=============================================================================== 0200722c <_API_extensions_Run_postdriver>: /* * _API_extensions_Run_postdriver */ void _API_extensions_Run_postdriver( void ) { 200722c: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2007230: 39 00 80 71 sethi %hi(0x201c400), %i4 2007234: fa 07 21 64 ld [ %i4 + 0x164 ], %i5 ! 201c564 <_API_extensions_List> 2007238: b8 17 21 64 or %i4, 0x164, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 200723c: b8 07 20 04 add %i4, 4, %i4 2007240: 80 a7 40 1c cmp %i5, %i4 2007244: 02 80 00 09 be 2007268 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 2007248: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 200724c: c2 07 60 08 ld [ %i5 + 8 ], %g1 2007250: 9f c0 40 00 call %g1 2007254: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2007258: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 200725c: 80 a7 40 1c cmp %i5, %i4 2007260: 32 bf ff fc bne,a 2007250 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2007264: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 2007268: 81 c7 e0 08 ret 200726c: 81 e8 00 00 restore =============================================================================== 02007270 <_API_extensions_Run_postswitch>: /* * _API_extensions_Run_postswitch */ void _API_extensions_Run_postswitch( void ) { 2007270: 9d e3 bf a0 save %sp, -96, %sp 2007274: 39 00 80 71 sethi %hi(0x201c400), %i4 2007278: fa 07 21 64 ld [ %i4 + 0x164 ], %i5 ! 201c564 <_API_extensions_List> 200727c: b8 17 21 64 or %i4, 0x164, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2007280: b8 07 20 04 add %i4, 4, %i4 2007284: 80 a7 40 1c cmp %i5, %i4 2007288: 02 80 00 0a be 20072b0 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN 200728c: 37 00 80 71 sethi %hi(0x201c400), %i3 2007290: b6 16 e1 9c or %i3, 0x19c, %i3 ! 201c59c <_Per_CPU_Information> !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); 2007294: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2007298: 9f c0 40 00 call %g1 200729c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 20072a0: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 20072a4: 80 a7 40 1c cmp %i5, %i4 20072a8: 32 bf ff fc bne,a 2007298 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN 20072ac: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED 20072b0: 81 c7 e0 08 ret 20072b4: 81 e8 00 00 restore =============================================================================== 02010abc <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010abc: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2010ac0: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010ac4: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; the_message_queue->maximum_message_size = maximum_message_size; 2010ac8: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2010acc: 80 8e e0 03 btst 3, %i3 2010ad0: 02 80 00 0a be 2010af8 <_CORE_message_queue_Initialize+0x3c> 2010ad4: b8 10 00 1b mov %i3, %i4 allocated_message_size += sizeof(uint32_t); 2010ad8: b8 06 e0 04 add %i3, 4, %i4 allocated_message_size &= ~(sizeof(uint32_t) - 1); 2010adc: b8 0f 3f fc and %i4, -4, %i4 } if (allocated_message_size < maximum_message_size) 2010ae0: 80 a6 c0 1c cmp %i3, %i4 2010ae4: 08 80 00 05 bleu 2010af8 <_CORE_message_queue_Initialize+0x3c><== ALWAYS TAKEN 2010ae8: ba 10 20 00 clr %i5 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010aec: b0 0f 60 01 and %i5, 1, %i0 <== NOT EXECUTED 2010af0: 81 c7 e0 08 ret 2010af4: 81 e8 00 00 restore /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 2010af8: b8 07 20 10 add %i4, 0x10, %i4 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 2010afc: 90 10 20 00 clr %o0 2010b00: 92 10 00 1a mov %i2, %o1 2010b04: 94 10 20 00 clr %o2 2010b08: 96 10 00 1c mov %i4, %o3 2010b0c: 40 00 41 35 call 2020fe0 <__muldi3> 2010b10: ba 10 20 00 clr %i5 if ( x > SIZE_MAX ) 2010b14: 80 a2 20 00 cmp %o0, 0 2010b18: 34 bf ff f6 bg,a 2010af0 <_CORE_message_queue_Initialize+0x34> 2010b1c: b0 0f 60 01 and %i5, 1, %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010b20: 40 00 0c d6 call 2013e78 <_Workspace_Allocate> 2010b24: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010b28: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010b2c: 80 a2 20 00 cmp %o0, 0 2010b30: 02 bf ff ef be 2010aec <_CORE_message_queue_Initialize+0x30><== NEVER TAKEN 2010b34: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010b38: 90 06 20 60 add %i0, 0x60, %o0 2010b3c: 94 10 00 1a mov %i2, %o2 2010b40: 40 00 15 71 call 2016104 <_Chain_Initialize> 2010b44: 96 10 00 1c mov %i4, %o3 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010b48: c4 06 40 00 ld [ %i1 ], %g2 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010b4c: 82 06 20 50 add %i0, 0x50, %g1 2010b50: 84 18 a0 01 xor %g2, 1, %g2 2010b54: 80 a0 00 02 cmp %g0, %g2 2010b58: 84 06 20 54 add %i0, 0x54, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 2010b5c: c2 26 20 58 st %g1, [ %i0 + 0x58 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2010b60: c4 26 20 50 st %g2, [ %i0 + 0x50 ] 2010b64: 90 10 00 18 mov %i0, %o0 head->previous = NULL; 2010b68: c0 26 20 54 clr [ %i0 + 0x54 ] 2010b6c: 92 60 3f ff subx %g0, -1, %o1 2010b70: 94 10 20 80 mov 0x80, %o2 2010b74: 96 10 20 06 mov 6, %o3 2010b78: 40 00 0a 33 call 2013444 <_Thread_queue_Initialize> 2010b7c: ba 10 20 01 mov 1, %i5 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010b80: b0 0f 60 01 and %i5, 1, %i0 2010b84: 81 c7 e0 08 ret 2010b88: 81 e8 00 00 restore =============================================================================== 020077d0 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 20077d0: 9d e3 bf a0 save %sp, -96, %sp 20077d4: ba 10 00 18 mov %i0, %i5 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20077d8: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 20077dc: 40 00 07 9e call 2009654 <_Thread_queue_Dequeue> 20077e0: 90 10 00 1d mov %i5, %o0 20077e4: 80 a2 20 00 cmp %o0, 0 20077e8: 02 80 00 04 be 20077f8 <_CORE_semaphore_Surrender+0x28> 20077ec: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 20077f0: 81 c7 e0 08 ret 20077f4: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 20077f8: 7f ff ea 7b call 20021e4 20077fc: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2007800: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 2007804: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 2007808: 80 a0 40 02 cmp %g1, %g2 200780c: 1a 80 00 05 bcc 2007820 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 2007810: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2007814: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007818: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 200781c: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2007820: 7f ff ea 75 call 20021f4 2007824: 01 00 00 00 nop } return status; } 2007828: 81 c7 e0 08 ret 200782c: 81 e8 00 00 restore =============================================================================== 0200c868 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 200c868: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; 200c86c: c0 26 20 04 clr [ %i0 + 4 ] size_t node_size ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200c870: ba 06 20 04 add %i0, 4, %i5 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c874: 80 a6 a0 00 cmp %i2, 0 200c878: 02 80 00 12 be 200c8c0 <_Chain_Initialize+0x58> <== NEVER TAKEN 200c87c: 90 10 00 18 mov %i0, %o0 200c880: b4 06 bf ff add %i2, -1, %i2 { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; 200c884: 82 10 00 19 mov %i1, %g1 head->previous = NULL; while ( count-- ) { 200c888: 92 10 00 1a mov %i2, %o1 ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; 200c88c: 10 80 00 05 b 200c8a0 <_Chain_Initialize+0x38> 200c890: 84 10 00 18 mov %i0, %g2 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c894: 84 10 00 01 mov %g1, %g2 200c898: b4 06 bf ff add %i2, -1, %i2 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 200c89c: 82 10 00 03 mov %g3, %g1 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { current->next = next; 200c8a0: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 200c8a4: c4 20 60 04 st %g2, [ %g1 + 4 ] Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c8a8: 80 a6 a0 00 cmp %i2, 0 200c8ac: 12 bf ff fa bne 200c894 <_Chain_Initialize+0x2c> 200c8b0: 86 00 40 1b add %g1, %i3, %g3 * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 200c8b4: 40 00 2b d8 call 2017814 <.umul> 200c8b8: 90 10 00 1b mov %i3, %o0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c8bc: 90 06 40 08 add %i1, %o0, %o0 current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = tail; 200c8c0: fa 22 00 00 st %i5, [ %o0 ] tail->previous = current; 200c8c4: d0 26 20 08 st %o0, [ %i0 + 8 ] } 200c8c8: 81 c7 e0 08 ret 200c8cc: 81 e8 00 00 restore =============================================================================== 020064b0 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 20064b0: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20064b4: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 option_set = (rtems_option) the_thread->Wait.option; _ISR_Disable( level ); 20064b8: 7f ff ef 4b call 20021e4 20064bc: f8 06 20 30 ld [ %i0 + 0x30 ], %i4 pending_events = api->pending_events; 20064c0: c4 07 40 00 ld [ %i5 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 20064c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 20064c8: 86 88 40 02 andcc %g1, %g2, %g3 20064cc: 02 80 00 39 be 20065b0 <_Event_Surrender+0x100> 20064d0: 09 00 80 71 sethi %hi(0x201c400), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20064d4: 88 11 21 9c or %g4, 0x19c, %g4 ! 201c59c <_Per_CPU_Information> 20064d8: f2 01 20 08 ld [ %g4 + 8 ], %i1 20064dc: 80 a6 60 00 cmp %i1, 0 20064e0: 32 80 00 1c bne,a 2006550 <_Event_Surrender+0xa0> 20064e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_EVENT); 20064e8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20064ec: 80 89 21 00 btst 0x100, %g4 20064f0: 02 80 00 30 be 20065b0 <_Event_Surrender+0x100> 20064f4: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20064f8: 02 80 00 04 be 2006508 <_Event_Surrender+0x58> 20064fc: 80 8f 20 02 btst 2, %i4 2006500: 02 80 00 2c be 20065b0 <_Event_Surrender+0x100> <== NEVER TAKEN 2006504: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006508: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 200650c: 84 28 80 03 andn %g2, %g3, %g2 /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2006510: c4 27 40 00 st %g2, [ %i5 ] the_thread->Wait.count = 0; 2006514: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006518: c6 20 40 00 st %g3, [ %g1 ] _ISR_Flash( level ); 200651c: 7f ff ef 36 call 20021f4 2006520: 01 00 00 00 nop 2006524: 7f ff ef 30 call 20021e4 2006528: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200652c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 2006530: 80 a0 60 02 cmp %g1, 2 2006534: 02 80 00 21 be 20065b8 <_Event_Surrender+0x108> 2006538: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200653c: 7f ff ef 2e call 20021f4 2006540: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006544: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2006548: 40 00 0a 74 call 2008f18 <_Thread_Clear_state> 200654c: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006550: 80 a6 00 04 cmp %i0, %g4 2006554: 32 bf ff e6 bne,a 20064ec <_Event_Surrender+0x3c> 2006558: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200655c: 09 00 80 71 sethi %hi(0x201c400), %g4 2006560: f2 01 21 f0 ld [ %g4 + 0x1f0 ], %i1 ! 201c5f0 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006564: 80 a6 60 02 cmp %i1, 2 2006568: 02 80 00 07 be 2006584 <_Event_Surrender+0xd4> <== NEVER TAKEN 200656c: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006570: f2 01 21 f0 ld [ %g4 + 0x1f0 ], %i1 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006574: 80 a6 60 01 cmp %i1, 1 2006578: 32 bf ff dd bne,a 20064ec <_Event_Surrender+0x3c> 200657c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006580: 80 a0 40 03 cmp %g1, %g3 2006584: 02 80 00 04 be 2006594 <_Event_Surrender+0xe4> 2006588: 80 8f 20 02 btst 2, %i4 200658c: 02 80 00 09 be 20065b0 <_Event_Surrender+0x100> <== NEVER TAKEN 2006590: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006594: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 2006598: 84 28 80 03 andn %g2, %g3, %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 200659c: c4 27 40 00 st %g2, [ %i5 ] the_thread->Wait.count = 0; 20065a0: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20065a4: c6 20 40 00 st %g3, [ %g1 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20065a8: 82 10 20 03 mov 3, %g1 20065ac: c2 21 21 f0 st %g1, [ %g4 + 0x1f0 ] _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 20065b0: 7f ff ef 11 call 20021f4 20065b4: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 20065b8: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 20065bc: 7f ff ef 0e call 20021f4 20065c0: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 20065c4: 40 00 0f 5b call 200a330 <_Watchdog_Remove> 20065c8: 90 06 20 48 add %i0, 0x48, %o0 20065cc: b2 16 63 f8 or %i1, 0x3f8, %i1 20065d0: 40 00 0a 52 call 2008f18 <_Thread_Clear_state> 20065d4: 81 e8 00 00 restore =============================================================================== 020065d8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 20065d8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 20065dc: 90 10 00 18 mov %i0, %o0 20065e0: 40 00 0b 50 call 2009320 <_Thread_Get> 20065e4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20065e8: c2 07 bf fc ld [ %fp + -4 ], %g1 20065ec: 80 a0 60 00 cmp %g1, 0 20065f0: 12 80 00 16 bne 2006648 <_Event_Timeout+0x70> <== NEVER TAKEN 20065f4: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 20065f8: 7f ff ee fb call 20021e4 20065fc: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006600: 03 00 80 71 sethi %hi(0x201c400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2006604: c2 00 61 a8 ld [ %g1 + 0x1a8 ], %g1 ! 201c5a8 <_Per_CPU_Information+0xc> 2006608: 80 a7 40 01 cmp %i5, %g1 200660c: 02 80 00 11 be 2006650 <_Event_Timeout+0x78> 2006610: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006614: 82 10 20 06 mov 6, %g1 2006618: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 200661c: 7f ff ee f6 call 20021f4 2006620: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006624: 90 10 00 1d mov %i5, %o0 2006628: 13 04 00 ff sethi %hi(0x1003fc00), %o1 200662c: 40 00 0a 3b call 2008f18 <_Thread_Clear_state> 2006630: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2006634: 03 00 80 70 sethi %hi(0x201c000), %g1 2006638: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201c370 <_Thread_Dispatch_disable_level> 200663c: 84 00 bf ff add %g2, -1, %g2 2006640: c4 20 63 70 st %g2, [ %g1 + 0x370 ] return _Thread_Dispatch_disable_level; 2006644: c2 00 63 70 ld [ %g1 + 0x370 ], %g1 2006648: 81 c7 e0 08 ret 200664c: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2006650: 03 00 80 71 sethi %hi(0x201c400), %g1 2006654: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201c5f0 <_Event_Sync_state> 2006658: 80 a0 a0 01 cmp %g2, 1 200665c: 32 bf ff ef bne,a 2006618 <_Event_Timeout+0x40> 2006660: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2006664: 84 10 20 02 mov 2, %g2 2006668: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 200666c: 10 bf ff eb b 2006618 <_Event_Timeout+0x40> 2006670: 82 10 20 06 mov 6, %g1 =============================================================================== 0200ca90 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200ca90: 9d e3 bf 98 save %sp, -104, %sp 200ca94: ba 10 00 18 mov %i0, %i5 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200ca98: a0 06 60 04 add %i1, 4, %l0 - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 200ca9c: ec 06 20 10 ld [ %i0 + 0x10 ], %l6 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200caa0: 80 a6 40 10 cmp %i1, %l0 200caa4: 18 80 00 23 bgu 200cb30 <_Heap_Allocate_aligned_with_boundary+0xa0> 200caa8: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200caac: 80 a6 e0 00 cmp %i3, 0 200cab0: 12 80 00 7d bne 200cca4 <_Heap_Allocate_aligned_with_boundary+0x214> 200cab4: 80 a6 40 1b cmp %i1, %i3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200cab8: e2 07 60 08 ld [ %i5 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200cabc: 80 a7 40 11 cmp %i5, %l1 200cac0: 02 80 00 18 be 200cb20 <_Heap_Allocate_aligned_with_boundary+0x90> 200cac4: b8 10 20 00 clr %i4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200cac8: 82 05 a0 07 add %l6, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200cacc: ae 10 20 04 mov 4, %l7 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200cad0: c2 27 bf fc st %g1, [ %fp + -4 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200cad4: 10 80 00 0b b 200cb00 <_Heap_Allocate_aligned_with_boundary+0x70> 200cad8: ae 25 c0 19 sub %l7, %i1, %l7 * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { if ( alignment == 0 ) { 200cadc: 12 80 00 17 bne 200cb38 <_Heap_Allocate_aligned_with_boundary+0xa8> 200cae0: b0 04 60 08 add %l1, 8, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cae4: 80 a6 20 00 cmp %i0, 0 200cae8: 12 80 00 5b bne 200cc54 <_Heap_Allocate_aligned_with_boundary+0x1c4> 200caec: b8 07 20 01 inc %i4 break; } block = block->next; 200caf0: e2 04 60 08 ld [ %l1 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200caf4: 80 a7 40 11 cmp %i5, %l1 200caf8: 22 80 00 0b be,a 200cb24 <_Heap_Allocate_aligned_with_boundary+0x94> 200cafc: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200cb00: e4 04 60 04 ld [ %l1 + 4 ], %l2 200cb04: 80 a4 00 12 cmp %l0, %l2 200cb08: 0a bf ff f5 bcs 200cadc <_Heap_Allocate_aligned_with_boundary+0x4c> 200cb0c: 80 a6 a0 00 cmp %i2, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200cb10: e2 04 60 08 ld [ %l1 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200cb14: 80 a7 40 11 cmp %i5, %l1 200cb18: 12 bf ff fa bne 200cb00 <_Heap_Allocate_aligned_with_boundary+0x70> 200cb1c: b8 07 20 01 inc %i4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200cb20: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 200cb24: 80 a0 40 1c cmp %g1, %i4 200cb28: 0a 80 00 5a bcs 200cc90 <_Heap_Allocate_aligned_with_boundary+0x200> 200cb2c: b0 10 20 00 clr %i0 stats->max_search = search_count; } return (void *) alloc_begin; } 200cb30: 81 c7 e0 08 ret 200cb34: 81 e8 00 00 restore uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200cb38: c4 07 bf fc ld [ %fp + -4 ], %g2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200cb3c: ea 07 60 14 ld [ %i5 + 0x14 ], %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cb40: a4 0c bf fe and %l2, -2, %l2 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200cb44: 82 20 80 15 sub %g2, %l5, %g1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200cb48: a4 04 40 12 add %l1, %l2, %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cb4c: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200cb50: b0 05 c0 12 add %l7, %l2, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200cb54: a4 00 40 12 add %g1, %l2, %l2 200cb58: 40 00 2c 15 call 2017bac <.urem> 200cb5c: 90 10 00 18 mov %i0, %o0 200cb60: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200cb64: 80 a4 80 18 cmp %l2, %i0 200cb68: 1a 80 00 06 bcc 200cb80 <_Heap_Allocate_aligned_with_boundary+0xf0> 200cb6c: a8 04 60 08 add %l1, 8, %l4 200cb70: 90 10 00 12 mov %l2, %o0 200cb74: 40 00 2c 0e call 2017bac <.urem> 200cb78: 92 10 00 1a mov %i2, %o1 200cb7c: b0 24 80 08 sub %l2, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200cb80: 80 a6 e0 00 cmp %i3, 0 200cb84: 02 80 00 24 be 200cc14 <_Heap_Allocate_aligned_with_boundary+0x184> 200cb88: 80 a5 00 18 cmp %l4, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200cb8c: a4 06 00 19 add %i0, %i1, %l2 200cb90: 92 10 00 1b mov %i3, %o1 200cb94: 40 00 2c 06 call 2017bac <.urem> 200cb98: 90 10 00 12 mov %l2, %o0 200cb9c: 90 24 80 08 sub %l2, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cba0: 80 a6 00 08 cmp %i0, %o0 200cba4: 1a 80 00 1b bcc 200cc10 <_Heap_Allocate_aligned_with_boundary+0x180> 200cba8: 80 a2 00 12 cmp %o0, %l2 200cbac: 1a 80 00 1a bcc 200cc14 <_Heap_Allocate_aligned_with_boundary+0x184> 200cbb0: 80 a5 00 18 cmp %l4, %i0 alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200cbb4: a6 05 00 19 add %l4, %i1, %l3 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200cbb8: 80 a4 c0 08 cmp %l3, %o0 200cbbc: 08 80 00 08 bleu 200cbdc <_Heap_Allocate_aligned_with_boundary+0x14c> 200cbc0: b0 10 20 00 clr %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cbc4: 10 bf ff c9 b 200cae8 <_Heap_Allocate_aligned_with_boundary+0x58> 200cbc8: 80 a6 20 00 cmp %i0, 0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cbcc: 1a 80 00 11 bcc 200cc10 <_Heap_Allocate_aligned_with_boundary+0x180> 200cbd0: 80 a4 c0 08 cmp %l3, %o0 if ( boundary_line < boundary_floor ) { 200cbd4: 18 bf ff c4 bgu 200cae4 <_Heap_Allocate_aligned_with_boundary+0x54><== NEVER TAKEN 200cbd8: b0 10 20 00 clr %i0 return 0; } alloc_begin = boundary_line - alloc_size; 200cbdc: b0 22 00 19 sub %o0, %i1, %i0 200cbe0: 92 10 00 1a mov %i2, %o1 200cbe4: 40 00 2b f2 call 2017bac <.urem> 200cbe8: 90 10 00 18 mov %i0, %o0 200cbec: 92 10 00 1b mov %i3, %o1 200cbf0: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200cbf4: a4 06 00 19 add %i0, %i1, %l2 200cbf8: 40 00 2b ed call 2017bac <.urem> 200cbfc: 90 10 00 12 mov %l2, %o0 200cc00: 90 24 80 08 sub %l2, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cc04: 80 a2 00 12 cmp %o0, %l2 200cc08: 0a bf ff f1 bcs 200cbcc <_Heap_Allocate_aligned_with_boundary+0x13c> 200cc0c: 80 a6 00 08 cmp %i0, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200cc10: 80 a5 00 18 cmp %l4, %i0 200cc14: 18 80 00 22 bgu 200cc9c <_Heap_Allocate_aligned_with_boundary+0x20c> 200cc18: 82 10 3f f8 mov -8, %g1 200cc1c: 90 10 00 18 mov %i0, %o0 200cc20: a4 20 40 11 sub %g1, %l1, %l2 200cc24: 92 10 00 16 mov %l6, %o1 200cc28: 40 00 2b e1 call 2017bac <.urem> 200cc2c: a4 04 80 18 add %l2, %i0, %l2 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200cc30: 90 a4 80 08 subcc %l2, %o0, %o0 200cc34: 02 bf ff ad be 200cae8 <_Heap_Allocate_aligned_with_boundary+0x58> 200cc38: 80 a6 20 00 cmp %i0, 0 200cc3c: 80 a2 00 15 cmp %o0, %l5 return alloc_begin; } } return 0; 200cc40: 82 40 3f ff addx %g0, -1, %g1 200cc44: b0 0e 00 01 and %i0, %g1, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cc48: 80 a6 20 00 cmp %i0, 0 200cc4c: 02 bf ff a9 be 200caf0 <_Heap_Allocate_aligned_with_boundary+0x60> 200cc50: b8 07 20 01 inc %i4 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc54: c4 07 60 48 ld [ %i5 + 0x48 ], %g2 stats->searches += search_count; 200cc58: c2 07 60 4c ld [ %i5 + 0x4c ], %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc5c: 84 00 a0 01 inc %g2 stats->searches += search_count; 200cc60: 82 00 40 1c add %g1, %i4, %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc64: c4 27 60 48 st %g2, [ %i5 + 0x48 ] stats->searches += search_count; 200cc68: c2 27 60 4c st %g1, [ %i5 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200cc6c: 90 10 00 1d mov %i5, %o0 200cc70: 92 10 00 11 mov %l1, %o1 200cc74: 94 10 00 18 mov %i0, %o2 200cc78: 7f ff eb fb call 2007c64 <_Heap_Block_allocate> 200cc7c: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200cc80: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 200cc84: 80 a0 40 1c cmp %g1, %i4 200cc88: 1a 80 00 03 bcc 200cc94 <_Heap_Allocate_aligned_with_boundary+0x204> 200cc8c: 01 00 00 00 nop stats->max_search = search_count; 200cc90: f8 27 60 44 st %i4, [ %i5 + 0x44 ] } return (void *) alloc_begin; } 200cc94: 81 c7 e0 08 ret 200cc98: 81 e8 00 00 restore if ( free_size >= min_block_size || free_size == 0 ) { return alloc_begin; } } return 0; 200cc9c: 10 bf ff 92 b 200cae4 <_Heap_Allocate_aligned_with_boundary+0x54> 200cca0: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200cca4: 18 bf ff a3 bgu 200cb30 <_Heap_Allocate_aligned_with_boundary+0xa0> 200cca8: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200ccac: 22 bf ff 83 be,a 200cab8 <_Heap_Allocate_aligned_with_boundary+0x28> 200ccb0: b4 10 00 16 mov %l6, %i2 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200ccb4: 10 bf ff 82 b 200cabc <_Heap_Allocate_aligned_with_boundary+0x2c> 200ccb8: e2 07 60 08 ld [ %i5 + 8 ], %l1 =============================================================================== 0200c898 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c898: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200c89c: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200c8a0: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200c8a4: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200c8a8: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200c8ac: e0 06 20 10 ld [ %i0 + 0x10 ], %l0 uintptr_t const min_block_size = heap->min_block_size; 200c8b0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200c8b4: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200c8b8: 80 a6 40 1d cmp %i1, %i5 200c8bc: 08 80 00 05 bleu 200c8d0 <_Heap_Extend+0x38> 200c8c0: a2 10 20 00 clr %l1 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200c8c4: b0 0c 60 01 and %l1, 1, %i0 200c8c8: 81 c7 e0 08 ret 200c8cc: 81 e8 00 00 restore if ( extend_area_end < extend_area_begin ) { return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200c8d0: 90 10 00 19 mov %i1, %o0 200c8d4: 92 10 00 1a mov %i2, %o1 200c8d8: 94 10 00 10 mov %l0, %o2 200c8dc: 98 07 bf f8 add %fp, -8, %o4 200c8e0: 7f ff eb a8 call 2007780 <_Heap_Get_first_and_last_block> 200c8e4: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200c8e8: 80 8a 20 ff btst 0xff, %o0 200c8ec: 02 bf ff f6 be 200c8c4 <_Heap_Extend+0x2c> 200c8f0: aa 10 20 00 clr %l5 200c8f4: a2 10 00 1c mov %i4, %l1 200c8f8: ac 10 20 00 clr %l6 200c8fc: a6 10 20 00 clr %l3 200c900: 10 80 00 14 b 200c950 <_Heap_Extend+0xb8> 200c904: a8 10 20 00 clr %l4 return false; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c908: 2a 80 00 02 bcs,a 200c910 <_Heap_Extend+0x78> 200c90c: ac 10 00 11 mov %l1, %l6 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c910: 90 10 00 1a mov %i2, %o0 200c914: 40 00 16 bd call 2012408 <.urem> 200c918: 92 10 00 10 mov %l0, %o1 200c91c: 82 06 bf f8 add %i2, -8, %g1 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c920: 80 a6 80 19 cmp %i2, %i1 200c924: 02 80 00 1c be 200c994 <_Heap_Extend+0xfc> 200c928: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c92c: 80 a6 40 1a cmp %i1, %i2 200c930: 38 80 00 02 bgu,a 200c938 <_Heap_Extend+0xa0> 200c934: aa 10 00 01 mov %g1, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c938: e2 00 60 04 ld [ %g1 + 4 ], %l1 200c93c: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c940: a2 04 40 01 add %l1, %g1, %l1 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c944: 80 a7 00 11 cmp %i4, %l1 200c948: 22 80 00 1b be,a 200c9b4 <_Heap_Extend+0x11c> 200c94c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200c950: 80 a4 40 1c cmp %l1, %i4 200c954: 02 80 00 66 be 200caec <_Heap_Extend+0x254> 200c958: 82 10 00 11 mov %l1, %g1 uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c95c: 80 a0 40 1d cmp %g1, %i5 200c960: 0a 80 00 70 bcs 200cb20 <_Heap_Extend+0x288> 200c964: f4 04 40 00 ld [ %l1 ], %i2 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c968: 80 a0 40 1d cmp %g1, %i5 200c96c: 12 bf ff e7 bne 200c908 <_Heap_Extend+0x70> 200c970: 80 a7 40 1a cmp %i5, %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c974: 90 10 00 1a mov %i2, %o0 200c978: 40 00 16 a4 call 2012408 <.urem> 200c97c: 92 10 00 10 mov %l0, %o1 200c980: 82 06 bf f8 add %i2, -8, %g1 200c984: a8 10 00 11 mov %l1, %l4 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c988: 80 a6 80 19 cmp %i2, %i1 200c98c: 12 bf ff e8 bne 200c92c <_Heap_Extend+0x94> <== ALWAYS TAKEN 200c990: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; 200c994: fa 24 40 00 st %i5, [ %l1 ] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c998: e2 00 60 04 ld [ %g1 + 4 ], %l1 200c99c: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c9a0: a2 04 40 01 add %l1, %g1, %l1 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c9a4: 80 a7 00 11 cmp %i4, %l1 200c9a8: 12 bf ff ea bne 200c950 <_Heap_Extend+0xb8> <== NEVER TAKEN 200c9ac: a6 10 00 01 mov %g1, %l3 if ( extend_area_begin < heap->area_begin ) { 200c9b0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200c9b4: 80 a6 40 01 cmp %i1, %g1 200c9b8: 3a 80 00 55 bcc,a 200cb0c <_Heap_Extend+0x274> 200c9bc: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c9c0: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200c9c4: c2 07 bf f8 ld [ %fp + -8 ], %g1 200c9c8: c4 07 bf fc ld [ %fp + -4 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c9cc: c8 06 20 20 ld [ %i0 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200c9d0: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200c9d4: fa 20 40 00 st %i5, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200c9d8: b8 10 e0 01 or %g3, 1, %i4 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200c9dc: f8 20 60 04 st %i4, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200c9e0: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c9e4: 80 a1 00 01 cmp %g4, %g1 200c9e8: 08 80 00 43 bleu 200caf4 <_Heap_Extend+0x25c> 200c9ec: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200c9f0: c2 26 20 20 st %g1, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200c9f4: 80 a5 20 00 cmp %l4, 0 200c9f8: 02 80 00 63 be 200cb84 <_Heap_Extend+0x2ec> 200c9fc: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200ca00: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200ca04: 92 10 00 1c mov %i4, %o1 200ca08: 40 00 16 80 call 2012408 <.urem> 200ca0c: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200ca10: 80 a2 20 00 cmp %o0, 0 200ca14: 02 80 00 04 be 200ca24 <_Heap_Extend+0x18c> 200ca18: c4 05 00 00 ld [ %l4 ], %g2 return value - remainder + alignment; 200ca1c: b2 06 40 1c add %i1, %i4, %i1 200ca20: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200ca24: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200ca28: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200ca2c: 84 25 00 01 sub %l4, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200ca30: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200ca34: 90 10 00 18 mov %i0, %o0 200ca38: 92 10 00 01 mov %g1, %o1 200ca3c: 7f ff ff 8d call 200c870 <_Heap_Free_block> 200ca40: c4 26 7f fc st %g2, [ %i1 + -4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200ca44: 80 a4 e0 00 cmp %l3, 0 200ca48: 02 80 00 3b be 200cb34 <_Heap_Extend+0x29c> 200ca4c: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ca50: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200ca54: ba 27 40 13 sub %i5, %l3, %i5 200ca58: 40 00 16 6c call 2012408 <.urem> 200ca5c: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200ca60: c2 04 e0 04 ld [ %l3 + 4 ], %g1 200ca64: ba 27 40 08 sub %i5, %o0, %i5 200ca68: 82 20 40 1d sub %g1, %i5, %g1 | HEAP_PREV_BLOCK_USED; 200ca6c: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200ca70: 84 07 40 13 add %i5, %l3, %g2 200ca74: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ca78: c2 04 e0 04 ld [ %l3 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200ca7c: 90 10 00 18 mov %i0, %o0 200ca80: 82 08 60 01 and %g1, 1, %g1 200ca84: 92 10 00 13 mov %l3, %o1 block->size_and_flag = size | flag; 200ca88: ba 17 40 01 or %i5, %g1, %i5 200ca8c: 7f ff ff 79 call 200c870 <_Heap_Free_block> 200ca90: fa 24 e0 04 st %i5, [ %l3 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200ca94: 80 a4 e0 00 cmp %l3, 0 200ca98: 02 80 00 34 be 200cb68 <_Heap_Extend+0x2d0> 200ca9c: 80 a5 20 00 cmp %l4, 0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200caa0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200caa4: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200caa8: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200caac: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cab0: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200cab4: 84 10 80 03 or %g2, %g3, %g2 200cab8: c4 20 60 04 st %g2, [ %g1 + 4 ] _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200cabc: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200cac0: c4 06 20 30 ld [ %i0 + 0x30 ], %g2 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200cac4: a2 10 20 01 mov 1, %l1 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200cac8: a4 20 80 12 sub %g2, %l2, %l2 /* Statistics */ stats->size += extended_size; 200cacc: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200cad0: 80 a6 e0 00 cmp %i3, 0 200cad4: 02 bf ff 7c be 200c8c4 <_Heap_Extend+0x2c> <== NEVER TAKEN 200cad8: c2 26 20 2c st %g1, [ %i0 + 0x2c ] *extended_size_ptr = extended_size; 200cadc: e4 26 c0 00 st %l2, [ %i3 ] return true; } 200cae0: b0 0c 60 01 and %l1, 1, %i0 200cae4: 81 c7 e0 08 ret 200cae8: 81 e8 00 00 restore return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200caec: 10 bf ff 9c b 200c95c <_Heap_Extend+0xc4> 200caf0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200caf4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200caf8: 80 a0 40 02 cmp %g1, %g2 200cafc: 2a bf ff be bcs,a 200c9f4 <_Heap_Extend+0x15c> 200cb00: c4 26 20 24 st %g2, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200cb04: 10 bf ff bd b 200c9f8 <_Heap_Extend+0x160> 200cb08: 80 a5 20 00 cmp %l4, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200cb0c: 80 a7 40 01 cmp %i5, %g1 200cb10: 38 bf ff ad bgu,a 200c9c4 <_Heap_Extend+0x12c> 200cb14: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cb18: 10 bf ff ac b 200c9c8 <_Heap_Extend+0x130> 200cb1c: c2 07 bf f8 ld [ %fp + -8 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cb20: 80 a6 40 1a cmp %i1, %i2 200cb24: 1a bf ff 92 bcc 200c96c <_Heap_Extend+0xd4> 200cb28: 80 a0 40 1d cmp %g1, %i5 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; 200cb2c: 10 bf ff 66 b 200c8c4 <_Heap_Extend+0x2c> 200cb30: a2 10 20 00 clr %l1 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200cb34: 80 a5 60 00 cmp %l5, 0 200cb38: 02 bf ff d7 be 200ca94 <_Heap_Extend+0x1fc> 200cb3c: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cb40: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200cb44: c2 07 bf fc ld [ %fp + -4 ], %g1 200cb48: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200cb4c: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200cb50: 84 10 c0 02 or %g3, %g2, %g2 200cb54: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200cb58: c4 00 60 04 ld [ %g1 + 4 ], %g2 200cb5c: 84 10 a0 01 or %g2, 1, %g2 200cb60: 10 bf ff cd b 200ca94 <_Heap_Extend+0x1fc> 