ %g1 + 4 ], %g2
20067dc: 30 80 00 10 b,a 200681c <rtems_task_variable_get+0x84>
20067e0: 80 a0 60 00 cmp %g1, 0
20067e4: 02 80 00 0e be 200681c <rtems_task_variable_get+0x84> <== NEVER TAKEN
20067e8: 01 00 00 00 nop
if (tvp->ptr == ptr) {
20067ec: c4 00 60 04 ld [ %g1 + 4 ], %g2
20067f0: 80 a0 80 19 cmp %g2, %i1
20067f4: 32 bf ff fb bne,a 20067e0 <rtems_task_variable_get+0x48>
20067f8: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
20067fc: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
2006800: 40 00 08 39 call 20088e4 <_Thread_Enable_dispatch>
2006804: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2006808: 82 10 20 00 clr %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200680c: 81 c7 e0 08 ret
2006810: 91 e8 00 01 restore %g0, %g1, %o0
2006814: 81 c7 e0 08 ret
2006818: 91 e8 00 01 restore %g0, %g1, %o0
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
200681c: 40 00 08 32 call 20088e4 <_Thread_Enable_dispatch>
2006820: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
2006824: 10 bf ff fa b 200680c <rtems_task_variable_get+0x74>
2006828: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
020179d8 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
20179d8: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
20179dc: 11 00 80 ed sethi %hi(0x203b400), %o0
20179e0: 92 10 00 18 mov %i0, %o1
20179e4: 90 12 23 f4 or %o0, 0x3f4, %o0
20179e8: 40 00 0c b4 call 201acb8 <_Objects_Get>
20179ec: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20179f0: c2 07 bf fc ld [ %fp + -4 ], %g1
20179f4: 80 a0 60 00 cmp %g1, 0
20179f8: 12 80 00 0c bne 2017a28 <rtems_timer_cancel+0x50>
20179fc: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2017a00: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2017a04: 80 a0 60 04 cmp %g1, 4
2017a08: 02 80 00 04 be 2017a18 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2017a0c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2017a10: 40 00 15 17 call 201ce6c <_Watchdog_Remove>
2017a14: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2017a18: 40 00 10 a7 call 201bcb4 <_Thread_Enable_dispatch>
2017a1c: b0 10 20 00 clr %i0
2017a20: 81 c7 e0 08 ret
2017a24: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2017a28: 81 c7 e0 08 ret
2017a2c: 91 e8 20 04 restore %g0, 4, %o0
02017f34 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2017f34: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2017f38: 03 00 80 ee sethi %hi(0x203b800), %g1
2017f3c: fa 00 60 34 ld [ %g1 + 0x34 ], %i5 ! 203b834 <_Timer_server>
if ( !timer_server )
2017f40: 80 a7 60 00 cmp %i5, 0
2017f44: 02 80 00 08 be 2017f64 <rtems_timer_server_fire_when+0x30>
2017f48: 82 10 20 0e mov 0xe, %g1
return RTEMS_INCORRECT_STATE;
if ( !_TOD.is_set )
2017f4c: 39 00 80 ed sethi %hi(0x203b400), %i4
2017f50: 82 17 20 68 or %i4, 0x68, %g1 ! 203b468 <_TOD>
2017f54: c4 08 60 14 ldub [ %g1 + 0x14 ], %g2
2017f58: 80 a0 a0 00 cmp %g2, 0
2017f5c: 12 80 00 04 bne 2017f6c <rtems_timer_server_fire_when+0x38><== ALWAYS TAKEN
2017f60: 82 10 20 0b mov 0xb, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2017f64: 81 c7 e0 08 ret
2017f68: 91 e8 00 01 restore %g0, %g1, %o0
return RTEMS_INCORRECT_STATE;
