=============================================================================== 0200722c <_API_extensions_Run_postdriver>: /* * _API_extensions_Run_postdriver */ void _API_extensions_Run_postdriver( void ) { 200722c: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2007230: 39 00 80 71 sethi %hi(0x201c400), %i4 2007234: fa 07 21 24 ld [ %i4 + 0x124 ], %i5 ! 201c524 <_API_extensions_List> 2007238: b8 17 21 24 or %i4, 0x124, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 200723c: b8 07 20 04 add %i4, 4, %i4 2007240: 80 a7 40 1c cmp %i5, %i4 2007244: 02 80 00 09 be 2007268 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 2007248: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 200724c: c2 07 60 08 ld [ %i5 + 8 ], %g1 2007250: 9f c0 40 00 call %g1 2007254: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2007258: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 200725c: 80 a7 40 1c cmp %i5, %i4 2007260: 32 bf ff fc bne,a 2007250 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2007264: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 2007268: 81 c7 e0 08 ret 200726c: 81 e8 00 00 restore =============================================================================== 02007270 <_API_extensions_Run_postswitch>: /* * _API_extensions_Run_postswitch */ void _API_extensions_Run_postswitch( void ) { 2007270: 9d e3 bf a0 save %sp, -96, %sp 2007274: 39 00 80 71 sethi %hi(0x201c400), %i4 2007278: fa 07 21 24 ld [ %i4 + 0x124 ], %i5 ! 201c524 <_API_extensions_List> 200727c: b8 17 21 24 or %i4, 0x124, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2007280: b8 07 20 04 add %i4, 4, %i4 2007284: 80 a7 40 1c cmp %i5, %i4 2007288: 02 80 00 0a be 20072b0 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN 200728c: 37 00 80 71 sethi %hi(0x201c400), %i3 2007290: b6 16 e1 5c or %i3, 0x15c, %i3 ! 201c55c <_Per_CPU_Information> !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); 2007294: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2007298: 9f c0 40 00 call %g1 200729c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 20072a0: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 20072a4: 80 a7 40 1c cmp %i5, %i4 20072a8: 32 bf ff fc bne,a 2007298 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN 20072ac: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED 20072b0: 81 c7 e0 08 ret 20072b4: 81 e8 00 00 restore =============================================================================== 02010abc <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010abc: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2010ac0: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required = 0; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010ac4: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; the_message_queue->maximum_message_size = maximum_message_size; 2010ac8: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2010acc: 80 8e e0 03 btst 3, %i3 2010ad0: 02 80 00 0a be 2010af8 <_CORE_message_queue_Initialize+0x3c> 2010ad4: b8 10 00 1b mov %i3, %i4 allocated_message_size += sizeof(uint32_t); 2010ad8: b8 06 e0 04 add %i3, 4, %i4 allocated_message_size &= ~(sizeof(uint32_t) - 1); 2010adc: b8 0f 3f fc and %i4, -4, %i4 } if (allocated_message_size < maximum_message_size) 2010ae0: 80 a6 c0 1c cmp %i3, %i4 2010ae4: 08 80 00 05 bleu 2010af8 <_CORE_message_queue_Initialize+0x3c><== ALWAYS TAKEN 2010ae8: ba 10 20 00 clr %i5 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010aec: b0 0f 60 01 and %i5, 1, %i0 <== NOT EXECUTED 2010af0: 81 c7 e0 08 ret 2010af4: 81 e8 00 00 restore /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ if ( !size_t_mult32_with_overflow( 2010af8: b8 07 20 10 add %i4, 0x10, %i4 size_t a, size_t b, size_t *c ) { long long x = (long long)a*b; 2010afc: 90 10 20 00 clr %o0 2010b00: 92 10 00 1a mov %i2, %o1 2010b04: 94 10 20 00 clr %o2 2010b08: 96 10 00 1c mov %i4, %o3 2010b0c: 40 00 41 29 call 2020fb0 <__muldi3> 2010b10: ba 10 20 00 clr %i5 if ( x > SIZE_MAX ) 2010b14: 80 a2 20 00 cmp %o0, 0 2010b18: 34 bf ff f6 bg,a 2010af0 <_CORE_message_queue_Initialize+0x34> 2010b1c: b0 0f 60 01 and %i5, 1, %i0 /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010b20: 40 00 0c ca call 2013e48 <_Workspace_Allocate> 2010b24: 90 10 00 09 mov %o1, %o0 return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010b28: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010b2c: 80 a2 20 00 cmp %o0, 0 2010b30: 02 bf ff ef be 2010aec <_CORE_message_queue_Initialize+0x30><== NEVER TAKEN 2010b34: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010b38: 90 06 20 60 add %i0, 0x60, %o0 2010b3c: 94 10 00 1a mov %i2, %o2 2010b40: 40 00 15 65 call 20160d4 <_Chain_Initialize> 2010b44: 96 10 00 1c mov %i4, %o3 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010b48: c4 06 40 00 ld [ %i1 ], %g2 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010b4c: 82 06 20 50 add %i0, 0x50, %g1 2010b50: 84 18 a0 01 xor %g2, 1, %g2 2010b54: 80 a0 00 02 cmp %g0, %g2 2010b58: 84 06 20 54 add %i0, 0x54, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 2010b5c: c2 26 20 58 st %g1, [ %i0 + 0x58 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2010b60: c4 26 20 50 st %g2, [ %i0 + 0x50 ] 2010b64: 90 10 00 18 mov %i0, %o0 head->previous = NULL; 2010b68: c0 26 20 54 clr [ %i0 + 0x54 ] 2010b6c: 92 60 3f ff subx %g0, -1, %o1 2010b70: 94 10 20 80 mov 0x80, %o2 2010b74: 96 10 20 06 mov 6, %o3 2010b78: 40 00 0a 27 call 2013414 <_Thread_queue_Initialize> 2010b7c: ba 10 20 01 mov 1, %i5 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010b80: b0 0f 60 01 and %i5, 1, %i0 2010b84: 81 c7 e0 08 ret 2010b88: 81 e8 00 00 restore =============================================================================== 020077bc <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 20077bc: 9d e3 bf a0 save %sp, -96, %sp 20077c0: ba 10 00 18 mov %i0, %i5 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20077c4: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 20077c8: 40 00 07 97 call 2009624 <_Thread_queue_Dequeue> 20077cc: 90 10 00 1d mov %i5, %o0 20077d0: 80 a2 20 00 cmp %o0, 0 20077d4: 02 80 00 04 be 20077e4 <_CORE_semaphore_Surrender+0x28> 20077d8: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 20077dc: 81 c7 e0 08 ret 20077e0: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 20077e4: 7f ff ea 80 call 20021e4 20077e8: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 20077ec: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 20077f0: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 20077f4: 80 a0 40 02 cmp %g1, %g2 20077f8: 1a 80 00 05 bcc 200780c <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 20077fc: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2007800: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007804: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2007808: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 200780c: 7f ff ea 7a call 20021f4 2007810: 01 00 00 00 nop } return status; } 2007814: 81 c7 e0 08 ret 2007818: 81 e8 00 00 restore =============================================================================== 0200c838 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 200c838: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; 200c83c: c0 26 20 04 clr [ %i0 + 4 ] size_t node_size ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200c840: ba 06 20 04 add %i0, 4, %i5 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c844: 80 a6 a0 00 cmp %i2, 0 200c848: 02 80 00 12 be 200c890 <_Chain_Initialize+0x58> <== NEVER TAKEN 200c84c: 90 10 00 18 mov %i0, %o0 200c850: b4 06 bf ff add %i2, -1, %i2 { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; 200c854: 82 10 00 19 mov %i1, %g1 head->previous = NULL; while ( count-- ) { 200c858: 92 10 00 1a mov %i2, %o1 ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; 200c85c: 10 80 00 05 b 200c870 <_Chain_Initialize+0x38> 200c860: 84 10 00 18 mov %i0, %g2 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c864: 84 10 00 01 mov %g1, %g2 200c868: b4 06 bf ff add %i2, -1, %i2 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 200c86c: 82 10 00 03 mov %g3, %g1 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { current->next = next; 200c870: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 200c874: c4 20 60 04 st %g2, [ %g1 + 4 ] Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c878: 80 a6 a0 00 cmp %i2, 0 200c87c: 12 bf ff fa bne 200c864 <_Chain_Initialize+0x2c> 200c880: 86 00 40 1b add %g1, %i3, %g3 * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 200c884: 40 00 2b d8 call 20177e4 <.umul> 200c888: 90 10 00 1b mov %i3, %o0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c88c: 90 06 40 08 add %i1, %o0, %o0 current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = tail; 200c890: fa 22 00 00 st %i5, [ %o0 ] tail->previous = current; 200c894: d0 26 20 08 st %o0, [ %i0 + 8 ] } 200c898: 81 c7 e0 08 ret 200c89c: 81 e8 00 00 restore =============================================================================== 020064b0 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 20064b0: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20064b4: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 option_set = (rtems_option) the_thread->Wait.option; _ISR_Disable( level ); 20064b8: 7f ff ef 4b call 20021e4 20064bc: f8 06 20 30 ld [ %i0 + 0x30 ], %i4 pending_events = api->pending_events; 20064c0: c4 07 40 00 ld [ %i5 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 20064c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 20064c8: 86 88 40 02 andcc %g1, %g2, %g3 20064cc: 02 80 00 39 be 20065b0 <_Event_Surrender+0x100> 20064d0: 09 00 80 71 sethi %hi(0x201c400), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20064d4: 88 11 21 5c or %g4, 0x15c, %g4 ! 201c55c <_Per_CPU_Information> 20064d8: f2 01 20 08 ld [ %g4 + 8 ], %i1 20064dc: 80 a6 60 00 cmp %i1, 0 20064e0: 32 80 00 1c bne,a 2006550 <_Event_Surrender+0xa0> 20064e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_EVENT); 20064e8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20064ec: 80 89 21 00 btst 0x100, %g4 20064f0: 02 80 00 30 be 20065b0 <_Event_Surrender+0x100> 20064f4: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20064f8: 02 80 00 04 be 2006508 <_Event_Surrender+0x58> 20064fc: 80 8f 20 02 btst 2, %i4 2006500: 02 80 00 2c be 20065b0 <_Event_Surrender+0x100> <== NEVER TAKEN 2006504: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006508: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 200650c: 84 28 80 03 andn %g2, %g3, %g2 /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2006510: c4 27 40 00 st %g2, [ %i5 ] the_thread->Wait.count = 0; 2006514: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006518: c6 20 40 00 st %g3, [ %g1 ] _ISR_Flash( level ); 200651c: 7f ff ef 36 call 20021f4 2006520: 01 00 00 00 nop 2006524: 7f ff ef 30 call 20021e4 2006528: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200652c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 2006530: 80 a0 60 02 cmp %g1, 2 2006534: 02 80 00 21 be 20065b8 <_Event_Surrender+0x108> 2006538: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200653c: 7f ff ef 2e call 20021f4 2006540: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006544: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2006548: 40 00 0a 6b call 2008ef4 <_Thread_Clear_state> 200654c: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006550: 80 a6 00 04 cmp %i0, %g4 2006554: 32 bf ff e6 bne,a 20064ec <_Event_Surrender+0x3c> 2006558: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200655c: 09 00 80 71 sethi %hi(0x201c400), %g4 2006560: f2 01 21 b0 ld [ %g4 + 0x1b0 ], %i1 ! 