200cb64: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cb68: 32 bf ff cf bne,a 200caa4 <_Heap_Extend+0x20c> 200cb6c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200cb70: d2 07 bf f8 ld [ %fp + -8 ], %o1 200cb74: 7f ff ff 3f call 200c870 <_Heap_Free_block> 200cb78: 90 10 00 18 mov %i0, %o0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cb7c: 10 bf ff ca b 200caa4 <_Heap_Extend+0x20c> 200cb80: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200cb84: 80 a5 a0 00 cmp %l6, 0 200cb88: 02 bf ff b0 be 200ca48 <_Heap_Extend+0x1b0> 200cb8c: 80 a4 e0 00 cmp %l3, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200cb90: ac 25 80 02 sub %l6, %g2, %l6 200cb94: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200cb98: 10 bf ff ac b 200ca48 <_Heap_Extend+0x1b0> 200cb9c: ec 20 a0 04 st %l6, [ %g2 + 4 ] =============================================================================== 0200ccbc <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200ccbc: 9d e3 bf a0 save %sp, -96, %sp /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200ccc0: 80 a6 60 00 cmp %i1, 0 200ccc4: 02 80 00 56 be 200ce1c <_Heap_Free+0x160> 200ccc8: 84 10 20 01 mov 1, %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cccc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200ccd0: 40 00 2b b7 call 2017bac <.urem> 200ccd4: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200ccd8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ccdc: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200cce0: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cce4: 80 a7 40 01 cmp %i5, %g1 200cce8: 0a 80 00 4d bcs 200ce1c <_Heap_Free+0x160> 200ccec: 84 10 20 00 clr %g2 200ccf0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 200ccf4: 80 a7 40 04 cmp %i5, %g4 200ccf8: 38 80 00 4a bgu,a 200ce20 <_Heap_Free+0x164> 200ccfc: b0 08 a0 01 and %g2, 1, %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd00: de 07 60 04 ld [ %i5 + 4 ], %o7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cd04: b2 0b ff fe and %o7, -2, %i1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd08: 86 06 40 1d add %i1, %i5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cd0c: 80 a0 40 03 cmp %g1, %g3 200cd10: 38 80 00 44 bgu,a 200ce20 <_Heap_Free+0x164> <== NEVER TAKEN 200cd14: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED 200cd18: 80 a1 00 03 cmp %g4, %g3 200cd1c: 2a 80 00 41 bcs,a 200ce20 <_Heap_Free+0x164> <== NEVER TAKEN 200cd20: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED 200cd24: da 00 e0 04 ld [ %g3 + 4 ], %o5 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200cd28: 80 8b 60 01 btst 1, %o5 200cd2c: 02 80 00 3c be 200ce1c <_Heap_Free+0x160> 200cd30: 98 0b 7f fe and %o5, -2, %o4 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200cd34: 80 a1 00 03 cmp %g4, %g3 200cd38: 02 80 00 06 be 200cd50 <_Heap_Free+0x94> 200cd3c: 9a 10 20 00 clr %o5 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd40: 84 00 c0 0c add %g3, %o4, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd44: da 00 a0 04 ld [ %g2 + 4 ], %o5 200cd48: 9a 0b 60 01 and %o5, 1, %o5 return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 200cd4c: 9a 1b 60 01 xor %o5, 1, %o5 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200cd50: 80 8b e0 01 btst 1, %o7 200cd54: 12 80 00 1c bne 200cdc4 <_Heap_Free+0x108> 200cd58: 80 8b 60 ff btst 0xff, %o5 uintptr_t const prev_size = block->prev_size; 200cd5c: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd60: 9e 27 40 0b sub %i5, %o3, %o7 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cd64: 80 a0 40 0f cmp %g1, %o7 200cd68: 18 80 00 2d bgu 200ce1c <_Heap_Free+0x160> <== NEVER TAKEN 200cd6c: 84 10 20 00 clr %g2 200cd70: 80 a1 00 0f cmp %g4, %o7 200cd74: 2a 80 00 2b bcs,a 200ce20 <_Heap_Free+0x164> <== NEVER TAKEN 200cd78: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd7c: c2 03 e0 04 ld [ %o7 + 4 ], %g1 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200cd80: 80 88 60 01 btst 1, %g1 200cd84: 02 80 00 26 be 200ce1c <_Heap_Free+0x160> <== NEVER TAKEN 200cd88: 80 8b 60 ff btst 0xff, %o5 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200cd8c: 02 80 00 39 be 200ce70 <_Heap_Free+0x1b4> 200cd90: 96 06 40 0b add %i1, %o3, %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd94: c2 00 e0 08 ld [ %g3 + 8 ], %g1 200cd98: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cd9c: c6 06 20 38 ld [ %i0 + 0x38 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 200cda0: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200cda4: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200cda8: 82 00 ff ff add %g3, -1, %g1 200cdac: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200cdb0: 98 02 c0 0c add %o3, %o4, %o4 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdb4: 82 13 20 01 or %o4, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200cdb8: d8 23 00 0f st %o4, [ %o4 + %o7 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdbc: 10 80 00 0e b 200cdf4 <_Heap_Free+0x138> 200cdc0: c2 23 e0 04 st %g1, [ %o7 + 4 ] uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200cdc4: 22 80 00 19 be,a 200ce28 <_Heap_Free+0x16c> 200cdc8: c4 06 20 08 ld [ %i0 + 8 ], %g2 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cdcc: c4 00 e0 08 ld [ %g3 + 8 ], %g2 200cdd0: c2 00 e0 0c ld [ %g3 + 0xc ], %g1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 200cdd4: c4 27 60 08 st %g2, [ %i5 + 8 ] new_block->prev = prev; 200cdd8: c2 27 60 0c st %g1, [ %i5 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200cddc: 98 03 00 19 add %o4, %i1, %o4 next->prev = new_block; 200cde0: fa 20 a0 0c st %i5, [ %g2 + 0xc ] prev->next = new_block; 200cde4: fa 20 60 08 st %i5, [ %g1 + 8 ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cde8: 84 13 20 01 or %o4, 1, %g2 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200cdec: d8 23 00 1d st %o4, [ %o4 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdf0: c4 27 60 04 st %g2, [ %i5 + 4 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cdf4: c4 06 20 40 ld [ %i0 + 0x40 ], %g2 ++stats->frees; 200cdf8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 stats->free_size += block_size; 200cdfc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200ce00: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; 200ce04: 82 00 60 01 inc %g1 stats->free_size += block_size; 200ce08: b2 00 c0 19 add %g3, %i1, %i1 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200ce0c: c4 26 20 40 st %g2, [ %i0 + 0x40 ] ++stats->frees; 200ce10: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200ce14: f2 26 20 30 st %i1, [ %i0 + 0x30 ] return( true ); 200ce18: 84 10 20 01 mov 1, %g2 } 200ce1c: b0 08 a0 01 and %g2, 1, %i0 200ce20: 81 c7 e0 08 ret 200ce24: 81 e8 00 00 restore next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200ce28: 82 16 60 01 or %i1, 1, %g1 200ce2c: c2 27 60 04 st %g1, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce30: c8 00 e0 04 ld [ %g3 + 4 ], %g4 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200ce34: f0 27 60 0c st %i0, [ %i5 + 0xc ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce38: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200ce3c: c4 27 60 08 st %g2, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200ce40: fa 20 a0 0c st %i5, [ %g2 + 0xc ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce44: 84 09 3f fe and %g4, -2, %g2 next_block->prev_size = block_size; 200ce48: f2 26 40 1d st %i1, [ %i1 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce4c: c4 20 e0 04 st %g2, [ %g3 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200ce50: c4 06 20 3c ld [ %i0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce54: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200ce58: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200ce5c: 80 a0 40 02 cmp %g1, %g2 200ce60: 08 bf ff e5 bleu 200cdf4 <_Heap_Free+0x138> 200ce64: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200ce68: 10 bf ff e3 b 200cdf4 <_Heap_Free+0x138> 200ce6c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200ce70: 82 12 e0 01 or %o3, 1, %g1 200ce74: c2 23 e0 04 st %g1, [ %o7 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce78: c2 00 e0 04 ld [ %g3 + 4 ], %g1 next_block->prev_size = size; 200ce7c: d6 26 40 1d st %o3, [ %i1 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce80: 82 08 7f fe and %g1, -2, %g1 200ce84: 10 bf ff dc b 200cdf4 <_Heap_Free+0x138> 200ce88: c2 20 e0 04 st %g1, [ %g3 + 4 ] =============================================================================== 0200d3a4 <_Heap_Get_information>: void _Heap_Get_information( Heap_Control *the_heap, Heap_Information_block *the_info ) { 200d3a4: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *the_block = the_heap->first_block; 200d3a8: fa 06 20 20 ld [ %i0 + 0x20 ], %i5 Heap_Block *const end = the_heap->last_block; 200d3ac: f8 06 20 24 ld [ %i0 + 0x24 ], %i4 memset(the_info, 0, sizeof(*the_info)); 200d3b0: 92 10 20 00 clr %o1 200d3b4: 90 10 00 19 mov %i1, %o0 200d3b8: 40 00 09 27 call 200f854 200d3bc: 94 10 20 18 mov 0x18, %o2 while ( the_block != end ) { 200d3c0: 80 a7 40 1c cmp %i5, %i4 200d3c4: 02 80 00 17 be 200d420 <_Heap_Get_information+0x7c> <== NEVER TAKEN 200d3c8: 01 00 00 00 nop 200d3cc: c6 07 60 04 ld [ %i5 + 4 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d3d0: 84 08 ff fe and %g3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d3d4: ba 07 40 02 add %i5, %g2, %i5 if ( info->largest < the_size ) info->largest = the_size; the_block = next_block; } } 200d3d8: c6 07 60 04 ld [ %i5 + 4 ], %g3 while ( the_block != end ) { uintptr_t const the_size = _Heap_Block_size(the_block); Heap_Block *const next_block = _Heap_Block_at(the_block, the_size); Heap_Information *info; if ( _Heap_Is_prev_used(next_block) ) 200d3dc: 80 88 e0 01 btst 1, %g3 200d3e0: 02 80 00 03 be 200d3ec <_Heap_Get_information+0x48> 200d3e4: 82 10 00 19 mov %i1, %g1 info = &the_info->Used; 200d3e8: 82 06 60 0c add %i1, 0xc, %g1 else info = &the_info->Free; info->number++; 200d3ec: de 00 40 00 ld [ %g1 ], %o7 info->total += the_size; 200d3f0: f0 00 60 08 ld [ %g1 + 8 ], %i0 if ( info->largest < the_size ) 200d3f4: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d3f8: 9e 03 e0 01 inc %o7 info->total += the_size; 200d3fc: b0 06 00 02 add %i0, %g2, %i0 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d400: de 20 40 00 st %o7, [ %g1 ] info->total += the_size; if ( info->largest < the_size ) 200d404: 80 a1 00 02 cmp %g4, %g2 200d408: 1a 80 00 03 bcc 200d414 <_Heap_Get_information+0x70> 200d40c: f0 20 60 08 st %i0, [ %g1 + 8 ] info->largest = the_size; 200d410: c4 20 60 04 st %g2, [ %g1 + 4 ] Heap_Block *the_block = the_heap->first_block; Heap_Block *const end = the_heap->last_block; memset(the_info, 0, sizeof(*the_info)); while ( the_block != end ) { 200d414: 80 a7 00 1d cmp %i4, %i5 200d418: 12 bf ff ef bne 200d3d4 <_Heap_Get_information+0x30> 200d41c: 84 08 ff fe and %g3, -2, %g2 200d420: 81 c7 e0 08 ret 200d424: 81 e8 00 00 restore =============================================================================== 020196c4 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 20196c4: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20196c8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 20196cc: 7f ff f9 38 call 2017bac <.urem> 20196d0: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 20196d4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20196d8: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 20196dc: 84 20 80 08 sub %g2, %o0, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20196e0: 80 a0 80 01 cmp %g2, %g1 20196e4: 0a 80 00 16 bcs 201973c <_Heap_Size_of_alloc_area+0x78> 20196e8: 86 10 20 00 clr %g3 20196ec: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 20196f0: 80 a0 80 04 cmp %g2, %g4 20196f4: 18 80 00 13 bgu 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 20196f8: b0 08 e0 01 and %g3, 1, %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20196fc: f0 00 a0 04 ld [ %g2 + 4 ], %i0 2019700: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2019704: 84 06 00 02 add %i0, %g2, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2019708: 80 a0 40 02 cmp %g1, %g2 201970c: 18 80 00 0d bgu 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 2019710: b0 08 e0 01 and %g3, 1, %i0 2019714: 80 a1 00 02 cmp %g4, %g2 2019718: 0a 80 00 0a bcs 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 201971c: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2019720: c2 00 a0 04 ld [ %g2 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2019724: 80 88 60 01 btst 1, %g1 2019728: 02 80 00 06 be 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 201972c: 84 20 80 19 sub %g2, %i1, %g2 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2019730: 86 10 20 01 mov 1, %g3 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2019734: 84 00 a0 04 add %g2, 4, %g2 2019738: c4 26 80 00 st %g2, [ %i2 ] return true; } 201973c: b0 08 e0 01 and %g3, 1, %i0 2019740: 81 c7 e0 08 ret 2019744: 81 e8 00 00 restore =============================================================================== 020086f8 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20086f8: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20086fc: 3b 00 80 21 sethi %hi(0x2008400), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 2008700: e0 06 20 10 ld [ %i0 + 0x10 ], %l0 uintptr_t const min_block_size = heap->min_block_size; 2008704: f6 06 20 14 ld [ %i0 + 0x14 ], %i3 Heap_Block *const first_block = heap->first_block; 2008708: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *const last_block = heap->last_block; 200870c: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008710: 80 a6 a0 00 cmp %i2, 0 2008714: 02 80 00 04 be 2008724 <_Heap_Walk+0x2c> 2008718: ba 17 62 8c or %i5, 0x28c, %i5 200871c: 3b 00 80 21 sethi %hi(0x2008400), %i5 2008720: ba 17 62 94 or %i5, 0x294, %i5 ! 2008694 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008724: 03 00 80 60 sethi %hi(0x2018000), %g1 2008728: c4 00 63 b4 ld [ %g1 + 0x3b4 ], %g2 ! 20183b4 <_System_state_Current> 200872c: 80 a0 a0 03 cmp %g2, 3 2008730: 02 80 00 05 be 2008744 <_Heap_Walk+0x4c> 2008734: 82 10 20 01 mov 1, %g1 block = next_block; } while ( block != first_block ); return true; } 2008738: b0 08 60 01 and %g1, 1, %i0 200873c: 81 c7 e0 08 ret 2008740: 81 e8 00 00 restore Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008744: da 06 20 18 ld [ %i0 + 0x18 ], %o5 2008748: c6 06 20 1c ld [ %i0 + 0x1c ], %g3 200874c: c4 06 20 08 ld [ %i0 + 8 ], %g2 2008750: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008754: 90 10 00 19 mov %i1, %o0 2008758: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 200875c: f8 23 a0 60 st %i4, [ %sp + 0x60 ] 2008760: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 2008764: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 2008768: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 200876c: 92 10 20 00 clr %o1 2008770: 96 10 00 10 mov %l0, %o3 2008774: 15 00 80 56 sethi %hi(0x2015800), %o2 2008778: 98 10 00 1b mov %i3, %o4 200877c: 9f c7 40 00 call %i5 2008780: 94 12 a1 68 or %o2, 0x168, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008784: 80 a4 20 00 cmp %l0, 0 2008788: 02 80 00 28 be 2008828 <_Heap_Walk+0x130> 200878c: 80 8c 20 07 btst 7, %l0 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008790: 12 80 00 2d bne 2008844 <_Heap_Walk+0x14c> 2008794: 90 10 00 1b mov %i3, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008798: 7f ff e4 cd call 2001acc <.urem> 200879c: 92 10 00 10 mov %l0, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 20087a0: 80 a2 20 00 cmp %o0, 0 20087a4: 12 80 00 30 bne 2008864 <_Heap_Walk+0x16c> 20087a8: 90 07 20 08 add %i4, 8, %o0 20087ac: 7f ff e4 c8 call 2001acc <.urem> 20087b0: 92 10 00 10 mov %l0, %o1 ); return false; } if ( 20087b4: 80 a2 20 00 cmp %o0, 0 20087b8: 32 80 00 33 bne,a 2008884 <_Heap_Walk+0x18c> 20087bc: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 20087c0: e8 07 20 04 ld [ %i4 + 4 ], %l4 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20087c4: 80 8d 20 01 btst 1, %l4 20087c8: 22 80 00 36 be,a 20088a0 <_Heap_Walk+0x1a8> 20087cc: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20087d0: c2 04 60 04 ld [ %l1 + 4 ], %g1 20087d4: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20087d8: 82 04 40 01 add %l1, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20087dc: c4 00 60 04 ld [ %g1 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20087e0: 80 88 a0 01 btst 1, %g2 20087e4: 02 80 00 0a be 200880c <_Heap_Walk+0x114> 20087e8: 80 a7 00 01 cmp %i4, %g1 ); return false; } if ( 20087ec: 02 80 00 33 be 20088b8 <_Heap_Walk+0x1c0> 20087f0: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20087f4: 92 10 20 01 mov 1, %o1 20087f8: 15 00 80 56 sethi %hi(0x2015800), %o2 20087fc: 9f c7 40 00 call %i5 2008800: 94 12 a2 e0 or %o2, 0x2e0, %o2 ! 2015ae0 <_Status_Object_name_errors_to_status+0x1f0> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008804: 10 bf ff cd b 2008738 <_Heap_Walk+0x40> 2008808: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 200880c: 90 10 00 19 mov %i1, %o0 2008810: 92 10 20 01 mov 1, %o1 2008814: 15 00 80 56 sethi %hi(0x2015800), %o2 2008818: 9f c7 40 00 call %i5 200881c: 94 12 a2 c8 or %o2, 0x2c8, %o2 ! 2015ac8 <_Status_Object_name_errors_to_status+0x1d8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008820: 10 bf ff c6 b 2008738 <_Heap_Walk+0x40> 2008824: 82 10 20 00 clr %g1 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008828: 90 10 00 19 mov %i1, %o0 200882c: 92 10 20 01 mov 1, %o1 2008830: 15 00 80 56 sethi %hi(0x2015800), %o2 2008834: 9f c7 40 00 call %i5 2008838: 94 12 a2 00 or %o2, 0x200, %o2 ! 2015a00 <_Status_Object_name_errors_to_status+0x110> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200883c: 10 bf ff bf b 2008738 <_Heap_Walk+0x40> 2008840: 82 10 20 00 clr %g1 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008844: 90 10 00 19 mov %i1, %o0 2008848: 92 10 20 01 mov 1, %o1 200884c: 96 10 00 10 mov %l0, %o3 2008850: 15 00 80 56 sethi %hi(0x2015800), %o2 2008854: 9f c7 40 00 call %i5 2008858: 94 12 a2 18 or %o2, 0x218, %o2 ! 2015a18 <_Status_Object_name_errors_to_status+0x128> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200885c: 10 bf ff b7 b 2008738 <_Heap_Walk+0x40> 2008860: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008864: 90 10 00 19 mov %i1, %o0 2008868: 92 10 20 01 mov 1, %o1 200886c: 96 10 00 1b mov %i3, %o3 2008870: 15 00 80 56 sethi %hi(0x2015800), %o2 2008874: 9f c7 40 00 call %i5 2008878: 94 12 a2 38 or %o2, 0x238, %o2 ! 2015a38 <_Status_Object_name_errors_to_status+0x148> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200887c: 10 bf ff af b 2008738 <_Heap_Walk+0x40> 2008880: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008884: 92 10 20 01 mov 1, %o1 2008888: 96 10 00 1c mov %i4, %o3 200888c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008890: 9f c7 40 00 call %i5 2008894: 94 12 a2 60 or %o2, 0x260, %o2 ! 2015a60 <_Status_Object_name_errors_to_status+0x170> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008898: 10 bf ff a8 b 2008738 <_Heap_Walk+0x40> 200889c: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 20088a0: 92 10 20 01 mov 1, %o1 20088a4: 15 00 80 56 sethi %hi(0x2015800), %o2 20088a8: 9f c7 40 00 call %i5 20088ac: 94 12 a2 98 or %o2, 0x298, %o2 ! 2015a98 <_Status_Object_name_errors_to_status+0x1a8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20088b0: 10 bf ff a2 b 2008738 <_Heap_Walk+0x40> 20088b4: 82 10 20 00 clr %g1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 20088b8: f4 06 20 08 ld [ %i0 + 8 ], %i2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 20088bc: ea 06 20 10 ld [ %i0 + 0x10 ], %l5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 20088c0: 80 a6 00 1a cmp %i0, %i2 20088c4: 02 80 00 0d be 20088f8 <_Heap_Walk+0x200> 20088c8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20088cc: 80 a0 40 1a cmp %g1, %i2 20088d0: 28 80 00 bc bleu,a 2008bc0 <_Heap_Walk+0x4c8> <== ALWAYS TAKEN 20088d4: e6 06 20 24 ld [ %i0 + 0x24 ], %l3 if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 20088d8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 20088dc: 92 10 20 01 mov 1, %o1 20088e0: 96 10 00 1a mov %i2, %o3 20088e4: 15 00 80 56 sethi %hi(0x2015800), %o2 20088e8: 9f c7 40 00 call %i5 20088ec: 94 12 a3 10 or %o2, 0x310, %o2 ! 2015b10 <_Status_Object_name_errors_to_status+0x220> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20088f0: 10 bf ff 92 b 2008738 <_Heap_Walk+0x40> 20088f4: 82 10 20 00 clr %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20088f8: 2d 00 80 57 sethi %hi(0x2015c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20088fc: 2f 00 80 57 sethi %hi(0x2015c00), %l7 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008900: a4 10 00 1c mov %i4, %l2 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008904: ac 15 a1 40 or %l6, 0x140, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008908: ae 15 e1 28 or %l7, 0x128, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 200890c: 2b 00 80 57 sethi %hi(0x2015c00), %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008910: a6 0d 3f fe and %l4, -2, %l3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008914: b4 04 c0 12 add %l3, %l2, %i2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008918: 80 a0 40 1a cmp %g1, %i2 200891c: 28 80 00 0b bleu,a 2008948 <_Heap_Walk+0x250> <== ALWAYS TAKEN 2008920: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2008924: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008928: 92 10 20 01 mov 1, %o1 200892c: 96 10 00 12 mov %l2, %o3 2008930: 15 00 80 56 sethi %hi(0x2015800), %o2 2008934: 98 10 00 1a mov %i2, %o4 2008938: 9f c7 40 00 call %i5 200893c: 94 12 a3 b8 or %o2, 0x3b8, %o2 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 2008940: 10 bf ff 7e b 2008738 <_Heap_Walk+0x40> 2008944: 82 10 20 00 clr %g1 2008948: 80 a0 40 1a cmp %g1, %i2 200894c: 0a bf ff f7 bcs 2008928 <_Heap_Walk+0x230> 2008950: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008954: 82 1c 80 11 xor %l2, %l1, %g1 2008958: 80 a0 00 01 cmp %g0, %g1 200895c: 82 40 20 00 addx %g0, 0, %g1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008960: 90 10 00 13 mov %l3, %o0 2008964: c2 27 bf fc st %g1, [ %fp + -4 ] 2008968: 7f ff e4 59 call 2001acc <.urem> 200896c: 92 10 00 10 mov %l0, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008970: 80 a2 20 00 cmp %o0, 0 2008974: 02 80 00 05 be 2008988 <_Heap_Walk+0x290> 2008978: c2 07 bf fc ld [ %fp + -4 ], %g1 200897c: 80 88 60 ff btst 0xff, %g1 2008980: 12 80 00 76 bne 2008b58 <_Heap_Walk+0x460> 2008984: 90 10 00 19 mov %i1, %o0 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008988: 80 a6 c0 13 cmp %i3, %l3 200898c: 08 80 00 05 bleu 20089a0 <_Heap_Walk+0x2a8> 2008990: 80 a4 80 1a cmp %l2, %i2 2008994: 80 88 60 ff btst 0xff, %g1 2008998: 12 80 00 78 bne 2008b78 <_Heap_Walk+0x480> <== ALWAYS TAKEN 200899c: 80 a4 80 1a cmp %l2, %i2 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 20089a0: 2a 80 00 06 bcs,a 20089b8 <_Heap_Walk+0x2c0> 20089a4: c2 06 a0 04 ld [ %i2 + 4 ], %g1 20089a8: 80 88 60 ff btst 0xff, %g1 20089ac: 12 80 00 7d bne 2008ba0 <_Heap_Walk+0x4a8> 20089b0: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20089b4: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 20089b8: 80 88 60 01 btst 1, %g1 20089bc: 02 80 00 19 be 2008a20 <_Heap_Walk+0x328> 20089c0: a8 0d 20 01 and %l4, 1, %l4 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 20089c4: 80 a5 20 00 cmp %l4, 0 20089c8: 22 80 00 0e be,a 2008a00 <_Heap_Walk+0x308> 20089cc: da 04 80 00 ld [ %l2 ], %o5 (*printer)( 20089d0: 90 10 00 19 mov %i1, %o0 20089d4: 92 10 20 00 clr %o1 20089d8: 94 10 00 17 mov %l7, %o2 20089dc: 96 10 00 12 mov %l2, %o3 20089e0: 9f c7 40 00 call %i5 20089e4: 98 10 00 13 mov %l3, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20089e8: 80 a7 00 1a cmp %i4, %i2 20089ec: 02 80 00 42 be 2008af4 <_Heap_Walk+0x3fc> 20089f0: a4 10 00 1a mov %i2, %l2 20089f4: e8 06 a0 04 ld [ %i2 + 4 ], %l4 20089f8: 10 bf ff c6 b 2008910 <_Heap_Walk+0x218> 20089fc: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008a00: 96 10 00 12 mov %l2, %o3 2008a04: 90 10 00 19 mov %i1, %o0 2008a08: 92 10 20 00 clr %o1 2008a0c: 94 10 00 16 mov %l6, %o2 2008a10: 9f c7 40 00 call %i5 2008a14: 98 10 00 13 mov %l3, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008a18: 10 bf ff f5 b 20089ec <_Heap_Walk+0x2f4> 2008a1c: 80 a7 00 1a cmp %i4, %i2 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008a20: da 04 a0 0c ld [ %l2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a24: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008a28: 05 00 80 56 sethi %hi(0x2015800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 2008a2c: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008a30: 80 a0 40 0d cmp %g1, %o5 2008a34: 02 80 00 05 be 2008a48 <_Heap_Walk+0x350> 2008a38: 86 10 a1 28 or %g2, 0x128, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008a3c: 80 a6 00 0d cmp %i0, %o5 2008a40: 02 80 00 3c be 2008b30 <_Heap_Walk+0x438> 2008a44: 86 15 60 f0 or %l5, 0xf0, %g3 block->next, block->next == last_free_block ? 2008a48: c2 04 a0 08 ld [ %l2 + 8 ], %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a4c: 1f 00 80 56 sethi %hi(0x2015800), %o7 2008a50: 80 a1 00 01 cmp %g4, %g1 2008a54: 02 80 00 05 be 2008a68 <_Heap_Walk+0x370> 2008a58: 84 13 e1 48 or %o7, 0x148, %g2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008a5c: 80 a6 00 01 cmp %i0, %g1 2008a60: 02 80 00 31 be 2008b24 <_Heap_Walk+0x42c> 2008a64: 84 15 60 f0 or %l5, 0xf0, %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a68: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008a6c: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2008a70: c4 23 a0 64 st %g2, [ %sp + 0x64 ] 2008a74: 90 10 00 19 mov %i1, %o0 2008a78: 92 10 20 00 clr %o1 2008a7c: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008a80: 96 10 00 12 mov %l2, %o3 2008a84: 94 12 a0 80 or %o2, 0x80, %o2 2008a88: 9f c7 40 00 call %i5 2008a8c: 98 10 00 13 mov %l3, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008a90: da 06 80 00 ld [ %i2 ], %o5 2008a94: 80 a4 c0 0d cmp %l3, %o5 2008a98: 12 80 00 19 bne 2008afc <_Heap_Walk+0x404> 2008a9c: 80 a5 20 00 cmp %l4, 0 ); return false; } if ( !prev_used ) { 2008aa0: 02 80 00 27 be 2008b3c <_Heap_Walk+0x444> 2008aa4: 90 10 00 19 mov %i1, %o0 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2008aa8: c2 06 20 08 ld [ %i0 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008aac: 80 a6 00 01 cmp %i0, %g1 2008ab0: 02 80 00 0b be 2008adc <_Heap_Walk+0x3e4> <== NEVER TAKEN 2008ab4: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 2008ab8: 80 a4 80 01 cmp %l2, %g1 2008abc: 02 bf ff cc be 20089ec <_Heap_Walk+0x2f4> 2008ac0: 80 a7 00 1a cmp %i4, %i2 return true; } free_block = free_block->next; 2008ac4: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008ac8: 80 a6 00 01 cmp %i0, %g1 2008acc: 12 bf ff fc bne 2008abc <_Heap_Walk+0x3c4> 2008ad0: 80 a4 80 01 cmp %l2, %g1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008ad4: 90 10 00 19 mov %i1, %o0 2008ad8: 92 10 20 01 mov 1, %o1 2008adc: 96 10 00 12 mov %l2, %o3 2008ae0: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008ae4: 9f c7 40 00 call %i5 2008ae8: 94 12 a1 68 or %o2, 0x168, %o2 ! 2015d68 <_Status_Object_name_errors_to_status+0x478> return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008aec: 10 bf ff 13 b 2008738 <_Heap_Walk+0x40> 2008af0: 82 10 20 00 clr %g1 } block = next_block; } while ( block != first_block ); return true; 2008af4: 10 bf ff 11 b 2008738 <_Heap_Walk+0x40> 2008af8: 82 10 20 01 mov 1, %g1 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 2008afc: f4 23 a0 5c st %i2, [ %sp + 0x5c ] 2008b00: 90 10 00 19 mov %i1, %o0 2008b04: 92 10 20 01 mov 1, %o1 2008b08: 96 10 00 12 mov %l2, %o3 2008b0c: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b10: 98 10 00 13 mov %l3, %o4 2008b14: 9f c7 40 00 call %i5 2008b18: 94 12 a0 b8 or %o2, 0xb8, %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008b1c: 10 bf ff 07 b 2008738 <_Heap_Walk+0x40> 2008b20: 82 10 20 00 clr %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008b24: 05 00 80 56 sethi %hi(0x2015800), %g2 2008b28: 10 bf ff d0 b 2008a68 <_Heap_Walk+0x370> 2008b2c: 84 10 a1 58 or %g2, 0x158, %g2 ! 2015958 <_Status_Object_name_errors_to_status+0x68> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008b30: 07 00 80 56 sethi %hi(0x2015800), %g3 2008b34: 10 bf ff c5 b 2008a48 <_Heap_Walk+0x350> 2008b38: 86 10 e1 38 or %g3, 0x138, %g3 ! 2015938 <_Status_Object_name_errors_to_status+0x48> return false; } if ( !prev_used ) { (*printer)( 2008b3c: 92 10 20 01 mov 1, %o1 2008b40: 96 10 00 12 mov %l2, %o3 2008b44: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b48: 9f c7 40 00 call %i5 2008b4c: 94 12 a0 f8 or %o2, 0xf8, %o2 ! 2015cf8 <_Status_Object_name_errors_to_status+0x408> return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008b50: 10 bf fe fa b 2008738 <_Heap_Walk+0x40> 2008b54: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 2008b58: 92 10 20 01 mov 1, %o1 2008b5c: 96 10 00 12 mov %l2, %o3 2008b60: 15 00 80 56 sethi %hi(0x2015800), %o2 2008b64: 98 10 00 13 mov %l3, %o4 2008b68: 9f c7 40 00 call %i5 2008b6c: 94 12 a3 e8 or %o2, 0x3e8, %o2 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 2008b70: 10 bf fe f2 b 2008738 <_Heap_Walk+0x40> 2008b74: 82 10 20 00 clr %g1 } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 2008b78: 90 10 00 19 mov %i1, %o0 2008b7c: 92 10 20 01 mov 1, %o1 2008b80: 96 10 00 12 mov %l2, %o3 2008b84: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b88: 98 10 00 13 mov %l3, %o4 2008b8c: 94 12 a0 18 or %o2, 0x18, %o2 2008b90: 9f c7 40 00 call %i5 2008b94: 9a 10 00 1b mov %i3, %o5 block, block_size, min_block_size ); return false; 2008b98: 10 bf fe e8 b 2008738 <_Heap_Walk+0x40> 2008b9c: 82 10 20 00 clr %g1 } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 2008ba0: 92 10 20 01 mov 1, %o1 2008ba4: 96 10 00 12 mov %l2, %o3 2008ba8: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008bac: 98 10 00 1a mov %i2, %o4 2008bb0: 9f c7 40 00 call %i5 2008bb4: 94 12 a0 48 or %o2, 0x48, %o2 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2008bb8: 10 bf fe e0 b 2008738 <_Heap_Walk+0x40> 2008bbc: 82 10 20 00 clr %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008bc0: 80 a6 80 13 cmp %i2, %l3 2008bc4: 18 bf ff 46 bgu 20088dc <_Heap_Walk+0x1e4> <== NEVER TAKEN 2008bc8: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008bcc: c2 27 bf fc st %g1, [ %fp + -4 ] 2008bd0: 90 06 a0 08 add %i2, 8, %o0 2008bd4: 7f ff e3 be call 2001acc <.urem> 2008bd8: 92 10 00 15 mov %l5, %o1 ); return false; } if ( 2008bdc: 80 a2 20 00 cmp %o0, 0 2008be0: 12 80 00 36 bne 2008cb8 <_Heap_Walk+0x5c0> <== NEVER TAKEN 2008be4: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008be8: c4 06 a0 04 ld [ %i2 + 4 ], %g2 2008bec: 84 08 bf fe and %g2, -2, %g2 block = next_block; } while ( block != first_block ); return true; } 2008bf0: 84 06 80 02 add %i2, %g2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008bf4: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008bf8: 80 88 a0 01 btst 1, %g2 2008bfc: 12 80 00 27 bne 2008c98 <_Heap_Walk+0x5a0> <== NEVER TAKEN 2008c00: 84 10 00 18 mov %i0, %g2 2008c04: 10 80 00 19 b 2008c68 <_Heap_Walk+0x570> 2008c08: a4 10 00 1a mov %i2, %l2 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008c0c: 80 a6 00 1a cmp %i0, %i2 2008c10: 02 bf ff 3a be 20088f8 <_Heap_Walk+0x200> 2008c14: 80 a6 80 01 cmp %i2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008c18: 0a bf ff 31 bcs 20088dc <_Heap_Walk+0x1e4> 2008c1c: 90 10 00 19 mov %i1, %o0 2008c20: 80 a6 80 13 cmp %i2, %l3 2008c24: 18 bf ff 2f bgu 20088e0 <_Heap_Walk+0x1e8> <== NEVER TAKEN 2008c28: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008c2c: c2 27 bf fc st %g1, [ %fp + -4 ] 2008c30: 90 06 a0 08 add %i2, 8, %o0 2008c34: 7f ff e3 a6 call 2001acc <.urem> 2008c38: 92 10 00 15 mov %l5, %o1 ); return false; } if ( 2008c3c: 80 a2 20 00 cmp %o0, 0 2008c40: 12 80 00 1e bne 2008cb8 <_Heap_Walk+0x5c0> 2008c44: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008c48: c6 06 a0 04 ld [ %i2 + 4 ], %g3 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c4c: 84 10 00 12 mov %l2, %g2 2008c50: 86 08 ff fe and %g3, -2, %g3 block = next_block; } while ( block != first_block ); return true; } 2008c54: 86 06 80 03 add %i2, %g3, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008c58: c6 00 e0 04 ld [ %g3 + 4 ], %g3 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c5c: 80 88 e0 01 btst 1, %g3 2008c60: 12 80 00 0e bne 2008c98 <_Heap_Walk+0x5a0> 2008c64: a4 10 00 1a mov %i2, %l2 ); return false; } if ( free_block->prev != prev_block ) { 2008c68: d8 06 a0 0c ld [ %i2 + 0xc ], %o4 2008c6c: 80 a3 00 02 cmp %o4, %g2 2008c70: 22 bf ff e7 be,a 2008c0c <_Heap_Walk+0x514> 2008c74: f4 06 a0 08 ld [ %i2 + 8 ], %i2 (*printer)( 2008c78: 90 10 00 19 mov %i1, %o0 2008c7c: 92 10 20 01 mov 1, %o1 2008c80: 96 10 00 1a mov %i2, %o3 2008c84: 15 00 80 56 sethi %hi(0x2015800), %o2 2008c88: 9f c7 40 00 call %i5 2008c8c: 94 12 a3 80 or %o2, 0x380, %o2 ! 2015b80 <_Status_Object_name_errors_to_status+0x290> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c90: 10 bf fe aa b 2008738 <_Heap_Walk+0x40> 2008c94: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c98: 90 10 00 19 mov %i1, %o0 2008c9c: 92 10 20 01 mov 1, %o1 2008ca0: 96 10 00 1a mov %i2, %o3 2008ca4: 15 00 80 56 sethi %hi(0x2015800), %o2 2008ca8: 9f c7 40 00 call %i5 2008cac: 94 12 a3 60 or %o2, 0x360, %o2 ! 2015b60 <_Status_Object_name_errors_to_status+0x270> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008cb0: 10 bf fe a2 b 2008738 <_Heap_Walk+0x40> 2008cb4: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008cb8: 90 10 00 19 mov %i1, %o0 2008cbc: 92 10 20 01 mov 1, %o1 2008cc0: 96 10 00 1a mov %i2, %o3 2008cc4: 15 00 80 56 sethi %hi(0x2015800), %o2 2008cc8: 9f c7 40 00 call %i5 2008ccc: 94 12 a3 30 or %o2, 0x330, %o2 ! 2015b30 <_Status_Object_name_errors_to_status+0x240> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008cd0: 10 bf fe 9a b 2008738 <_Heap_Walk+0x40> 2008cd4: 82 10 20 00 clr %g1 =============================================================================== 02007148 <_IO_Initialize_all_drivers>: * * Output Parameters: NONE */ void _IO_Initialize_all_drivers( void ) { 2007148: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 200714c: 39 00 80 71 sethi %hi(0x201c400), %i4 2007150: c2 07 22 34 ld [ %i4 + 0x234 ], %g1 ! 