if ( !_TOD.is_set )
return RTEMS_NOT_DEFINED;
if ( !routine )
2017f6c: 80 a6 a0 00 cmp %i2, 0
2017f70: 02 bf ff fd be 2017f64 <rtems_timer_server_fire_when+0x30>
2017f74: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2017f78: 7f ff f3 24 call 2014c08 <_TOD_Validate>
2017f7c: 90 10 00 19 mov %i1, %o0
2017f80: 80 8a 20 ff btst 0xff, %o0
2017f84: 12 80 00 04 bne 2017f94 <rtems_timer_server_fire_when+0x60>
2017f88: 82 10 20 14 mov 0x14, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2017f8c: 81 c7 e0 08 ret
2017f90: 91 e8 00 01 restore %g0, %g1, %o0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2017f94: 7f ff f2 e3 call 2014b20 <_TOD_To_seconds>
2017f98: 90 10 00 19 mov %i1, %o0
2017f9c: b2 10 00 08 mov %o0, %i1
2017fa0: d0 1f 20 68 ldd [ %i4 + 0x68 ], %o0
2017fa4: 94 10 20 00 clr %o2
2017fa8: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
2017fac: 40 00 4e 5e call 202b924 <__divdi3>
2017fb0: 96 12 e2 00 or %o3, 0x200, %o3 ! 3b9aca00 <RAM_END+0x395aca00>
if ( seconds <= _TOD_Seconds_since_epoch() )
2017fb4: 80 a6 40 09 cmp %i1, %o1
2017fb8: 08 bf ff f5 bleu 2017f8c <rtems_timer_server_fire_when+0x58>
2017fbc: 82 10 20 14 mov 0x14, %g1
2017fc0: 92 10 00 18 mov %i0, %o1
2017fc4: 11 00 80 ed sethi %hi(0x203b400), %o0
2017fc8: 94 07 bf fc add %fp, -4, %o2
2017fcc: 40 00 0b 3b call 201acb8 <_Objects_Get>
2017fd0: 90 12 23 f4 or %o0, 0x3f4, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2017fd4: c2 07 bf fc ld [ %fp + -4 ], %g1
2017fd8: 80 a0 60 00 cmp %g1, 0
2017fdc: 12 80 00 19 bne 2018040 <rtems_timer_server_fire_when+0x10c>
2017fe0: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2017fe4: 40 00 13 a2 call 201ce6c <_Watchdog_Remove>
2017fe8: 90 02 20 10 add %o0, 0x10, %o0
2017fec: d0 1f 20 68 ldd [ %i4 + 0x68 ], %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2017ff0: 82 10 20 03 mov 3, %g1
2017ff4: 94 10 20 00 clr %o2
2017ff8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
2017ffc: 17 0e e6 b2 sethi %hi(0x3b9ac800), %o3
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2018000: c0 24 20 18 clr [ %l0 + 0x18 ]
2018004: 96 12 e2 00 or %o3, 0x200, %o3
the_watchdog->routine = routine;
2018008: f4 24 20 2c st %i2, [ %l0 + 0x2c ]
the_watchdog->id = id;
201800c: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
2018010: 40 00 4e 45 call 202b924 <__divdi3>
2018014: f6 24 20 34 st %i3, [ %l0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
(*timer_server->schedule_operation)( timer_server, the_timer );
2018018: c2 07 60 04 ld [ %i5 + 4 ], %g1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201801c: b2 26 40 09 sub %i1, %o1, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
2018020: 90 10 00 1d mov %i5, %o0
2018024: 92 10 00 10 mov %l0, %o1
2018028: 9f c0 40 00 call %g1
201802c: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
2018030: 40 00 0f 21 call 201bcb4 <_Thread_Enable_dispatch>
2018034: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2018038: 10 bf ff cb b 2017f64 <rtems_timer_server_fire_when+0x30>
201803c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2018040: 10 bf ff c9 b 2017f64 <rtems_timer_server_fire_when+0x30>
2018044: 82 10 20 04 mov 4, %g1