RTEMS 4.11Annotated Report
Sun Sep 11 17:32:40 2011
0200722c <_API_extensions_Run_postdriver>:
/*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
200722c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2007230: 39 00 80 71 sethi %hi(0x201c400), %i4
2007234: fa 07 21 64 ld [ %i4 + 0x164 ], %i5 ! 201c564 <_API_extensions_List>
2007238: b8 17 21 64 or %i4, 0x164, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
200723c: b8 07 20 04 add %i4, 4, %i4
2007240: 80 a7 40 1c cmp %i5, %i4
2007244: 02 80 00 09 be 2007268 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
2007248: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
200724c: c2 07 60 08 ld [ %i5 + 8 ], %g1
2007250: 9f c0 40 00 call %g1
2007254: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2007258: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
200725c: 80 a7 40 1c cmp %i5, %i4
2007260: 32 bf ff fc bne,a 2007250 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2007264: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED
2007268: 81 c7 e0 08 ret
200726c: 81 e8 00 00 restore
02007270 <_API_extensions_Run_postswitch>:
/*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
2007270: 9d e3 bf a0 save %sp, -96, %sp
2007274: 39 00 80 71 sethi %hi(0x201c400), %i4
2007278: fa 07 21 64 ld [ %i4 + 0x164 ], %i5 ! 201c564 <_API_extensions_List>
200727c: b8 17 21 64 or %i4, 0x164, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2007280: b8 07 20 04 add %i4, 4, %i4
2007284: 80 a7 40 1c cmp %i5, %i4
2007288: 02 80 00 0a be 20072b0 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
200728c: 37 00 80 71 sethi %hi(0x201c400), %i3
2007290: b6 16 e1 9c or %i3, 0x19c, %i3 ! 201c59c <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
2007294: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2007298: 9f c0 40 00 call %g1
200729c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
20072a0: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
20072a4: 80 a7 40 1c cmp %i5, %i4
20072a8: 32 bf ff fc bne,a 2007298 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
20072ac: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED
20072b0: 81 c7 e0 08 ret
20072b4: 81 e8 00 00 restore
02010abc <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010abc: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2010ac0: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010ac4: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
2010ac8: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2010acc: 80 8e e0 03 btst 3, %i3
2010ad0: 02 80 00 0a be 2010af8 <_CORE_message_queue_Initialize+0x3c>
2010ad4: b8 10 00 1b mov %i3, %i4
allocated_message_size += sizeof(uint32_t);
2010ad8: b8 06 e0 04 add %i3, 4, %i4
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2010adc: b8 0f 3f fc and %i4, -4, %i4
}
if (allocated_message_size < maximum_message_size)
2010ae0: 80 a6 c0 1c cmp %i3, %i4
2010ae4: 08 80 00 05 bleu 2010af8 <_CORE_message_queue_Initialize+0x3c><== ALWAYS TAKEN
2010ae8: ba 10 20 00 clr %i5
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010aec: b0 0f 60 01 and %i5, 1, %i0 <== NOT EXECUTED
2010af0: 81 c7 e0 08 ret
2010af4: 81 e8 00 00 restore
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
2010af8: b8 07 20 10 add %i4, 0x10, %i4
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
2010afc: 90 10 20 00 clr %o0
2010b00: 92 10 00 1a mov %i2, %o1
2010b04: 94 10 20 00 clr %o2
2010b08: 96 10 00 1c mov %i4, %o3
2010b0c: 40 00 41 35 call 2020fe0 <__muldi3>
2010b10: ba 10 20 00 clr %i5
if ( x > SIZE_MAX )
2010b14: 80 a2 20 00 cmp %o0, 0
2010b18: 34 bf ff f6 bg,a 2010af0 <_CORE_message_queue_Initialize+0x34>
2010b1c: b0 0f 60 01 and %i5, 1, %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010b20: 40 00 0c d6 call 2013e78 <_Workspace_Allocate>
2010b24: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010b28: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010b2c: 80 a2 20 00 cmp %o0, 0
2010b30: 02 bf ff ef be 2010aec <_CORE_message_queue_Initialize+0x30><== NEVER TAKEN
2010b34: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010b38: 90 06 20 60 add %i0, 0x60, %o0
2010b3c: 94 10 00 1a mov %i2, %o2
2010b40: 40 00 15 71 call 2016104 <_Chain_Initialize>
2010b44: 96 10 00 1c mov %i4, %o3
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010b48: c4 06 40 00 ld [ %i1 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010b4c: 82 06 20 50 add %i0, 0x50, %g1
2010b50: 84 18 a0 01 xor %g2, 1, %g2
2010b54: 80 a0 00 02 cmp %g0, %g2
2010b58: 84 06 20 54 add %i0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
2010b5c: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2010b60: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
2010b64: 90 10 00 18 mov %i0, %o0
head->previous = NULL;
2010b68: c0 26 20 54 clr [ %i0 + 0x54 ]
2010b6c: 92 60 3f ff subx %g0, -1, %o1
2010b70: 94 10 20 80 mov 0x80, %o2
2010b74: 96 10 20 06 mov 6, %o3
2010b78: 40 00 0a 33 call 2013444 <_Thread_queue_Initialize>
2010b7c: ba 10 20 01 mov 1, %i5
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010b80: b0 0f 60 01 and %i5, 1, %i0
2010b84: 81 c7 e0 08 ret
2010b88: 81 e8 00 00 restore
020077d0 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
20077d0: 9d e3 bf a0 save %sp, -96, %sp
20077d4: ba 10 00 18 mov %i0, %i5
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20077d8: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
20077dc: 40 00 07 9e call 2009654 <_Thread_queue_Dequeue>
20077e0: 90 10 00 1d mov %i5, %o0
20077e4: 80 a2 20 00 cmp %o0, 0
20077e8: 02 80 00 04 be 20077f8 <_CORE_semaphore_Surrender+0x28>
20077ec: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
20077f0: 81 c7 e0 08 ret
20077f4: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
20077f8: 7f ff ea 7b call 20021e4 <sparc_disable_interrupts>
20077fc: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2007800: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
2007804: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
2007808: 80 a0 40 02 cmp %g1, %g2
200780c: 1a 80 00 05 bcc 2007820 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
2007810: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2007814: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2007818: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
200781c: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2007820: 7f ff ea 75 call 20021f4 <sparc_enable_interrupts>
2007824: 01 00 00 00 nop
}
return status;
}
2007828: 81 c7 e0 08 ret
200782c: 81 e8 00 00 restore
0200c868 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
200c868: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
200c86c: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200c870: ba 06 20 04 add %i0, 4, %i5
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c874: 80 a6 a0 00 cmp %i2, 0
200c878: 02 80 00 12 be 200c8c0 <_Chain_Initialize+0x58> <== NEVER TAKEN
200c87c: 90 10 00 18 mov %i0, %o0
200c880: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
200c884: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
200c888: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
200c88c: 10 80 00 05 b 200c8a0 <_Chain_Initialize+0x38>
200c890: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c894: 84 10 00 01 mov %g1, %g2
200c898: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
200c89c: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
200c8a0: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
200c8a4: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c8a8: 80 a6 a0 00 cmp %i2, 0
200c8ac: 12 bf ff fa bne 200c894 <_Chain_Initialize+0x2c>
200c8b0: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
200c8b4: 40 00 2b d8 call 2017814 <.umul>
200c8b8: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c8bc: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
200c8c0: fa 22 00 00 st %i5, [ %o0 ]
tail->previous = current;
200c8c4: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
200c8c8: 81 c7 e0 08 ret
200c8cc: 81 e8 00 00 restore
020064b0 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
20064b0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20064b4: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
20064b8: 7f ff ef 4b call 20021e4 <sparc_disable_interrupts>
20064bc: f8 06 20 30 ld [ %i0 + 0x30 ], %i4
pending_events = api->pending_events;
20064c0: c4 07 40 00 ld [ %i5 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
20064c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
20064c8: 86 88 40 02 andcc %g1, %g2, %g3
20064cc: 02 80 00 39 be 20065b0 <_Event_Surrender+0x100>
20064d0: 09 00 80 71 sethi %hi(0x201c400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20064d4: 88 11 21 9c or %g4, 0x19c, %g4 ! 201c59c <_Per_CPU_Information>
20064d8: f2 01 20 08 ld [ %g4 + 8 ], %i1
20064dc: 80 a6 60 00 cmp %i1, 0
20064e0: 32 80 00 1c bne,a 2006550 <_Event_Surrender+0xa0>
20064e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
20064e8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
20064ec: 80 89 21 00 btst 0x100, %g4
20064f0: 02 80 00 30 be 20065b0 <_Event_Surrender+0x100>
20064f4: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
20064f8: 02 80 00 04 be 2006508 <_Event_Surrender+0x58>
20064fc: 80 8f 20 02 btst 2, %i4
2006500: 02 80 00 2c be 20065b0 <_Event_Surrender+0x100> <== NEVER TAKEN
2006504: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006508: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
200650c: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2006510: c4 27 40 00 st %g2, [ %i5 ]
the_thread->Wait.count = 0;
2006514: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006518: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
200651c: 7f ff ef 36 call 20021f4 <sparc_enable_interrupts>
2006520: 01 00 00 00 nop
2006524: 7f ff ef 30 call 20021e4 <sparc_disable_interrupts>
2006528: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200652c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
2006530: 80 a0 60 02 cmp %g1, 2
2006534: 02 80 00 21 be 20065b8 <_Event_Surrender+0x108>
2006538: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200653c: 7f ff ef 2e call 20021f4 <sparc_enable_interrupts>
2006540: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006544: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2006548: 40 00 0a 74 call 2008f18 <_Thread_Clear_state>
200654c: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006550: 80 a6 00 04 cmp %i0, %g4
2006554: 32 bf ff e6 bne,a 20064ec <_Event_Surrender+0x3c>
2006558: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
200655c: 09 00 80 71 sethi %hi(0x201c400), %g4
2006560: f2 01 21 f0 ld [ %g4 + 0x1f0 ], %i1 ! 201c5f0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2006564: 80 a6 60 02 cmp %i1, 2
2006568: 02 80 00 07 be 2006584 <_Event_Surrender+0xd4> <== NEVER TAKEN
200656c: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2006570: f2 01 21 f0 ld [ %g4 + 0x1f0 ], %i1
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2006574: 80 a6 60 01 cmp %i1, 1
2006578: 32 bf ff dd bne,a 20064ec <_Event_Surrender+0x3c>
200657c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2006580: 80 a0 40 03 cmp %g1, %g3
2006584: 02 80 00 04 be 2006594 <_Event_Surrender+0xe4>
2006588: 80 8f 20 02 btst 2, %i4
200658c: 02 80 00 09 be 20065b0 <_Event_Surrender+0x100> <== NEVER TAKEN
2006590: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006594: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
2006598: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
200659c: c4 27 40 00 st %g2, [ %i5 ]
the_thread->Wait.count = 0;
20065a0: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20065a4: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20065a8: 82 10 20 03 mov 3, %g1
20065ac: c2 21 21 f0 st %g1, [ %g4 + 0x1f0 ]
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
20065b0: 7f ff ef 11 call 20021f4 <sparc_enable_interrupts>
20065b4: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
20065b8: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
20065bc: 7f ff ef 0e call 20021f4 <sparc_enable_interrupts>
20065c0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
20065c4: 40 00 0f 5b call 200a330 <_Watchdog_Remove>
20065c8: 90 06 20 48 add %i0, 0x48, %o0
20065cc: b2 16 63 f8 or %i1, 0x3f8, %i1
20065d0: 40 00 0a 52 call 2008f18 <_Thread_Clear_state>
20065d4: 81 e8 00 00 restore
020065d8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
20065d8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
20065dc: 90 10 00 18 mov %i0, %o0
20065e0: 40 00 0b 50 call 2009320 <_Thread_Get>
20065e4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20065e8: c2 07 bf fc ld [ %fp + -4 ], %g1
20065ec: 80 a0 60 00 cmp %g1, 0
20065f0: 12 80 00 16 bne 2006648 <_Event_Timeout+0x70> <== NEVER TAKEN
20065f4: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
20065f8: 7f ff ee fb call 20021e4 <sparc_disable_interrupts>
20065fc: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2006600: 03 00 80 71 sethi %hi(0x201c400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2006604: c2 00 61 a8 ld [ %g1 + 0x1a8 ], %g1 ! 201c5a8 <_Per_CPU_Information+0xc>
2006608: 80 a7 40 01 cmp %i5, %g1
200660c: 02 80 00 11 be 2006650 <_Event_Timeout+0x78>
2006610: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2006614: 82 10 20 06 mov 6, %g1
2006618: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
200661c: 7f ff ee f6 call 20021f4 <sparc_enable_interrupts>
2006620: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006624: 90 10 00 1d mov %i5, %o0
2006628: 13 04 00 ff sethi %hi(0x1003fc00), %o1
200662c: 40 00 0a 3b call 2008f18 <_Thread_Clear_state>
2006630: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2006634: 03 00 80 70 sethi %hi(0x201c000), %g1
2006638: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201c370 <_Thread_Dispatch_disable_level>
200663c: 84 00 bf ff add %g2, -1, %g2
2006640: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
return _Thread_Dispatch_disable_level;
2006644: c2 00 63 70 ld [ %g1 + 0x370 ], %g1
2006648: 81 c7 e0 08 ret
200664c: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2006650: 03 00 80 71 sethi %hi(0x201c400), %g1
2006654: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201c5f0 <_Event_Sync_state>
2006658: 80 a0 a0 01 cmp %g2, 1
200665c: 32 bf ff ef bne,a 2006618 <_Event_Timeout+0x40>
2006660: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2006664: 84 10 20 02 mov 2, %g2
2006668: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
200666c: 10 bf ff eb b 2006618 <_Event_Timeout+0x40>
2006670: 82 10 20 06 mov 6, %g1
0200ca90 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200ca90: 9d e3 bf 98 save %sp, -104, %sp
200ca94: ba 10 00 18 mov %i0, %i5
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200ca98: a0 06 60 04 add %i1, 4, %l0
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
200ca9c: ec 06 20 10 ld [ %i0 + 0x10 ], %l6
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
200caa0: 80 a6 40 10 cmp %i1, %l0
200caa4: 18 80 00 23 bgu 200cb30 <_Heap_Allocate_aligned_with_boundary+0xa0>
200caa8: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200caac: 80 a6 e0 00 cmp %i3, 0
200cab0: 12 80 00 7d bne 200cca4 <_Heap_Allocate_aligned_with_boundary+0x214>
200cab4: 80 a6 40 1b cmp %i1, %i3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200cab8: e2 07 60 08 ld [ %i5 + 8 ], %l1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200cabc: 80 a7 40 11 cmp %i5, %l1
200cac0: 02 80 00 18 be 200cb20 <_Heap_Allocate_aligned_with_boundary+0x90>
200cac4: b8 10 20 00 clr %i4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200cac8: 82 05 a0 07 add %l6, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200cacc: ae 10 20 04 mov 4, %l7
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200cad0: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200cad4: 10 80 00 0b b 200cb00 <_Heap_Allocate_aligned_with_boundary+0x70>
200cad8: ae 25 c0 19 sub %l7, %i1, %l7
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
if ( alignment == 0 ) {
200cadc: 12 80 00 17 bne 200cb38 <_Heap_Allocate_aligned_with_boundary+0xa8>
200cae0: b0 04 60 08 add %l1, 8, %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200cae4: 80 a6 20 00 cmp %i0, 0
200cae8: 12 80 00 5b bne 200cc54 <_Heap_Allocate_aligned_with_boundary+0x1c4>
200caec: b8 07 20 01 inc %i4
break;
}
block = block->next;
200caf0: e2 04 60 08 ld [ %l1 + 8 ], %l1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200caf4: 80 a7 40 11 cmp %i5, %l1
200caf8: 22 80 00 0b be,a 200cb24 <_Heap_Allocate_aligned_with_boundary+0x94>
200cafc: c2 07 60 44 ld [ %i5 + 0x44 ], %g1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200cb00: e4 04 60 04 ld [ %l1 + 4 ], %l2
200cb04: 80 a4 00 12 cmp %l0, %l2
200cb08: 0a bf ff f5 bcs 200cadc <_Heap_Allocate_aligned_with_boundary+0x4c>
200cb0c: 80 a6 a0 00 cmp %i2, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200cb10: e2 04 60 08 ld [ %l1 + 8 ], %l1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200cb14: 80 a7 40 11 cmp %i5, %l1
200cb18: 12 bf ff fa bne 200cb00 <_Heap_Allocate_aligned_with_boundary+0x70>
200cb1c: b8 07 20 01 inc %i4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200cb20: c2 07 60 44 ld [ %i5 + 0x44 ], %g1
200cb24: 80 a0 40 1c cmp %g1, %i4
200cb28: 0a 80 00 5a bcs 200cc90 <_Heap_Allocate_aligned_with_boundary+0x200>
200cb2c: b0 10 20 00 clr %i0
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200cb30: 81 c7 e0 08 ret
200cb34: 81 e8 00 00 restore
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200cb38: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200cb3c: ea 07 60 14 ld [ %i5 + 0x14 ], %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cb40: a4 0c bf fe and %l2, -2, %l2
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200cb44: 82 20 80 15 sub %g2, %l5, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200cb48: a4 04 40 12 add %l1, %l2, %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cb4c: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200cb50: b0 05 c0 12 add %l7, %l2, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200cb54: a4 00 40 12 add %g1, %l2, %l2
200cb58: 40 00 2c 15 call 2017bac <.urem>
200cb5c: 90 10 00 18 mov %i0, %o0
200cb60: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200cb64: 80 a4 80 18 cmp %l2, %i0
200cb68: 1a 80 00 06 bcc 200cb80 <_Heap_Allocate_aligned_with_boundary+0xf0>
200cb6c: a8 04 60 08 add %l1, 8, %l4
200cb70: 90 10 00 12 mov %l2, %o0
200cb74: 40 00 2c 0e call 2017bac <.urem>
200cb78: 92 10 00 1a mov %i2, %o1
200cb7c: b0 24 80 08 sub %l2, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200cb80: 80 a6 e0 00 cmp %i3, 0
200cb84: 02 80 00 24 be 200cc14 <_Heap_Allocate_aligned_with_boundary+0x184>
200cb88: 80 a5 00 18 cmp %l4, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200cb8c: a4 06 00 19 add %i0, %i1, %l2
200cb90: 92 10 00 1b mov %i3, %o1
200cb94: 40 00 2c 06 call 2017bac <.urem>
200cb98: 90 10 00 12 mov %l2, %o0
200cb9c: 90 24 80 08 sub %l2, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200cba0: 80 a6 00 08 cmp %i0, %o0
200cba4: 1a 80 00 1b bcc 200cc10 <_Heap_Allocate_aligned_with_boundary+0x180>
200cba8: 80 a2 00 12 cmp %o0, %l2
200cbac: 1a 80 00 1a bcc 200cc14 <_Heap_Allocate_aligned_with_boundary+0x184>
200cbb0: 80 a5 00 18 cmp %l4, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200cbb4: a6 05 00 19 add %l4, %i1, %l3
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
200cbb8: 80 a4 c0 08 cmp %l3, %o0
200cbbc: 08 80 00 08 bleu 200cbdc <_Heap_Allocate_aligned_with_boundary+0x14c>
200cbc0: b0 10 20 00 clr %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200cbc4: 10 bf ff c9 b 200cae8 <_Heap_Allocate_aligned_with_boundary+0x58>
200cbc8: 80 a6 20 00 cmp %i0, 0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200cbcc: 1a 80 00 11 bcc 200cc10 <_Heap_Allocate_aligned_with_boundary+0x180>
200cbd0: 80 a4 c0 08 cmp %l3, %o0
if ( boundary_line < boundary_floor ) {
200cbd4: 18 bf ff c4 bgu 200cae4 <_Heap_Allocate_aligned_with_boundary+0x54><== NEVER TAKEN
200cbd8: b0 10 20 00 clr %i0
return 0;
}
alloc_begin = boundary_line - alloc_size;
200cbdc: b0 22 00 19 sub %o0, %i1, %i0
200cbe0: 92 10 00 1a mov %i2, %o1
200cbe4: 40 00 2b f2 call 2017bac <.urem>
200cbe8: 90 10 00 18 mov %i0, %o0
200cbec: 92 10 00 1b mov %i3, %o1
200cbf0: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200cbf4: a4 06 00 19 add %i0, %i1, %l2
200cbf8: 40 00 2b ed call 2017bac <.urem>
200cbfc: 90 10 00 12 mov %l2, %o0
200cc00: 90 24 80 08 sub %l2, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200cc04: 80 a2 00 12 cmp %o0, %l2
200cc08: 0a bf ff f1 bcs 200cbcc <_Heap_Allocate_aligned_with_boundary+0x13c>
200cc0c: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200cc10: 80 a5 00 18 cmp %l4, %i0
200cc14: 18 80 00 22 bgu 200cc9c <_Heap_Allocate_aligned_with_boundary+0x20c>
200cc18: 82 10 3f f8 mov -8, %g1
200cc1c: 90 10 00 18 mov %i0, %o0
200cc20: a4 20 40 11 sub %g1, %l1, %l2
200cc24: 92 10 00 16 mov %l6, %o1
200cc28: 40 00 2b e1 call 2017bac <.urem>
200cc2c: a4 04 80 18 add %l2, %i0, %l2
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200cc30: 90 a4 80 08 subcc %l2, %o0, %o0
200cc34: 02 bf ff ad be 200cae8 <_Heap_Allocate_aligned_with_boundary+0x58>
200cc38: 80 a6 20 00 cmp %i0, 0
200cc3c: 80 a2 00 15 cmp %o0, %l5
return alloc_begin;
}
}
return 0;
200cc40: 82 40 3f ff addx %g0, -1, %g1
200cc44: b0 0e 00 01 and %i0, %g1, %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200cc48: 80 a6 20 00 cmp %i0, 0
200cc4c: 02 bf ff a9 be 200caf0 <_Heap_Allocate_aligned_with_boundary+0x60>
200cc50: b8 07 20 01 inc %i4
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200cc54: c4 07 60 48 ld [ %i5 + 0x48 ], %g2
stats->searches += search_count;
200cc58: c2 07 60 4c ld [ %i5 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200cc5c: 84 00 a0 01 inc %g2
stats->searches += search_count;
200cc60: 82 00 40 1c add %g1, %i4, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200cc64: c4 27 60 48 st %g2, [ %i5 + 0x48 ]
stats->searches += search_count;
200cc68: c2 27 60 4c st %g1, [ %i5 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200cc6c: 90 10 00 1d mov %i5, %o0
200cc70: 92 10 00 11 mov %l1, %o1
200cc74: 94 10 00 18 mov %i0, %o2
200cc78: 7f ff eb fb call 2007c64 <_Heap_Block_allocate>
200cc7c: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200cc80: c2 07 60 44 ld [ %i5 + 0x44 ], %g1
200cc84: 80 a0 40 1c cmp %g1, %i4
200cc88: 1a 80 00 03 bcc 200cc94 <_Heap_Allocate_aligned_with_boundary+0x204>
200cc8c: 01 00 00 00 nop
stats->max_search = search_count;
200cc90: f8 27 60 44 st %i4, [ %i5 + 0x44 ]
}
return (void *) alloc_begin;
}
200cc94: 81 c7 e0 08 ret
200cc98: 81 e8 00 00 restore
if ( free_size >= min_block_size || free_size == 0 ) {
return alloc_begin;
}
}
return 0;
200cc9c: 10 bf ff 92 b 200cae4 <_Heap_Allocate_aligned_with_boundary+0x54>
200cca0: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200cca4: 18 bf ff a3 bgu 200cb30 <_Heap_Allocate_aligned_with_boundary+0xa0>
200cca8: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200ccac: 22 bf ff 83 be,a 200cab8 <_Heap_Allocate_aligned_with_boundary+0x28>
200ccb0: b4 10 00 16 mov %l6, %i2
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200ccb4: 10 bf ff 82 b 200cabc <_Heap_Allocate_aligned_with_boundary+0x2c>
200ccb8: e2 07 60 08 ld [ %i5 + 8 ], %l1
0200c898 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c898: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200c89c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200c8a0: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200c8a4: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200c8a8: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200c8ac: e0 06 20 10 ld [ %i0 + 0x10 ], %l0
uintptr_t const min_block_size = heap->min_block_size;
200c8b0: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200c8b4: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200c8b8: 80 a6 40 1d cmp %i1, %i5
200c8bc: 08 80 00 05 bleu 200c8d0 <_Heap_Extend+0x38>
200c8c0: a2 10 20 00 clr %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200c8c4: b0 0c 60 01 and %l1, 1, %i0
200c8c8: 81 c7 e0 08 ret
200c8cc: 81 e8 00 00 restore
if ( extend_area_end < extend_area_begin ) {
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200c8d0: 90 10 00 19 mov %i1, %o0
200c8d4: 92 10 00 1a mov %i2, %o1
200c8d8: 94 10 00 10 mov %l0, %o2
200c8dc: 98 07 bf f8 add %fp, -8, %o4
200c8e0: 7f ff eb a8 call 2007780 <_Heap_Get_first_and_last_block>
200c8e4: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200c8e8: 80 8a 20 ff btst 0xff, %o0
200c8ec: 02 bf ff f6 be 200c8c4 <_Heap_Extend+0x2c>
200c8f0: aa 10 20 00 clr %l5
200c8f4: a2 10 00 1c mov %i4, %l1
200c8f8: ac 10 20 00 clr %l6
200c8fc: a6 10 20 00 clr %l3
200c900: 10 80 00 14 b 200c950 <_Heap_Extend+0xb8>
200c904: a8 10 20 00 clr %l4
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c908: 2a 80 00 02 bcs,a 200c910 <_Heap_Extend+0x78>
200c90c: ac 10 00 11 mov %l1, %l6
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c910: 90 10 00 1a mov %i2, %o0
200c914: 40 00 16 bd call 2012408 <.urem>
200c918: 92 10 00 10 mov %l0, %o1
200c91c: 82 06 bf f8 add %i2, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c920: 80 a6 80 19 cmp %i2, %i1
200c924: 02 80 00 1c be 200c994 <_Heap_Extend+0xfc>
200c928: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c92c: 80 a6 40 1a cmp %i1, %i2
200c930: 38 80 00 02 bgu,a 200c938 <_Heap_Extend+0xa0>
200c934: aa 10 00 01 mov %g1, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c938: e2 00 60 04 ld [ %g1 + 4 ], %l1
200c93c: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c940: a2 04 40 01 add %l1, %g1, %l1
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c944: 80 a7 00 11 cmp %i4, %l1
200c948: 22 80 00 1b be,a 200c9b4 <_Heap_Extend+0x11c>
200c94c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200c950: 80 a4 40 1c cmp %l1, %i4
200c954: 02 80 00 66 be 200caec <_Heap_Extend+0x254>
200c958: 82 10 00 11 mov %l1, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c95c: 80 a0 40 1d cmp %g1, %i5
200c960: 0a 80 00 70 bcs 200cb20 <_Heap_Extend+0x288>
200c964: f4 04 40 00 ld [ %l1 ], %i2
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c968: 80 a0 40 1d cmp %g1, %i5
200c96c: 12 bf ff e7 bne 200c908 <_Heap_Extend+0x70>
200c970: 80 a7 40 1a cmp %i5, %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c974: 90 10 00 1a mov %i2, %o0
200c978: 40 00 16 a4 call 2012408 <.urem>
200c97c: 92 10 00 10 mov %l0, %o1
200c980: 82 06 bf f8 add %i2, -8, %g1
200c984: a8 10 00 11 mov %l1, %l4
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c988: 80 a6 80 19 cmp %i2, %i1
200c98c: 12 bf ff e8 bne 200c92c <_Heap_Extend+0x94> <== ALWAYS TAKEN
200c990: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
200c994: fa 24 40 00 st %i5, [ %l1 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c998: e2 00 60 04 ld [ %g1 + 4 ], %l1
200c99c: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c9a0: a2 04 40 01 add %l1, %g1, %l1
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c9a4: 80 a7 00 11 cmp %i4, %l1
200c9a8: 12 bf ff ea bne 200c950 <_Heap_Extend+0xb8> <== NEVER TAKEN
200c9ac: a6 10 00 01 mov %g1, %l3
if ( extend_area_begin < heap->area_begin ) {
200c9b0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200c9b4: 80 a6 40 01 cmp %i1, %g1
200c9b8: 3a 80 00 55 bcc,a 200cb0c <_Heap_Extend+0x274>
200c9bc: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c9c0: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c9c4: c2 07 bf f8 ld [ %fp + -8 ], %g1
200c9c8: c4 07 bf fc ld [ %fp + -4 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c9cc: c8 06 20 20 ld [ %i0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200c9d0: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200c9d4: fa 20 40 00 st %i5, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c9d8: b8 10 e0 01 or %g3, 1, %i4
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200c9dc: f8 20 60 04 st %i4, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200c9e0: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c9e4: 80 a1 00 01 cmp %g4, %g1
200c9e8: 08 80 00 43 bleu 200caf4 <_Heap_Extend+0x25c>
200c9ec: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200c9f0: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200c9f4: 80 a5 20 00 cmp %l4, 0
200c9f8: 02 80 00 63 be 200cb84 <_Heap_Extend+0x2ec>
200c9fc: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200ca00: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200ca04: 92 10 00 1c mov %i4, %o1
200ca08: 40 00 16 80 call 2012408 <.urem>
200ca0c: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200ca10: 80 a2 20 00 cmp %o0, 0
200ca14: 02 80 00 04 be 200ca24 <_Heap_Extend+0x18c>
200ca18: c4 05 00 00 ld [ %l4 ], %g2
return value - remainder + alignment;
200ca1c: b2 06 40 1c add %i1, %i4, %i1
200ca20: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200ca24: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200ca28: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200ca2c: 84 25 00 01 sub %l4, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200ca30: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200ca34: 90 10 00 18 mov %i0, %o0
200ca38: 92 10 00 01 mov %g1, %o1
200ca3c: 7f ff ff 8d call 200c870 <_Heap_Free_block>
200ca40: c4 26 7f fc st %g2, [ %i1 + -4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200ca44: 80 a4 e0 00 cmp %l3, 0
200ca48: 02 80 00 3b be 200cb34 <_Heap_Extend+0x29c>
200ca4c: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ca50: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200ca54: ba 27 40 13 sub %i5, %l3, %i5
200ca58: 40 00 16 6c call 2012408 <.urem>
200ca5c: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200ca60: c2 04 e0 04 ld [ %l3 + 4 ], %g1
200ca64: ba 27 40 08 sub %i5, %o0, %i5
200ca68: 82 20 40 1d sub %g1, %i5, %g1
| HEAP_PREV_BLOCK_USED;
200ca6c: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200ca70: 84 07 40 13 add %i5, %l3, %g2
200ca74: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ca78: c2 04 e0 04 ld [ %l3 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200ca7c: 90 10 00 18 mov %i0, %o0
200ca80: 82 08 60 01 and %g1, 1, %g1
200ca84: 92 10 00 13 mov %l3, %o1
block->size_and_flag = size | flag;
200ca88: ba 17 40 01 or %i5, %g1, %i5
200ca8c: 7f ff ff 79 call 200c870 <_Heap_Free_block>
200ca90: fa 24 e0 04 st %i5, [ %l3 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200ca94: 80 a4 e0 00 cmp %l3, 0
200ca98: 02 80 00 34 be 200cb68 <_Heap_Extend+0x2d0>
200ca9c: 80 a5 20 00 cmp %l4, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200caa0: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200caa4: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200caa8: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200caac: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cab0: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200cab4: 84 10 80 03 or %g2, %g3, %g2
200cab8: c4 20 60 04 st %g2, [ %g1 + 4 ]