201c634 <_IO_Number_of_drivers> 2007154: 80 a0 60 00 cmp %g1, 0 2007158: 02 80 00 0c be 2007188 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 200715c: ba 10 20 00 clr %i5 2007160: b8 17 22 34 or %i4, 0x234, %i4 (void) rtems_io_initialize( major, 0, NULL ); 2007164: 90 10 00 1d mov %i5, %o0 2007168: 92 10 20 00 clr %o1 200716c: 40 00 15 a7 call 200c808 2007170: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2007174: c2 07 00 00 ld [ %i4 ], %g1 2007178: ba 07 60 01 inc %i5 200717c: 80 a0 40 1d cmp %g1, %i5 2007180: 18 bf ff fa bgu 2007168 <_IO_Initialize_all_drivers+0x20> 2007184: 90 10 00 1d mov %i5, %o0 2007188: 81 c7 e0 08 ret 200718c: 81 e8 00 00 restore =============================================================================== 0200707c <_IO_Manager_initialization>: * workspace. * */ void _IO_Manager_initialization(void) { 200707c: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = Configuration.Device_driver_table; 2007080: 03 00 80 6d sethi %hi(0x201b400), %g1 2007084: 82 10 62 7c or %g1, 0x27c, %g1 ! 201b67c drivers_in_table = Configuration.number_of_device_drivers; 2007088: f8 00 60 30 ld [ %g1 + 0x30 ], %i4 number_of_drivers = Configuration.maximum_drivers; 200708c: f2 00 60 2c ld [ %g1 + 0x2c ], %i1 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 2007090: 80 a7 00 19 cmp %i4, %i1 2007094: 0a 80 00 08 bcs 20070b4 <_IO_Manager_initialization+0x38> 2007098: fa 00 60 34 ld [ %g1 + 0x34 ], %i5 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 200709c: 03 00 80 71 sethi %hi(0x201c400), %g1 20070a0: fa 20 62 38 st %i5, [ %g1 + 0x238 ] ! 201c638 <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 20070a4: 03 00 80 71 sethi %hi(0x201c400), %g1 20070a8: f8 20 62 34 st %i4, [ %g1 + 0x234 ] ! 201c634 <_IO_Number_of_drivers> return; 20070ac: 81 c7 e0 08 ret 20070b0: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 20070b4: 83 2e 60 03 sll %i1, 3, %g1 20070b8: b5 2e 60 05 sll %i1, 5, %i2 20070bc: b4 26 80 01 sub %i2, %g1, %i2 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 20070c0: 40 00 0d 26 call 200a558 <_Workspace_Allocate_or_fatal_error> 20070c4: 90 10 00 1a mov %i2, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 20070c8: 03 00 80 71 sethi %hi(0x201c400), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 20070cc: 37 00 80 71 sethi %hi(0x201c400), %i3 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 20070d0: f2 20 62 34 st %i1, [ %g1 + 0x234 ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 20070d4: d0 26 e2 38 st %o0, [ %i3 + 0x238 ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 20070d8: 92 10 20 00 clr %o1 20070dc: 40 00 21 26 call 200f574 20070e0: 94 10 00 1a mov %i2, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 20070e4: 80 a7 20 00 cmp %i4, 0 20070e8: 02 bf ff f1 be 20070ac <_IO_Manager_initialization+0x30> <== NEVER TAKEN 20070ec: f6 06 e2 38 ld [ %i3 + 0x238 ], %i3 20070f0: 82 10 20 00 clr %g1 20070f4: 88 10 20 00 clr %g4 _IO_Driver_address_table[index] = driver_table[index]; 20070f8: c4 07 40 01 ld [ %i5 + %g1 ], %g2 20070fc: 86 07 40 01 add %i5, %g1, %g3 2007100: c4 26 c0 01 st %g2, [ %i3 + %g1 ] 2007104: f4 00 e0 04 ld [ %g3 + 4 ], %i2 2007108: 84 06 c0 01 add %i3, %g1, %g2 200710c: f4 20 a0 04 st %i2, [ %g2 + 4 ] 2007110: f4 00 e0 08 ld [ %g3 + 8 ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007114: 88 01 20 01 inc %g4 _IO_Driver_address_table[index] = driver_table[index]; 2007118: f4 20 a0 08 st %i2, [ %g2 + 8 ] 200711c: f4 00 e0 0c ld [ %g3 + 0xc ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007120: 82 00 60 18 add %g1, 0x18, %g1 _IO_Driver_address_table[index] = driver_table[index]; 2007124: f4 20 a0 0c st %i2, [ %g2 + 0xc ] 2007128: f4 00 e0 10 ld [ %g3 + 0x10 ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 200712c: 80 a1 00 1c cmp %g4, %i4 _IO_Driver_address_table[index] = driver_table[index]; 2007130: f4 20 a0 10 st %i2, [ %g2 + 0x10 ] 2007134: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007138: 12 bf ff f0 bne 20070f8 <_IO_Manager_initialization+0x7c> 200713c: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 2007140: 81 c7 e0 08 ret 2007144: 81 e8 00 00 restore =============================================================================== 02007e58 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007e58: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007e5c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007e60: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007e64: 80 a0 60 00 cmp %g1, 0 2007e68: 02 80 00 19 be 2007ecc <_Objects_Allocate+0x74> <== NEVER TAKEN 2007e6c: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007e70: b8 07 60 20 add %i5, 0x20, %i4 2007e74: 7f ff fd 5e call 20073ec <_Chain_Get> 2007e78: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 2007e7c: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 2007e80: 80 a0 60 00 cmp %g1, 0 2007e84: 02 80 00 12 be 2007ecc <_Objects_Allocate+0x74> 2007e88: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007e8c: 80 a2 20 00 cmp %o0, 0 2007e90: 02 80 00 11 be 2007ed4 <_Objects_Allocate+0x7c> 2007e94: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007e98: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 2007e9c: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007ea0: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 2007ea4: 40 00 3e 96 call 20178fc <.udiv> 2007ea8: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007eac: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2007eb0: 91 2a 20 02 sll %o0, 2, %o0 2007eb4: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2007eb8: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2007ebc: 86 00 ff ff add %g3, -1, %g3 2007ec0: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 2007ec4: 82 00 bf ff add %g2, -1, %g1 2007ec8: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2007ecc: 81 c7 e0 08 ret 2007ed0: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 2007ed4: 40 00 00 10 call 2007f14 <_Objects_Extend_information> 2007ed8: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007edc: 7f ff fd 44 call 20073ec <_Chain_Get> 2007ee0: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 2007ee4: b0 92 20 00 orcc %o0, 0, %i0 2007ee8: 32 bf ff ed bne,a 2007e9c <_Objects_Allocate+0x44> 2007eec: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 ); } #endif return the_object; } 2007ef0: 81 c7 e0 08 ret 2007ef4: 81 e8 00 00 restore =============================================================================== 02007f14 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 2007f14: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007f18: e0 06 20 34 ld [ %i0 + 0x34 ], %l0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007f1c: f8 16 20 0a lduh [ %i0 + 0xa ], %i4 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007f20: 80 a4 20 00 cmp %l0, 0 2007f24: 02 80 00 a6 be 20081bc <_Objects_Extend_information+0x2a8> 2007f28: f2 16 20 10 lduh [ %i0 + 0x10 ], %i1 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2007f2c: f4 16 20 14 lduh [ %i0 + 0x14 ], %i2 2007f30: b3 2e 60 10 sll %i1, 0x10, %i1 2007f34: 92 10 00 1a mov %i2, %o1 2007f38: 40 00 3e 71 call 20178fc <.udiv> 2007f3c: 91 36 60 10 srl %i1, 0x10, %o0 2007f40: a7 2a 20 10 sll %o0, 0x10, %l3 2007f44: a7 34 e0 10 srl %l3, 0x10, %l3 for ( ; block < block_count; block++ ) { 2007f48: 80 a4 e0 00 cmp %l3, 0 2007f4c: 02 80 00 a3 be 20081d8 <_Objects_Extend_information+0x2c4><== NEVER TAKEN 2007f50: 90 10 00 1a mov %i2, %o0 if ( information->object_blocks[ block ] == NULL ) { 2007f54: c2 04 00 00 ld [ %l0 ], %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007f58: ba 10 00 1c mov %i4, %i5 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007f5c: 80 a0 60 00 cmp %g1, 0 2007f60: 12 80 00 08 bne 2007f80 <_Objects_Extend_information+0x6c><== ALWAYS TAKEN 2007f64: b6 10 20 00 clr %i3 do_extend = false; 2007f68: 10 80 00 a0 b 20081e8 <_Objects_Extend_information+0x2d4> <== NOT EXECUTED 2007f6c: b4 10 20 00 clr %i2 <== NOT EXECUTED block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007f70: c2 04 00 01 ld [ %l0 + %g1 ], %g1 2007f74: 80 a0 60 00 cmp %g1, 0 2007f78: 22 80 00 08 be,a 2007f98 <_Objects_Extend_information+0x84> 2007f7c: b4 10 20 00 clr %i2 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007f80: b6 06 e0 01 inc %i3 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 2007f84: ba 07 40 1a add %i5, %i2, %i5 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007f88: 80 a4 c0 1b cmp %l3, %i3 2007f8c: 18 bf ff f9 bgu 2007f70 <_Objects_Extend_information+0x5c> 2007f90: 83 2e e0 02 sll %i3, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007f94: b4 10 20 01 mov 1, %i2 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007f98: b3 36 60 10 srl %i1, 0x10, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007f9c: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007fa0: b2 06 40 08 add %i1, %o0, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007fa4: 82 10 63 ff or %g1, 0x3ff, %g1 2007fa8: 80 a6 40 01 cmp %i1, %g1 2007fac: 18 80 00 93 bgu 20081f8 <_Objects_Extend_information+0x2e4> 2007fb0: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 2007fb4: 40 00 3e 18 call 2017814 <.umul> 2007fb8: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2007fbc: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2007fc0: 80 a0 60 00 cmp %g1, 0 2007fc4: 02 80 00 6a be 200816c <_Objects_Extend_information+0x258> 2007fc8: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 2007fcc: 40 00 09 55 call 200a520 <_Workspace_Allocate> 2007fd0: 01 00 00 00 nop if ( !new_object_block ) 2007fd4: a0 92 20 00 orcc %o0, 0, %l0 2007fd8: 02 80 00 88 be 20081f8 <_Objects_Extend_information+0x2e4> 2007fdc: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 2007fe0: 80 8e a0 ff btst 0xff, %i2 2007fe4: 22 80 00 3f be,a 20080e0 <_Objects_Extend_information+0x1cc> 2007fe8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 */ /* * Up the block count and maximum */ block_count++; 2007fec: b4 04 e0 01 add %l3, 1, %i2 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007ff0: 91 2e a0 01 sll %i2, 1, %o0 2007ff4: 90 02 00 1a add %o0, %i2, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 2007ff8: 90 06 40 08 add %i1, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007ffc: 90 02 00 1c add %o0, %i4, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 2008000: 40 00 09 48 call 200a520 <_Workspace_Allocate> 2008004: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { 2008008: a2 92 20 00 orcc %o0, 0, %l1 200800c: 02 80 00 79 be 20081f0 <_Objects_Extend_information+0x2dc> 2008010: b5 2e a0 02 sll %i2, 2, %i2 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 2008014: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2008018: 80 a7 00 01 cmp %i4, %g1 200801c: a4 04 40 1a add %l1, %i2, %l2 2008020: 0a 80 00 57 bcs 200817c <_Objects_Extend_information+0x268> 2008024: b4 04 80 1a add %l2, %i2, %i2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2008028: 80 a7 20 00 cmp %i4, 0 200802c: 02 80 00 07 be 2008048 <_Objects_Extend_information+0x134><== NEVER TAKEN 2008030: 82 10 20 00 clr %g1 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2008034: 85 28 60 02 sll %g1, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2008038: 82 00 60 01 inc %g1 200803c: 80 a7 00 01 cmp %i4, %g1 2008040: 18 bf ff fd bgu 2008034 <_Objects_Extend_information+0x120><== NEVER TAKEN 2008044: c0 20 80 1a clr [ %g2 + %i2 ] 2008048: a7 2c e0 02 sll %l3, 2, %l3 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 200804c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 2008050: c0 24 40 13 clr [ %l1 + %l3 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2008054: 86 07 40 03 add %i5, %g3, %g3 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008058: 80 a7 40 03 cmp %i5, %g3 200805c: 1a 80 00 0a bcc 2008084 <_Objects_Extend_information+0x170><== NEVER TAKEN 2008060: c0 24 80 13 clr [ %l2 + %l3 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2008064: 83 2f 60 02 sll %i5, 2, %g1 2008068: 84 10 00 1d mov %i5, %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 200806c: 82 06 80 01 add %i2, %g1, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 2008070: c0 20 40 00 clr [ %g1 ] object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 2008074: 84 00 a0 01 inc %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008078: 80 a0 c0 02 cmp %g3, %g2 200807c: 18 bf ff fd bgu 2008070 <_Objects_Extend_information+0x15c> 2008080: 82 00 60 04 add %g1, 4, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 2008084: 7f ff e8 58 call 20021e4 2008088: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 200808c: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2008090: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 2008094: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2008098: f2 36 20 10 sth %i1, [ %i0 + 0x10 ] 200809c: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20080a0: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 20080a4: e2 26 20 34 st %l1, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 20080a8: e4 26 20 30 st %l2, [ %i0 + 0x30 ] information->local_table = local_table; 20080ac: f4 26 20 1c st %i2, [ %i0 + 0x1c ] information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 20080b0: b3 2e 60 10 sll %i1, 0x10, %i1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20080b4: 03 00 00 40 sethi %hi(0x10000), %g1 20080b8: b3 36 60 10 srl %i1, 0x10, %i1 20080bc: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20080c0: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20080c4: 82 10 40 19 or %g1, %i1, %g1 20080c8: c2 26 20 0c st %g1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 20080cc: 7f ff e8 4a call 20021f4 20080d0: 01 00 00 00 nop _Workspace_Free( old_tables ); 20080d4: 40 00 09 1b call 200a540 <_Workspace_Free> 20080d8: 90 10 00 1c mov %i4, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 20080dc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20080e0: b7 2e e0 02 sll %i3, 2, %i3 20080e4: e0 20 40 1b st %l0, [ %g1 + %i3 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 20080e8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20080ec: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 20080f0: d2 00 40 1b ld [ %g1 + %i3 ], %o1 20080f4: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 20080f8: 90 07 bf f4 add %fp, -12, %o0 20080fc: 40 00 11 db call 200c868 <_Chain_Initialize> 2008100: 39 00 00 40 sethi %hi(0x10000), %i4 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2008104: 10 80 00 0d b 2008138 <_Objects_Extend_information+0x224> 2008108: b4 06 20 20 add %i0, 0x20, %i2 the_object->id = _Objects_Build_id( 200810c: c6 16 20 04 lduh [ %i0 + 4 ], %g3 2008110: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2008114: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2008118: 84 10 80 1c or %g2, %i4, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 200811c: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2008120: 84 10 80 1d or %g2, %i5, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2008124: 90 10 00 1a mov %i2, %o0 2008128: 92 10 00 01 mov %g1, %o1 index++; 200812c: ba 07 60 01 inc %i5 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2008130: 7f ff fc 9b call 200739c <_Chain_Append> 2008134: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2008138: 7f ff fc ad call 20073ec <_Chain_Get> 200813c: 90 07 bf f4 add %fp, -12, %o0 2008140: 82 92 20 00 orcc %o0, 0, %g1 2008144: 32 bf ff f2 bne,a 200810c <_Objects_Extend_information+0x1f8> 2008148: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 200814c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 2008150: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2008154: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2008158: c8 20 c0 1b st %g4, [ %g3 + %i3 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 200815c: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 2008160: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 2008164: 81 c7 e0 08 ret 2008168: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 200816c: 40 00 08 fb call 200a558 <_Workspace_Allocate_or_fatal_error> 2008170: 01 00 00 00 nop 2008174: 10 bf ff 9b b 2007fe0 <_Objects_Extend_information+0xcc> 2008178: a0 10 00 08 mov %o0, %l0 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 200817c: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 2008180: a7 2c e0 02 sll %l3, 2, %l3 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2008184: 40 00 1c c0 call 200f484 2008188: 94 10 00 13 mov %l3, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 200818c: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 2008190: 94 10 00 13 mov %l3, %o2 2008194: 40 00 1c bc call 200f484 2008198: 90 10 00 12 mov %l2, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 200819c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 20081a0: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 20081a4: b8 07 00 01 add %i4, %g1, %i4 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 20081a8: 90 10 00 1a mov %i2, %o0 20081ac: 40 00 1c b6 call 200f484 20081b0: 95 2f 20 02 sll %i4, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 20081b4: 10 bf ff a7 b 2008050 <_Objects_Extend_information+0x13c> 20081b8: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 20081bc: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20081c0: ba 10 00 1c mov %i4, %i5 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 20081c4: b4 10 20 01 mov 1, %i2 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20081c8: b6 10 20 00 clr %i3 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 20081cc: a6 10 20 00 clr %l3 20081d0: 10 bf ff 72 b 2007f98 <_Objects_Extend_information+0x84> 20081d4: b3 2e 60 10 sll %i1, 0x10, %i1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20081d8: ba 10 00 1c mov %i4, %i5 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 20081dc: b4 10 20 01 mov 1, %i2 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20081e0: 10 bf ff 6e b 2007f98 <_Objects_Extend_information+0x84> <== NOT EXECUTED 20081e4: b6 10 20 00 clr %i3 <== NOT EXECUTED 20081e8: 10 bf ff 6c b 2007f98 <_Objects_Extend_information+0x84> <== NOT EXECUTED 20081ec: b6 10 20 00 clr %i3 <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 20081f0: 40 00 08 d4 call 200a540 <_Workspace_Free> 20081f4: 90 10 00 10 mov %l0, %o0 return; 20081f8: 81 c7 e0 08 ret 20081fc: 81 e8 00 00 restore =============================================================================== 020082a4 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 20082a4: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 20082a8: 80 a6 60 00 cmp %i1, 0 20082ac: 02 80 00 17 be 2008308 <_Objects_Get_information+0x64> 20082b0: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 20082b4: 40 00 12 f6 call 200ce8c <_Objects_API_maximum_class> 20082b8: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 20082bc: 80 a2 20 00 cmp %o0, 0 20082c0: 02 80 00 12 be 2008308 <_Objects_Get_information+0x64> 20082c4: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 20082c8: 0a 80 00 10 bcs 2008308 <_Objects_Get_information+0x64> 20082cc: 03 00 80 70 sethi %hi(0x201c000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 20082d0: b1 2e 20 02 sll %i0, 2, %i0 20082d4: 82 10 62 d8 or %g1, 0x2d8, %g1 20082d8: c2 00 40 18 ld [ %g1 + %i0 ], %g1 20082dc: 80 a0 60 00 cmp %g1, 0 20082e0: 02 80 00 0a be 2008308 <_Objects_Get_information+0x64> <== NEVER TAKEN 20082e4: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 20082e8: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 20082ec: 80 a7 60 00 cmp %i5, 0 20082f0: 02 80 00 06 be 2008308 <_Objects_Get_information+0x64> <== NEVER TAKEN 20082f4: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 20082f8: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 20082fc: 80 a0 00 01 cmp %g0, %g1 2008300: 82 60 20 00 subx %g0, 0, %g1 2008304: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 2008308: 81 c7 e0 08 ret 200830c: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02009b00 <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 2009b00: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2009b04: 80 a6 60 00 cmp %i1, 0 2009b08: 02 80 00 3c be 2009bf8 <_Objects_Get_name_as_string+0xf8> 2009b0c: 80 a6 a0 00 cmp %i2, 0 return NULL; if ( name == NULL ) 2009b10: 02 80 00 35 be 2009be4 <_Objects_Get_name_as_string+0xe4> 2009b14: 80 a6 20 00 cmp %i0, 0 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009b18: 02 80 00 35 be 2009bec <_Objects_Get_name_as_string+0xec> 2009b1c: 03 00 80 7c sethi %hi(0x201f000), %g1 information = _Objects_Get_information_id( tmpId ); 2009b20: 7f ff ff ba call 2009a08 <_Objects_Get_information_id> 2009b24: 90 10 00 18 mov %i0, %o0 if ( !information ) 2009b28: 80 a2 20 00 cmp %o0, 0 2009b2c: 02 80 00 33 be 2009bf8 <_Objects_Get_name_as_string+0xf8> 2009b30: 92 10 00 18 mov %i0, %o1 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 2009b34: 40 00 00 34 call 2009c04 <_Objects_Get> 2009b38: 94 07 bf fc add %fp, -4, %o2 switch ( location ) { 2009b3c: c2 07 bf fc ld [ %fp + -4 ], %g1 2009b40: 80 a0 60 00 cmp %g1, 0 2009b44: 32 80 00 2e bne,a 2009bfc <_Objects_Get_name_as_string+0xfc> 2009b48: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 2009b4c: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 2009b50: c0 2f bf f4 clrb [ %fp + -12 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b54: 85 30 60 18 srl %g1, 0x18, %g2 lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; 2009b58: 87 30 60 08 srl %g1, 8, %g3 #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; 2009b5c: 89 30 60 10 srl %g1, 0x10, %g4 lname[ 2 ] = (u32_name >> 8) & 0xff; 2009b60: c6 2f bf f2 stb %g3, [ %fp + -14 ] lname[ 3 ] = (u32_name >> 0) & 0xff; 2009b64: c2 2f bf f3 stb %g1, [ %fp + -13 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b68: c4 2f bf f0 stb %g2, [ %fp + -16 ] lname[ 1 ] = (u32_name >> 16) & 0xff; 2009b6c: c8 2f bf f1 stb %g4, [ %fp + -15 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b70: 86 10 00 02 mov %g2, %g3 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009b74: b2 86 7f ff addcc %i1, -1, %i1 2009b78: 02 80 00 19 be 2009bdc <_Objects_Get_name_as_string+0xdc> <== NEVER TAKEN 2009b7c: 82 10 00 1a mov %i2, %g1 2009b80: 80 a0 a0 00 cmp %g2, 0 2009b84: 02 80 00 16 be 2009bdc <_Objects_Get_name_as_string+0xdc> 2009b88: 1f 00 80 78 sethi %hi(0x201e000), %o7 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; s = lname; 2009b8c: 84 07 bf f0 add %fp, -16, %g2 * This method objects the name of an object and returns its name * in the form of a C string. It attempts to be careful about * overflowing the user's string and about returning unprintable characters. */ char *_Objects_Get_name_as_string( 2009b90: b2 06 80 19 add %i2, %i1, %i1 2009b94: 10 80 00 05 b 2009ba8 <_Objects_Get_name_as_string+0xa8> 2009b98: 9e 13 e1 1c or %o7, 0x11c, %o7 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009b9c: 80 a1 20 00 cmp %g4, 0 2009ba0: 02 80 00 0f be 2009bdc <_Objects_Get_name_as_string+0xdc> 2009ba4: c6 08 80 00 ldub [ %g2 ], %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2009ba8: f0 03 c0 00 ld [ %o7 ], %i0 2009bac: 88 08 e0 ff and %g3, 0xff, %g4 2009bb0: 88 06 00 04 add %i0, %g4, %g4 2009bb4: c8 49 20 01 ldsb [ %g4 + 1 ], %g4 2009bb8: 80 89 20 97 btst 0x97, %g4 2009bbc: 12 80 00 03 bne 2009bc8 <_Objects_Get_name_as_string+0xc8> 2009bc0: 84 00 a0 01 inc %g2 2009bc4: 86 10 20 2a mov 0x2a, %g3 2009bc8: c6 28 40 00 stb %g3, [ %g1 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009bcc: 82 00 60 01 inc %g1 2009bd0: 80 a0 40 19 cmp %g1, %i1 2009bd4: 32 bf ff f2 bne,a 2009b9c <_Objects_Get_name_as_string+0x9c> 2009bd8: c8 48 80 00 ldsb [ %g2 ], %g4 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; _Thread_Enable_dispatch(); 2009bdc: 40 00 03 b8 call 200aabc <_Thread_Enable_dispatch> 2009be0: c0 28 40 00 clrb [ %g1 ] return name; } return NULL; /* unreachable path */ } 2009be4: 81 c7 e0 08 ret 2009be8: 91 e8 00 1a restore %g0, %i2, %o0 return NULL; if ( name == NULL ) return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009bec: c2 00 60 b8 ld [ %g1 + 0xb8 ], %g1 2009bf0: 10 bf ff cc b 2009b20 <_Objects_Get_name_as_string+0x20> 2009bf4: f0 00 60 08 ld [ %g1 + 8 ], %i0 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2009bf8: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 2009bfc: 81 c7 e0 08 ret 2009c00: 91 e8 00 1a restore %g0, %i2, %o0 =============================================================================== 02007f98 <_Objects_Get_next>: Objects_Information *information, Objects_Id id, Objects_Locations *location_p, Objects_Id *next_id_p ) { 2007f98: 9d e3 bf a0 save %sp, -96, %sp Objects_Control *object; Objects_Id next_id; if ( !information ) return NULL; 2007f9c: 90 10 20 00 clr %o0 ) { Objects_Control *object; Objects_Id next_id; if ( !information ) 2007fa0: 80 a6 20 00 cmp %i0, 0 2007fa4: 02 80 00 19 be 2008008 <_Objects_Get_next+0x70> 2007fa8: ba 10 00 18 mov %i0, %i5 return NULL; if ( !location_p ) 2007fac: 80 a6 a0 00 cmp %i2, 0 2007fb0: 02 80 00 16 be 2008008 <_Objects_Get_next+0x70> 2007fb4: 80 a6 e0 00 cmp %i3, 0 return NULL; if ( !next_id_p ) 2007fb8: 02 80 00 14 be 2008008 <_Objects_Get_next+0x70> 2007fbc: 83 2e 60 10 sll %i1, 0x10, %g1 return NULL; if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX) 2007fc0: 80 a0 60 00 cmp %g1, 0 2007fc4: 22 80 00 13 be,a 2008010 <_Objects_Get_next+0x78> 2007fc8: f2 06 20 08 ld [ %i0 + 8 ], %i1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fcc: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 2007fd0: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fd4: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fd8: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fdc: 90 10 00 1d mov %i5, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fe0: 80 a0 80 01 cmp %g2, %g1 2007fe4: 0a 80 00 13 bcs 2008030 <_Objects_Get_next+0x98> 2007fe8: 94 10 00 1a mov %i2, %o2 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fec: 40 00 00 18 call 200804c <_Objects_Get> 2007ff0: b2 06 60 01 inc %i1 next_id++; } while (*location_p != OBJECTS_LOCAL); 2007ff4: c2 06 80 00 ld [ %i2 ], %g1 2007ff8: 80 a0 60 00 cmp %g1, 0 2007ffc: 32 bf ff f5 bne,a 2007fd0 <_Objects_Get_next+0x38> 2008000: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 *next_id_p = next_id; 2008004: f2 26 c0 00 st %i1, [ %i3 ] return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; } 2008008: 81 c7 e0 08 ret 200800c: 91 e8 00 08 restore %g0, %o0, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2008010: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 2008014: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2008018: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 200801c: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2008020: 90 10 00 1d mov %i5, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2008024: 80 a0 80 01 cmp %g2, %g1 2008028: 1a bf ff f1 bcc 2007fec <_Objects_Get_next+0x54> <== ALWAYS TAKEN 200802c: 94 10 00 1a mov %i2, %o2 { *location_p = OBJECTS_ERROR; 2008030: 82 10 20 01 mov 1, %g1 2008034: c2 26 80 00 st %g1, [ %i2 ] *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; 2008038: 90 10 20 00 clr %o0 *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; 200803c: 82 10 3f ff mov -1, %g1 2008040: c2 26 c0 00 st %g1, [ %i3 ] return 0; } 2008044: 81 c7 e0 08 ret 2008048: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02008d68 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2008d68: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2008d6c: 80 a6 20 00 cmp %i0, 0 2008d70: 12 80 00 06 bne 2008d88 <_Objects_Id_to_name+0x20> 2008d74: 83 36 20 18 srl %i0, 0x18, %g1 2008d78: 03 00 80 76 sethi %hi(0x201d800), %g1 2008d7c: c2 00 61 18 ld [ %g1 + 0x118 ], %g1 ! 201d918 <_Per_CPU_Information+0xc> 2008d80: f0 00 60 08 ld [ %g1 + 8 ], %i0 2008d84: 83 36 20 18 srl %i0, 0x18, %g1 2008d88: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008d8c: 84 00 7f ff add %g1, -1, %g2 2008d90: 80 a0 a0 02 cmp %g2, 2 2008d94: 18 80 00 17 bgu 2008df0 <_Objects_Id_to_name+0x88> 2008d98: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008d9c: 83 28 60 02 sll %g1, 2, %g1 2008da0: 05 00 80 75 sethi %hi(0x201d400), %g2 2008da4: 84 10 a2 48 or %g2, 0x248, %g2 ! 201d648 <_Objects_Information_table> 2008da8: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2008dac: 80 a0 60 00 cmp %g1, 0 2008db0: 02 80 00 10 be 2008df0 <_Objects_Id_to_name+0x88> 2008db4: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2008db8: 85 28 a0 02 sll %g2, 2, %g2 2008dbc: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2008dc0: 80 a2 20 00 cmp %o0, 0 2008dc4: 02 80 00 0b be 2008df0 <_Objects_Id_to_name+0x88> <== NEVER TAKEN 2008dc8: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2008dcc: 7f ff ff c9 call 2008cf0 <_Objects_Get> 2008dd0: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2008dd4: 80 a2 20 00 cmp %o0, 0 2008dd8: 02 80 00 06 be 2008df0 <_Objects_Id_to_name+0x88> 2008ddc: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2008de0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2008de4: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008de8: 40 00 03 94 call 2009c38 <_Thread_Enable_dispatch> 2008dec: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2008df0: 81 c7 e0 08 ret 2008df4: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 0200858c <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 200858c: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 2008590: fa 16 20 0a lduh [ %i0 + 0xa ], %i5 block_count = (information->maximum - index_base) / 2008594: f8 16 20 14 lduh [ %i0 + 0x14 ], %i4 2008598: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 200859c: 92 10 00 1c mov %i4, %o1 20085a0: 40 00 3c d7 call 20178fc <.udiv> 20085a4: 90 22 00 1d sub %o0, %i5, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 20085a8: 80 a2 20 00 cmp %o0, 0 20085ac: 02 80 00 34 be 200867c <_Objects_Shrink_information+0xf0> <== NEVER TAKEN 20085b0: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 20085b4: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 20085b8: c2 01 00 00 ld [ %g4 ], %g1 20085bc: 80 a7 00 01 cmp %i4, %g1 20085c0: 02 80 00 0f be 20085fc <_Objects_Shrink_information+0x70> <== NEVER TAKEN 20085c4: 82 10 20 00 clr %g1 20085c8: 10 80 00 07 b 20085e4 <_Objects_Shrink_information+0x58> 20085cc: b6 10 20 04 mov 4, %i3 * the_block - the block to remove * * Output parameters: NONE */ void _Objects_Shrink_information( 20085d0: 86 06 e0 04 add %i3, 4, %g3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 20085d4: 80 a7 00 02 cmp %i4, %g2 20085d8: 02 80 00 0a be 2008600 <_Objects_Shrink_information+0x74> 20085dc: ba 07 40 1c add %i5, %i4, %i5 20085e0: b6 10 00 03 mov %g3, %i3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 20085e4: 82 00 60 01 inc %g1 20085e8: 80 a0 40 08 cmp %g1, %o0 20085ec: 32 bf ff f9 bne,a 20085d0 <_Objects_Shrink_information+0x44> 20085f0: c4 01 00 1b ld [ %g4 + %i3 ], %g2 20085f4: 81 c7 e0 08 ret 20085f8: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 20085fc: b6 10 20 00 clr %i3 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2008600: 10 80 00 06 b 2008618 <_Objects_Shrink_information+0x8c> 2008604: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 2008608: 80 a7 20 00 cmp %i4, 0 200860c: 22 80 00 12 be,a 2008654 <_Objects_Shrink_information+0xc8> 2008610: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 2008614: 90 10 00 1c mov %i4, %o0 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 2008618: c2 12 20 0a lduh [ %o0 + 0xa ], %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 200861c: 80 a0 40 1d cmp %g1, %i5 2008620: 0a bf ff fa bcs 2008608 <_Objects_Shrink_information+0x7c> 2008624: f8 02 00 00 ld [ %o0 ], %i4 (index < (index_base + information->allocation_size))) { 2008628: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 200862c: 84 07 40 02 add %i5, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008630: 80 a0 40 02 cmp %g1, %g2 2008634: 1a bf ff f6 bcc 200860c <_Objects_Shrink_information+0x80> 2008638: 80 a7 20 00 cmp %i4, 0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 200863c: 7f ff fb 63 call 20073c8 <_Chain_Extract> 2008640: 01 00 00 00 nop } } while ( the_object ); 2008644: 80 a7 20 00 cmp %i4, 0 2008648: 12 bf ff f4 bne 2008618 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN 200864c: 90 10 00 1c mov %i4, %o0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 2008650: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 2008654: 40 00 07 bb call 200a540 <_Workspace_Free> 2008658: d0 00 40 1b ld [ %g1 + %i3 ], %o0 information->object_blocks[ block ] = NULL; 200865c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 2008660: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 2008664: c0 20 40 1b clr [ %g1 + %i3 ] information->inactive_per_block[ block ] = 0; 2008668: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 200866c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 2008670: c0 20 c0 1b clr [ %g3 + %i3 ] information->inactive -= information->allocation_size; 2008674: 82 20 80 01 sub %g2, %g1, %g1 2008678: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 200867c: 81 c7 e0 08 ret 2008680: 81 e8 00 00 restore =============================================================================== 0200dadc <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200dadc: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 200dae0: 80 a6 60 00 cmp %i1, 0 200dae4: 02 80 00 4c be 200dc14 <_RBTree_Extract_unprotected+0x138> 200dae8: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 200daec: c2 06 20 08 ld [ %i0 + 8 ], %g1 200daf0: 80 a0 40 19 cmp %g1, %i1 200daf4: 22 80 00 59 be,a 200dc58 <_RBTree_Extract_unprotected+0x17c> 200daf8: c2 06 60 08 ld [ %i1 + 8 ], %g1 the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 200dafc: c2 06 20 0c ld [ %i0 + 0xc ], %g1 200db00: 80 a0 40 19 cmp %g1, %i1 200db04: 22 80 00 46 be,a 200dc1c <_RBTree_Extract_unprotected+0x140> 200db08: c2 06 60 04 ld [ %i1 + 4 ], %g1 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200db0c: fa 06 60 04 ld [ %i1 + 4 ], %i5 200db10: 80 a7 60 00 cmp %i5, 0 200db14: 22 80 00 4a be,a 200dc3c <_RBTree_Extract_unprotected+0x160> 200db18: f8 06 60 08 ld [ %i1 + 8 ], %i4 200db1c: c2 06 60 08 ld [ %i1 + 8 ], %g1 200db20: 80 a0 60 00 cmp %g1, 0 200db24: 32 80 00 05 bne,a 200db38 <_RBTree_Extract_unprotected+0x5c> 200db28: c2 07 60 08 ld [ %i5 + 8 ], %g1 200db2c: 10 80 00 50 b 200dc6c <_RBTree_Extract_unprotected+0x190> 200db30: b8 10 00 1d mov %i5, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 200db34: c2 07 60 08 ld [ %i5 + 8 ], %g1 200db38: 