201c5b0 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006564: 80 a6 60 02 cmp %i1, 2 2006568: 02 80 00 07 be 2006584 <_Event_Surrender+0xd4> <== NEVER TAKEN 200656c: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006570: f2 01 21 b0 ld [ %g4 + 0x1b0 ], %i1 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006574: 80 a6 60 01 cmp %i1, 1 2006578: 32 bf ff dd bne,a 20064ec <_Event_Surrender+0x3c> 200657c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006580: 80 a0 40 03 cmp %g1, %g3 2006584: 02 80 00 04 be 2006594 <_Event_Surrender+0xe4> 2006588: 80 8f 20 02 btst 2, %i4 200658c: 02 80 00 09 be 20065b0 <_Event_Surrender+0x100> <== NEVER TAKEN 2006590: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006594: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 2006598: 84 28 80 03 andn %g2, %g3, %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 200659c: c4 27 40 00 st %g2, [ %i5 ] the_thread->Wait.count = 0; 20065a0: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20065a4: c6 20 40 00 st %g3, [ %g1 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20065a8: 82 10 20 03 mov 3, %g1 20065ac: c2 21 21 b0 st %g1, [ %g4 + 0x1b0 ] _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 20065b0: 7f ff ef 11 call 20021f4 20065b4: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 20065b8: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 20065bc: 7f ff ef 0e call 20021f4 20065c0: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 20065c4: 40 00 0f 4f call 200a300 <_Watchdog_Remove> 20065c8: 90 06 20 48 add %i0, 0x48, %o0 20065cc: b2 16 63 f8 or %i1, 0x3f8, %i1 20065d0: 40 00 0a 49 call 2008ef4 <_Thread_Clear_state> 20065d4: 81 e8 00 00 restore =============================================================================== 020065d8 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 20065d8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 20065dc: 90 10 00 18 mov %i0, %o0 20065e0: 40 00 0b 44 call 20092f0 <_Thread_Get> 20065e4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20065e8: c2 07 bf fc ld [ %fp + -4 ], %g1 20065ec: 80 a0 60 00 cmp %g1, 0 20065f0: 12 80 00 16 bne 2006648 <_Event_Timeout+0x70> <== NEVER TAKEN 20065f4: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 20065f8: 7f ff ee fb call 20021e4 20065fc: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006600: 03 00 80 71 sethi %hi(0x201c400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2006604: c2 00 61 68 ld [ %g1 + 0x168 ], %g1 ! 201c568 <_Per_CPU_Information+0xc> 2006608: 80 a7 40 01 cmp %i5, %g1 200660c: 02 80 00 11 be 2006650 <_Event_Timeout+0x78> 2006610: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006614: 82 10 20 06 mov 6, %g1 2006618: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 200661c: 7f ff ee f6 call 20021f4 2006620: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006624: 90 10 00 1d mov %i5, %o0 2006628: 13 04 00 ff sethi %hi(0x1003fc00), %o1 200662c: 40 00 0a 32 call 2008ef4 <_Thread_Clear_state> 2006630: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2006634: 03 00 80 70 sethi %hi(0x201c000), %g1 2006638: c4 00 63 30 ld [ %g1 + 0x330 ], %g2 ! 201c330 <_Thread_Dispatch_disable_level> 200663c: 84 00 bf ff add %g2, -1, %g2 2006640: c4 20 63 30 st %g2, [ %g1 + 0x330 ] return _Thread_Dispatch_disable_level; 2006644: c2 00 63 30 ld [ %g1 + 0x330 ], %g1 2006648: 81 c7 e0 08 ret 200664c: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2006650: 03 00 80 71 sethi %hi(0x201c400), %g1 2006654: c4 00 61 b0 ld [ %g1 + 0x1b0 ], %g2 ! 201c5b0 <_Event_Sync_state> 2006658: 80 a0 a0 01 cmp %g2, 1 200665c: 32 bf ff ef bne,a 2006618 <_Event_Timeout+0x40> 2006660: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 2006664: 84 10 20 02 mov 2, %g2 2006668: c4 20 61 b0 st %g2, [ %g1 + 0x1b0 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 200666c: 10 bf ff eb b 2006618 <_Event_Timeout+0x40> 2006670: 82 10 20 06 mov 6, %g1 =============================================================================== 0200ca60 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200ca60: 9d e3 bf 98 save %sp, -104, %sp 200ca64: ba 10 00 18 mov %i0, %i5 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200ca68: a0 06 60 04 add %i1, 4, %l0 - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 200ca6c: ec 06 20 10 ld [ %i0 + 0x10 ], %l6 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200ca70: 80 a6 40 10 cmp %i1, %l0 200ca74: 18 80 00 23 bgu 200cb00 <_Heap_Allocate_aligned_with_boundary+0xa0> 200ca78: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200ca7c: 80 a6 e0 00 cmp %i3, 0 200ca80: 12 80 00 7d bne 200cc74 <_Heap_Allocate_aligned_with_boundary+0x214> 200ca84: 80 a6 40 1b cmp %i1, %i3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200ca88: e2 07 60 08 ld [ %i5 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200ca8c: 80 a7 40 11 cmp %i5, %l1 200ca90: 02 80 00 18 be 200caf0 <_Heap_Allocate_aligned_with_boundary+0x90> 200ca94: b8 10 20 00 clr %i4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200ca98: 82 05 a0 07 add %l6, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200ca9c: ae 10 20 04 mov 4, %l7 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200caa0: c2 27 bf fc st %g1, [ %fp + -4 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200caa4: 10 80 00 0b b 200cad0 <_Heap_Allocate_aligned_with_boundary+0x70> 200caa8: ae 25 c0 19 sub %l7, %i1, %l7 * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { if ( alignment == 0 ) { 200caac: 12 80 00 17 bne 200cb08 <_Heap_Allocate_aligned_with_boundary+0xa8> 200cab0: b0 04 60 08 add %l1, 8, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cab4: 80 a6 20 00 cmp %i0, 0 200cab8: 12 80 00 5b bne 200cc24 <_Heap_Allocate_aligned_with_boundary+0x1c4> 200cabc: b8 07 20 01 inc %i4 break; } block = block->next; 200cac0: e2 04 60 08 ld [ %l1 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200cac4: 80 a7 40 11 cmp %i5, %l1 200cac8: 22 80 00 0b be,a 200caf4 <_Heap_Allocate_aligned_with_boundary+0x94> 200cacc: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200cad0: e4 04 60 04 ld [ %l1 + 4 ], %l2 200cad4: 80 a4 00 12 cmp %l0, %l2 200cad8: 0a bf ff f5 bcs 200caac <_Heap_Allocate_aligned_with_boundary+0x4c> 200cadc: 80 a6 a0 00 cmp %i2, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200cae0: e2 04 60 08 ld [ %l1 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200cae4: 80 a7 40 11 cmp %i5, %l1 200cae8: 12 bf ff fa bne 200cad0 <_Heap_Allocate_aligned_with_boundary+0x70> 200caec: b8 07 20 01 inc %i4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200caf0: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 200caf4: 80 a0 40 1c cmp %g1, %i4 200caf8: 0a 80 00 5a bcs 200cc60 <_Heap_Allocate_aligned_with_boundary+0x200> 200cafc: b0 10 20 00 clr %i0 stats->max_search = search_count; } return (void *) alloc_begin; } 200cb00: 81 c7 e0 08 ret 200cb04: 81 e8 00 00 restore uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200cb08: c4 07 bf fc ld [ %fp + -4 ], %g2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200cb0c: ea 07 60 14 ld [ %i5 + 0x14 ], %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cb10: a4 0c bf fe and %l2, -2, %l2 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200cb14: 82 20 80 15 sub %g2, %l5, %g1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200cb18: a4 04 40 12 add %l1, %l2, %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cb1c: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200cb20: b0 05 c0 12 add %l7, %l2, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200cb24: a4 00 40 12 add %g1, %l2, %l2 200cb28: 40 00 2c 15 call 2017b7c <.urem> 200cb2c: 90 10 00 18 mov %i0, %o0 200cb30: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200cb34: 80 a4 80 18 cmp %l2, %i0 200cb38: 1a 80 00 06 bcc 200cb50 <_Heap_Allocate_aligned_with_boundary+0xf0> 200cb3c: a8 04 60 08 add %l1, 8, %l4 200cb40: 90 10 00 12 mov %l2, %o0 200cb44: 40 00 2c 0e call 2017b7c <.urem> 200cb48: 92 10 00 1a mov %i2, %o1 200cb4c: b0 24 80 08 sub %l2, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200cb50: 80 a6 e0 00 cmp %i3, 0 200cb54: 02 80 00 24 be 200cbe4 <_Heap_Allocate_aligned_with_boundary+0x184> 200cb58: 80 a5 00 18 cmp %l4, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200cb5c: a4 06 00 19 add %i0, %i1, %l2 200cb60: 92 10 00 1b mov %i3, %o1 200cb64: 40 00 2c 06 call 2017b7c <.urem> 200cb68: 90 10 00 12 mov %l2, %o0 200cb6c: 90 24 80 08 sub %l2, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cb70: 80 a6 00 08 cmp %i0, %o0 200cb74: 1a 80 00 1b bcc 200cbe0 <_Heap_Allocate_aligned_with_boundary+0x180> 200cb78: 80 a2 00 12 cmp %o0, %l2 200cb7c: 1a 80 00 1a bcc 200cbe4 <_Heap_Allocate_aligned_with_boundary+0x184> 200cb80: 80 a5 00 18 cmp %l4, %i0 alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200cb84: a6 05 00 19 add %l4, %i1, %l3 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200cb88: 80 a4 c0 08 cmp %l3, %o0 200cb8c: 08 80 00 08 bleu 200cbac <_Heap_Allocate_aligned_with_boundary+0x14c> 200cb90: b0 10 20 00 clr %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cb94: 10 bf ff c9 b 200cab8 <_Heap_Allocate_aligned_with_boundary+0x58> 200cb98: 80 a6 20 00 cmp %i0, 0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cb9c: 1a 80 00 11 bcc 200cbe0 <_Heap_Allocate_aligned_with_boundary+0x180> 200cba0: 80 a4 c0 08 cmp %l3, %o0 if ( boundary_line < boundary_floor ) { 200cba4: 18 bf ff c4 bgu 200cab4 <_Heap_Allocate_aligned_with_boundary+0x54><== NEVER TAKEN 200cba8: b0 10 20 00 clr %i0 return 0; } alloc_begin = boundary_line - alloc_size; 200cbac: b0 22 00 19 sub %o0, %i1, %i0 200cbb0: 92 10 00 1a mov %i2, %o1 200cbb4: 40 00 2b f2 call 2017b7c <.urem> 200cbb8: 90 10 00 18 mov %i0, %o0 200cbbc: 92 10 00 1b mov %i3, %o1 200cbc0: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200cbc4: a4 06 00 19 add %i0, %i1, %l2 200cbc8: 40 00 2b ed call 2017b7c <.urem> 200cbcc: 90 10 00 12 mov %l2, %o0 200cbd0: 90 24 80 08 sub %l2, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cbd4: 80 a2 00 12 cmp %o0, %l2 200cbd8: 0a bf ff f1 bcs 200cb9c <_Heap_Allocate_aligned_with_boundary+0x13c> 200cbdc: 80 a6 00 08 cmp %i0, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200cbe0: 80 a5 00 18 cmp %l4, %i0 200cbe4: 18 80 00 22 bgu 200cc6c <_Heap_Allocate_aligned_with_boundary+0x20c> 200cbe8: 82 10 3f f8 mov -8, %g1 200cbec: 90 10 00 18 mov %i0, %o0 200cbf0: a4 20 40 11 sub %g1, %l1, %l2 200cbf4: 92 10 00 16 mov %l6, %o1 200cbf8: 40 00 2b e1 call 2017b7c <.urem> 200cbfc: a4 04 80 18 add %l2, %i0, %l2 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200cc00: 90 a4 80 08 subcc %l2, %o0, %o0 200cc04: 02 bf ff ad be 200cab8 <_Heap_Allocate_aligned_with_boundary+0x58> 200cc08: 80 a6 20 00 cmp %i0, 0 200cc0c: 80 a2 00 15 cmp %o0, %l5 return alloc_begin; } } return 0; 200cc10: 82 40 3f ff addx %g0, -1, %g1 200cc14: b0 0e 00 01 and %i0, %g1, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cc18: 80 a6 20 00 cmp %i0, 0 200cc1c: 02 bf ff a9 be 200cac0 <_Heap_Allocate_aligned_with_boundary+0x60> 200cc20: b8 07 20 01 inc %i4 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc24: c4 07 60 48 ld [ %i5 + 0x48 ], %g2 stats->searches += search_count; 200cc28: c2 07 60 4c ld [ %i5 + 0x4c ], %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc2c: 84 00 a0 01 inc %g2 stats->searches += search_count; 200cc30: 82 00 40 1c add %g1, %i4, %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc34: c4 27 60 48 st %g2, [ %i5 + 0x48 ] stats->searches += search_count; 200cc38: c2 27 60 4c st %g1, [ %i5 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200cc3c: 90 10 00 1d mov %i5, %o0 200cc40: 92 10 00 11 mov %l1, %o1 200cc44: 94 10 00 18 mov %i0, %o2 200cc48: 7f ff ec 02 call 2007c50 <_Heap_Block_allocate> 200cc4c: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200cc50: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 200cc54: 80 a0 40 1c cmp %g1, %i4 200cc58: 1a 80 00 03 bcc 200cc64 <_Heap_Allocate_aligned_with_boundary+0x204> 200cc5c: 01 00 00 00 nop stats->max_search = search_count; 200cc60: f8 27 60 44 st %i4, [ %i5 + 0x44 ] } return (void *) alloc_begin; } 200cc64: 81 c7 e0 08 ret 200cc68: 81 e8 00 00 restore if ( free_size >= min_block_size || free_size == 0 ) { return alloc_begin; } } return 0; 200cc6c: 10 bf ff 92 b 200cab4 <_Heap_Allocate_aligned_with_boundary+0x54> 200cc70: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200cc74: 18 bf ff a3 bgu 200cb00 <_Heap_Allocate_aligned_with_boundary+0xa0> 200cc78: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200cc7c: 22 bf ff 83 be,a 200ca88 <_Heap_Allocate_aligned_with_boundary+0x28> 200cc80: b4 10 00 16 mov %l6, %i2 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200cc84: 10 bf ff 82 b 200ca8c <_Heap_Allocate_aligned_with_boundary+0x2c> 200cc88: e2 07 60 08 ld [ %i5 + 8 ], %l1 =============================================================================== 0200c868 <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c868: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200c86c: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200c870: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200c874: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200c878: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200c87c: e0 06 20 10 ld [ %i0 + 0x10 ], %l0 uintptr_t const min_block_size = heap->min_block_size; 200c880: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200c884: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200c888: 80 a6 40 1d cmp %i1, %i5 200c88c: 08 80 00 05 bleu 200c8a0 <_Heap_Extend+0x38> 200c890: a2 10 20 00 clr %l1 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200c894: b0 0c 60 01 and %l1, 1, %i0 200c898: 81 c7 e0 08 ret 200c89c: 81 e8 00 00 restore if ( extend_area_end < extend_area_begin ) { return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200c8a0: 90 10 00 19 mov %i1, %o0 200c8a4: 92 10 00 1a mov %i2, %o1 200c8a8: 94 10 00 10 mov %l0, %o2 200c8ac: 98 07 bf f8 add %fp, -8, %o4 200c8b0: 7f ff eb af call 200776c <_Heap_Get_first_and_last_block> 200c8b4: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200c8b8: 80 8a 20 ff btst 0xff, %o0 200c8bc: 02 bf ff f6 be 200c894 <_Heap_Extend+0x2c> 200c8c0: aa 10 20 00 clr %l5 200c8c4: a2 10 00 1c mov %i4, %l1 200c8c8: ac 10 20 00 clr %l6 200c8cc: a6 10 20 00 clr %l3 200c8d0: 10 80 00 14 b 200c920 <_Heap_Extend+0xb8> 200c8d4: a8 10 20 00 clr %l4 return false; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c8d8: 2a 80 00 02 bcs,a 200c8e0 <_Heap_Extend+0x78> 200c8dc: ac 10 00 11 mov %l1, %l6 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c8e0: 90 10 00 1a mov %i2, %o0 200c8e4: 40 00 16 bd call 20123d8 <.urem> 200c8e8: 92 10 00 10 mov %l0, %o1 200c8ec: 82 06 bf f8 add %i2, -8, %g1 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c8f0: 80 a6 80 19 cmp %i2, %i1 200c8f4: 02 80 00 1c be 200c964 <_Heap_Extend+0xfc> 200c8f8: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c8fc: 80 a6 40 1a cmp %i1, %i2 200c900: 38 80 00 02 bgu,a 200c908 <_Heap_Extend+0xa0> 200c904: aa 10 00 01 mov %g1, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c908: e2 00 60 04 ld [ %g1 + 4 ], %l1 200c90c: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c910: a2 04 40 01 add %l1, %g1, %l1 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c914: 80 a7 00 11 cmp %i4, %l1 200c918: 22 80 00 1b be,a 200c984 <_Heap_Extend+0x11c> 200c91c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200c920: 80 a4 40 1c cmp %l1, %i4 200c924: 02 80 00 66 be 200cabc <_Heap_Extend+0x254> 200c928: 82 10 00 11 mov %l1, %g1 uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c92c: 80 a0 40 1d cmp %g1, %i5 200c930: 0a 80 00 70 bcs 200caf0 <_Heap_Extend+0x288> 200c934: f4 04 40 00 ld [ %l1 ], %i2 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c938: 80 a0 40 1d cmp %g1, %i5 200c93c: 12 bf ff e7 bne 200c8d8 <_Heap_Extend+0x70> 200c940: 80 a7 40 1a cmp %i5, %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c944: 90 10 00 1a mov %i2, %o0 200c948: 40 00 16 a4 call 20123d8 <.urem> 200c94c: 92 10 00 10 mov %l0, %o1 200c950: 82 06 bf f8 add %i2, -8, %g1 200c954: a8 10 00 11 mov %l1, %l4 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c958: 80 a6 80 19 cmp %i2, %i1 200c95c: 12 bf ff e8 bne 200c8fc <_Heap_Extend+0x94> <== ALWAYS TAKEN 200c960: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; 200c964: fa 24 40 00 st %i5, [ %l1 ] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c968: e2 00 60 04 ld [ %g1 + 4 ], %l1 200c96c: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c970: a2 04 40 01 add %l1, %g1, %l1 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c974: 80 a7 00 11 cmp %i4, %l1 200c978: 12 bf ff ea bne 200c920 <_Heap_Extend+0xb8> <== NEVER TAKEN 200c97c: a6 10 00 01 mov %g1, %l3 if ( extend_area_begin < heap->area_begin ) { 200c980: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200c984: 80 a6 40 01 cmp %i1, %g1 200c988: 3a 80 00 55 bcc,a 200cadc <_Heap_Extend+0x274> 200c98c: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c990: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200c994: c2 07 bf f8 ld [ %fp + -8 ], %g1 200c998: c4 07 bf fc ld [ %fp + -4 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c99c: c8 06 20 20 ld [ %i0 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200c9a0: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200c9a4: fa 20 40 00 st %i5, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200c9a8: b8 10 e0 01 or %g3, 1, %i4 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200c9ac: f8 20 60 04 st %i4, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200c9b0: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200c9b4: 80 a1 00 01 cmp %g4, %g1 200c9b8: 08 80 00 43 bleu 200cac4 <_Heap_Extend+0x25c> 200c9bc: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200c9c0: c2 26 20 20 st %g1, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200c9c4: 80 a5 20 00 cmp %l4, 0 200c9c8: 02 80 00 63 be 200cb54 <_Heap_Extend+0x2ec> 200c9cc: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200c9d0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200c9d4: 92 10 00 1c mov %i4, %o1 200c9d8: 40 00 16 80 call 20123d8 <.urem> 200c9dc: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200c9e0: 80 a2 20 00 cmp %o0, 0 200c9e4: 02 80 00 04 be 200c9f4 <_Heap_Extend+0x18c> 200c9e8: c4 05 00 00 ld [ %l4 ], %g2 return value - remainder + alignment; 200c9ec: b2 06 40 1c add %i1, %i4, %i1 200c9f0: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200c9f4: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200c9f8: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200c9fc: 84 25 00 01 sub %l4, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200ca00: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200ca04: 90 10 00 18 mov %i0, %o0 200ca08: 92 10 00 01 mov %g1, %o1 200ca0c: 7f ff ff 8d call 200c840 <_Heap_Free_block> 200ca10: c4 26 7f fc st %g2, [ %i1 + -4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200ca14: 80 a4 e0 00 cmp %l3, 0 200ca18: 02 80 00 3b be 200cb04 <_Heap_Extend+0x29c> 200ca1c: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ca20: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200ca24: ba 27 40 13 sub %i5, %l3, %i5 200ca28: 40 00 16 6c call 20123d8 <.urem> 200ca2c: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200ca30: c2 04 e0 04 ld [ %l3 + 4 ], %g1 200ca34: ba 27 40 08 sub %i5, %o0, %i5 200ca38: 82 20 40 1d sub %g1, %i5, %g1 | HEAP_PREV_BLOCK_USED; 200ca3c: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200ca40: 84 07 40 13 add %i5, %l3, %g2 200ca44: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ca48: c2 04 e0 04 ld [ %l3 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200ca4c: 90 10 00 18 mov %i0, %o0 200ca50: 82 08 60 01 and %g1, 1, %g1 200ca54: 92 10 00 13 mov %l3, %o1 block->size_and_flag = size | flag; 200ca58: ba 17 40 01 or %i5, %g1, %i5 200ca5c: 7f ff ff 79 call 200c840 <_Heap_Free_block> 200ca60: fa 24 e0 04 st %i5, [ %l3 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200ca64: 80 a4 e0 00 cmp %l3, 0 200ca68: 02 80 00 34 be 200cb38 <_Heap_Extend+0x2d0> 200ca6c: 80 a5 20 00 cmp %l4, 0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200ca70: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200ca74: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ca78: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200ca7c: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ca80: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200ca84: 84 10 80 03 or %g2, %g3, %g2 200ca88: c4 20 60 04 st %g2, [ %g1 + 4 ] _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200ca8c: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200ca90: c4 06 20 30 ld [ %i0 + 0x30 ], %g2 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200ca94: a2 10 20 01 mov 1, %l1 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200ca98: a4 20 80 12 sub %g2, %l2, %l2 /* Statistics */ stats->size += extended_size; 200ca9c: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200caa0: 80 a6 e0 00 cmp %i3, 0 200caa4: 02 bf ff 7c be 200c894 <_Heap_Extend+0x2c> <== NEVER TAKEN 200caa8: c2 26 20 2c st %g1, [ %i0 + 0x2c ] *extended_size_ptr = extended_size; 200caac: e4 26 c0 00 st %l2, [ %i3 ] return true; } 200cab0: b0 0c 60 01 and %l1, 1, %i0 200cab4: 81 c7 e0 08 ret 200cab8: 81 e8 00 00 restore return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200cabc: 10 bf ff 9c b 200c92c <_Heap_Extend+0xc4> 200cac0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200cac4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200cac8: 80 a0 40 02 cmp %g1, %g2 200cacc: 2a bf ff be bcs,a 200c9c4 <_Heap_Extend+0x15c> 200cad0: c4 26 20 24 st %g2, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200cad4: 10 bf ff bd b 200c9c8 <_Heap_Extend+0x160> 200cad8: 80 a5 20 00 cmp %l4, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200cadc: 80 a7 40 01 cmp %i5, %g1 200cae0: 38 bf ff ad bgu,a 200c994 <_Heap_Extend+0x12c> 200cae4: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cae8: 10 bf ff ac b 200c998 <_Heap_Extend+0x130> 200caec: c2 07 bf f8 ld [ %fp + -8 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200caf0: 80 a6 40 1a cmp %i1, %i2 200caf4: 1a bf ff 92 bcc 200c93c <_Heap_Extend+0xd4> 200caf8: 80 a0 40 1d cmp %g1, %i5 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; 200cafc: 10 bf ff 66 b 200c894 <_Heap_Extend+0x2c> 200cb00: a2 10 20 00 clr %l1 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200cb04: 80 a5 60 00 cmp %l5, 0 200cb08: 02 bf ff d7 be 200ca64 <_Heap_Extend+0x1fc> 200cb0c: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cb10: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200cb14: c2 07 bf fc ld [ %fp + -4 ], %g1 200cb18: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200cb1c: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200cb20: 84 10 c0 02 or %g3, %g2, %g2 200cb24: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200cb28: c4 00 60 04 ld [ %g1 + 4 ], %g2 200cb2c: 84 10 a0 01 or %g2, 1, %g2 200cb30: 10 bf ff cd b 200ca64 <_Heap_Extend+0x1fc> 200cb34: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cb38: 32 bf ff cf bne,a 200ca74 <_Heap_Extend+0x20c> 200cb3c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200cb40: d2 07 bf f8 ld [ %fp + -8 ], %o1 200cb44: 7f ff ff 3f call 200c840 <_Heap_Free_block> 200cb48: 90 10 00 18 mov %i0, %o0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cb4c: 10 bf ff ca b 200ca74 <_Heap_Extend+0x20c> 200cb50: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200cb54: 80 a5 a0 00 cmp %l6, 0 200cb58: 02 bf ff b0 be 200ca18 <_Heap_Extend+0x1b0> 200cb5c: 80 a4 e0 00 cmp %l3, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200cb60: ac 25 80 02 sub %l6, %g2, %l6 200cb64: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200cb68: 10 bf ff ac b 200ca18 <_Heap_Extend+0x1b0> 200cb6c: ec 20 a0 04 st %l6, [ %g2 + 4 ] =============================================================================== 0200cc8c <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200cc8c: 9d e3 bf a0 save %sp, -96, %sp /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200cc90: 80 a6 60 00 cmp %i1, 0 200cc94: 02 80 00 56 be 200cdec <_Heap_Free+0x160> 200cc98: 84 10 20 01 mov 1, %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cc9c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200cca0: 40 00 2b b7 call 2017b7c <.urem> 200cca4: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200cca8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ccac: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200ccb0: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200ccb4: 80 a7 40 01 cmp %i5, %g1 200ccb8: 0a 80 00 4d bcs 200cdec <_Heap_Free+0x160> 200ccbc: 84 10 20 00 clr %g2 200ccc0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 200ccc4: 80 a7 40 04 cmp %i5, %g4 200ccc8: 38 80 00 4a bgu,a 200cdf0 <_Heap_Free+0x164> 200cccc: b0 08 a0 01 and %g2, 1, %i0 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ccd0: de 07 60 04 ld [ %i5 + 4 ], %o7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200ccd4: b2 0b ff fe and %o7, -2, %i1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200ccd8: 86 06 40 1d add %i1, %i5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200ccdc: 80 a0 40 03 cmp %g1, %g3 200cce0: 38 80 00 44 bgu,a 200cdf0 <_Heap_Free+0x164> <== NEVER TAKEN 200cce4: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED 200cce8: 80 a1 00 03 cmp %g4, %g3 200ccec: 2a 80 00 41 bcs,a 200cdf0 <_Heap_Free+0x164> <== NEVER TAKEN 200ccf0: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED 200ccf4: da 00 e0 04 ld [ %g3 + 4 ], %o5 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200ccf8: 80 8b 60 01 btst 1, %o5 200ccfc: 02 80 00 3c be 200cdec <_Heap_Free+0x160> 200cd00: 98 0b 7f fe and %o5, -2, %o4 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200cd04: 80 a1 00 03 cmp %g4, %g3 200cd08: 02 80 00 06 be 200cd20 <_Heap_Free+0x94> 200cd0c: 9a 10 20 00 clr %o5 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd10: 84 00 c0 0c add %g3, %o4, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd14: da 00 a0 04 ld [ %g2 + 4 ], %o5 200cd18: 9a 0b 60 01 and %o5, 1, %o5 return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 200cd1c: 9a 1b 60 01 xor %o5, 1, %o5 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200cd20: 80 8b e0 01 btst 1, %o7 200cd24: 12 80 00 1c bne 200cd94 <_Heap_Free+0x108> 200cd28: 80 8b 60 ff btst 0xff, %o5 uintptr_t const prev_size = block->prev_size; 200cd2c: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd30: 9e 27 40 0b sub %i5, %o3, %o7 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cd34: 80 a0 40 0f cmp %g1, %o7 200cd38: 18 80 00 2d bgu 200cdec <_Heap_Free+0x160> <== NEVER TAKEN 200cd3c: 84 10 20 00 clr %g2 200cd40: 80 a1 00 0f cmp %g4, %o7 200cd44: 2a 80 00 2b bcs,a 200cdf0 <_Heap_Free+0x164> <== NEVER TAKEN 200cd48: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd4c: c2 03 e0 04 ld [ %o7 + 4 ], %g1 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200cd50: 80 88 60 01 btst 1, %g1 200cd54: 02 80 00 26 be 200cdec <_Heap_Free+0x160> <== NEVER TAKEN 200cd58: 80 8b 60 ff btst 0xff, %o5 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200cd5c: 02 80 00 39 be 200ce40 <_Heap_Free+0x1b4> 200cd60: 96 06 40 0b add %i1, %o3, %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd64: c2 00 e0 08 ld [ %g3 + 8 ], %g1 200cd68: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cd6c: c6 06 20 38 ld [ %i0 + 0x38 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 200cd70: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200cd74: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200cd78: 82 00 ff ff add %g3, -1, %g1 200cd7c: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200cd80: 98 02 c0 0c add %o3, %o4, %o4 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cd84: 82 13 20 01 or %o4, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200cd88: d8 23 00 0f st %o4, [ %o4 + %o7 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cd8c: 10 80 00 0e b 200cdc4 <_Heap_Free+0x138> 200cd90: c2 23 e0 04 st %g1, [ %o7 + 4 ] uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200cd94: 22 80 00 19 be,a 200cdf8 <_Heap_Free+0x16c> 200cd98: c4 06 20 08 ld [ %i0 + 8 ], %g2 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd9c: c4 00 e0 08 ld [ %g3 + 8 ], %g2 200cda0: c2 00 e0 0c ld [ %g3 + 0xc ], %g1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 200cda4: c4 27 60 08 st %g2, [ %i5 + 8 ] new_block->prev = prev; 200cda8: c2 27 60 0c st %g1, [ %i5 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200cdac: 98 03 00 19 add %o4, %i1, %o4 next->prev = new_block; 200cdb0: fa 20 a0 0c st %i5, [ %g2 + 0xc ] prev->next = new_block; 200cdb4: fa 20 60 08 st %i5, [ %g1 + 8 ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdb8: 84 13 20 01 or %o4, 1, %g2 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200cdbc: d8 23 00 1d st %o4, [ %o4 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdc0: c4 27 60 04 st %g2, [ %i5 + 4 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cdc4: c4 06 20 40 ld [ %i0 + 0x40 ], %g2 ++stats->frees; 200cdc8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 stats->free_size += block_size; 200cdcc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cdd0: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; 200cdd4: 82 00 60 01 inc %g1 stats->free_size += block_size; 200cdd8: b2 00 c0 19 add %g3, %i1, %i1 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cddc: c4 26 20 40 st %g2, [ %i0 + 0x40 ] ++stats->frees; 200cde0: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200cde4: f2 26 20 30 st %i1, [ %i0 + 0x30 ] return( true ); 200cde8: 84 10 20 01 mov 1, %g2 } 200cdec: b0 08 a0 01 and %g2, 1, %i0 200cdf0: 81 c7 e0 08 ret 200cdf4: 81 e8 00 00 restore next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200cdf8: 82 16 60 01 or %i1, 1, %g1 200cdfc: c2 27 60 04 st %g1, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce00: c8 00 e0 04 ld [ %g3 + 4 ], %g4 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200ce04: f0 27 60 0c st %i0, [ %i5 + 0xc ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce08: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200ce0c: c4 27 60 08 st %g2, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200ce10: fa 20 a0 0c st %i5, [ %g2 + 0xc ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce14: 84 09 3f fe and %g4, -2, %g2 next_block->prev_size = block_size; 200ce18: f2 26 40 1d st %i1, [ %i1 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce1c: c4 20 e0 04 st %g2, [ %g3 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200ce20: c4 06 20 3c ld [ %i0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce24: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200ce28: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200ce2c: 80 a0 40 02 cmp %g1, %g2 200ce30: 08 bf ff e5 bleu 200cdc4 <_Heap_Free+0x138> 200ce34: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200ce38: 10 bf ff e3 b 200cdc4 <_Heap_Free+0x138> 200ce3c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200ce40: 82 12 e0 01 or %o3, 1, %g1 200ce44: c2 23 e0 04 st %g1, [ %o7 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce48: c2 00 e0 04 ld [ %g3 + 4 ], %g1 next_block->prev_size = size; 200ce4c: d6 26 40 1d st %o3, [ %i1 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce50: 82 08 7f fe and %g1, -2, %g1 200ce54: 10 bf ff dc b 200cdc4 <_Heap_Free+0x138> 200ce58: c2 20 e0 04 st %g1, [ %g3 + 4 ] =============================================================================== 0200d374 <_Heap_Get_information>: void _Heap_Get_information( Heap_Control *the_heap, Heap_Information_block *the_info ) { 200d374: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *the_block = the_heap->first_block; 200d378: fa 06 20 20 ld [ %i0 + 0x20 ], %i5 Heap_Block *const end = the_heap->last_block; 200d37c: f8 06 20 24 ld [ %i0 + 0x24 ], %i4 memset(the_info, 0, sizeof(*the_info)); 200d380: 92 10 20 00 clr %o1 200d384: 90 10 00 19 mov %i1, %o0 200d388: 40 00 09 27 call 200f824 200d38c: 94 10 20 18 mov 0x18, %o2 while ( the_block != end ) { 200d390: 80 a7 40 1c cmp %i5, %i4 200d394: 02 80 00 17 be 200d3f0 <_Heap_Get_information+0x7c> <== NEVER TAKEN 200d398: 01 00 00 00 nop 200d39c: c6 07 60 04 ld [ %i5 + 4 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d3a0: 84 08 ff fe and %g3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d3a4: ba 07 40 02 add %i5, %g2, %i5 if ( info->largest < the_size ) info->largest = the_size; the_block = next_block; } } 200d3a8: c6 07 60 04 ld [ %i5 + 4 ], %g3 while ( the_block != end ) { uintptr_t const the_size = _Heap_Block_size(the_block); Heap_Block *const next_block = _Heap_Block_at(the_block, the_size); Heap_Information *info; if ( _Heap_Is_prev_used(next_block) ) 200d3ac: 80 88 e0 01 btst 1, %g3 200d3b0: 02 80 00 03 be 200d3bc <_Heap_Get_information+0x48> 200d3b4: 82 10 00 19 mov %i1, %g1 info = &the_info->Used; 200d3b8: 82 06 60 0c add %i1, 0xc, %g1 else info = &the_info->Free; info->number++; 200d3bc: de 00 40 00 ld [ %g1 ], %o7 info->total += the_size; 200d3c0: f0 00 60 08 ld [ %g1 + 8 ], %i0 if ( info->largest < the_size ) 200d3c4: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d3c8: 9e 03 e0 01 inc %o7 info->total += the_size; 200d3cc: b0 06 00 02 add %i0, %g2, %i0 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d3d0: de 20 40 00 st %o7, [ %g1 ] info->total += the_size; if ( info->largest < the_size ) 200d3d4: 80 a1 00 02 cmp %g4, %g2 200d3d8: 1a 80 00 03 bcc 200d3e4 <_Heap_Get_information+0x70> 200d3dc: f0 20 60 08 st %i0, [ %g1 + 8 ] info->largest = the_size; 200d3e0: c4 20 60 04 st %g2, [ %g1 + 4 ] Heap_Block *the_block = the_heap->first_block; Heap_Block *const end = the_heap->last_block; memset(the_info, 0, sizeof(*the_info)); while ( the_block != end ) { 200d3e4: 80 a7 00 1d cmp %i4, %i5 