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200cabc: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200cac0: c4 06 20 30 ld [ %i0 + 0x30 ], %g2
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200cac4: a2 10 20 01 mov 1, %l1
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200cac8: a4 20 80 12 sub %g2, %l2, %l2
/* Statistics */
stats->size += extended_size;
200cacc: 82 00 40 12 add %g1, %l2, %g1
if ( extended_size_ptr != NULL )
200cad0: 80 a6 e0 00 cmp %i3, 0
200cad4: 02 bf ff 7c be 200c8c4 <_Heap_Extend+0x2c> <== NEVER TAKEN
200cad8: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
*extended_size_ptr = extended_size;
200cadc: e4 26 c0 00 st %l2, [ %i3 ]
return true;
}
200cae0: b0 0c 60 01 and %l1, 1, %i0
200cae4: 81 c7 e0 08 ret
200cae8: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200caec: 10 bf ff 9c b 200c95c <_Heap_Extend+0xc4>
200caf0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200caf4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200caf8: 80 a0 40 02 cmp %g1, %g2
200cafc: 2a bf ff be bcs,a 200c9f4 <_Heap_Extend+0x15c>
200cb00: c4 26 20 24 st %g2, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200cb04: 10 bf ff bd b 200c9f8 <_Heap_Extend+0x160>
200cb08: 80 a5 20 00 cmp %l4, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200cb0c: 80 a7 40 01 cmp %i5, %g1
200cb10: 38 bf ff ad bgu,a 200c9c4 <_Heap_Extend+0x12c>
200cb14: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cb18: 10 bf ff ac b 200c9c8 <_Heap_Extend+0x130>
200cb1c: c2 07 bf f8 ld [ %fp + -8 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cb20: 80 a6 40 1a cmp %i1, %i2
200cb24: 1a bf ff 92 bcc 200c96c <_Heap_Extend+0xd4>
200cb28: 80 a0 40 1d cmp %g1, %i5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
200cb2c: 10 bf ff 66 b 200c8c4 <_Heap_Extend+0x2c>
200cb30: a2 10 20 00 clr %l1
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200cb34: 80 a5 60 00 cmp %l5, 0
200cb38: 02 bf ff d7 be 200ca94 <_Heap_Extend+0x1fc>
200cb3c: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cb40: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200cb44: c2 07 bf fc ld [ %fp + -4 ], %g1
200cb48: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200cb4c: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200cb50: 84 10 c0 02 or %g3, %g2, %g2
200cb54: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200cb58: c4 00 60 04 ld [ %g1 + 4 ], %g2
200cb5c: 84 10 a0 01 or %g2, 1, %g2
200cb60: 10 bf ff cd b 200ca94 <_Heap_Extend+0x1fc>
200cb64: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200cb68: 32 bf ff cf bne,a 200caa4 <_Heap_Extend+0x20c>
200cb6c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200cb70: d2 07 bf f8 ld [ %fp + -8 ], %o1
200cb74: 7f ff ff 3f call 200c870 <_Heap_Free_block>
200cb78: 90 10 00 18 mov %i0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cb7c: 10 bf ff ca b 200caa4 <_Heap_Extend+0x20c>
200cb80: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200cb84: 80 a5 a0 00 cmp %l6, 0
200cb88: 02 bf ff b0 be 200ca48 <_Heap_Extend+0x1b0>
200cb8c: 80 a4 e0 00 cmp %l3, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200cb90: ac 25 80 02 sub %l6, %g2, %l6
200cb94: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200cb98: 10 bf ff ac b 200ca48 <_Heap_Extend+0x1b0>
200cb9c: ec 20 a0 04 st %l6, [ %g2 + 4 ]
0200ccbc <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200ccbc: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200ccc0: 80 a6 60 00 cmp %i1, 0
200ccc4: 02 80 00 56 be 200ce1c <_Heap_Free+0x160>
200ccc8: 84 10 20 01 mov 1, %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cccc: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200ccd0: 40 00 2b b7 call 2017bac <.urem>
200ccd4: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200ccd8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ccdc: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cce0: ba 27 40 08 sub %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cce4: 80 a7 40 01 cmp %i5, %g1
200cce8: 0a 80 00 4d bcs 200ce1c <_Heap_Free+0x160>
200ccec: 84 10 20 00 clr %g2
200ccf0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
200ccf4: 80 a7 40 04 cmp %i5, %g4
200ccf8: 38 80 00 4a bgu,a 200ce20 <_Heap_Free+0x164>
200ccfc: b0 08 a0 01 and %g2, 1, %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cd00: de 07 60 04 ld [ %i5 + 4 ], %o7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cd04: b2 0b ff fe and %o7, -2, %i1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cd08: 86 06 40 1d add %i1, %i5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cd0c: 80 a0 40 03 cmp %g1, %g3
200cd10: 38 80 00 44 bgu,a 200ce20 <_Heap_Free+0x164> <== NEVER TAKEN
200cd14: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED
200cd18: 80 a1 00 03 cmp %g4, %g3
200cd1c: 2a 80 00 41 bcs,a 200ce20 <_Heap_Free+0x164> <== NEVER TAKEN
200cd20: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED
200cd24: da 00 e0 04 ld [ %g3 + 4 ], %o5
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200cd28: 80 8b 60 01 btst 1, %o5
200cd2c: 02 80 00 3c be 200ce1c <_Heap_Free+0x160>
200cd30: 98 0b 7f fe and %o5, -2, %o4
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200cd34: 80 a1 00 03 cmp %g4, %g3
200cd38: 02 80 00 06 be 200cd50 <_Heap_Free+0x94>
200cd3c: 9a 10 20 00 clr %o5
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cd40: 84 00 c0 0c add %g3, %o4, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cd44: da 00 a0 04 ld [ %g2 + 4 ], %o5
200cd48: 9a 0b 60 01 and %o5, 1, %o5
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
200cd4c: 9a 1b 60 01 xor %o5, 1, %o5
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200cd50: 80 8b e0 01 btst 1, %o7
200cd54: 12 80 00 1c bne 200cdc4 <_Heap_Free+0x108>
200cd58: 80 8b 60 ff btst 0xff, %o5
uintptr_t const prev_size = block->prev_size;
200cd5c: d6 07 40 00 ld [ %i5 ], %o3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cd60: 9e 27 40 0b sub %i5, %o3, %o7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cd64: 80 a0 40 0f cmp %g1, %o7
200cd68: 18 80 00 2d bgu 200ce1c <_Heap_Free+0x160> <== NEVER TAKEN
200cd6c: 84 10 20 00 clr %g2
200cd70: 80 a1 00 0f cmp %g4, %o7
200cd74: 2a 80 00 2b bcs,a 200ce20 <_Heap_Free+0x164> <== NEVER TAKEN
200cd78: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cd7c: c2 03 e0 04 ld [ %o7 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200cd80: 80 88 60 01 btst 1, %g1
200cd84: 02 80 00 26 be 200ce1c <_Heap_Free+0x160> <== NEVER TAKEN
200cd88: 80 8b 60 ff btst 0xff, %o5
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200cd8c: 02 80 00 39 be 200ce70 <_Heap_Free+0x1b4>
200cd90: 96 06 40 0b add %i1, %o3, %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cd94: c2 00 e0 08 ld [ %g3 + 8 ], %g1
200cd98: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cd9c: c6 06 20 38 ld [ %i0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
200cda0: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200cda4: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200cda8: 82 00 ff ff add %g3, -1, %g1
200cdac: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200cdb0: 98 02 c0 0c add %o3, %o4, %o4
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cdb4: 82 13 20 01 or %o4, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200cdb8: d8 23 00 0f st %o4, [ %o4 + %o7 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cdbc: 10 80 00 0e b 200cdf4 <_Heap_Free+0x138>
200cdc0: c2 23 e0 04 st %g1, [ %o7 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200cdc4: 22 80 00 19 be,a 200ce28 <_Heap_Free+0x16c>
200cdc8: c4 06 20 08 ld [ %i0 + 8 ], %g2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cdcc: c4 00 e0 08 ld [ %g3 + 8 ], %g2
200cdd0: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
200cdd4: c4 27 60 08 st %g2, [ %i5 + 8 ]
new_block->prev = prev;
200cdd8: c2 27 60 0c st %g1, [ %i5 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200cddc: 98 03 00 19 add %o4, %i1, %o4
next->prev = new_block;
200cde0: fa 20 a0 0c st %i5, [ %g2 + 0xc ]
prev->next = new_block;
200cde4: fa 20 60 08 st %i5, [ %g1 + 8 ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cde8: 84 13 20 01 or %o4, 1, %g2
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200cdec: d8 23 00 1d st %o4, [ %o4 + %i5 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cdf0: c4 27 60 04 st %g2, [ %i5 + 4 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cdf4: c4 06 20 40 ld [ %i0 + 0x40 ], %g2
++stats->frees;
200cdf8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
stats->free_size += block_size;
200cdfc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200ce00: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
200ce04: 82 00 60 01 inc %g1
stats->free_size += block_size;
200ce08: b2 00 c0 19 add %g3, %i1, %i1
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200ce0c: c4 26 20 40 st %g2, [ %i0 + 0x40 ]
++stats->frees;
200ce10: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200ce14: f2 26 20 30 st %i1, [ %i0 + 0x30 ]
return( true );
200ce18: 84 10 20 01 mov 1, %g2
}
200ce1c: b0 08 a0 01 and %g2, 1, %i0
200ce20: 81 c7 e0 08 ret
200ce24: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200ce28: 82 16 60 01 or %i1, 1, %g1
200ce2c: c2 27 60 04 st %g1, [ %i5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce30: c8 00 e0 04 ld [ %g3 + 4 ], %g4
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200ce34: f0 27 60 0c st %i0, [ %i5 + 0xc ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200ce38: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200ce3c: c4 27 60 08 st %g2, [ %i5 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200ce40: fa 20 a0 0c st %i5, [ %g2 + 0xc ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce44: 84 09 3f fe and %g4, -2, %g2
next_block->prev_size = block_size;
200ce48: f2 26 40 1d st %i1, [ %i1 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce4c: c4 20 e0 04 st %g2, [ %g3 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200ce50: c4 06 20 3c ld [ %i0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200ce54: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200ce58: fa 26 20 08 st %i5, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200ce5c: 80 a0 40 02 cmp %g1, %g2
200ce60: 08 bf ff e5 bleu 200cdf4 <_Heap_Free+0x138>
200ce64: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200ce68: 10 bf ff e3 b 200cdf4 <_Heap_Free+0x138>
200ce6c: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200ce70: 82 12 e0 01 or %o3, 1, %g1
200ce74: c2 23 e0 04 st %g1, [ %o7 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce78: c2 00 e0 04 ld [ %g3 + 4 ], %g1
next_block->prev_size = size;
200ce7c: d6 26 40 1d st %o3, [ %i1 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce80: 82 08 7f fe and %g1, -2, %g1
200ce84: 10 bf ff dc b 200cdf4 <_Heap_Free+0x138>
200ce88: c2 20 e0 04 st %g1, [ %g3 + 4 ]
0200d3a4 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
200d3a4: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
200d3a8: fa 06 20 20 ld [ %i0 + 0x20 ], %i5
Heap_Block *const end = the_heap->last_block;
200d3ac: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
memset(the_info, 0, sizeof(*the_info));
200d3b0: 92 10 20 00 clr %o1
200d3b4: 90 10 00 19 mov %i1, %o0
200d3b8: 40 00 09 27 call 200f854 <memset>
200d3bc: 94 10 20 18 mov 0x18, %o2
while ( the_block != end ) {
200d3c0: 80 a7 40 1c cmp %i5, %i4
200d3c4: 02 80 00 17 be 200d420 <_Heap_Get_information+0x7c> <== NEVER TAKEN
200d3c8: 01 00 00 00 nop
200d3cc: c6 07 60 04 ld [ %i5 + 4 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d3d0: 84 08 ff fe and %g3, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d3d4: ba 07 40 02 add %i5, %g2, %i5
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
200d3d8: c6 07 60 04 ld [ %i5 + 4 ], %g3
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
200d3dc: 80 88 e0 01 btst 1, %g3
200d3e0: 02 80 00 03 be 200d3ec <_Heap_Get_information+0x48>
200d3e4: 82 10 00 19 mov %i1, %g1
info = &the_info->Used;
200d3e8: 82 06 60 0c add %i1, 0xc, %g1
else
info = &the_info->Free;
info->number++;
200d3ec: de 00 40 00 ld [ %g1 ], %o7
info->total += the_size;
200d3f0: f0 00 60 08 ld [ %g1 + 8 ], %i0
if ( info->largest < the_size )
200d3f4: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d3f8: 9e 03 e0 01 inc %o7
info->total += the_size;
200d3fc: b0 06 00 02 add %i0, %g2, %i0
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d400: de 20 40 00 st %o7, [ %g1 ]
info->total += the_size;
if ( info->largest < the_size )
200d404: 80 a1 00 02 cmp %g4, %g2
200d408: 1a 80 00 03 bcc 200d414 <_Heap_Get_information+0x70>
200d40c: f0 20 60 08 st %i0, [ %g1 + 8 ]
info->largest = the_size;
200d410: c4 20 60 04 st %g2, [ %g1 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
200d414: 80 a7 00 1d cmp %i4, %i5
200d418: 12 bf ff ef bne 200d3d4 <_Heap_Get_information+0x30>
200d41c: 84 08 ff fe and %g3, -2, %g2
200d420: 81 c7 e0 08 ret
200d424: 81 e8 00 00 restore
020196c4 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
20196c4: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20196c8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
20196cc: 7f ff f9 38 call 2017bac <.urem>
20196d0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
20196d4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20196d8: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
20196dc: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20196e0: 80 a0 80 01 cmp %g2, %g1
20196e4: 0a 80 00 16 bcs 201973c <_Heap_Size_of_alloc_area+0x78>
20196e8: 86 10 20 00 clr %g3
20196ec: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
20196f0: 80 a0 80 04 cmp %g2, %g4
20196f4: 18 80 00 13 bgu 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
20196f8: b0 08 e0 01 and %g3, 1, %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20196fc: f0 00 a0 04 ld [ %g2 + 4 ], %i0
2019700: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2019704: 84 06 00 02 add %i0, %g2, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2019708: 80 a0 40 02 cmp %g1, %g2
201970c: 18 80 00 0d bgu 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
2019710: b0 08 e0 01 and %g3, 1, %i0
2019714: 80 a1 00 02 cmp %g4, %g2
2019718: 0a 80 00 0a bcs 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
201971c: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2019720: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2019724: 80 88 60 01 btst 1, %g1
2019728: 02 80 00 06 be 2019740 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
201972c: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2019730: 86 10 20 01 mov 1, %g3
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2019734: 84 00 a0 04 add %g2, 4, %g2
2019738: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
201973c: b0 08 e0 01 and %g3, 1, %i0
2019740: 81 c7 e0 08 ret
2019744: 81 e8 00 00 restore
020086f8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20086f8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20086fc: 3b 00 80 21 sethi %hi(0x2008400), %i5
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
2008700: e0 06 20 10 ld [ %i0 + 0x10 ], %l0
uintptr_t const min_block_size = heap->min_block_size;
2008704: f6 06 20 14 ld [ %i0 + 0x14 ], %i3
Heap_Block *const first_block = heap->first_block;
2008708: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
Heap_Block *const last_block = heap->last_block;
200870c: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008710: 80 a6 a0 00 cmp %i2, 0
2008714: 02 80 00 04 be 2008724 <_Heap_Walk+0x2c>
2008718: ba 17 62 8c or %i5, 0x28c, %i5
200871c: 3b 00 80 21 sethi %hi(0x2008400), %i5
2008720: ba 17 62 94 or %i5, 0x294, %i5 ! 2008694 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2008724: 03 00 80 60 sethi %hi(0x2018000), %g1
2008728: c4 00 63 b4 ld [ %g1 + 0x3b4 ], %g2 ! 20183b4 <_System_state_Current>
200872c: 80 a0 a0 03 cmp %g2, 3
2008730: 02 80 00 05 be 2008744 <_Heap_Walk+0x4c>
2008734: 82 10 20 01 mov 1, %g1
block = next_block;
} while ( block != first_block );
return true;
}
2008738: b0 08 60 01 and %g1, 1, %i0
200873c: 81 c7 e0 08 ret
2008740: 81 e8 00 00 restore
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2008744: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2008748: c6 06 20 1c ld [ %i0 + 0x1c ], %g3
200874c: c4 06 20 08 ld [ %i0 + 8 ], %g2
2008750: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2008754: 90 10 00 19 mov %i1, %o0
2008758: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
200875c: f8 23 a0 60 st %i4, [ %sp + 0x60 ]
2008760: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
2008764: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2008768: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
200876c: 92 10 20 00 clr %o1
2008770: 96 10 00 10 mov %l0, %o3
2008774: 15 00 80 56 sethi %hi(0x2015800), %o2
2008778: 98 10 00 1b mov %i3, %o4
200877c: 9f c7 40 00 call %i5
2008780: 94 12 a1 68 or %o2, 0x168, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2008784: 80 a4 20 00 cmp %l0, 0
2008788: 02 80 00 28 be 2008828 <_Heap_Walk+0x130>
200878c: 80 8c 20 07 btst 7, %l0
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2008790: 12 80 00 2d bne 2008844 <_Heap_Walk+0x14c>
2008794: 90 10 00 1b mov %i3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008798: 7f ff e4 cd call 2001acc <.urem>
200879c: 92 10 00 10 mov %l0, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
20087a0: 80 a2 20 00 cmp %o0, 0
20087a4: 12 80 00 30 bne 2008864 <_Heap_Walk+0x16c>
20087a8: 90 07 20 08 add %i4, 8, %o0
20087ac: 7f ff e4 c8 call 2001acc <.urem>
20087b0: 92 10 00 10 mov %l0, %o1
);
return false;
}
if (
20087b4: 80 a2 20 00 cmp %o0, 0
20087b8: 32 80 00 33 bne,a 2008884 <_Heap_Walk+0x18c>
20087bc: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
20087c0: e8 07 20 04 ld [ %i4 + 4 ], %l4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
20087c4: 80 8d 20 01 btst 1, %l4
20087c8: 22 80 00 36 be,a 20088a0 <_Heap_Walk+0x1a8>
20087cc: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20087d0: c2 04 60 04 ld [ %l1 + 4 ], %g1
20087d4: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20087d8: 82 04 40 01 add %l1, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20087dc: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20087e0: 80 88 a0 01 btst 1, %g2
20087e4: 02 80 00 0a be 200880c <_Heap_Walk+0x114>
20087e8: 80 a7 00 01 cmp %i4, %g1
);
return false;
}
if (
20087ec: 02 80 00 33 be 20088b8 <_Heap_Walk+0x1c0>
20087f0: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20087f4: 92 10 20 01 mov 1, %o1
20087f8: 15 00 80 56 sethi %hi(0x2015800), %o2
20087fc: 9f c7 40 00 call %i5
2008800: 94 12 a2 e0 or %o2, 0x2e0, %o2 ! 2015ae0 <_Status_Object_name_errors_to_status+0x1f0>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008804: 10 bf ff cd b 2008738 <_Heap_Walk+0x40>
2008808: 82 10 20 00 clr %g1
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
200880c: 90 10 00 19 mov %i1, %o0
2008810: 92 10 20 01 mov 1, %o1
2008814: 15 00 80 56 sethi %hi(0x2015800), %o2
2008818: 9f c7 40 00 call %i5
200881c: 94 12 a2 c8 or %o2, 0x2c8, %o2 ! 2015ac8 <_Status_Object_name_errors_to_status+0x1d8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008820: 10 bf ff c6 b 2008738 <_Heap_Walk+0x40>
2008824: 82 10 20 00 clr %g1
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008828: 90 10 00 19 mov %i1, %o0
200882c: 92 10 20 01 mov 1, %o1
2008830: 15 00 80 56 sethi %hi(0x2015800), %o2
2008834: 9f c7 40 00 call %i5
2008838: 94 12 a2 00 or %o2, 0x200, %o2 ! 2015a00 <_Status_Object_name_errors_to_status+0x110>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200883c: 10 bf ff bf b 2008738 <_Heap_Walk+0x40>
2008840: 82 10 20 00 clr %g1
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008844: 90 10 00 19 mov %i1, %o0
2008848: 92 10 20 01 mov 1, %o1
200884c: 96 10 00 10 mov %l0, %o3
2008850: 15 00 80 56 sethi %hi(0x2015800), %o2
2008854: 9f c7 40 00 call %i5
2008858: 94 12 a2 18 or %o2, 0x218, %o2 ! 2015a18 <_Status_Object_name_errors_to_status+0x128>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200885c: 10 bf ff b7 b 2008738 <_Heap_Walk+0x40>
2008860: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008864: 90 10 00 19 mov %i1, %o0
2008868: 92 10 20 01 mov 1, %o1
200886c: 96 10 00 1b mov %i3, %o3
2008870: 15 00 80 56 sethi %hi(0x2015800), %o2
2008874: 9f c7 40 00 call %i5
2008878: 94 12 a2 38 or %o2, 0x238, %o2 ! 2015a38 <_Status_Object_name_errors_to_status+0x148>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200887c: 10 bf ff af b 2008738 <_Heap_Walk+0x40>
2008880: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008884: 92 10 20 01 mov 1, %o1
2008888: 96 10 00 1c mov %i4, %o3
200888c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008890: 9f c7 40 00 call %i5
2008894: 94 12 a2 60 or %o2, 0x260, %o2 ! 2015a60 <_Status_Object_name_errors_to_status+0x170>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008898: 10 bf ff a8 b 2008738 <_Heap_Walk+0x40>
200889c: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
20088a0: 92 10 20 01 mov 1, %o1
20088a4: 15 00 80 56 sethi %hi(0x2015800), %o2
20088a8: 9f c7 40 00 call %i5
20088ac: 94 12 a2 98 or %o2, 0x298, %o2 ! 2015a98 <_Status_Object_name_errors_to_status+0x1a8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20088b0: 10 bf ff a2 b 2008738 <_Heap_Walk+0x40>
20088b4: 82 10 20 00 clr %g1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
20088b8: f4 06 20 08 ld [ %i0 + 8 ], %i2
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
20088bc: ea 06 20 10 ld [ %i0 + 0x10 ], %l5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
20088c0: 80 a6 00 1a cmp %i0, %i2
20088c4: 02 80 00 0d be 20088f8 <_Heap_Walk+0x200>
20088c8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20088cc: 80 a0 40 1a cmp %g1, %i2
20088d0: 28 80 00 bc bleu,a 2008bc0 <_Heap_Walk+0x4c8> <== ALWAYS TAKEN
20088d4: e6 06 20 24 ld [ %i0 + 0x24 ], %l3
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
20088d8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
20088dc: 92 10 20 01 mov 1, %o1
20088e0: 96 10 00 1a mov %i2, %o3
20088e4: 15 00 80 56 sethi %hi(0x2015800), %o2
20088e8: 9f c7 40 00 call %i5
20088ec: 94 12 a3 10 or %o2, 0x310, %o2 ! 2015b10 <_Status_Object_name_errors_to_status+0x220>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20088f0: 10 bf ff 92 b 2008738 <_Heap_Walk+0x40>
20088f4: 82 10 20 00 clr %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20088f8: 2d 00 80 57 sethi %hi(0x2015c00), %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20088fc: 2f 00 80 57 sethi %hi(0x2015c00), %l7
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008900: a4 10 00 1c mov %i4, %l2
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008904: ac 15 a1 40 or %l6, 0x140, %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008908: ae 15 e1 28 or %l7, 0x128, %l7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
200890c: 2b 00 80 57 sethi %hi(0x2015c00), %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008910: a6 0d 3f fe and %l4, -2, %l3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008914: b4 04 c0 12 add %l3, %l2, %i2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008918: 80 a0 40 1a cmp %g1, %i2
200891c: 28 80 00 0b bleu,a 2008948 <_Heap_Walk+0x250> <== ALWAYS TAKEN
2008920: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
2008924: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008928: 92 10 20 01 mov 1, %o1
200892c: 96 10 00 12 mov %l2, %o3
2008930: 15 00 80 56 sethi %hi(0x2015800), %o2
2008934: 98 10 00 1a mov %i2, %o4
2008938: 9f c7 40 00 call %i5
200893c: 94 12 a3 b8 or %o2, 0x3b8, %o2
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
2008940: 10 bf ff 7e b 2008738 <_Heap_Walk+0x40>
2008944: 82 10 20 00 clr %g1
2008948: 80 a0 40 1a cmp %g1, %i2
200894c: 0a bf ff f7 bcs 2008928 <_Heap_Walk+0x230>
2008950: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2008954: 82 1c 80 11 xor %l2, %l1, %g1
2008958: 80 a0 00 01 cmp %g0, %g1
200895c: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008960: 90 10 00 13 mov %l3, %o0
2008964: c2 27 bf fc st %g1, [ %fp + -4 ]
2008968: 7f ff e4 59 call 2001acc <.urem>
200896c: 92 10 00 10 mov %l0, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008970: 80 a2 20 00 cmp %o0, 0
2008974: 02 80 00 05 be 2008988 <_Heap_Walk+0x290>
2008978: c2 07 bf fc ld [ %fp + -4 ], %g1
200897c: 80 88 60 ff btst 0xff, %g1
2008980: 12 80 00 76 bne 2008b58 <_Heap_Walk+0x460>
2008984: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008988: 80 a6 c0 13 cmp %i3, %l3
200898c: 08 80 00 05 bleu 20089a0 <_Heap_Walk+0x2a8>
2008990: 80 a4 80 1a cmp %l2, %i2
2008994: 80 88 60 ff btst 0xff, %g1
2008998: 12 80 00 78 bne 2008b78 <_Heap_Walk+0x480> <== ALWAYS TAKEN
200899c: 80 a4 80 1a cmp %l2, %i2
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
20089a0: 2a 80 00 06 bcs,a 20089b8 <_Heap_Walk+0x2c0>
20089a4: c2 06 a0 04 ld [ %i2 + 4 ], %g1
20089a8: 80 88 60 ff btst 0xff, %g1
20089ac: 12 80 00 7d bne 2008ba0 <_Heap_Walk+0x4a8>
20089b0: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20089b4: c2 06 a0 04 ld [ %i2 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
20089b8: 80 88 60 01 btst 1, %g1
20089bc: 02 80 00 19 be 2008a20 <_Heap_Walk+0x328>
20089c0: a8 0d 20 01 and %l4, 1, %l4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
20089c4: 80 a5 20 00 cmp %l4, 0
20089c8: 22 80 00 0e be,a 2008a00 <_Heap_Walk+0x308>
20089cc: da 04 80 00 ld [ %l2 ], %o5
(*printer)(
20089d0: 90 10 00 19 mov %i1, %o0
20089d4: 92 10 20 00 clr %o1
20089d8: 94 10 00 17 mov %l7, %o2
20089dc: 96 10 00 12 mov %l2, %o3
20089e0: 9f c7 40 00 call %i5
20089e4: 98 10 00 13 mov %l3, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20089e8: 80 a7 00 1a cmp %i4, %i2
20089ec: 02 80 00 42 be 2008af4 <_Heap_Walk+0x3fc>
20089f0: a4 10 00 1a mov %i2, %l2
20089f4: e8 06 a0 04 ld [ %i2 + 4 ], %l4
20089f8: 10 bf ff c6 b 2008910 <_Heap_Walk+0x218>
20089fc: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008a00: 96 10 00 12 mov %l2, %o3
2008a04: 90 10 00 19 mov %i1, %o0
2008a08: 92 10 20 00 clr %o1
2008a0c: 94 10 00 16 mov %l6, %o2
2008a10: 9f c7 40 00 call %i5
2008a14: 98 10 00 13 mov %l3, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008a18: 10 bf ff f5 b 20089ec <_Heap_Walk+0x2f4>
2008a1c: 80 a7 00 1a cmp %i4, %i2
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008a20: da 04 a0 0c ld [ %l2 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008a24: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008a28: 05 00 80 56 sethi %hi(0x2015800), %g2
return _Heap_Free_list_head(heap)->next;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap )
{
return _Heap_Free_list_tail(heap)->prev;
2008a2c: c8 06 20 0c ld [ %i0 + 0xc ], %g4
2008a30: 80 a0 40 0d cmp %g1, %o5
2008a34: 02 80 00 05 be 2008a48 <_Heap_Walk+0x350>
2008a38: 86 10 a1 28 or %g2, 0x128, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008a3c: 80 a6 00 0d cmp %i0, %o5
2008a40: 02 80 00 3c be 2008b30 <_Heap_Walk+0x438>
2008a44: 86 15 60 f0 or %l5, 0xf0, %g3
block->next,
block->next == last_free_block ?
2008a48: c2 04 a0 08 ld [ %l2 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008a4c: 1f 00 80 56 sethi %hi(0x2015800), %o7
2008a50: 80 a1 00 01 cmp %g4, %g1
2008a54: 02 80 00 05 be 2008a68 <_Heap_Walk+0x370>
2008a58: 84 13 e1 48 or %o7, 0x148, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008a5c: 80 a6 00 01 cmp %i0, %g1
2008a60: 02 80 00 31 be 2008b24 <_Heap_Walk+0x42c>
2008a64: 84 15 60 f0 or %l5, 0xf0, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008a68: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008a6c: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
2008a70: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
2008a74: 90 10 00 19 mov %i1, %o0
2008a78: 92 10 20 00 clr %o1
2008a7c: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008a80: 96 10 00 12 mov %l2, %o3
2008a84: 94 12 a0 80 or %o2, 0x80, %o2
2008a88: 9f c7 40 00 call %i5
2008a8c: 98 10 00 13 mov %l3, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008a90: da 06 80 00 ld [ %i2 ], %o5
2008a94: 80 a4 c0 0d cmp %l3, %o5
2008a98: 12 80 00 19 bne 2008afc <_Heap_Walk+0x404>
2008a9c: 80 a5 20 00 cmp %l4, 0
);
return false;
}
if ( !prev_used ) {
2008aa0: 02 80 00 27 be 2008b3c <_Heap_Walk+0x444>
2008aa4: 90 10 00 19 mov %i1, %o0
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2008aa8: c2 06 20 08 ld [ %i0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008aac: 80 a6 00 01 cmp %i0, %g1
2008ab0: 02 80 00 0b be 2008adc <_Heap_Walk+0x3e4> <== NEVER TAKEN
2008ab4: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
2008ab8: 80 a4 80 01 cmp %l2, %g1
2008abc: 02 bf ff cc be 20089ec <_Heap_Walk+0x2f4>
2008ac0: 80 a7 00 1a cmp %i4, %i2
return true;
}
free_block = free_block->next;
2008ac4: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008ac8: 80 a6 00 01 cmp %i0, %g1
2008acc: 12 bf ff fc bne 2008abc <_Heap_Walk+0x3c4>
2008ad0: 80 a4 80 01 cmp %l2, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008ad4: 90 10 00 19 mov %i1, %o0
2008ad8: 92 10 20 01 mov 1, %o1
2008adc: 96 10 00 12 mov %l2, %o3
2008ae0: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008ae4: 9f c7 40 00 call %i5
2008ae8: 94 12 a1 68 or %o2, 0x168, %o2 ! 2015d68 <_Status_Object_name_errors_to_status+0x478>
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008aec: 10 bf ff 13 b 2008738 <_Heap_Walk+0x40>
2008af0: 82 10 20 00 clr %g1
}
block = next_block;
} while ( block != first_block );
return true;
2008af4: 10 bf ff 11 b 2008738 <_Heap_Walk+0x40>
2008af8: 82 10 20 01 mov 1, %g1
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
2008afc: f4 23 a0 5c st %i2, [ %sp + 0x5c ]
2008b00: 90 10 00 19 mov %i1, %o0
2008b04: 92 10 20 01 mov 1, %o1
2008b08: 96 10 00 12 mov %l2, %o3
2008b0c: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008b10: 98 10 00 13 mov %l3, %o4
2008b14: 9f c7 40 00 call %i5
2008b18: 94 12 a0 b8 or %o2, 0xb8, %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008b1c: 10 bf ff 07 b 2008738 <_Heap_Walk+0x40>
2008b20: 82 10 20 00 clr %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008b24: 05 00 80 56 sethi %hi(0x2015800), %g2
2008b28: 10 bf ff d0 b 2008a68 <_Heap_Walk+0x370>
2008b2c: 84 10 a1 58 or %g2, 0x158, %g2 ! 2015958 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008b30: 07 00 80 56 sethi %hi(0x2015800), %g3
2008b34: 10 bf ff c5 b 2008a48 <_Heap_Walk+0x350>
2008b38: 86 10 e1 38 or %g3, 0x138, %g3 ! 2015938 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
2008b3c: 92 10 20 01 mov 1, %o1
2008b40: 96 10 00 12 mov %l2, %o3
2008b44: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008b48: 9f c7 40 00 call %i5
2008b4c: 94 12 a0 f8 or %o2, 0xf8, %o2 ! 2015cf8 <_Status_Object_name_errors_to_status+0x408>
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008b50: 10 bf fe fa b 2008738 <_Heap_Walk+0x40>
2008b54: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
2008b58: 92 10 20 01 mov 1, %o1
2008b5c: 96 10 00 12 mov %l2, %o3
2008b60: 15 00 80 56 sethi %hi(0x2015800), %o2