80 a0 60 00 cmp %g1, 0 200db3c: 32 bf ff fe bne,a 200db34 <_RBTree_Extract_unprotected+0x58> 200db40: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 200db44: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 200db48: 80 a7 20 00 cmp %i4, 0 200db4c: 02 80 00 54 be 200dc9c <_RBTree_Extract_unprotected+0x1c0> 200db50: 01 00 00 00 nop leaf->parent = target->parent; 200db54: c2 07 40 00 ld [ %i5 ], %g1 200db58: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 200db5c: c4 07 40 00 ld [ %i5 ], %g2 target->parent->child[dir] = leaf; /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 200db60: c2 06 40 00 ld [ %i1 ], %g1 } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 200db64: c8 00 a0 04 ld [ %g2 + 4 ], %g4 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 200db68: c6 07 60 0c ld [ %i5 + 0xc ], %g3 dir = target != target->parent->child[0]; 200db6c: 88 19 00 1d xor %g4, %i5, %g4 200db70: 80 a0 00 04 cmp %g0, %g4 200db74: 88 40 20 00 addx %g0, 0, %g4 target->parent->child[dir] = leaf; 200db78: 89 29 20 02 sll %g4, 2, %g4 200db7c: 84 00 80 04 add %g2, %g4, %g2 200db80: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 200db84: c4 00 60 04 ld [ %g1 + 4 ], %g2 200db88: 84 18 80 19 xor %g2, %i1, %g2 200db8c: 80 a0 00 02 cmp %g0, %g2 200db90: 84 40 20 00 addx %g0, 0, %g2 the_node->parent->child[dir] = target; 200db94: 85 28 a0 02 sll %g2, 2, %g2 200db98: 82 00 40 02 add %g1, %g2, %g1 200db9c: fa 20 60 04 st %i5, [ %g1 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 200dba0: c2 06 60 08 ld [ %i1 + 8 ], %g1 200dba4: c2 27 60 08 st %g1, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 200dba8: c2 06 60 08 ld [ %i1 + 8 ], %g1 200dbac: 80 a0 60 00 cmp %g1, 0 200dbb0: 32 80 00 02 bne,a 200dbb8 <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN 200dbb4: fa 20 40 00 st %i5, [ %g1 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 200dbb8: c2 06 60 04 ld [ %i1 + 4 ], %g1 200dbbc: c2 27 60 04 st %g1, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 200dbc0: c2 06 60 04 ld [ %i1 + 4 ], %g1 200dbc4: 80 a0 60 00 cmp %g1, 0 200dbc8: 32 80 00 02 bne,a 200dbd0 <_RBTree_Extract_unprotected+0xf4> 200dbcc: fa 20 40 00 st %i5, [ %g1 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200dbd0: c4 06 40 00 ld [ %i1 ], %g2 target->color = the_node->color; 200dbd4: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 200dbd8: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 200dbdc: c2 27 60 0c st %g1, [ %i5 + 0xc ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 200dbe0: 80 a0 e0 00 cmp %g3, 0 200dbe4: 32 80 00 06 bne,a 200dbfc <_RBTree_Extract_unprotected+0x120> 200dbe8: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 200dbec: 80 a7 20 00 cmp %i4, 0 200dbf0: 32 80 00 02 bne,a 200dbf8 <_RBTree_Extract_unprotected+0x11c> 200dbf4: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 200dbf8: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 200dbfc: c0 26 60 08 clr [ %i1 + 8 ] 200dc00: c0 26 60 04 clr [ %i1 + 4 ] 200dc04: 80 a0 60 00 cmp %g1, 0 200dc08: 02 80 00 03 be 200dc14 <_RBTree_Extract_unprotected+0x138> 200dc0c: c0 26 40 00 clr [ %i1 ] 200dc10: c0 20 60 0c clr [ %g1 + 0xc ] 200dc14: 81 c7 e0 08 ret 200dc18: 81 e8 00 00 restore the_rbtree->first[RBT_LEFT] = NULL; } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { if (the_node->child[RBT_LEFT]) 200dc1c: 80 a0 60 00 cmp %g1, 0 200dc20: 22 80 00 28 be,a 200dcc0 <_RBTree_Extract_unprotected+0x1e4> 200dc24: c2 06 40 00 ld [ %i1 ], %g1 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200dc28: fa 06 60 04 ld [ %i1 + 4 ], %i5 200dc2c: 80 a7 60 00 cmp %i5, 0 200dc30: 12 bf ff bb bne 200db1c <_RBTree_Extract_unprotected+0x40><== ALWAYS TAKEN 200dc34: c2 26 20 0c st %g1, [ %i0 + 0xc ] * the_node's location in the tree. This may cause the coloring to be * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; 200dc38: f8 06 60 08 ld [ %i1 + 8 ], %i4 <== NOT EXECUTED if( leaf ) { 200dc3c: 80 a7 20 00 cmp %i4, 0 200dc40: 32 80 00 0c bne,a 200dc70 <_RBTree_Extract_unprotected+0x194> 200dc44: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 200dc48: 7f ff fe e0 call 200d7c8 <_RBTree_Extract_validate_unprotected> 200dc4c: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200dc50: 10 80 00 0a b 200dc78 <_RBTree_Extract_unprotected+0x19c> 200dc54: c2 06 40 00 ld [ %i1 ], %g1 if (!the_node) return; /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { if (the_node->child[RBT_RIGHT]) 200dc58: 80 a0 60 00 cmp %g1, 0 200dc5c: 22 80 00 14 be,a 200dcac <_RBTree_Extract_unprotected+0x1d0> 200dc60: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 200dc64: 10 bf ff a6 b 200dafc <_RBTree_Extract_unprotected+0x20> 200dc68: c2 26 20 08 st %g1, [ %i0 + 8 ] * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { leaf->parent = the_node->parent; 200dc6c: c2 06 40 00 ld [ %i1 ], %g1 200dc70: c2 27 00 00 st %g1, [ %i4 ] _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200dc74: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 200dc78: c6 06 60 0c ld [ %i1 + 0xc ], %g3 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 200dc7c: c4 00 60 04 ld [ %g1 + 4 ], %g2 200dc80: 84 18 80 19 xor %g2, %i1, %g2 200dc84: 80 a0 00 02 cmp %g0, %g2 200dc88: 84 40 20 00 addx %g0, 0, %g2 the_node->parent->child[dir] = leaf; 200dc8c: 85 28 a0 02 sll %g2, 2, %g2 200dc90: 82 00 40 02 add %g1, %g2, %g1 200dc94: 10 bf ff d3 b 200dbe0 <_RBTree_Extract_unprotected+0x104> 200dc98: f8 20 60 04 st %i4, [ %g1 + 4 ] leaf = target->child[RBT_LEFT]; if(leaf) { leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 200dc9c: 7f ff fe cb call 200d7c8 <_RBTree_Extract_validate_unprotected> 200dca0: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 200dca4: 10 bf ff af b 200db60 <_RBTree_Extract_unprotected+0x84> 200dca8: c4 07 40 00 ld [ %i5 ], %g2 if (the_node == the_rbtree->first[RBT_LEFT]) { if (the_node->child[RBT_RIGHT]) the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 200dcac: 80 a6 00 01 cmp %i0, %g1 200dcb0: 12 bf ff 93 bne 200dafc <_RBTree_Extract_unprotected+0x20> 200dcb4: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 200dcb8: 10 bf ff 91 b 200dafc <_RBTree_Extract_unprotected+0x20> 200dcbc: c0 26 20 08 clr [ %i0 + 8 ] if (the_node == the_rbtree->first[RBT_RIGHT]) { if (the_node->child[RBT_LEFT]) the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 200dcc0: 80 a6 00 01 cmp %i0, %g1 200dcc4: 12 bf ff 92 bne 200db0c <_RBTree_Extract_unprotected+0x30> 200dcc8: c2 26 20 0c st %g1, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 200dccc: 10 bf ff 90 b 200db0c <_RBTree_Extract_unprotected+0x30> 200dcd0: c0 26 20 0c clr [ %i0 + 0xc ] =============================================================================== 0200d7c8 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 200d7c8: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 200d7cc: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; 200d7d0: c4 00 40 00 ld [ %g1 ], %g2 200d7d4: 80 a0 a0 00 cmp %g2, 0 200d7d8: 02 80 00 bf be 200dad4 <_RBTree_Extract_validate_unprotected+0x30c> 200d7dc: 01 00 00 00 nop { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200d7e0: c4 00 60 04 ld [ %g1 + 4 ], %g2 200d7e4: 80 a6 00 02 cmp %i0, %g2 200d7e8: 22 80 00 02 be,a 200d7f0 <_RBTree_Extract_validate_unprotected+0x28> 200d7ec: c4 00 60 08 ld [ %g1 + 8 ], %g2 } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 200d7f0: 98 10 20 01 mov 1, %o4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200d7f4: c6 06 20 0c ld [ %i0 + 0xc ], %g3 200d7f8: 80 a0 e0 01 cmp %g3, 1 200d7fc: 22 80 00 58 be,a 200d95c <_RBTree_Extract_validate_unprotected+0x194> 200d800: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 200d804: c6 00 40 00 ld [ %g1 ], %g3 200d808: 80 a0 e0 00 cmp %g3, 0 200d80c: 02 80 00 53 be 200d958 <_RBTree_Extract_validate_unprotected+0x190> 200d810: 80 a0 a0 00 cmp %g2, 0 200d814: 22 80 00 07 be,a 200d830 <_RBTree_Extract_validate_unprotected+0x68><== NEVER TAKEN 200d818: c6 00 a0 08 ld [ %g2 + 8 ], %g3 <== NOT EXECUTED 200d81c: c8 00 a0 0c ld [ %g2 + 0xc ], %g4 200d820: 80 a1 20 01 cmp %g4, 1 200d824: 22 80 00 28 be,a 200d8c4 <_RBTree_Extract_validate_unprotected+0xfc> 200d828: de 00 60 04 ld [ %g1 + 4 ], %o7 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 200d82c: c6 00 a0 08 ld [ %g2 + 8 ], %g3 200d830: 80 a0 e0 00 cmp %g3, 0 200d834: 22 80 00 07 be,a 200d850 <_RBTree_Extract_validate_unprotected+0x88> 200d838: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200d83c: c6 00 e0 0c ld [ %g3 + 0xc ], %g3 200d840: 80 a0 e0 01 cmp %g3, 1 200d844: 22 80 00 4c be,a 200d974 <_RBTree_Extract_validate_unprotected+0x1ac> 200d848: c6 00 60 04 ld [ %g1 + 4 ], %g3 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 200d84c: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200d850: 80 a0 e0 00 cmp %g3, 0 200d854: 22 80 00 07 be,a 200d870 <_RBTree_Extract_validate_unprotected+0xa8> 200d858: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 200d85c: c6 00 e0 0c ld [ %g3 + 0xc ], %g3 200d860: 80 a0 e0 01 cmp %g3, 1 200d864: 22 80 00 44 be,a 200d974 <_RBTree_Extract_validate_unprotected+0x1ac> 200d868: c6 00 60 04 ld [ %g1 + 4 ], %g3 sibling->color = RBT_RED; 200d86c: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 200d870: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200d874: 80 a0 a0 01 cmp %g2, 1 200d878: 22 80 00 38 be,a 200d958 <_RBTree_Extract_validate_unprotected+0x190> 200d87c: c0 20 60 0c clr [ %g1 + 0xc ] if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; 200d880: c6 00 40 00 ld [ %g1 ], %g3 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 200d884: 80 a0 e0 00 cmp %g3, 0 200d888: 02 80 00 0a be 200d8b0 <_RBTree_Extract_validate_unprotected+0xe8><== NEVER TAKEN 200d88c: 84 10 20 00 clr %g2 if(!(the_node->parent->parent)) return NULL; 200d890: c8 00 c0 00 ld [ %g3 ], %g4 200d894: 80 a1 20 00 cmp %g4, 0 200d898: 02 80 00 07 be 200d8b4 <_RBTree_Extract_validate_unprotected+0xec> 200d89c: b0 10 00 01 mov %g1, %i0 if(the_node == the_node->parent->child[RBT_LEFT]) 200d8a0: c4 00 e0 04 ld [ %g3 + 4 ], %g2 200d8a4: 80 a0 40 02 cmp %g1, %g2 200d8a8: 22 80 00 05 be,a 200d8bc <_RBTree_Extract_validate_unprotected+0xf4> 200d8ac: c4 00 e0 08 ld [ %g3 + 8 ], %g2 c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; c->parent = the_node->parent; the_node->parent = c; 200d8b0: b0 10 00 01 mov %g1, %i0 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 200d8b4: 10 bf ff d0 b 200d7f4 <_RBTree_Extract_validate_unprotected+0x2c> 200d8b8: 82 10 00 03 mov %g3, %g1 200d8bc: 10 bf ff ce b 200d7f4 <_RBTree_Extract_validate_unprotected+0x2c> 200d8c0: 82 10 00 03 mov %g3, %g1 * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 200d8c4: c8 20 60 0c st %g4, [ %g1 + 0xc ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 200d8c8: 9e 1b c0 18 xor %o7, %i0, %o7 200d8cc: 80 a0 00 0f cmp %g0, %o7 200d8d0: 9a 40 20 00 addx %g0, 0, %o5 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 200d8d4: 88 21 00 0d sub %g4, %o5, %g4 200d8d8: 89 29 20 02 sll %g4, 2, %g4 200d8dc: 88 00 40 04 add %g1, %g4, %g4 200d8e0: de 01 20 04 ld [ %g4 + 4 ], %o7 200d8e4: 80 a3 e0 00 cmp %o7, 0 200d8e8: 02 80 00 16 be 200d940 <_RBTree_Extract_validate_unprotected+0x178><== NEVER TAKEN 200d8ec: c0 20 a0 0c clr [ %g2 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 200d8f0: 85 2b 60 02 sll %o5, 2, %g2 200d8f4: 96 03 c0 02 add %o7, %g2, %o3 200d8f8: d4 02 e0 04 ld [ %o3 + 4 ], %o2 200d8fc: d4 21 20 04 st %o2, [ %g4 + 4 ] if (c->child[dir]) 200d900: c8 02 e0 04 ld [ %o3 + 4 ], %g4 200d904: 80 a1 20 00 cmp %g4, 0 200d908: 02 80 00 04 be 200d918 <_RBTree_Extract_validate_unprotected+0x150><== NEVER TAKEN 200d90c: 84 03 c0 02 add %o7, %g2, %g2 c->child[dir]->parent = the_node; 200d910: c2 21 00 00 st %g1, [ %g4 ] 200d914: c6 00 40 00 ld [ %g1 ], %g3 c->child[dir] = the_node; 200d918: c2 20 a0 04 st %g1, [ %g2 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200d91c: c4 00 e0 04 ld [ %g3 + 4 ], %g2 c->parent = the_node->parent; 200d920: c6 23 c0 00 st %g3, [ %o7 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200d924: 84 18 40 02 xor %g1, %g2, %g2 c->parent = the_node->parent; the_node->parent = c; 200d928: de 20 40 00 st %o7, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200d92c: 80 a0 00 02 cmp %g0, %g2 200d930: 84 40 20 00 addx %g0, 0, %g2 200d934: 85 28 a0 02 sll %g2, 2, %g2 200d938: 86 00 c0 02 add %g3, %g2, %g3 200d93c: de 20 e0 04 st %o7, [ %g3 + 4 ] _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; 200d940: 80 a0 00 0d cmp %g0, %o5 200d944: 84 60 3f ff subx %g0, -1, %g2 200d948: 85 28 a0 02 sll %g2, 2, %g2 200d94c: 84 00 40 02 add %g1, %g2, %g2 200d950: 10 bf ff b7 b 200d82c <_RBTree_Extract_validate_unprotected+0x64> 200d954: c4 00 a0 04 ld [ %g2 + 4 ], %g2 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200d958: c2 06 00 00 ld [ %i0 ], %g1 200d95c: c2 00 40 00 ld [ %g1 ], %g1 200d960: 80 a0 60 00 cmp %g1, 0 200d964: 22 80 00 02 be,a 200d96c <_RBTree_Extract_validate_unprotected+0x1a4> 200d968: c0 26 20 0c clr [ %i0 + 0xc ] 200d96c: 81 c7 e0 08 ret 200d970: 81 e8 00 00 restore * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 200d974: 86 18 c0 18 xor %g3, %i0, %g3 200d978: 80 a0 00 03 cmp %g0, %g3 200d97c: 86 40 20 00 addx %g0, 0, %g3 if (!_RBTree_Is_red(sibling->child[!dir])) { 200d980: 80 a0 00 03 cmp %g0, %g3 200d984: 9e 60 3f ff subx %g0, -1, %o7 200d988: 9f 2b e0 02 sll %o7, 2, %o7 200d98c: 88 00 80 0f add %g2, %o7, %g4 200d990: c8 01 20 04 ld [ %g4 + 4 ], %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200d994: 80 a1 20 00 cmp %g4, 0 200d998: 22 80 00 07 be,a 200d9b4 <_RBTree_Extract_validate_unprotected+0x1ec> 200d99c: 89 28 e0 02 sll %g3, 2, %g4 200d9a0: da 01 20 0c ld [ %g4 + 0xc ], %o5 200d9a4: 80 a3 60 01 cmp %o5, 1 200d9a8: 22 80 00 28 be,a 200da48 <_RBTree_Extract_validate_unprotected+0x280> 200d9ac: de 00 60 0c ld [ %g1 + 0xc ], %o7 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; 200d9b0: 89 28 e0 02 sll %g3, 2, %g4 200d9b4: 88 00 80 04 add %g2, %g4, %g4 200d9b8: d6 01 20 04 ld [ %g4 + 4 ], %o3 * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { sibling->color = RBT_RED; 200d9bc: 88 10 20 01 mov 1, %g4 sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); 200d9c0: 98 18 e0 01 xor %g3, 1, %o4 * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { sibling->color = RBT_RED; 200d9c4: c8 20 a0 0c st %g4, [ %g2 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 200d9c8: 9a 21 00 0c sub %g4, %o4, %o5 200d9cc: 9b 2b 60 02 sll %o5, 2, %o5 200d9d0: 9a 00 80 0d add %g2, %o5, %o5 200d9d4: c8 03 60 04 ld [ %o5 + 4 ], %g4 200d9d8: 80 a1 20 00 cmp %g4, 0 200d9dc: 02 80 00 16 be 200da34 <_RBTree_Extract_validate_unprotected+0x26c><== NEVER TAKEN 200d9e0: c0 22 e0 0c clr [ %o3 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 200d9e4: 99 2b 20 02 sll %o4, 2, %o4 200d9e8: 96 01 00 0c add %g4, %o4, %o3 200d9ec: d4 02 e0 04 ld [ %o3 + 4 ], %o2 200d9f0: d4 23 60 04 st %o2, [ %o5 + 4 ] if (c->child[dir]) 200d9f4: da 02 e0 04 ld [ %o3 + 4 ], %o5 200d9f8: 80 a3 60 00 cmp %o5, 0 200d9fc: 32 80 00 02 bne,a 200da04 <_RBTree_Extract_validate_unprotected+0x23c> 200da00: c4 23 40 00 st %g2, [ %o5 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200da04: da 00 80 00 ld [ %g2 ], %o5 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200da08: 98 01 00 0c add %g4, %o4, %o4 200da0c: c4 23 20 04 st %g2, [ %o4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200da10: d8 03 60 04 ld [ %o5 + 4 ], %o4 c->parent = the_node->parent; 200da14: da 21 00 00 st %o5, [ %g4 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200da18: 98 18 80 0c xor %g2, %o4, %o4 c->parent = the_node->parent; the_node->parent = c; 200da1c: c8 20 80 00 st %g4, [ %g2 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200da20: 80 a0 00 0c cmp %g0, %o4 200da24: 84 40 20 00 addx %g0, 0, %g2 200da28: 85 28 a0 02 sll %g2, 2, %g2 200da2c: 9a 03 40 02 add %o5, %g2, %o5 200da30: c8 23 60 04 st %g4, [ %o5 + 4 ] sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; 200da34: 84 00 40 0f add %g1, %o7, %g2 200da38: c4 00 a0 04 ld [ %g2 + 4 ], %g2 200da3c: 9e 00 80 0f add %g2, %o7, %o7 200da40: c8 03 e0 04 ld [ %o7 + 4 ], %g4 } sibling->color = parent->color; 200da44: de 00 60 0c ld [ %g1 + 0xc ], %o7 200da48: de 20 a0 0c st %o7, [ %g2 + 0xc ] parent->color = RBT_BLACK; 200da4c: c0 20 60 0c clr [ %g1 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 200da50: 9e 10 20 01 mov 1, %o7 200da54: 9e 23 c0 03 sub %o7, %g3, %o7 200da58: 9f 2b e0 02 sll %o7, 2, %o7 200da5c: 9e 00 40 0f add %g1, %o7, %o7 200da60: c4 03 e0 04 ld [ %o7 + 4 ], %g2 200da64: 80 a0 a0 00 cmp %g2, 0 200da68: 02 bf ff bc be 200d958 <_RBTree_Extract_validate_unprotected+0x190><== NEVER TAKEN 200da6c: c0 21 20 0c clr [ %g4 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 200da70: 87 28 e0 02 sll %g3, 2, %g3 200da74: 88 00 80 03 add %g2, %g3, %g4 200da78: da 01 20 04 ld [ %g4 + 4 ], %o5 200da7c: da 23 e0 04 st %o5, [ %o7 + 4 ] if (c->child[dir]) 200da80: c8 01 20 04 ld [ %g4 + 4 ], %g4 200da84: 80 a1 20 00 cmp %g4, 0 200da88: 32 80 00 02 bne,a 200da90 <_RBTree_Extract_validate_unprotected+0x2c8> 200da8c: c2 21 00 00 st %g1, [ %g4 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200da90: c8 00 40 00 ld [ %g1 ], %g4 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200da94: 86 00 80 03 add %g2, %g3, %g3 200da98: c2 20 e0 04 st %g1, [ %g3 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200da9c: c6 01 20 04 ld [ %g4 + 4 ], %g3 c->parent = the_node->parent; 200daa0: c8 20 80 00 st %g4, [ %g2 ] the_node->parent = c; 200daa4: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200daa8: 86 18 40 03 xor %g1, %g3, %g3 200daac: 80 a0 00 03 cmp %g0, %g3 200dab0: 82 40 20 00 addx %g0, 0, %g1 200dab4: 83 28 60 02 sll %g1, 2, %g1 200dab8: 88 01 00 01 add %g4, %g1, %g4 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200dabc: c2 06 00 00 ld [ %i0 ], %g1 200dac0: c4 21 20 04 st %g2, [ %g4 + 4 ] 200dac4: c2 00 40 00 ld [ %g1 ], %g1 200dac8: 80 a0 60 00 cmp %g1, 0 200dacc: 22 bf ff a8 be,a 200d96c <_RBTree_Extract_validate_unprotected+0x1a4><== NEVER TAKEN 200dad0: c0 26 20 0c clr [ %i0 + 0xc ] <== NOT EXECUTED 200dad4: 81 c7 e0 08 ret 200dad8: 81 e8 00 00 restore =============================================================================== 02009e98 <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, RBTree_Node *search_node ) { 2009e98: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 2009e9c: 7f ff e6 8a call 20038c4 2009ea0: b8 10 00 18 mov %i0, %i4 2009ea4: ba 10 00 08 mov %o0, %i5 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; 2009ea8: f6 06 20 04 ld [ %i0 + 4 ], %i3 RBTree_Node* found = NULL; int compare_result; while (iter_node) { 2009eac: 80 a6 e0 00 cmp %i3, 0 2009eb0: 02 80 00 15 be 2009f04 <_RBTree_Find+0x6c> <== NEVER TAKEN 2009eb4: b0 10 20 00 clr %i0 compare_result = the_rbtree->compare_function(the_node, iter_node); 2009eb8: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 2009ebc: 92 10 00 1b mov %i3, %o1 2009ec0: 9f c0 40 00 call %g1 2009ec4: 90 10 00 19 mov %i1, %o0 if (compare_result == 0) { 2009ec8: 80 a2 20 00 cmp %o0, 0 2009ecc: 12 80 00 06 bne 2009ee4 <_RBTree_Find+0x4c> 2009ed0: 82 1a 20 01 xor %o0, 1, %g1 found = iter_node; if ( the_rbtree->is_unique ) 2009ed4: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2 2009ed8: 80 a0 a0 00 cmp %g2, 0 2009edc: 12 80 00 0e bne 2009f14 <_RBTree_Find+0x7c> 2009ee0: b0 10 00 1b mov %i3, %i0 break; } RBTree_Direction dir = (compare_result == 1); 2009ee4: 80 a0 00 01 cmp %g0, %g1 2009ee8: 82 60 3f ff subx %g0, -1, %g1 iter_node = iter_node->child[dir]; 2009eec: 83 28 60 02 sll %g1, 2, %g1 2009ef0: b6 06 c0 01 add %i3, %g1, %i3 2009ef4: f6 06 e0 04 ld [ %i3 + 4 ], %i3 ) { RBTree_Node* iter_node = the_rbtree->root; RBTree_Node* found = NULL; int compare_result; while (iter_node) { 2009ef8: 80 a6 e0 00 cmp %i3, 0 2009efc: 32 bf ff f0 bne,a 2009ebc <_RBTree_Find+0x24> 2009f00: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); 2009f04: 7f ff e6 74 call 20038d4 2009f08: 90 10 00 1d mov %i5, %o0 return return_node; } 2009f0c: 81 c7 e0 08 ret 2009f10: 81 e8 00 00 restore RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); 2009f14: 7f ff e6 70 call 20038d4 2009f18: 90 10 00 1d mov %i5, %o0 return return_node; } 2009f1c: 81 c7 e0 08 ret 2009f20: 81 e8 00 00 restore =============================================================================== 0200a20c <_RBTree_Initialize>: void *starting_address, size_t number_nodes, size_t node_size, bool is_unique ) { 200a20c: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 200a210: 80 a6 20 00 cmp %i0, 0 200a214: 02 80 00 0f be 200a250 <_RBTree_Initialize+0x44> <== NEVER TAKEN 200a218: 80 a6 e0 00 cmp %i3, 0 RBTree_Control *the_rbtree, RBTree_Compare_function compare_function, bool is_unique ) { the_rbtree->permanent_null = NULL; 200a21c: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 200a220: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 200a224: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 200a228: c0 26 20 0c clr [ %i0 + 0xc ] the_rbtree->compare_function = compare_function; 200a22c: f2 26 20 10 st %i1, [ %i0 + 0x10 ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200a230: 02 80 00 08 be 200a250 <_RBTree_Initialize+0x44> <== NEVER TAKEN 200a234: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ] _RBTree_Insert(the_rbtree, next); 200a238: 92 10 00 1a mov %i2, %o1 200a23c: 7f ff ff ef call 200a1f8 <_RBTree_Insert> 200a240: 90 10 00 18 mov %i0, %o0 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function, is_unique); count = number_nodes; next = starting_address; while ( count-- ) { 200a244: b6 86 ff ff addcc %i3, -1, %i3 200a248: 12 bf ff fc bne 200a238 <_RBTree_Initialize+0x2c> 200a24c: b4 06 80 1c add %i2, %i4, %i2 200a250: 81 c7 e0 08 ret 200a254: 81 e8 00 00 restore =============================================================================== 0200dcfc <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 200dcfc: 9d e3 bf a0 save %sp, -96, %sp } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 200dd00: 96 10 20 01 mov 1, %o3 ISR_Level level; _ISR_Disable( level ); return _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 200dd04: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 200dd08: c4 00 40 00 ld [ %g1 ], %g2 200dd0c: 86 90 a0 00 orcc %g2, 0, %g3 200dd10: 22 80 00 06 be,a 200dd28 <_RBTree_Validate_insert_unprotected+0x2c> 200dd14: c0 26 20 0c clr [ %i0 + 0xc ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200dd18: c8 00 60 0c ld [ %g1 + 0xc ], %g4 200dd1c: 80 a1 20 01 cmp %g4, 1 200dd20: 22 80 00 04 be,a 200dd30 <_RBTree_Validate_insert_unprotected+0x34> 200dd24: c8 00 80 00 ld [ %g2 ], %g4 200dd28: 81 c7 e0 08 ret 200dd2c: 81 e8 00 00 restore ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 200dd30: 80 a1 20 00 cmp %g4, 0 200dd34: 02 80 00 0c be 200dd64 <_RBTree_Validate_insert_unprotected+0x68><== NEVER TAKEN 200dd38: de 00 a0 04 ld [ %g2 + 4 ], %o7 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200dd3c: 80 a0 40 0f cmp %g1, %o7 200dd40: 02 80 00 59 be 200dea4 <_RBTree_Validate_insert_unprotected+0x1a8> 200dd44: 88 10 00 0f mov %o7, %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 200dd48: 80 a1 20 00 cmp %g4, 0 200dd4c: 22 80 00 07 be,a 200dd68 <_RBTree_Validate_insert_unprotected+0x6c> 200dd50: c8 00 60 04 ld [ %g1 + 4 ], %g4 200dd54: da 01 20 0c ld [ %g4 + 0xc ], %o5 200dd58: 80 a3 60 01 cmp %o5, 1 200dd5c: 22 80 00 4c be,a 200de8c <_RBTree_Validate_insert_unprotected+0x190> 200dd60: c0 20 60 0c clr [ %g1 + 0xc ] the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200dd64: c8 00 60 04 ld [ %g1 + 4 ], %g4 RBTree_Direction pdir = the_node->parent != g->child[0]; 200dd68: 9e 18 40 0f xor %g1, %o7, %o7 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200dd6c: 88 19 00 18 xor %g4, %i0, %g4 200dd70: 80 a0 00 04 cmp %g0, %g4 200dd74: 9a 40 20 00 addx %g0, 0, %o5 RBTree_Direction pdir = the_node->parent != g->child[0]; 200dd78: 80 a0 00 0f cmp %g0, %o7 200dd7c: 88 40 20 00 addx %g0, 0, %g4 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 200dd80: 80 a3 40 04 cmp %o5, %g4 200dd84: 02 80 00 46 be 200de9c <_RBTree_Validate_insert_unprotected+0x1a0> 200dd88: 98 22 c0 0d sub %o3, %o5, %o4 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 200dd8c: 98 22 c0 04 sub %o3, %g4, %o4 200dd90: 9b 2b 20 02 sll %o4, 2, %o5 200dd94: 9a 00 40 0d add %g1, %o5, %o5 200dd98: de 03 60 04 ld [ %o5 + 4 ], %o7 200dd9c: 80 a3 e0 00 cmp %o7, 0 200dda0: 02 80 00 16 be 200ddf8 <_RBTree_Validate_insert_unprotected+0xfc><== NEVER TAKEN 200dda4: 89 29 20 02 sll %g4, 2, %g4 c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 200dda8: 94 03 c0 04 add %o7, %g4, %o2 200ddac: d2 02 a0 04 ld [ %o2 + 4 ], %o1 200ddb0: d2 23 60 04 st %o1, [ %o5 + 4 ] if (c->child[dir]) 200ddb4: da 02 a0 04 ld [ %o2 + 4 ], %o5 200ddb8: 80 a3 60 00 cmp %o5, 0 200ddbc: 22 80 00 05 be,a 200ddd0 <_RBTree_Validate_insert_unprotected+0xd4> 200ddc0: 9a 03 c0 04 add %o7, %g4, %o5 c->child[dir]->parent = the_node; 200ddc4: c2 23 40 00 st %g1, [ %o5 ] 200ddc8: c4 00 40 00 ld [ %g1 ], %g2 c->child[dir] = the_node; 200ddcc: 9a 03 c0 04 add %o7, %g4, %o5 200ddd0: c2 23 60 04 st %g1, [ %o5 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200ddd4: da 00 a0 04 ld [ %g2 + 4 ], %o5 c->parent = the_node->parent; 200ddd8: c4 23 c0 00 st %g2, [ %o7 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200dddc: 9a 18 40 0d xor %g1, %o5, %o5 c->parent = the_node->parent; the_node->parent = c; 200dde0: de 20 40 00 st %o7, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200dde4: 80 a0 00 0d cmp %g0, %o5 200dde8: 82 40 20 00 addx %g0, 0, %g1 200ddec: 83 28 60 02 sll %g1, 2, %g1 200ddf0: 84 00 80 01 add %g2, %g1, %g2 200ddf4: de 20 a0 04 st %o7, [ %g2 + 4 ] _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; 200ddf8: b0 06 00 04 add %i0, %g4, %i0 200ddfc: f0 06 20 04 ld [ %i0 + 4 ], %i0 200de00: c2 06 00 00 ld [ %i0 ], %g1 } the_node->parent->color = RBT_BLACK; 200de04: c0 20 60 0c clr [ %g1 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 200de08: 88 00 c0 04 add %g3, %g4, %g4 200de0c: c2 01 20 04 ld [ %g4 + 4 ], %g1 200de10: 80 a0 60 00 cmp %g1, 0 200de14: 02 bf ff bc be 200dd04 <_RBTree_Validate_insert_unprotected+0x8><== NEVER TAKEN 200de18: d6 20 e0 0c st %o3, [ %g3 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 200de1c: 99 2b 20 02 sll %o4, 2, %o4 200de20: 84 00 40 0c add %g1, %o4, %g2 200de24: de 00 a0 04 ld [ %g2 + 4 ], %o7 200de28: de 21 20 04 st %o7, [ %g4 + 4 ] if (c->child[dir]) 200de2c: c4 00 a0 04 ld [ %g2 + 4 ], %g2 200de30: 80 a0 a0 00 cmp %g2, 0 200de34: 32 80 00 02 bne,a 200de3c <_RBTree_Validate_insert_unprotected+0x140> 200de38: c6 20 80 00 st %g3, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200de3c: c4 00 c0 00 ld [ %g3 ], %g2 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 200de40: 98 00 40 0c add %g1, %o4, %o4 200de44: c6 23 20 04 st %g3, [ %o4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200de48: c8 00 a0 04 ld [ %g2 + 4 ], %g4 c->parent = the_node->parent; 200de4c: c4 20 40 00 st %g2, [ %g1 ] the_node->parent = c; 200de50: c2 20 c0 00 st %g1, [ %g3 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200de54: 88 19 00 03 xor %g4, %g3, %g4 200de58: 80 a0 00 04 cmp %g0, %g4 200de5c: 86 40 20 00 addx %g0, 0, %g3 200de60: 87 28 e0 02 sll %g3, 2, %g3 200de64: 84 00 80 03 add %g2, %g3, %g2 200de68: c2 20 a0 04 st %g1, [ %g2 + 4 ] ISR_Level level; _ISR_Disable( level ); return _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 200de6c: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 200de70: c4 00 40 00 ld [ %g1 ], %g2 200de74: 86 90 a0 00 orcc %g2, 0, %g3 200de78: 32 bf ff a9 bne,a 200dd1c <_RBTree_Validate_insert_unprotected+0x20><== ALWAYS TAKEN 200de7c: c8 00 60 0c ld [ %g1 + 0xc ], %g4 /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); } } if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200de80: c0 26 20 0c clr [ %i0 + 0xc ] <== NOT EXECUTED 200de84: 81 c7 e0 08 ret <== NOT EXECUTED 200de88: 81 e8 00 00 restore <== NOT EXECUTED g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; 200de8c: c0 21 20 0c clr [ %g4 + 0xc ] g->color = RBT_RED; 200de90: da 20 a0 0c st %o5, [ %g2 + 0xc ] 200de94: 10 bf ff 9c b 200dd04 <_RBTree_Validate_insert_unprotected+0x8> 200de98: b0 10 00 02 mov %g2, %i0 200de9c: 10 bf ff da b 200de04 <_RBTree_Validate_insert_unprotected+0x108> 200dea0: 89 2b 60 02 sll %o5, 2, %g4 if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) return the_node->parent->child[RBT_RIGHT]; 200dea4: 10 bf ff a9 b 200dd48 <_RBTree_Validate_insert_unprotected+0x4c> 200dea8: c8 00 a0 08 ld [ %g2 + 8 ], %g4 =============================================================================== 02006d28 <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 2006d28: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 2006d2c: 03 00 80 6d sethi %hi(0x201b400), %g1 2006d30: 82 10 62 c4 or %g1, 0x2c4, %g1 ! 201b6c4 2006d34: fa 00 60 2c ld [ %g1 + 0x2c ], %i5 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 2006d38: 80 a7 60 00 cmp %i5, 0 2006d3c: 02 80 00 18 be 2006d9c <_RTEMS_tasks_Initialize_user_tasks_body+0x74> 2006d40: f6 00 60 28 ld [ %g1 + 0x28 ], %i3 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006d44: 80 a6 e0 00 cmp %i3, 0 2006d48: 02 80 00 15 be 2006d9c <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN 2006d4c: b8 10 20 00 clr %i4 return_value = rtems_task_create( 2006d50: d4 07 60 04 ld [ %i5 + 4 ], %o2 2006d54: d0 07 40 00 ld [ %i5 ], %o0 2006d58: d2 07 60 08 ld [ %i5 + 8 ], %o1 2006d5c: d6 07 60 14 ld [ %i5 + 0x14 ], %o3 2006d60: d8 07 60 0c ld [ %i5 + 0xc ], %o4 2006d64: 7f ff ff 70 call 2006b24 2006d68: 9a 07 bf fc add %fp, -4, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 2006d6c: 94 92 20 00 orcc %o0, 0, %o2 2006d70: 12 80 00 0d bne 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2006d74: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 2006d78: d4 07 60 18 ld [ %i5 + 0x18 ], %o2 2006d7c: 40 00 00 0e call 2006db4 2006d80: d2 07 60 10 ld [ %i5 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2006d84: 94 92 20 00 orcc %o0, 0, %o2 2006d88: 12 80 00 07 bne 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2006d8c: b8 07 20 01 inc %i4 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006d90: 80 a7 00 1b cmp %i4, %i3 2006d94: 12 bf ff ef bne 2006d50 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN 2006d98: ba 07 60 1c add %i5, 0x1c, %i5 2006d9c: 81 c7 e0 08 ret 2006da0: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 2006da4: 90 10 20 01 mov 1, %o0 2006da8: 40 00 03 ff call 2007da4 <_Internal_error_Occurred> 2006dac: 92 10 20 01 mov 1, %o1 =============================================================================== 0200c5c8 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200c5c8: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200c5cc: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200c5d0: 80 a7 60 00 cmp %i5, 0 200c5d4: 02 80 00 1e be 200c64c <_RTEMS_tasks_Post_switch_extension+0x84><== NEVER TAKEN 200c5d8: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200c5dc: 7f ff d7 02 call 20021e4 200c5e0: 01 00 00 00 nop signal_set = asr->signals_posted; 200c5e4: f8 07 60 14 ld [ %i5 + 0x14 ], %i4 asr->signals_posted = 0; 200c5e8: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200c5ec: 7f ff d7 02 call 20021f4 200c5f0: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200c5f4: 80 a7 20 00 cmp %i4, 0 200c5f8: 32 80 00 04 bne,a 200c608 <_RTEMS_tasks_Post_switch_extension+0x40> 200c5fc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200c600: 81 c7 e0 08 ret 200c604: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c608: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c60c: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c610: 94 07 bf fc add %fp, -4, %o2 200c614: 37 00 00 3f sethi %hi(0xfc00), %i3 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c618: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c61c: 40 00 07 e0 call 200e59c 200c620: 92 16 e3 ff or %i3, 0x3ff, %o1 (*asr->handler)( signal_set ); 200c624: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200c628: 9f c0 40 00 call %g1 200c62c: 90 10 00 1c mov %i4, %o0 asr->nest_level -= 1; 200c630: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c634: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200c638: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c63c: 92 16 e3 ff or %i3, 0x3ff, %o1 200c640: 94 07 bf fc add %fp, -4, %o2 200c644: 40 00 07 d6 call 200e59c 200c648: c2 27 60 1c st %g1, [ %i5 + 0x1c ] 200c64c: 81 c7 e0 08 ret 200c650: 81 e8 00 00 restore =============================================================================== 0200c530 <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200c530: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 200c534: 80 a0 60 00 cmp %g1, 0 200c538: 22 80 00 0c be,a 200c568 <_RTEMS_tasks_Switch_extension+0x38> 200c53c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 tvp->tval = *tvp->ptr; 200c540: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200c544: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200c548: c8 00 80 00 ld [ %g2 ], %g4 200c54c: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; 200c550: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200c554: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200c558: 80 a0 60 00 cmp %g1, 0 200c55c: 32 bf ff fa bne,a 200c544 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN 200c560: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200c564: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 while (tvp) { 200c568: 80 a0 60 00 cmp %g1, 0 200c56c: 02 80 00 0b be 200c598 <_RTEMS_tasks_Switch_extension+0x68> 200c570: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200c574: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200c578: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200c57c: c8 00 80 00 ld [ %g2 ], %g4 200c580: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; 200c584: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200c588: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200c58c: 80 a0 60 00 cmp %g1, 0 200c590: 32 bf ff fa bne,a 200c578 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN 200c594: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED 200c598: 81 c3 e0 08 retl =============================================================================== 02007aec <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007aec: 9d e3 bf 98 save %sp, -104, %sp 2007af0: 11 00 80 78 sethi %hi(0x201e000), %o0 2007af4: 92 10 00 18 mov %i0, %o1 2007af8: 90 12 20 84 or %o0, 0x84, %o0 2007afc: 40 00 08 2c call 2009bac <_Objects_Get> 2007b00: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007b04: c2 07 bf fc ld [ %fp + -4 ], %g1 2007b08: 80 a0 60 00 cmp %g1, 0 2007b0c: 12 80 00 17 bne 2007b68 <_Rate_monotonic_Timeout+0x7c> <== NEVER TAKEN 2007b10: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007b14: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007b18: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007b1c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007b20: 80 88 80 01 btst %g2, %g1 2007b24: 22 80 00 08 be,a 2007b44 <_Rate_monotonic_Timeout+0x58> 2007b28: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007b2c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007b30: c2 07 60 08 ld [ %i5 + 8 ], %g1 2007b34: 80 a0 80 01 cmp %g2, %g1 2007b38: 02 80 00 1a be 2007ba0 <_Rate_monotonic_Timeout+0xb4> 2007b3c: 13 04 00 ff sethi %hi(0x1003fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007b40: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007b44: 80 a0 60 01 cmp %g1, 1 2007b48: 02 80 00 0a be 2007b70 <_Rate_monotonic_Timeout+0x84> 2007b4c: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007b50: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007b54: 03 00 80 78 sethi %hi(0x201e000), %g1 2007b58: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e1f0 <_Thread_Dispatch_disable_level> 2007b5c: 84 00 bf ff add %g2, -1, %g2 2007b60: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ] return _Thread_Dispatch_disable_level; 2007b64: c2 00 61 f0 ld [ %g1 + 0x1f0 ], %g1 2007b68: 81 c7 e0 08 ret 2007b6c: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007b70: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 2007b74: 90 10 00 1d mov %i5, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007b78: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007b7c: 7f ff fe 49 call 20074a0 <_Rate_monotonic_Initiate_statistics> 2007b80: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007b84: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007b88: 11 00 80 78 sethi %hi(0x201e000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007b8c: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007b90: 90 12 22 ac or %o0, 0x2ac, %o0 2007b94: 40 00 0f f5 call 200bb68 <_Watchdog_Insert> 2007b98: 92 07 60 10 add %i5, 0x10, %o1 2007b9c: 30 bf ff ee b,a 2007b54 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007ba0: 40 00 0a e8 call 200a740 <_Thread_Clear_state> 2007ba4: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 2007ba8: 10 bf ff f5 b 2007b7c <_Rate_monotonic_Timeout+0x90> 2007bac: 90 10 00 1d mov %i5, %o0 =============================================================================== 020090c4 <_Scheduler_EDF_Allocate>: #include void *_Scheduler_EDF_Allocate( Thread_Control *the_thread ) { 20090c4: 9d e3 bf a0 save %sp, -96, %sp void *sched; Scheduler_EDF_Per_thread *schinfo; sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) ); 20090c8: 40 00 07 5b call 200ae34 <_Workspace_Allocate> 20090cc: 90 10 20 18 mov 0x18, %o0 if ( sched ) { 20090d0: 80 a2 20 00 cmp %o0, 0 20090d4: 02 80 00 05 be 20090e8 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN 20090d8: 82 10 20 02 mov 2, %g1 the_thread->scheduler_info = sched; 20090dc: d0 26 20 8c st %o0, [ %i0 + 0x8c ] schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info); schinfo->thread = the_thread; 20090e0: f0 22 00 00 st %i0, [ %o0 ] schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN; 20090e4: c2 22 20 14 st %g1, [ %o0 + 0x14 ] } return sched; } 20090e8: 81 c7 e0 08 ret 20090ec: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 020090f0 <_Scheduler_EDF_Block>: #include void _Scheduler_EDF_Block( Thread_Control *the_thread ) { 20090f0: 9d e3 bf a0 save %sp, -96, %sp _Scheduler_EDF_Extract( the_thread ); 20090f4: 40 00 00 20 call 2009174 <_Scheduler_EDF_Extract> 20090f8: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _Thread_Is_heir ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Heir ); 20090fc: 3b 00 80 78 sethi %hi(0x201e000), %i5 2009100: ba 17 60 6c or %i5, 0x6c, %i5 ! 