200d3e8: 12 bf ff ef bne 200d3a4 <_Heap_Get_information+0x30> 200d3ec: 84 08 ff fe and %g3, -2, %g2 200d3f0: 81 c7 e0 08 ret 200d3f4: 81 e8 00 00 restore =============================================================================== 02019694 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2019694: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2019698: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 201969c: 7f ff f9 38 call 2017b7c <.urem> 20196a0: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 20196a4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 20196a8: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 20196ac: 84 20 80 08 sub %g2, %o0, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20196b0: 80 a0 80 01 cmp %g2, %g1 20196b4: 0a 80 00 16 bcs 201970c <_Heap_Size_of_alloc_area+0x78> 20196b8: 86 10 20 00 clr %g3 20196bc: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 20196c0: 80 a0 80 04 cmp %g2, %g4 20196c4: 18 80 00 13 bgu 2019710 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 20196c8: b0 08 e0 01 and %g3, 1, %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20196cc: f0 00 a0 04 ld [ %g2 + 4 ], %i0 20196d0: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20196d4: 84 06 00 02 add %i0, %g2, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20196d8: 80 a0 40 02 cmp %g1, %g2 20196dc: 18 80 00 0d bgu 2019710 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 20196e0: b0 08 e0 01 and %g3, 1, %i0 20196e4: 80 a1 00 02 cmp %g4, %g2 20196e8: 0a 80 00 0a bcs 2019710 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 20196ec: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20196f0: c2 00 a0 04 ld [ %g2 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 20196f4: 80 88 60 01 btst 1, %g1 20196f8: 02 80 00 06 be 2019710 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 20196fc: 84 20 80 19 sub %g2, %i1, %g2 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2019700: 86 10 20 01 mov 1, %g3 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2019704: 84 00 a0 04 add %g2, 4, %g2 2019708: c4 26 80 00 st %g2, [ %i2 ] return true; } 201970c: b0 08 e0 01 and %g3, 1, %i0 2019710: 81 c7 e0 08 ret 2019714: 81 e8 00 00 restore =============================================================================== 020086e4 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20086e4: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20086e8: 3b 00 80 21 sethi %hi(0x2008400), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 20086ec: e0 06 20 10 ld [ %i0 + 0x10 ], %l0 uintptr_t const min_block_size = heap->min_block_size; 20086f0: f6 06 20 14 ld [ %i0 + 0x14 ], %i3 Heap_Block *const first_block = heap->first_block; 20086f4: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *const last_block = heap->last_block; 20086f8: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20086fc: 80 a6 a0 00 cmp %i2, 0 2008700: 02 80 00 04 be 2008710 <_Heap_Walk+0x2c> 2008704: ba 17 62 78 or %i5, 0x278, %i5 2008708: 3b 00 80 21 sethi %hi(0x2008400), %i5 200870c: ba 17 62 80 or %i5, 0x280, %i5 ! 2008680 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008710: 03 00 80 60 sethi %hi(0x2018000), %g1 2008714: c4 00 63 84 ld [ %g1 + 0x384 ], %g2 ! 2018384 <_System_state_Current> 2008718: 80 a0 a0 03 cmp %g2, 3 200871c: 02 80 00 05 be 2008730 <_Heap_Walk+0x4c> 2008720: 82 10 20 01 mov 1, %g1 block = next_block; } while ( block != first_block ); return true; } 2008724: b0 08 60 01 and %g1, 1, %i0 2008728: 81 c7 e0 08 ret 200872c: 81 e8 00 00 restore Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008730: da 06 20 18 ld [ %i0 + 0x18 ], %o5 2008734: c6 06 20 1c ld [ %i0 + 0x1c ], %g3 2008738: c4 06 20 08 ld [ %i0 + 8 ], %g2 200873c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008740: 90 10 00 19 mov %i1, %o0 2008744: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008748: f8 23 a0 60 st %i4, [ %sp + 0x60 ] 200874c: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 2008750: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 2008754: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008758: 92 10 20 00 clr %o1 200875c: 96 10 00 10 mov %l0, %o3 2008760: 15 00 80 56 sethi %hi(0x2015800), %o2 2008764: 98 10 00 1b mov %i3, %o4 2008768: 9f c7 40 00 call %i5 200876c: 94 12 a1 38 or %o2, 0x138, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008770: 80 a4 20 00 cmp %l0, 0 2008774: 02 80 00 28 be 2008814 <_Heap_Walk+0x130> 2008778: 80 8c 20 07 btst 7, %l0 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 200877c: 12 80 00 2d bne 2008830 <_Heap_Walk+0x14c> 2008780: 90 10 00 1b mov %i3, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008784: 7f ff e4 d2 call 2001acc <.urem> 2008788: 92 10 00 10 mov %l0, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 200878c: 80 a2 20 00 cmp %o0, 0 2008790: 12 80 00 30 bne 2008850 <_Heap_Walk+0x16c> 2008794: 90 07 20 08 add %i4, 8, %o0 2008798: 7f ff e4 cd call 2001acc <.urem> 200879c: 92 10 00 10 mov %l0, %o1 ); return false; } if ( 20087a0: 80 a2 20 00 cmp %o0, 0 20087a4: 32 80 00 33 bne,a 2008870 <_Heap_Walk+0x18c> 20087a8: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 20087ac: e8 07 20 04 ld [ %i4 + 4 ], %l4 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20087b0: 80 8d 20 01 btst 1, %l4 20087b4: 22 80 00 36 be,a 200888c <_Heap_Walk+0x1a8> 20087b8: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20087bc: c2 04 60 04 ld [ %l1 + 4 ], %g1 20087c0: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20087c4: 82 04 40 01 add %l1, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20087c8: c4 00 60 04 ld [ %g1 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20087cc: 80 88 a0 01 btst 1, %g2 20087d0: 02 80 00 0a be 20087f8 <_Heap_Walk+0x114> 20087d4: 80 a7 00 01 cmp %i4, %g1 ); return false; } if ( 20087d8: 02 80 00 33 be 20088a4 <_Heap_Walk+0x1c0> 20087dc: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20087e0: 92 10 20 01 mov 1, %o1 20087e4: 15 00 80 56 sethi %hi(0x2015800), %o2 20087e8: 9f c7 40 00 call %i5 20087ec: 94 12 a2 b0 or %o2, 0x2b0, %o2 ! 2015ab0 <_Status_Object_name_errors_to_status+0x1f0> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20087f0: 10 bf ff cd b 2008724 <_Heap_Walk+0x40> 20087f4: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 20087f8: 90 10 00 19 mov %i1, %o0 20087fc: 92 10 20 01 mov 1, %o1 2008800: 15 00 80 56 sethi %hi(0x2015800), %o2 2008804: 9f c7 40 00 call %i5 2008808: 94 12 a2 98 or %o2, 0x298, %o2 ! 2015a98 <_Status_Object_name_errors_to_status+0x1d8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200880c: 10 bf ff c6 b 2008724 <_Heap_Walk+0x40> 2008810: 82 10 20 00 clr %g1 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008814: 90 10 00 19 mov %i1, %o0 2008818: 92 10 20 01 mov 1, %o1 200881c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008820: 9f c7 40 00 call %i5 2008824: 94 12 a1 d0 or %o2, 0x1d0, %o2 ! 20159d0 <_Status_Object_name_errors_to_status+0x110> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008828: 10 bf ff bf b 2008724 <_Heap_Walk+0x40> 200882c: 82 10 20 00 clr %g1 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008830: 90 10 00 19 mov %i1, %o0 2008834: 92 10 20 01 mov 1, %o1 2008838: 96 10 00 10 mov %l0, %o3 200883c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008840: 9f c7 40 00 call %i5 2008844: 94 12 a1 e8 or %o2, 0x1e8, %o2 ! 20159e8 <_Status_Object_name_errors_to_status+0x128> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008848: 10 bf ff b7 b 2008724 <_Heap_Walk+0x40> 200884c: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008850: 90 10 00 19 mov %i1, %o0 2008854: 92 10 20 01 mov 1, %o1 2008858: 96 10 00 1b mov %i3, %o3 200885c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008860: 9f c7 40 00 call %i5 2008864: 94 12 a2 08 or %o2, 0x208, %o2 ! 2015a08 <_Status_Object_name_errors_to_status+0x148> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008868: 10 bf ff af b 2008724 <_Heap_Walk+0x40> 200886c: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008870: 92 10 20 01 mov 1, %o1 2008874: 96 10 00 1c mov %i4, %o3 2008878: 15 00 80 56 sethi %hi(0x2015800), %o2 200887c: 9f c7 40 00 call %i5 2008880: 94 12 a2 30 or %o2, 0x230, %o2 ! 2015a30 <_Status_Object_name_errors_to_status+0x170> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008884: 10 bf ff a8 b 2008724 <_Heap_Walk+0x40> 2008888: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 200888c: 92 10 20 01 mov 1, %o1 2008890: 15 00 80 56 sethi %hi(0x2015800), %o2 2008894: 9f c7 40 00 call %i5 2008898: 94 12 a2 68 or %o2, 0x268, %o2 ! 2015a68 <_Status_Object_name_errors_to_status+0x1a8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200889c: 10 bf ff a2 b 2008724 <_Heap_Walk+0x40> 20088a0: 82 10 20 00 clr %g1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 20088a4: f4 06 20 08 ld [ %i0 + 8 ], %i2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 20088a8: ea 06 20 10 ld [ %i0 + 0x10 ], %l5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 20088ac: 80 a6 00 1a cmp %i0, %i2 20088b0: 02 80 00 0d be 20088e4 <_Heap_Walk+0x200> 20088b4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20088b8: 80 a0 40 1a cmp %g1, %i2 20088bc: 28 80 00 bc bleu,a 2008bac <_Heap_Walk+0x4c8> <== ALWAYS TAKEN 20088c0: e6 06 20 24 ld [ %i0 + 0x24 ], %l3 if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 20088c4: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 20088c8: 92 10 20 01 mov 1, %o1 20088cc: 96 10 00 1a mov %i2, %o3 20088d0: 15 00 80 56 sethi %hi(0x2015800), %o2 20088d4: 9f c7 40 00 call %i5 20088d8: 94 12 a2 e0 or %o2, 0x2e0, %o2 ! 2015ae0 <_Status_Object_name_errors_to_status+0x220> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20088dc: 10 bf ff 92 b 2008724 <_Heap_Walk+0x40> 20088e0: 82 10 20 00 clr %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20088e4: 2d 00 80 57 sethi %hi(0x2015c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20088e8: 2f 00 80 57 sethi %hi(0x2015c00), %l7 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20088ec: a4 10 00 1c mov %i4, %l2 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20088f0: ac 15 a1 10 or %l6, 0x110, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20088f4: ae 15 e0 f8 or %l7, 0xf8, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 20088f8: 2b 00 80 57 sethi %hi(0x2015c00), %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20088fc: a6 0d 3f fe and %l4, -2, %l3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008900: b4 04 c0 12 add %l3, %l2, %i2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008904: 80 a0 40 1a cmp %g1, %i2 2008908: 28 80 00 0b bleu,a 2008934 <_Heap_Walk+0x250> <== ALWAYS TAKEN 200890c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2008910: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008914: 92 10 20 01 mov 1, %o1 2008918: 96 10 00 12 mov %l2, %o3 200891c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008920: 98 10 00 1a mov %i2, %o4 2008924: 9f c7 40 00 call %i5 2008928: 94 12 a3 88 or %o2, 0x388, %o2 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 200892c: 10 bf ff 7e b 2008724 <_Heap_Walk+0x40> 2008930: 82 10 20 00 clr %g1 2008934: 80 a0 40 1a cmp %g1, %i2 2008938: 0a bf ff f7 bcs 2008914 <_Heap_Walk+0x230> 200893c: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008940: 82 1c 80 11 xor %l2, %l1, %g1 2008944: 80 a0 00 01 cmp %g0, %g1 2008948: 82 40 