2008b64: 98 10 00 13 mov %l3, %o4
2008b68: 9f c7 40 00 call %i5
2008b6c: 94 12 a3 e8 or %o2, 0x3e8, %o2
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
2008b70: 10 bf fe f2 b 2008738 <_Heap_Walk+0x40>
2008b74: 82 10 20 00 clr %g1
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
2008b78: 90 10 00 19 mov %i1, %o0
2008b7c: 92 10 20 01 mov 1, %o1
2008b80: 96 10 00 12 mov %l2, %o3
2008b84: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008b88: 98 10 00 13 mov %l3, %o4
2008b8c: 94 12 a0 18 or %o2, 0x18, %o2
2008b90: 9f c7 40 00 call %i5
2008b94: 9a 10 00 1b mov %i3, %o5
block,
block_size,
min_block_size
);
return false;
2008b98: 10 bf fe e8 b 2008738 <_Heap_Walk+0x40>
2008b9c: 82 10 20 00 clr %g1
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
2008ba0: 92 10 20 01 mov 1, %o1
2008ba4: 96 10 00 12 mov %l2, %o3
2008ba8: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008bac: 98 10 00 1a mov %i2, %o4
2008bb0: 9f c7 40 00 call %i5
2008bb4: 94 12 a0 48 or %o2, 0x48, %o2
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2008bb8: 10 bf fe e0 b 2008738 <_Heap_Walk+0x40>
2008bbc: 82 10 20 00 clr %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008bc0: 80 a6 80 13 cmp %i2, %l3
2008bc4: 18 bf ff 46 bgu 20088dc <_Heap_Walk+0x1e4> <== NEVER TAKEN
2008bc8: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008bcc: c2 27 bf fc st %g1, [ %fp + -4 ]
2008bd0: 90 06 a0 08 add %i2, 8, %o0
2008bd4: 7f ff e3 be call 2001acc <.urem>
2008bd8: 92 10 00 15 mov %l5, %o1
);
return false;
}
if (
2008bdc: 80 a2 20 00 cmp %o0, 0
2008be0: 12 80 00 36 bne 2008cb8 <_Heap_Walk+0x5c0> <== NEVER TAKEN
2008be4: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008be8: c4 06 a0 04 ld [ %i2 + 4 ], %g2
2008bec: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008bf0: 84 06 80 02 add %i2, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008bf4: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008bf8: 80 88 a0 01 btst 1, %g2
2008bfc: 12 80 00 27 bne 2008c98 <_Heap_Walk+0x5a0> <== NEVER TAKEN
2008c00: 84 10 00 18 mov %i0, %g2
2008c04: 10 80 00 19 b 2008c68 <_Heap_Walk+0x570>
2008c08: a4 10 00 1a mov %i2, %l2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008c0c: 80 a6 00 1a cmp %i0, %i2
2008c10: 02 bf ff 3a be 20088f8 <_Heap_Walk+0x200>
2008c14: 80 a6 80 01 cmp %i2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008c18: 0a bf ff 31 bcs 20088dc <_Heap_Walk+0x1e4>
2008c1c: 90 10 00 19 mov %i1, %o0
2008c20: 80 a6 80 13 cmp %i2, %l3
2008c24: 18 bf ff 2f bgu 20088e0 <_Heap_Walk+0x1e8> <== NEVER TAKEN
2008c28: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008c2c: c2 27 bf fc st %g1, [ %fp + -4 ]
2008c30: 90 06 a0 08 add %i2, 8, %o0
2008c34: 7f ff e3 a6 call 2001acc <.urem>
2008c38: 92 10 00 15 mov %l5, %o1
);
return false;
}
if (
2008c3c: 80 a2 20 00 cmp %o0, 0
2008c40: 12 80 00 1e bne 2008cb8 <_Heap_Walk+0x5c0>
2008c44: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008c48: c6 06 a0 04 ld [ %i2 + 4 ], %g3
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c4c: 84 10 00 12 mov %l2, %g2
2008c50: 86 08 ff fe and %g3, -2, %g3
block = next_block;
} while ( block != first_block );
return true;
}
2008c54: 86 06 80 03 add %i2, %g3, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008c58: c6 00 e0 04 ld [ %g3 + 4 ], %g3
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c5c: 80 88 e0 01 btst 1, %g3
2008c60: 12 80 00 0e bne 2008c98 <_Heap_Walk+0x5a0>
2008c64: a4 10 00 1a mov %i2, %l2
);
return false;
}
if ( free_block->prev != prev_block ) {
2008c68: d8 06 a0 0c ld [ %i2 + 0xc ], %o4
2008c6c: 80 a3 00 02 cmp %o4, %g2
2008c70: 22 bf ff e7 be,a 2008c0c <_Heap_Walk+0x514>
2008c74: f4 06 a0 08 ld [ %i2 + 8 ], %i2
(*printer)(
2008c78: 90 10 00 19 mov %i1, %o0
2008c7c: 92 10 20 01 mov 1, %o1
2008c80: 96 10 00 1a mov %i2, %o3
2008c84: 15 00 80 56 sethi %hi(0x2015800), %o2
2008c88: 9f c7 40 00 call %i5
2008c8c: 94 12 a3 80 or %o2, 0x380, %o2 ! 2015b80 <_Status_Object_name_errors_to_status+0x290>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c90: 10 bf fe aa b 2008738 <_Heap_Walk+0x40>
2008c94: 82 10 20 00 clr %g1
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008c98: 90 10 00 19 mov %i1, %o0
2008c9c: 92 10 20 01 mov 1, %o1
2008ca0: 96 10 00 1a mov %i2, %o3
2008ca4: 15 00 80 56 sethi %hi(0x2015800), %o2
2008ca8: 9f c7 40 00 call %i5
2008cac: 94 12 a3 60 or %o2, 0x360, %o2 ! 2015b60 <_Status_Object_name_errors_to_status+0x270>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008cb0: 10 bf fe a2 b 2008738 <_Heap_Walk+0x40>
2008cb4: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008cb8: 90 10 00 19 mov %i1, %o0
2008cbc: 92 10 20 01 mov 1, %o1
2008cc0: 96 10 00 1a mov %i2, %o3
2008cc4: 15 00 80 56 sethi %hi(0x2015800), %o2
2008cc8: 9f c7 40 00 call %i5
2008ccc: 94 12 a3 30 or %o2, 0x330, %o2 ! 2015b30 <_Status_Object_name_errors_to_status+0x240>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008cd0: 10 bf fe 9a b 2008738 <_Heap_Walk+0x40>
2008cd4: 82 10 20 00 clr %g1
02007148 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
2007148: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
200714c: 39 00 80 71 sethi %hi(0x201c400), %i4
2007150: c2 07 22 34 ld [ %i4 + 0x234 ], %g1 ! 201c634 <_IO_Number_of_drivers>
2007154: 80 a0 60 00 cmp %g1, 0
2007158: 02 80 00 0c be 2007188 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
200715c: ba 10 20 00 clr %i5
2007160: b8 17 22 34 or %i4, 0x234, %i4
(void) rtems_io_initialize( major, 0, NULL );
2007164: 90 10 00 1d mov %i5, %o0
2007168: 92 10 20 00 clr %o1
200716c: 40 00 15 a7 call 200c808 <rtems_io_initialize>
2007170: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2007174: c2 07 00 00 ld [ %i4 ], %g1
2007178: ba 07 60 01 inc %i5
200717c: 80 a0 40 1d cmp %g1, %i5
2007180: 18 bf ff fa bgu 2007168 <_IO_Initialize_all_drivers+0x20>
2007184: 90 10 00 1d mov %i5, %o0
2007188: 81 c7 e0 08 ret
200718c: 81 e8 00 00 restore
0200707c <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
200707c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
2007080: 03 00 80 6d sethi %hi(0x201b400), %g1
2007084: 82 10 62 7c or %g1, 0x27c, %g1 ! 201b67c <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
2007088: f8 00 60 30 ld [ %g1 + 0x30 ], %i4
number_of_drivers = Configuration.maximum_drivers;
200708c: f2 00 60 2c ld [ %g1 + 0x2c ], %i1
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2007090: 80 a7 00 19 cmp %i4, %i1
2007094: 0a 80 00 08 bcs 20070b4 <_IO_Manager_initialization+0x38>
2007098: fa 00 60 34 ld [ %g1 + 0x34 ], %i5
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
200709c: 03 00 80 71 sethi %hi(0x201c400), %g1
20070a0: fa 20 62 38 st %i5, [ %g1 + 0x238 ] ! 201c638 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
20070a4: 03 00 80 71 sethi %hi(0x201c400), %g1
20070a8: f8 20 62 34 st %i4, [ %g1 + 0x234 ] ! 201c634 <_IO_Number_of_drivers>
return;
20070ac: 81 c7 e0 08 ret
20070b0: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
20070b4: 83 2e 60 03 sll %i1, 3, %g1
20070b8: b5 2e 60 05 sll %i1, 5, %i2
20070bc: b4 26 80 01 sub %i2, %g1, %i2
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
20070c0: 40 00 0d 26 call 200a558 <_Workspace_Allocate_or_fatal_error>
20070c4: 90 10 00 1a mov %i2, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
20070c8: 03 00 80 71 sethi %hi(0x201c400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
20070cc: 37 00 80 71 sethi %hi(0x201c400), %i3
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
20070d0: f2 20 62 34 st %i1, [ %g1 + 0x234 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
20070d4: d0 26 e2 38 st %o0, [ %i3 + 0x238 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
20070d8: 92 10 20 00 clr %o1
20070dc: 40 00 21 26 call 200f574 <memset>
20070e0: 94 10 00 1a mov %i2, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
20070e4: 80 a7 20 00 cmp %i4, 0
20070e8: 02 bf ff f1 be 20070ac <_IO_Manager_initialization+0x30> <== NEVER TAKEN
20070ec: f6 06 e2 38 ld [ %i3 + 0x238 ], %i3
20070f0: 82 10 20 00 clr %g1
20070f4: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
20070f8: c4 07 40 01 ld [ %i5 + %g1 ], %g2
20070fc: 86 07 40 01 add %i5, %g1, %g3
2007100: c4 26 c0 01 st %g2, [ %i3 + %g1 ]
2007104: f4 00 e0 04 ld [ %g3 + 4 ], %i2
2007108: 84 06 c0 01 add %i3, %g1, %g2
200710c: f4 20 a0 04 st %i2, [ %g2 + 4 ]
2007110: f4 00 e0 08 ld [ %g3 + 8 ], %i2
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2007114: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
2007118: f4 20 a0 08 st %i2, [ %g2 + 8 ]
200711c: f4 00 e0 0c ld [ %g3 + 0xc ], %i2
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2007120: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
2007124: f4 20 a0 0c st %i2, [ %g2 + 0xc ]
2007128: f4 00 e0 10 ld [ %g3 + 0x10 ], %i2
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
200712c: 80 a1 00 1c cmp %g4, %i4
_IO_Driver_address_table[index] = driver_table[index];
2007130: f4 20 a0 10 st %i2, [ %g2 + 0x10 ]
2007134: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2007138: 12 bf ff f0 bne 20070f8 <_IO_Manager_initialization+0x7c>
200713c: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
2007140: 81 c7 e0 08 ret
2007144: 81 e8 00 00 restore
02007e58 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007e58: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007e5c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007e60: ba 10 00 18 mov %i0, %i5
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007e64: 80 a0 60 00 cmp %g1, 0
2007e68: 02 80 00 19 be 2007ecc <_Objects_Allocate+0x74> <== NEVER TAKEN
2007e6c: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007e70: b8 07 60 20 add %i5, 0x20, %i4
2007e74: 7f ff fd 5e call 20073ec <_Chain_Get>
2007e78: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2007e7c: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2007e80: 80 a0 60 00 cmp %g1, 0
2007e84: 02 80 00 12 be 2007ecc <_Objects_Allocate+0x74>
2007e88: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007e8c: 80 a2 20 00 cmp %o0, 0
2007e90: 02 80 00 11 be 2007ed4 <_Objects_Allocate+0x7c>
2007e94: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2007e98: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
2007e9c: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007ea0: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
2007ea4: 40 00 3e 96 call 20178fc <.udiv>
2007ea8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007eac: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2007eb0: 91 2a 20 02 sll %o0, 2, %o0
2007eb4: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
2007eb8: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
2007ebc: 86 00 ff ff add %g3, -1, %g3
2007ec0: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
2007ec4: 82 00 bf ff add %g2, -1, %g1
2007ec8: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
2007ecc: 81 c7 e0 08 ret
2007ed0: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
2007ed4: 40 00 00 10 call 2007f14 <_Objects_Extend_information>
2007ed8: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007edc: 7f ff fd 44 call 20073ec <_Chain_Get>
2007ee0: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
2007ee4: b0 92 20 00 orcc %o0, 0, %i0
2007ee8: 32 bf ff ed bne,a 2007e9c <_Objects_Allocate+0x44>
2007eec: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
);
}
#endif
return the_object;
}
2007ef0: 81 c7 e0 08 ret
2007ef4: 81 e8 00 00 restore
02007f14 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
2007f14: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007f18: e0 06 20 34 ld [ %i0 + 0x34 ], %l0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007f1c: f8 16 20 0a lduh [ %i0 + 0xa ], %i4
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007f20: 80 a4 20 00 cmp %l0, 0
2007f24: 02 80 00 a6 be 20081bc <_Objects_Extend_information+0x2a8>
2007f28: f2 16 20 10 lduh [ %i0 + 0x10 ], %i1
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2007f2c: f4 16 20 14 lduh [ %i0 + 0x14 ], %i2
2007f30: b3 2e 60 10 sll %i1, 0x10, %i1
2007f34: 92 10 00 1a mov %i2, %o1
2007f38: 40 00 3e 71 call 20178fc <.udiv>
2007f3c: 91 36 60 10 srl %i1, 0x10, %o0
2007f40: a7 2a 20 10 sll %o0, 0x10, %l3
2007f44: a7 34 e0 10 srl %l3, 0x10, %l3
for ( ; block < block_count; block++ ) {
2007f48: 80 a4 e0 00 cmp %l3, 0
2007f4c: 02 80 00 a3 be 20081d8 <_Objects_Extend_information+0x2c4><== NEVER TAKEN
2007f50: 90 10 00 1a mov %i2, %o0
if ( information->object_blocks[ block ] == NULL ) {
2007f54: c2 04 00 00 ld [ %l0 ], %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007f58: ba 10 00 1c mov %i4, %i5
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007f5c: 80 a0 60 00 cmp %g1, 0
2007f60: 12 80 00 08 bne 2007f80 <_Objects_Extend_information+0x6c><== ALWAYS TAKEN
2007f64: b6 10 20 00 clr %i3
do_extend = false;
2007f68: 10 80 00 a0 b 20081e8 <_Objects_Extend_information+0x2d4> <== NOT EXECUTED
2007f6c: b4 10 20 00 clr %i2 <== NOT EXECUTED
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007f70: c2 04 00 01 ld [ %l0 + %g1 ], %g1
2007f74: 80 a0 60 00 cmp %g1, 0
2007f78: 22 80 00 08 be,a 2007f98 <_Objects_Extend_information+0x84>
2007f7c: b4 10 20 00 clr %i2
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007f80: b6 06 e0 01 inc %i3
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
2007f84: ba 07 40 1a add %i5, %i2, %i5
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007f88: 80 a4 c0 1b cmp %l3, %i3
2007f8c: 18 bf ff f9 bgu 2007f70 <_Objects_Extend_information+0x5c>
2007f90: 83 2e e0 02 sll %i3, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007f94: b4 10 20 01 mov 1, %i2
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007f98: b3 36 60 10 srl %i1, 0x10, %i1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007f9c: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007fa0: b2 06 40 08 add %i1, %o0, %i1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007fa4: 82 10 63 ff or %g1, 0x3ff, %g1
2007fa8: 80 a6 40 01 cmp %i1, %g1
2007fac: 18 80 00 93 bgu 20081f8 <_Objects_Extend_information+0x2e4>
2007fb0: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
2007fb4: 40 00 3e 18 call 2017814 <.umul>
2007fb8: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
2007fbc: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
2007fc0: 80 a0 60 00 cmp %g1, 0
2007fc4: 02 80 00 6a be 200816c <_Objects_Extend_information+0x258>
2007fc8: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
2007fcc: 40 00 09 55 call 200a520 <_Workspace_Allocate>
2007fd0: 01 00 00 00 nop
if ( !new_object_block )
2007fd4: a0 92 20 00 orcc %o0, 0, %l0
2007fd8: 02 80 00 88 be 20081f8 <_Objects_Extend_information+0x2e4>
2007fdc: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
2007fe0: 80 8e a0 ff btst 0xff, %i2
2007fe4: 22 80 00 3f be,a 20080e0 <_Objects_Extend_information+0x1cc>
2007fe8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
2007fec: b4 04 e0 01 add %l3, 1, %i2
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007ff0: 91 2e a0 01 sll %i2, 1, %o0
2007ff4: 90 02 00 1a add %o0, %i2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
2007ff8: 90 06 40 08 add %i1, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007ffc: 90 02 00 1c add %o0, %i4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
2008000: 40 00 09 48 call 200a520 <_Workspace_Allocate>
2008004: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
2008008: a2 92 20 00 orcc %o0, 0, %l1
200800c: 02 80 00 79 be 20081f0 <_Objects_Extend_information+0x2dc>
2008010: b5 2e a0 02 sll %i2, 2, %i2
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
2008014: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2008018: 80 a7 00 01 cmp %i4, %g1
200801c: a4 04 40 1a add %l1, %i2, %l2
2008020: 0a 80 00 57 bcs 200817c <_Objects_Extend_information+0x268>
2008024: b4 04 80 1a add %l2, %i2, %i2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2008028: 80 a7 20 00 cmp %i4, 0
200802c: 02 80 00 07 be 2008048 <_Objects_Extend_information+0x134><== NEVER TAKEN
2008030: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2008034: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2008038: 82 00 60 01 inc %g1
200803c: 80 a7 00 01 cmp %i4, %g1
2008040: 18 bf ff fd bgu 2008034 <_Objects_Extend_information+0x120><== NEVER TAKEN
2008044: c0 20 80 1a clr [ %g2 + %i2 ]
2008048: a7 2c e0 02 sll %l3, 2, %l3
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
200804c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
2008050: c0 24 40 13 clr [ %l1 + %l3 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2008054: 86 07 40 03 add %i5, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2008058: 80 a7 40 03 cmp %i5, %g3
200805c: 1a 80 00 0a bcc 2008084 <_Objects_Extend_information+0x170><== NEVER TAKEN
2008060: c0 24 80 13 clr [ %l2 + %l3 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2008064: 83 2f 60 02 sll %i5, 2, %g1
2008068: 84 10 00 1d mov %i5, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
200806c: 82 06 80 01 add %i2, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
2008070: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
2008074: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2008078: 80 a0 c0 02 cmp %g3, %g2
200807c: 18 bf ff fd bgu 2008070 <_Objects_Extend_information+0x15c>
2008080: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
2008084: 7f ff e8 58 call 20021e4 <sparc_disable_interrupts>
2008088: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
200808c: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2008090: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
2008094: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2008098: f2 36 20 10 sth %i1, [ %i0 + 0x10 ]
200809c: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20080a0: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
20080a4: e2 26 20 34 st %l1, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
20080a8: e4 26 20 30 st %l2, [ %i0 + 0x30 ]
information->local_table = local_table;
20080ac: f4 26 20 1c st %i2, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
20080b0: b3 2e 60 10 sll %i1, 0x10, %i1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20080b4: 03 00 00 40 sethi %hi(0x10000), %g1
20080b8: b3 36 60 10 srl %i1, 0x10, %i1
20080bc: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20080c0: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20080c4: 82 10 40 19 or %g1, %i1, %g1
20080c8: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
20080cc: 7f ff e8 4a call 20021f4 <sparc_enable_interrupts>
20080d0: 01 00 00 00 nop
_Workspace_Free( old_tables );
20080d4: 40 00 09 1b call 200a540 <_Workspace_Free>
20080d8: 90 10 00 1c mov %i4, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
20080dc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20080e0: b7 2e e0 02 sll %i3, 2, %i3
20080e4: e0 20 40 1b st %l0, [ %g1 + %i3 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
20080e8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20080ec: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
20080f0: d2 00 40 1b ld [ %g1 + %i3 ], %o1
20080f4: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
20080f8: 90 07 bf f4 add %fp, -12, %o0
20080fc: 40 00 11 db call 200c868 <_Chain_Initialize>
2008100: 39 00 00 40 sethi %hi(0x10000), %i4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2008104: 10 80 00 0d b 2008138 <_Objects_Extend_information+0x224>
2008108: b4 06 20 20 add %i0, 0x20, %i2
the_object->id = _Objects_Build_id(
200810c: c6 16 20 04 lduh [ %i0 + 4 ], %g3
2008110: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2008114: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2008118: 84 10 80 1c or %g2, %i4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
200811c: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2008120: 84 10 80 1d or %g2, %i5, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2008124: 90 10 00 1a mov %i2, %o0
2008128: 92 10 00 01 mov %g1, %o1
index++;
200812c: ba 07 60 01 inc %i5
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2008130: 7f ff fc 9b call 200739c <_Chain_Append>
2008134: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2008138: 7f ff fc ad call 20073ec <_Chain_Get>
200813c: 90 07 bf f4 add %fp, -12, %o0
2008140: 82 92 20 00 orcc %o0, 0, %g1
2008144: 32 bf ff f2 bne,a 200810c <_Objects_Extend_information+0x1f8>
2008148: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
200814c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
2008150: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2008154: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2008158: c8 20 c0 1b st %g4, [ %g3 + %i3 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
200815c: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
2008160: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2008164: 81 c7 e0 08 ret
2008168: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
200816c: 40 00 08 fb call 200a558 <_Workspace_Allocate_or_fatal_error>
2008170: 01 00 00 00 nop
2008174: 10 bf ff 9b b 2007fe0 <_Objects_Extend_information+0xcc>
2008178: a0 10 00 08 mov %o0, %l0
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
200817c: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
2008180: a7 2c e0 02 sll %l3, 2, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2008184: 40 00 1c c0 call 200f484 <memcpy>
2008188: 94 10 00 13 mov %l3, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
200818c: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
2008190: 94 10 00 13 mov %l3, %o2
2008194: 40 00 1c bc call 200f484 <memcpy>
2008198: 90 10 00 12 mov %l2, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
200819c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
20081a0: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
20081a4: b8 07 00 01 add %i4, %g1, %i4
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
20081a8: 90 10 00 1a mov %i2, %o0
20081ac: 40 00 1c b6 call 200f484 <memcpy>
20081b0: 95 2f 20 02 sll %i4, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
20081b4: 10 bf ff a7 b 2008050 <_Objects_Extend_information+0x13c>
20081b8: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
20081bc: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20081c0: ba 10 00 1c mov %i4, %i5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20081c4: b4 10 20 01 mov 1, %i2
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20081c8: b6 10 20 00 clr %i3
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
20081cc: a6 10 20 00 clr %l3
20081d0: 10 bf ff 72 b 2007f98 <_Objects_Extend_information+0x84>
20081d4: b3 2e 60 10 sll %i1, 0x10, %i1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20081d8: ba 10 00 1c mov %i4, %i5 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20081dc: b4 10 20 01 mov 1, %i2 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20081e0: 10 bf ff 6e b 2007f98 <_Objects_Extend_information+0x84> <== NOT EXECUTED
20081e4: b6 10 20 00 clr %i3 <== NOT EXECUTED
20081e8: 10 bf ff 6c b 2007f98 <_Objects_Extend_information+0x84> <== NOT EXECUTED
20081ec: b6 10 20 00 clr %i3 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
20081f0: 40 00 08 d4 call 200a540 <_Workspace_Free>
20081f4: 90 10 00 10 mov %l0, %o0
return;
20081f8: 81 c7 e0 08 ret
20081fc: 81 e8 00 00 restore
020082a4 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
20082a4: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
20082a8: 80 a6 60 00 cmp %i1, 0
20082ac: 02 80 00 17 be 2008308 <_Objects_Get_information+0x64>
20082b0: ba 10 20 00 clr %i5
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
20082b4: 40 00 12 f6 call 200ce8c <_Objects_API_maximum_class>
20082b8: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
20082bc: 80 a2 20 00 cmp %o0, 0
20082c0: 02 80 00 12 be 2008308 <_Objects_Get_information+0x64>
20082c4: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20082c8: 0a 80 00 10 bcs 2008308 <_Objects_Get_information+0x64>
20082cc: 03 00 80 70 sethi %hi(0x201c000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20082d0: b1 2e 20 02 sll %i0, 2, %i0
20082d4: 82 10 62 d8 or %g1, 0x2d8, %g1
20082d8: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20082dc: 80 a0 60 00 cmp %g1, 0
20082e0: 02 80 00 0a be 2008308 <_Objects_Get_information+0x64> <== NEVER TAKEN
20082e4: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20082e8: fa 00 40 19 ld [ %g1 + %i1 ], %i5
if ( !info )
20082ec: 80 a7 60 00 cmp %i5, 0
20082f0: 02 80 00 06 be 2008308 <_Objects_Get_information+0x64> <== NEVER TAKEN
20082f4: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20082f8: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
return NULL;
20082fc: 80 a0 00 01 cmp %g0, %g1
2008300: 82 60 20 00 subx %g0, 0, %g1
2008304: ba 0f 40 01 and %i5, %g1, %i5
#endif
return info;
}
2008308: 81 c7 e0 08 ret
200830c: 91 e8 00 1d restore %g0, %i5, %o0
02009b00 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
2009b00: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
2009b04: 80 a6 60 00 cmp %i1, 0
2009b08: 02 80 00 3c be 2009bf8 <_Objects_Get_name_as_string+0xf8>
2009b0c: 80 a6 a0 00 cmp %i2, 0
return NULL;
if ( name == NULL )
2009b10: 02 80 00 35 be 2009be4 <_Objects_Get_name_as_string+0xe4>
2009b14: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009b18: 02 80 00 35 be 2009bec <_Objects_Get_name_as_string+0xec>
2009b1c: 03 00 80 7c sethi %hi(0x201f000), %g1
information = _Objects_Get_information_id( tmpId );
2009b20: 7f ff ff ba call 2009a08 <_Objects_Get_information_id>
2009b24: 90 10 00 18 mov %i0, %o0
if ( !information )
2009b28: 80 a2 20 00 cmp %o0, 0
2009b2c: 02 80 00 33 be 2009bf8 <_Objects_Get_name_as_string+0xf8>
2009b30: 92 10 00 18 mov %i0, %o1
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
2009b34: 40 00 00 34 call 2009c04 <_Objects_Get>
2009b38: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
2009b3c: c2 07 bf fc ld [ %fp + -4 ], %g1
2009b40: 80 a0 60 00 cmp %g1, 0
2009b44: 32 80 00 2e bne,a 2009bfc <_Objects_Get_name_as_string+0xfc>
2009b48: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
2009b4c: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
2009b50: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009b54: 85 30 60 18 srl %g1, 0x18, %g2
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009b58: 87 30 60 08 srl %g1, 8, %g3
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009b5c: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009b60: c6 2f bf f2 stb %g3, [ %fp + -14 ]
lname[ 3 ] = (u32_name >> 0) & 0xff;
2009b64: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009b68: c4 2f bf f0 stb %g2, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009b6c: c8 2f bf f1 stb %g4, [ %fp + -15 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009b70: 86 10 00 02 mov %g2, %g3
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009b74: b2 86 7f ff addcc %i1, -1, %i1
2009b78: 02 80 00 19 be 2009bdc <_Objects_Get_name_as_string+0xdc> <== NEVER TAKEN
2009b7c: 82 10 00 1a mov %i2, %g1
2009b80: 80 a0 a0 00 cmp %g2, 0
2009b84: 02 80 00 16 be 2009bdc <_Objects_Get_name_as_string+0xdc>
2009b88: 1f 00 80 78 sethi %hi(0x201e000), %o7
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
s = lname;
2009b8c: 84 07 bf f0 add %fp, -16, %g2
* This method objects the name of an object and returns its name
* in the form of a C string. It attempts to be careful about
* overflowing the user's string and about returning unprintable characters.
*/
char *_Objects_Get_name_as_string(
2009b90: b2 06 80 19 add %i2, %i1, %i1
2009b94: 10 80 00 05 b 2009ba8 <_Objects_Get_name_as_string+0xa8>
2009b98: 9e 13 e1 1c or %o7, 0x11c, %o7
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009b9c: 80 a1 20 00 cmp %g4, 0
2009ba0: 02 80 00 0f be 2009bdc <_Objects_Get_name_as_string+0xdc>
2009ba4: c6 08 80 00 ldub [ %g2 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
2009ba8: f0 03 c0 00 ld [ %o7 ], %i0
2009bac: 88 08 e0 ff and %g3, 0xff, %g4
2009bb0: 88 06 00 04 add %i0, %g4, %g4
2009bb4: c8 49 20 01 ldsb [ %g4 + 1 ], %g4
2009bb8: 80 89 20 97 btst 0x97, %g4
2009bbc: 12 80 00 03 bne 2009bc8 <_Objects_Get_name_as_string+0xc8>
2009bc0: 84 00 a0 01 inc %g2
2009bc4: 86 10 20 2a mov 0x2a, %g3
2009bc8: c6 28 40 00 stb %g3, [ %g1 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009bcc: 82 00 60 01 inc %g1
2009bd0: 80 a0 40 19 cmp %g1, %i1
2009bd4: 32 bf ff f2 bne,a 2009b9c <_Objects_Get_name_as_string+0x9c>
2009bd8: c8 48 80 00 ldsb [ %g2 ], %g4
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
2009bdc: 40 00 03 b8 call 200aabc <_Thread_Enable_dispatch>
2009be0: c0 28 40 00 clrb [ %g1 ]
return name;
}
return NULL; /* unreachable path */
}
2009be4: 81 c7 e0 08 ret
2009be8: 91 e8 00 1a restore %g0, %i2, %o0
return NULL;
if ( name == NULL )
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009bec: c2 00 60 b8 ld [ %g1 + 0xb8 ], %g1
2009bf0: 10 bf ff cc b 2009b20 <_Objects_Get_name_as_string+0x20>
2009bf4: f0 00 60 08 ld [ %g1 + 8 ], %i0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
2009bf8: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
2009bfc: 81 c7 e0 08 ret
2009c00: 91 e8 00 1a restore %g0, %i2, %o0
02007f98 <_Objects_Get_next>:
Objects_Information *information,
Objects_Id id,
Objects_Locations *location_p,
Objects_Id *next_id_p
)
{
2007f98: 9d e3 bf a0 save %sp, -96, %sp
Objects_Control *object;
Objects_Id next_id;
if ( !information )
return NULL;
2007f9c: 90 10 20 00 clr %o0
)
{
Objects_Control *object;
Objects_Id next_id;
if ( !information )
2007fa0: 80 a6 20 00 cmp %i0, 0
2007fa4: 02 80 00 19 be 2008008 <_Objects_Get_next+0x70>
2007fa8: ba 10 00 18 mov %i0, %i5
return NULL;
if ( !location_p )
2007fac: 80 a6 a0 00 cmp %i2, 0
2007fb0: 02 80 00 16 be 2008008 <_Objects_Get_next+0x70>
2007fb4: 80 a6 e0 00 cmp %i3, 0
return NULL;
if ( !next_id_p )
2007fb8: 02 80 00 14 be 2008008 <_Objects_Get_next+0x70>
2007fbc: 83 2e 60 10 sll %i1, 0x10, %g1
return NULL;
if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX)
2007fc0: 80 a0 60 00 cmp %g1, 0
2007fc4: 22 80 00 13 be,a 2008010 <_Objects_Get_next+0x78>
2007fc8: f2 06 20 08 ld [ %i0 + 8 ], %i1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fcc: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2
2007fd0: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007fd4: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fd8: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007fdc: 90 10 00 1d mov %i5, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fe0: 80 a0 80 01 cmp %g2, %g1
2007fe4: 0a 80 00 13 bcs 2008030 <_Objects_Get_next+0x98>
2007fe8: 94 10 00 1a mov %i2, %o2
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007fec: 40 00 00 18 call 200804c <_Objects_Get>
2007ff0: b2 06 60 01 inc %i1
next_id++;
} while (*location_p != OBJECTS_LOCAL);
2007ff4: c2 06 80 00 ld [ %i2 ], %g1
2007ff8: 80 a0 60 00 cmp %g1, 0
2007ffc: 32 bf ff f5 bne,a 2007fd0 <_Objects_Get_next+0x38>
2008000: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2
*next_id_p = next_id;
2008004: f2 26 c0 00 st %i1, [ %i3 ]
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