201e06c <_Per_CPU_Information> /* TODO: flash critical section? */ if ( _Thread_Is_heir( the_thread ) ) 2009104: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 2009108: 80 a6 00 01 cmp %i0, %g1 200910c: 02 80 00 09 be 2009130 <_Scheduler_EDF_Block+0x40> <== ALWAYS TAKEN 2009110: 01 00 00 00 nop _Scheduler_EDF_Schedule(); if ( _Thread_Is_executing( the_thread ) ) 2009114: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED 2009118: 80 a6 00 01 cmp %i0, %g1 200911c: 12 80 00 03 bne 2009128 <_Scheduler_EDF_Block+0x38> <== NEVER TAKEN 2009120: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 2009124: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] 2009128: 81 c7 e0 08 ret 200912c: 81 e8 00 00 restore _Scheduler_EDF_Extract( the_thread ); /* TODO: flash critical section? */ if ( _Thread_Is_heir( the_thread ) ) _Scheduler_EDF_Schedule(); 2009130: 40 00 00 5c call 20092a0 <_Scheduler_EDF_Schedule> 2009134: 01 00 00 00 nop if ( _Thread_Is_executing( the_thread ) ) 2009138: 10 bf ff f8 b 2009118 <_Scheduler_EDF_Block+0x28> 200913c: c2 07 60 0c ld [ %i5 + 0xc ], %g1 =============================================================================== 02009258 <_Scheduler_EDF_Release_job>: uint32_t deadline ) { Priority_Control new_priority; if (deadline) { 2009258: 80 a2 60 00 cmp %o1, 0 200925c: 12 80 00 07 bne 2009278 <_Scheduler_EDF_Release_job+0x20> <== ALWAYS TAKEN 2009260: 94 10 20 01 mov 1, %o2 new_priority = (_Watchdog_Ticks_since_boot + deadline) & ~SCHEDULER_EDF_PRIO_MSB; } else { /* Switch back to background priority. */ new_priority = the_thread->Start.initial_priority; 2009264: d2 02 20 b0 ld [ %o0 + 0xb0 ], %o1 <== NOT EXECUTED } the_thread->real_priority = new_priority; 2009268: d2 22 20 18 st %o1, [ %o0 + 0x18 ] <== NOT EXECUTED _Thread_Change_priority(the_thread, new_priority, true); 200926c: 82 13 c0 00 mov %o7, %g1 <== NOT EXECUTED 2009270: 40 00 00 f5 call 2009644 <_Thread_Change_priority> <== NOT EXECUTED 2009274: 9e 10 40 00 mov %g1, %o7 <== NOT EXECUTED { Priority_Control new_priority; if (deadline) { /* Initializing or shifting deadline. */ new_priority = (_Watchdog_Ticks_since_boot + deadline) 2009278: 03 00 80 77 sethi %hi(0x201dc00), %g1 200927c: c2 00 63 4c ld [ %g1 + 0x34c ], %g1 ! 201df4c <_Watchdog_Ticks_since_boot> /* Switch back to background priority. */ new_priority = the_thread->Start.initial_priority; } the_thread->real_priority = new_priority; _Thread_Change_priority(the_thread, new_priority, true); 2009280: 94 10 20 01 mov 1, %o2 { Priority_Control new_priority; if (deadline) { /* Initializing or shifting deadline. */ new_priority = (_Watchdog_Ticks_since_boot + deadline) 2009284: 92 02 40 01 add %o1, %g1, %o1 2009288: 03 20 00 00 sethi %hi(0x80000000), %g1 200928c: 92 2a 40 01 andn %o1, %g1, %o1 else { /* Switch back to background priority. */ new_priority = the_thread->Start.initial_priority; } the_thread->real_priority = new_priority; 2009290: d2 22 20 18 st %o1, [ %o0 + 0x18 ] _Thread_Change_priority(the_thread, new_priority, true); 2009294: 82 13 c0 00 mov %o7, %g1 2009298: 40 00 00 eb call 2009644 <_Thread_Change_priority> 200929c: 9e 10 40 00 mov %g1, %o7 =============================================================================== 020092c8 <_Scheduler_EDF_Unblock>: #include void _Scheduler_EDF_Unblock( Thread_Control *the_thread ) { 20092c8: 9d e3 bf a0 save %sp, -96, %sp _Scheduler_EDF_Enqueue(the_thread); 20092cc: 7f ff ff a0 call 200914c <_Scheduler_EDF_Enqueue> 20092d0: 90 10 00 18 mov %i0, %o0 * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( _Scheduler_Is_priority_lower_than( 20092d4: 3b 00 80 78 sethi %hi(0x201e000), %i5 20092d8: ba 17 60 6c or %i5, 0x6c, %i5 ! 201e06c <_Per_CPU_Information> 20092dc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 20092e0: d0 00 60 14 ld [ %g1 + 0x14 ], %o0 20092e4: 03 00 80 74 sethi %hi(0x201d000), %g1 20092e8: c2 00 62 04 ld [ %g1 + 0x204 ], %g1 ! 201d204 <_Scheduler+0x30> 20092ec: 9f c0 40 00 call %g1 20092f0: d2 06 20 14 ld [ %i0 + 0x14 ], %o1 20092f4: 80 a2 20 00 cmp %o0, 0 20092f8: 26 80 00 04 bl,a 2009308 <_Scheduler_EDF_Unblock+0x40> 20092fc: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2009300: 81 c7 e0 08 ret 2009304: 81 e8 00 00 restore _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; 2009308: f0 27 60 10 st %i0, [ %i5 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200930c: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1 2009310: 80 a0 60 00 cmp %g1, 0 2009314: 22 80 00 06 be,a 200932c <_Scheduler_EDF_Unblock+0x64> <== NEVER TAKEN 2009318: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 <== NOT EXECUTED the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200931c: 82 10 20 01 mov 1, %g1 2009320: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] 2009324: 81 c7 e0 08 ret 2009328: 81 e8 00 00 restore */ if ( _Scheduler_Is_priority_lower_than( _Thread_Heir->current_priority, the_thread->current_priority )) { _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200932c: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED 2009330: 12 bf ff f4 bne 2009300 <_Scheduler_EDF_Unblock+0x38> <== NOT EXECUTED 2009334: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 2009338: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED 200933c: 30 bf ff fa b,a 2009324 <_Scheduler_EDF_Unblock+0x5c> <== NOT EXECUTED =============================================================================== 02009340 <_Scheduler_EDF_Update>: #include void _Scheduler_EDF_Update( Thread_Control *the_thread ) { 2009340: 9d e3 bf a0 save %sp, -96, %sp Scheduler_EDF_Per_thread *sched_info = 2009344: f8 06 20 8c ld [ %i0 + 0x8c ], %i4 (Scheduler_EDF_Per_thread*)the_thread->scheduler_info; RBTree_Node *the_node = &(sched_info->Node); if (sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN) { 2009348: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 200934c: 80 a0 60 02 cmp %g1, 2 2009350: 02 80 00 06 be 2009368 <_Scheduler_EDF_Update+0x28> 2009354: 80 a0 60 01 cmp %g1, 1 the_thread->real_priority = the_thread->Start.initial_priority; the_thread->current_priority = the_thread->Start.initial_priority; sched_info->queue_state = SCHEDULER_EDF_QUEUE_STATE_NOT_PRESENTLY; } if ( sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_YES ) { 2009358: 02 80 00 0d be 200938c <_Scheduler_EDF_Update+0x4c> <== NEVER TAKEN 200935c: b8 07 20 04 add %i4, 4, %i4 2009360: 81 c7 e0 08 ret 2009364: 81 e8 00 00 restore (Scheduler_EDF_Per_thread*)the_thread->scheduler_info; RBTree_Node *the_node = &(sched_info->Node); if (sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN) { /* Shifts the priority to the region of background tasks. */ the_thread->Start.initial_priority |= (SCHEDULER_EDF_PRIO_MSB); 2009368: c4 06 20 b0 ld [ %i0 + 0xb0 ], %g2 200936c: 03 20 00 00 sethi %hi(0x80000000), %g1 2009370: 82 10 80 01 or %g2, %g1, %g1 2009374: c2 26 20 b0 st %g1, [ %i0 + 0xb0 ] the_thread->real_priority = the_thread->Start.initial_priority; 2009378: c2 26 20 18 st %g1, [ %i0 + 0x18 ] the_thread->current_priority = the_thread->Start.initial_priority; 200937c: c2 26 20 14 st %g1, [ %i0 + 0x14 ] sched_info->queue_state = SCHEDULER_EDF_QUEUE_STATE_NOT_PRESENTLY; 2009380: c0 27 20 14 clr [ %i4 + 0x14 ] 2009384: 81 c7 e0 08 ret 2009388: 81 e8 00 00 restore } if ( sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_YES ) { _RBTree_Extract(&_Scheduler_EDF_Ready_queue, the_node); 200938c: 3b 00 80 78 sethi %hi(0x201e000), %i5 <== NOT EXECUTED 2009390: 92 10 00 1c mov %i4, %o1 <== NOT EXECUTED 2009394: 40 00 12 50 call 200dcd4 <_RBTree_Extract> <== NOT EXECUTED 2009398: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED _RBTree_Insert(&_Scheduler_EDF_Ready_queue, the_node); 200939c: 92 10 00 1c mov %i4, %o1 <== NOT EXECUTED 20093a0: 40 00 12 fd call 200df94 <_RBTree_Insert> <== NOT EXECUTED 20093a4: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED _Scheduler_EDF_Schedule(); 20093a8: 7f ff ff be call 20092a0 <_Scheduler_EDF_Schedule> <== NOT EXECUTED 20093ac: 01 00 00 00 nop <== NOT EXECUTED if ( _Thread_Executing != _Thread_Heir ) { 20093b0: 03 00 80 78 sethi %hi(0x201e000), %g1 <== NOT EXECUTED 20093b4: 82 10 60 6c or %g1, 0x6c, %g1 ! 201e06c <_Per_CPU_Information><== NOT EXECUTED 20093b8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 <== NOT EXECUTED 20093bc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 <== NOT EXECUTED 20093c0: 80 a0 80 03 cmp %g2, %g3 <== NOT EXECUTED 20093c4: 02 80 00 0b be 20093f0 <_Scheduler_EDF_Update+0xb0> <== NOT EXECUTED 20093c8: 01 00 00 00 nop <== NOT EXECUTED if ( _Thread_Executing->is_preemptible || 20093cc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 <== NOT EXECUTED 20093d0: 80 a0 a0 00 cmp %g2, 0 <== NOT EXECUTED 20093d4: 12 80 00 06 bne 20093ec <_Scheduler_EDF_Update+0xac> <== NOT EXECUTED 20093d8: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED 20093dc: c4 06 20 14 ld [ %i0 + 0x14 ], %g2 <== NOT EXECUTED 20093e0: 80 a0 a0 00 cmp %g2, 0 <== NOT EXECUTED 20093e4: 12 bf ff df bne 2009360 <_Scheduler_EDF_Update+0x20> <== NOT EXECUTED 20093e8: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 20093ec: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] <== NOT EXECUTED 20093f0: 81 c7 e0 08 ret <== NOT EXECUTED 20093f4: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 020093f8 <_Scheduler_EDF_Yield>: #include #include #include void _Scheduler_EDF_Yield(void) { 20093f8: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED Scheduler_EDF_Per_thread *first_info; RBTree_Node *first_node; ISR_Level level; Thread_Control *executing = _Thread_Executing; 20093fc: 3b 00 80 78 sethi %hi(0x201e000), %i5 <== NOT EXECUTED 2009400: ba 17 60 6c or %i5, 0x6c, %i5 ! 201e06c <_Per_CPU_Information><== NOT EXECUTED 2009404: f6 07 60 0c ld [ %i5 + 0xc ], %i3 <== NOT EXECUTED Scheduler_EDF_Per_thread *executing_info = (Scheduler_EDF_Per_thread *) executing->scheduler_info; RBTree_Node *executing_node = &(executing_info->Node); _ISR_Disable( level ); 2009408: 7f ff e4 ed call 20027bc <== NOT EXECUTED 200940c: f4 06 e0 8c ld [ %i3 + 0x8c ], %i2 <== NOT EXECUTED 2009410: b0 10 00 08 mov %o0, %i0 <== NOT EXECUTED RTEMS_INLINE_ROUTINE bool _RBTree_Has_only_one_node( const RBTree_Control *the_rbtree ) { if(!the_rbtree) return NULL; /* TODO: expected behavior? */ return (the_rbtree->root->child[RBT_LEFT] == NULL && the_rbtree->root->child[RBT_RIGHT] == NULL); 2009414: 39 00 80 78 sethi %hi(0x201e000), %i4 <== NOT EXECUTED 2009418: 82 17 20 90 or %i4, 0x90, %g1 ! 201e090 <_Scheduler_EDF_Ready_queue><== NOT EXECUTED 200941c: c2 00 60 04 ld [ %g1 + 4 ], %g1 <== NOT EXECUTED 2009420: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED 2009424: 80 a0 a0 00 cmp %g2, 0 <== NOT EXECUTED 2009428: 22 80 00 16 be,a 2009480 <_Scheduler_EDF_Yield+0x88> <== NOT EXECUTED 200942c: c2 00 60 08 ld [ %g1 + 8 ], %g1 <== NOT EXECUTED ISR_Level level; Thread_Control *executing = _Thread_Executing; Scheduler_EDF_Per_thread *executing_info = (Scheduler_EDF_Per_thread *) executing->scheduler_info; RBTree_Node *executing_node = &(executing_info->Node); 2009430: b4 06 a0 04 add %i2, 4, %i2 <== NOT EXECUTED if ( !_RBTree_Has_only_one_node(&_Scheduler_EDF_Ready_queue) ) { /* * The RBTree has more than one node, enqueue behind the tasks * with the same priority in case there are such ones. */ _RBTree_Extract( &_Scheduler_EDF_Ready_queue, executing_node ); 2009434: 90 17 20 90 or %i4, 0x90, %o0 <== NOT EXECUTED 2009438: 40 00 12 27 call 200dcd4 <_RBTree_Extract> <== NOT EXECUTED 200943c: 92 10 00 1a mov %i2, %o1 <== NOT EXECUTED _RBTree_Insert( &_Scheduler_EDF_Ready_queue, executing_node ); 2009440: 90 17 20 90 or %i4, 0x90, %o0 <== NOT EXECUTED 2009444: 40 00 12 d4 call 200df94 <_RBTree_Insert> <== NOT EXECUTED 2009448: 92 10 00 1a mov %i2, %o1 <== NOT EXECUTED _ISR_Flash( level ); 200944c: 7f ff e4 e0 call 20027cc <== NOT EXECUTED 2009450: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED 2009454: 7f ff e4 da call 20027bc <== NOT EXECUTED 2009458: 01 00 00 00 nop <== NOT EXECUTED 200945c: b0 10 00 08 mov %o0, %i0 <== NOT EXECUTED if ( _Thread_Is_heir( executing ) ) { 2009460: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 <== NOT EXECUTED 2009464: 80 a6 c0 01 cmp %i3, %g1 <== NOT EXECUTED 2009468: 02 80 00 10 be 20094a8 <_Scheduler_EDF_Yield+0xb0> <== NOT EXECUTED 200946c: 11 00 80 78 sethi %hi(0x201e000), %o0 <== NOT EXECUTED _Thread_Heir = first_info->thread; } _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 2009470: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED 2009474: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 2009478: 7f ff e4 d5 call 20027cc <== NOT EXECUTED 200947c: 81 e8 00 00 restore <== NOT EXECUTED 2009480: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED 2009484: 32 bf ff ec bne,a 2009434 <_Scheduler_EDF_Yield+0x3c> <== NOT EXECUTED 2009488: b4 06 a0 04 add %i2, 4, %i2 <== NOT EXECUTED _RBTree_Container_of(first_node, Scheduler_EDF_Per_thread, Node); _Thread_Heir = first_info->thread; } _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) 200948c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 <== NOT EXECUTED 2009490: 80 a6 c0 01 cmp %i3, %g1 <== NOT EXECUTED 2009494: 02 bf ff f9 be 2009478 <_Scheduler_EDF_Yield+0x80> <== NOT EXECUTED 2009498: 01 00 00 00 nop <== NOT EXECUTED _Thread_Dispatch_necessary = true; 200949c: 82 10 20 01 mov 1, %g1 ! 1 <== NOT EXECUTED 20094a0: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED 20094a4: 30 bf ff f5 b,a 2009478 <_Scheduler_EDF_Yield+0x80> <== NOT EXECUTED _RBTree_Insert( &_Scheduler_EDF_Ready_queue, executing_node ); _ISR_Flash( level ); if ( _Thread_Is_heir( executing ) ) { first_node = _RBTree_Peek( &_Scheduler_EDF_Ready_queue, RBT_LEFT ); 20094a8: 92 10 20 00 clr %o1 <== NOT EXECUTED 20094ac: 40 00 12 bf call 200dfa8 <_RBTree_Peek> <== NOT EXECUTED 20094b0: 90 12 20 90 or %o0, 0x90, %o0 <== NOT EXECUTED first_info = _RBTree_Container_of(first_node, Scheduler_EDF_Per_thread, Node); _Thread_Heir = first_info->thread; 20094b4: c2 02 3f fc ld [ %o0 + -4 ], %g1 <== NOT EXECUTED 20094b8: c2 27 60 10 st %g1, [ %i5 + 0x10 ] <== NOT EXECUTED } _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 20094bc: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED 20094c0: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED 20094c4: 30 bf ff ed b,a 2009478 <_Scheduler_EDF_Yield+0x80> <== NOT EXECUTED =============================================================================== 02009284 <_Scheduler_simple_Ready_queue_enqueue_first>: { Chain_Control *ready; Chain_Node *the_node; Thread_Control *current; ready = (Chain_Control *)_Scheduler.information; 2009284: 03 00 80 71 sethi %hi(0x201c400), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2009288: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 ! 201c644 <_Scheduler> */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 200928c: c6 02 20 14 ld [ %o0 + 0x14 ], %g3 2009290: c2 00 40 00 ld [ %g1 ], %g1 2009294: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2009298: 80 a0 80 03 cmp %g2, %g3 200929c: 3a 80 00 08 bcc,a 20092bc <_Scheduler_simple_Ready_queue_enqueue_first+0x38> 20092a0: c2 00 60 04 ld [ %g1 + 4 ], %g1 * Do NOT need to check for end of chain because there is always * at least one task on the ready chain -- the IDLE task. It can * never block, should never attempt to obtain a semaphore or mutex, * and thus will always be there. */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { 20092a4: c2 00 40 00 ld [ %g1 ], %g1 current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 20092a8: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 20092ac: 80 a0 80 03 cmp %g2, %g3 20092b0: 2a bf ff fe bcs,a 20092a8 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN 20092b4: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED current = (Thread_Control *)current->Object.Node.previous; 20092b8: c2 00 60 04 ld [ %g1 + 4 ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 20092bc: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 20092c0: c2 22 20 04 st %g1, [ %o0 + 4 ] before_node = after_node->next; after_node->next = the_node; 20092c4: d0 20 40 00 st %o0, [ %g1 ] the_node->next = before_node; 20092c8: c4 22 00 00 st %g2, [ %o0 ] } } /* enqueue */ _Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node ); } 20092cc: 81 c3 e0 08 retl 20092d0: d0 20 a0 04 st %o0, [ %g2 + 4 ] =============================================================================== 020078d8 <_TOD_Tickle_ticks>: * * Output parameters: NONE */ void _TOD_Tickle_ticks( void ) { 20078d8: 9d e3 bf 98 save %sp, -104, %sp /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078dc: 05 00 80 71 sethi %hi(0x201c400), %g2 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078e0: 03 00 80 6d sethi %hi(0x201b400), %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078e4: c6 00 a0 7c ld [ %g2 + 0x7c ], %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078e8: c2 00 62 88 ld [ %g1 + 0x288 ], %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078ec: 86 00 e0 01 inc %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078f0: bb 28 60 07 sll %g1, 7, %i5 20078f4: 89 28 60 02 sll %g1, 2, %g4 20078f8: 88 27 40 04 sub %i5, %g4, %g4 20078fc: 82 01 00 01 add %g4, %g1, %g1 2007900: 83 28 60 03 sll %g1, 3, %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007904: 92 07 bf f8 add %fp, -8, %o1 /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007908: c6 20 a0 7c st %g3, [ %g2 + 0x7c ] { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 200790c: c2 27 bf fc st %g1, [ %fp + -4 ] 2007910: c0 27 bf f8 clr [ %fp + -8 ] /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007914: 11 00 80 70 sethi %hi(0x201c000), %o0 2007918: 40 00 09 35 call 2009dec <_Timespec_Add_to> 200791c: 90 12 23 ec or %o0, 0x3ec, %o0 ! 201c3ec <_TOD_Uptime> /* we do not care how much the uptime changed */ /* Update the timespec format TOD */ seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick ); 2007920: 92 07 bf f8 add %fp, -8, %o1 2007924: 11 00 80 70 sethi %hi(0x201c000), %o0 2007928: 40 00 09 31 call 2009dec <_Timespec_Add_to> 200792c: 90 12 23 fc or %o0, 0x3fc, %o0 ! 201c3fc <_TOD_Now> while ( seconds ) { 2007930: ba 92 20 00 orcc %o0, 0, %i5 2007934: 02 80 00 08 be 2007954 <_TOD_Tickle_ticks+0x7c> 2007938: 39 00 80 71 sethi %hi(0x201c400), %i4 */ RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void ) { _Watchdog_Tickle( &_Watchdog_Seconds_chain ); 200793c: b8 17 20 20 or %i4, 0x20, %i4 ! 201c420 <_Watchdog_Seconds_chain> 2007940: 40 00 0a b2 call 200a408 <_Watchdog_Tickle> 2007944: 90 10 00 1c mov %i4, %o0 2007948: ba 87 7f ff addcc %i5, -1, %i5 200794c: 12 bf ff fd bne 2007940 <_TOD_Tickle_ticks+0x68> <== NEVER TAKEN 2007950: 01 00 00 00 nop 2007954: 81 c7 e0 08 ret 2007958: 81 e8 00 00 restore =============================================================================== 020074f8 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20074f8: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20074fc: 03 00 80 77 sethi %hi(0x201dc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007500: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007504: 80 a6 20 00 cmp %i0, 0 2007508: 02 80 00 2c be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN 200750c: d2 00 61 98 ld [ %g1 + 0x198 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007510: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007514: 40 00 49 09 call 2019938 <.udiv> 2007518: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200751c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007520: 80 a2 00 01 cmp %o0, %g1 2007524: 28 80 00 26 bleu,a 20075bc <_TOD_Validate+0xc4> 2007528: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 200752c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007530: 80 a0 60 3b cmp %g1, 0x3b 2007534: 38 80 00 22 bgu,a 20075bc <_TOD_Validate+0xc4> 2007538: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 200753c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 2007540: 80 a0 60 3b cmp %g1, 0x3b 2007544: 38 80 00 1e bgu,a 20075bc <_TOD_Validate+0xc4> 2007548: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 200754c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2007550: 80 a0 60 17 cmp %g1, 0x17 2007554: 38 80 00 1a bgu,a 20075bc <_TOD_Validate+0xc4> 2007558: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 200755c: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007560: 80 a0 60 00 cmp %g1, 0 2007564: 02 80 00 15 be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007568: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 200756c: 38 80 00 14 bgu,a 20075bc <_TOD_Validate+0xc4> 2007570: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007574: c4 06 00 00 ld [ %i0 ], %g2 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007578: 80 a0 a7 c3 cmp %g2, 0x7c3 200757c: 28 80 00 10 bleu,a 20075bc <_TOD_Validate+0xc4> 2007580: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007584: c6 06 20 08 ld [ %i0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007588: 80 a0 e0 00 cmp %g3, 0 200758c: 02 80 00 0b be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007590: 80 88 a0 03 btst 3, %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007594: 32 80 00 0c bne,a 20075c4 <_TOD_Validate+0xcc> 2007598: 83 28 60 02 sll %g1, 2, %g1 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 200759c: 82 00 60 0d add %g1, 0xd, %g1 20075a0: 05 00 80 72 sethi %hi(0x201c800), %g2 20075a4: 83 28 60 02 sll %g1, 2, %g1 20075a8: 84 10 a2 a8 or %g2, 0x2a8, %g2 20075ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20075b0: 80 a0 40 03 cmp %g1, %g3 20075b4: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 20075b8: b0 0f 60 01 and %i5, 1, %i0 20075bc: 81 c7 e0 08 ret 20075c0: 81 e8 00 00 restore return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20075c4: 05 00 80 72 sethi %hi(0x201c800), %g2 20075c8: 84 10 a2 a8 or %g2, 0x2a8, %g2 ! 201caa8 <_TOD_Days_per_month> 20075cc: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20075d0: 80 a0 40 03 cmp %g1, %g3 20075d4: 10 bf ff f9 b 20075b8 <_TOD_Validate+0xc0> 20075d8: ba 60 3f ff subx %g0, -1, %i5 =============================================================================== 02008dec <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008dec: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2008df0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2008df4: 40 00 03 a2 call 2009c7c <_Thread_Set_transient> 2008df8: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008dfc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008e00: 80 a0 40 19 cmp %g1, %i1 2008e04: 02 80 00 05 be 2008e18 <_Thread_Change_priority+0x2c> 2008e08: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 2008e0c: 90 10 00 18 mov %i0, %o0 2008e10: 40 00 03 81 call 2009c14 <_Thread_Set_priority> 2008e14: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2008e18: 7f ff e4 f3 call 20021e4 2008e1c: 01 00 00 00 nop 2008e20: b2 10 00 08 mov %o0, %i1 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2008e24: f6 07 60 10 ld [ %i5 + 0x10 ], %i3 if ( state != STATES_TRANSIENT ) { 2008e28: 80 a6 e0 04 cmp %i3, 4 2008e2c: 02 80 00 18 be 2008e8c <_Thread_Change_priority+0xa0> 2008e30: 80 8f 20 04 btst 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2008e34: 02 80 00 0b be 2008e60 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 2008e38: 82 0e ff fb and %i3, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 2008e3c: 7f ff e4 ee call 20021f4 <== NOT EXECUTED 2008e40: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 2008e44: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 2008e48: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008e4c: 80 8e c0 01 btst %i3, %g1 <== NOT EXECUTED 2008e50: 32 80 00 0d bne,a 2008e84 <_Thread_Change_priority+0x98> <== NOT EXECUTED 2008e54: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED 2008e58: 81 c7 e0 08 ret 2008e5c: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008e60: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 2008e64: 7f ff e4 e4 call 20021f4 2008e68: 90 10 00 19 mov %i1, %o0 2008e6c: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008e70: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008e74: 80 8e c0 01 btst %i3, %g1 2008e78: 02 bf ff f8 be 2008e58 <_Thread_Change_priority+0x6c> 2008e7c: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008e80: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2008e84: 40 00 03 33 call 2009b50 <_Thread_queue_Requeue> 2008e88: 93 e8 00 1d restore %g0, %i5, %o1 2008e8c: 39 00 80 6d sethi %hi(0x201b400), %i4 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008e90: 12 80 00 08 bne 2008eb0 <_Thread_Change_priority+0xc4> <== NEVER TAKEN 2008e94: b8 17 23 64 or %i4, 0x364, %i4 ! 201b764 <_Scheduler> * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); if ( prepend_it ) 2008e98: 80 a6 a0 00 cmp %i2, 0 2008e9c: 02 80 00 1b be 2008f08 <_Thread_Change_priority+0x11c> 2008ea0: c0 27 60 10 clr [ %i5 + 0x10 ] */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2008ea4: c2 07 20 28 ld [ %i4 + 0x28 ], %g1 2008ea8: 9f c0 40 00 call %g1 2008eac: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008eb0: 7f ff e4 d1 call 20021f4 2008eb4: 90 10 00 19 mov %i1, %o0 2008eb8: 7f ff e4 cb call 20021e4 2008ebc: 01 00 00 00 nop 2008ec0: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008ec4: c2 07 20 08 ld [ %i4 + 8 ], %g1 2008ec8: 9f c0 40 00 call %g1 2008ecc: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008ed0: 03 00 80 71 sethi %hi(0x201c400), %g1 2008ed4: 82 10 61 9c or %g1, 0x19c, %g1 ! 201c59c <_Per_CPU_Information> 2008ed8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008edc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008ee0: 80 a0 80 03 cmp %g2, %g3 2008ee4: 02 80 00 07 be 2008f00 <_Thread_Change_priority+0x114> 2008ee8: 01 00 00 00 nop 2008eec: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2008ef0: 80 a0 a0 00 cmp %g2, 0 2008ef4: 02 80 00 03 be 2008f00 <_Thread_Change_priority+0x114> 2008ef8: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2008efc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2008f00: 7f ff e4 bd call 20021f4 2008f04: 81 e8 00 00 restore */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2008f08: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 2008f0c: 9f c0 40 00 call %g1 2008f10: 90 10 00 1d mov %i5, %o0 2008f14: 30 bf ff e7 b,a 2008eb0 <_Thread_Change_priority+0xc4> =============================================================================== 02009130 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009130: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009134: 90 10 00 18 mov %i0, %o0 2009138: 40 00 00 7a call 2009320 <_Thread_Get> 200913c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009140: c2 07 bf fc ld [ %fp + -4 ], %g1 2009144: 80 a0 60 00 cmp %g1, 0 2009148: 12 80 00 09 bne 200916c <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 200914c: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2009150: 7f ff ff 72 call 2008f18 <_Thread_Clear_state> 2009154: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009158: 03 00 80 70 sethi %hi(0x201c000), %g1 200915c: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201c370 <_Thread_Dispatch_disable_level> 2009160: 84 00 bf ff add %g2, -1, %g2 2009164: c4 20 63 70 st %g2, [ %g1 + 0x370 ] return _Thread_Dispatch_disable_level; 2009168: c2 00 63 70 ld [ %g1 + 0x370 ], %g1 200916c: 81 c7 e0 08 ret 2009170: 81 e8 00 00 restore =============================================================================== 02009174 <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2009174: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2009178: 21 00 80 70 sethi %hi(0x201c000), %l0 200917c: c2 04 23 70 ld [ %l0 + 0x370 ], %g1 ! 201c370 <_Thread_Dispatch_disable_level> 2009180: 82 00 60 01 inc %g1 2009184: c2 24 23 70 st %g1, [ %l0 + 0x370 ] return _Thread_Dispatch_disable_level; 2009188: c2 04 23 70 ld [ %l0 + 0x370 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 200918c: 39 00 80 71 sethi %hi(0x201c400), %i4 2009190: b8 17 21 9c or %i4, 0x19c, %i4 ! 