20 00 addx %g0, 0, %g1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200894c: 90 10 00 13 mov %l3, %o0 2008950: c2 27 bf fc st %g1, [ %fp + -4 ] 2008954: 7f ff e4 5e call 2001acc <.urem> 2008958: 92 10 00 10 mov %l0, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 200895c: 80 a2 20 00 cmp %o0, 0 2008960: 02 80 00 05 be 2008974 <_Heap_Walk+0x290> 2008964: c2 07 bf fc ld [ %fp + -4 ], %g1 2008968: 80 88 60 ff btst 0xff, %g1 200896c: 12 80 00 76 bne 2008b44 <_Heap_Walk+0x460> 2008970: 90 10 00 19 mov %i1, %o0 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008974: 80 a6 c0 13 cmp %i3, %l3 2008978: 08 80 00 05 bleu 200898c <_Heap_Walk+0x2a8> 200897c: 80 a4 80 1a cmp %l2, %i2 2008980: 80 88 60 ff btst 0xff, %g1 2008984: 12 80 00 78 bne 2008b64 <_Heap_Walk+0x480> <== ALWAYS TAKEN 2008988: 80 a4 80 1a cmp %l2, %i2 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 200898c: 2a 80 00 06 bcs,a 20089a4 <_Heap_Walk+0x2c0> 2008990: c2 06 a0 04 ld [ %i2 + 4 ], %g1 2008994: 80 88 60 ff btst 0xff, %g1 2008998: 12 80 00 7d bne 2008b8c <_Heap_Walk+0x4a8> 200899c: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20089a0: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 20089a4: 80 88 60 01 btst 1, %g1 20089a8: 02 80 00 19 be 2008a0c <_Heap_Walk+0x328> 20089ac: a8 0d 20 01 and %l4, 1, %l4 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 20089b0: 80 a5 20 00 cmp %l4, 0 20089b4: 22 80 00 0e be,a 20089ec <_Heap_Walk+0x308> 20089b8: da 04 80 00 ld [ %l2 ], %o5 (*printer)( 20089bc: 90 10 00 19 mov %i1, %o0 20089c0: 92 10 20 00 clr %o1 20089c4: 94 10 00 17 mov %l7, %o2 20089c8: 96 10 00 12 mov %l2, %o3 20089cc: 9f c7 40 00 call %i5 20089d0: 98 10 00 13 mov %l3, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20089d4: 80 a7 00 1a cmp %i4, %i2 20089d8: 02 80 00 42 be 2008ae0 <_Heap_Walk+0x3fc> 20089dc: a4 10 00 1a mov %i2, %l2 20089e0: e8 06 a0 04 ld [ %i2 + 4 ], %l4 20089e4: 10 bf ff c6 b 20088fc <_Heap_Walk+0x218> 20089e8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20089ec: 96 10 00 12 mov %l2, %o3 20089f0: 90 10 00 19 mov %i1, %o0 20089f4: 92 10 20 00 clr %o1 20089f8: 94 10 00 16 mov %l6, %o2 20089fc: 9f c7 40 00 call %i5 2008a00: 98 10 00 13 mov %l3, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008a04: 10 bf ff f5 b 20089d8 <_Heap_Walk+0x2f4> 2008a08: 80 a7 00 1a cmp %i4, %i2 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008a0c: da 04 a0 0c ld [ %l2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a10: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008a14: 05 00 80 56 sethi %hi(0x2015800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 2008a18: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008a1c: 80 a0 40 0d cmp %g1, %o5 2008a20: 02 80 00 05 be 2008a34 <_Heap_Walk+0x350> 2008a24: 86 10 a0 f8 or %g2, 0xf8, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008a28: 80 a6 00 0d cmp %i0, %o5 2008a2c: 02 80 00 3c be 2008b1c <_Heap_Walk+0x438> 2008a30: 86 15 60 c0 or %l5, 0xc0, %g3 block->next, block->next == last_free_block ? 2008a34: c2 04 a0 08 ld [ %l2 + 8 ], %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a38: 1f 00 80 56 sethi %hi(0x2015800), %o7 2008a3c: 80 a1 00 01 cmp %g4, %g1 2008a40: 02 80 00 05 be 2008a54 <_Heap_Walk+0x370> 2008a44: 84 13 e1 18 or %o7, 0x118, %g2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008a48: 80 a6 00 01 cmp %i0, %g1 2008a4c: 02 80 00 31 be 2008b10 <_Heap_Walk+0x42c> 2008a50: 84 15 60 c0 or %l5, 0xc0, %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a54: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008a58: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2008a5c: c4 23 a0 64 st %g2, [ %sp + 0x64 ] 2008a60: 90 10 00 19 mov %i1, %o0 2008a64: 92 10 20 00 clr %o1 2008a68: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008a6c: 96 10 00 12 mov %l2, %o3 2008a70: 94 12 a0 50 or %o2, 0x50, %o2 2008a74: 9f c7 40 00 call %i5 2008a78: 98 10 00 13 mov %l3, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008a7c: da 06 80 00 ld [ %i2 ], %o5 2008a80: 80 a4 c0 0d cmp %l3, %o5 2008a84: 12 80 00 19 bne 2008ae8 <_Heap_Walk+0x404> 2008a88: 80 a5 20 00 cmp %l4, 0 ); return false; } if ( !prev_used ) { 2008a8c: 02 80 00 27 be 2008b28 <_Heap_Walk+0x444> 2008a90: 90 10 00 19 mov %i1, %o0 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2008a94: c2 06 20 08 ld [ %i0 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008a98: 80 a6 00 01 cmp %i0, %g1 2008a9c: 02 80 00 0b be 2008ac8 <_Heap_Walk+0x3e4> <== NEVER TAKEN 2008aa0: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 2008aa4: 80 a4 80 01 cmp %l2, %g1 2008aa8: 02 bf ff cc be 20089d8 <_Heap_Walk+0x2f4> 2008aac: 80 a7 00 1a cmp %i4, %i2 return true; } free_block = free_block->next; 2008ab0: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008ab4: 80 a6 00 01 cmp %i0, %g1 2008ab8: 12 bf ff fc bne 2008aa8 <_Heap_Walk+0x3c4> 2008abc: 80 a4 80 01 cmp %l2, %g1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008ac0: 90 10 00 19 mov %i1, %o0 2008ac4: 92 10 20 01 mov 1, %o1 2008ac8: 96 10 00 12 mov %l2, %o3 2008acc: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008ad0: 9f c7 40 00 call %i5 2008ad4: 94 12 a1 38 or %o2, 0x138, %o2 ! 2015d38 <_Status_Object_name_errors_to_status+0x478> return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008ad8: 10 bf ff 13 b 2008724 <_Heap_Walk+0x40> 2008adc: 82 10 20 00 clr %g1 } block = next_block; } while ( block != first_block ); return true; 2008ae0: 10 bf ff 11 b 2008724 <_Heap_Walk+0x40> 2008ae4: 82 10 20 01 mov 1, %g1 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 2008ae8: f4 23 a0 5c st %i2, [ %sp + 0x5c ] 2008aec: 90 10 00 19 mov %i1, %o0 2008af0: 92 10 20 01 mov 1, %o1 2008af4: 96 10 00 12 mov %l2, %o3 2008af8: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008afc: 98 10 00 13 mov %l3, %o4 2008b00: 9f c7 40 00 call %i5 2008b04: 94 12 a0 88 or %o2, 0x88, %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008b08: 10 bf ff 07 b 2008724 <_Heap_Walk+0x40> 2008b0c: 82 10 20 00 clr %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008b10: 05 00 80 56 sethi %hi(0x2015800), %g2 2008b14: 10 bf ff d0 b 2008a54 <_Heap_Walk+0x370> 2008b18: 84 10 a1 28 or %g2, 0x128, %g2 ! 2015928 <_Status_Object_name_errors_to_status+0x68> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008b1c: 07 00 80 56 sethi %hi(0x2015800), %g3 2008b20: 10 bf ff c5 b 2008a34 <_Heap_Walk+0x350> 2008b24: 86 10 e1 08 or %g3, 0x108, %g3 ! 2015908 <_Status_Object_name_errors_to_status+0x48> return false; } if ( !prev_used ) { (*printer)( 2008b28: 92 10 20 01 mov 1, %o1 2008b2c: 96 10 00 12 mov %l2, %o3 2008b30: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b34: 9f c7 40 00 call %i5 2008b38: 94 12 a0 c8 or %o2, 0xc8, %o2 ! 2015cc8 <_Status_Object_name_errors_to_status+0x408> return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008b3c: 10 bf fe fa b 2008724 <_Heap_Walk+0x40> 2008b40: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 2008b44: 92 10 20 01 mov 1, %o1 2008b48: 96 10 00 12 mov %l2, %o3 2008b4c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008b50: 98 10 00 13 mov %l3, %o4 2008b54: 9f c7 40 00 call %i5 2008b58: 94 12 a3 b8 or %o2, 0x3b8, %o2 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 2008b5c: 10 bf fe f2 b 2008724 <_Heap_Walk+0x40> 2008b60: 82 10 20 00 clr %g1 } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 2008b64: 90 10 00 19 mov %i1, %o0 2008b68: 92 10 20 01 mov 1, %o1 2008b6c: 96 10 00 12 mov %l2, %o3 2008b70: 15 00 80 56 sethi %hi(0x2015800), %o2 2008b74: 98 10 00 13 mov %l3, %o4 2008b78: 94 12 a3 e8 or %o2, 0x3e8, %o2 2008b7c: 9f c7 40 00 call %i5 2008b80: 9a 10 00 1b mov %i3, %o5 block, block_size, min_block_size ); return false; 2008b84: 10 bf fe e8 b 2008724 <_Heap_Walk+0x40> 2008b88: 82 10 20 00 clr %g1 } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 2008b8c: 92 10 20 01 mov 1, %o1 2008b90: 96 10 00 12 mov %l2, %o3 2008b94: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b98: 98 10 00 1a mov %i2, %o4 2008b9c: 9f c7 40 00 call %i5 2008ba0: 94 12 a0 18 or %o2, 0x18, %o2 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2008ba4: 10 bf fe e0 b 2008724 <_Heap_Walk+0x40> 2008ba8: 82 10 20 00 clr %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008bac: 80 a6 80 13 cmp %i2, %l3 2008bb0: 18 bf ff 46 bgu 20088c8 <_Heap_Walk+0x1e4> <== NEVER TAKEN 2008bb4: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008bb8: c2 27 bf fc st %g1, [ %fp + -4 ] 2008bbc: 90 06 a0 08 add %i2, 8, %o0 2008bc0: 7f ff e3 c3 call 2001acc <.urem> 2008bc4: 92 10 00 15 mov %l5, %o1 ); return false; } if ( 2008bc8: 80 a2 20 00 cmp %o0, 0 2008bcc: 12 80 00 36 bne 2008ca4 <_Heap_Walk+0x5c0> <== NEVER TAKEN 2008bd0: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008bd4: c4 06 a0 04 ld [ %i2 + 4 ], %g2 2008bd8: 84 08 bf fe and %g2, -2, %g2 block = next_block; } while ( block != first_block ); return true; } 2008bdc: 84 06 80 02 add %i2, %g2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008be0: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008be4: 80 88 a0 01 btst 1, %g2 2008be8: 12 80 00 27 bne 2008c84 <_Heap_Walk+0x5a0> <== NEVER TAKEN 2008bec: 84 10 00 18 mov %i0, %g2 2008bf0: 10 80 00 19 b 2008c54 <_Heap_Walk+0x570> 2008bf4: a4 10 00 1a mov %i2, %l2 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008bf8: 80 a6 00 1a cmp %i0, %i2 2008bfc: 02 bf ff 3a be 20088e4 <_Heap_Walk+0x200> 2008c00: 80 a6 80 01 cmp %i2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008c04: 0a bf ff 31 bcs 20088c8 <_Heap_Walk+0x1e4> 2008c08: 90 10 00 19 mov %i1, %o0 2008c0c: 80 a6 80 13 cmp %i2, %l3 2008c10: 18 bf ff 2f bgu 20088cc <_Heap_Walk+0x1e8> <== NEVER TAKEN 2008c14: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008c18: c2 27 bf fc st %g1, [ %fp + -4 ] 2008c1c: 90 06 a0 08 add %i2, 8, %o0 2008c20: 7f ff e3 ab call 2001acc <.urem> 2008c24: 92 10 00 15 mov %l5, %o1 ); return false; } if ( 2008c28: 80 a2 20 00 cmp %o0, 0 2008c2c: 12 80 00 1e bne 2008ca4 <_Heap_Walk+0x5c0> 2008c30: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008c34: c6 06 a0 04 ld [ %i2 + 4 ], %g3 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c38: 84 10 00 12 mov %l2, %g2 2008c3c: 86 08 ff fe and %g3, -2, %g3 block = next_block; } while ( block != first_block ); return true; } 2008c40: 86 06 80 03 add %i2, %g3, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008c44: c6 00 e0 04 ld [ %g3 + 4 ], %g3 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c48: 80 88 e0 01 btst 1, %g3 2008c4c: 12 80 00 0e bne 2008c84 <_Heap_Walk+0x5a0> 2008c50: a4 10 00 1a mov %i2, %l2 ); return false; } if ( free_block->prev != prev_block ) { 2008c54: d8 06 a0 0c ld [ %i2 + 0xc ], %o4 2008c58: 80 a3 00 02 cmp %o4, %g2 2008c5c: 22 bf ff e7 be,a 2008bf8 <_Heap_Walk+0x514> 2008c60: f4 06 a0 08 ld [ %i2 + 8 ], %i2 (*printer)( 2008c64: 90 10 00 19 mov %i1, %o0 2008c68: 92 10 20 01 mov 1, %o1 2008c6c: 96 10 00 1a mov %i2, %o3 2008c70: 15 00 80 56 sethi %hi(0x2015800), %o2 2008c74: 9f c7 40 00 call %i5 2008c78: 94 12 a3 50 or %o2, 0x350, %o2 ! 2015b50 <_Status_Object_name_errors_to_status+0x290> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c7c: 10 bf fe aa b 2008724 <_Heap_Walk+0x40> 2008c80: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c84: 90 10 00 19 mov %i1, %o0 2008c88: 92 10 20 01 mov 1, %o1 2008c8c: 96 10 00 1a mov %i2, %o3 2008c90: 15 00 80 56 sethi %hi(0x2015800), %o2 2008c94: 9f c7 40 00 call %i5 2008c98: 94 12 a3 30 or %o2, 0x330, %o2 ! 