}
2008008: 81 c7 e0 08 ret
200800c: 91 e8 00 08 restore %g0, %o0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2008010: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2
2008014: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2008018: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
200801c: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2008020: 90 10 00 1d mov %i5, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2008024: 80 a0 80 01 cmp %g2, %g1
2008028: 1a bf ff f1 bcc 2007fec <_Objects_Get_next+0x54> <== ALWAYS TAKEN
200802c: 94 10 00 1a mov %i2, %o2
{
*location_p = OBJECTS_ERROR;
2008030: 82 10 20 01 mov 1, %g1
2008034: c2 26 80 00 st %g1, [ %i2 ]
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
2008038: 90 10 20 00 clr %o0
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
200803c: 82 10 3f ff mov -1, %g1
2008040: c2 26 c0 00 st %g1, [ %i3 ]
return 0;
}
2008044: 81 c7 e0 08 ret
2008048: 91 e8 00 08 restore %g0, %o0, %o0
02008d68 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2008d68: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2008d6c: 80 a6 20 00 cmp %i0, 0
2008d70: 12 80 00 06 bne 2008d88 <_Objects_Id_to_name+0x20>
2008d74: 83 36 20 18 srl %i0, 0x18, %g1
2008d78: 03 00 80 76 sethi %hi(0x201d800), %g1
2008d7c: c2 00 61 18 ld [ %g1 + 0x118 ], %g1 ! 201d918 <_Per_CPU_Information+0xc>
2008d80: f0 00 60 08 ld [ %g1 + 8 ], %i0
2008d84: 83 36 20 18 srl %i0, 0x18, %g1
2008d88: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2008d8c: 84 00 7f ff add %g1, -1, %g2
2008d90: 80 a0 a0 02 cmp %g2, 2
2008d94: 18 80 00 17 bgu 2008df0 <_Objects_Id_to_name+0x88>
2008d98: ba 10 20 03 mov 3, %i5
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2008d9c: 83 28 60 02 sll %g1, 2, %g1
2008da0: 05 00 80 75 sethi %hi(0x201d400), %g2
2008da4: 84 10 a2 48 or %g2, 0x248, %g2 ! 201d648 <_Objects_Information_table>
2008da8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2008dac: 80 a0 60 00 cmp %g1, 0
2008db0: 02 80 00 10 be 2008df0 <_Objects_Id_to_name+0x88>
2008db4: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2008db8: 85 28 a0 02 sll %g2, 2, %g2
2008dbc: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2008dc0: 80 a2 20 00 cmp %o0, 0
2008dc4: 02 80 00 0b be 2008df0 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
2008dc8: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2008dcc: 7f ff ff c9 call 2008cf0 <_Objects_Get>
2008dd0: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2008dd4: 80 a2 20 00 cmp %o0, 0
2008dd8: 02 80 00 06 be 2008df0 <_Objects_Id_to_name+0x88>
2008ddc: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2008de0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2008de4: ba 10 20 00 clr %i5
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2008de8: 40 00 03 94 call 2009c38 <_Thread_Enable_dispatch>
2008dec: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2008df0: 81 c7 e0 08 ret
2008df4: 91 e8 00 1d restore %g0, %i5, %o0
0200858c <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
200858c: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
2008590: fa 16 20 0a lduh [ %i0 + 0xa ], %i5
block_count = (information->maximum - index_base) /
2008594: f8 16 20 14 lduh [ %i0 + 0x14 ], %i4
2008598: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
200859c: 92 10 00 1c mov %i4, %o1
20085a0: 40 00 3c d7 call 20178fc <.udiv>
20085a4: 90 22 00 1d sub %o0, %i5, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
20085a8: 80 a2 20 00 cmp %o0, 0
20085ac: 02 80 00 34 be 200867c <_Objects_Shrink_information+0xf0> <== NEVER TAKEN
20085b0: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
20085b4: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
20085b8: c2 01 00 00 ld [ %g4 ], %g1
20085bc: 80 a7 00 01 cmp %i4, %g1
20085c0: 02 80 00 0f be 20085fc <_Objects_Shrink_information+0x70> <== NEVER TAKEN
20085c4: 82 10 20 00 clr %g1
20085c8: 10 80 00 07 b 20085e4 <_Objects_Shrink_information+0x58>
20085cc: b6 10 20 04 mov 4, %i3
* the_block - the block to remove
*
* Output parameters: NONE
*/
void _Objects_Shrink_information(
20085d0: 86 06 e0 04 add %i3, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
20085d4: 80 a7 00 02 cmp %i4, %g2
20085d8: 02 80 00 0a be 2008600 <_Objects_Shrink_information+0x74>
20085dc: ba 07 40 1c add %i5, %i4, %i5
20085e0: b6 10 00 03 mov %g3, %i3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
20085e4: 82 00 60 01 inc %g1
20085e8: 80 a0 40 08 cmp %g1, %o0
20085ec: 32 bf ff f9 bne,a 20085d0 <_Objects_Shrink_information+0x44>
20085f0: c4 01 00 1b ld [ %g4 + %i3 ], %g2
20085f4: 81 c7 e0 08 ret
20085f8: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
20085fc: b6 10 20 00 clr %i3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2008600: 10 80 00 06 b 2008618 <_Objects_Shrink_information+0x8c>
2008604: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
2008608: 80 a7 20 00 cmp %i4, 0
200860c: 22 80 00 12 be,a 2008654 <_Objects_Shrink_information+0xc8>
2008610: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
2008614: 90 10 00 1c mov %i4, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2008618: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
200861c: 80 a0 40 1d cmp %g1, %i5
2008620: 0a bf ff fa bcs 2008608 <_Objects_Shrink_information+0x7c>
2008624: f8 02 00 00 ld [ %o0 ], %i4
(index < (index_base + information->allocation_size))) {
2008628: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
200862c: 84 07 40 02 add %i5, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2008630: 80 a0 40 02 cmp %g1, %g2
2008634: 1a bf ff f6 bcc 200860c <_Objects_Shrink_information+0x80>
2008638: 80 a7 20 00 cmp %i4, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
200863c: 7f ff fb 63 call 20073c8 <_Chain_Extract>
2008640: 01 00 00 00 nop
}
}
while ( the_object );
2008644: 80 a7 20 00 cmp %i4, 0
2008648: 12 bf ff f4 bne 2008618 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
200864c: 90 10 00 1c mov %i4, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
2008650: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
2008654: 40 00 07 bb call 200a540 <_Workspace_Free>
2008658: d0 00 40 1b ld [ %g1 + %i3 ], %o0
information->object_blocks[ block ] = NULL;
200865c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
2008660: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
2008664: c0 20 40 1b clr [ %g1 + %i3 ]
information->inactive_per_block[ block ] = 0;
2008668: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
200866c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
2008670: c0 20 c0 1b clr [ %g3 + %i3 ]
information->inactive -= information->allocation_size;
2008674: 82 20 80 01 sub %g2, %g1, %g1
2008678: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
200867c: 81 c7 e0 08 ret
2008680: 81 e8 00 00 restore
0200dadc <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200dadc: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if (!the_node) return;
200dae0: 80 a6 60 00 cmp %i1, 0
200dae4: 02 80 00 4c be 200dc14 <_RBTree_Extract_unprotected+0x138>
200dae8: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
200daec: c2 06 20 08 ld [ %i0 + 8 ], %g1
200daf0: 80 a0 40 19 cmp %g1, %i1
200daf4: 22 80 00 59 be,a 200dc58 <_RBTree_Extract_unprotected+0x17c>
200daf8: c2 06 60 08 ld [ %i1 + 8 ], %g1
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
200dafc: c2 06 20 0c ld [ %i0 + 0xc ], %g1
200db00: 80 a0 40 19 cmp %g1, %i1
200db04: 22 80 00 46 be,a 200dc1c <_RBTree_Extract_unprotected+0x140>
200db08: c2 06 60 04 ld [ %i1 + 4 ], %g1
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200db0c: fa 06 60 04 ld [ %i1 + 4 ], %i5
200db10: 80 a7 60 00 cmp %i5, 0
200db14: 22 80 00 4a be,a 200dc3c <_RBTree_Extract_unprotected+0x160>
200db18: f8 06 60 08 ld [ %i1 + 8 ], %i4
200db1c: c2 06 60 08 ld [ %i1 + 8 ], %g1
200db20: 80 a0 60 00 cmp %g1, 0
200db24: 32 80 00 05 bne,a 200db38 <_RBTree_Extract_unprotected+0x5c>
200db28: c2 07 60 08 ld [ %i5 + 8 ], %g1
200db2c: 10 80 00 50 b 200dc6c <_RBTree_Extract_unprotected+0x190>
200db30: b8 10 00 1d mov %i5, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
200db34: c2 07 60 08 ld [ %i5 + 8 ], %g1
200db38: 80 a0 60 00 cmp %g1, 0
200db3c: 32 bf ff fe bne,a 200db34 <_RBTree_Extract_unprotected+0x58>
200db40: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
200db44: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200db48: 80 a7 20 00 cmp %i4, 0
200db4c: 02 80 00 54 be 200dc9c <_RBTree_Extract_unprotected+0x1c0>
200db50: 01 00 00 00 nop
leaf->parent = target->parent;
200db54: c2 07 40 00 ld [ %i5 ], %g1
200db58: c2 27 00 00 st %g1, [ %i4 ]
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
200db5c: c4 07 40 00 ld [ %i5 ], %g2
target->parent->child[dir] = leaf;
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200db60: c2 06 40 00 ld [ %i1 ], %g1
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
200db64: c8 00 a0 04 ld [ %g2 + 4 ], %g4
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200db68: c6 07 60 0c ld [ %i5 + 0xc ], %g3
dir = target != target->parent->child[0];
200db6c: 88 19 00 1d xor %g4, %i5, %g4
200db70: 80 a0 00 04 cmp %g0, %g4
200db74: 88 40 20 00 addx %g0, 0, %g4
target->parent->child[dir] = leaf;
200db78: 89 29 20 02 sll %g4, 2, %g4
200db7c: 84 00 80 04 add %g2, %g4, %g2
200db80: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
200db84: c4 00 60 04 ld [ %g1 + 4 ], %g2
200db88: 84 18 80 19 xor %g2, %i1, %g2
200db8c: 80 a0 00 02 cmp %g0, %g2
200db90: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = target;
200db94: 85 28 a0 02 sll %g2, 2, %g2
200db98: 82 00 40 02 add %g1, %g2, %g1
200db9c: fa 20 60 04 st %i5, [ %g1 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
200dba0: c2 06 60 08 ld [ %i1 + 8 ], %g1
200dba4: c2 27 60 08 st %g1, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200dba8: c2 06 60 08 ld [ %i1 + 8 ], %g1
200dbac: 80 a0 60 00 cmp %g1, 0
200dbb0: 32 80 00 02 bne,a 200dbb8 <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN
200dbb4: fa 20 40 00 st %i5, [ %g1 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200dbb8: c2 06 60 04 ld [ %i1 + 4 ], %g1
200dbbc: c2 27 60 04 st %g1, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
200dbc0: c2 06 60 04 ld [ %i1 + 4 ], %g1
200dbc4: 80 a0 60 00 cmp %g1, 0
200dbc8: 32 80 00 02 bne,a 200dbd0 <_RBTree_Extract_unprotected+0xf4>
200dbcc: fa 20 40 00 st %i5, [ %g1 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200dbd0: c4 06 40 00 ld [ %i1 ], %g2
target->color = the_node->color;
200dbd4: c2 06 60 0c ld [ %i1 + 0xc ], %g1
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
200dbd8: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
200dbdc: c2 27 60 0c st %g1, [ %i5 + 0xc ]
/* fix coloring. leaf has moved up the tree. The color of the deleted
* node is in victim_color. There are two cases:
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node, its child must be red. Paint child black.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
200dbe0: 80 a0 e0 00 cmp %g3, 0
200dbe4: 32 80 00 06 bne,a 200dbfc <_RBTree_Extract_unprotected+0x120>
200dbe8: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (leaf) {
200dbec: 80 a7 20 00 cmp %i4, 0
200dbf0: 32 80 00 02 bne,a 200dbf8 <_RBTree_Extract_unprotected+0x11c>
200dbf4: c0 27 20 0c clr [ %i4 + 0xc ]
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
200dbf8: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
200dbfc: c0 26 60 08 clr [ %i1 + 8 ]
200dc00: c0 26 60 04 clr [ %i1 + 4 ]
200dc04: 80 a0 60 00 cmp %g1, 0
200dc08: 02 80 00 03 be 200dc14 <_RBTree_Extract_unprotected+0x138>
200dc0c: c0 26 40 00 clr [ %i1 ]
200dc10: c0 20 60 0c clr [ %g1 + 0xc ]
200dc14: 81 c7 e0 08 ret
200dc18: 81 e8 00 00 restore
the_rbtree->first[RBT_LEFT] = NULL;
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
if (the_node->child[RBT_LEFT])
200dc1c: 80 a0 60 00 cmp %g1, 0
200dc20: 22 80 00 28 be,a 200dcc0 <_RBTree_Extract_unprotected+0x1e4>
200dc24: c2 06 40 00 ld [ %i1 ], %g1
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
200dc28: fa 06 60 04 ld [ %i1 + 4 ], %i5
200dc2c: 80 a7 60 00 cmp %i5, 0
200dc30: 12 bf ff bb bne 200db1c <_RBTree_Extract_unprotected+0x40><== ALWAYS TAKEN
200dc34: c2 26 20 0c st %g1, [ %i0 + 0xc ]
* the_node's location in the tree. This may cause the coloring to be
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
200dc38: f8 06 60 08 ld [ %i1 + 8 ], %i4 <== NOT EXECUTED
if( leaf ) {
200dc3c: 80 a7 20 00 cmp %i4, 0
200dc40: 32 80 00 0c bne,a 200dc70 <_RBTree_Extract_unprotected+0x194>
200dc44: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
200dc48: 7f ff fe e0 call 200d7c8 <_RBTree_Extract_validate_unprotected>
200dc4c: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200dc50: 10 80 00 0a b 200dc78 <_RBTree_Extract_unprotected+0x19c>
200dc54: c2 06 40 00 ld [ %i1 ], %g1
if (!the_node) return;
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
if (the_node->child[RBT_RIGHT])
200dc58: 80 a0 60 00 cmp %g1, 0
200dc5c: 22 80 00 14 be,a 200dcac <_RBTree_Extract_unprotected+0x1d0>
200dc60: c2 06 40 00 ld [ %i1 ], %g1
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
200dc64: 10 bf ff a6 b 200dafc <_RBTree_Extract_unprotected+0x20>
200dc68: c2 26 20 08 st %g1, [ %i0 + 8 ]
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
leaf->parent = the_node->parent;
200dc6c: c2 06 40 00 ld [ %i1 ], %g1
200dc70: c2 27 00 00 st %g1, [ %i4 ]
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200dc74: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
200dc78: c6 06 60 0c ld [ %i1 + 0xc ], %g3
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200dc7c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200dc80: 84 18 80 19 xor %g2, %i1, %g2
200dc84: 80 a0 00 02 cmp %g0, %g2
200dc88: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = leaf;
200dc8c: 85 28 a0 02 sll %g2, 2, %g2
200dc90: 82 00 40 02 add %g1, %g2, %g1
200dc94: 10 bf ff d3 b 200dbe0 <_RBTree_Extract_unprotected+0x104>
200dc98: f8 20 60 04 st %i4, [ %g1 + 4 ]
leaf = target->child[RBT_LEFT];
if(leaf) {
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
200dc9c: 7f ff fe cb call 200d7c8 <_RBTree_Extract_validate_unprotected>
200dca0: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
200dca4: 10 bf ff af b 200db60 <_RBTree_Extract_unprotected+0x84>
200dca8: c4 07 40 00 ld [ %i5 ], %g2
if (the_node == the_rbtree->first[RBT_LEFT]) {
if (the_node->child[RBT_RIGHT])
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
else {
the_rbtree->first[RBT_LEFT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
200dcac: 80 a6 00 01 cmp %i0, %g1
200dcb0: 12 bf ff 93 bne 200dafc <_RBTree_Extract_unprotected+0x20>
200dcb4: c2 26 20 08 st %g1, [ %i0 + 8 ]
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
200dcb8: 10 bf ff 91 b 200dafc <_RBTree_Extract_unprotected+0x20>
200dcbc: c0 26 20 08 clr [ %i0 + 8 ]
if (the_node == the_rbtree->first[RBT_RIGHT]) {
if (the_node->child[RBT_LEFT])
the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT];
else {
the_rbtree->first[RBT_RIGHT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
200dcc0: 80 a6 00 01 cmp %i0, %g1
200dcc4: 12 bf ff 92 bne 200db0c <_RBTree_Extract_unprotected+0x30>
200dcc8: c2 26 20 0c st %g1, [ %i0 + 0xc ]
the_rbtree->first[RBT_RIGHT]))
the_rbtree->first[RBT_RIGHT] = NULL;
200dccc: 10 bf ff 90 b 200db0c <_RBTree_Extract_unprotected+0x30>
200dcd0: c0 26 20 0c clr [ %i0 + 0xc ]
0200d7c8 <_RBTree_Extract_validate_unprotected>:
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
RBTree_Node *the_node
)
{
200d7c8: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
200d7cc: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
200d7d0: c4 00 40 00 ld [ %g1 ], %g2
200d7d4: 80 a0 a0 00 cmp %g2, 0
200d7d8: 02 80 00 bf be 200dad4 <_RBTree_Extract_validate_unprotected+0x30c>
200d7dc: 01 00 00 00 nop
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200d7e0: c4 00 60 04 ld [ %g1 + 4 ], %g2
200d7e4: 80 a6 00 02 cmp %i0, %g2
200d7e8: 22 80 00 02 be,a 200d7f0 <_RBTree_Extract_validate_unprotected+0x28>
200d7ec: c4 00 60 08 ld [ %g1 + 8 ], %g2
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
sibling->color = RBT_RED;
200d7f0: 98 10 20 01 mov 1, %o4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200d7f4: c6 06 20 0c ld [ %i0 + 0xc ], %g3
200d7f8: 80 a0 e0 01 cmp %g3, 1
200d7fc: 22 80 00 58 be,a 200d95c <_RBTree_Extract_validate_unprotected+0x194>
200d800: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
200d804: c6 00 40 00 ld [ %g1 ], %g3
200d808: 80 a0 e0 00 cmp %g3, 0
200d80c: 02 80 00 53 be 200d958 <_RBTree_Extract_validate_unprotected+0x190>
200d810: 80 a0 a0 00 cmp %g2, 0
200d814: 22 80 00 07 be,a 200d830 <_RBTree_Extract_validate_unprotected+0x68><== NEVER TAKEN
200d818: c6 00 a0 08 ld [ %g2 + 8 ], %g3 <== NOT EXECUTED
200d81c: c8 00 a0 0c ld [ %g2 + 0xc ], %g4
200d820: 80 a1 20 01 cmp %g4, 1
200d824: 22 80 00 28 be,a 200d8c4 <_RBTree_Extract_validate_unprotected+0xfc>
200d828: de 00 60 04 ld [ %g1 + 4 ], %o7
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
200d82c: c6 00 a0 08 ld [ %g2 + 8 ], %g3
200d830: 80 a0 e0 00 cmp %g3, 0
200d834: 22 80 00 07 be,a 200d850 <_RBTree_Extract_validate_unprotected+0x88>
200d838: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200d83c: c6 00 e0 0c ld [ %g3 + 0xc ], %g3
200d840: 80 a0 e0 01 cmp %g3, 1
200d844: 22 80 00 4c be,a 200d974 <_RBTree_Extract_validate_unprotected+0x1ac>
200d848: c6 00 60 04 ld [ %g1 + 4 ], %g3
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
200d84c: c6 00 a0 04 ld [ %g2 + 4 ], %g3
200d850: 80 a0 e0 00 cmp %g3, 0
200d854: 22 80 00 07 be,a 200d870 <_RBTree_Extract_validate_unprotected+0xa8>
200d858: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
200d85c: c6 00 e0 0c ld [ %g3 + 0xc ], %g3
200d860: 80 a0 e0 01 cmp %g3, 1
200d864: 22 80 00 44 be,a 200d974 <_RBTree_Extract_validate_unprotected+0x1ac>
200d868: c6 00 60 04 ld [ %g1 + 4 ], %g3
sibling->color = RBT_RED;
200d86c: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
200d870: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200d874: 80 a0 a0 01 cmp %g2, 1
200d878: 22 80 00 38 be,a 200d958 <_RBTree_Extract_validate_unprotected+0x190>
200d87c: c0 20 60 0c clr [ %g1 + 0xc ]
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
200d880: c6 00 40 00 ld [ %g1 ], %g3
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200d884: 80 a0 e0 00 cmp %g3, 0
200d888: 02 80 00 0a be 200d8b0 <_RBTree_Extract_validate_unprotected+0xe8><== NEVER TAKEN
200d88c: 84 10 20 00 clr %g2
if(!(the_node->parent->parent)) return NULL;
200d890: c8 00 c0 00 ld [ %g3 ], %g4
200d894: 80 a1 20 00 cmp %g4, 0
200d898: 02 80 00 07 be 200d8b4 <_RBTree_Extract_validate_unprotected+0xec>
200d89c: b0 10 00 01 mov %g1, %i0
if(the_node == the_node->parent->child[RBT_LEFT])
200d8a0: c4 00 e0 04 ld [ %g3 + 4 ], %g2
200d8a4: 80 a0 40 02 cmp %g1, %g2
200d8a8: 22 80 00 05 be,a 200d8bc <_RBTree_Extract_validate_unprotected+0xf4>
200d8ac: c4 00 e0 08 ld [ %g3 + 8 ], %g2
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
c->parent = the_node->parent;
the_node->parent = c;
200d8b0: b0 10 00 01 mov %g1, %i0
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
200d8b4: 10 bf ff d0 b 200d7f4 <_RBTree_Extract_validate_unprotected+0x2c>
200d8b8: 82 10 00 03 mov %g3, %g1
200d8bc: 10 bf ff ce b 200d7f4 <_RBTree_Extract_validate_unprotected+0x2c>
200d8c0: 82 10 00 03 mov %g3, %g1
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
200d8c4: c8 20 60 0c st %g4, [ %g1 + 0xc ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
200d8c8: 9e 1b c0 18 xor %o7, %i0, %o7
200d8cc: 80 a0 00 0f cmp %g0, %o7
200d8d0: 9a 40 20 00 addx %g0, 0, %o5
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
200d8d4: 88 21 00 0d sub %g4, %o5, %g4
200d8d8: 89 29 20 02 sll %g4, 2, %g4
200d8dc: 88 00 40 04 add %g1, %g4, %g4
200d8e0: de 01 20 04 ld [ %g4 + 4 ], %o7
200d8e4: 80 a3 e0 00 cmp %o7, 0
200d8e8: 02 80 00 16 be 200d940 <_RBTree_Extract_validate_unprotected+0x178><== NEVER TAKEN
200d8ec: c0 20 a0 0c clr [ %g2 + 0xc ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
200d8f0: 85 2b 60 02 sll %o5, 2, %g2
200d8f4: 96 03 c0 02 add %o7, %g2, %o3
200d8f8: d4 02 e0 04 ld [ %o3 + 4 ], %o2
200d8fc: d4 21 20 04 st %o2, [ %g4 + 4 ]
if (c->child[dir])
200d900: c8 02 e0 04 ld [ %o3 + 4 ], %g4
200d904: 80 a1 20 00 cmp %g4, 0
200d908: 02 80 00 04 be 200d918 <_RBTree_Extract_validate_unprotected+0x150><== NEVER TAKEN
200d90c: 84 03 c0 02 add %o7, %g2, %g2
c->child[dir]->parent = the_node;
200d910: c2 21 00 00 st %g1, [ %g4 ]
200d914: c6 00 40 00 ld [ %g1 ], %g3
c->child[dir] = the_node;
200d918: c2 20 a0 04 st %g1, [ %g2 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200d91c: c4 00 e0 04 ld [ %g3 + 4 ], %g2
c->parent = the_node->parent;
200d920: c6 23 c0 00 st %g3, [ %o7 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200d924: 84 18 40 02 xor %g1, %g2, %g2
c->parent = the_node->parent;
the_node->parent = c;
200d928: de 20 40 00 st %o7, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200d92c: 80 a0 00 02 cmp %g0, %g2
200d930: 84 40 20 00 addx %g0, 0, %g2
200d934: 85 28 a0 02 sll %g2, 2, %g2
200d938: 86 00 c0 02 add %g3, %g2, %g3
200d93c: de 20 e0 04 st %o7, [ %g3 + 4 ]
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
200d940: 80 a0 00 0d cmp %g0, %o5
200d944: 84 60 3f ff subx %g0, -1, %g2
200d948: 85 28 a0 02 sll %g2, 2, %g2
200d94c: 84 00 40 02 add %g1, %g2, %g2
200d950: 10 bf ff b7 b 200d82c <_RBTree_Extract_validate_unprotected+0x64>
200d954: c4 00 a0 04 ld [ %g2 + 4 ], %g2
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200d958: c2 06 00 00 ld [ %i0 ], %g1
200d95c: c2 00 40 00 ld [ %g1 ], %g1
200d960: 80 a0 60 00 cmp %g1, 0
200d964: 22 80 00 02 be,a 200d96c <_RBTree_Extract_validate_unprotected+0x1a4>
200d968: c0 26 20 0c clr [ %i0 + 0xc ]
200d96c: 81 c7 e0 08 ret
200d970: 81 e8 00 00 restore
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
200d974: 86 18 c0 18 xor %g3, %i0, %g3
200d978: 80 a0 00 03 cmp %g0, %g3
200d97c: 86 40 20 00 addx %g0, 0, %g3
if (!_RBTree_Is_red(sibling->child[!dir])) {
200d980: 80 a0 00 03 cmp %g0, %g3
200d984: 9e 60 3f ff subx %g0, -1, %o7
200d988: 9f 2b e0 02 sll %o7, 2, %o7
200d98c: 88 00 80 0f add %g2, %o7, %g4
200d990: c8 01 20 04 ld [ %g4 + 4 ], %g4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200d994: 80 a1 20 00 cmp %g4, 0
200d998: 22 80 00 07 be,a 200d9b4 <_RBTree_Extract_validate_unprotected+0x1ec>
200d99c: 89 28 e0 02 sll %g3, 2, %g4
200d9a0: da 01 20 0c ld [ %g4 + 0xc ], %o5
200d9a4: 80 a3 60 01 cmp %o5, 1
200d9a8: 22 80 00 28 be,a 200da48 <_RBTree_Extract_validate_unprotected+0x280>
200d9ac: de 00 60 0c ld [ %g1 + 0xc ], %o7
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
200d9b0: 89 28 e0 02 sll %g3, 2, %g4
200d9b4: 88 00 80 04 add %g2, %g4, %g4
200d9b8: d6 01 20 04 ld [ %g4 + 4 ], %o3
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
sibling->color = RBT_RED;
200d9bc: 88 10 20 01 mov 1, %g4
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
200d9c0: 98 18 e0 01 xor %g3, 1, %o4
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
sibling->color = RBT_RED;
200d9c4: c8 20 a0 0c st %g4, [ %g2 + 0xc ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
200d9c8: 9a 21 00 0c sub %g4, %o4, %o5
200d9cc: 9b 2b 60 02 sll %o5, 2, %o5
200d9d0: 9a 00 80 0d add %g2, %o5, %o5
200d9d4: c8 03 60 04 ld [ %o5 + 4 ], %g4
200d9d8: 80 a1 20 00 cmp %g4, 0
200d9dc: 02 80 00 16 be 200da34 <_RBTree_Extract_validate_unprotected+0x26c><== NEVER TAKEN
200d9e0: c0 22 e0 0c clr [ %o3 + 0xc ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
200d9e4: 99 2b 20 02 sll %o4, 2, %o4
200d9e8: 96 01 00 0c add %g4, %o4, %o3
200d9ec: d4 02 e0 04 ld [ %o3 + 4 ], %o2
200d9f0: d4 23 60 04 st %o2, [ %o5 + 4 ]
if (c->child[dir])
200d9f4: da 02 e0 04 ld [ %o3 + 4 ], %o5
200d9f8: 80 a3 60 00 cmp %o5, 0
200d9fc: 32 80 00 02 bne,a 200da04 <_RBTree_Extract_validate_unprotected+0x23c>
200da00: c4 23 40 00 st %g2, [ %o5 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200da04: da 00 80 00 ld [ %g2 ], %o5
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200da08: 98 01 00 0c add %g4, %o4, %o4
200da0c: c4 23 20 04 st %g2, [ %o4 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200da10: d8 03 60 04 ld [ %o5 + 4 ], %o4
c->parent = the_node->parent;
200da14: da 21 00 00 st %o5, [ %g4 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200da18: 98 18 80 0c xor %g2, %o4, %o4
c->parent = the_node->parent;
the_node->parent = c;
200da1c: c8 20 80 00 st %g4, [ %g2 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200da20: 80 a0 00 0c cmp %g0, %o4
200da24: 84 40 20 00 addx %g0, 0, %g2
200da28: 85 28 a0 02 sll %g2, 2, %g2
200da2c: 9a 03 40 02 add %o5, %g2, %o5
200da30: c8 23 60 04 st %g4, [ %o5 + 4 ]
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
200da34: 84 00 40 0f add %g1, %o7, %g2
200da38: c4 00 a0 04 ld [ %g2 + 4 ], %g2
200da3c: 9e 00 80 0f add %g2, %o7, %o7
200da40: c8 03 e0 04 ld [ %o7 + 4 ], %g4
}
sibling->color = parent->color;
200da44: de 00 60 0c ld [ %g1 + 0xc ], %o7
200da48: de 20 a0 0c st %o7, [ %g2 + 0xc ]
parent->color = RBT_BLACK;
200da4c: c0 20 60 0c clr [ %g1 + 0xc ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
200da50: 9e 10 20 01 mov 1, %o7
200da54: 9e 23 c0 03 sub %o7, %g3, %o7
200da58: 9f 2b e0 02 sll %o7, 2, %o7
200da5c: 9e 00 40 0f add %g1, %o7, %o7
200da60: c4 03 e0 04 ld [ %o7 + 4 ], %g2
200da64: 80 a0 a0 00 cmp %g2, 0
200da68: 02 bf ff bc be 200d958 <_RBTree_Extract_validate_unprotected+0x190><== NEVER TAKEN
200da6c: c0 21 20 0c clr [ %g4 + 0xc ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
200da70: 87 28 e0 02 sll %g3, 2, %g3
200da74: 88 00 80 03 add %g2, %g3, %g4
200da78: da 01 20 04 ld [ %g4 + 4 ], %o5
200da7c: da 23 e0 04 st %o5, [ %o7 + 4 ]
if (c->child[dir])
200da80: c8 01 20 04 ld [ %g4 + 4 ], %g4
200da84: 80 a1 20 00 cmp %g4, 0
200da88: 32 80 00 02 bne,a 200da90 <_RBTree_Extract_validate_unprotected+0x2c8>
200da8c: c2 21 00 00 st %g1, [ %g4 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200da90: c8 00 40 00 ld [ %g1 ], %g4
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200da94: 86 00 80 03 add %g2, %g3, %g3
200da98: c2 20 e0 04 st %g1, [ %g3 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200da9c: c6 01 20 04 ld [ %g4 + 4 ], %g3
c->parent = the_node->parent;
200daa0: c8 20 80 00 st %g4, [ %g2 ]
the_node->parent = c;
200daa4: c4 20 40 00 st %g2, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200daa8: 86 18 40 03 xor %g1, %g3, %g3
200daac: 80 a0 00 03 cmp %g0, %g3
200dab0: 82 40 20 00 addx %g0, 0, %g1
200dab4: 83 28 60 02 sll %g1, 2, %g1
200dab8: 88 01 00 01 add %g4, %g1, %g4
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200dabc: c2 06 00 00 ld [ %i0 ], %g1
200dac0: c4 21 20 04 st %g2, [ %g4 + 4 ]
200dac4: c2 00 40 00 ld [ %g1 ], %g1
200dac8: 80 a0 60 00 cmp %g1, 0
200dacc: 22 bf ff a8 be,a 200d96c <_RBTree_Extract_validate_unprotected+0x1a4><== NEVER TAKEN
200dad0: c0 26 20 0c clr [ %i0 + 0xc ] <== NOT EXECUTED
200dad4: 81 c7 e0 08 ret
200dad8: 81 e8 00 00 restore
02009e98 <_RBTree_Find>:
RBTree_Node *_RBTree_Find(
RBTree_Control *the_rbtree,
RBTree_Node *search_node
)
{
2009e98: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
2009e9c: 7f ff e6 8a call 20038c4 <sparc_disable_interrupts>
2009ea0: b8 10 00 18 mov %i0, %i4
2009ea4: ba 10 00 08 mov %o0, %i5
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Find_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
RBTree_Node* iter_node = the_rbtree->root;
2009ea8: f6 06 20 04 ld [ %i0 + 4 ], %i3
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
2009eac: 80 a6 e0 00 cmp %i3, 0
2009eb0: 02 80 00 15 be 2009f04 <_RBTree_Find+0x6c> <== NEVER TAKEN
2009eb4: b0 10 20 00 clr %i0
compare_result = the_rbtree->compare_function(the_node, iter_node);
2009eb8: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
2009ebc: 92 10 00 1b mov %i3, %o1
2009ec0: 9f c0 40 00 call %g1
2009ec4: 90 10 00 19 mov %i1, %o0
if (compare_result == 0) {
2009ec8: 80 a2 20 00 cmp %o0, 0
2009ecc: 12 80 00 06 bne 2009ee4 <_RBTree_Find+0x4c>
2009ed0: 82 1a 20 01 xor %o0, 1, %g1
found = iter_node;
if ( the_rbtree->is_unique )
2009ed4: c4 0f 20 14 ldub [ %i4 + 0x14 ], %g2
2009ed8: 80 a0 a0 00 cmp %g2, 0
2009edc: 12 80 00 0e bne 2009f14 <_RBTree_Find+0x7c>
2009ee0: b0 10 00 1b mov %i3, %i0
break;
}
RBTree_Direction dir = (compare_result == 1);
2009ee4: 80 a0 00 01 cmp %g0, %g1
2009ee8: 82 60 3f ff subx %g0, -1, %g1
iter_node = iter_node->child[dir];
2009eec: 83 28 60 02 sll %g1, 2, %g1
2009ef0: b6 06 c0 01 add %i3, %g1, %i3
2009ef4: f6 06 e0 04 ld [ %i3 + 4 ], %i3
)
{
RBTree_Node* iter_node = the_rbtree->root;
RBTree_Node* found = NULL;
int compare_result;
while (iter_node) {
2009ef8: 80 a6 e0 00 cmp %i3, 0
2009efc: 32 bf ff f0 bne,a 2009ebc <_RBTree_Find+0x24>
2009f00: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
return_node = _RBTree_Find_unprotected( the_rbtree, search_node );
_ISR_Enable( level );
2009f04: 7f ff e6 74 call 20038d4 <sparc_enable_interrupts>
2009f08: 90 10 00 1d mov %i5, %o0
return return_node;
}
2009f0c: 81 c7 e0 08 ret
2009f10: 81 e8 00 00 restore
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
return_node = _RBTree_Find_unprotected( the_rbtree, search_node );
_ISR_Enable( level );
2009f14: 7f ff e6 70 call 20038d4 <sparc_enable_interrupts>
2009f18: 90 10 00 1d mov %i5, %o0
return return_node;
}
2009f1c: 81 c7 e0 08 ret
2009f20: 81 e8 00 00 restore
0200a20c <_RBTree_Initialize>:
void *starting_address,
size_t number_nodes,
size_t node_size,
bool is_unique
)
{
200a20c: 9d e3 bf a0 save %sp, -96, %sp
size_t count;
RBTree_Node *next;
/* TODO: Error message? */
if (!the_rbtree) return;
200a210: 80 a6 20 00 cmp %i0, 0
200a214: 02 80 00 0f be 200a250 <_RBTree_Initialize+0x44> <== NEVER TAKEN
200a218: 80 a6 e0 00 cmp %i3, 0
RBTree_Control *the_rbtree,
RBTree_Compare_function compare_function,
bool is_unique
)
{
the_rbtree->permanent_null = NULL;
200a21c: c0 26 00 00 clr [ %i0 ]
the_rbtree->root = NULL;
200a220: c0 26 20 04 clr [ %i0 + 4 ]
the_rbtree->first[0] = NULL;
200a224: c0 26 20 08 clr [ %i0 + 8 ]
the_rbtree->first[1] = NULL;
200a228: c0 26 20 0c clr [ %i0 + 0xc ]
the_rbtree->compare_function = compare_function;
200a22c: f2 26 20 10 st %i1, [ %i0 + 0x10 ]
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200a230: 02 80 00 08 be 200a250 <_RBTree_Initialize+0x44> <== NEVER TAKEN
200a234: fa 2e 20 14 stb %i5, [ %i0 + 0x14 ]
_RBTree_Insert(the_rbtree, next);
200a238: 92 10 00 1a mov %i2, %o1
200a23c: 7f ff ff ef call 200a1f8 <_RBTree_Insert>
200a240: 90 10 00 18 mov %i0, %o0
/* could do sanity checks here */
_RBTree_Initialize_empty(the_rbtree, compare_function, is_unique);
count = number_nodes;
next = starting_address;
while ( count-- ) {
200a244: b6 86 ff ff addcc %i3, -1, %i3
200a248: 12 bf ff fc bne 200a238 <_RBTree_Initialize+0x2c>
200a24c: b4 06 80 1c add %i2, %i4, %i2
200a250: 81 c7 e0 08 ret
200a254: 81 e8 00 00 restore
0200dcfc <_RBTree_Validate_insert_unprotected>:
* append operation.