201c59c <_Per_CPU_Information> _ISR_Disable( level ); 2009194: 7f ff e4 14 call 20021e4 2009198: fa 07 20 0c ld [ %i4 + 0xc ], %i5 while ( _Thread_Dispatch_necessary == true ) { 200919c: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1 20091a0: 80 a0 60 00 cmp %g1, 0 20091a4: 02 80 00 48 be 20092c4 <_Thread_Dispatch+0x150> 20091a8: 01 00 00 00 nop heir = _Thread_Heir; 20091ac: f6 07 20 10 ld [ %i4 + 0x10 ], %i3 _Thread_Dispatch_necessary = false; 20091b0: c0 2f 20 18 clrb [ %i4 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 20091b4: 80 a7 40 1b cmp %i5, %i3 20091b8: 02 80 00 43 be 20092c4 <_Thread_Dispatch+0x150> 20091bc: f6 27 20 0c st %i3, [ %i4 + 0xc ] 20091c0: 31 00 80 70 sethi %hi(0x201c000), %i0 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 20091c4: 23 00 80 70 sethi %hi(0x201c000), %l1 20091c8: b0 16 23 f8 or %i0, 0x3f8, %i0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 20091cc: b2 07 20 1c add %i4, 0x1c, %i1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 20091d0: 10 80 00 37 b 20092ac <_Thread_Dispatch+0x138> 20091d4: 35 00 80 70 sethi %hi(0x201c000), %i2 rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 20091d8: 7f ff e4 07 call 20021f4 20091dc: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 20091e0: 40 00 0e 11 call 200ca24 <_TOD_Get_uptime> 20091e4: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 20091e8: 90 10 00 19 mov %i1, %o0 20091ec: 92 07 bf f0 add %fp, -16, %o1 20091f0: 40 00 03 18 call 2009e50 <_Timespec_Subtract> 20091f4: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 20091f8: 90 07 60 84 add %i5, 0x84, %o0 20091fc: 40 00 02 fc call 2009dec <_Timespec_Add_to> 2009200: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 2009204: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2009208: c2 06 00 00 ld [ %i0 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 200920c: c4 27 20 1c st %g2, [ %i4 + 0x1c ] 2009210: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2009214: 80 a0 60 00 cmp %g1, 0 2009218: 02 80 00 06 be 2009230 <_Thread_Dispatch+0xbc> <== NEVER TAKEN 200921c: c4 27 20 20 st %g2, [ %i4 + 0x20 ] executing->libc_reent = *_Thread_libc_reent; 2009220: c4 00 40 00 ld [ %g1 ], %g2 2009224: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2009228: c4 06 e1 54 ld [ %i3 + 0x154 ], %g2 200922c: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2009230: 90 10 00 1d mov %i5, %o0 2009234: 40 00 03 cb call 200a160 <_User_extensions_Thread_switch> 2009238: 92 10 00 1b mov %i3, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 200923c: 90 07 60 c8 add %i5, 0xc8, %o0 2009240: 40 00 05 0f call 200a67c <_CPU_Context_switch> 2009244: 92 06 e0 c8 add %i3, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2009248: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 200924c: 80 a0 60 00 cmp %g1, 0 2009250: 02 80 00 0c be 2009280 <_Thread_Dispatch+0x10c> 2009254: d0 06 a3 f4 ld [ %i2 + 0x3f4 ], %o0 2009258: 80 a7 40 08 cmp %i5, %o0 200925c: 02 80 00 09 be 2009280 <_Thread_Dispatch+0x10c> 2009260: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2009264: 02 80 00 04 be 2009274 <_Thread_Dispatch+0x100> 2009268: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200926c: 40 00 04 ca call 200a594 <_CPU_Context_save_fp> 2009270: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2009274: 40 00 04 e5 call 200a608 <_CPU_Context_restore_fp> 2009278: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 200927c: fa 26 a3 f4 st %i5, [ %i2 + 0x3f4 ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 2009280: 7f ff e3 d9 call 20021e4 2009284: fa 07 20 0c ld [ %i4 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2009288: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1 200928c: 80 a0 60 00 cmp %g1, 0 2009290: 02 80 00 0d be 20092c4 <_Thread_Dispatch+0x150> 2009294: 01 00 00 00 nop heir = _Thread_Heir; 2009298: f6 07 20 10 ld [ %i4 + 0x10 ], %i3 _Thread_Dispatch_necessary = false; 200929c: c0 2f 20 18 clrb [ %i4 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 20092a0: 80 a6 c0 1d cmp %i3, %i5 20092a4: 02 80 00 08 be 20092c4 <_Thread_Dispatch+0x150> <== NEVER TAKEN 20092a8: f6 27 20 0c st %i3, [ %i4 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 20092ac: c2 06 e0 7c ld [ %i3 + 0x7c ], %g1 20092b0: 80 a0 60 01 cmp %g1, 1 20092b4: 12 bf ff c9 bne 20091d8 <_Thread_Dispatch+0x64> 20092b8: c2 04 62 d4 ld [ %l1 + 0x2d4 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 20092bc: 10 bf ff c7 b 20091d8 <_Thread_Dispatch+0x64> 20092c0: c2 26 e0 78 st %g1, [ %i3 + 0x78 ] _ISR_Disable( level ); } post_switch: _ISR_Enable( level ); 20092c4: 7f ff e3 cc call 20021f4 20092c8: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 20092cc: c2 04 23 70 ld [ %l0 + 0x370 ], %g1 20092d0: 82 00 7f ff add %g1, -1, %g1 20092d4: c2 24 23 70 st %g1, [ %l0 + 0x370 ] return _Thread_Dispatch_disable_level; 20092d8: c2 04 23 70 ld [ %l0 + 0x370 ], %g1 _Thread_Unnest_dispatch(); _API_extensions_Run_postswitch(); 20092dc: 7f ff f7 e5 call 2007270 <_API_extensions_Run_postswitch> 20092e0: 01 00 00 00 nop } 20092e4: 81 c7 e0 08 ret 20092e8: 81 e8 00 00 restore =============================================================================== 0200e940 <_Thread_Handler>: * Input parameters: NONE * * Output parameters: NONE */ void _Thread_Handler( void ) { 200e940: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static bool doneConstructors; bool doCons; #endif executing = _Thread_Executing; 200e944: 03 00 80 71 sethi %hi(0x201c400), %g1 200e948: fa 00 61 a8 ld [ %g1 + 0x1a8 ], %i5 ! 201c5a8 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e94c: 3f 00 80 3a sethi %hi(0x200e800), %i7 200e950: be 17 e1 40 or %i7, 0x140, %i7 ! 200e940 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e954: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200e958: 7f ff ce 27 call 20021f4 200e95c: 91 2a 20 08 sll %o0, 8, %o0 #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e960: c4 07 61 50 ld [ %i5 + 0x150 ], %g2 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200e964: 03 00 80 70 sethi %hi(0x201c000), %g1 doneConstructors = true; 200e968: 86 10 20 01 mov 1, %g3 doCons = !doneConstructors && _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API; if (doCons) doneConstructors = true; #else doCons = !doneConstructors; 200e96c: f6 08 60 30 ldub [ %g1 + 0x30 ], %i3 #endif #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e970: 80 a0 a0 00 cmp %g2, 0 200e974: 02 80 00 0c be 200e9a4 <_Thread_Handler+0x64> 200e978: c6 28 60 30 stb %g3, [ %g1 + 0x30 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e97c: 39 00 80 70 sethi %hi(0x201c000), %i4 200e980: d0 07 23 f4 ld [ %i4 + 0x3f4 ], %o0 ! 201c3f4 <_Thread_Allocated_fp> 200e984: 80 a7 40 08 cmp %i5, %o0 200e988: 02 80 00 07 be 200e9a4 <_Thread_Handler+0x64> 200e98c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e990: 22 80 00 05 be,a 200e9a4 <_Thread_Handler+0x64> 200e994: fa 27 23 f4 st %i5, [ %i4 + 0x3f4 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e998: 7f ff ee ff call 200a594 <_CPU_Context_save_fp> 200e99c: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200e9a0: fa 27 23 f4 st %i5, [ %i4 + 0x3f4 ] /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200e9a4: 7f ff ed 6d call 2009f58 <_User_extensions_Thread_begin> 200e9a8: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e9ac: 7f ff ea 50 call 20092ec <_Thread_Enable_dispatch> 200e9b0: 01 00 00 00 nop /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { 200e9b4: 80 8e e0 ff btst 0xff, %i3 200e9b8: 02 80 00 0c be 200e9e8 <_Thread_Handler+0xa8> 200e9bc: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e9c0: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200e9c4: 80 a0 60 00 cmp %g1, 0 200e9c8: 22 80 00 0c be,a 200e9f8 <_Thread_Handler+0xb8> <== ALWAYS TAKEN 200e9cc: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200e9d0: 7f ff ed 76 call 2009fa8 <_User_extensions_Thread_exitted> 200e9d4: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200e9d8: 90 10 20 00 clr %o0 200e9dc: 92 10 20 01 mov 1, %o1 200e9e0: 7f ff e4 f1 call 2007da4 <_Internal_error_Occurred> 200e9e4: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (doCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200e9e8: 40 00 33 14 call 201b638 <_init> 200e9ec: 01 00 00 00 nop _Thread_Enable_dispatch(); #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e9f0: 10 bf ff f5 b 200e9c4 <_Thread_Handler+0x84> 200e9f4: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e9f8: 9f c0 40 00 call %g1 200e9fc: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200ea00: 10 bf ff f4 b 200e9d0 <_Thread_Handler+0x90> 200ea04: d0 27 60 28 st %o0, [ %i5 + 0x28 ] =============================================================================== 020093d0 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 20093d0: 9d e3 bf a0 save %sp, -96, %sp 20093d4: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 20093d8: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 20093dc: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 20093e0: c0 26 61 58 clr [ %i1 + 0x158 ] 20093e4: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 20093e8: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 20093ec: 90 10 00 19 mov %i1, %o0 20093f0: 40 00 02 32 call 2009cb8 <_Thread_Stack_Allocate> 20093f4: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 20093f8: 80 a2 00 1b cmp %o0, %i3 20093fc: 0a 80 00 4b bcs 2009528 <_Thread_Initialize+0x158> 2009400: 80 a2 20 00 cmp %o0, 0 2009404: 02 80 00 49 be 2009528 <_Thread_Initialize+0x158> <== NEVER TAKEN 2009408: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 200940c: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2009410: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2009414: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2009418: 12 80 00 48 bne 2009538 <_Thread_Initialize+0x168> 200941c: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2009420: 23 00 80 71 sethi %hi(0x201c400), %l1 2009424: c2 04 60 04 ld [ %l1 + 4 ], %g1 ! 201c404 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2009428: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 200942c: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2009430: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2009434: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2009438: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200943c: 80 a0 60 00 cmp %g1, 0 2009440: 12 80 00 46 bne 2009558 <_Thread_Initialize+0x188> 2009444: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2009448: c0 26 61 60 clr [ %i1 + 0x160 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 200944c: b8 10 20 00 clr %i4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2009450: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2009454: 03 00 80 6d sethi %hi(0x201b400), %g1 2009458: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 200945c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2 2009460: c2 00 63 7c ld [ %g1 + 0x37c ], %g1 2009464: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2009468: c4 07 a0 68 ld [ %fp + 0x68 ], %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 200946c: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2009470: c4 26 60 ac st %g2, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2009474: 84 10 20 01 mov 1, %g2 the_thread->Wait.queue = NULL; 2009478: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 200947c: c4 26 60 10 st %g2, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2009480: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2009484: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2009488: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 200948c: 9f c0 40 00 call %g1 2009490: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2009494: b4 92 20 00 orcc %o0, 0, %i2 2009498: 22 80 00 13 be,a 20094e4 <_Thread_Initialize+0x114> 200949c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 20094a0: 90 10 00 19 mov %i1, %o0 20094a4: 40 00 01 dc call 2009c14 <_Thread_Set_priority> 20094a8: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20094ac: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 20094b0: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 20094b4: c0 26 60 84 clr [ %i1 + 0x84 ] 20094b8: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 20094bc: 83 28 60 02 sll %g1, 2, %g1 20094c0: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 20094c4: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 20094c8: 90 10 00 19 mov %i1, %o0 20094cc: 40 00 02 de call 200a044 <_User_extensions_Thread_create> 20094d0: b0 10 20 01 mov 1, %i0 if ( extension_status ) 20094d4: 80 8a 20 ff btst 0xff, %o0 20094d8: 32 80 00 12 bne,a 2009520 <_Thread_Initialize+0x150> 20094dc: b0 0e 20 01 and %i0, 1, %i0 return true; failed: _Workspace_Free( the_thread->libc_reent ); 20094e0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20094e4: 40 00 04 17 call 200a540 <_Workspace_Free> 20094e8: b0 10 20 00 clr %i0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 20094ec: 40 00 04 15 call 200a540 <_Workspace_Free> 20094f0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 20094f4: 40 00 04 13 call 200a540 <_Workspace_Free> 20094f8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 20094fc: 40 00 04 11 call 200a540 <_Workspace_Free> 2009500: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 2009504: 40 00 04 0f call 200a540 <_Workspace_Free> 2009508: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 200950c: 40 00 04 0d call 200a540 <_Workspace_Free> 2009510: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 2009514: 40 00 02 04 call 2009d24 <_Thread_Stack_Free> 2009518: 90 10 00 19 mov %i1, %o0 return false; } 200951c: b0 0e 20 01 and %i0, 1, %i0 2009520: 81 c7 e0 08 ret 2009524: 81 e8 00 00 restore * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 2009528: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 200952c: b0 0e 20 01 and %i0, 1, %i0 2009530: 81 c7 e0 08 ret 2009534: 81 e8 00 00 restore /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2009538: 40 00 03 fa call 200a520 <_Workspace_Allocate> 200953c: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2009540: b6 92 20 00 orcc %o0, 0, %i3 2009544: 32 bf ff b8 bne,a 2009424 <_Thread_Initialize+0x54> 2009548: 23 00 80 71 sethi %hi(0x201c400), %l1 * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 200954c: b8 10 20 00 clr %i4 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2009550: 10 bf ff e4 b 20094e0 <_Thread_Initialize+0x110> 2009554: b4 10 20 00 clr %i2 /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { extensions_area = _Workspace_Allocate( 2009558: 82 00 60 01 inc %g1 200955c: 40 00 03 f1 call 200a520 <_Workspace_Allocate> 2009560: 91 28 60 02 sll %g1, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2009564: b8 92 20 00 orcc %o0, 0, %i4 2009568: 02 80 00 10 be 20095a8 <_Thread_Initialize+0x1d8> 200956c: 86 10 00 1c mov %i4, %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 2009570: f8 26 61 60 st %i4, [ %i1 + 0x160 ] 2009574: c8 04 60 04 ld [ %l1 + 4 ], %g4 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009578: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 200957c: 10 80 00 03 b 2009588 <_Thread_Initialize+0x1b8> 2009580: 82 10 20 00 clr %g1 2009584: c6 06 61 60 ld [ %i1 + 0x160 ], %g3 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 2009588: 85 28 a0 02 sll %g2, 2, %g2 200958c: c0 20 c0 02 clr [ %g3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009590: 82 00 60 01 inc %g1 2009594: 80 a0 40 04 cmp %g1, %g4 2009598: 08 bf ff fb bleu 2009584 <_Thread_Initialize+0x1b4> 200959c: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 20095a0: 10 bf ff ad b 2009454 <_Thread_Initialize+0x84> 20095a4: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 20095a8: 10 bf ff ce b 20094e0 <_Thread_Initialize+0x110> 20095ac: b4 10 20 00 clr %i2 =============================================================================== 02009b50 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009b50: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2009b54: 80 a6 20 00 cmp %i0, 0 2009b58: 02 80 00 13 be 2009ba4 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 2009b5c: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009b60: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 2009b64: 80 a7 20 01 cmp %i4, 1 2009b68: 02 80 00 04 be 2009b78 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 2009b6c: 01 00 00 00 nop 2009b70: 81 c7 e0 08 ret <== NOT EXECUTED 2009b74: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2009b78: 7f ff e1 9b call 20021e4 2009b7c: 01 00 00 00 nop 2009b80: ba 10 00 08 mov %o0, %i5 2009b84: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 2009b88: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009b8c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009b90: 80 88 80 01 btst %g2, %g1 2009b94: 12 80 00 06 bne 2009bac <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 2009b98: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 2009b9c: 7f ff e1 96 call 20021f4 2009ba0: 90 10 00 1d mov %i5, %o0 2009ba4: 81 c7 e0 08 ret 2009ba8: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2009bac: 92 10 00 19 mov %i1, %o1 2009bb0: 94 10 20 01 mov 1, %o2 2009bb4: 40 00 0d 1f call 200d030 <_Thread_queue_Extract_priority_helper> 2009bb8: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2009bbc: 90 10 00 18 mov %i0, %o0 2009bc0: 92 10 00 19 mov %i1, %o1 2009bc4: 7f ff ff 35 call 2009898 <_Thread_queue_Enqueue_priority> 2009bc8: 94 07 bf fc add %fp, -4, %o2 2009bcc: 30 bf ff f4 b,a 2009b9c <_Thread_queue_Requeue+0x4c> =============================================================================== 02009bd0 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009bd0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009bd4: 90 10 00 18 mov %i0, %o0 2009bd8: 7f ff fd d2 call 2009320 <_Thread_Get> 2009bdc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009be0: c2 07 bf fc ld [ %fp + -4 ], %g1 2009be4: 80 a0 60 00 cmp %g1, 0 2009be8: 12 80 00 09 bne 2009c0c <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009bec: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2009bf0: 40 00 0d 49 call 200d114 <_Thread_queue_Process_timeout> 2009bf4: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009bf8: 03 00 80 70 sethi %hi(0x201c000), %g1 2009bfc: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201c370 <_Thread_Dispatch_disable_level> 2009c00: 84 00 bf ff add %g2, -1, %g2 2009c04: c4 20 63 70 st %g2, [ %g1 + 0x370 ] return _Thread_Dispatch_disable_level; 2009c08: c2 00 63 70 ld [ %g1 + 0x370 ], %g1 2009c0c: 81 c7 e0 08 ret 2009c10: 81 e8 00 00 restore =============================================================================== 0201650c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 201650c: 9d e3 bf 88 save %sp, -120, %sp 2016510: 23 00 80 e7 sethi %hi(0x2039c00), %l1 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2016514: a6 07 bf e8 add %fp, -24, %l3 2016518: b2 07 bf ec add %fp, -20, %i1 201651c: b6 07 bf f4 add %fp, -12, %i3 2016520: a4 07 bf f8 add %fp, -8, %l2 2016524: 21 00 80 e7 sethi %hi(0x2039c00), %l0 2016528: 29 00 80 e7 sethi %hi(0x2039c00), %l4 201652c: f2 27 bf e8 st %i1, [ %fp + -24 ] head->previous = NULL; 2016530: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 2016534: e6 27 bf f0 st %l3, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2016538: e4 27 bf f4 st %l2, [ %fp + -12 ] head->previous = NULL; 201653c: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 2016540: f6 27 bf fc st %i3, [ %fp + -4 ] 2016544: a2 14 63 cc or %l1, 0x3cc, %l1 2016548: b8 06 20 30 add %i0, 0x30, %i4 201654c: a0 14 23 4c or %l0, 0x34c, %l0 2016550: b4 06 20 68 add %i0, 0x68, %i2 2016554: a8 15 22 c0 or %l4, 0x2c0, %l4 2016558: ae 06 20 08 add %i0, 8, %l7 201655c: ac 06 20 40 add %i0, 0x40, %l6 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016560: aa 10 20 01 mov 1, %l5 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2016564: e6 26 20 78 st %l3, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016568: c2 04 40 00 ld [ %l1 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 201656c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016570: 94 10 00 1b mov %i3, %o2 2016574: 90 10 00 1c mov %i4, %o0 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016578: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201657c: 40 00 12 cf call 201b0b8 <_Watchdog_Adjust_to_chain> 2016580: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016584: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016588: fa 04 00 00 ld [ %l0 ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 201658c: 80 a7 40 0a cmp %i5, %o2 2016590: 18 80 00 2e bgu 2016648 <_Timer_server_Body+0x13c> 2016594: 92 27 40 0a sub %i5, %o2, %o1 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 2016598: 80 a7 40 0a cmp %i5, %o2 201659c: 0a 80 00 2f bcs 2016658 <_Timer_server_Body+0x14c> 20165a0: 90 10 00 1a mov %i2, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 20165a4: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 20165a8: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20165ac: 40 00 03 06 call 20171c4 <_Chain_Get> 20165b0: 01 00 00 00 nop if ( timer == NULL ) { 20165b4: 92 92 20 00 orcc %o0, 0, %o1 20165b8: 02 80 00 10 be 20165f8 <_Timer_server_Body+0xec> 20165bc: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 20165c0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 20165c4: 80 a0 60 01 cmp %g1, 1 20165c8: 02 80 00 28 be 2016668 <_Timer_server_Body+0x15c> 20165cc: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20165d0: 12 bf ff f6 bne 20165a8 <_Timer_server_Body+0x9c> <== NEVER TAKEN 20165d4: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20165d8: 40 00 12 e9 call 201b17c <_Watchdog_Insert> 20165dc: 90 10 00 1a mov %i2, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 20165e0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20165e4: 40 00 02 f8 call 20171c4 <_Chain_Get> 20165e8: 01 00 00 00 nop if ( timer == NULL ) { 20165ec: 92 92 20 00 orcc %o0, 0, %o1 20165f0: 32 bf ff f5 bne,a 20165c4 <_Timer_server_Body+0xb8> <== NEVER TAKEN 20165f4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 20165f8: 7f ff e2 35 call 200eecc 20165fc: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2016600: c2 07 bf e8 ld [ %fp + -24 ], %g1 2016604: 80 a0 40 19 cmp %g1, %i1 2016608: 02 80 00 1c be 2016678 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN 201660c: 01 00 00 00 nop ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 2016610: 7f ff e2 33 call 200eedc <== NOT EXECUTED 2016614: 01 00 00 00 nop <== NOT EXECUTED static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016618: c2 04 40 00 ld [ %l1 ], %g1 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 201661c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016620: 94 10 00 1b mov %i3, %o2 <== NOT EXECUTED 2016624: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016628: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201662c: 40 00 12 a3 call 201b0b8 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED 2016630: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016634: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016638: fa 04 00 00 ld [ %l0 ], %i5 <== NOT EXECUTED /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 201663c: 80 a7 40 0a cmp %i5, %o2 <== NOT EXECUTED 2016640: 08 bf ff d7 bleu 201659c <_Timer_server_Body+0x90> <== NOT EXECUTED 2016644: 92 27 40 0a sub %i5, %o2, %o1 <== NOT EXECUTED /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016648: 90 10 00 1a mov %i2, %o0 201664c: 40 00 12 9b call 201b0b8 <_Watchdog_Adjust_to_chain> 2016650: 94 10 00 1b mov %i3, %o2 2016654: 30 bf ff d4 b,a 20165a4 <_Timer_server_Body+0x98> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016658: 92 10 20 01 mov 1, %o1 201665c: 40 00 12 68 call 201affc <_Watchdog_Adjust> 2016660: 94 22 80 1d sub %o2, %i5, %o2 2016664: 30 bf ff d0 b,a 20165a4 <_Timer_server_Body+0x98> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016668: 90 10 00 1c mov %i4, %o0 201666c: 40 00 12 c4 call 201b17c <_Watchdog_Insert> 2016670: 92 02 60 10 add %o1, 0x10, %o1 2016674: 30 bf ff cd b,a 20165a8 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 2016678: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 201667c: 7f ff e2 18 call 200eedc 2016680: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016684: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016688: 80 a0 40 12 cmp %g1, %l2 201668c: 12 80 00 0c bne 20166bc <_Timer_server_Body+0x1b0> 2016690: 01 00 00 00 nop 2016694: 30 80 00 13 b,a 20166e0 <_Timer_server_Body+0x1d4> Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; new_first->previous = head; 2016698: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 201669c: c2 27 bf f4 st %g1, [ %fp + -12 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 20166a0: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 20166a4: 7f ff e2 0e call 200eedc 20166a8: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20166ac: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 20166b0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 20166b4: 9f c0 40 00 call %g1 20166b8: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 20166bc: 7f ff e2 04 call 200eecc 20166c0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20166c4: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 20166c8: 80 a7 40 12 cmp %i5, %l2 20166cc: 32 bf ff f3 bne,a 2016698 <_Timer_server_Body+0x18c> 20166d0: c2 07 40 00 ld [ %i5 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 20166d4: 7f ff e2 02 call 200eedc 20166d8: 01 00 00 00 nop 20166dc: 30 bf ff a2 b,a 2016564 <_Timer_server_Body+0x58> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 20166e0: c0 2e 20 7c clrb [ %i0 + 0x7c ] * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 20166e4: c2 05 00 00 ld [ %l4 ], %g1 20166e8: 82 00 60 01 inc %g1 20166ec: c2 25 00 00 st %g1, [ %l4 ] return _Thread_Dispatch_disable_level; 20166f0: c2 05 00 00 ld [ %l4 ], %g1 /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 20166f4: d0 06 00 00 ld [ %i0 ], %o0 20166f8: 40 00 10 ab call 201a9a4 <_Thread_Set_state> 20166fc: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016700: 7f ff ff 5b call 201646c <_Timer_server_Reset_interval_system_watchdog> 2016704: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016708: 7f ff ff 6d call 20164bc <_Timer_server_Reset_tod_system_watchdog> 201670c: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016710: 40 00 0e 2f call 2019fcc <_Thread_Enable_dispatch> 2016714: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016718: 90 10 00 17 mov %l7, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 201671c: ea 2e 20 7c stb %l5, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016720: 40 00 12 f9 call 201b304 <_Watchdog_Remove> 2016724: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016728: 40 00 12 f7 call 201b304 <_Watchdog_Remove> 201672c: 90 10 00 16 mov %l6, %o0 2016730: 30 bf ff 8d b,a 2016564 <_Timer_server_Body+0x58> =============================================================================== 02016734 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2016734: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016738: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 201673c: 80 a0 60 00 cmp %g1, 0 2016740: 02 80 00 05 be 2016754 <_Timer_server_Schedule_operation_method+0x20> 2016744: ba 10 00 19 mov %i1, %i5 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016748: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 201674c: 40 00 02 8a call 2017174 <_Chain_Append> 2016750: 81 e8 00 00 restore * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2016754: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2016758: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 2039ec0 <_Thread_Dispatch_disable_level> 201675c: 84 00 a0 01 inc %g2 2016760: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ] return _Thread_Dispatch_disable_level; 2016764: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1 * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016768: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 201676c: 80 a0 60 01 cmp %g1, 1 2016770: 02 80 00 28 be 2016810 <_Timer_server_Schedule_operation_method+0xdc> 2016774: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016778: 02 80 00 04 be 2016788 <_Timer_server_Schedule_operation_method+0x54> 201677c: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016780: 40 00 0e 13 call 2019fcc <_Thread_Enable_dispatch> 2016784: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016788: 7f ff e1 d1 call 200eecc 201678c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2016790: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016794: c6 06 20 74 ld [ %i0 + 0x74 ], %g3 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016798: 88 06 20 6c add %i0, 0x6c, %g4 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 201679c: 03 00 80 e7 sethi %hi(0x2039c00), %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 20167a0: 80 a0 80 04 cmp %g2, %g4 20167a4: 02 80 00 0d be 20167d8 <_Timer_server_Schedule_operation_method+0xa4> 20167a8: c2 00 63 4c ld [ %g1 + 0x34c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 20167ac: de 00 a0 10 ld [ %g2 + 0x10 ], %o7 if ( snapshot > last_snapshot ) { 20167b0: 80 a0 40 03 cmp %g1, %g3 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 20167b4: 88 03 c0 03 add %o7, %g3, %g4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 20167b8: 08 80 00 07 bleu 20167d4 <_Timer_server_Schedule_operation_method+0xa0> 20167bc: 88 21 00 01 sub %g4, %g1, %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 20167c0: 86 20 40 03 sub %g1, %g3, %g3 if (delta_interval > delta) { 20167c4: 80 a3 c0 03 cmp %o7, %g3 20167c8: 08 80 00 03 bleu 20167d4 <_Timer_server_Schedule_operation_method+0xa0><== NEVER TAKEN 20167cc: 88 10 20 00 clr %g4 delta_interval -= delta; 20167d0: 88 23 c0 03 sub %o7, %g3, %g4 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 20167d4: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 20167d8: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 20167dc: 7f ff e1 c0 call 200eedc 20167e0: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20167e4: 90 06 20 68 add %i0, 0x68, %o0 20167e8: 40 00 12 65 call 201b17c <_Watchdog_Insert> 20167ec: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20167f0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20167f4: 80 a0 60 00 cmp %g1, 0 20167f8: 12 bf ff e2 bne 2016780 <_Timer_server_Schedule_operation_method+0x4c> 20167fc: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016800: 7f ff ff 2f call 20164bc <_Timer_server_Reset_tod_system_watchdog> 2016804: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016808: 40 00 0d f1 call 2019fcc <_Thread_Enable_dispatch> 201680c: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016810: 7f ff e1 af call 200eecc 2016814: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016818: 05 00 80 e7 sethi %hi(0x2039c00), %g2 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201681c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 2016820: c4 00 a3 cc ld [ %g2 + 0x3cc ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016824: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016828: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 201682c: 80 a0 40 03 cmp %g1, %g3 2016830: 02 80 00 08 be 2016850 <_Timer_server_Schedule_operation_method+0x11c> 2016834: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016838: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 201683c: 80 a1 00 0f cmp %g4, %o7 2016840: 1a 80 00 03 bcc 201684c <_Timer_server_Schedule_operation_method+0x118> 2016844: 86 10 20 00 clr %g3 delta_interval -= delta; 2016848: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 201684c: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016850: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016854: 7f ff e1 a2 call 200eedc 2016858: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 201685c: 90 06 20 30 add %i0, 0x30, %o0 2016860: 40 00 12 47 call 201b17c <_Watchdog_Insert> 2016864: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2016868: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 201686c: 80 a0 60 00 cmp %g1, 0 2016870: 12 bf ff c4 bne 2016780 <_Timer_server_Schedule_operation_method+0x4c> 2016874: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016878: 7f ff fe fd call 201646c <_Timer_server_Reset_interval_system_watchdog> 201687c: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016880: 40 00 0d d3 call 2019fcc <_Thread_Enable_dispatch> 2016884: 81 e8 00 00 restore =============================================================================== 02009dec <_Timespec_Add_to>: uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { 2009dec: 9d e3 bf a0 save %sp, -96, %sp 2009df0: 82 10 00 18 mov %i0, %g1 uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009df4: c6 06 00 00 ld [ %i0 ], %g3 time->tv_nsec += add->tv_nsec; 2009df8: c8 00 60 04 ld [ %g1 + 4 ], %g4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 2009dfc: f0 06 40 00 ld [ %i1 ], %i0 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 2009e00: c4 06 60 04 ld [ %i1 + 4 ], %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009e04: 86 00 c0 18 add %g3, %i0, %g3 time->tv_nsec += add->tv_nsec; 2009e08: 84 01 00 02 add %g4, %g2, %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009e0c: c6 20 40 00 st %g3, [ %g1 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009e10: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 2009e14: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 2009e18: 80 a0 80 04 cmp %g2, %g4 2009e1c: 08 80 00 0b bleu 2009e48 <_Timespec_Add_to+0x5c> 2009e20: c4 20 60 04 st %g2, [ %g1 + 4 ] time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 2009e24: 1f 31 19 4d sethi %hi(0xc4653400), %o7 2009e28: 9e 13 e2 00 or %o7, 0x200, %o7 ! c4653600 2009e2c: 84 00 80 0f add %g2, %o7, %g2 time->tv_sec++; 2009e30: 86 00 e0 01 inc %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009e34: 80 a0 80 04 cmp %g2, %g4 2009e38: 18 bf ff fd bgu 2009e2c <_Timespec_Add_to+0x40> <== NEVER TAKEN 2009e3c: b0 06 20 01 inc %i0 2009e40: c4 20 60 04 st %g2, [ %g1 + 4 ] 2009e44: c6 20 40 00 st %g3, [ %g1 ] time->tv_sec++; seconds++; } return seconds; } 2009e48: 81 c7 e0 08 ret 2009e4c: 81 e8 00 00 restore =============================================================================== 02009ff4 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009ff4: 9d e3 bf a0 save %sp, -96, %sp 2009ff8: 39 00 80 71 sethi %hi(0x201c400), %i4 2009ffc: b8 17 21 58 or %i4, 0x158, %i4 ! 201c558 <_User_extensions_List> 200a000: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a004: 80 a7 40 1c cmp %i5, %i4 200a008: 02 80 00 0d be 200a03c <_User_extensions_Fatal+0x48> <== NEVER TAKEN 200a00c: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 200a010: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 200a014: 80 a0 60 00 cmp %g1, 0 200a018: 02 80 00 05 be 200a02c <_User_extensions_Fatal+0x38> 200a01c: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 200a020: 92 10 00 19 mov %i1, %o1 200a024: 9f c0 40 00 call %g1 200a028: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 200a02c: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a030: 80 a7 40 1c cmp %i5, %i4 200a034: 32 bf ff f8 bne,a 200a014 <_User_extensions_Fatal+0x20> 200a038: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 200a03c: 81 c7 e0 08 ret 200a040: 81 e8 00 00 restore =============================================================================== 02009ea0 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009ea0: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009ea4: 07 00 80 6d sethi %hi(0x201b400), %g3 2009ea8: 86 10 e2 7c or %g3, 0x27c, %g3 ! 