2015b30 <_Status_Object_name_errors_to_status+0x270> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c9c: 10 bf fe a2 b 2008724 <_Heap_Walk+0x40> 2008ca0: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008ca4: 90 10 00 19 mov %i1, %o0 2008ca8: 92 10 20 01 mov 1, %o1 2008cac: 96 10 00 1a mov %i2, %o3 2008cb0: 15 00 80 56 sethi %hi(0x2015800), %o2 2008cb4: 9f c7 40 00 call %i5 2008cb8: 94 12 a3 00 or %o2, 0x300, %o2 ! 2015b00 <_Status_Object_name_errors_to_status+0x240> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008cbc: 10 bf fe 9a b 2008724 <_Heap_Walk+0x40> 2008cc0: 82 10 20 00 clr %g1 =============================================================================== 02007148 <_IO_Initialize_all_drivers>: * * Output Parameters: NONE */ void _IO_Initialize_all_drivers( void ) { 2007148: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 200714c: 39 00 80 71 sethi %hi(0x201c400), %i4 2007150: c2 07 21 f4 ld [ %i4 + 0x1f4 ], %g1 ! 201c5f4 <_IO_Number_of_drivers> 2007154: 80 a0 60 00 cmp %g1, 0 2007158: 02 80 00 0c be 2007188 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 200715c: ba 10 20 00 clr %i5 2007160: b8 17 21 f4 or %i4, 0x1f4, %i4 (void) rtems_io_initialize( major, 0, NULL ); 2007164: 90 10 00 1d mov %i5, %o0 2007168: 92 10 20 00 clr %o1 200716c: 40 00 15 9b call 200c7d8 2007170: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2007174: c2 07 00 00 ld [ %i4 ], %g1 2007178: ba 07 60 01 inc %i5 200717c: 80 a0 40 1d cmp %g1, %i5 2007180: 18 bf ff fa bgu 2007168 <_IO_Initialize_all_drivers+0x20> 2007184: 90 10 00 1d mov %i5, %o0 2007188: 81 c7 e0 08 ret 200718c: 81 e8 00 00 restore =============================================================================== 0200707c <_IO_Manager_initialization>: * workspace. * */ void _IO_Manager_initialization(void) { 200707c: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = Configuration.Device_driver_table; 2007080: 03 00 80 6d sethi %hi(0x201b400), %g1 2007084: 82 10 62 4c or %g1, 0x24c, %g1 ! 201b64c drivers_in_table = Configuration.number_of_device_drivers; 2007088: f8 00 60 30 ld [ %g1 + 0x30 ], %i4 number_of_drivers = Configuration.maximum_drivers; 200708c: f2 00 60 2c ld [ %g1 + 0x2c ], %i1 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 2007090: 80 a7 00 19 cmp %i4, %i1 2007094: 0a 80 00 08 bcs 20070b4 <_IO_Manager_initialization+0x38> 2007098: fa 00 60 34 ld [ %g1 + 0x34 ], %i5 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 200709c: 03 00 80 71 sethi %hi(0x201c400), %g1 20070a0: fa 20 61 f8 st %i5, [ %g1 + 0x1f8 ] ! 201c5f8 <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 20070a4: 03 00 80 71 sethi %hi(0x201c400), %g1 20070a8: f8 20 61 f4 st %i4, [ %g1 + 0x1f4 ] ! 201c5f4 <_IO_Number_of_drivers> return; 20070ac: 81 c7 e0 08 ret 20070b0: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 20070b4: 83 2e 60 03 sll %i1, 3, %g1 20070b8: b5 2e 60 05 sll %i1, 5, %i2 20070bc: b4 26 80 01 sub %i2, %g1, %i2 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 20070c0: 40 00 0d 1a call 200a528 <_Workspace_Allocate_or_fatal_error> 20070c4: 90 10 00 1a mov %i2, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 20070c8: 03 00 80 71 sethi %hi(0x201c400), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 20070cc: 37 00 80 71 sethi %hi(0x201c400), %i3 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 20070d0: f2 20 61 f4 st %i1, [ %g1 + 0x1f4 ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 20070d4: d0 26 e1 f8 st %o0, [ %i3 + 0x1f8 ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 20070d8: 92 10 20 00 clr %o1 20070dc: 40 00 21 1a call 200f544 20070e0: 94 10 00 1a mov %i2, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 20070e4: 80 a7 20 00 cmp %i4, 0 20070e8: 02 bf ff f1 be 20070ac <_IO_Manager_initialization+0x30> <== NEVER TAKEN 20070ec: f6 06 e1 f8 ld [ %i3 + 0x1f8 ], %i3 20070f0: 82 10 20 00 clr %g1 20070f4: 88 10 20 00 clr %g4 _IO_Driver_address_table[index] = driver_table[index]; 20070f8: c4 07 40 01 ld [ %i5 + %g1 ], %g2 20070fc: 86 07 40 01 add %i5, %g1, %g3 2007100: c4 26 c0 01 st %g2, [ %i3 + %g1 ] 2007104: f4 00 e0 04 ld [ %g3 + 4 ], %i2 2007108: 84 06 c0 01 add %i3, %g1, %g2 200710c: f4 20 a0 04 st %i2, [ %g2 + 4 ] 2007110: f4 00 e0 08 ld [ %g3 + 8 ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007114: 88 01 20 01 inc %g4 _IO_Driver_address_table[index] = driver_table[index]; 2007118: f4 20 a0 08 st %i2, [ %g2 + 8 ] 200711c: f4 00 e0 0c ld [ %g3 + 0xc ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007120: 82 00 60 18 add %g1, 0x18, %g1 _IO_Driver_address_table[index] = driver_table[index]; 2007124: f4 20 a0 0c st %i2, [ %g2 + 0xc ] 2007128: f4 00 e0 10 ld [ %g3 + 0x10 ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 200712c: 80 a1 00 1c cmp %g4, %i4 _IO_Driver_address_table[index] = driver_table[index]; 2007130: f4 20 a0 10 st %i2, [ %g2 + 0x10 ] 2007134: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007138: 12 bf ff f0 bne 20070f8 <_IO_Manager_initialization+0x7c> 200713c: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 2007140: 81 c7 e0 08 ret 2007144: 81 e8 00 00 restore =============================================================================== 02007e44 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007e44: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007e48: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007e4c: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007e50: 80 a0 60 00 cmp %g1, 0 2007e54: 02 80 00 19 be 2007eb8 <_Objects_Allocate+0x74> <== NEVER TAKEN 2007e58: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007e5c: b8 07 60 20 add %i5, 0x20, %i4 2007e60: 7f ff fd 63 call 20073ec <_Chain_Get> 2007e64: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 2007e68: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 2007e6c: 80 a0 60 00 cmp %g1, 0 2007e70: 02 80 00 12 be 2007eb8 <_Objects_Allocate+0x74> 2007e74: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007e78: 80 a2 20 00 cmp %o0, 0 2007e7c: 02 80 00 11 be 2007ec0 <_Objects_Allocate+0x7c> 2007e80: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007e84: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 2007e88: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007e8c: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 2007e90: 40 00 3e 8f call 20178cc <.udiv> 2007e94: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007e98: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2007e9c: 91 2a 20 02 sll %o0, 2, %o0 2007ea0: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2007ea4: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2007ea8: 86 00 ff ff add %g3, -1, %g3 2007eac: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 2007eb0: 82 00 bf ff add %g2, -1, %g1 2007eb4: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2007eb8: 81 c7 e0 08 ret 2007ebc: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 2007ec0: 40 00 00 10 call 2007f00 <_Objects_Extend_information> 2007ec4: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007ec8: 7f ff fd 49 call 20073ec <_Chain_Get> 2007ecc: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 2007ed0: b0 92 20 00 orcc %o0, 0, %i0 2007ed4: 32 bf ff ed bne,a 2007e88 <_Objects_Allocate+0x44> 2007ed8: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 ); } #endif return the_object; } 2007edc: 81 c7 e0 08 ret 2007ee0: 81 e8 00 00 restore =============================================================================== 02007f00 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 2007f00: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007f04: e0 06 20 34 ld [ %i0 + 0x34 ], %l0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007f08: f8 16 20 0a lduh [ %i0 + 0xa ], %i4 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007f0c: 80 a4 20 00 cmp %l0, 0 2007f10: 02 80 00 a6 be 20081a8 <_Objects_Extend_information+0x2a8> 2007f14: f2 16 20 10 lduh [ %i0 + 0x10 ], %i1 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2007f18: f4 16 20 14 lduh [ %i0 + 0x14 ], %i2 2007f1c: b3 2e 60 10 sll %i1, 0x10, %i1 2007f20: 92 10 00 1a mov %i2, %o1 2007f24: 40 00 3e 6a call 20178cc <.udiv> 2007f28: 91 36 60 10 srl %i1, 0x10, %o0 2007f2c: a7 2a 20 10 sll %o0, 0x10, %l3 2007f30: a7 34 e0 10 srl %l3, 0x10, %l3 for ( ; block < block_count; block++ ) { 2007f34: 80 a4 e0 00 cmp %l3, 0 2007f38: 02 80 00 a3 be 20081c4 <_Objects_Extend_information+0x2c4><== NEVER TAKEN 2007f3c: 90 10 00 1a mov %i2, %o0 if ( information->object_blocks[ block ] == NULL ) { 2007f40: c2 04 00 00 ld [ %l0 ], %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007f44: ba 10 00 1c mov %i4, %i5 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007f48: 80 a0 60 00 cmp %g1, 0 2007f4c: 12 80 00 08 bne 2007f6c <_Objects_Extend_information+0x6c><== ALWAYS TAKEN 2007f50: b6 10 20 00 clr %i3 do_extend = false; 2007f54: 10 80 00 a0 b 20081d4 <_Objects_Extend_information+0x2d4> <== NOT EXECUTED 2007f58: b4 10 20 00 clr %i2 <== NOT EXECUTED block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007f5c: c2 04 00 01 ld [ %l0 + %g1 ], %g1 2007f60: 80 a0 60 00 cmp %g1, 0 2007f64: 22 80 00 08 be,a 2007f84 <_Objects_Extend_information+0x84> 2007f68: b4 10 20 00 clr %i2 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007f6c: b6 06 e0 01 inc %i3 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 2007f70: ba 07 40 1a add %i5, %i2, %i5 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007f74: 80 a4 c0 1b cmp %l3, %i3 2007f78: 18 bf ff f9 bgu 2007f5c <_Objects_Extend_information+0x5c> 2007f7c: 83 2e e0 02 sll %i3, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007f80: b4 10 20 01 mov 1, %i2 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007f84: b3 36 60 10 srl %i1, 0x10, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007f88: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007f8c: b2 06 40 08 add %i1, %o0, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007f90: 82 10 63 ff or %g1, 0x3ff, %g1 2007f94: 80 a6 40 01 cmp %i1, %g1 2007f98: 18 80 00 93 bgu 20081e4 <_Objects_Extend_information+0x2e4> 2007f9c: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 2007fa0: 40 00 3e 11 call 20177e4 <.umul> 2007fa4: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2007fa8: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2007fac: 80 a0 60 00 cmp %g1, 0 2007fb0: 02 80 00 6a be 2008158 <_Objects_Extend_information+0x258> 2007fb4: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 2007fb8: 40 00 09 4e call 200a4f0 <_Workspace_Allocate> 2007fbc: 01 00 00 00 nop if ( !new_object_block ) 2007fc0: a0 92 20 00 orcc %o0, 0, %l0 2007fc4: 02 80 00 88 be 20081e4 <_Objects_Extend_information+0x2e4> 2007fc8: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 2007fcc: 80 8e a0 ff btst 0xff, %i2 2007fd0: 22 80 00 3f be,a 20080cc <_Objects_Extend_information+0x1cc> 2007fd4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 */ /* * Up the block count and maximum */ block_count++; 2007fd8: b4 04 e0 01 add %l3, 1, %i2 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007fdc: 91 2e a0 01 sll %i2, 1, %o0 2007fe0: 90 02 00 1a add %o0, %i2, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 2007fe4: 90 06 40 08 add %i1, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007fe8: 90 02 00 1c add %o0, %i4, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 