*/
void _RBTree_Validate_insert_unprotected(
RBTree_Node *the_node
)
{
200dcfc: 9d e3 bf a0 save %sp, -96, %sp
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200dd00: 96 10 20 01 mov 1, %o3
ISR_Level level;
_ISR_Disable( level );
return _RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
200dd04: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200dd08: c4 00 40 00 ld [ %g1 ], %g2
200dd0c: 86 90 a0 00 orcc %g2, 0, %g3
200dd10: 22 80 00 06 be,a 200dd28 <_RBTree_Validate_insert_unprotected+0x2c>
200dd14: c0 26 20 0c clr [ %i0 + 0xc ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200dd18: c8 00 60 0c ld [ %g1 + 0xc ], %g4
200dd1c: 80 a1 20 01 cmp %g4, 1
200dd20: 22 80 00 04 be,a 200dd30 <_RBTree_Validate_insert_unprotected+0x34>
200dd24: c8 00 80 00 ld [ %g2 ], %g4
200dd28: 81 c7 e0 08 ret
200dd2c: 81 e8 00 00 restore
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
200dd30: 80 a1 20 00 cmp %g4, 0
200dd34: 02 80 00 0c be 200dd64 <_RBTree_Validate_insert_unprotected+0x68><== NEVER TAKEN
200dd38: de 00 a0 04 ld [ %g2 + 4 ], %o7
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200dd3c: 80 a0 40 0f cmp %g1, %o7
200dd40: 02 80 00 59 be 200dea4 <_RBTree_Validate_insert_unprotected+0x1a8>
200dd44: 88 10 00 0f mov %o7, %g4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
200dd48: 80 a1 20 00 cmp %g4, 0
200dd4c: 22 80 00 07 be,a 200dd68 <_RBTree_Validate_insert_unprotected+0x6c>
200dd50: c8 00 60 04 ld [ %g1 + 4 ], %g4
200dd54: da 01 20 0c ld [ %g4 + 0xc ], %o5
200dd58: 80 a3 60 01 cmp %o5, 1
200dd5c: 22 80 00 4c be,a 200de8c <_RBTree_Validate_insert_unprotected+0x190>
200dd60: c0 20 60 0c clr [ %g1 + 0xc ]
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200dd64: c8 00 60 04 ld [ %g1 + 4 ], %g4
RBTree_Direction pdir = the_node->parent != g->child[0];
200dd68: 9e 18 40 0f xor %g1, %o7, %o7
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200dd6c: 88 19 00 18 xor %g4, %i0, %g4
200dd70: 80 a0 00 04 cmp %g0, %g4
200dd74: 9a 40 20 00 addx %g0, 0, %o5
RBTree_Direction pdir = the_node->parent != g->child[0];
200dd78: 80 a0 00 0f cmp %g0, %o7
200dd7c: 88 40 20 00 addx %g0, 0, %g4
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
200dd80: 80 a3 40 04 cmp %o5, %g4
200dd84: 02 80 00 46 be 200de9c <_RBTree_Validate_insert_unprotected+0x1a0>
200dd88: 98 22 c0 0d sub %o3, %o5, %o4
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
200dd8c: 98 22 c0 04 sub %o3, %g4, %o4
200dd90: 9b 2b 20 02 sll %o4, 2, %o5
200dd94: 9a 00 40 0d add %g1, %o5, %o5
200dd98: de 03 60 04 ld [ %o5 + 4 ], %o7
200dd9c: 80 a3 e0 00 cmp %o7, 0
200dda0: 02 80 00 16 be 200ddf8 <_RBTree_Validate_insert_unprotected+0xfc><== NEVER TAKEN
200dda4: 89 29 20 02 sll %g4, 2, %g4
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
200dda8: 94 03 c0 04 add %o7, %g4, %o2
200ddac: d2 02 a0 04 ld [ %o2 + 4 ], %o1
200ddb0: d2 23 60 04 st %o1, [ %o5 + 4 ]
if (c->child[dir])
200ddb4: da 02 a0 04 ld [ %o2 + 4 ], %o5
200ddb8: 80 a3 60 00 cmp %o5, 0
200ddbc: 22 80 00 05 be,a 200ddd0 <_RBTree_Validate_insert_unprotected+0xd4>
200ddc0: 9a 03 c0 04 add %o7, %g4, %o5
c->child[dir]->parent = the_node;
200ddc4: c2 23 40 00 st %g1, [ %o5 ]
200ddc8: c4 00 40 00 ld [ %g1 ], %g2
c->child[dir] = the_node;
200ddcc: 9a 03 c0 04 add %o7, %g4, %o5
200ddd0: c2 23 60 04 st %g1, [ %o5 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200ddd4: da 00 a0 04 ld [ %g2 + 4 ], %o5
c->parent = the_node->parent;
200ddd8: c4 23 c0 00 st %g2, [ %o7 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200dddc: 9a 18 40 0d xor %g1, %o5, %o5
c->parent = the_node->parent;
the_node->parent = c;
200dde0: de 20 40 00 st %o7, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200dde4: 80 a0 00 0d cmp %g0, %o5
200dde8: 82 40 20 00 addx %g0, 0, %g1
200ddec: 83 28 60 02 sll %g1, 2, %g1
200ddf0: 84 00 80 01 add %g2, %g1, %g2
200ddf4: de 20 a0 04 st %o7, [ %g2 + 4 ]
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
200ddf8: b0 06 00 04 add %i0, %g4, %i0
200ddfc: f0 06 20 04 ld [ %i0 + 4 ], %i0
200de00: c2 06 00 00 ld [ %i0 ], %g1
}
the_node->parent->color = RBT_BLACK;
200de04: c0 20 60 0c clr [ %g1 + 0xc ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
200de08: 88 00 c0 04 add %g3, %g4, %g4
200de0c: c2 01 20 04 ld [ %g4 + 4 ], %g1
200de10: 80 a0 60 00 cmp %g1, 0
200de14: 02 bf ff bc be 200dd04 <_RBTree_Validate_insert_unprotected+0x8><== NEVER TAKEN
200de18: d6 20 e0 0c st %o3, [ %g3 + 0xc ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
200de1c: 99 2b 20 02 sll %o4, 2, %o4
200de20: 84 00 40 0c add %g1, %o4, %g2
200de24: de 00 a0 04 ld [ %g2 + 4 ], %o7
200de28: de 21 20 04 st %o7, [ %g4 + 4 ]
if (c->child[dir])
200de2c: c4 00 a0 04 ld [ %g2 + 4 ], %g2
200de30: 80 a0 a0 00 cmp %g2, 0
200de34: 32 80 00 02 bne,a 200de3c <_RBTree_Validate_insert_unprotected+0x140>
200de38: c6 20 80 00 st %g3, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200de3c: c4 00 c0 00 ld [ %g3 ], %g2
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
200de40: 98 00 40 0c add %g1, %o4, %o4
200de44: c6 23 20 04 st %g3, [ %o4 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200de48: c8 00 a0 04 ld [ %g2 + 4 ], %g4
c->parent = the_node->parent;
200de4c: c4 20 40 00 st %g2, [ %g1 ]
the_node->parent = c;
200de50: c2 20 c0 00 st %g1, [ %g3 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200de54: 88 19 00 03 xor %g4, %g3, %g4
200de58: 80 a0 00 04 cmp %g0, %g4
200de5c: 86 40 20 00 addx %g0, 0, %g3
200de60: 87 28 e0 02 sll %g3, 2, %g3
200de64: 84 00 80 03 add %g2, %g3, %g2
200de68: c2 20 a0 04 st %g1, [ %g2 + 4 ]
ISR_Level level;
_ISR_Disable( level );
return _RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
200de6c: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
200de70: c4 00 40 00 ld [ %g1 ], %g2
200de74: 86 90 a0 00 orcc %g2, 0, %g3
200de78: 32 bf ff a9 bne,a 200dd1c <_RBTree_Validate_insert_unprotected+0x20><== ALWAYS TAKEN
200de7c: c8 00 60 0c ld [ %g1 + 0xc ], %g4
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
200de80: c0 26 20 0c clr [ %i0 + 0xc ] <== NOT EXECUTED
200de84: 81 c7 e0 08 ret <== NOT EXECUTED
200de88: 81 e8 00 00 restore <== NOT EXECUTED
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
200de8c: c0 21 20 0c clr [ %g4 + 0xc ]
g->color = RBT_RED;
200de90: da 20 a0 0c st %o5, [ %g2 + 0xc ]
200de94: 10 bf ff 9c b 200dd04 <_RBTree_Validate_insert_unprotected+0x8>
200de98: b0 10 00 02 mov %g2, %i0
200de9c: 10 bf ff da b 200de04 <_RBTree_Validate_insert_unprotected+0x108>
200dea0: 89 2b 60 02 sll %o5, 2, %g4
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
return the_node->parent->child[RBT_RIGHT];
200dea4: 10 bf ff a9 b 200dd48 <_RBTree_Validate_insert_unprotected+0x4c>
200dea8: c8 00 a0 08 ld [ %g2 + 8 ], %g4
02006d28 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
2006d28: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
2006d2c: 03 00 80 6d sethi %hi(0x201b400), %g1
2006d30: 82 10 62 c4 or %g1, 0x2c4, %g1 ! 201b6c4 <Configuration_RTEMS_API>
2006d34: fa 00 60 2c ld [ %g1 + 0x2c ], %i5
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
2006d38: 80 a7 60 00 cmp %i5, 0
2006d3c: 02 80 00 18 be 2006d9c <_RTEMS_tasks_Initialize_user_tasks_body+0x74>
2006d40: f6 00 60 28 ld [ %g1 + 0x28 ], %i3
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006d44: 80 a6 e0 00 cmp %i3, 0
2006d48: 02 80 00 15 be 2006d9c <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN
2006d4c: b8 10 20 00 clr %i4
return_value = rtems_task_create(
2006d50: d4 07 60 04 ld [ %i5 + 4 ], %o2
2006d54: d0 07 40 00 ld [ %i5 ], %o0
2006d58: d2 07 60 08 ld [ %i5 + 8 ], %o1
2006d5c: d6 07 60 14 ld [ %i5 + 0x14 ], %o3
2006d60: d8 07 60 0c ld [ %i5 + 0xc ], %o4
2006d64: 7f ff ff 70 call 2006b24 <rtems_task_create>
2006d68: 9a 07 bf fc add %fp, -4, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
2006d6c: 94 92 20 00 orcc %o0, 0, %o2
2006d70: 12 80 00 0d bne 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2006d74: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
2006d78: d4 07 60 18 ld [ %i5 + 0x18 ], %o2
2006d7c: 40 00 00 0e call 2006db4 <rtems_task_start>
2006d80: d2 07 60 10 ld [ %i5 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2006d84: 94 92 20 00 orcc %o0, 0, %o2
2006d88: 12 80 00 07 bne 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2006d8c: b8 07 20 01 inc %i4
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006d90: 80 a7 00 1b cmp %i4, %i3
2006d94: 12 bf ff ef bne 2006d50 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN
2006d98: ba 07 60 1c add %i5, 0x1c, %i5
2006d9c: 81 c7 e0 08 ret
2006da0: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
2006da4: 90 10 20 01 mov 1, %o0
2006da8: 40 00 03 ff call 2007da4 <_Internal_error_Occurred>
2006dac: 92 10 20 01 mov 1, %o1
0200c5c8 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200c5c8: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200c5cc: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
if ( !api )
200c5d0: 80 a7 60 00 cmp %i5, 0
200c5d4: 02 80 00 1e be 200c64c <_RTEMS_tasks_Post_switch_extension+0x84><== NEVER TAKEN
200c5d8: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200c5dc: 7f ff d7 02 call 20021e4 <sparc_disable_interrupts>
200c5e0: 01 00 00 00 nop
signal_set = asr->signals_posted;
200c5e4: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
200c5e8: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200c5ec: 7f ff d7 02 call 20021f4 <sparc_enable_interrupts>
200c5f0: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200c5f4: 80 a7 20 00 cmp %i4, 0
200c5f8: 32 80 00 04 bne,a 200c608 <_RTEMS_tasks_Post_switch_extension+0x40>
200c5fc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200c600: 81 c7 e0 08 ret
200c604: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c608: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200c60c: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c610: 94 07 bf fc add %fp, -4, %o2
200c614: 37 00 00 3f sethi %hi(0xfc00), %i3
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200c618: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c61c: 40 00 07 e0 call 200e59c <rtems_task_mode>
200c620: 92 16 e3 ff or %i3, 0x3ff, %o1
(*asr->handler)( signal_set );
200c624: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200c628: 9f c0 40 00 call %g1
200c62c: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
200c630: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c634: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200c638: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c63c: 92 16 e3 ff or %i3, 0x3ff, %o1
200c640: 94 07 bf fc add %fp, -4, %o2
200c644: 40 00 07 d6 call 200e59c <rtems_task_mode>
200c648: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
200c64c: 81 c7 e0 08 ret
200c650: 81 e8 00 00 restore
0200c530 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200c530: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
200c534: 80 a0 60 00 cmp %g1, 0
200c538: 22 80 00 0c be,a 200c568 <_RTEMS_tasks_Switch_extension+0x38>
200c53c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
tvp->tval = *tvp->ptr;
200c540: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200c544: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200c548: c8 00 80 00 ld [ %g2 ], %g4
200c54c: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
200c550: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200c554: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200c558: 80 a0 60 00 cmp %g1, 0
200c55c: 32 bf ff fa bne,a 200c544 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN
200c560: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200c564: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
while (tvp) {
200c568: 80 a0 60 00 cmp %g1, 0
200c56c: 02 80 00 0b be 200c598 <_RTEMS_tasks_Switch_extension+0x68>
200c570: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200c574: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200c578: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200c57c: c8 00 80 00 ld [ %g2 ], %g4
200c580: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
200c584: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200c588: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200c58c: 80 a0 60 00 cmp %g1, 0
200c590: 32 bf ff fa bne,a 200c578 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN
200c594: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
200c598: 81 c3 e0 08 retl
02007aec <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007aec: 9d e3 bf 98 save %sp, -104, %sp
2007af0: 11 00 80 78 sethi %hi(0x201e000), %o0
2007af4: 92 10 00 18 mov %i0, %o1
2007af8: 90 12 20 84 or %o0, 0x84, %o0
2007afc: 40 00 08 2c call 2009bac <_Objects_Get>
2007b00: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007b04: c2 07 bf fc ld [ %fp + -4 ], %g1
2007b08: 80 a0 60 00 cmp %g1, 0
2007b0c: 12 80 00 17 bne 2007b68 <_Rate_monotonic_Timeout+0x7c> <== NEVER TAKEN
2007b10: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007b14: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007b18: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007b1c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007b20: 80 88 80 01 btst %g2, %g1
2007b24: 22 80 00 08 be,a 2007b44 <_Rate_monotonic_Timeout+0x58>
2007b28: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2007b2c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007b30: c2 07 60 08 ld [ %i5 + 8 ], %g1
2007b34: 80 a0 80 01 cmp %g2, %g1
2007b38: 02 80 00 1a be 2007ba0 <_Rate_monotonic_Timeout+0xb4>
2007b3c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007b40: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2007b44: 80 a0 60 01 cmp %g1, 1
2007b48: 02 80 00 0a be 2007b70 <_Rate_monotonic_Timeout+0x84>
2007b4c: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007b50: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2007b54: 03 00 80 78 sethi %hi(0x201e000), %g1
2007b58: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e1f0 <_Thread_Dispatch_disable_level>
2007b5c: 84 00 bf ff add %g2, -1, %g2
2007b60: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ]
return _Thread_Dispatch_disable_level;
2007b64: c2 00 61 f0 ld [ %g1 + 0x1f0 ], %g1
2007b68: 81 c7 e0 08 ret
2007b6c: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007b70: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
2007b74: 90 10 00 1d mov %i5, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007b78: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007b7c: 7f ff fe 49 call 20074a0 <_Rate_monotonic_Initiate_statistics>
2007b80: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007b84: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007b88: 11 00 80 78 sethi %hi(0x201e000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007b8c: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007b90: 90 12 22 ac or %o0, 0x2ac, %o0
2007b94: 40 00 0f f5 call 200bb68 <_Watchdog_Insert>
2007b98: 92 07 60 10 add %i5, 0x10, %o1
2007b9c: 30 bf ff ee b,a 2007b54 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007ba0: 40 00 0a e8 call 200a740 <_Thread_Clear_state>
2007ba4: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
2007ba8: 10 bf ff f5 b 2007b7c <_Rate_monotonic_Timeout+0x90>
2007bac: 90 10 00 1d mov %i5, %o0
020090c4 <_Scheduler_EDF_Allocate>:
#include <rtems/score/wkspace.h>
void *_Scheduler_EDF_Allocate(
Thread_Control *the_thread
)
{
20090c4: 9d e3 bf a0 save %sp, -96, %sp
void *sched;
Scheduler_EDF_Per_thread *schinfo;
sched = _Workspace_Allocate( sizeof(Scheduler_EDF_Per_thread) );
20090c8: 40 00 07 5b call 200ae34 <_Workspace_Allocate>
20090cc: 90 10 20 18 mov 0x18, %o0
if ( sched ) {
20090d0: 80 a2 20 00 cmp %o0, 0
20090d4: 02 80 00 05 be 20090e8 <_Scheduler_EDF_Allocate+0x24> <== NEVER TAKEN
20090d8: 82 10 20 02 mov 2, %g1
the_thread->scheduler_info = sched;
20090dc: d0 26 20 8c st %o0, [ %i0 + 0x8c ]
schinfo = (Scheduler_EDF_Per_thread *)(the_thread->scheduler_info);
schinfo->thread = the_thread;
20090e0: f0 22 00 00 st %i0, [ %o0 ]
schinfo->queue_state = SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN;
20090e4: c2 22 20 14 st %g1, [ %o0 + 0x14 ]
}
return sched;
}
20090e8: 81 c7 e0 08 ret
20090ec: 91 e8 00 08 restore %g0, %o0, %o0
020090f0 <_Scheduler_EDF_Block>:
#include <rtems/score/thread.h>
void _Scheduler_EDF_Block(
Thread_Control *the_thread
)
{
20090f0: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Extract( the_thread );
20090f4: 40 00 00 20 call 2009174 <_Scheduler_EDF_Extract>
20090f8: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
20090fc: 3b 00 80 78 sethi %hi(0x201e000), %i5
2009100: ba 17 60 6c or %i5, 0x6c, %i5 ! 201e06c <_Per_CPU_Information>
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
2009104: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
2009108: 80 a6 00 01 cmp %i0, %g1
200910c: 02 80 00 09 be 2009130 <_Scheduler_EDF_Block+0x40> <== ALWAYS TAKEN
2009110: 01 00 00 00 nop
_Scheduler_EDF_Schedule();
if ( _Thread_Is_executing( the_thread ) )
2009114: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED
2009118: 80 a6 00 01 cmp %i0, %g1
200911c: 12 80 00 03 bne 2009128 <_Scheduler_EDF_Block+0x38> <== NEVER TAKEN
2009120: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
2009124: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ]
2009128: 81 c7 e0 08 ret
200912c: 81 e8 00 00 restore
_Scheduler_EDF_Extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
_Scheduler_EDF_Schedule();
2009130: 40 00 00 5c call 20092a0 <_Scheduler_EDF_Schedule>
2009134: 01 00 00 00 nop
if ( _Thread_Is_executing( the_thread ) )
2009138: 10 bf ff f8 b 2009118 <_Scheduler_EDF_Block+0x28>
200913c: c2 07 60 0c ld [ %i5 + 0xc ], %g1
02009258 <_Scheduler_EDF_Release_job>:
uint32_t deadline
)
{
Priority_Control new_priority;
if (deadline) {
2009258: 80 a2 60 00 cmp %o1, 0
200925c: 12 80 00 07 bne 2009278 <_Scheduler_EDF_Release_job+0x20> <== ALWAYS TAKEN
2009260: 94 10 20 01 mov 1, %o2
new_priority = (_Watchdog_Ticks_since_boot + deadline)
& ~SCHEDULER_EDF_PRIO_MSB;
}
else {
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
2009264: d2 02 20 b0 ld [ %o0 + 0xb0 ], %o1 <== NOT EXECUTED
}
the_thread->real_priority = new_priority;
2009268: d2 22 20 18 st %o1, [ %o0 + 0x18 ] <== NOT EXECUTED
_Thread_Change_priority(the_thread, new_priority, true);
200926c: 82 13 c0 00 mov %o7, %g1 <== NOT EXECUTED
2009270: 40 00 00 f5 call 2009644 <_Thread_Change_priority> <== NOT EXECUTED
2009274: 9e 10 40 00 mov %g1, %o7 <== NOT EXECUTED
{
Priority_Control new_priority;
if (deadline) {
/* Initializing or shifting deadline. */
new_priority = (_Watchdog_Ticks_since_boot + deadline)
2009278: 03 00 80 77 sethi %hi(0x201dc00), %g1
200927c: c2 00 63 4c ld [ %g1 + 0x34c ], %g1 ! 201df4c <_Watchdog_Ticks_since_boot>
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
the_thread->real_priority = new_priority;
_Thread_Change_priority(the_thread, new_priority, true);
2009280: 94 10 20 01 mov 1, %o2
{
Priority_Control new_priority;
if (deadline) {
/* Initializing or shifting deadline. */
new_priority = (_Watchdog_Ticks_since_boot + deadline)
2009284: 92 02 40 01 add %o1, %g1, %o1
2009288: 03 20 00 00 sethi %hi(0x80000000), %g1
200928c: 92 2a 40 01 andn %o1, %g1, %o1
else {
/* Switch back to background priority. */
new_priority = the_thread->Start.initial_priority;
}
the_thread->real_priority = new_priority;
2009290: d2 22 20 18 st %o1, [ %o0 + 0x18 ]
_Thread_Change_priority(the_thread, new_priority, true);
2009294: 82 13 c0 00 mov %o7, %g1
2009298: 40 00 00 eb call 2009644 <_Thread_Change_priority>
200929c: 9e 10 40 00 mov %g1, %o7
020092c8 <_Scheduler_EDF_Unblock>:
#include <rtems/score/scheduleredf.h>
void _Scheduler_EDF_Unblock(
Thread_Control *the_thread
)
{
20092c8: 9d e3 bf a0 save %sp, -96, %sp
_Scheduler_EDF_Enqueue(the_thread);
20092cc: 7f ff ff a0 call 200914c <_Scheduler_EDF_Enqueue>
20092d0: 90 10 00 18 mov %i0, %o0
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( _Scheduler_Is_priority_lower_than(
20092d4: 3b 00 80 78 sethi %hi(0x201e000), %i5
20092d8: ba 17 60 6c or %i5, 0x6c, %i5 ! 201e06c <_Per_CPU_Information>
20092dc: c2 07 60 10 ld [ %i5 + 0x10 ], %g1
20092e0: d0 00 60 14 ld [ %g1 + 0x14 ], %o0
20092e4: 03 00 80 74 sethi %hi(0x201d000), %g1
20092e8: c2 00 62 04 ld [ %g1 + 0x204 ], %g1 ! 201d204 <_Scheduler+0x30>
20092ec: 9f c0 40 00 call %g1
20092f0: d2 06 20 14 ld [ %i0 + 0x14 ], %o1
20092f4: 80 a2 20 00 cmp %o0, 0
20092f8: 26 80 00 04 bl,a 2009308 <_Scheduler_EDF_Unblock+0x40>
20092fc: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2009300: 81 c7 e0 08 ret
2009304: 81 e8 00 00 restore
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
2009308: f0 27 60 10 st %i0, [ %i5 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200930c: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
2009310: 80 a0 60 00 cmp %g1, 0
2009314: 22 80 00 06 be,a 200932c <_Scheduler_EDF_Unblock+0x64> <== NEVER TAKEN
2009318: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 <== NOT EXECUTED
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
200931c: 82 10 20 01 mov 1, %g1
2009320: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ]
2009324: 81 c7 e0 08 ret
2009328: 81 e8 00 00 restore
*/
if ( _Scheduler_Is_priority_lower_than(
_Thread_Heir->current_priority,
the_thread->current_priority )) {
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200932c: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
2009330: 12 bf ff f4 bne 2009300 <_Scheduler_EDF_Unblock+0x38> <== NOT EXECUTED
2009334: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
2009338: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED
200933c: 30 bf ff fa b,a 2009324 <_Scheduler_EDF_Unblock+0x5c> <== NOT EXECUTED
02009340 <_Scheduler_EDF_Update>:
#include <rtems/score/thread.h>
void _Scheduler_EDF_Update(
Thread_Control *the_thread
)
{
2009340: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_EDF_Per_thread *sched_info =
2009344: f8 06 20 8c ld [ %i0 + 0x8c ], %i4
(Scheduler_EDF_Per_thread*)the_thread->scheduler_info;
RBTree_Node *the_node = &(sched_info->Node);
if (sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN) {
2009348: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
200934c: 80 a0 60 02 cmp %g1, 2
2009350: 02 80 00 06 be 2009368 <_Scheduler_EDF_Update+0x28>
2009354: 80 a0 60 01 cmp %g1, 1
the_thread->real_priority = the_thread->Start.initial_priority;
the_thread->current_priority = the_thread->Start.initial_priority;
sched_info->queue_state = SCHEDULER_EDF_QUEUE_STATE_NOT_PRESENTLY;
}
if ( sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_YES ) {
2009358: 02 80 00 0d be 200938c <_Scheduler_EDF_Update+0x4c> <== NEVER TAKEN
200935c: b8 07 20 04 add %i4, 4, %i4
2009360: 81 c7 e0 08 ret
2009364: 81 e8 00 00 restore
(Scheduler_EDF_Per_thread*)the_thread->scheduler_info;
RBTree_Node *the_node = &(sched_info->Node);
if (sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_NEVER_HAS_BEEN) {
/* Shifts the priority to the region of background tasks. */
the_thread->Start.initial_priority |= (SCHEDULER_EDF_PRIO_MSB);
2009368: c4 06 20 b0 ld [ %i0 + 0xb0 ], %g2
200936c: 03 20 00 00 sethi %hi(0x80000000), %g1
2009370: 82 10 80 01 or %g2, %g1, %g1
2009374: c2 26 20 b0 st %g1, [ %i0 + 0xb0 ]
the_thread->real_priority = the_thread->Start.initial_priority;
2009378: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
the_thread->current_priority = the_thread->Start.initial_priority;
200937c: c2 26 20 14 st %g1, [ %i0 + 0x14 ]
sched_info->queue_state = SCHEDULER_EDF_QUEUE_STATE_NOT_PRESENTLY;
2009380: c0 27 20 14 clr [ %i4 + 0x14 ]
2009384: 81 c7 e0 08 ret
2009388: 81 e8 00 00 restore
}
if ( sched_info->queue_state == SCHEDULER_EDF_QUEUE_STATE_YES ) {
_RBTree_Extract(&_Scheduler_EDF_Ready_queue, the_node);
200938c: 3b 00 80 78 sethi %hi(0x201e000), %i5 <== NOT EXECUTED
2009390: 92 10 00 1c mov %i4, %o1 <== NOT EXECUTED
2009394: 40 00 12 50 call 200dcd4 <_RBTree_Extract> <== NOT EXECUTED
2009398: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED
_RBTree_Insert(&_Scheduler_EDF_Ready_queue, the_node);
200939c: 92 10 00 1c mov %i4, %o1 <== NOT EXECUTED
20093a0: 40 00 12 fd call 200df94 <_RBTree_Insert> <== NOT EXECUTED
20093a4: 90 17 60 90 or %i5, 0x90, %o0 <== NOT EXECUTED
_Scheduler_EDF_Schedule();
20093a8: 7f ff ff be call 20092a0 <_Scheduler_EDF_Schedule> <== NOT EXECUTED
20093ac: 01 00 00 00 nop <== NOT EXECUTED
if ( _Thread_Executing != _Thread_Heir ) {
20093b0: 03 00 80 78 sethi %hi(0x201e000), %g1 <== NOT EXECUTED
20093b4: 82 10 60 6c or %g1, 0x6c, %g1 ! 201e06c <_Per_CPU_Information><== NOT EXECUTED
20093b8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 <== NOT EXECUTED
20093bc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 <== NOT EXECUTED
20093c0: 80 a0 80 03 cmp %g2, %g3 <== NOT EXECUTED
20093c4: 02 80 00 0b be 20093f0 <_Scheduler_EDF_Update+0xb0> <== NOT EXECUTED
20093c8: 01 00 00 00 nop <== NOT EXECUTED
if ( _Thread_Executing->is_preemptible ||
20093cc: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 <== NOT EXECUTED
20093d0: 80 a0 a0 00 cmp %g2, 0 <== NOT EXECUTED
20093d4: 12 80 00 06 bne 20093ec <_Scheduler_EDF_Update+0xac> <== NOT EXECUTED
20093d8: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED
20093dc: c4 06 20 14 ld [ %i0 + 0x14 ], %g2 <== NOT EXECUTED
20093e0: 80 a0 a0 00 cmp %g2, 0 <== NOT EXECUTED
20093e4: 12 bf ff df bne 2009360 <_Scheduler_EDF_Update+0x20> <== NOT EXECUTED
20093e8: 84 10 20 01 mov 1, %g2 <== NOT EXECUTED
the_thread->current_priority == 0 )
_Thread_Dispatch_necessary = true;
20093ec: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] <== NOT EXECUTED
20093f0: 81 c7 e0 08 ret <== NOT EXECUTED
20093f4: 81 e8 00 00 restore <== NOT EXECUTED
020093f8 <_Scheduler_EDF_Yield>:
#include <rtems/score/scheduler.h>
#include <rtems/score/scheduleredf.h>
#include <rtems/score/thread.h>
void _Scheduler_EDF_Yield(void)
{
20093f8: 9d e3 bf a0 save %sp, -96, %sp <== NOT EXECUTED
Scheduler_EDF_Per_thread *first_info;
RBTree_Node *first_node;
ISR_Level level;
Thread_Control *executing = _Thread_Executing;
20093fc: 3b 00 80 78 sethi %hi(0x201e000), %i5 <== NOT EXECUTED
2009400: ba 17 60 6c or %i5, 0x6c, %i5 ! 201e06c <_Per_CPU_Information><== NOT EXECUTED
2009404: f6 07 60 0c ld [ %i5 + 0xc ], %i3 <== NOT EXECUTED
Scheduler_EDF_Per_thread *executing_info =
(Scheduler_EDF_Per_thread *) executing->scheduler_info;
RBTree_Node *executing_node = &(executing_info->Node);
_ISR_Disable( level );
2009408: 7f ff e4 ed call 20027bc <sparc_disable_interrupts> <== NOT EXECUTED
200940c: f4 06 e0 8c ld [ %i3 + 0x8c ], %i2 <== NOT EXECUTED
2009410: b0 10 00 08 mov %o0, %i0 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE bool _RBTree_Has_only_one_node(
const RBTree_Control *the_rbtree
)
{
if(!the_rbtree) return NULL; /* TODO: expected behavior? */
return (the_rbtree->root->child[RBT_LEFT] == NULL && the_rbtree->root->child[RBT_RIGHT] == NULL);
2009414: 39 00 80 78 sethi %hi(0x201e000), %i4 <== NOT EXECUTED
2009418: 82 17 20 90 or %i4, 0x90, %g1 ! 201e090 <_Scheduler_EDF_Ready_queue><== NOT EXECUTED
200941c: c2 00 60 04 ld [ %g1 + 4 ], %g1 <== NOT EXECUTED
2009420: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
2009424: 80 a0 a0 00 cmp %g2, 0 <== NOT EXECUTED
2009428: 22 80 00 16 be,a 2009480 <_Scheduler_EDF_Yield+0x88> <== NOT EXECUTED
200942c: c2 00 60 08 ld [ %g1 + 8 ], %g1 <== NOT EXECUTED
ISR_Level level;
Thread_Control *executing = _Thread_Executing;
Scheduler_EDF_Per_thread *executing_info =
(Scheduler_EDF_Per_thread *) executing->scheduler_info;
RBTree_Node *executing_node = &(executing_info->Node);
2009430: b4 06 a0 04 add %i2, 4, %i2 <== NOT EXECUTED
if ( !_RBTree_Has_only_one_node(&_Scheduler_EDF_Ready_queue) ) {
/*
* The RBTree has more than one node, enqueue behind the tasks
* with the same priority in case there are such ones.
*/
_RBTree_Extract( &_Scheduler_EDF_Ready_queue, executing_node );
2009434: 90 17 20 90 or %i4, 0x90, %o0 <== NOT EXECUTED
2009438: 40 00 12 27 call 200dcd4 <_RBTree_Extract> <== NOT EXECUTED
200943c: 92 10 00 1a mov %i2, %o1 <== NOT EXECUTED
_RBTree_Insert( &_Scheduler_EDF_Ready_queue, executing_node );
2009440: 90 17 20 90 or %i4, 0x90, %o0 <== NOT EXECUTED
2009444: 40 00 12 d4 call 200df94 <_RBTree_Insert> <== NOT EXECUTED
2009448: 92 10 00 1a mov %i2, %o1 <== NOT EXECUTED
_ISR_Flash( level );
200944c: 7f ff e4 e0 call 20027cc <sparc_enable_interrupts> <== NOT EXECUTED
2009450: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
2009454: 7f ff e4 da call 20027bc <sparc_disable_interrupts> <== NOT EXECUTED
2009458: 01 00 00 00 nop <== NOT EXECUTED
200945c: b0 10 00 08 mov %o0, %i0 <== NOT EXECUTED
if ( _Thread_Is_heir( executing ) ) {
2009460: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 <== NOT EXECUTED
2009464: 80 a6 c0 01 cmp %i3, %g1 <== NOT EXECUTED
2009468: 02 80 00 10 be 20094a8 <_Scheduler_EDF_Yield+0xb0> <== NOT EXECUTED
200946c: 11 00 80 78 sethi %hi(0x201e000), %o0 <== NOT EXECUTED
_Thread_Heir = first_info->thread;
}
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
2009470: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED
2009474: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
2009478: 7f ff e4 d5 call 20027cc <sparc_enable_interrupts> <== NOT EXECUTED
200947c: 81 e8 00 00 restore <== NOT EXECUTED
2009480: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED
2009484: 32 bf ff ec bne,a 2009434 <_Scheduler_EDF_Yield+0x3c> <== NOT EXECUTED
2009488: b4 06 a0 04 add %i2, 4, %i2 <== NOT EXECUTED
_RBTree_Container_of(first_node, Scheduler_EDF_Per_thread, Node);
_Thread_Heir = first_info->thread;
}
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
200948c: c2 07 60 10 ld [ %i5 + 0x10 ], %g1 <== NOT EXECUTED
2009490: 80 a6 c0 01 cmp %i3, %g1 <== NOT EXECUTED
2009494: 02 bf ff f9 be 2009478 <_Scheduler_EDF_Yield+0x80> <== NOT EXECUTED
2009498: 01 00 00 00 nop <== NOT EXECUTED
_Thread_Dispatch_necessary = true;
200949c: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1> <== NOT EXECUTED
20094a0: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED
20094a4: 30 bf ff f5 b,a 2009478 <_Scheduler_EDF_Yield+0x80> <== NOT EXECUTED
_RBTree_Insert( &_Scheduler_EDF_Ready_queue, executing_node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) ) {
first_node = _RBTree_Peek( &_Scheduler_EDF_Ready_queue, RBT_LEFT );
20094a8: 92 10 20 00 clr %o1 <== NOT EXECUTED
20094ac: 40 00 12 bf call 200dfa8 <_RBTree_Peek> <== NOT EXECUTED
20094b0: 90 12 20 90 or %o0, 0x90, %o0 <== NOT EXECUTED
first_info =
_RBTree_Container_of(first_node, Scheduler_EDF_Per_thread, Node);
_Thread_Heir = first_info->thread;
20094b4: c2 02 3f fc ld [ %o0 + -4 ], %g1 <== NOT EXECUTED
20094b8: c2 27 60 10 st %g1, [ %i5 + 0x10 ] <== NOT EXECUTED
}
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
20094bc: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED
20094c0: c2 2f 60 18 stb %g1, [ %i5 + 0x18 ] <== NOT EXECUTED
20094c4: 30 bf ff ed b,a 2009478 <_Scheduler_EDF_Yield+0x80> <== NOT EXECUTED
02009284 <_Scheduler_simple_Ready_queue_enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
2009284: 03 00 80 71 sethi %hi(0x201c400), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2009288: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 ! 201c644 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
200928c: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
2009290: c2 00 40 00 ld [ %g1 ], %g1
2009294: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
2009298: 80 a0 80 03 cmp %g2, %g3
200929c: 3a 80 00 08 bcc,a 20092bc <_Scheduler_simple_Ready_queue_enqueue_first+0x38>
20092a0: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
20092a4: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
20092a8: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
20092ac: 80 a0 80 03 cmp %g2, %g3
20092b0: 2a bf ff fe bcs,a 20092a8 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN
20092b4: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
20092b8: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
20092bc: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
20092c0: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
20092c4: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
20092c8: c4 22 00 00 st %g2, [ %o0 ]
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
20092cc: 81 c3 e0 08 retl
20092d0: d0 20 a0 04 st %o0, [ %g2 + 4 ]
020078d8 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
20078d8: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078dc: 05 00 80 71 sethi %hi(0x201c400), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078e0: 03 00 80 6d sethi %hi(0x201b400), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078e4: c6 00 a0 7c ld [ %g2 + 0x7c ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078e8: c2 00 62 88 ld [ %g1 + 0x288 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078ec: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078f0: bb 28 60 07 sll %g1, 7, %i5
20078f4: 89 28 60 02 sll %g1, 2, %g4
20078f8: 88 27 40 04 sub %i5, %g4, %g4
20078fc: 82 01 00 01 add %g4, %g1, %g1
2007900: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
2007904: 92 07 bf f8 add %fp, -8, %o1
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007908: c6 20 a0 7c st %g3, [ %g2 + 0x7c ]
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
200790c: c2 27 bf fc st %g1, [ %fp + -4 ]
2007910: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
2007914: 11 00 80 70 sethi %hi(0x201c000), %o0
2007918: 40 00 09 35 call 2009dec <_Timespec_Add_to>
200791c: 90 12 23 ec or %o0, 0x3ec, %o0 ! 201c3ec <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
2007920: 92 07 bf f8 add %fp, -8, %o1
2007924: 11 00 80 70 sethi %hi(0x201c000), %o0
2007928: 40 00 09 31 call 2009dec <_Timespec_Add_to>
200792c: 90 12 23 fc or %o0, 0x3fc, %o0 ! 201c3fc <_TOD_Now>
while ( seconds ) {
2007930: ba 92 20 00 orcc %o0, 0, %i5
2007934: 02 80 00 08 be 2007954 <_TOD_Tickle_ticks+0x7c>
2007938: 39 00 80 71 sethi %hi(0x201c400), %i4
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
200793c: b8 17 20 20 or %i4, 0x20, %i4 ! 201c420 <_Watchdog_Seconds_chain>
2007940: 40 00 0a b2 call 200a408 <_Watchdog_Tickle>
2007944: 90 10 00 1c mov %i4, %o0
2007948: ba 87 7f ff addcc %i5, -1, %i5
200794c: 12 bf ff fd bne 2007940 <_TOD_Tickle_ticks+0x68> <== NEVER TAKEN
2007950: 01 00 00 00 nop
2007954: 81 c7 e0 08 ret
2007958: 81 e8 00 00 restore
020074f8 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20074f8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
20074fc: 03 00 80 77 sethi %hi(0x201dc00), %g1
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
2007500: ba 10 20 00 clr %i5
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
2007504: 80 a6 20 00 cmp %i0, 0
2007508: 02 80 00 2c be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN
200750c: d2 00 61 98 ld [ %g1 + 0x198 ], %o1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007510: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007514: 40 00 49 09 call 2019938 <.udiv>
2007518: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200751c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2007520: 80 a2 00 01 cmp %o0, %g1
2007524: 28 80 00 26 bleu,a 20075bc <_TOD_Validate+0xc4>
2007528: b0 0f 60 01 and %i5, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
200752c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2007530: 80 a0 60 3b cmp %g1, 0x3b
2007534: 38 80 00 22 bgu,a 20075bc <_TOD_Validate+0xc4>
2007538: b0 0f 60 01 and %i5, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
200753c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
2007540: 80 a0 60 3b cmp %g1, 0x3b
2007544: 38 80 00 1e bgu,a 20075bc <_TOD_Validate+0xc4>
2007548: b0 0f 60 01 and %i5, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
200754c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2007550: 80 a0 60 17 cmp %g1, 0x17
2007554: 38 80 00 1a bgu,a 20075bc <_TOD_Validate+0xc4>
2007558: b0 0f 60 01 and %i5, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
200755c: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2007560: 80 a0 60 00 cmp %g1, 0
2007564: 02 80 00 15 be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007568: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
200756c: 38 80 00 14 bgu,a 20075bc <_TOD_Validate+0xc4>
2007570: b0 0f 60 01 and %i5, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007574: c4 06 00 00 ld [ %i0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2007578: 80 a0 a7 c3 cmp %g2, 0x7c3
200757c: 28 80 00 10 bleu,a 20075bc <_TOD_Validate+0xc4>
2007580: b0 0f 60 01 and %i5, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007584: c6 06 20 08 ld [ %i0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007588: 80 a0 e0 00 cmp %g3, 0
200758c: 02 80 00 0b be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007590: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007594: 32 80 00 0c bne,a 20075c4 <_TOD_Validate+0xcc>
2007598: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
200759c: 82 00 60 0d add %g1, 0xd, %g1
20075a0: 05 00 80 72 sethi %hi(0x201c800), %g2
20075a4: 83 28 60 02 sll %g1, 2, %g1
20075a8: 84 10 a2 a8 or %g2, 0x2a8, %g2
20075ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20075b0: 80 a0 40 03 cmp %g1, %g3
20075b4: ba 60 3f ff subx %g0, -1, %i5
if ( the_tod->day > days_in_month )
return false;
return true;
}
20075b8: b0 0f 60 01 and %i5, 1, %i0
20075bc: 81 c7 e0 08 ret
20075c0: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20075c4: 05 00 80 72 sethi %hi(0x201c800), %g2
20075c8: 84 10 a2 a8 or %g2, 0x2a8, %g2 ! 201caa8 <_TOD_Days_per_month>
20075cc: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20075d0: 80 a0 40 03 cmp %g1, %g3
20075d4: 10 bf ff f9 b 20075b8 <_TOD_Validate+0xc0>
20075d8: ba 60 3f ff subx %g0, -1, %i5