201b67c initial_extensions = Configuration.User_extension_table; 2009eac: f6 00 e0 3c ld [ %g3 + 0x3c ], %i3 2009eb0: 3b 00 80 71 sethi %hi(0x201c400), %i5 2009eb4: 09 00 80 70 sethi %hi(0x201c000), %g4 2009eb8: 84 17 61 58 or %i5, 0x158, %g2 2009ebc: 82 11 23 74 or %g4, 0x374, %g1 2009ec0: b4 00 a0 04 add %g2, 4, %i2 2009ec4: b8 00 60 04 add %g1, 4, %i4 2009ec8: f4 27 61 58 st %i2, [ %i5 + 0x158 ] head->previous = NULL; 2009ecc: c0 20 a0 04 clr [ %g2 + 4 ] tail->previous = head; 2009ed0: c4 20 a0 08 st %g2, [ %g2 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009ed4: f8 21 23 74 st %i4, [ %g4 + 0x374 ] head->previous = NULL; 2009ed8: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009edc: c2 20 60 08 st %g1, [ %g1 + 8 ] _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009ee0: 80 a6 e0 00 cmp %i3, 0 2009ee4: 02 80 00 1b be 2009f50 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009ee8: f4 00 e0 38 ld [ %g3 + 0x38 ], %i2 extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009eec: 83 2e a0 02 sll %i2, 2, %g1 2009ef0: b9 2e a0 04 sll %i2, 4, %i4 2009ef4: b8 27 00 01 sub %i4, %g1, %i4 2009ef8: b8 07 00 1a add %i4, %i2, %i4 2009efc: b9 2f 20 02 sll %i4, 2, %i4 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009f00: 40 00 01 96 call 200a558 <_Workspace_Allocate_or_fatal_error> 2009f04: 90 10 00 1c mov %i4, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009f08: 92 10 20 00 clr %o1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009f0c: ba 10 00 08 mov %o0, %i5 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009f10: 40 00 15 99 call 200f574 2009f14: 94 10 00 1c mov %i4, %o2 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009f18: 80 a6 a0 00 cmp %i2, 0 2009f1c: 02 80 00 0d be 2009f50 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009f20: b8 10 20 00 clr %i4 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009f24: 92 10 00 1b mov %i3, %o1 2009f28: 94 10 20 20 mov 0x20, %o2 2009f2c: 40 00 15 56 call 200f484 2009f30: 90 07 60 14 add %i5, 0x14, %o0 _User_extensions_Add_set( extension ); 2009f34: 40 00 0c 9b call 200d1a0 <_User_extensions_Add_set> 2009f38: 90 10 00 1d mov %i5, %o0 2009f3c: b8 07 20 01 inc %i4 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009f40: ba 07 60 34 add %i5, 0x34, %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009f44: 80 a7 00 1a cmp %i4, %i2 2009f48: 12 bf ff f7 bne 2009f24 <_User_extensions_Handler_initialization+0x84> 2009f4c: b6 06 e0 20 add %i3, 0x20, %i3 2009f50: 81 c7 e0 08 ret 2009f54: 81 e8 00 00 restore =============================================================================== 02009f58 <_User_extensions_Thread_begin>: #include void _User_extensions_Thread_begin ( Thread_Control *executing ) { 2009f58: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2009f5c: 39 00 80 71 sethi %hi(0x201c400), %i4 2009f60: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 ! 201c558 <_User_extensions_List> 2009f64: b8 17 21 58 or %i4, 0x158, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009f68: b8 07 20 04 add %i4, 4, %i4 2009f6c: 80 a7 40 1c cmp %i5, %i4 2009f70: 02 80 00 0c be 2009fa0 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN 2009f74: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_begin != NULL ) 2009f78: c2 07 60 28 ld [ %i5 + 0x28 ], %g1 2009f7c: 80 a0 60 00 cmp %g1, 0 2009f80: 02 80 00 04 be 2009f90 <_User_extensions_Thread_begin+0x38> 2009f84: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_begin)( executing ); 2009f88: 9f c0 40 00 call %g1 2009f8c: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009f90: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009f94: 80 a7 40 1c cmp %i5, %i4 2009f98: 32 bf ff f9 bne,a 2009f7c <_User_extensions_Thread_begin+0x24> 2009f9c: c2 07 60 28 ld [ %i5 + 0x28 ], %g1 2009fa0: 81 c7 e0 08 ret 2009fa4: 81 e8 00 00 restore =============================================================================== 0200a044 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 200a044: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a048: 39 00 80 71 sethi %hi(0x201c400), %i4 200a04c: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 ! 201c558 <_User_extensions_List> 200a050: b8 17 21 58 or %i4, 0x158, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 200a054: b8 07 20 04 add %i4, 4, %i4 200a058: 80 a7 40 1c cmp %i5, %i4 200a05c: 02 80 00 12 be 200a0a4 <_User_extensions_Thread_create+0x60><== NEVER TAKEN 200a060: 82 10 20 01 mov 1, %g1 the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 200a064: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 200a068: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 200a06c: 80 a0 60 00 cmp %g1, 0 200a070: 02 80 00 08 be 200a090 <_User_extensions_Thread_create+0x4c> 200a074: 84 16 e1 9c or %i3, 0x19c, %g2 status = (*the_extension->Callouts.thread_create)( 200a078: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a07c: 9f c0 40 00 call %g1 200a080: 92 10 00 18 mov %i0, %o1 _Thread_Executing, the_thread ); if ( !status ) 200a084: 80 8a 20 ff btst 0xff, %o0 200a088: 02 80 00 0a be 200a0b0 <_User_extensions_Thread_create+0x6c> 200a08c: 82 10 20 00 clr %g1 User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a090: fa 07 40 00 ld [ %i5 ], %i5 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 200a094: 80 a7 40 1c cmp %i5, %i4 200a098: 32 bf ff f5 bne,a 200a06c <_User_extensions_Thread_create+0x28> 200a09c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 if ( !status ) return false; } } return true; 200a0a0: 82 10 20 01 mov 1, %g1 } 200a0a4: b0 08 60 01 and %g1, 1, %i0 200a0a8: 81 c7 e0 08 ret 200a0ac: 81 e8 00 00 restore 200a0b0: b0 08 60 01 and %g1, 1, %i0 200a0b4: 81 c7 e0 08 ret 200a0b8: 81 e8 00 00 restore =============================================================================== 0200a0bc <_User_extensions_Thread_delete>: #include void _User_extensions_Thread_delete ( Thread_Control *the_thread ) { 200a0bc: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last( Chain_Control *the_chain ) { return _Chain_Tail( the_chain )->previous; 200a0c0: 39 00 80 71 sethi %hi(0x201c400), %i4 200a0c4: b8 17 21 58 or %i4, 0x158, %i4 ! 201c558 <_User_extensions_List> 200a0c8: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a0cc: 80 a7 40 1c cmp %i5, %i4 200a0d0: 02 80 00 0d be 200a104 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN 200a0d4: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_delete != NULL ) 200a0d8: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 200a0dc: 80 a0 60 00 cmp %g1, 0 200a0e0: 02 80 00 05 be 200a0f4 <_User_extensions_Thread_delete+0x38> 200a0e4: 84 16 e1 9c or %i3, 0x19c, %g2 (*the_extension->Callouts.thread_delete)( 200a0e8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a0ec: 9f c0 40 00 call %g1 200a0f0: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 200a0f4: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a0f8: 80 a7 40 1c cmp %i5, %i4 200a0fc: 32 bf ff f8 bne,a 200a0dc <_User_extensions_Thread_delete+0x20> 200a100: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 200a104: 81 c7 e0 08 ret 200a108: 81 e8 00 00 restore =============================================================================== 02009fa8 <_User_extensions_Thread_exitted>: } void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009fa8: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last( Chain_Control *the_chain ) { return _Chain_Tail( the_chain )->previous; 2009fac: 39 00 80 71 sethi %hi(0x201c400), %i4 2009fb0: b8 17 21 58 or %i4, 0x158, %i4 ! 201c558 <_User_extensions_List> 2009fb4: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009fb8: 80 a7 40 1c cmp %i5, %i4 2009fbc: 02 80 00 0c be 2009fec <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN 2009fc0: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009fc4: c2 07 60 2c ld [ %i5 + 0x2c ], %g1 2009fc8: 80 a0 60 00 cmp %g1, 0 2009fcc: 02 80 00 04 be 2009fdc <_User_extensions_Thread_exitted+0x34> 2009fd0: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_exitted)( executing ); 2009fd4: 9f c0 40 00 call %g1 2009fd8: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009fdc: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009fe0: 80 a7 40 1c cmp %i5, %i4 2009fe4: 32 bf ff f9 bne,a 2009fc8 <_User_extensions_Thread_exitted+0x20> 2009fe8: c2 07 60 2c ld [ %i5 + 0x2c ], %g1 2009fec: 81 c7 e0 08 ret 2009ff0: 81 e8 00 00 restore =============================================================================== 0200a94c <_User_extensions_Thread_restart>: #include void _User_extensions_Thread_restart ( Thread_Control *the_thread ) { 200a94c: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a950: 39 00 80 74 sethi %hi(0x201d000), %i4 200a954: fa 07 20 78 ld [ %i4 + 0x78 ], %i5 ! 201d078 <_User_extensions_List> 200a958: b8 17 20 78 or %i4, 0x78, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a95c: b8 07 20 04 add %i4, 4, %i4 200a960: 80 a7 40 1c cmp %i5, %i4 200a964: 02 80 00 0d be 200a998 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN 200a968: 37 00 80 74 sethi %hi(0x201d000), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_restart != NULL ) 200a96c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200a970: 80 a0 60 00 cmp %g1, 0 200a974: 02 80 00 05 be 200a988 <_User_extensions_Thread_restart+0x3c> 200a978: 84 16 e0 bc or %i3, 0xbc, %g2 (*the_extension->Callouts.thread_restart)( 200a97c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a980: 9f c0 40 00 call %g1 200a984: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a988: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a98c: 80 a7 40 1c cmp %i5, %i4 200a990: 32 bf ff f8 bne,a 200a970 <_User_extensions_Thread_restart+0x24> 200a994: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200a998: 81 c7 e0 08 ret 200a99c: 81 e8 00 00 restore =============================================================================== 0200a10c <_User_extensions_Thread_start>: #include void _User_extensions_Thread_start ( Thread_Control *the_thread ) { 200a10c: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a110: 39 00 80 71 sethi %hi(0x201c400), %i4 200a114: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 ! 201c558 <_User_extensions_List> 200a118: b8 17 21 58 or %i4, 0x158, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a11c: b8 07 20 04 add %i4, 4, %i4 200a120: 80 a7 40 1c cmp %i5, %i4 200a124: 02 80 00 0d be 200a158 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN 200a128: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_start != NULL ) 200a12c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200a130: 80 a0 60 00 cmp %g1, 0 200a134: 02 80 00 05 be 200a148 <_User_extensions_Thread_start+0x3c> 200a138: 84 16 e1 9c or %i3, 0x19c, %g2 (*the_extension->Callouts.thread_start)( 200a13c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a140: 9f c0 40 00 call %g1 200a144: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a148: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a14c: 80 a7 40 1c cmp %i5, %i4 200a150: 32 bf ff f8 bne,a 200a130 <_User_extensions_Thread_start+0x24> 200a154: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200a158: 81 c7 e0 08 ret 200a15c: 81 e8 00 00 restore =============================================================================== 0200a160 <_User_extensions_Thread_switch>: void _User_extensions_Thread_switch ( Thread_Control *executing, Thread_Control *heir ) { 200a160: 9d e3 bf a0 save %sp, -96, %sp 200a164: 39 00 80 70 sethi %hi(0x201c000), %i4 200a168: fa 07 23 74 ld [ %i4 + 0x374 ], %i5 ! 201c374 <_User_extensions_Switches_list> 200a16c: b8 17 23 74 or %i4, 0x374, %i4 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 200a170: b8 07 20 04 add %i4, 4, %i4 200a174: 80 a7 40 1c cmp %i5, %i4 200a178: 02 80 00 0a be 200a1a0 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN 200a17c: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); 200a180: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a184: 90 10 00 18 mov %i0, %o0 200a188: 9f c0 40 00 call %g1 200a18c: 92 10 00 19 mov %i1, %o1 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { 200a190: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 200a194: 80 a7 40 1c cmp %i5, %i4 200a198: 32 bf ff fb bne,a 200a184 <_User_extensions_Thread_switch+0x24> 200a19c: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a1a0: 81 c7 e0 08 ret 200a1a4: 81 e8 00 00 restore =============================================================================== 0200bc1c <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200bc1c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200bc20: 7f ff dc c4 call 2002f30 200bc24: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bc28: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200bc2c: b6 06 20 04 add %i0, 4, %i3 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200bc30: 80 a0 40 1b cmp %g1, %i3 200bc34: 02 80 00 1e be 200bcac <_Watchdog_Adjust+0x90> 200bc38: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200bc3c: 12 80 00 1e bne 200bcb4 <_Watchdog_Adjust+0x98> 200bc40: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bc44: 80 a6 a0 00 cmp %i2, 0 200bc48: 02 80 00 19 be 200bcac <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc4c: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bc50: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 200bc54: 80 a6 80 1c cmp %i2, %i4 200bc58: 1a 80 00 0a bcc 200bc80 <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN 200bc5c: b2 10 20 01 mov 1, %i1 _Watchdog_First( header )->delta_interval -= units; 200bc60: 10 80 00 1c b 200bcd0 <_Watchdog_Adjust+0xb4> <== NOT EXECUTED 200bc64: b8 27 00 1a sub %i4, %i2, %i4 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bc68: 02 80 00 11 be 200bcac <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc6c: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bc70: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 200bc74: 80 a7 00 1a cmp %i4, %i2 200bc78: 38 80 00 16 bgu,a 200bcd0 <_Watchdog_Adjust+0xb4> 200bc7c: b8 27 00 1a sub %i4, %i2, %i4 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200bc80: f2 20 60 10 st %i1, [ %g1 + 0x10 ] _ISR_Enable( level ); 200bc84: 7f ff dc af call 2002f40 200bc88: 01 00 00 00 nop _Watchdog_Tickle( header ); 200bc8c: 40 00 00 ab call 200bf38 <_Watchdog_Tickle> 200bc90: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200bc94: 7f ff dc a7 call 2002f30 200bc98: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bc9c: c2 07 40 00 ld [ %i5 ], %g1 if ( _Chain_Is_empty( header ) ) 200bca0: 80 a6 c0 01 cmp %i3, %g1 200bca4: 32 bf ff f1 bne,a 200bc68 <_Watchdog_Adjust+0x4c> 200bca8: b4 a6 80 1c subcc %i2, %i4, %i2 } break; } } _ISR_Enable( level ); 200bcac: 7f ff dc a5 call 2002f40 200bcb0: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200bcb4: 12 bf ff fe bne 200bcac <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bcb8: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200bcbc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200bcc0: b4 00 80 1a add %g2, %i2, %i2 200bcc4: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200bcc8: 7f ff dc 9e call 2002f40 200bccc: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200bcd0: 10 bf ff f7 b 200bcac <_Watchdog_Adjust+0x90> 200bcd4: f8 20 60 10 st %i4, [ %g1 + 0x10 ] =============================================================================== 0200a330 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 200a330: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200a334: 7f ff df ac call 20021e4 200a338: 01 00 00 00 nop previous_state = the_watchdog->state; 200a33c: fa 06 20 08 ld [ %i0 + 8 ], %i5 switch ( previous_state ) { 200a340: 80 a7 60 01 cmp %i5, 1 200a344: 02 80 00 2a be 200a3ec <_Watchdog_Remove+0xbc> 200a348: 03 00 80 71 sethi %hi(0x201c400), %g1 200a34c: 1a 80 00 09 bcc 200a370 <_Watchdog_Remove+0x40> 200a350: 80 a7 60 03 cmp %i5, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a354: 03 00 80 71 sethi %hi(0x201c400), %g1 200a358: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 ! 201c47c <_Watchdog_Ticks_since_boot> 200a35c: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a360: 7f ff df a5 call 20021f4 200a364: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a368: 81 c7 e0 08 ret 200a36c: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 200a370: 18 bf ff fa bgu 200a358 <_Watchdog_Remove+0x28> <== NEVER TAKEN 200a374: 03 00 80 71 sethi %hi(0x201c400), %g1 } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; _ISR_Enable( level ); return( previous_state ); } 200a378: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200a37c: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200a380: c4 00 40 00 ld [ %g1 ], %g2 200a384: 80 a0 a0 00 cmp %g2, 0 200a388: 02 80 00 07 be 200a3a4 <_Watchdog_Remove+0x74> 200a38c: 05 00 80 71 sethi %hi(0x201c400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200a390: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200a394: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 200a398: 84 00 c0 02 add %g3, %g2, %g2 200a39c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200a3a0: 05 00 80 71 sethi %hi(0x201c400), %g2 200a3a4: c4 00 a0 78 ld [ %g2 + 0x78 ], %g2 ! 201c478 <_Watchdog_Sync_count> 200a3a8: 80 a0 a0 00 cmp %g2, 0 200a3ac: 22 80 00 07 be,a 200a3c8 <_Watchdog_Remove+0x98> 200a3b0: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200a3b4: 05 00 80 71 sethi %hi(0x201c400), %g2 200a3b8: c6 00 a1 a4 ld [ %g2 + 0x1a4 ], %g3 ! 201c5a4 <_Per_CPU_Information+0x8> 200a3bc: 05 00 80 71 sethi %hi(0x201c400), %g2 200a3c0: c6 20 a0 18 st %g3, [ %g2 + 0x18 ] ! 201c418 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200a3c4: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 200a3c8: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200a3cc: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3d0: 03 00 80 71 sethi %hi(0x201c400), %g1 200a3d4: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 ! 201c47c <_Watchdog_Ticks_since_boot> 200a3d8: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a3dc: 7f ff df 86 call 20021f4 200a3e0: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a3e4: 81 c7 e0 08 ret 200a3e8: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3ec: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 200a3f0: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3f4: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a3f8: 7f ff df 7f call 20021f4 200a3fc: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a400: 81 c7 e0 08 ret 200a404: 81 e8 00 00 restore =============================================================================== 0200b44c <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200b44c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200b450: 7f ff dd 99 call 2002ab4 200b454: 01 00 00 00 nop 200b458: ba 10 00 08 mov %o0, %i5 printk( "Watchdog Chain: %s %p\n", name, header ); 200b45c: 11 00 80 70 sethi %hi(0x201c000), %o0 200b460: 94 10 00 19 mov %i1, %o2 200b464: 92 10 00 18 mov %i0, %o1 200b468: 7f ff e4 b1 call 200472c 200b46c: 90 12 23 90 or %o0, 0x390, %o0 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b470: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b474: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200b478: 80 a7 00 19 cmp %i4, %i1 200b47c: 02 80 00 0f be 200b4b8 <_Watchdog_Report_chain+0x6c> 200b480: 11 00 80 70 sethi %hi(0x201c000), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200b484: 92 10 00 1c mov %i4, %o1 200b488: 40 00 00 0f call 200b4c4 <_Watchdog_Report> 200b48c: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200b490: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200b494: 80 a7 00 19 cmp %i4, %i1 200b498: 12 bf ff fc bne 200b488 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200b49c: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200b4a0: 11 00 80 70 sethi %hi(0x201c000), %o0 200b4a4: 92 10 00 18 mov %i0, %o1 200b4a8: 7f ff e4 a1 call 200472c 200b4ac: 90 12 23 a8 or %o0, 0x3a8, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200b4b0: 7f ff dd 85 call 2002ac4 200b4b4: 91 e8 00 1d restore %g0, %i5, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200b4b8: 7f ff e4 9d call 200472c 200b4bc: 90 12 23 b8 or %o0, 0x3b8, %o0 200b4c0: 30 bf ff fc b,a 200b4b0 <_Watchdog_Report_chain+0x64> =============================================================================== 02007184 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2007184: 9d e3 bf 98 save %sp, -104, %sp 2007188: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 200718c: 40 00 01 84 call 200779c <_Chain_Get> 2007190: 90 10 00 1d mov %i5, %o0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2007194: 92 10 20 00 clr %o1 2007198: b8 10 00 08 mov %o0, %i4 200719c: 94 10 00 1a mov %i2, %o2 20071a0: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20071a4: 80 a7 20 00 cmp %i4, 0 20071a8: 12 80 00 0a bne 20071d0 20071ac: 96 07 bf fc add %fp, -4, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 20071b0: 7f ff fc f4 call 2006580 20071b4: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 20071b8: 80 a2 20 00 cmp %o0, 0 20071bc: 02 bf ff f4 be 200718c <== NEVER TAKEN 20071c0: b0 10 00 08 mov %o0, %i0 timeout, &out ); } *node_ptr = node; 20071c4: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 20071c8: 81 c7 e0 08 ret 20071cc: 81 e8 00 00 restore rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20071d0: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 20071d4: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 20071d8: 81 c7 e0 08 ret 20071dc: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02007e08 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007e08: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007e0c: 03 00 80 67 sethi %hi(0x2019c00), %g1 2007e10: c4 00 62 d4 ld [ %g1 + 0x2d4 ], %g2 ! 2019ed4 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007e14: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 2007e18: 03 00 80 67 sethi %hi(0x2019c00), %g1 if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 2007e1c: 88 10 20 12 mov 0x12, %g4 rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007e20: 80 a0 a0 00 cmp %g2, 0 2007e24: 02 80 00 04 be 2007e34 2007e28: de 00 63 64 ld [ %g1 + 0x364 ], %o7 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 2007e2c: 81 c7 e0 08 ret 2007e30: 91 e8 00 04 restore %g0, %g4, %o0 rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 2007e34: 80 a6 a0 00 cmp %i2, 0 2007e38: 02 80 00 40 be 2007f38 2007e3c: 80 a6 60 00 cmp %i1, 0 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 2007e40: 02 80 00 3e be 2007f38 2007e44: de 26 80 00 st %o7, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007e48: c4 06 40 00 ld [ %i1 ], %g2 2007e4c: 80 a0 a0 00 cmp %g2, 0 2007e50: 22 80 00 37 be,a 2007f2c 2007e54: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 2007e58: 80 a3 c0 18 cmp %o7, %i0 2007e5c: 08 bf ff f4 bleu 2007e2c 2007e60: 88 10 20 0a mov 0xa, %g4 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2007e64: 05 00 80 67 sethi %hi(0x2019c00), %g2 2007e68: c8 00 a0 a0 ld [ %g2 + 0xa0 ], %g4 ! 2019ca0 <_Thread_Dispatch_disable_level> 2007e6c: 88 01 20 01 inc %g4 2007e70: c8 20 a0 a0 st %g4, [ %g2 + 0xa0 ] return _Thread_Dispatch_disable_level; 2007e74: c4 00 a0 a0 ld [ %g2 + 0xa0 ], %g2 return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 2007e78: 80 a6 20 00 cmp %i0, 0 2007e7c: 12 80 00 32 bne 2007f44 2007e80: 1f 00 80 67 sethi %hi(0x2019c00), %o7 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2007e84: c8 00 63 64 ld [ %g1 + 0x364 ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007e88: 80 a1 20 00 cmp %g4, 0 2007e8c: 02 80 00 45 be 2007fa0 <== NEVER TAKEN 2007e90: c2 03 e3 68 ld [ %o7 + 0x368 ], %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007e94: 10 80 00 06 b 2007eac 2007e98: c4 00 40 00 ld [ %g1 ], %g2 rtems_device_major_number n = _IO_Number_of_drivers; rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007e9c: 80 a6 00 04 cmp %i0, %g4 2007ea0: 02 80 00 35 be 2007f74 2007ea4: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007ea8: c4 00 40 00 ld [ %g1 ], %g2 2007eac: 80 a0 a0 00 cmp %g2, 0 2007eb0: 32 bf ff fb bne,a 2007e9c 2007eb4: b0 06 20 01 inc %i0 2007eb8: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007ebc: 80 a0 a0 00 cmp %g2, 0 2007ec0: 32 bf ff f7 bne,a 2007e9c 2007ec4: b0 06 20 01 inc %i0 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007ec8: f0 26 80 00 st %i0, [ %i2 ] 2007ecc: 83 2e 20 03 sll %i0, 3, %g1 if ( m != n ) 2007ed0: 80 a1 00 18 cmp %g4, %i0 2007ed4: 02 80 00 29 be 2007f78 <== NEVER TAKEN 2007ed8: 9b 2e 20 05 sll %i0, 5, %o5 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007edc: c8 00 c0 00 ld [ %g3 ], %g4 2007ee0: c4 03 e3 68 ld [ %o7 + 0x368 ], %g2 2007ee4: 82 23 40 01 sub %o5, %g1, %g1 2007ee8: c8 20 80 01 st %g4, [ %g2 + %g1 ] 2007eec: c8 00 e0 04 ld [ %g3 + 4 ], %g4 2007ef0: 82 00 80 01 add %g2, %g1, %g1 2007ef4: c8 20 60 04 st %g4, [ %g1 + 4 ] 2007ef8: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007efc: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f00: c4 20 60 08 st %g2, [ %g1 + 8 ] 2007f04: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007f08: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f0c: c4 20 60 0c st %g2, [ %g1 + 0xc ] 2007f10: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 2007f14: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 2007f18: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 2007f1c: 40 00 08 0d call 2009f50 <_Thread_Enable_dispatch> 2007f20: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 2007f24: 40 00 21 2d call 20103d8 2007f28: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f2c: 80 a0 a0 00 cmp %g2, 0 2007f30: 12 bf ff cb bne 2007e5c 2007f34: 80 a3 c0 18 cmp %o7, %i0 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 2007f38: 88 10 20 09 mov 9, %g4 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 2007f3c: 81 c7 e0 08 ret 2007f40: 91 e8 00 04 restore %g0, %g4, %o0 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 2007f44: c8 03 e3 68 ld [ %o7 + 0x368 ], %g4 2007f48: 83 2e 20 03 sll %i0, 3, %g1 2007f4c: 9b 2e 20 05 sll %i0, 5, %o5 2007f50: 84 23 40 01 sub %o5, %g1, %g2 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f54: d8 01 00 02 ld [ %g4 + %g2 ], %o4 2007f58: 80 a3 20 00 cmp %o4, 0 2007f5c: 02 80 00 0b be 2007f88 2007f60: 84 01 00 02 add %g4, %g2, %g2 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 2007f64: 40 00 07 fb call 2009f50 <_Thread_Enable_dispatch> 2007f68: 01 00 00 00 nop return RTEMS_RESOURCE_IN_USE; 2007f6c: 10 bf ff b0 b 2007e2c 2007f70: 88 10 20 0c mov 0xc, %g4 ! c if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007f74: f0 26 80 00 st %i0, [ %i2 ] if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 2007f78: 40 00 07 f6 call 2009f50 <_Thread_Enable_dispatch> 2007f7c: 01 00 00 00 nop return sc; 2007f80: 10 bf ff ab b 2007e2c 2007f84: 88 10 20 05 mov 5, %g4 ! 5 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f88: c4 00 a0 04 ld [ %g2 + 4 ], %g2 2007f8c: 80 a0 a0 00 cmp %g2, 0 2007f90: 12 bf ff f5 bne 2007f64 2007f94: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 2007f98: 10 bf ff d1 b 2007edc 2007f9c: f0 26 80 00 st %i0, [ %i2 ] if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007fa0: 10 bf ff f6 b 2007f78 <== NOT EXECUTED 2007fa4: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED =============================================================================== 02009538 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009538: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 200953c: 80 a6 20 00 cmp %i0, 0 2009540: 02 80 00 23 be 20095cc <== NEVER TAKEN 2009544: 37 00 80 7b sethi %hi(0x201ec00), %i3 2009548: b6 16 e1 ac or %i3, 0x1ac, %i3 ! 201edac <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 200954c: b4 06 e0 0c add %i3, 0xc, %i2 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2009550: c2 06 c0 00 ld [ %i3 ], %g1 2009554: 80 a0 60 00 cmp %g1, 0 2009558: 22 80 00 1a be,a 20095c0 200955c: b6 06 e0 04 add %i3, 4, %i3 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009560: f8 00 60 04 ld [ %g1 + 4 ], %i4 if ( !information ) 2009564: 80 a7 20 00 cmp %i4, 0 2009568: 22 80 00 16 be,a 20095c0 200956c: b6 06 e0 04 add %i3, 4, %i3 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009570: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1 2009574: 84 90 60 00 orcc %g1, 0, %g2 2009578: 22 80 00 12 be,a 20095c0 <== NEVER TAKEN 200957c: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED 2009580: ba 10 20 01 mov 1, %i5 the_thread = (Thread_Control *)information->local_table[ i ]; 2009584: c6 07 20 1c ld [ %i4 + 0x1c ], %g3 2009588: 83 2f 60 02 sll %i5, 2, %g1 200958c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 if ( !the_thread ) 2009590: 90 90 60 00 orcc %g1, 0, %o0 2009594: 02 80 00 05 be 20095a8 2009598: ba 07 60 01 inc %i5 continue; (*routine)(the_thread); 200959c: 9f c6 00 00 call %i0 20095a0: 01 00 00 00 nop 20095a4: c4 17 20 10 lduh [ %i4 + 0x10 ], %g2 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 20095a8: 83 28 a0 10 sll %g2, 0x10, %g1 20095ac: 83 30 60 10 srl %g1, 0x10, %g1 20095b0: 80 a0 40 1d cmp %g1, %i5 20095b4: 3a bf ff f5 bcc,a 2009588 20095b8: c6 07 20 1c ld [ %i4 + 0x1c ], %g3 20095bc: b6 06 e0 04 add %i3, 4, %i3 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 20095c0: 80 a6 c0 1a cmp %i3, %i2 20095c4: 32 bf ff e4 bne,a 2009554 20095c8: c2 06 c0 00 ld [ %i3 ], %g1 20095cc: 81 c7 e0 08 ret 20095d0: 81 e8 00 00 restore =============================================================================== 020081b4 : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 20081b4: 9d e3 bf a0 save %sp, -96, %sp 20081b8: 90 10 00 18 mov %i0, %o0 int i; /* * Validate parameters and look up information structure. */ if ( !info ) 20081bc: 80 a6 a0 00 cmp %i2, 0 20081c0: 02 80 00 21 be 2008244 20081c4: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 20081c8: 93 2e 60 10 sll %i1, 0x10, %o1 if ( !obj_info ) return RTEMS_INVALID_NUMBER; 20081cc: b0 10 20 0a mov 0xa, %i0 * Validate parameters and look up information structure. */ if ( !info ) return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 20081d0: 40 00 07 66 call 2009f68 <_Objects_Get_information> 20081d4: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 20081d8: 80 a2 20 00 cmp %o0, 0 20081dc: 02 80 00 1a be 2008244 20081e0: 01 00 00 00 nop /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20081e4: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 20081e8: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20081ec: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20081f0: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20081f4: c4 26 a0 04 st %g2, [ %i2 + 4 ] return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20081f8: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20081fc: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; 2008200: c8 26 a0 08 st %g4, [ %i2 + 8 ] for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008204: 80 a1 20 00 cmp %g4, 0 2008208: 02 80 00 0d be 200823c <== NEVER TAKEN 200820c: 84 10 20 00 clr %g2 2008210: de 02 20 1c ld [ %o0 + 0x1c ], %o7 2008214: 86 10 20 01 mov 1, %g3 2008218: 82 10 20 01 mov 1, %g1 if ( !obj_info->local_table[i] ) 200821c: 87 28 e0 02 sll %g3, 2, %g3 2008220: c6 03 c0 03 ld [ %o7 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008224: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 2008228: 80 a0 00 03 cmp %g0, %g3 200822c: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008230: 80 a1 00 01 cmp %g4, %g1 2008234: 1a bf ff fa bcc 200821c 2008238: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 200823c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 2008240: b0 10 20 00 clr %i0 } 2008244: 81 c7 e0 08 ret 2008248: 81 e8 00 00 restore =============================================================================== 02013dcc : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2013dcc: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2013dd0: 80 a6 20 00 cmp %i0, 0 2013dd4: 12 80 00 04 bne 2013de4 2013dd8: 82 10 20 03 mov 3, %g1 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2013ddc: 81 c7 e0 08 ret 2013de0: 91 e8 00 01 restore %g0, %g1, %o0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) return RTEMS_INVALID_NAME; if ( !starting_address ) 2013de4: 80 a6 60 00 cmp %i1, 0 2013de8: 02 bf ff fd be 2013ddc 2013dec: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2013df0: 80 a7 60 00 cmp %i5, 0 2013df4: 02 bf ff fa be 2013ddc <== NEVER TAKEN 2013df8: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2013dfc: 02 bf ff f8 be 2013ddc 2013e00: 82 10 20 08 mov 8, %g1 2013e04: 80 a6 a0 00 cmp %i2, 0 2013e08: 02 bf ff f5 be 2013ddc 2013e0c: 80 a6 80 1b cmp %i2, %i3 2013e10: 0a bf ff f3 bcs 2013ddc 2013e14: 80 8e e0 07 btst 7, %i3 2013e18: 12 bf ff f1 bne 2013ddc 2013e1c: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2013e20: 12 bf ff ef bne 2013ddc 2013e24: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2013e28: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2013e2c: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 2039ec0 <_Thread_Dispatch_disable_level> 2013e30: 84 00 a0 01 inc %g2 2013e34: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ] return _Thread_Dispatch_disable_level; 2013e38: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2013e3c: 23 00 80 e7 sethi %hi(0x2039c00), %l1 2013e40: 40 00 13 2e call 2018af8 <_Objects_Allocate> 2013e44: 90 14 60 d4 or %l1, 0xd4, %o0 ! 2039cd4 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2013e48: a0 92 20 00 orcc %o0, 0, %l0 2013e4c: 02 80 00 1a be 2013eb4 2013e50: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 2013e54: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2013e58: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2013e5c: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2013e60: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2013e64: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2013e68: 40 00 58 11 call 2029eac <.udiv> 2013e6c: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2013e70: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2013e74: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2013e78: 96 10 00 1b mov %i3, %o3 2013e7c: b8 04 20 24 add %l0, 0x24, %i4 2013e80: 40 00 0c e0 call 2017200 <_Chain_Initialize> 2013e84: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2013e88: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2013e8c: a2 14 60 d4 or %l1, 0xd4, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2013e90: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2013e94: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2013e98: 85 28 a0 02 sll %g2, 2, %g2 2013e9c: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2013ea0: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2013ea4: 40 00 18 4a call 2019fcc <_Thread_Enable_dispatch> 2013ea8: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2013eac: 10 bf ff cc b 2013ddc 2013eb0: 82 10 20 00 clr %g1 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2013eb4: 40 00 18 46 call 2019fcc <_Thread_Enable_dispatch> 2013eb8: 01 00 00 00 nop return RTEMS_TOO_MANY; 2013ebc: 10 bf ff c8 b 2013ddc 2013ec0: 82 10 20 05 mov 5, %g1 ! 5 =============================================================================== 02007630 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007630: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 2007634: 11 00 80 78 sethi %hi(0x201e000), %o0 2007638: 92 10 00 18 mov %i0, %o1 200763c: 90 12 20 84 or %o0, 0x84, %o0 2007640: 40 00 09 5b call 2009bac <_Objects_Get> 2007644: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007648: c2 07 bf fc ld [ %fp + -4 ], %g1 200764c: 80 a0 60 00 cmp %g1, 0 2007650: 12 80 00 0d bne 2007684 2007654: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007658: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 200765c: 39 00 80 79 sethi %hi(0x201e400), %i4 2007660: b8 17 20 1c or %i4, 0x1c, %i4 ! 