02008dec <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2008dec: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
2008df0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2008df4: 40 00 03 a2 call 2009c7c <_Thread_Set_transient>
2008df8: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2008dfc: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2008e00: 80 a0 40 19 cmp %g1, %i1
2008e04: 02 80 00 05 be 2008e18 <_Thread_Change_priority+0x2c>
2008e08: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
2008e0c: 90 10 00 18 mov %i0, %o0
2008e10: 40 00 03 81 call 2009c14 <_Thread_Set_priority>
2008e14: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2008e18: 7f ff e4 f3 call 20021e4 <sparc_disable_interrupts>
2008e1c: 01 00 00 00 nop
2008e20: b2 10 00 08 mov %o0, %i1
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2008e24: f6 07 60 10 ld [ %i5 + 0x10 ], %i3
if ( state != STATES_TRANSIENT ) {
2008e28: 80 a6 e0 04 cmp %i3, 4
2008e2c: 02 80 00 18 be 2008e8c <_Thread_Change_priority+0xa0>
2008e30: 80 8f 20 04 btst 4, %i4
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2008e34: 02 80 00 0b be 2008e60 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
2008e38: 82 0e ff fb and %i3, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
2008e3c: 7f ff e4 ee call 20021f4 <sparc_enable_interrupts> <== NOT EXECUTED
2008e40: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
2008e44: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
2008e48: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008e4c: 80 8e c0 01 btst %i3, %g1 <== NOT EXECUTED
2008e50: 32 80 00 0d bne,a 2008e84 <_Thread_Change_priority+0x98> <== NOT EXECUTED
2008e54: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED
2008e58: 81 c7 e0 08 ret
2008e5c: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008e60: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2008e64: 7f ff e4 e4 call 20021f4 <sparc_enable_interrupts>
2008e68: 90 10 00 19 mov %i1, %o0
2008e6c: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008e70: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008e74: 80 8e c0 01 btst %i3, %g1
2008e78: 02 bf ff f8 be 2008e58 <_Thread_Change_priority+0x6c>
2008e7c: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2008e80: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2008e84: 40 00 03 33 call 2009b50 <_Thread_queue_Requeue>
2008e88: 93 e8 00 1d restore %g0, %i5, %o1
2008e8c: 39 00 80 6d sethi %hi(0x201b400), %i4
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008e90: 12 80 00 08 bne 2008eb0 <_Thread_Change_priority+0xc4> <== NEVER TAKEN
2008e94: b8 17 23 64 or %i4, 0x364, %i4 ! 201b764 <_Scheduler>
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
2008e98: 80 a6 a0 00 cmp %i2, 0
2008e9c: 02 80 00 1b be 2008f08 <_Thread_Change_priority+0x11c>
2008ea0: c0 27 60 10 clr [ %i5 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2008ea4: c2 07 20 28 ld [ %i4 + 0x28 ], %g1
2008ea8: 9f c0 40 00 call %g1
2008eac: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008eb0: 7f ff e4 d1 call 20021f4 <sparc_enable_interrupts>
2008eb4: 90 10 00 19 mov %i1, %o0
2008eb8: 7f ff e4 cb call 20021e4 <sparc_disable_interrupts>
2008ebc: 01 00 00 00 nop
2008ec0: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2008ec4: c2 07 20 08 ld [ %i4 + 8 ], %g1
2008ec8: 9f c0 40 00 call %g1
2008ecc: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2008ed0: 03 00 80 71 sethi %hi(0x201c400), %g1
2008ed4: 82 10 61 9c or %g1, 0x19c, %g1 ! 201c59c <_Per_CPU_Information>
2008ed8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2008edc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2008ee0: 80 a0 80 03 cmp %g2, %g3
2008ee4: 02 80 00 07 be 2008f00 <_Thread_Change_priority+0x114>
2008ee8: 01 00 00 00 nop
2008eec: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
2008ef0: 80 a0 a0 00 cmp %g2, 0
2008ef4: 02 80 00 03 be 2008f00 <_Thread_Change_priority+0x114>
2008ef8: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2008efc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2008f00: 7f ff e4 bd call 20021f4 <sparc_enable_interrupts>
2008f04: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2008f08: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
2008f0c: 9f c0 40 00 call %g1
2008f10: 90 10 00 1d mov %i5, %o0
2008f14: 30 bf ff e7 b,a 2008eb0 <_Thread_Change_priority+0xc4>
02009130 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009130: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009134: 90 10 00 18 mov %i0, %o0
2009138: 40 00 00 7a call 2009320 <_Thread_Get>
200913c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009140: c2 07 bf fc ld [ %fp + -4 ], %g1
2009144: 80 a0 60 00 cmp %g1, 0
2009148: 12 80 00 09 bne 200916c <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
200914c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2009150: 7f ff ff 72 call 2008f18 <_Thread_Clear_state>
2009154: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009158: 03 00 80 70 sethi %hi(0x201c000), %g1
200915c: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201c370 <_Thread_Dispatch_disable_level>
2009160: 84 00 bf ff add %g2, -1, %g2
2009164: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
return _Thread_Dispatch_disable_level;
2009168: c2 00 63 70 ld [ %g1 + 0x370 ], %g1
200916c: 81 c7 e0 08 ret
2009170: 81 e8 00 00 restore
02009174 <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2009174: 9d e3 bf 90 save %sp, -112, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2009178: 21 00 80 70 sethi %hi(0x201c000), %l0
200917c: c2 04 23 70 ld [ %l0 + 0x370 ], %g1 ! 201c370 <_Thread_Dispatch_disable_level>
2009180: 82 00 60 01 inc %g1
2009184: c2 24 23 70 st %g1, [ %l0 + 0x370 ]
return _Thread_Dispatch_disable_level;
2009188: c2 04 23 70 ld [ %l0 + 0x370 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
200918c: 39 00 80 71 sethi %hi(0x201c400), %i4
2009190: b8 17 21 9c or %i4, 0x19c, %i4 ! 201c59c <_Per_CPU_Information>
_ISR_Disable( level );
2009194: 7f ff e4 14 call 20021e4 <sparc_disable_interrupts>
2009198: fa 07 20 0c ld [ %i4 + 0xc ], %i5
while ( _Thread_Dispatch_necessary == true ) {
200919c: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1
20091a0: 80 a0 60 00 cmp %g1, 0
20091a4: 02 80 00 48 be 20092c4 <_Thread_Dispatch+0x150>
20091a8: 01 00 00 00 nop
heir = _Thread_Heir;
20091ac: f6 07 20 10 ld [ %i4 + 0x10 ], %i3
_Thread_Dispatch_necessary = false;
20091b0: c0 2f 20 18 clrb [ %i4 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
20091b4: 80 a7 40 1b cmp %i5, %i3
20091b8: 02 80 00 43 be 20092c4 <_Thread_Dispatch+0x150>
20091bc: f6 27 20 0c st %i3, [ %i4 + 0xc ]
20091c0: 31 00 80 70 sethi %hi(0x201c000), %i0
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
20091c4: 23 00 80 70 sethi %hi(0x201c000), %l1
20091c8: b0 16 23 f8 or %i0, 0x3f8, %i0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
20091cc: b2 07 20 1c add %i4, 0x1c, %i1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
20091d0: 10 80 00 37 b 20092ac <_Thread_Dispatch+0x138>
20091d4: 35 00 80 70 sethi %hi(0x201c000), %i2
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
20091d8: 7f ff e4 07 call 20021f4 <sparc_enable_interrupts>
20091dc: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
20091e0: 40 00 0e 11 call 200ca24 <_TOD_Get_uptime>
20091e4: 90 07 bf f0 add %fp, -16, %o0
_Timestamp_Subtract(
20091e8: 90 10 00 19 mov %i1, %o0
20091ec: 92 07 bf f0 add %fp, -16, %o1
20091f0: 40 00 03 18 call 2009e50 <_Timespec_Subtract>
20091f4: 94 07 bf f8 add %fp, -8, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
20091f8: 90 07 60 84 add %i5, 0x84, %o0
20091fc: 40 00 02 fc call 2009dec <_Timespec_Add_to>
2009200: 92 07 bf f8 add %fp, -8, %o1
_Thread_Time_of_last_context_switch = uptime;
2009204: c4 07 bf f0 ld [ %fp + -16 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2009208: c2 06 00 00 ld [ %i0 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
200920c: c4 27 20 1c st %g2, [ %i4 + 0x1c ]
2009210: c4 07 bf f4 ld [ %fp + -12 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2009214: 80 a0 60 00 cmp %g1, 0
2009218: 02 80 00 06 be 2009230 <_Thread_Dispatch+0xbc> <== NEVER TAKEN
200921c: c4 27 20 20 st %g2, [ %i4 + 0x20 ]
executing->libc_reent = *_Thread_libc_reent;
2009220: c4 00 40 00 ld [ %g1 ], %g2
2009224: c4 27 61 54 st %g2, [ %i5 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
2009228: c4 06 e1 54 ld [ %i3 + 0x154 ], %g2
200922c: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2009230: 90 10 00 1d mov %i5, %o0
2009234: 40 00 03 cb call 200a160 <_User_extensions_Thread_switch>
2009238: 92 10 00 1b mov %i3, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
200923c: 90 07 60 c8 add %i5, 0xc8, %o0
2009240: 40 00 05 0f call 200a67c <_CPU_Context_switch>
2009244: 92 06 e0 c8 add %i3, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2009248: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
200924c: 80 a0 60 00 cmp %g1, 0
2009250: 02 80 00 0c be 2009280 <_Thread_Dispatch+0x10c>
2009254: d0 06 a3 f4 ld [ %i2 + 0x3f4 ], %o0
2009258: 80 a7 40 08 cmp %i5, %o0
200925c: 02 80 00 09 be 2009280 <_Thread_Dispatch+0x10c>
2009260: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2009264: 02 80 00 04 be 2009274 <_Thread_Dispatch+0x100>
2009268: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200926c: 40 00 04 ca call 200a594 <_CPU_Context_save_fp>
2009270: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2009274: 40 00 04 e5 call 200a608 <_CPU_Context_restore_fp>
2009278: 90 07 61 50 add %i5, 0x150, %o0
_Thread_Allocated_fp = executing;
200927c: fa 26 a3 f4 st %i5, [ %i2 + 0x3f4 ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
2009280: 7f ff e3 d9 call 20021e4 <sparc_disable_interrupts>
2009284: fa 07 20 0c ld [ %i4 + 0xc ], %i5
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2009288: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1
200928c: 80 a0 60 00 cmp %g1, 0
2009290: 02 80 00 0d be 20092c4 <_Thread_Dispatch+0x150>
2009294: 01 00 00 00 nop
heir = _Thread_Heir;
2009298: f6 07 20 10 ld [ %i4 + 0x10 ], %i3
_Thread_Dispatch_necessary = false;
200929c: c0 2f 20 18 clrb [ %i4 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
20092a0: 80 a6 c0 1d cmp %i3, %i5
20092a4: 02 80 00 08 be 20092c4 <_Thread_Dispatch+0x150> <== NEVER TAKEN
20092a8: f6 27 20 0c st %i3, [ %i4 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
20092ac: c2 06 e0 7c ld [ %i3 + 0x7c ], %g1
20092b0: 80 a0 60 01 cmp %g1, 1
20092b4: 12 bf ff c9 bne 20091d8 <_Thread_Dispatch+0x64>
20092b8: c2 04 62 d4 ld [ %l1 + 0x2d4 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
20092bc: 10 bf ff c7 b 20091d8 <_Thread_Dispatch+0x64>
20092c0: c2 26 e0 78 st %g1, [ %i3 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_ISR_Enable( level );
20092c4: 7f ff e3 cc call 20021f4 <sparc_enable_interrupts>
20092c8: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
20092cc: c2 04 23 70 ld [ %l0 + 0x370 ], %g1
20092d0: 82 00 7f ff add %g1, -1, %g1
20092d4: c2 24 23 70 st %g1, [ %l0 + 0x370 ]
return _Thread_Dispatch_disable_level;
20092d8: c2 04 23 70 ld [ %l0 + 0x370 ], %g1
_Thread_Unnest_dispatch();
_API_extensions_Run_postswitch();
20092dc: 7f ff f7 e5 call 2007270 <_API_extensions_Run_postswitch>
20092e0: 01 00 00 00 nop
}
20092e4: 81 c7 e0 08 ret
20092e8: 81 e8 00 00 restore
0200e940 <_Thread_Handler>:
* Input parameters: NONE
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200e940: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static bool doneConstructors;
bool doCons;
#endif
executing = _Thread_Executing;
200e944: 03 00 80 71 sethi %hi(0x201c400), %g1
200e948: fa 00 61 a8 ld [ %g1 + 0x1a8 ], %i5 ! 201c5a8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e94c: 3f 00 80 3a sethi %hi(0x200e800), %i7
200e950: be 17 e1 40 or %i7, 0x140, %i7 ! 200e940 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e954: d0 07 60 ac ld [ %i5 + 0xac ], %o0
_ISR_Set_level(level);
200e958: 7f ff ce 27 call 20021f4 <sparc_enable_interrupts>
200e95c: 91 2a 20 08 sll %o0, 8, %o0
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e960: c4 07 61 50 ld [ %i5 + 0x150 ], %g2
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200e964: 03 00 80 70 sethi %hi(0x201c000), %g1
doneConstructors = true;
200e968: 86 10 20 01 mov 1, %g3
doCons = !doneConstructors
&& _Objects_Get_API( executing->Object.id ) != OBJECTS_INTERNAL_API;
if (doCons)
doneConstructors = true;
#else
doCons = !doneConstructors;
200e96c: f6 08 60 30 ldub [ %g1 + 0x30 ], %i3
#endif
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e970: 80 a0 a0 00 cmp %g2, 0
200e974: 02 80 00 0c be 200e9a4 <_Thread_Handler+0x64>
200e978: c6 28 60 30 stb %g3, [ %g1 + 0x30 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e97c: 39 00 80 70 sethi %hi(0x201c000), %i4
200e980: d0 07 23 f4 ld [ %i4 + 0x3f4 ], %o0 ! 201c3f4 <_Thread_Allocated_fp>
200e984: 80 a7 40 08 cmp %i5, %o0
200e988: 02 80 00 07 be 200e9a4 <_Thread_Handler+0x64>
200e98c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e990: 22 80 00 05 be,a 200e9a4 <_Thread_Handler+0x64>
200e994: fa 27 23 f4 st %i5, [ %i4 + 0x3f4 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e998: 7f ff ee ff call 200a594 <_CPU_Context_save_fp>
200e99c: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200e9a0: fa 27 23 f4 st %i5, [ %i4 + 0x3f4 ]
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200e9a4: 7f ff ed 6d call 2009f58 <_User_extensions_Thread_begin>
200e9a8: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e9ac: 7f ff ea 50 call 20092ec <_Thread_Enable_dispatch>
200e9b0: 01 00 00 00 nop
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
200e9b4: 80 8e e0 ff btst 0xff, %i3
200e9b8: 02 80 00 0c be 200e9e8 <_Thread_Handler+0xa8>
200e9bc: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e9c0: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
200e9c4: 80 a0 60 00 cmp %g1, 0
200e9c8: 22 80 00 0c be,a 200e9f8 <_Thread_Handler+0xb8> <== ALWAYS TAKEN
200e9cc: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200e9d0: 7f ff ed 76 call 2009fa8 <_User_extensions_Thread_exitted>
200e9d4: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200e9d8: 90 10 20 00 clr %o0
200e9dc: 92 10 20 01 mov 1, %o1
200e9e0: 7f ff e4 f1 call 2007da4 <_Internal_error_Occurred>
200e9e4: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (doCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200e9e8: 40 00 33 14 call 201b638 <_init>
200e9ec: 01 00 00 00 nop
_Thread_Enable_dispatch();
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e9f0: 10 bf ff f5 b 200e9c4 <_Thread_Handler+0x84>
200e9f4: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e9f8: 9f c0 40 00 call %g1
200e9fc: d0 07 60 9c ld [ %i5 + 0x9c ], %o0
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200ea00: 10 bf ff f4 b 200e9d0 <_Thread_Handler+0x90>
200ea04: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
020093d0 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
20093d0: 9d e3 bf a0 save %sp, -96, %sp
20093d4: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
20093d8: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
20093dc: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
20093e0: c0 26 61 58 clr [ %i1 + 0x158 ]
20093e4: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
20093e8: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
20093ec: 90 10 00 19 mov %i1, %o0
20093f0: 40 00 02 32 call 2009cb8 <_Thread_Stack_Allocate>
20093f4: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
20093f8: 80 a2 00 1b cmp %o0, %i3
20093fc: 0a 80 00 4b bcs 2009528 <_Thread_Initialize+0x158>
2009400: 80 a2 20 00 cmp %o0, 0
2009404: 02 80 00 49 be 2009528 <_Thread_Initialize+0x158> <== NEVER TAKEN
2009408: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
200940c: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2009410: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2009414: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2009418: 12 80 00 48 bne 2009538 <_Thread_Initialize+0x168>
200941c: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2009420: 23 00 80 71 sethi %hi(0x201c400), %l1
2009424: c2 04 60 04 ld [ %l1 + 4 ], %g1 ! 201c404 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2009428: f6 26 61 50 st %i3, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
200942c: f6 26 60 bc st %i3, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2009430: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2009434: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2009438: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
200943c: 80 a0 60 00 cmp %g1, 0
2009440: 12 80 00 46 bne 2009558 <_Thread_Initialize+0x188>
2009444: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2009448: c0 26 61 60 clr [ %i1 + 0x160 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200944c: b8 10 20 00 clr %i4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2009450: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2009454: 03 00 80 6d sethi %hi(0x201b400), %g1
2009458: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
200945c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
2009460: c2 00 63 7c ld [ %g1 + 0x37c ], %g1
2009464: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2009468: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200946c: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2009470: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2009474: 84 10 20 01 mov 1, %g2
the_thread->Wait.queue = NULL;
2009478: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
200947c: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2009480: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2009484: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2009488: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
200948c: 9f c0 40 00 call %g1
2009490: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2009494: b4 92 20 00 orcc %o0, 0, %i2
2009498: 22 80 00 13 be,a 20094e4 <_Thread_Initialize+0x114>
200949c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
20094a0: 90 10 00 19 mov %i1, %o0
20094a4: 40 00 01 dc call 2009c14 <_Thread_Set_priority>
20094a8: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20094ac: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
20094b0: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
20094b4: c0 26 60 84 clr [ %i1 + 0x84 ]
20094b8: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
20094bc: 83 28 60 02 sll %g1, 2, %g1
20094c0: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
20094c4: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
20094c8: 90 10 00 19 mov %i1, %o0
20094cc: 40 00 02 de call 200a044 <_User_extensions_Thread_create>
20094d0: b0 10 20 01 mov 1, %i0
if ( extension_status )
20094d4: 80 8a 20 ff btst 0xff, %o0
20094d8: 32 80 00 12 bne,a 2009520 <_Thread_Initialize+0x150>
20094dc: b0 0e 20 01 and %i0, 1, %i0
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
20094e0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
20094e4: 40 00 04 17 call 200a540 <_Workspace_Free>
20094e8: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
20094ec: 40 00 04 15 call 200a540 <_Workspace_Free>
20094f0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
20094f4: 40 00 04 13 call 200a540 <_Workspace_Free>
20094f8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
20094fc: 40 00 04 11 call 200a540 <_Workspace_Free>
2009500: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
2009504: 40 00 04 0f call 200a540 <_Workspace_Free>
2009508: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
200950c: 40 00 04 0d call 200a540 <_Workspace_Free>
2009510: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
2009514: 40 00 02 04 call 2009d24 <_Thread_Stack_Free>
2009518: 90 10 00 19 mov %i1, %o0
return false;
}
200951c: b0 0e 20 01 and %i0, 1, %i0
2009520: 81 c7 e0 08 ret
2009524: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
2009528: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
200952c: b0 0e 20 01 and %i0, 1, %i0
2009530: 81 c7 e0 08 ret
2009534: 81 e8 00 00 restore
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2009538: 40 00 03 fa call 200a520 <_Workspace_Allocate>
200953c: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2009540: b6 92 20 00 orcc %o0, 0, %i3
2009544: 32 bf ff b8 bne,a 2009424 <_Thread_Initialize+0x54>
2009548: 23 00 80 71 sethi %hi(0x201c400), %l1
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200954c: b8 10 20 00 clr %i4
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
2009550: 10 bf ff e4 b 20094e0 <_Thread_Initialize+0x110>
2009554: b4 10 20 00 clr %i2
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
2009558: 82 00 60 01 inc %g1
200955c: 40 00 03 f1 call 200a520 <_Workspace_Allocate>
2009560: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2009564: b8 92 20 00 orcc %o0, 0, %i4
2009568: 02 80 00 10 be 20095a8 <_Thread_Initialize+0x1d8>
200956c: 86 10 00 1c mov %i4, %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2009570: f8 26 61 60 st %i4, [ %i1 + 0x160 ]
2009574: c8 04 60 04 ld [ %l1 + 4 ], %g4
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2009578: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200957c: 10 80 00 03 b 2009588 <_Thread_Initialize+0x1b8>
2009580: 82 10 20 00 clr %g1
2009584: c6 06 61 60 ld [ %i1 + 0x160 ], %g3
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
2009588: 85 28 a0 02 sll %g2, 2, %g2
200958c: c0 20 c0 02 clr [ %g3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2009590: 82 00 60 01 inc %g1
2009594: 80 a0 40 04 cmp %g1, %g4
2009598: 08 bf ff fb bleu 2009584 <_Thread_Initialize+0x1b4>
200959c: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
20095a0: 10 bf ff ad b 2009454 <_Thread_Initialize+0x84>
20095a4: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
20095a8: 10 bf ff ce b 20094e0 <_Thread_Initialize+0x110>
20095ac: b4 10 20 00 clr %i2
02009b50 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2009b50: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2009b54: 80 a6 20 00 cmp %i0, 0
2009b58: 02 80 00 13 be 2009ba4 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
2009b5c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2009b60: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
2009b64: 80 a7 20 01 cmp %i4, 1
2009b68: 02 80 00 04 be 2009b78 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
2009b6c: 01 00 00 00 nop
2009b70: 81 c7 e0 08 ret <== NOT EXECUTED
2009b74: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2009b78: 7f ff e1 9b call 20021e4 <sparc_disable_interrupts>
2009b7c: 01 00 00 00 nop
2009b80: ba 10 00 08 mov %o0, %i5
2009b84: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
2009b88: 03 00 00 ef sethi %hi(0x3bc00), %g1
2009b8c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2009b90: 80 88 80 01 btst %g2, %g1
2009b94: 12 80 00 06 bne 2009bac <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
2009b98: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
2009b9c: 7f ff e1 96 call 20021f4 <sparc_enable_interrupts>
2009ba0: 90 10 00 1d mov %i5, %o0
2009ba4: 81 c7 e0 08 ret
2009ba8: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2009bac: 92 10 00 19 mov %i1, %o1
2009bb0: 94 10 20 01 mov 1, %o2
2009bb4: 40 00 0d 1f call 200d030 <_Thread_queue_Extract_priority_helper>
2009bb8: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2009bbc: 90 10 00 18 mov %i0, %o0
2009bc0: 92 10 00 19 mov %i1, %o1
2009bc4: 7f ff ff 35 call 2009898 <_Thread_queue_Enqueue_priority>
2009bc8: 94 07 bf fc add %fp, -4, %o2
2009bcc: 30 bf ff f4 b,a 2009b9c <_Thread_queue_Requeue+0x4c>
02009bd0 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009bd0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009bd4: 90 10 00 18 mov %i0, %o0
2009bd8: 7f ff fd d2 call 2009320 <_Thread_Get>
2009bdc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009be0: c2 07 bf fc ld [ %fp + -4 ], %g1
2009be4: 80 a0 60 00 cmp %g1, 0
2009be8: 12 80 00 09 bne 2009c0c <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
2009bec: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2009bf0: 40 00 0d 49 call 200d114 <_Thread_queue_Process_timeout>
2009bf4: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009bf8: 03 00 80 70 sethi %hi(0x201c000), %g1
2009bfc: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201c370 <_Thread_Dispatch_disable_level>
2009c00: 84 00 bf ff add %g2, -1, %g2
2009c04: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
return _Thread_Dispatch_disable_level;
2009c08: c2 00 63 70 ld [ %g1 + 0x370 ], %g1
2009c0c: 81 c7 e0 08 ret
2009c10: 81 e8 00 00 restore
0201650c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
201650c: 9d e3 bf 88 save %sp, -120, %sp
2016510: 23 00 80 e7 sethi %hi(0x2039c00), %l1
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016514: a6 07 bf e8 add %fp, -24, %l3
2016518: b2 07 bf ec add %fp, -20, %i1
201651c: b6 07 bf f4 add %fp, -12, %i3
2016520: a4 07 bf f8 add %fp, -8, %l2
2016524: 21 00 80 e7 sethi %hi(0x2039c00), %l0
2016528: 29 00 80 e7 sethi %hi(0x2039c00), %l4
201652c: f2 27 bf e8 st %i1, [ %fp + -24 ]
head->previous = NULL;
2016530: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
2016534: e6 27 bf f0 st %l3, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016538: e4 27 bf f4 st %l2, [ %fp + -12 ]
head->previous = NULL;
201653c: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
2016540: f6 27 bf fc st %i3, [ %fp + -4 ]
2016544: a2 14 63 cc or %l1, 0x3cc, %l1
2016548: b8 06 20 30 add %i0, 0x30, %i4
201654c: a0 14 23 4c or %l0, 0x34c, %l0
2016550: b4 06 20 68 add %i0, 0x68, %i2
2016554: a8 15 22 c0 or %l4, 0x2c0, %l4
2016558: ae 06 20 08 add %i0, 8, %l7
201655c: ac 06 20 40 add %i0, 0x40, %l6
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016560: aa 10 20 01 mov 1, %l5
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2016564: e6 26 20 78 st %l3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016568: c2 04 40 00 ld [ %l1 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201656c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016570: 94 10 00 1b mov %i3, %o2
2016574: 90 10 00 1c mov %i4, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016578: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201657c: 40 00 12 cf call 201b0b8 <_Watchdog_Adjust_to_chain>
2016580: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016584: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016588: fa 04 00 00 ld [ %l0 ], %i5
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
201658c: 80 a7 40 0a cmp %i5, %o2
2016590: 18 80 00 2e bgu 2016648 <_Timer_server_Body+0x13c>
2016594: 92 27 40 0a sub %i5, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
2016598: 80 a7 40 0a cmp %i5, %o2
201659c: 0a 80 00 2f bcs 2016658 <_Timer_server_Body+0x14c>
20165a0: 90 10 00 1a mov %i2, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
20165a4: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20165a8: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
20165ac: 40 00 03 06 call 20171c4 <_Chain_Get>
20165b0: 01 00 00 00 nop
if ( timer == NULL ) {
20165b4: 92 92 20 00 orcc %o0, 0, %o1
20165b8: 02 80 00 10 be 20165f8 <_Timer_server_Body+0xec>
20165bc: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20165c0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
20165c4: 80 a0 60 01 cmp %g1, 1
20165c8: 02 80 00 28 be 2016668 <_Timer_server_Body+0x15c>
20165cc: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20165d0: 12 bf ff f6 bne 20165a8 <_Timer_server_Body+0x9c> <== NEVER TAKEN
20165d4: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20165d8: 40 00 12 e9 call 201b17c <_Watchdog_Insert>
20165dc: 90 10 00 1a mov %i2, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
20165e0: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
20165e4: 40 00 02 f8 call 20171c4 <_Chain_Get>
20165e8: 01 00 00 00 nop
if ( timer == NULL ) {
20165ec: 92 92 20 00 orcc %o0, 0, %o1
20165f0: 32 bf ff f5 bne,a 20165c4 <_Timer_server_Body+0xb8> <== NEVER TAKEN
20165f4: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
20165f8: 7f ff e2 35 call 200eecc <sparc_disable_interrupts>
20165fc: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2016600: c2 07 bf e8 ld [ %fp + -24 ], %g1
2016604: 80 a0 40 19 cmp %g1, %i1
2016608: 02 80 00 1c be 2016678 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
201660c: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2016610: 7f ff e2 33 call 200eedc <sparc_enable_interrupts> <== NOT EXECUTED
2016614: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016618: c2 04 40 00 ld [ %l1 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201661c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016620: 94 10 00 1b mov %i3, %o2 <== NOT EXECUTED
2016624: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016628: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201662c: 40 00 12 a3 call 201b0b8 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
2016630: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016634: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016638: fa 04 00 00 ld [ %l0 ], %i5 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
201663c: 80 a7 40 0a cmp %i5, %o2 <== NOT EXECUTED
2016640: 08 bf ff d7 bleu 201659c <_Timer_server_Body+0x90> <== NOT EXECUTED
2016644: 92 27 40 0a sub %i5, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016648: 90 10 00 1a mov %i2, %o0
201664c: 40 00 12 9b call 201b0b8 <_Watchdog_Adjust_to_chain>
2016650: 94 10 00 1b mov %i3, %o2
2016654: 30 bf ff d4 b,a 20165a4 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016658: 92 10 20 01 mov 1, %o1
201665c: 40 00 12 68 call 201affc <_Watchdog_Adjust>
2016660: 94 22 80 1d sub %o2, %i5, %o2
2016664: 30 bf ff d0 b,a 20165a4 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016668: 90 10 00 1c mov %i4, %o0
201666c: 40 00 12 c4 call 201b17c <_Watchdog_Insert>
2016670: 92 02 60 10 add %o1, 0x10, %o1
2016674: 30 bf ff cd b,a 20165a8 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
2016678: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
201667c: 7f ff e2 18 call 200eedc <sparc_enable_interrupts>
2016680: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016684: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016688: 80 a0 40 12 cmp %g1, %l2
201668c: 12 80 00 0c bne 20166bc <_Timer_server_Body+0x1b0>
2016690: 01 00 00 00 nop
2016694: 30 80 00 13 b,a 20166e0 <_Timer_server_Body+0x1d4>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
2016698: f6 20 60 04 st %i3, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
201669c: c2 27 bf f4 st %g1, [ %fp + -12 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
20166a0: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
20166a4: 7f ff e2 0e call 200eedc <sparc_enable_interrupts>
20166a8: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
20166ac: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
20166b0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
20166b4: 9f c0 40 00 call %g1
20166b8: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
20166bc: 7f ff e2 04 call 200eecc <sparc_disable_interrupts>
20166c0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
20166c4: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
20166c8: 80 a7 40 12 cmp %i5, %l2
20166cc: 32 bf ff f3 bne,a 2016698 <_Timer_server_Body+0x18c>
20166d0: c2 07 40 00 ld [ %i5 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
20166d4: 7f ff e2 02 call 200eedc <sparc_enable_interrupts>
20166d8: 01 00 00 00 nop
20166dc: 30 bf ff a2 b,a 2016564 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
20166e0: c0 2e 20 7c clrb [ %i0 + 0x7c ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
20166e4: c2 05 00 00 ld [ %l4 ], %g1
20166e8: 82 00 60 01 inc %g1
20166ec: c2 25 00 00 st %g1, [ %l4 ]
return _Thread_Dispatch_disable_level;
20166f0: c2 05 00 00 ld [ %l4 ], %g1
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
20166f4: d0 06 00 00 ld [ %i0 ], %o0
20166f8: 40 00 10 ab call 201a9a4 <_Thread_Set_state>
20166fc: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016700: 7f ff ff 5b call 201646c <_Timer_server_Reset_interval_system_watchdog>
2016704: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016708: 7f ff ff 6d call 20164bc <_Timer_server_Reset_tod_system_watchdog>
201670c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016710: 40 00 0e 2f call 2019fcc <_Thread_Enable_dispatch>
2016714: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016718: 90 10 00 17 mov %l7, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
201671c: ea 2e 20 7c stb %l5, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016720: 40 00 12 f9 call 201b304 <_Watchdog_Remove>
2016724: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016728: 40 00 12 f7 call 201b304 <_Watchdog_Remove>
201672c: 90 10 00 16 mov %l6, %o0
2016730: 30 bf ff 8d b,a 2016564 <_Timer_server_Body+0x58>
02016734 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016734: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016738: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
201673c: 80 a0 60 00 cmp %g1, 0
2016740: 02 80 00 05 be 2016754 <_Timer_server_Schedule_operation_method+0x20>
2016744: ba 10 00 19 mov %i1, %i5
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016748: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
201674c: 40 00 02 8a call 2017174 <_Chain_Append>
2016750: 81 e8 00 00 restore
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2016754: 03 00 80 e7 sethi %hi(0x2039c00), %g1
2016758: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 2039ec0 <_Thread_Dispatch_disable_level>
201675c: 84 00 a0 01 inc %g2
2016760: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ]
return _Thread_Dispatch_disable_level;
2016764: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016768: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
201676c: 80 a0 60 01 cmp %g1, 1
2016770: 02 80 00 28 be 2016810 <_Timer_server_Schedule_operation_method+0xdc>
2016774: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016778: 02 80 00 04 be 2016788 <_Timer_server_Schedule_operation_method+0x54>
201677c: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016780: 40 00 0e 13 call 2019fcc <_Thread_Enable_dispatch>
2016784: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016788: 7f ff e1 d1 call 200eecc <sparc_disable_interrupts>
201678c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2016790: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016794: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016798: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
201679c: 03 00 80 e7 sethi %hi(0x2039c00), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
20167a0: 80 a0 80 04 cmp %g2, %g4
20167a4: 02 80 00 0d be 20167d8 <_Timer_server_Schedule_operation_method+0xa4>
20167a8: c2 00 63 4c ld [ %g1 + 0x34c ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
20167ac: de 00 a0 10 ld [ %g2 + 0x10 ], %o7
if ( snapshot > last_snapshot ) {
20167b0: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
20167b4: 88 03 c0 03 add %o7, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
20167b8: 08 80 00 07 bleu 20167d4 <_Timer_server_Schedule_operation_method+0xa0>
20167bc: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
20167c0: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
20167c4: 80 a3 c0 03 cmp %o7, %g3
20167c8: 08 80 00 03 bleu 20167d4 <_Timer_server_Schedule_operation_method+0xa0><== NEVER TAKEN
20167cc: 88 10 20 00 clr %g4
delta_interval -= delta;
20167d0: 88 23 c0 03 sub %o7, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
20167d4: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
20167d8: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
20167dc: 7f ff e1 c0 call 200eedc <sparc_enable_interrupts>
20167e0: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
20167e4: 90 06 20 68 add %i0, 0x68, %o0
20167e8: 40 00 12 65 call 201b17c <_Watchdog_Insert>
20167ec: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
20167f0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
20167f4: 80 a0 60 00 cmp %g1, 0
20167f8: 12 bf ff e2 bne 2016780 <_Timer_server_Schedule_operation_method+0x4c>
20167fc: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016800: 7f ff ff 2f call 20164bc <_Timer_server_Reset_tod_system_watchdog>
2016804: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016808: 40 00 0d f1 call 2019fcc <_Thread_Enable_dispatch>
201680c: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016810: 7f ff e1 af call 200eecc <sparc_disable_interrupts>
2016814: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016818: 05 00 80 e7 sethi %hi(0x2039c00), %g2
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
201681c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
2016820: c4 00 a3 cc ld [ %g2 + 0x3cc ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016824: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016828: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
201682c: 80 a0 40 03 cmp %g1, %g3
2016830: 02 80 00 08 be 2016850 <_Timer_server_Schedule_operation_method+0x11c>
2016834: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016838: de 00 60 10 ld [ %g1 + 0x10 ], %o7
if (delta_interval > delta) {
201683c: 80 a1 00 0f cmp %g4, %o7
2016840: 1a 80 00 03 bcc 201684c <_Timer_server_Schedule_operation_method+0x118>
2016844: 86 10 20 00 clr %g3
delta_interval -= delta;
2016848: 86 23 c0 04 sub %o7, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
201684c: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016850: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016854: 7f ff e1 a2 call 200eedc <sparc_enable_interrupts>
2016858: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
201685c: 90 06 20 30 add %i0, 0x30, %o0
2016860: 40 00 12 47 call 201b17c <_Watchdog_Insert>
2016864: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2016868: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
201686c: 80 a0 60 00 cmp %g1, 0
2016870: 12 bf ff c4 bne 2016780 <_Timer_server_Schedule_operation_method+0x4c>
2016874: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016878: 7f ff fe fd call 201646c <_Timer_server_Reset_interval_system_watchdog>
201687c: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016880: 40 00 0d d3 call 2019fcc <_Thread_Enable_dispatch>
2016884: 81 e8 00 00 restore
02009dec <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
2009dec: 9d e3 bf a0 save %sp, -96, %sp
2009df0: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009df4: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
2009df8: c8 00 60 04 ld [ %g1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
2009dfc: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
2009e00: c4 06 60 04 ld [ %i1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009e04: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
2009e08: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009e0c: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009e10: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
2009e14: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_END+0x395ac9ff>
2009e18: 80 a0 80 04 cmp %g2, %g4
2009e1c: 08 80 00 0b bleu 2009e48 <_Timespec_Add_to+0x5c>
2009e20: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
2009e24: 1f 31 19 4d sethi %hi(0xc4653400), %o7
2009e28: 9e 13 e2 00 or %o7, 0x200, %o7 ! c4653600 <RAM_END+0xc2253600>
2009e2c: 84 00 80 0f add %g2, %o7, %g2
time->tv_sec++;
2009e30: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009e34: 80 a0 80 04 cmp %g2, %g4
2009e38: 18 bf ff fd bgu 2009e2c <_Timespec_Add_to+0x40> <== NEVER TAKEN
2009e3c: b0 06 20 01 inc %i0
2009e40: c4 20 60 04 st %g2, [ %g1 + 4 ]
2009e44: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
2009e48: 81 c7 e0 08 ret
2009e4c: 81 e8 00 00 restore
02009ff4 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2009ff4: 9d e3 bf a0 save %sp, -96, %sp
2009ff8: 39 00 80 71 sethi %hi(0x201c400), %i4
2009ffc: b8 17 21 58 or %i4, 0x158, %i4 ! 201c558 <_User_extensions_List>
200a000: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200a004: 80 a7 40 1c cmp %i5, %i4
200a008: 02 80 00 0d be 200a03c <_User_extensions_Fatal+0x48> <== NEVER TAKEN
200a00c: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
200a010: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
200a014: 80 a0 60 00 cmp %g1, 0
200a018: 02 80 00 05 be 200a02c <_User_extensions_Fatal+0x38>
200a01c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
200a020: 92 10 00 19 mov %i1, %o1
200a024: 9f c0 40 00 call %g1
200a028: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200a02c: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200a030: 80 a7 40 1c cmp %i5, %i4
200a034: 32 bf ff f8 bne,a 200a014 <_User_extensions_Fatal+0x20>
200a038: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
200a03c: 81 c7 e0 08 ret
200a040: 81 e8 00 00 restore
02009ea0 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009ea0: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009ea4: 07 00 80 6d sethi %hi(0x201b400), %g3
2009ea8: 86 10 e2 7c or %g3, 0x27c, %g3 ! 201b67c <Configuration>
initial_extensions = Configuration.User_extension_table;
2009eac: f6 00 e0 3c ld [ %g3 + 0x3c ], %i3
2009eb0: 3b 00 80 71 sethi %hi(0x201c400), %i5
2009eb4: 09 00 80 70 sethi %hi(0x201c000), %g4
2009eb8: 84 17 61 58 or %i5, 0x158, %g2
2009ebc: 82 11 23 74 or %g4, 0x374, %g1
2009ec0: b4 00 a0 04 add %g2, 4, %i2
2009ec4: b8 00 60 04 add %g1, 4, %i4
2009ec8: f4 27 61 58 st %i2, [ %i5 + 0x158 ]
head->previous = NULL;
2009ecc: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
2009ed0: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009ed4: f8 21 23 74 st %i4, [ %g4 + 0x374 ]
head->previous = NULL;
2009ed8: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009edc: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009ee0: 80 a6 e0 00 cmp %i3, 0
2009ee4: 02 80 00 1b be 2009f50 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009ee8: f4 00 e0 38 ld [ %g3 + 0x38 ], %i2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009eec: 83 2e a0 02 sll %i2, 2, %g1
2009ef0: b9 2e a0 04 sll %i2, 4, %i4
2009ef4: b8 27 00 01 sub %i4, %g1, %i4
2009ef8: b8 07 00 1a add %i4, %i2, %i4
2009efc: b9 2f 20 02 sll %i4, 2, %i4
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
2009f00: 40 00 01 96 call 200a558 <_Workspace_Allocate_or_fatal_error>
2009f04: 90 10 00 1c mov %i4, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009f08: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
2009f0c: ba 10 00 08 mov %o0, %i5
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009f10: 40 00 15 99 call 200f574 <memset>
2009f14: 94 10 00 1c mov %i4, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009f18: 80 a6 a0 00 cmp %i2, 0
2009f1c: 02 80 00 0d be 2009f50 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009f20: b8 10 20 00 clr %i4
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009f24: 92 10 00 1b mov %i3, %o1
2009f28: 94 10 20 20 mov 0x20, %o2
2009f2c: 40 00 15 56 call 200f484 <memcpy>
2009f30: 90 07 60 14 add %i5, 0x14, %o0
_User_extensions_Add_set( extension );
2009f34: 40 00 0c 9b call 200d1a0 <_User_extensions_Add_set>
2009f38: 90 10 00 1d mov %i5, %o0
2009f3c: b8 07 20 01 inc %i4
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
2009f40: ba 07 60 34 add %i5, 0x34, %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009f44: 80 a7 00 1a cmp %i4, %i2
2009f48: 12 bf ff f7 bne 2009f24 <_User_extensions_Handler_initialization+0x84>
2009f4c: b6 06 e0 20 add %i3, 0x20, %i3
2009f50: 81 c7 e0 08 ret
2009f54: 81 e8 00 00 restore
02009f58 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
2009f58: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2009f5c: 39 00 80 71 sethi %hi(0x201c400), %i4
2009f60: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 ! 201c558 <_User_extensions_List>
2009f64: b8 17 21 58 or %i4, 0x158, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009f68: b8 07 20 04 add %i4, 4, %i4
2009f6c: 80 a7 40 1c cmp %i5, %i4
2009f70: 02 80 00 0c be 2009fa0 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
2009f74: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
2009f78: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
2009f7c: 80 a0 60 00 cmp %g1, 0
2009f80: 02 80 00 04 be 2009f90 <_User_extensions_Thread_begin+0x38>
2009f84: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
2009f88: 9f c0 40 00 call %g1
2009f8c: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009f90: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009f94: 80 a7 40 1c cmp %i5, %i4
2009f98: 32 bf ff f9 bne,a 2009f7c <_User_extensions_Thread_begin+0x24>
2009f9c: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
2009fa0: 81 c7 e0 08 ret
2009fa4: 81 e8 00 00 restore
0200a044 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
200a044: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a048: 39 00 80 71 sethi %hi(0x201c400), %i4
200a04c: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 ! 201c558 <_User_extensions_List>
200a050: b8 17 21 58 or %i4, 0x158, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
200a054: b8 07 20 04 add %i4, 4, %i4
200a058: 80 a7 40 1c cmp %i5, %i4
200a05c: 02 80 00 12 be 200a0a4 <_User_extensions_Thread_create+0x60><== NEVER TAKEN
200a060: 82 10 20 01 mov 1, %g1
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
200a064: 37 00 80 71 sethi %hi(0x201c400), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
200a068: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
200a06c: 80 a0 60 00 cmp %g1, 0
200a070: 02 80 00 08 be 200a090 <_User_extensions_Thread_create+0x4c>
200a074: 84 16 e1 9c or %i3, 0x19c, %g2
status = (*the_extension->Callouts.thread_create)(
200a078: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a07c: 9f c0 40 00 call %g1
200a080: 92 10 00 18 mov %i0, %o1
_Thread_Executing,
the_thread
);
if ( !status )
200a084: 80 8a 20 ff btst 0xff, %o0
200a088: 02 80 00 0a be 200a0b0 <_User_extensions_Thread_create+0x6c>
200a08c: 82 10 20 00 clr %g1
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200a090: fa 07 40 00 ld [ %i5 ], %i5
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
200a094: 80 a7 40 1c cmp %i5, %i4
200a098: 32 bf ff f5 bne,a 200a06c <_User_extensions_Thread_create+0x28>
200a09c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
200a0a0: 82 10 20 01 mov 1, %g1
}
200a0a4: b0 08 60 01 and %g1, 1, %i0
200a0a8: 81 c7 e0 08 ret
200a0ac: 81 e8 00 00 restore
200a0b0: b0 08 60 01 and %g1, 1, %i0
200a0b4: 81 c7 e0 08 ret
200a0b8: 81 e8 00 00 restore
0200a0bc <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
200a0bc: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last(
Chain_Control *the_chain
)
{
return _Chain_Tail( the_chain )->previous;
200a0c0: 39 00 80 71 sethi %hi(0x201c400), %i4
200a0c4: b8 17 21 58 or %i4, 0x158, %i4 ! 201c558 <_User_extensions_List>
200a0c8: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200a0cc: 80 a7 40 1c cmp %i5, %i4
200a0d0: 02 80 00 0d be 200a104 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
200a0d4: 37 00 80 71 sethi %hi(0x201c400), %i3
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
200a0d8: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
200a0dc: 80 a0 60 00 cmp %g1, 0
200a0e0: 02 80 00 05 be 200a0f4 <_User_extensions_Thread_delete+0x38>
200a0e4: 84 16 e1 9c or %i3, 0x19c, %g2
(*the_extension->Callouts.thread_delete)(
200a0e8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a0ec: 9f c0 40 00 call %g1
200a0f0: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200a0f4: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200a0f8: 80 a7 40 1c cmp %i5, %i4
200a0fc: 32 bf ff f8 bne,a 200a0dc <_User_extensions_Thread_delete+0x20>
200a100: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
200a104: 81 c7 e0 08 ret
200a108: 81 e8 00 00 restore
02009fa8 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
2009fa8: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last(
Chain_Control *the_chain
)
{
return _Chain_Tail( the_chain )->previous;
2009fac: 39 00 80 71 sethi %hi(0x201c400), %i4
2009fb0: b8 17 21 58 or %i4, 0x158, %i4 ! 201c558 <_User_extensions_List>
2009fb4: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009fb8: 80 a7 40 1c cmp %i5, %i4
2009fbc: 02 80 00 0c be 2009fec <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
2009fc0: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
2009fc4: c2 07 60 2c ld [ %i5 + 0x2c ], %g1
2009fc8: 80 a0 60 00 cmp %g1, 0
2009fcc: 02 80 00 04 be 2009fdc <_User_extensions_Thread_exitted+0x34>
2009fd0: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
2009fd4: 9f c0 40 00 call %g1
2009fd8: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009fdc: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009fe0: 80 a7 40 1c cmp %i5, %i4
2009fe4: 32 bf ff f9 bne,a 2009fc8 <_User_extensions_Thread_exitted+0x20>
2009fe8: c2 07 60 2c ld [ %i5 + 0x2c ], %g1
2009fec: 81 c7 e0 08 ret
2009ff0: 81 e8 00 00 restore
0200a94c <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
200a94c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a950: 39 00 80 74 sethi %hi(0x201d000), %i4
200a954: fa 07 20 78 ld [ %i4 + 0x78 ], %i5 ! 201d078 <_User_extensions_List>
200a958: b8 17 20 78 or %i4, 0x78, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a95c: b8 07 20 04 add %i4, 4, %i4
200a960: 80 a7 40 1c cmp %i5, %i4
200a964: 02 80 00 0d be 200a998 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
200a968: 37 00 80 74 sethi %hi(0x201d000), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
200a96c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200a970: 80 a0 60 00 cmp %g1, 0
200a974: 02 80 00 05 be 200a988 <_User_extensions_Thread_restart+0x3c>
200a978: 84 16 e0 bc or %i3, 0xbc, %g2
(*the_extension->Callouts.thread_restart)(
200a97c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a980: 9f c0 40 00 call %g1
200a984: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200a988: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a98c: 80 a7 40 1c cmp %i5, %i4
200a990: 32 bf ff f8 bne,a 200a970 <_User_extensions_Thread_restart+0x24>
200a994: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200a998: 81 c7 e0 08 ret
200a99c: 81 e8 00 00 restore
0200a10c <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
200a10c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a110: 39 00 80 71 sethi %hi(0x201c400), %i4
200a114: fa 07 21 58 ld [ %i4 + 0x158 ], %i5 ! 201c558 <_User_extensions_List>
200a118: b8 17 21 58 or %i4, 0x158, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a11c: b8 07 20 04 add %i4, 4, %i4
200a120: 80 a7 40 1c cmp %i5, %i4
200a124: 02 80 00 0d be 200a158 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
200a128: 37 00 80 71 sethi %hi(0x201c400), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
200a12c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200a130: 80 a0 60 00 cmp %g1, 0
200a134: 02 80 00 05 be 200a148 <_User_extensions_Thread_start+0x3c>
200a138: 84 16 e1 9c or %i3, 0x19c, %g2
(*the_extension->Callouts.thread_start)(
200a13c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a140: 9f c0 40 00 call %g1
200a144: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200a148: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a14c: 80 a7 40 1c cmp %i5, %i4
200a150: 32 bf ff f8 bne,a 200a130 <_User_extensions_Thread_start+0x24>
200a154: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200a158: 81 c7 e0 08 ret
200a15c: 81 e8 00 00 restore
0200a160 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
200a160: 9d e3 bf a0 save %sp, -96, %sp
200a164: 39 00 80 70 sethi %hi(0x201c000), %i4
200a168: fa 07 23 74 ld [ %i4 + 0x374 ], %i5 ! 201c374 <_User_extensions_Switches_list>
200a16c: b8 17 23 74 or %i4, 0x374, %i4
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
200a170: b8 07 20 04 add %i4, 4, %i4
200a174: 80 a7 40 1c cmp %i5, %i4
200a178: 02 80 00 0a be 200a1a0 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
200a17c: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
200a180: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a184: 90 10 00 18 mov %i0, %o0
200a188: 9f c0 40 00 call %g1
200a18c: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
200a190: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
200a194: 80 a7 40 1c cmp %i5, %i4
200a198: 32 bf ff fb bne,a 200a184 <_User_extensions_Thread_switch+0x24>
200a19c: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a1a0: 81 c7 e0 08 ret
200a1a4: 81 e8 00 00 restore
0200bc1c <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200bc1c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200bc20: 7f ff dc c4 call 2002f30 <sparc_disable_interrupts>
200bc24: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200bc28: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200bc2c: b6 06 20 04 add %i0, 4, %i3
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200bc30: 80 a0 40 1b cmp %g1, %i3
200bc34: 02 80 00 1e be 200bcac <_Watchdog_Adjust+0x90>
200bc38: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200bc3c: 12 80 00 1e bne 200bcb4 <_Watchdog_Adjust+0x98>
200bc40: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bc44: 80 a6 a0 00 cmp %i2, 0
200bc48: 02 80 00 19 be 200bcac <_Watchdog_Adjust+0x90> <== NEVER TAKEN
200bc4c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bc50: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
200bc54: 80 a6 80 1c cmp %i2, %i4
200bc58: 1a 80 00 0a bcc 200bc80 <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN
200bc5c: b2 10 20 01 mov 1, %i1
_Watchdog_First( header )->delta_interval -= units;
200bc60: 10 80 00 1c b 200bcd0 <_Watchdog_Adjust+0xb4> <== NOT EXECUTED
200bc64: b8 27 00 1a sub %i4, %i2, %i4 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bc68: 02 80 00 11 be 200bcac <_Watchdog_Adjust+0x90> <== NEVER TAKEN
200bc6c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bc70: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
200bc74: 80 a7 00 1a cmp %i4, %i2
200bc78: 38 80 00 16 bgu,a 200bcd0 <_Watchdog_Adjust+0xb4>
200bc7c: b8 27 00 1a sub %i4, %i2, %i4
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200bc80: f2 20 60 10 st %i1, [ %g1 + 0x10 ]
_ISR_Enable( level );
200bc84: 7f ff dc af call 2002f40 <sparc_enable_interrupts>
200bc88: 01 00 00 00 nop
_Watchdog_Tickle( header );
200bc8c: 40 00 00 ab call 200bf38 <_Watchdog_Tickle>
200bc90: 90 10 00 1d mov %i5, %o0
_ISR_Disable( level );
200bc94: 7f ff dc a7 call 2002f30 <sparc_disable_interrupts>
200bc98: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200bc9c: c2 07 40 00 ld [ %i5 ], %g1
if ( _Chain_Is_empty( header ) )
200bca0: 80 a6 c0 01 cmp %i3, %g1
200bca4: 32 bf ff f1 bne,a 200bc68 <_Watchdog_Adjust+0x4c>
200bca8: b4 a6 80 1c subcc %i2, %i4, %i2
}
break;
}
}
_ISR_Enable( level );
200bcac: 7f ff dc a5 call 2002f40 <sparc_enable_interrupts>
200bcb0: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200bcb4: 12 bf ff fe bne 200bcac <_Watchdog_Adjust+0x90> <== NEVER TAKEN
200bcb8: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200bcbc: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200bcc0: b4 00 80 1a add %g2, %i2, %i2
200bcc4: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200bcc8: 7f ff dc 9e call 2002f40 <sparc_enable_interrupts>
200bccc: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200bcd0: 10 bf ff f7 b 200bcac <_Watchdog_Adjust+0x90>
200bcd4: f8 20 60 10 st %i4, [ %g1 + 0x10 ]
0200a330 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200a330: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200a334: 7f ff df ac call 20021e4 <sparc_disable_interrupts>
200a338: 01 00 00 00 nop
previous_state = the_watchdog->state;
200a33c: fa 06 20 08 ld [ %i0 + 8 ], %i5
switch ( previous_state ) {
200a340: 80 a7 60 01 cmp %i5, 1
200a344: 02 80 00 2a be 200a3ec <_Watchdog_Remove+0xbc>
200a348: 03 00 80 71 sethi %hi(0x201c400), %g1
200a34c: 1a 80 00 09 bcc 200a370 <_Watchdog_Remove+0x40>
200a350: 80 a7 60 03 cmp %i5, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a354: 03 00 80 71 sethi %hi(0x201c400), %g1
200a358: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 ! 201c47c <_Watchdog_Ticks_since_boot>
200a35c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a360: 7f ff df a5 call 20021f4 <sparc_enable_interrupts>
200a364: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200a368: 81 c7 e0 08 ret
200a36c: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
200a370: 18 bf ff fa bgu 200a358 <_Watchdog_Remove+0x28> <== NEVER TAKEN
200a374: 03 00 80 71 sethi %hi(0x201c400), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
200a378: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200a37c: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200a380: c4 00 40 00 ld [ %g1 ], %g2
200a384: 80 a0 a0 00 cmp %g2, 0
200a388: 02 80 00 07 be 200a3a4 <_Watchdog_Remove+0x74>
200a38c: 05 00 80 71 sethi %hi(0x201c400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200a390: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200a394: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
200a398: 84 00 c0 02 add %g3, %g2, %g2
200a39c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200a3a0: 05 00 80 71 sethi %hi(0x201c400), %g2
200a3a4: c4 00 a0 78 ld [ %g2 + 0x78 ], %g2 ! 201c478 <_Watchdog_Sync_count>
200a3a8: 80 a0 a0 00 cmp %g2, 0
200a3ac: 22 80 00 07 be,a 200a3c8 <_Watchdog_Remove+0x98>
200a3b0: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200a3b4: 05 00 80 71 sethi %hi(0x201c400), %g2
200a3b8: c6 00 a1 a4 ld [ %g2 + 0x1a4 ], %g3 ! 201c5a4 <_Per_CPU_Information+0x8>
200a3bc: 05 00 80 71 sethi %hi(0x201c400), %g2
200a3c0: c6 20 a0 18 st %g3, [ %g2 + 0x18 ] ! 201c418 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200a3c4: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
200a3c8: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200a3cc: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a3d0: 03 00 80 71 sethi %hi(0x201c400), %g1
200a3d4: c2 00 60 7c ld [ %g1 + 0x7c ], %g1 ! 201c47c <_Watchdog_Ticks_since_boot>
200a3d8: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a3dc: 7f ff df 86 call 20021f4 <sparc_enable_interrupts>
200a3e0: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200a3e4: 81 c7 e0 08 ret
200a3e8: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a3ec: c2 00 60 7c ld [ %g1 + 0x7c ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
200a3f0: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a3f4: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a3f8: 7f ff df 7f call 20021f4 <sparc_enable_interrupts>
200a3fc: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200a400: 81 c7 e0 08 ret
200a404: 81 e8 00 00 restore
0200b44c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200b44c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200b450: 7f ff dd 99 call 2002ab4 <sparc_disable_interrupts>
200b454: 01 00 00 00 nop
200b458: ba 10 00 08 mov %o0, %i5
printk( "Watchdog Chain: %s %p\n", name, header );
200b45c: 11 00 80 70 sethi %hi(0x201c000), %o0
200b460: 94 10 00 19 mov %i1, %o2
200b464: 92 10 00 18 mov %i0, %o1
200b468: 7f ff e4 b1 call 200472c <printk>
200b46c: 90 12 23 90 or %o0, 0x390, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b470: f8 06 40 00 ld [ %i1 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b474: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200b478: 80 a7 00 19 cmp %i4, %i1
200b47c: 02 80 00 0f be 200b4b8 <_Watchdog_Report_chain+0x6c>
200b480: 11 00 80 70 sethi %hi(0x201c000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200b484: 92 10 00 1c mov %i4, %o1
200b488: 40 00 00 0f call 200b4c4 <_Watchdog_Report>
200b48c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200b490: f8 07 00 00 ld [ %i4 ], %i4
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200b494: 80 a7 00 19 cmp %i4, %i1
200b498: 12 bf ff fc bne 200b488 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200b49c: 92 10 00 1c mov %i4, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200b4a0: 11 00 80 70 sethi %hi(0x201c000), %o0
200b4a4: 92 10 00 18 mov %i0, %o1
200b4a8: 7f ff e4 a1 call 200472c <printk>
200b4ac: 90 12 23 a8 or %o0, 0x3a8, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200b4b0: 7f ff dd 85 call 2002ac4 <sparc_enable_interrupts>
200b4b4: 91 e8 00 1d restore %g0, %i5, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200b4b8: 7f ff e4 9d call 200472c <printk>
200b4bc: 90 12 23 b8 or %o0, 0x3b8, %o0
200b4c0: 30 bf ff fc b,a 200b4b0 <_Watchdog_Report_chain+0x64>
02007184 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2007184: 9d e3 bf 98 save %sp, -104, %sp
2007188: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
200718c: 40 00 01 84 call 200779c <_Chain_Get>
2007190: 90 10 00 1d mov %i5, %o0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2007194: 92 10 20 00 clr %o1
2007198: b8 10 00 08 mov %o0, %i4
200719c: 94 10 00 1a mov %i2, %o2
20071a0: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20071a4: 80 a7 20 00 cmp %i4, 0
20071a8: 12 80 00 0a bne 20071d0 <rtems_chain_get_with_wait+0x4c>
20071ac: 96 07 bf fc add %fp, -4, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
20071b0: 7f ff fc f4 call 2006580 <rtems_event_receive>
20071b4: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
20071b8: 80 a2 20 00 cmp %o0, 0
20071bc: 02 bf ff f4 be 200718c <rtems_chain_get_with_wait+0x8> <== NEVER TAKEN
20071c0: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
20071c4: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
20071c8: 81 c7 e0 08 ret
20071cc: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20071d0: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
20071d4: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
20071d8: 81 c7 e0 08 ret
20071dc: 91 e8 00 08 restore %g0, %o0, %o0
02007e08 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2007e08: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2007e0c: 03 00 80 67 sethi %hi(0x2019c00), %g1
2007e10: c4 00 62 d4 ld [ %g1 + 0x2d4 ], %g2 ! 2019ed4 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2007e14: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
2007e18: 03 00 80 67 sethi %hi(0x2019c00), %g1
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
2007e1c: 88 10 20 12 mov 0x12, %g4
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2007e20: 80 a0 a0 00 cmp %g2, 0
2007e24: 02 80 00 04 be 2007e34 <rtems_io_register_driver+0x2c>
2007e28: de 00 63 64 ld [ %g1 + 0x364 ], %o7
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
2007e2c: 81 c7 e0 08 ret
2007e30: 91 e8 00 04 restore %g0, %g4, %o0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
2007e34: 80 a6 a0 00 cmp %i2, 0
2007e38: 02 80 00 40 be 2007f38 <rtems_io_register_driver+0x130>
2007e3c: 80 a6 60 00 cmp %i1, 0
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
2007e40: 02 80 00 3e be 2007f38 <rtems_io_register_driver+0x130>
2007e44: de 26 80 00 st %o7, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007e48: c4 06 40 00 ld [ %i1 ], %g2
2007e4c: 80 a0 a0 00 cmp %g2, 0
2007e50: 22 80 00 37 be,a 2007f2c <rtems_io_register_driver+0x124>
2007e54: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
2007e58: 80 a3 c0 18 cmp %o7, %i0
2007e5c: 08 bf ff f4 bleu 2007e2c <rtems_io_register_driver+0x24>
2007e60: 88 10 20 0a mov 0xa, %g4
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2007e64: 05 00 80 67 sethi %hi(0x2019c00), %g2
2007e68: c8 00 a0 a0 ld [ %g2 + 0xa0 ], %g4 ! 2019ca0 <_Thread_Dispatch_disable_level>
2007e6c: 88 01 20 01 inc %g4
2007e70: c8 20 a0 a0 st %g4, [ %g2 + 0xa0 ]
return _Thread_Dispatch_disable_level;
2007e74: c4 00 a0 a0 ld [ %g2 + 0xa0 ], %g2
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
2007e78: 80 a6 20 00 cmp %i0, 0
2007e7c: 12 80 00 32 bne 2007f44 <rtems_io_register_driver+0x13c>
2007e80: 1f 00 80 67 sethi %hi(0x2019c00), %o7
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
2007e84: c8 00 63 64 ld [ %g1 + 0x364 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2007e88: 80 a1 20 00 cmp %g4, 0
2007e8c: 02 80 00 45 be 2007fa0 <rtems_io_register_driver+0x198> <== NEVER TAKEN
2007e90: c2 03 e3 68 ld [ %o7 + 0x368 ], %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007e94: 10 80 00 06 b 2007eac <rtems_io_register_driver+0xa4>
2007e98: c4 00 40 00 ld [ %g1 ], %g2
rtems_device_major_number n = _IO_Number_of_drivers;
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2007e9c: 80 a6 00 04 cmp %i0, %g4
2007ea0: 02 80 00 35 be 2007f74 <rtems_io_register_driver+0x16c>
2007ea4: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007ea8: c4 00 40 00 ld [ %g1 ], %g2
2007eac: 80 a0 a0 00 cmp %g2, 0
2007eb0: 32 bf ff fb bne,a 2007e9c <rtems_io_register_driver+0x94>
2007eb4: b0 06 20 01 inc %i0
2007eb8: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007ebc: 80 a0 a0 00 cmp %g2, 0
2007ec0: 32 bf ff f7 bne,a 2007e9c <rtems_io_register_driver+0x94>
2007ec4: b0 06 20 01 inc %i0
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2007ec8: f0 26 80 00 st %i0, [ %i2 ]
2007ecc: 83 2e 20 03 sll %i0, 3, %g1
if ( m != n )
2007ed0: 80 a1 00 18 cmp %g4, %i0
2007ed4: 02 80 00 29 be 2007f78 <rtems_io_register_driver+0x170> <== NEVER TAKEN
2007ed8: 9b 2e 20 05 sll %i0, 5, %o5
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007edc: c8 00 c0 00 ld [ %g3 ], %g4
2007ee0: c4 03 e3 68 ld [ %o7 + 0x368 ], %g2
2007ee4: 82 23 40 01 sub %o5, %g1, %g1
2007ee8: c8 20 80 01 st %g4, [ %g2 + %g1 ]
2007eec: c8 00 e0 04 ld [ %g3 + 4 ], %g4
2007ef0: 82 00 80 01 add %g2, %g1, %g1
2007ef4: c8 20 60 04 st %g4, [ %g1 + 4 ]
2007ef8: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2007efc: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007f00: c4 20 60 08 st %g2, [ %g1 + 8 ]
2007f04: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2007f08: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007f0c: c4 20 60 0c st %g2, [ %g1 + 0xc ]
2007f10: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
2007f14: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
2007f18: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
2007f1c: 40 00 08 0d call 2009f50 <_Thread_Enable_dispatch>
2007f20: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
2007f24: 40 00 21 2d call 20103d8 <rtems_io_initialize>
2007f28: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f2c: 80 a0 a0 00 cmp %g2, 0
2007f30: 12 bf ff cb bne 2007e5c <rtems_io_register_driver+0x54>
2007f34: 80 a3 c0 18 cmp %o7, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
2007f38: 88 10 20 09 mov 9, %g4
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
2007f3c: 81 c7 e0 08 ret
2007f40: 91 e8 00 04 restore %g0, %g4, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
2007f44: c8 03 e3 68 ld [ %o7 + 0x368 ], %g4
2007f48: 83 2e 20 03 sll %i0, 3, %g1
2007f4c: 9b 2e 20 05 sll %i0, 5, %o5
2007f50: 84 23 40 01 sub %o5, %g1, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f54: d8 01 00 02 ld [ %g4 + %g2 ], %o4
2007f58: 80 a3 20 00 cmp %o4, 0
2007f5c: 02 80 00 0b be 2007f88 <rtems_io_register_driver+0x180>
2007f60: 84 01 00 02 add %g4, %g2, %g2
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
2007f64: 40 00 07 fb call 2009f50 <_Thread_Enable_dispatch>
2007f68: 01 00 00 00 nop
return RTEMS_RESOURCE_IN_USE;
2007f6c: 10 bf ff b0 b 2007e2c <rtems_io_register_driver+0x24>
2007f70: 88 10 20 0c mov 0xc, %g4 ! c <PROM_START+0xc>
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2007f74: f0 26 80 00 st %i0, [ %i2 ]
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2007f78: 40 00 07 f6 call 2009f50 <_Thread_Enable_dispatch>
2007f7c: 01 00 00 00 nop
return sc;
2007f80: 10 bf ff ab b 2007e2c <rtems_io_register_driver+0x24>
2007f84: 88 10 20 05 mov 5, %g4 ! 5 <PROM_START+0x5>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f88: c4 00 a0 04 ld [ %g2 + 4 ], %g2
2007f8c: 80 a0 a0 00 cmp %g2, 0
2007f90: 12 bf ff f5 bne 2007f64 <rtems_io_register_driver+0x15c>
2007f94: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2007f98: 10 bf ff d1 b 2007edc <rtems_io_register_driver+0xd4>
2007f9c: f0 26 80 00 st %i0, [ %i2 ]
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2007fa0: 10 bf ff f6 b 2007f78 <rtems_io_register_driver+0x170> <== NOT EXECUTED
2007fa4: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
02009538 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2009538: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
200953c: 80 a6 20 00 cmp %i0, 0
2009540: 02 80 00 23 be 20095cc <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
2009544: 37 00 80 7b sethi %hi(0x201ec00), %i3
2009548: b6 16 e1 ac or %i3, 0x1ac, %i3 ! 201edac <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
200954c: b4 06 e0 0c add %i3, 0xc, %i2
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2009550: c2 06 c0 00 ld [ %i3 ], %g1
2009554: 80 a0 60 00 cmp %g1, 0
2009558: 22 80 00 1a be,a 20095c0 <rtems_iterate_over_all_threads+0x88>
200955c: b6 06 e0 04 add %i3, 4, %i3
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2009560: f8 00 60 04 ld [ %g1 + 4 ], %i4
if ( !information )
2009564: 80 a7 20 00 cmp %i4, 0
2009568: 22 80 00 16 be,a 20095c0 <rtems_iterate_over_all_threads+0x88>
200956c: b6 06 e0 04 add %i3, 4, %i3
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009570: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1
2009574: 84 90 60 00 orcc %g1, 0, %g2
2009578: 22 80 00 12 be,a 20095c0 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
200957c: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED
2009580: ba 10 20 01 mov 1, %i5
the_thread = (Thread_Control *)information->local_table[ i ];
2009584: c6 07 20 1c ld [ %i4 + 0x1c ], %g3
2009588: 83 2f 60 02 sll %i5, 2, %g1
200958c: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
2009590: 90 90 60 00 orcc %g1, 0, %o0
2009594: 02 80 00 05 be 20095a8 <rtems_iterate_over_all_threads+0x70>
2009598: ba 07 60 01 inc %i5
continue;
(*routine)(the_thread);
200959c: 9f c6 00 00 call %i0
20095a0: 01 00 00 00 nop
20095a4: c4 17 20 10 lduh [ %i4 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
20095a8: 83 28 a0 10 sll %g2, 0x10, %g1
20095ac: 83 30 60 10 srl %g1, 0x10, %g1
20095b0: 80 a0 40 1d cmp %g1, %i5
20095b4: 3a bf ff f5 bcc,a 2009588 <rtems_iterate_over_all_threads+0x50>
20095b8: c6 07 20 1c ld [ %i4 + 0x1c ], %g3
20095bc: b6 06 e0 04 add %i3, 4, %i3
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
20095c0: 80 a6 c0 1a cmp %i3, %i2
20095c4: 32 bf ff e4 bne,a 2009554 <rtems_iterate_over_all_threads+0x1c>
20095c8: c2 06 c0 00 ld [ %i3 ], %g1
20095cc: 81 c7 e0 08 ret
20095d0: 81 e8 00 00 restore
020081b4 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
20081b4: 9d e3 bf a0 save %sp, -96, %sp
20081b8: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
20081bc: 80 a6 a0 00 cmp %i2, 0
20081c0: 02 80 00 21 be 2008244 <rtems_object_get_class_information+0x90>
20081c4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
20081c8: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
20081cc: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
20081d0: 40 00 07 66 call 2009f68 <_Objects_Get_information>
20081d4: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
20081d8: 80 a2 20 00 cmp %o0, 0
20081dc: 02 80 00 1a be 2008244 <rtems_object_get_class_information+0x90>
20081e0: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20081e4: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
20081e8: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20081ec: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
20081f0: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20081f4: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20081f8: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
20081fc: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
2008200: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008204: 80 a1 20 00 cmp %g4, 0
2008208: 02 80 00 0d be 200823c <rtems_object_get_class_information+0x88><== NEVER TAKEN
200820c: 84 10 20 00 clr %g2
2008210: de 02 20 1c ld [ %o0 + 0x1c ], %o7
2008214: 86 10 20 01 mov 1, %g3
2008218: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
200821c: 87 28 e0 02 sll %g3, 2, %g3
2008220: c6 03 c0 03 ld [ %o7 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008224: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
2008228: 80 a0 00 03 cmp %g0, %g3
200822c: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008230: 80 a1 00 01 cmp %g4, %g1
2008234: 1a bf ff fa bcc 200821c <rtems_object_get_class_information+0x68>
2008238: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
200823c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
2008240: b0 10 20 00 clr %i0
}
2008244: 81 c7 e0 08 ret
2008248: 81 e8 00 00 restore
02013dcc <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2013dcc: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2013dd0: 80 a6 20 00 cmp %i0, 0
2013dd4: 12 80 00 04 bne 2013de4 <rtems_partition_create+0x18>
2013dd8: 82 10 20 03 mov 3, %g1
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2013ddc: 81 c7 e0 08 ret
2013de0: 91 e8 00 01 restore %g0, %g1, %o0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
return RTEMS_INVALID_NAME;
if ( !starting_address )
2013de4: 80 a6 60 00 cmp %i1, 0
2013de8: 02 bf ff fd be 2013ddc <rtems_partition_create+0x10>
2013dec: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
2013df0: 80 a7 60 00 cmp %i5, 0
2013df4: 02 bf ff fa be 2013ddc <rtems_partition_create+0x10> <== NEVER TAKEN
2013df8: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2013dfc: 02 bf ff f8 be 2013ddc <rtems_partition_create+0x10>
2013e00: 82 10 20 08 mov 8, %g1
2013e04: 80 a6 a0 00 cmp %i2, 0
2013e08: 02 bf ff f5 be 2013ddc <rtems_partition_create+0x10>
2013e0c: 80 a6 80 1b cmp %i2, %i3
2013e10: 0a bf ff f3 bcs 2013ddc <rtems_partition_create+0x10>
2013e14: 80 8e e0 07 btst 7, %i3
2013e18: 12 bf ff f1 bne 2013ddc <rtems_partition_create+0x10>
2013e1c: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2013e20: 12 bf ff ef bne 2013ddc <rtems_partition_create+0x10>
2013e24: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2013e28: 03 00 80 e7 sethi %hi(0x2039c00), %g1
2013e2c: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 2039ec0 <_Thread_Dispatch_disable_level>
2013e30: 84 00 a0 01 inc %g2
2013e34: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ]
return _Thread_Dispatch_disable_level;
2013e38: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2013e3c: 23 00 80 e7 sethi %hi(0x2039c00), %l1
2013e40: 40 00 13 2e call 2018af8 <_Objects_Allocate>
2013e44: 90 14 60 d4 or %l1, 0xd4, %o0 ! 2039cd4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2013e48: a0 92 20 00 orcc %o0, 0, %l0
2013e4c: 02 80 00 1a be 2013eb4 <rtems_partition_create+0xe8>
2013e50: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
2013e54: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2013e58: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2013e5c: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2013e60: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2013e64: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2013e68: 40 00 58 11 call 2029eac <.udiv>
2013e6c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2013e70: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2013e74: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2013e78: 96 10 00 1b mov %i3, %o3
2013e7c: b8 04 20 24 add %l0, 0x24, %i4
2013e80: 40 00 0c e0 call 2017200 <_Chain_Initialize>