201e41c <_Per_CPU_Information> 2007664: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007668: 80 a0 80 01 cmp %g2, %g1 200766c: 02 80 00 08 be 200768c 2007670: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 2007674: 40 00 0d 28 call 200ab14 <_Thread_Enable_dispatch> 2007678: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 200767c: 81 c7 e0 08 ret 2007680: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007684: 81 c7 e0 08 ret 2007688: 91 e8 20 04 restore %g0, 4, %o0 if ( !_Thread_Is_executing( the_period->owner ) ) { _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { 200768c: 12 80 00 0e bne 20076c4 2007690: 01 00 00 00 nop switch ( the_period->state ) { 2007694: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007698: 80 a0 60 04 cmp %g1, 4 200769c: 18 80 00 06 bgu 20076b4 <== NEVER TAKEN 20076a0: b0 10 20 00 clr %i0 20076a4: 83 28 60 02 sll %g1, 2, %g1 20076a8: 05 00 80 70 sethi %hi(0x201c000), %g2 20076ac: 84 10 a0 b4 or %g2, 0xb4, %g2 ! 201c0b4 20076b0: f0 00 80 01 ld [ %g2 + %g1 ], %i0 the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Scheduler_Release_job(the_period->owner, the_period->next_length); _Thread_Enable_dispatch(); 20076b4: 40 00 0d 18 call 200ab14 <_Thread_Enable_dispatch> 20076b8: 01 00 00 00 nop return RTEMS_TIMEOUT; 20076bc: 81 c7 e0 08 ret 20076c0: 81 e8 00 00 restore } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 20076c4: 7f ff ed d8 call 2002e24 20076c8: 01 00 00 00 nop 20076cc: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20076d0: f6 07 60 38 ld [ %i5 + 0x38 ], %i3 20076d4: 80 a6 e0 00 cmp %i3, 0 20076d8: 02 80 00 19 be 200773c 20076dc: 80 a6 e0 02 cmp %i3, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20076e0: 02 80 00 2e be 2007798 20076e4: 80 a6 e0 04 cmp %i3, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20076e8: 12 bf ff e5 bne 200767c <== NEVER TAKEN 20076ec: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20076f0: 7f ff ff 92 call 2007538 <_Rate_monotonic_Update_statistics> 20076f4: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20076f8: 7f ff ed cf call 2002e34 20076fc: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007700: 82 10 20 02 mov 2, %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007704: 92 07 60 10 add %i5, 0x10, %o1 2007708: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; 200770c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007710: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007714: 11 00 80 78 sethi %hi(0x201e000), %o0 2007718: 40 00 11 14 call 200bb68 <_Watchdog_Insert> 200771c: 90 12 22 ac or %o0, 0x2ac, %o0 ! 201e2ac <_Watchdog_Ticks_chain> 2007720: d0 07 60 40 ld [ %i5 + 0x40 ], %o0 2007724: d2 07 60 3c ld [ %i5 + 0x3c ], %o1 2007728: 03 00 80 75 sethi %hi(0x201d400), %g1 200772c: c2 00 61 38 ld [ %g1 + 0x138 ], %g1 ! 201d538 <_Scheduler+0x34> 2007730: 9f c0 40 00 call %g1 2007734: b0 10 20 06 mov 6, %i0 2007738: 30 bf ff df b,a 20076b4 return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 200773c: 7f ff ed be call 2002e34 2007740: 01 00 00 00 nop the_period->next_length = length; /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007744: 90 10 00 1d mov %i5, %o0 2007748: 7f ff ff 56 call 20074a0 <_Rate_monotonic_Initiate_statistics> 200774c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] the_period->state = RATE_MONOTONIC_ACTIVE; 2007750: 82 10 20 02 mov 2, %g1 2007754: 92 07 60 10 add %i5, 0x10, %o1 2007758: c2 27 60 38 st %g1, [ %i5 + 0x38 ] 200775c: 11 00 80 78 sethi %hi(0x201e000), %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007760: 03 00 80 1e sethi %hi(0x2007800), %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007764: 90 12 22 ac or %o0, 0x2ac, %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007768: 82 10 62 ec or %g1, 0x2ec, %g1 the_watchdog->id = id; 200776c: f0 27 60 30 st %i0, [ %i5 + 0x30 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007770: c2 27 60 2c st %g1, [ %i5 + 0x2c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2007774: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 2007778: c0 27 60 34 clr [ %i5 + 0x34 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 200777c: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007780: 40 00 10 fa call 200bb68 <_Watchdog_Insert> 2007784: b0 10 20 00 clr %i0 id, NULL ); _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007788: 40 00 0c e3 call 200ab14 <_Thread_Enable_dispatch> 200778c: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2007790: 81 c7 e0 08 ret 2007794: 81 e8 00 00 restore if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007798: 7f ff ff 68 call 2007538 <_Rate_monotonic_Update_statistics> 200779c: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20077a0: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 20077a4: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20077a8: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 20077ac: 7f ff ed a2 call 2002e34 20077b0: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 20077b4: c2 07 20 0c ld [ %i4 + 0xc ], %g1 20077b8: c4 07 60 08 ld [ %i5 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20077bc: 90 10 00 01 mov %g1, %o0 20077c0: 13 00 00 10 sethi %hi(0x4000), %o1 20077c4: 40 00 0f 26 call 200b45c <_Thread_Set_state> 20077c8: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 20077cc: 7f ff ed 96 call 2002e24 20077d0: 01 00 00 00 nop local_state = the_period->state; 20077d4: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 20077d8: f6 27 60 38 st %i3, [ %i5 + 0x38 ] _ISR_Enable( level ); 20077dc: 7f ff ed 96 call 2002e34 20077e0: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20077e4: 80 a6 a0 03 cmp %i2, 3 20077e8: 22 80 00 06 be,a 2007800 20077ec: d0 07 20 0c ld [ %i4 + 0xc ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 20077f0: 40 00 0c c9 call 200ab14 <_Thread_Enable_dispatch> 20077f4: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20077f8: 81 c7 e0 08 ret 20077fc: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007800: 40 00 0b d0 call 200a740 <_Thread_Clear_state> 2007804: 13 00 00 10 sethi %hi(0x4000), %o1 2007808: 30 bf ff fa b,a 20077f0 =============================================================================== 0200780c : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 200780c: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007810: 80 a6 60 00 cmp %i1, 0 2007814: 02 80 00 48 be 2007934 <== NEVER TAKEN 2007818: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 200781c: 13 00 80 70 sethi %hi(0x201c000), %o1 2007820: 9f c6 40 00 call %i1 2007824: 92 12 60 c8 or %o1, 0xc8, %o1 ! 201c0c8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007828: 90 10 00 18 mov %i0, %o0 200782c: 13 00 80 70 sethi %hi(0x201c000), %o1 2007830: 9f c6 40 00 call %i1 2007834: 92 12 60 e8 or %o1, 0xe8, %o1 ! 201c0e8 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007838: 90 10 00 18 mov %i0, %o0 200783c: 13 00 80 70 sethi %hi(0x201c000), %o1 2007840: 9f c6 40 00 call %i1 2007844: 92 12 61 10 or %o1, 0x110, %o1 ! 201c110 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007848: 90 10 00 18 mov %i0, %o0 200784c: 13 00 80 70 sethi %hi(0x201c000), %o1 2007850: 9f c6 40 00 call %i1 2007854: 92 12 61 38 or %o1, 0x138, %o1 ! 201c138 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007858: 90 10 00 18 mov %i0, %o0 200785c: 13 00 80 70 sethi %hi(0x201c000), %o1 2007860: 9f c6 40 00 call %i1 2007864: 92 12 61 88 or %o1, 0x188, %o1 ! 201c188 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007868: 39 00 80 78 sethi %hi(0x201e000), %i4 200786c: b8 17 20 84 or %i4, 0x84, %i4 ! 201e084 <_Rate_monotonic_Information> 2007870: fa 07 20 08 ld [ %i4 + 8 ], %i5 2007874: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007878: 80 a7 40 01 cmp %i5, %g1 200787c: 18 80 00 2e bgu 2007934 <== NEVER TAKEN 2007880: 35 00 80 70 sethi %hi(0x201c000), %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007884: 23 00 80 70 sethi %hi(0x201c000), %l1 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007888: 21 00 80 70 sethi %hi(0x201c000), %l0 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 200788c: 37 00 80 6c sethi %hi(0x201b000), %i3 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007890: b4 16 a1 d8 or %i2, 0x1d8, %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007894: a2 14 61 f0 or %l1, 0x1f0, %l1 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007898: a0 14 22 10 or %l0, 0x210, %l0 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 200789c: 10 80 00 06 b 20078b4 20078a0: b6 16 e3 48 or %i3, 0x348, %i3 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20078a4: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20078a8: 80 a0 40 1d cmp %g1, %i5 20078ac: 0a 80 00 22 bcs 2007934 20078b0: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 20078b4: 90 10 00 1d mov %i5, %o0 20078b8: 40 00 19 5b call 200de24 20078bc: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 20078c0: 80 a2 20 00 cmp %o0, 0 20078c4: 32 bf ff f8 bne,a 20078a4 20078c8: c2 07 20 0c ld [ %i4 + 0xc ], %g1 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 20078cc: 92 07 bf d8 add %fp, -40, %o1 20078d0: 40 00 19 84 call 200dee0 20078d4: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 20078d8: d0 07 bf d8 ld [ %fp + -40 ], %o0 20078dc: 92 10 20 05 mov 5, %o1 20078e0: 40 00 00 b4 call 2007bb0 20078e4: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20078e8: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20078ec: 92 10 00 1a mov %i2, %o1 20078f0: 94 10 00 1d mov %i5, %o2 20078f4: 90 10 00 18 mov %i0, %o0 20078f8: 9f c6 40 00 call %i1 20078fc: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007900: c2 07 bf a0 ld [ %fp + -96 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007904: 94 07 bf f0 add %fp, -16, %o2 2007908: 90 07 bf b8 add %fp, -72, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 200790c: 80 a0 60 00 cmp %g1, 0 2007910: 12 80 00 0b bne 200793c 2007914: 92 10 00 1b mov %i3, %o1 (*print)( context, "\n" ); 2007918: 9f c6 40 00 call %i1 200791c: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007920: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007924: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007928: 80 a0 40 1d cmp %g1, %i5 200792c: 1a bf ff e3 bcc 20078b8 <== ALWAYS TAKEN 2007930: 90 10 00 1d mov %i5, %o0 2007934: 81 c7 e0 08 ret 2007938: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 200793c: 40 00 0f 4f call 200b678 <_Timespec_Divide_by_integer> 2007940: 92 10 00 01 mov %g1, %o1 (*print)( context, 2007944: d0 07 bf ac ld [ %fp + -84 ], %o0 2007948: 40 00 46 45 call 201925c <.div> 200794c: 92 10 23 e8 mov 0x3e8, %o1 2007950: aa 10 00 08 mov %o0, %l5 2007954: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007958: 40 00 46 41 call 201925c <.div> 200795c: 92 10 23 e8 mov 0x3e8, %o1 2007960: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007964: a6 10 00 08 mov %o0, %l3 2007968: d0 07 bf f4 ld [ %fp + -12 ], %o0 200796c: e4 07 bf a8 ld [ %fp + -88 ], %l2 2007970: e8 07 bf b0 ld [ %fp + -80 ], %l4 2007974: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007978: 40 00 46 39 call 201925c <.div> 200797c: 92 10 23 e8 mov 0x3e8, %o1 2007980: 96 10 00 15 mov %l5, %o3 2007984: 98 10 00 14 mov %l4, %o4 2007988: 9a 10 00 13 mov %l3, %o5 200798c: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007990: 92 10 00 11 mov %l1, %o1 2007994: 94 10 00 12 mov %l2, %o2 2007998: 9f c6 40 00 call %i1 200799c: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 20079a0: d2 07 bf a0 ld [ %fp + -96 ], %o1 20079a4: 94 07 bf f0 add %fp, -16, %o2 20079a8: 40 00 0f 34 call 200b678 <_Timespec_Divide_by_integer> 20079ac: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 20079b0: d0 07 bf c4 ld [ %fp + -60 ], %o0 20079b4: 40 00 46 2a call 201925c <.div> 20079b8: 92 10 23 e8 mov 0x3e8, %o1 20079bc: a8 10 00 08 mov %o0, %l4 20079c0: d0 07 bf cc ld [ %fp + -52 ], %o0 20079c4: 40 00 46 26 call 201925c <.div> 20079c8: 92 10 23 e8 mov 0x3e8, %o1 20079cc: c2 07 bf f0 ld [ %fp + -16 ], %g1 20079d0: a4 10 00 08 mov %o0, %l2 20079d4: d0 07 bf f4 ld [ %fp + -12 ], %o0 20079d8: ea 07 bf c0 ld [ %fp + -64 ], %l5 20079dc: e6 07 bf c8 ld [ %fp + -56 ], %l3 20079e0: 92 10 23 e8 mov 0x3e8, %o1 20079e4: 40 00 46 1e call 201925c <.div> 20079e8: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20079ec: 92 10 00 10 mov %l0, %o1 20079f0: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20079f4: 94 10 00 15 mov %l5, %o2 20079f8: 90 10 00 18 mov %i0, %o0 20079fc: 96 10 00 14 mov %l4, %o3 2007a00: 98 10 00 13 mov %l3, %o4 2007a04: 9f c6 40 00 call %i1 2007a08: 9a 10 00 12 mov %l2, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a0c: 10 bf ff a6 b 20078a4 2007a10: c2 07 20 0c ld [ %i4 + 0xc ], %g1 =============================================================================== 02007a2c : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 2007a2c: 9d e3 bf a0 save %sp, -96, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2007a30: 03 00 80 78 sethi %hi(0x201e000), %g1 2007a34: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e1f0 <_Thread_Dispatch_disable_level> 2007a38: 84 00 a0 01 inc %g2 2007a3c: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ] return _Thread_Dispatch_disable_level; 2007a40: c2 00 61 f0 ld [ %g1 + 0x1f0 ], %g1 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a44: 39 00 80 78 sethi %hi(0x201e000), %i4 2007a48: b8 17 20 84 or %i4, 0x84, %i4 ! 201e084 <_Rate_monotonic_Information> 2007a4c: fa 07 20 08 ld [ %i4 + 8 ], %i5 2007a50: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007a54: 80 a7 40 01 cmp %i5, %g1 2007a58: 18 80 00 09 bgu 2007a7c <== NEVER TAKEN 2007a5c: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { (void) rtems_rate_monotonic_reset_statistics( id ); 2007a60: 40 00 00 09 call 2007a84 2007a64: 90 10 00 1d mov %i5, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a68: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007a6c: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a70: 80 a0 40 1d cmp %g1, %i5 2007a74: 1a bf ff fb bcc 2007a60 2007a78: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2007a7c: 40 00 0c 26 call 200ab14 <_Thread_Enable_dispatch> 2007a80: 81 e8 00 00 restore =============================================================================== 020153f8 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 20153f8: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20153fc: 80 a6 60 00 cmp %i1, 0 2015400: 12 80 00 04 bne 2015410 2015404: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015408: 81 c7 e0 08 ret 201540c: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015410: 90 10 00 18 mov %i0, %o0 2015414: 40 00 12 fb call 201a000 <_Thread_Get> 2015418: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 201541c: c2 07 bf fc ld [ %fp + -4 ], %g1 2015420: 80 a0 60 00 cmp %g1, 0 2015424: 12 80 00 20 bne 20154a4 2015428: b8 10 00 08 mov %o0, %i4 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 201542c: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 2015430: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2015434: 80 a0 60 00 cmp %g1, 0 2015438: 02 80 00 1e be 20154b0 201543c: 01 00 00 00 nop if ( asr->is_enabled ) { 2015440: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 2015444: 80 a0 60 00 cmp %g1, 0 2015448: 02 80 00 1e be 20154c0 201544c: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015450: 7f ff e6 9f call 200eecc 2015454: 01 00 00 00 nop *signal_set |= signals; 2015458: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 201545c: b2 10 40 19 or %g1, %i1, %i1 2015460: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2015464: 7f ff e6 9e call 200eedc 2015468: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201546c: 03 00 80 e8 sethi %hi(0x203a000), %g1 2015470: 82 10 60 f4 or %g1, 0xf4, %g1 ! 203a0f4 <_Per_CPU_Information> 2015474: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015478: 80 a0 a0 00 cmp %g2, 0 201547c: 02 80 00 06 be 2015494 2015480: 01 00 00 00 nop 2015484: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015488: 80 a7 00 02 cmp %i4, %g2 201548c: 02 80 00 15 be 20154e0 <== ALWAYS TAKEN 2015490: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015494: 40 00 12 ce call 2019fcc <_Thread_Enable_dispatch> 2015498: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201549c: 10 bf ff db b 2015408 20154a0: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20154a4: 82 10 20 04 mov 4, %g1 } 20154a8: 81 c7 e0 08 ret 20154ac: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 20154b0: 40 00 12 c7 call 2019fcc <_Thread_Enable_dispatch> 20154b4: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 20154b8: 10 bf ff d4 b 2015408 20154bc: 82 10 20 0b mov 0xb, %g1 ! b rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20154c0: 7f ff e6 83 call 200eecc 20154c4: 01 00 00 00 nop *signal_set |= signals; 20154c8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 20154cc: b2 10 40 19 or %g1, %i1, %i1 20154d0: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 20154d4: 7f ff e6 82 call 200eedc 20154d8: 01 00 00 00 nop 20154dc: 30 bf ff ee b,a 2015494 if ( ! _ASR_Is_null_handler( asr->handler ) ) { if ( asr->is_enabled ) { _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) _Thread_Dispatch_necessary = true; 20154e0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20154e4: 30 bf ff ec b,a 2015494 =============================================================================== 0200e59c : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200e59c: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200e5a0: 80 a6 a0 00 cmp %i2, 0 200e5a4: 02 80 00 3b be 200e690 200e5a8: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200e5ac: 21 00 80 71 sethi %hi(0x201c400), %l0 200e5b0: a0 14 21 9c or %l0, 0x19c, %l0 ! 201c59c <_Per_CPU_Information> 200e5b4: fa 04 20 0c ld [ %l0 + 0xc ], %i5 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e5b8: c4 0f 60 74 ldub [ %i5 + 0x74 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e5bc: c2 07 60 7c ld [ %i5 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e5c0: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200e5c4: f8 07 61 58 ld [ %i5 + 0x158 ], %i4 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e5c8: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e5cc: 80 a0 60 00 cmp %g1, 0 200e5d0: 12 80 00 40 bne 200e6d0 200e5d4: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e5d8: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 200e5dc: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e5e0: 7f ff f0 82 call 200a7e8 <_CPU_ISR_Get_level> 200e5e4: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e5e8: a3 2c 60 0a sll %l1, 0xa, %l1 200e5ec: a2 14 40 08 or %l1, %o0, %l1 old_mode |= _ISR_Get_level(); 200e5f0: b6 14 40 1b or %l1, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e5f4: 80 8e 61 00 btst 0x100, %i1 200e5f8: 02 80 00 06 be 200e610 200e5fc: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e600: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200e604: 80 a0 00 01 cmp %g0, %g1 200e608: 82 60 3f ff subx %g0, -1, %g1 200e60c: c2 2f 60 74 stb %g1, [ %i5 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200e610: 80 8e 62 00 btst 0x200, %i1 200e614: 12 80 00 21 bne 200e698 200e618: 80 8e 22 00 btst 0x200, %i0 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e61c: 80 8e 60 0f btst 0xf, %i1 200e620: 12 80 00 27 bne 200e6bc 200e624: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e628: 80 8e 64 00 btst 0x400, %i1 200e62c: 02 80 00 14 be 200e67c 200e630: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e634: c4 0f 20 08 ldub [ %i4 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200e638: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200e63c: 80 a0 00 18 cmp %g0, %i0 200e640: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e644: 80 a0 80 01 cmp %g2, %g1 200e648: 22 80 00 0e be,a 200e680 200e64c: 03 00 80 71 sethi %hi(0x201c400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200e650: 7f ff ce e5 call 20021e4 200e654: c2 2f 20 08 stb %g1, [ %i4 + 8 ] _signals = information->signals_pending; 200e658: c4 07 20 18 ld [ %i4 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 200e65c: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 information->signals_posted = _signals; 200e660: c4 27 20 14 st %g2, [ %i4 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200e664: c2 27 20 18 st %g1, [ %i4 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200e668: 7f ff ce e3 call 20021f4 200e66c: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200e670: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200e674: 80 a0 00 01 cmp %g0, %g1 200e678: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200e67c: 03 00 80 71 sethi %hi(0x201c400), %g1 200e680: c4 00 60 c4 ld [ %g1 + 0xc4 ], %g2 ! 201c4c4 <_System_state_Current> 200e684: 80 a0 a0 03 cmp %g2, 3 200e688: 02 80 00 1f be 200e704 200e68c: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 200e690: 81 c7 e0 08 ret 200e694: 91 e8 00 01 restore %g0, %g1, %o0 */ if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { 200e698: 22 bf ff e1 be,a 200e61c 200e69c: c0 27 60 7c clr [ %i5 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e6a0: 03 00 80 70 sethi %hi(0x201c000), %g1 200e6a4: c2 00 62 d4 ld [ %g1 + 0x2d4 ], %g1 ! 201c2d4 <_Thread_Ticks_per_timeslice> } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e6a8: 80 8e 60 0f btst 0xf, %i1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e6ac: c2 27 60 78 st %g1, [ %i5 + 0x78 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200e6b0: 82 10 20 01 mov 1, %g1 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e6b4: 02 bf ff dd be 200e628 200e6b8: c2 27 60 7c st %g1, [ %i5 + 0x7c ] */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e6bc: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e6c0: 7f ff ce cd call 20021f4 200e6c4: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e6c8: 10 bf ff d9 b 200e62c 200e6cc: 80 8e 64 00 btst 0x400, %i1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e6d0: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200e6d4: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e6d8: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e6dc: 7f ff f0 43 call 200a7e8 <_CPU_ISR_Get_level> 200e6e0: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e6e4: a3 2c 60 0a sll %l1, 0xa, %l1 200e6e8: a2 14 40 08 or %l1, %o0, %l1 old_mode |= _ISR_Get_level(); 200e6ec: b6 14 40 1b or %l1, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e6f0: 80 8e 61 00 btst 0x100, %i1 200e6f4: 02 bf ff c7 be 200e610 200e6f8: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e6fc: 10 bf ff c2 b 200e604 200e700: 82 0e 21 00 and %i0, 0x100, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 200e704: 80 88 e0 ff btst 0xff, %g3 200e708: 12 80 00 0a bne 200e730 200e70c: c4 04 20 0c ld [ %l0 + 0xc ], %g2 200e710: c6 04 20 10 ld [ %l0 + 0x10 ], %g3 200e714: 80 a0 80 03 cmp %g2, %g3 200e718: 02 bf ff de be 200e690 200e71c: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e720: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200e724: 80 a0 a0 00 cmp %g2, 0 200e728: 02 bf ff da be 200e690 <== NEVER TAKEN 200e72c: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e730: 82 10 20 01 mov 1, %g1 ! 1 200e734: c2 2c 20 18 stb %g1, [ %l0 + 0x18 ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e738: 7f ff ea 8f call 2009174 <_Thread_Dispatch> 200e73c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e740: 82 10 20 00 clr %g1 ! 0 } 200e744: 81 c7 e0 08 ret 200e748: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200b1f4 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200b1f4: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200b1f8: 80 a6 60 00 cmp %i1, 0 200b1fc: 02 80 00 07 be 200b218 200b200: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200b204: 03 00 80 66 sethi %hi(0x2019800), %g1 200b208: c2 08 60 2c ldub [ %g1 + 0x2c ], %g1 ! 201982c */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200b20c: 80 a6 40 01 cmp %i1, %g1 200b210: 18 80 00 1c bgu 200b280 200b214: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200b218: 80 a6 a0 00 cmp %i2, 0 200b21c: 02 80 00 19 be 200b280 200b220: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200b224: 40 00 09 df call 200d9a0 <_Thread_Get> 200b228: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200b22c: c2 07 bf fc ld [ %fp + -4 ], %g1 200b230: 80 a0 60 00 cmp %g1, 0 200b234: 12 80 00 13 bne 200b280 200b238: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200b23c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200b240: 80 a6 60 00 cmp %i1, 0 200b244: 02 80 00 0d be 200b278 200b248: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200b24c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200b250: 80 a0 60 00 cmp %g1, 0 200b254: 02 80 00 06 be 200b26c 200b258: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200b25c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200b260: 80 a6 40 01 cmp %i1, %g1 200b264: 1a 80 00 05 bcc 200b278 <== ALWAYS TAKEN 200b268: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200b26c: 92 10 00 19 mov %i1, %o1 200b270: 40 00 08 7f call 200d46c <_Thread_Change_priority> 200b274: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200b278: 40 00 09 bd call 200d96c <_Thread_Enable_dispatch> 200b27c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200b280: 81 c7 e0 08 ret 200b284: 81 e8 00 00 restore =============================================================================== 02007644 : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 2007644: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 2007648: 80 a6 60 00 cmp %i1, 0 200764c: 02 80 00 1e be 20076c4 2007650: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 2007654: 90 10 00 18 mov %i0, %o0 2007658: 40 00 09 62 call 2009be0 <_Thread_Get> 200765c: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007660: c2 07 bf fc ld [ %fp + -4 ], %g1 2007664: 80 a0 60 00 cmp %g1, 0 2007668: 12 80 00 19 bne 20076cc 200766c: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 2007670: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007674: 80 a0 60 00 cmp %g1, 0 2007678: 02 80 00 10 be 20076b8 200767c: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007680: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007684: 80 a0 80 19 cmp %g2, %i1 2007688: 32 80 00 09 bne,a 20076ac 200768c: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2007690: 10 80 00 18 b 20076f0 2007694: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 2007698: 80 a0 80 19 cmp %g2, %i1 200769c: 22 80 00 0e be,a 20076d4 20076a0: c4 02 40 00 ld [ %o1 ], %g2 20076a4: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 20076a8: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 20076ac: 80 a2 60 00 cmp %o1, 0 20076b0: 32 bf ff fa bne,a 2007698 <== ALWAYS TAKEN 20076b4: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 20076b8: 40 00 09 3d call 2009bac <_Thread_Enable_dispatch> 20076bc: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 20076c0: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20076c4: 81 c7 e0 08 ret 20076c8: 91 e8 00 01 restore %g0, %g1, %o0 20076cc: 81 c7 e0 08 ret 20076d0: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 20076d4: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 20076d8: 40 00 00 2d call 200778c <_RTEMS_Tasks_Invoke_task_variable_dtor> 20076dc: 01 00 00 00 nop _Thread_Enable_dispatch(); 20076e0: 40 00 09 33 call 2009bac <_Thread_Enable_dispatch> 20076e4: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20076e8: 10 bf ff f7 b 20076c4 20076ec: 82 10 20 00 clr %g1 ! 0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 20076f0: 92 10 00 01 mov %g1, %o1 20076f4: 10 bf ff f9 b 20076d8 20076f8: c4 22 21 64 st %g2, [ %o0 + 0x164 ] =============================================================================== 020076fc : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 20076fc: 9d e3 bf 98 save %sp, -104, %sp 2007700: 90 10 00 18 mov %i0, %o0 Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 2007704: 80 a6 60 00 cmp %i1, 0 2007708: 02 80 00 1b be 2007774 200770c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !result ) 2007710: 80 a6 a0 00 cmp %i2, 0 2007714: 02 80 00 1c be 2007784 2007718: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 200771c: 40 00 09 31 call 2009be0 <_Thread_Get> 2007720: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007724: c2 07 bf fc ld [ %fp + -4 ], %g1 2007728: 80 a0 60 00 cmp %g1, 0 200772c: 12 80 00 12 bne 2007774 2007730: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 2007734: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007738: 80 a0 60 00 cmp %g1, 0 200773c: 32 80 00 07 bne,a 2007758 2007740: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007744: 30 80 00 0e b,a 200777c 2007748: 80 a0 60 00 cmp %g1, 0 200774c: 02 80 00 0c be 200777c <== NEVER TAKEN 2007750: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007754: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007758: 80 a0 80 19 cmp %g2, %i1 200775c: 32 bf ff fb bne,a 2007748 2007760: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 2007764: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 2007768: b0 10 20 00 clr %i0 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; _Thread_Enable_dispatch(); 200776c: 40 00 09 10 call 2009bac <_Thread_Enable_dispatch> 2007770: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 2007774: 81 c7 e0 08 ret 2007778: 81 e8 00 00 restore } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 200777c: 40 00 09 0c call 2009bac <_Thread_Enable_dispatch> 2007780: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; 2007784: 81 c7 e0 08 ret 2007788: 81 e8 00 00 restore =============================================================================== 02015e58 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2015e58: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2015e5c: 11 00 80 e8 sethi %hi(0x203a000), %o0 2015e60: 92 10 00 18 mov %i0, %o1 2015e64: 90 12 21 94 or %o0, 0x194, %o0 2015e68: 40 00 0c 7f call 2019064 <_Objects_Get> 2015e6c: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2015e70: c2 07 bf fc ld [ %fp + -4 ], %g1 2015e74: 80 a0 60 00 cmp %g1, 0 2015e78: 12 80 00 0c bne 2015ea8 2015e7c: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2015e80: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2015e84: 80 a0 60 04 cmp %g1, 4 2015e88: 02 80 00 04 be 2015e98 <== NEVER TAKEN 2015e8c: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2015e90: 40 00 15 1d call 201b304 <_Watchdog_Remove> 2015e94: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2015e98: 40 00 10 4d call 2019fcc <_Thread_Enable_dispatch> 2015e9c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2015ea0: 81 c7 e0 08 ret 2015ea4: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015ea8: 81 c7 e0 08 ret 2015eac: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02016380 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016380: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016384: 03 00 80 e8 sethi %hi(0x203a000), %g1 2016388: fa 00 61 d4 ld [ %g1 + 0x1d4 ], %i5 ! 203a1d4 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 201638c: b8 10 00 18 mov %i0, %i4 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016390: 80 a7 60 00 cmp %i5, 0 2016394: 02 80 00 32 be 201645c 2016398: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 201639c: 03 00 80 e7 sethi %hi(0x2039c00), %g1 20163a0: c2 08 62 d0 ldub [ %g1 + 0x2d0 ], %g1 ! 2039ed0 <_TOD_Is_set> 20163a4: 80 a0 60 00 cmp %g1, 0 20163a8: 02 80 00 2d be 201645c <== NEVER TAKEN 20163ac: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 20163b0: 80 a6 a0 00 cmp %i2, 0 20163b4: 02 80 00 2a be 201645c 20163b8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 20163bc: 90 10 00 19 mov %i1, %o0 20163c0: 7f ff f3 b9 call 20132a4 <_TOD_Validate> 20163c4: b0 10 20 14 mov 0x14, %i0 20163c8: 80 8a 20 ff btst 0xff, %o0 20163cc: 02 80 00 24 be 201645c 20163d0: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 20163d4: 7f ff f3 80 call 20131d4 <_TOD_To_seconds> 20163d8: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 20163dc: 21 00 80 e7 sethi %hi(0x2039c00), %l0 20163e0: c2 04 23 4c ld [ %l0 + 0x34c ], %g1 ! 2039f4c <_TOD_Now> 20163e4: 80 a2 00 01 cmp %o0, %g1 20163e8: 08 80 00 1d bleu 201645c 20163ec: b2 10 00 08 mov %o0, %i1 20163f0: 92 10 00 1c mov %i4, %o1 20163f4: 11 00 80 e8 sethi %hi(0x203a000), %o0 20163f8: 94 07 bf fc add %fp, -4, %o2 20163fc: 40 00 0b 1a call 2019064 <_Objects_Get> 2016400: 90 12 21 94 or %o0, 0x194, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016404: c2 07 bf fc ld [ %fp + -4 ], %g1 2016408: 80 a0 60 00 cmp %g1, 0 201640c: 12 80 00 16 bne 2016464 2016410: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2016414: 40 00 13 bc call 201b304 <_Watchdog_Remove> 2016418: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201641c: c4 04 23 4c ld [ %l0 + 0x34c ], %g2 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016420: c2 07 60 04 ld [ %i5 + 4 ], %g1 2016424: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016428: b2 26 40 02 sub %i1, %g2, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 201642c: 90 10 00 1d mov %i5, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 2016430: 84 10 20 03 mov 3, %g2 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2016434: f4 26 20 2c st %i2, [ %i0 + 0x2c ] 2016438: c4 26 20 38 st %g2, [ %i0 + 0x38 ] the_watchdog->id = id; 201643c: f8 26 20 30 st %i4, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 2016440: f6 26 20 34 st %i3, [ %i0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016444: f2 26 20 1c st %i1, [ %i0 + 0x1c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2016448: c0 26 20 18 clr [ %i0 + 0x18 ] (*timer_server->schedule_operation)( timer_server, the_timer ); 201644c: 9f c0 40 00 call %g1 2016450: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2016454: 40 00 0e de call 2019fcc <_Thread_Enable_dispatch> 2016458: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201645c: 81 c7 e0 08 ret 2016460: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016464: 81 c7 e0 08 ret 2016468: 91 e8 20 04 restore %g0, 4, %o0