2013e84: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2013e88: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2013e8c: a2 14 60 d4 or %l1, 0xd4, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2013e90: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2013e94: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2013e98: 85 28 a0 02 sll %g2, 2, %g2
2013e9c: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2013ea0: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2013ea4: 40 00 18 4a call 2019fcc <_Thread_Enable_dispatch>
2013ea8: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2013eac: 10 bf ff cc b 2013ddc <rtems_partition_create+0x10>
2013eb0: 82 10 20 00 clr %g1
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
2013eb4: 40 00 18 46 call 2019fcc <_Thread_Enable_dispatch>
2013eb8: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2013ebc: 10 bf ff c8 b 2013ddc <rtems_partition_create+0x10>
2013ec0: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
02007630 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2007630: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
2007634: 11 00 80 78 sethi %hi(0x201e000), %o0
2007638: 92 10 00 18 mov %i0, %o1
200763c: 90 12 20 84 or %o0, 0x84, %o0
2007640: 40 00 09 5b call 2009bac <_Objects_Get>
2007644: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007648: c2 07 bf fc ld [ %fp + -4 ], %g1
200764c: 80 a0 60 00 cmp %g1, 0
2007650: 12 80 00 0d bne 2007684 <rtems_rate_monotonic_period+0x54>
2007654: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007658: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
200765c: 39 00 80 79 sethi %hi(0x201e400), %i4
2007660: b8 17 20 1c or %i4, 0x1c, %i4 ! 201e41c <_Per_CPU_Information>
2007664: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007668: 80 a0 80 01 cmp %g2, %g1
200766c: 02 80 00 08 be 200768c <rtems_rate_monotonic_period+0x5c>
2007670: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2007674: 40 00 0d 28 call 200ab14 <_Thread_Enable_dispatch>
2007678: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
200767c: 81 c7 e0 08 ret
2007680: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007684: 81 c7 e0 08 ret
2007688: 91 e8 20 04 restore %g0, 4, %o0
if ( !_Thread_Is_executing( the_period->owner ) ) {
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
200768c: 12 80 00 0e bne 20076c4 <rtems_rate_monotonic_period+0x94>
2007690: 01 00 00 00 nop
switch ( the_period->state ) {
2007694: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007698: 80 a0 60 04 cmp %g1, 4
200769c: 18 80 00 06 bgu 20076b4 <rtems_rate_monotonic_period+0x84><== NEVER TAKEN
20076a0: b0 10 20 00 clr %i0
20076a4: 83 28 60 02 sll %g1, 2, %g1
20076a8: 05 00 80 70 sethi %hi(0x201c000), %g2
20076ac: 84 10 a0 b4 or %g2, 0xb4, %g2 ! 201c0b4 <CSWTCH.2>
20076b0: f0 00 80 01 ld [ %g2 + %g1 ], %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Scheduler_Release_job(the_period->owner, the_period->next_length);
_Thread_Enable_dispatch();
20076b4: 40 00 0d 18 call 200ab14 <_Thread_Enable_dispatch>
20076b8: 01 00 00 00 nop
return RTEMS_TIMEOUT;
20076bc: 81 c7 e0 08 ret
20076c0: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
20076c4: 7f ff ed d8 call 2002e24 <sparc_disable_interrupts>
20076c8: 01 00 00 00 nop
20076cc: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
20076d0: f6 07 60 38 ld [ %i5 + 0x38 ], %i3
20076d4: 80 a6 e0 00 cmp %i3, 0
20076d8: 02 80 00 19 be 200773c <rtems_rate_monotonic_period+0x10c>
20076dc: 80 a6 e0 02 cmp %i3, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20076e0: 02 80 00 2e be 2007798 <rtems_rate_monotonic_period+0x168>
20076e4: 80 a6 e0 04 cmp %i3, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20076e8: 12 bf ff e5 bne 200767c <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20076ec: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20076f0: 7f ff ff 92 call 2007538 <_Rate_monotonic_Update_statistics>
20076f4: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
20076f8: 7f ff ed cf call 2002e34 <sparc_enable_interrupts>
20076fc: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007700: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007704: 92 07 60 10 add %i5, 0x10, %o1
2007708: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
200770c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007710: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007714: 11 00 80 78 sethi %hi(0x201e000), %o0
2007718: 40 00 11 14 call 200bb68 <_Watchdog_Insert>
200771c: 90 12 22 ac or %o0, 0x2ac, %o0 ! 201e2ac <_Watchdog_Ticks_chain>
2007720: d0 07 60 40 ld [ %i5 + 0x40 ], %o0
2007724: d2 07 60 3c ld [ %i5 + 0x3c ], %o1
2007728: 03 00 80 75 sethi %hi(0x201d400), %g1
200772c: c2 00 61 38 ld [ %g1 + 0x138 ], %g1 ! 201d538 <_Scheduler+0x34>
2007730: 9f c0 40 00 call %g1
2007734: b0 10 20 06 mov 6, %i0
2007738: 30 bf ff df b,a 20076b4 <rtems_rate_monotonic_period+0x84>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
200773c: 7f ff ed be call 2002e34 <sparc_enable_interrupts>
2007740: 01 00 00 00 nop
the_period->next_length = length;
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
2007744: 90 10 00 1d mov %i5, %o0
2007748: 7f ff ff 56 call 20074a0 <_Rate_monotonic_Initiate_statistics>
200774c: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
the_period->state = RATE_MONOTONIC_ACTIVE;
2007750: 82 10 20 02 mov 2, %g1
2007754: 92 07 60 10 add %i5, 0x10, %o1
2007758: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
200775c: 11 00 80 78 sethi %hi(0x201e000), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007760: 03 00 80 1e sethi %hi(0x2007800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007764: 90 12 22 ac or %o0, 0x2ac, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007768: 82 10 62 ec or %g1, 0x2ec, %g1
the_watchdog->id = id;
200776c: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007770: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007774: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
2007778: c0 27 60 34 clr [ %i5 + 0x34 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
200777c: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007780: 40 00 10 fa call 200bb68 <_Watchdog_Insert>
2007784: b0 10 20 00 clr %i0
id,
NULL
);
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007788: 40 00 0c e3 call 200ab14 <_Thread_Enable_dispatch>
200778c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2007790: 81 c7 e0 08 ret
2007794: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007798: 7f ff ff 68 call 2007538 <_Rate_monotonic_Update_statistics>
200779c: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20077a0: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
20077a4: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20077a8: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
20077ac: 7f ff ed a2 call 2002e34 <sparc_enable_interrupts>
20077b0: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
20077b4: c2 07 20 0c ld [ %i4 + 0xc ], %g1
20077b8: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20077bc: 90 10 00 01 mov %g1, %o0
20077c0: 13 00 00 10 sethi %hi(0x4000), %o1
20077c4: 40 00 0f 26 call 200b45c <_Thread_Set_state>
20077c8: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
20077cc: 7f ff ed 96 call 2002e24 <sparc_disable_interrupts>
20077d0: 01 00 00 00 nop
local_state = the_period->state;
20077d4: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
20077d8: f6 27 60 38 st %i3, [ %i5 + 0x38 ]
_ISR_Enable( level );
20077dc: 7f ff ed 96 call 2002e34 <sparc_enable_interrupts>
20077e0: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
20077e4: 80 a6 a0 03 cmp %i2, 3
20077e8: 22 80 00 06 be,a 2007800 <rtems_rate_monotonic_period+0x1d0>
20077ec: d0 07 20 0c ld [ %i4 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
20077f0: 40 00 0c c9 call 200ab14 <_Thread_Enable_dispatch>
20077f4: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20077f8: 81 c7 e0 08 ret
20077fc: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007800: 40 00 0b d0 call 200a740 <_Thread_Clear_state>
2007804: 13 00 00 10 sethi %hi(0x4000), %o1
2007808: 30 bf ff fa b,a 20077f0 <rtems_rate_monotonic_period+0x1c0>
0200780c <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
200780c: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007810: 80 a6 60 00 cmp %i1, 0
2007814: 02 80 00 48 be 2007934 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
2007818: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
200781c: 13 00 80 70 sethi %hi(0x201c000), %o1
2007820: 9f c6 40 00 call %i1
2007824: 92 12 60 c8 or %o1, 0xc8, %o1 ! 201c0c8 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007828: 90 10 00 18 mov %i0, %o0
200782c: 13 00 80 70 sethi %hi(0x201c000), %o1
2007830: 9f c6 40 00 call %i1
2007834: 92 12 60 e8 or %o1, 0xe8, %o1 ! 201c0e8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007838: 90 10 00 18 mov %i0, %o0
200783c: 13 00 80 70 sethi %hi(0x201c000), %o1
2007840: 9f c6 40 00 call %i1
2007844: 92 12 61 10 or %o1, 0x110, %o1 ! 201c110 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007848: 90 10 00 18 mov %i0, %o0
200784c: 13 00 80 70 sethi %hi(0x201c000), %o1
2007850: 9f c6 40 00 call %i1
2007854: 92 12 61 38 or %o1, 0x138, %o1 ! 201c138 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007858: 90 10 00 18 mov %i0, %o0
200785c: 13 00 80 70 sethi %hi(0x201c000), %o1
2007860: 9f c6 40 00 call %i1
2007864: 92 12 61 88 or %o1, 0x188, %o1 ! 201c188 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007868: 39 00 80 78 sethi %hi(0x201e000), %i4
200786c: b8 17 20 84 or %i4, 0x84, %i4 ! 201e084 <_Rate_monotonic_Information>
2007870: fa 07 20 08 ld [ %i4 + 8 ], %i5
2007874: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007878: 80 a7 40 01 cmp %i5, %g1
200787c: 18 80 00 2e bgu 2007934 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
2007880: 35 00 80 70 sethi %hi(0x201c000), %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007884: 23 00 80 70 sethi %hi(0x201c000), %l1
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007888: 21 00 80 70 sethi %hi(0x201c000), %l0
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
200788c: 37 00 80 6c sethi %hi(0x201b000), %i3
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007890: b4 16 a1 d8 or %i2, 0x1d8, %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007894: a2 14 61 f0 or %l1, 0x1f0, %l1
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007898: a0 14 22 10 or %l0, 0x210, %l0
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
200789c: 10 80 00 06 b 20078b4 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
20078a0: b6 16 e3 48 or %i3, 0x348, %i3
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20078a4: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20078a8: 80 a0 40 1d cmp %g1, %i5
20078ac: 0a 80 00 22 bcs 2007934 <rtems_rate_monotonic_report_statistics_with_plugin+0x128>
20078b0: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
20078b4: 90 10 00 1d mov %i5, %o0
20078b8: 40 00 19 5b call 200de24 <rtems_rate_monotonic_get_statistics>
20078bc: 92 07 bf a0 add %fp, -96, %o1
if ( status != RTEMS_SUCCESSFUL )
20078c0: 80 a2 20 00 cmp %o0, 0
20078c4: 32 bf ff f8 bne,a 20078a4 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
20078c8: c2 07 20 0c ld [ %i4 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
20078cc: 92 07 bf d8 add %fp, -40, %o1
20078d0: 40 00 19 84 call 200dee0 <rtems_rate_monotonic_get_status>
20078d4: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
20078d8: d0 07 bf d8 ld [ %fp + -40 ], %o0
20078dc: 92 10 20 05 mov 5, %o1
20078e0: 40 00 00 b4 call 2007bb0 <rtems_object_get_name>
20078e4: 94 07 bf f8 add %fp, -8, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20078e8: d8 1f bf a0 ldd [ %fp + -96 ], %o4
20078ec: 92 10 00 1a mov %i2, %o1
20078f0: 94 10 00 1d mov %i5, %o2
20078f4: 90 10 00 18 mov %i0, %o0
20078f8: 9f c6 40 00 call %i1
20078fc: 96 07 bf f8 add %fp, -8, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007900: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007904: 94 07 bf f0 add %fp, -16, %o2
2007908: 90 07 bf b8 add %fp, -72, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
200790c: 80 a0 60 00 cmp %g1, 0
2007910: 12 80 00 0b bne 200793c <rtems_rate_monotonic_report_statistics_with_plugin+0x130>
2007914: 92 10 00 1b mov %i3, %o1
(*print)( context, "\n" );
2007918: 9f c6 40 00 call %i1
200791c: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007920: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007924: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007928: 80 a0 40 1d cmp %g1, %i5
200792c: 1a bf ff e3 bcc 20078b8 <rtems_rate_monotonic_report_statistics_with_plugin+0xac><== ALWAYS TAKEN
2007930: 90 10 00 1d mov %i5, %o0
2007934: 81 c7 e0 08 ret
2007938: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
200793c: 40 00 0f 4f call 200b678 <_Timespec_Divide_by_integer>
2007940: 92 10 00 01 mov %g1, %o1
(*print)( context,
2007944: d0 07 bf ac ld [ %fp + -84 ], %o0
2007948: 40 00 46 45 call 201925c <.div>
200794c: 92 10 23 e8 mov 0x3e8, %o1
2007950: aa 10 00 08 mov %o0, %l5
2007954: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007958: 40 00 46 41 call 201925c <.div>
200795c: 92 10 23 e8 mov 0x3e8, %o1
2007960: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007964: a6 10 00 08 mov %o0, %l3
2007968: d0 07 bf f4 ld [ %fp + -12 ], %o0
200796c: e4 07 bf a8 ld [ %fp + -88 ], %l2
2007970: e8 07 bf b0 ld [ %fp + -80 ], %l4
2007974: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007978: 40 00 46 39 call 201925c <.div>
200797c: 92 10 23 e8 mov 0x3e8, %o1
2007980: 96 10 00 15 mov %l5, %o3
2007984: 98 10 00 14 mov %l4, %o4
2007988: 9a 10 00 13 mov %l3, %o5
200798c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007990: 92 10 00 11 mov %l1, %o1
2007994: 94 10 00 12 mov %l2, %o2
2007998: 9f c6 40 00 call %i1
200799c: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
20079a0: d2 07 bf a0 ld [ %fp + -96 ], %o1
20079a4: 94 07 bf f0 add %fp, -16, %o2
20079a8: 40 00 0f 34 call 200b678 <_Timespec_Divide_by_integer>
20079ac: 90 07 bf d0 add %fp, -48, %o0
(*print)( context,
20079b0: d0 07 bf c4 ld [ %fp + -60 ], %o0
20079b4: 40 00 46 2a call 201925c <.div>
20079b8: 92 10 23 e8 mov 0x3e8, %o1
20079bc: a8 10 00 08 mov %o0, %l4
20079c0: d0 07 bf cc ld [ %fp + -52 ], %o0
20079c4: 40 00 46 26 call 201925c <.div>
20079c8: 92 10 23 e8 mov 0x3e8, %o1
20079cc: c2 07 bf f0 ld [ %fp + -16 ], %g1
20079d0: a4 10 00 08 mov %o0, %l2
20079d4: d0 07 bf f4 ld [ %fp + -12 ], %o0
20079d8: ea 07 bf c0 ld [ %fp + -64 ], %l5
20079dc: e6 07 bf c8 ld [ %fp + -56 ], %l3
20079e0: 92 10 23 e8 mov 0x3e8, %o1
20079e4: 40 00 46 1e call 201925c <.div>
20079e8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
20079ec: 92 10 00 10 mov %l0, %o1
20079f0: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20079f4: 94 10 00 15 mov %l5, %o2
20079f8: 90 10 00 18 mov %i0, %o0
20079fc: 96 10 00 14 mov %l4, %o3
2007a00: 98 10 00 13 mov %l3, %o4
2007a04: 9f c6 40 00 call %i1
2007a08: 9a 10 00 12 mov %l2, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007a0c: 10 bf ff a6 b 20078a4 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
2007a10: c2 07 20 0c ld [ %i4 + 0xc ], %g1
02007a2c <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
2007a2c: 9d e3 bf a0 save %sp, -96, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2007a30: 03 00 80 78 sethi %hi(0x201e000), %g1
2007a34: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e1f0 <_Thread_Dispatch_disable_level>
2007a38: 84 00 a0 01 inc %g2
2007a3c: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ]
return _Thread_Dispatch_disable_level;
2007a40: c2 00 61 f0 ld [ %g1 + 0x1f0 ], %g1
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007a44: 39 00 80 78 sethi %hi(0x201e000), %i4
2007a48: b8 17 20 84 or %i4, 0x84, %i4 ! 201e084 <_Rate_monotonic_Information>
2007a4c: fa 07 20 08 ld [ %i4 + 8 ], %i5
2007a50: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007a54: 80 a7 40 01 cmp %i5, %g1
2007a58: 18 80 00 09 bgu 2007a7c <rtems_rate_monotonic_reset_all_statistics+0x50><== NEVER TAKEN
2007a5c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
2007a60: 40 00 00 09 call 2007a84 <rtems_rate_monotonic_reset_statistics>
2007a64: 90 10 00 1d mov %i5, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007a68: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007a6c: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007a70: 80 a0 40 1d cmp %g1, %i5
2007a74: 1a bf ff fb bcc 2007a60 <rtems_rate_monotonic_reset_all_statistics+0x34>
2007a78: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2007a7c: 40 00 0c 26 call 200ab14 <_Thread_Enable_dispatch>
2007a80: 81 e8 00 00 restore
020153f8 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20153f8: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20153fc: 80 a6 60 00 cmp %i1, 0
2015400: 12 80 00 04 bne 2015410 <rtems_signal_send+0x18>
2015404: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015408: 81 c7 e0 08 ret
201540c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2015410: 90 10 00 18 mov %i0, %o0
2015414: 40 00 12 fb call 201a000 <_Thread_Get>
2015418: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
201541c: c2 07 bf fc ld [ %fp + -4 ], %g1
2015420: 80 a0 60 00 cmp %g1, 0
2015424: 12 80 00 20 bne 20154a4 <rtems_signal_send+0xac>
2015428: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
201542c: fa 02 21 58 ld [ %o0 + 0x158 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
2015430: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2015434: 80 a0 60 00 cmp %g1, 0
2015438: 02 80 00 1e be 20154b0 <rtems_signal_send+0xb8>
201543c: 01 00 00 00 nop
if ( asr->is_enabled ) {
2015440: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
2015444: 80 a0 60 00 cmp %g1, 0
2015448: 02 80 00 1e be 20154c0 <rtems_signal_send+0xc8>
201544c: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015450: 7f ff e6 9f call 200eecc <sparc_disable_interrupts>
2015454: 01 00 00 00 nop
*signal_set |= signals;
2015458: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
201545c: b2 10 40 19 or %g1, %i1, %i1
2015460: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
2015464: 7f ff e6 9e call 200eedc <sparc_enable_interrupts>
2015468: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
201546c: 03 00 80 e8 sethi %hi(0x203a000), %g1
2015470: 82 10 60 f4 or %g1, 0xf4, %g1 ! 203a0f4 <_Per_CPU_Information>
2015474: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015478: 80 a0 a0 00 cmp %g2, 0
201547c: 02 80 00 06 be 2015494 <rtems_signal_send+0x9c>
2015480: 01 00 00 00 nop
2015484: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015488: 80 a7 00 02 cmp %i4, %g2
201548c: 02 80 00 15 be 20154e0 <rtems_signal_send+0xe8> <== ALWAYS TAKEN
2015490: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015494: 40 00 12 ce call 2019fcc <_Thread_Enable_dispatch>
2015498: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201549c: 10 bf ff db b 2015408 <rtems_signal_send+0x10>
20154a0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20154a4: 82 10 20 04 mov 4, %g1
}
20154a8: 81 c7 e0 08 ret
20154ac: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
20154b0: 40 00 12 c7 call 2019fcc <_Thread_Enable_dispatch>
20154b4: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
20154b8: 10 bf ff d4 b 2015408 <rtems_signal_send+0x10>
20154bc: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20154c0: 7f ff e6 83 call 200eecc <sparc_disable_interrupts>
20154c4: 01 00 00 00 nop
*signal_set |= signals;
20154c8: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
20154cc: b2 10 40 19 or %g1, %i1, %i1
20154d0: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
20154d4: 7f ff e6 82 call 200eedc <sparc_enable_interrupts>
20154d8: 01 00 00 00 nop
20154dc: 30 bf ff ee b,a 2015494 <rtems_signal_send+0x9c>
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
if ( asr->is_enabled ) {
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
20154e0: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
20154e4: 30 bf ff ec b,a 2015494 <rtems_signal_send+0x9c>
0200e59c <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200e59c: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200e5a0: 80 a6 a0 00 cmp %i2, 0
200e5a4: 02 80 00 3b be 200e690 <rtems_task_mode+0xf4>
200e5a8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200e5ac: 21 00 80 71 sethi %hi(0x201c400), %l0
200e5b0: a0 14 21 9c or %l0, 0x19c, %l0 ! 201c59c <_Per_CPU_Information>
200e5b4: fa 04 20 0c ld [ %l0 + 0xc ], %i5
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e5b8: c4 0f 60 74 ldub [ %i5 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e5bc: c2 07 60 7c ld [ %i5 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e5c0: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200e5c4: f8 07 61 58 ld [ %i5 + 0x158 ], %i4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e5c8: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e5cc: 80 a0 60 00 cmp %g1, 0
200e5d0: 12 80 00 40 bne 200e6d0 <rtems_task_mode+0x134>
200e5d4: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e5d8: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
200e5dc: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e5e0: 7f ff f0 82 call 200a7e8 <_CPU_ISR_Get_level>
200e5e4: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e5e8: a3 2c 60 0a sll %l1, 0xa, %l1
200e5ec: a2 14 40 08 or %l1, %o0, %l1
old_mode |= _ISR_Get_level();
200e5f0: b6 14 40 1b or %l1, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e5f4: 80 8e 61 00 btst 0x100, %i1
200e5f8: 02 80 00 06 be 200e610 <rtems_task_mode+0x74>
200e5fc: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e600: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200e604: 80 a0 00 01 cmp %g0, %g1
200e608: 82 60 3f ff subx %g0, -1, %g1
200e60c: c2 2f 60 74 stb %g1, [ %i5 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200e610: 80 8e 62 00 btst 0x200, %i1
200e614: 12 80 00 21 bne 200e698 <rtems_task_mode+0xfc>
200e618: 80 8e 22 00 btst 0x200, %i0
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e61c: 80 8e 60 0f btst 0xf, %i1
200e620: 12 80 00 27 bne 200e6bc <rtems_task_mode+0x120>
200e624: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e628: 80 8e 64 00 btst 0x400, %i1
200e62c: 02 80 00 14 be 200e67c <rtems_task_mode+0xe0>
200e630: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e634: c4 0f 20 08 ldub [ %i4 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200e638: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200e63c: 80 a0 00 18 cmp %g0, %i0
200e640: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e644: 80 a0 80 01 cmp %g2, %g1
200e648: 22 80 00 0e be,a 200e680 <rtems_task_mode+0xe4>
200e64c: 03 00 80 71 sethi %hi(0x201c400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200e650: 7f ff ce e5 call 20021e4 <sparc_disable_interrupts>
200e654: c2 2f 20 08 stb %g1, [ %i4 + 8 ]
_signals = information->signals_pending;
200e658: c4 07 20 18 ld [ %i4 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
200e65c: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
information->signals_posted = _signals;
200e660: c4 27 20 14 st %g2, [ %i4 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200e664: c2 27 20 18 st %g1, [ %i4 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200e668: 7f ff ce e3 call 20021f4 <sparc_enable_interrupts>
200e66c: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200e670: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200e674: 80 a0 00 01 cmp %g0, %g1
200e678: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200e67c: 03 00 80 71 sethi %hi(0x201c400), %g1
200e680: c4 00 60 c4 ld [ %g1 + 0xc4 ], %g2 ! 201c4c4 <_System_state_Current>
200e684: 80 a0 a0 03 cmp %g2, 3
200e688: 02 80 00 1f be 200e704 <rtems_task_mode+0x168>
200e68c: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
200e690: 81 c7 e0 08 ret
200e694: 91 e8 00 01 restore %g0, %g1, %o0
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
200e698: 22 bf ff e1 be,a 200e61c <rtems_task_mode+0x80>
200e69c: c0 27 60 7c clr [ %i5 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e6a0: 03 00 80 70 sethi %hi(0x201c000), %g1
200e6a4: c2 00 62 d4 ld [ %g1 + 0x2d4 ], %g1 ! 201c2d4 <_Thread_Ticks_per_timeslice>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e6a8: 80 8e 60 0f btst 0xf, %i1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e6ac: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200e6b0: 82 10 20 01 mov 1, %g1
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e6b4: 02 bf ff dd be 200e628 <rtems_task_mode+0x8c>
200e6b8: c2 27 60 7c st %g1, [ %i5 + 0x7c ]
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e6bc: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e6c0: 7f ff ce cd call 20021f4 <sparc_enable_interrupts>
200e6c4: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e6c8: 10 bf ff d9 b 200e62c <rtems_task_mode+0x90>
200e6cc: 80 8e 64 00 btst 0x400, %i1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e6d0: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200e6d4: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e6d8: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e6dc: 7f ff f0 43 call 200a7e8 <_CPU_ISR_Get_level>
200e6e0: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e6e4: a3 2c 60 0a sll %l1, 0xa, %l1
200e6e8: a2 14 40 08 or %l1, %o0, %l1
old_mode |= _ISR_Get_level();
200e6ec: b6 14 40 1b or %l1, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e6f0: 80 8e 61 00 btst 0x100, %i1
200e6f4: 02 bf ff c7 be 200e610 <rtems_task_mode+0x74>
200e6f8: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e6fc: 10 bf ff c2 b 200e604 <rtems_task_mode+0x68>
200e700: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
200e704: 80 88 e0 ff btst 0xff, %g3
200e708: 12 80 00 0a bne 200e730 <rtems_task_mode+0x194>
200e70c: c4 04 20 0c ld [ %l0 + 0xc ], %g2
200e710: c6 04 20 10 ld [ %l0 + 0x10 ], %g3
200e714: 80 a0 80 03 cmp %g2, %g3
200e718: 02 bf ff de be 200e690 <rtems_task_mode+0xf4>
200e71c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200e720: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200e724: 80 a0 a0 00 cmp %g2, 0
200e728: 02 bf ff da be 200e690 <rtems_task_mode+0xf4> <== NEVER TAKEN
200e72c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200e730: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
200e734: c2 2c 20 18 stb %g1, [ %l0 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200e738: 7f ff ea 8f call 2009174 <_Thread_Dispatch>
200e73c: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200e740: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e744: 81 c7 e0 08 ret
200e748: 91 e8 00 01 restore %g0, %g1, %o0
0200b1f4 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200b1f4: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200b1f8: 80 a6 60 00 cmp %i1, 0
200b1fc: 02 80 00 07 be 200b218 <rtems_task_set_priority+0x24>
200b200: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200b204: 03 00 80 66 sethi %hi(0x2019800), %g1
200b208: c2 08 60 2c ldub [ %g1 + 0x2c ], %g1 ! 201982c <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200b20c: 80 a6 40 01 cmp %i1, %g1
200b210: 18 80 00 1c bgu 200b280 <rtems_task_set_priority+0x8c>
200b214: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200b218: 80 a6 a0 00 cmp %i2, 0
200b21c: 02 80 00 19 be 200b280 <rtems_task_set_priority+0x8c>
200b220: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200b224: 40 00 09 df call 200d9a0 <_Thread_Get>
200b228: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200b22c: c2 07 bf fc ld [ %fp + -4 ], %g1
200b230: 80 a0 60 00 cmp %g1, 0
200b234: 12 80 00 13 bne 200b280 <rtems_task_set_priority+0x8c>
200b238: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200b23c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200b240: 80 a6 60 00 cmp %i1, 0
200b244: 02 80 00 0d be 200b278 <rtems_task_set_priority+0x84>
200b248: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200b24c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200b250: 80 a0 60 00 cmp %g1, 0
200b254: 02 80 00 06 be 200b26c <rtems_task_set_priority+0x78>
200b258: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200b25c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200b260: 80 a6 40 01 cmp %i1, %g1
200b264: 1a 80 00 05 bcc 200b278 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200b268: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200b26c: 92 10 00 19 mov %i1, %o1
200b270: 40 00 08 7f call 200d46c <_Thread_Change_priority>
200b274: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200b278: 40 00 09 bd call 200d96c <_Thread_Enable_dispatch>
200b27c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200b280: 81 c7 e0 08 ret
200b284: 81 e8 00 00 restore
02007644 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
2007644: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
2007648: 80 a6 60 00 cmp %i1, 0
200764c: 02 80 00 1e be 20076c4 <rtems_task_variable_delete+0x80>
2007650: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
2007654: 90 10 00 18 mov %i0, %o0
2007658: 40 00 09 62 call 2009be0 <_Thread_Get>
200765c: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007660: c2 07 bf fc ld [ %fp + -4 ], %g1
2007664: 80 a0 60 00 cmp %g1, 0
2007668: 12 80 00 19 bne 20076cc <rtems_task_variable_delete+0x88>
200766c: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
2007670: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007674: 80 a0 60 00 cmp %g1, 0
2007678: 02 80 00 10 be 20076b8 <rtems_task_variable_delete+0x74>
200767c: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007680: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007684: 80 a0 80 19 cmp %g2, %i1
2007688: 32 80 00 09 bne,a 20076ac <rtems_task_variable_delete+0x68>
200768c: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
2007690: 10 80 00 18 b 20076f0 <rtems_task_variable_delete+0xac>
2007694: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2007698: 80 a0 80 19 cmp %g2, %i1
200769c: 22 80 00 0e be,a 20076d4 <rtems_task_variable_delete+0x90>
20076a0: c4 02 40 00 ld [ %o1 ], %g2
20076a4: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
20076a8: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
20076ac: 80 a2 60 00 cmp %o1, 0
20076b0: 32 bf ff fa bne,a 2007698 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
20076b4: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
20076b8: 40 00 09 3d call 2009bac <_Thread_Enable_dispatch>
20076bc: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
20076c0: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20076c4: 81 c7 e0 08 ret
20076c8: 91 e8 00 01 restore %g0, %g1, %o0
20076cc: 81 c7 e0 08 ret
20076d0: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
20076d4: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
20076d8: 40 00 00 2d call 200778c <_RTEMS_Tasks_Invoke_task_variable_dtor>
20076dc: 01 00 00 00 nop
_Thread_Enable_dispatch();
20076e0: 40 00 09 33 call 2009bac <_Thread_Enable_dispatch>
20076e4: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20076e8: 10 bf ff f7 b 20076c4 <rtems_task_variable_delete+0x80>
20076ec: 82 10 20 00 clr %g1 ! 0 <PROM_START>
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
20076f0: 92 10 00 01 mov %g1, %o1
20076f4: 10 bf ff f9 b 20076d8 <rtems_task_variable_delete+0x94>
20076f8: c4 22 21 64 st %g2, [ %o0 + 0x164 ]
020076fc <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
20076fc: 9d e3 bf 98 save %sp, -104, %sp
2007700: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
2007704: 80 a6 60 00 cmp %i1, 0
2007708: 02 80 00 1b be 2007774 <rtems_task_variable_get+0x78>
200770c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
2007710: 80 a6 a0 00 cmp %i2, 0
2007714: 02 80 00 1c be 2007784 <rtems_task_variable_get+0x88>
2007718: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
200771c: 40 00 09 31 call 2009be0 <_Thread_Get>
2007720: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007724: c2 07 bf fc ld [ %fp + -4 ], %g1
2007728: 80 a0 60 00 cmp %g1, 0
200772c: 12 80 00 12 bne 2007774 <rtems_task_variable_get+0x78>
2007730: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
2007734: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007738: 80 a0 60 00 cmp %g1, 0
200773c: 32 80 00 07 bne,a 2007758 <rtems_task_variable_get+0x5c>
2007740: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007744: 30 80 00 0e b,a 200777c <rtems_task_variable_get+0x80>
2007748: 80 a0 60 00 cmp %g1, 0
200774c: 02 80 00 0c be 200777c <rtems_task_variable_get+0x80> <== NEVER TAKEN
2007750: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007754: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007758: 80 a0 80 19 cmp %g2, %i1
200775c: 32 bf ff fb bne,a 2007748 <rtems_task_variable_get+0x4c>
2007760: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
2007764: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
2007768: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
200776c: 40 00 09 10 call 2009bac <_Thread_Enable_dispatch>
2007770: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2007774: 81 c7 e0 08 ret
2007778: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
200777c: 40 00 09 0c call 2009bac <_Thread_Enable_dispatch>
2007780: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
2007784: 81 c7 e0 08 ret
2007788: 81 e8 00 00 restore
02015e58 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2015e58: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2015e5c: 11 00 80 e8 sethi %hi(0x203a000), %o0
2015e60: 92 10 00 18 mov %i0, %o1
2015e64: 90 12 21 94 or %o0, 0x194, %o0
2015e68: 40 00 0c 7f call 2019064 <_Objects_Get>
2015e6c: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2015e70: c2 07 bf fc ld [ %fp + -4 ], %g1
2015e74: 80 a0 60 00 cmp %g1, 0
2015e78: 12 80 00 0c bne 2015ea8 <rtems_timer_cancel+0x50>
2015e7c: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2015e80: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2015e84: 80 a0 60 04 cmp %g1, 4
2015e88: 02 80 00 04 be 2015e98 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2015e8c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2015e90: 40 00 15 1d call 201b304 <_Watchdog_Remove>
2015e94: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2015e98: 40 00 10 4d call 2019fcc <_Thread_Enable_dispatch>
2015e9c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2015ea0: 81 c7 e0 08 ret
2015ea4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015ea8: 81 c7 e0 08 ret
2015eac: 91 e8 20 04 restore %g0, 4, %o0
02016380 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016380: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016384: 03 00 80 e8 sethi %hi(0x203a000), %g1
2016388: fa 00 61 d4 ld [ %g1 + 0x1d4 ], %i5 ! 203a1d4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
201638c: b8 10 00 18 mov %i0, %i4
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2016390: 80 a7 60 00 cmp %i5, 0
2016394: 02 80 00 32 be 201645c <rtems_timer_server_fire_when+0xdc>
2016398: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
201639c: 03 00 80 e7 sethi %hi(0x2039c00), %g1
20163a0: c2 08 62 d0 ldub [ %g1 + 0x2d0 ], %g1 ! 2039ed0 <_TOD_Is_set>
20163a4: 80 a0 60 00 cmp %g1, 0
20163a8: 02 80 00 2d be 201645c <rtems_timer_server_fire_when+0xdc><== NEVER TAKEN
20163ac: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
20163b0: 80 a6 a0 00 cmp %i2, 0
20163b4: 02 80 00 2a be 201645c <rtems_timer_server_fire_when+0xdc>
20163b8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
20163bc: 90 10 00 19 mov %i1, %o0
20163c0: 7f ff f3 b9 call 20132a4 <_TOD_Validate>
20163c4: b0 10 20 14 mov 0x14, %i0
20163c8: 80 8a 20 ff btst 0xff, %o0
20163cc: 02 80 00 24 be 201645c <rtems_timer_server_fire_when+0xdc>
20163d0: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
20163d4: 7f ff f3 80 call 20131d4 <_TOD_To_seconds>
20163d8: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
20163dc: 21 00 80 e7 sethi %hi(0x2039c00), %l0
20163e0: c2 04 23 4c ld [ %l0 + 0x34c ], %g1 ! 2039f4c <_TOD_Now>
20163e4: 80 a2 00 01 cmp %o0, %g1
20163e8: 08 80 00 1d bleu 201645c <rtems_timer_server_fire_when+0xdc>
20163ec: b2 10 00 08 mov %o0, %i1
20163f0: 92 10 00 1c mov %i4, %o1
20163f4: 11 00 80 e8 sethi %hi(0x203a000), %o0
20163f8: 94 07 bf fc add %fp, -4, %o2
20163fc: 40 00 0b 1a call 2019064 <_Objects_Get>
2016400: 90 12 21 94 or %o0, 0x194, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016404: c2 07 bf fc ld [ %fp + -4 ], %g1
2016408: 80 a0 60 00 cmp %g1, 0
201640c: 12 80 00 16 bne 2016464 <rtems_timer_server_fire_when+0xe4>
2016410: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016414: 40 00 13 bc call 201b304 <_Watchdog_Remove>
2016418: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201641c: c4 04 23 4c ld [ %l0 + 0x34c ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016420: c2 07 60 04 ld [ %i5 + 4 ], %g1
2016424: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016428: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
201642c: 90 10 00 1d mov %i5, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2016430: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2016434: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
2016438: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
201643c: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
2016440: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016444: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2016448: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
201644c: 9f c0 40 00 call %g1
2016450: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016454: 40 00 0e de call 2019fcc <_Thread_Enable_dispatch>
2016458: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201645c: 81 c7 e0 08 ret
2016460: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016464: 81 c7 e0 08 ret
2016468: 91 e8 20 04 restore %g0, 4, %o0