2007fec: 40 00 09 41 call 200a4f0 <_Workspace_Allocate> 2007ff0: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { 2007ff4: a2 92 20 00 orcc %o0, 0, %l1 2007ff8: 02 80 00 79 be 20081dc <_Objects_Extend_information+0x2dc> 2007ffc: b5 2e a0 02 sll %i2, 2, %i2 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 2008000: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2008004: 80 a7 00 01 cmp %i4, %g1 2008008: a4 04 40 1a add %l1, %i2, %l2 200800c: 0a 80 00 57 bcs 2008168 <_Objects_Extend_information+0x268> 2008010: b4 04 80 1a add %l2, %i2, %i2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2008014: 80 a7 20 00 cmp %i4, 0 2008018: 02 80 00 07 be 2008034 <_Objects_Extend_information+0x134><== NEVER TAKEN 200801c: 82 10 20 00 clr %g1 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2008020: 85 28 60 02 sll %g1, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2008024: 82 00 60 01 inc %g1 2008028: 80 a7 00 01 cmp %i4, %g1 200802c: 18 bf ff fd bgu 2008020 <_Objects_Extend_information+0x120><== NEVER TAKEN 2008030: c0 20 80 1a clr [ %g2 + %i2 ] 2008034: a7 2c e0 02 sll %l3, 2, %l3 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2008038: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 200803c: c0 24 40 13 clr [ %l1 + %l3 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2008040: 86 07 40 03 add %i5, %g3, %g3 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008044: 80 a7 40 03 cmp %i5, %g3 2008048: 1a 80 00 0a bcc 2008070 <_Objects_Extend_information+0x170><== NEVER TAKEN 200804c: c0 24 80 13 clr [ %l2 + %l3 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2008050: 83 2f 60 02 sll %i5, 2, %g1 2008054: 84 10 00 1d mov %i5, %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008058: 82 06 80 01 add %i2, %g1, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 200805c: c0 20 40 00 clr [ %g1 ] object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 2008060: 84 00 a0 01 inc %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008064: 80 a0 c0 02 cmp %g3, %g2 2008068: 18 bf ff fd bgu 200805c <_Objects_Extend_information+0x15c> 200806c: 82 00 60 04 add %g1, 4, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 2008070: 7f ff e8 5d call 20021e4 2008074: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2008078: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 200807c: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 2008080: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2008084: f2 36 20 10 sth %i1, [ %i0 + 0x10 ] 2008088: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 200808c: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 2008090: e2 26 20 34 st %l1, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 2008094: e4 26 20 30 st %l2, [ %i0 + 0x30 ] information->local_table = local_table; 2008098: f4 26 20 1c st %i2, [ %i0 + 0x1c ] information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 200809c: b3 2e 60 10 sll %i1, 0x10, %i1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20080a0: 03 00 00 40 sethi %hi(0x10000), %g1 20080a4: b3 36 60 10 srl %i1, 0x10, %i1 20080a8: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20080ac: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20080b0: 82 10 40 19 or %g1, %i1, %g1 20080b4: c2 26 20 0c st %g1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 20080b8: 7f ff e8 4f call 20021f4 20080bc: 01 00 00 00 nop _Workspace_Free( old_tables ); 20080c0: 40 00 09 14 call 200a510 <_Workspace_Free> 20080c4: 90 10 00 1c mov %i4, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 20080c8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20080cc: b7 2e e0 02 sll %i3, 2, %i3 20080d0: e0 20 40 1b st %l0, [ %g1 + %i3 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 20080d4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20080d8: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 20080dc: d2 00 40 1b ld [ %g1 + %i3 ], %o1 20080e0: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 20080e4: 90 07 bf f4 add %fp, -12, %o0 20080e8: 40 00 11 d4 call 200c838 <_Chain_Initialize> 20080ec: 39 00 00 40 sethi %hi(0x10000), %i4 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 20080f0: 10 80 00 0d b 2008124 <_Objects_Extend_information+0x224> 20080f4: b4 06 20 20 add %i0, 0x20, %i2 the_object->id = _Objects_Build_id( 20080f8: c6 16 20 04 lduh [ %i0 + 4 ], %g3 20080fc: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2008100: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2008104: 84 10 80 1c or %g2, %i4, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2008108: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 200810c: 84 10 80 1d or %g2, %i5, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2008110: 90 10 00 1a mov %i2, %o0 2008114: 92 10 00 01 mov %g1, %o1 index++; 2008118: ba 07 60 01 inc %i5 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 200811c: 7f ff fc a0 call 200739c <_Chain_Append> 2008120: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2008124: 7f ff fc b2 call 20073ec <_Chain_Get> 2008128: 90 07 bf f4 add %fp, -12, %o0 200812c: 82 92 20 00 orcc %o0, 0, %g1 2008130: 32 bf ff f2 bne,a 20080f8 <_Objects_Extend_information+0x1f8> 2008134: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2008138: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 200813c: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2008140: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2008144: c8 20 c0 1b st %g4, [ %g3 + %i3 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2008148: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 200814c: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 2008150: 81 c7 e0 08 ret 2008154: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 2008158: 40 00 08 f4 call 200a528 <_Workspace_Allocate_or_fatal_error> 200815c: 01 00 00 00 nop 2008160: 10 bf ff 9b b 2007fcc <_Objects_Extend_information+0xcc> 2008164: a0 10 00 08 mov %o0, %l0 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2008168: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 200816c: a7 2c e0 02 sll %l3, 2, %l3 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2008170: 40 00 1c b9 call 200f454 2008174: 94 10 00 13 mov %l3, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 2008178: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 200817c: 94 10 00 13 mov %l3, %o2 2008180: 40 00 1c b5 call 200f454 2008184: 90 10 00 12 mov %l2, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2008188: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 200818c: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2008190: b8 07 00 01 add %i4, %g1, %i4 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2008194: 90 10 00 1a mov %i2, %o0 2008198: 40 00 1c af call 200f454 200819c: 95 2f 20 02 sll %i4, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 20081a0: 10 bf ff a7 b 200803c <_Objects_Extend_information+0x13c> 20081a4: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 20081a8: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20081ac: ba 10 00 1c mov %i4, %i5 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 20081b0: b4 10 20 01 mov 1, %i2 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20081b4: b6 10 20 00 clr %i3 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 20081b8: a6 10 20 00 clr %l3 20081bc: 10 bf ff 72 b 2007f84 <_Objects_Extend_information+0x84> 20081c0: b3 2e 60 10 sll %i1, 0x10, %i1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20081c4: ba 10 00 1c mov %i4, %i5 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 20081c8: b4 10 20 01 mov 1, %i2 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20081cc: 10 bf ff 6e b 2007f84 <_Objects_Extend_information+0x84> <== NOT EXECUTED 20081d0: b6 10 20 00 clr %i3 <== NOT EXECUTED 20081d4: 10 bf ff 6c b 2007f84 <_Objects_Extend_information+0x84> <== NOT EXECUTED 20081d8: b6 10 20 00 clr %i3 <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 20081dc: 40 00 08 cd call 200a510 <_Workspace_Free> 20081e0: 90 10 00 10 mov %l0, %o0 return; 20081e4: 81 c7 e0 08 ret 20081e8: 81 e8 00 00 restore =============================================================================== 02008290 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2008290: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2008294: 80 a6 60 00 cmp %i1, 0 2008298: 02 80 00 17 be 20082f4 <_Objects_Get_information+0x64> 200829c: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 20082a0: 40 00 12 ef call 200ce5c <_Objects_API_maximum_class> 20082a4: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 20082a8: 80 a2 20 00 cmp %o0, 0 20082ac: 02 80 00 12 be 20082f4 <_Objects_Get_information+0x64> 20082b0: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 20082b4: 0a 80 00 10 bcs 20082f4 <_Objects_Get_information+0x64> 20082b8: 03 00 80 70 sethi %hi(0x201c000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 20082bc: b1 2e 20 02 sll %i0, 2, %i0 20082c0: 82 10 62 98 or %g1, 0x298, %g1 20082c4: c2 00 40 18 ld [ %g1 + %i0 ], %g1 20082c8: 80 a0 60 00 cmp %g1, 0 20082cc: 02 80 00 0a be 20082f4 <_Objects_Get_information+0x64> <== NEVER TAKEN 20082d0: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 20082d4: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 20082d8: 80 a7 60 00 cmp %i5, 0 20082dc: 02 80 00 06 be 20082f4 <_Objects_Get_information+0x64> <== NEVER TAKEN 20082e0: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 20082e4: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 20082e8: 80 a0 00 01 cmp %g0, %g1 20082ec: 82 60 20 00 subx %g0, 0, %g1 20082f0: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 20082f4: 81 c7 e0 08 ret 20082f8: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02009aec <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 2009aec: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2009af0: 80 a6 60 00 cmp %i1, 0 2009af4: 02 80 00 3c be 2009be4 <_Objects_Get_name_as_string+0xf8> 2009af8: 80 a6 a0 00 cmp %i2, 0 return NULL; if ( name == NULL ) 2009afc: 02 80 00 35 be 2009bd0 <_Objects_Get_name_as_string+0xe4> 2009b00: 80 a6 20 00 cmp %i0, 0 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009b04: 02 80 00 35 be 2009bd8 <_Objects_Get_name_as_string+0xec> 2009b08: 03 00 80 7c sethi %hi(0x201f000), %g1 information = _Objects_Get_information_id( tmpId ); 2009b0c: 7f ff ff ba call 20099f4 <_Objects_Get_information_id> 2009b10: 90 10 00 18 mov %i0, %o0 if ( !information ) 2009b14: 80 a2 20 00 cmp %o0, 0 2009b18: 02 80 00 33 be 2009be4 <_Objects_Get_name_as_string+0xf8> 2009b1c: 92 10 00 18 mov %i0, %o1 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 2009b20: 40 00 00 34 call 2009bf0 <_Objects_Get> 2009b24: 94 07 bf fc add %fp, -4, %o2 switch ( location ) { 2009b28: c2 07 bf fc ld [ %fp + -4 ], %g1 2009b2c: 80 a0 60 00 cmp %g1, 0 2009b30: 32 80 00 2e bne,a 2009be8 <_Objects_Get_name_as_string+0xfc> 2009b34: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 2009b38: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 2009b3c: c0 2f bf f4 clrb [ %fp + -12 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b40: 85 30 60 18 srl %g1, 0x18, %g2 lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; 2009b44: 87 30 60 08 srl %g1, 8, %g3 #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; 2009b48: 89 30 60 10 srl %g1, 0x10, %g4 lname[ 2 ] = (u32_name >> 8) & 0xff; 2009b4c: c6 2f bf f2 stb %g3, [ %fp + -14 ] lname[ 3 ] = (u32_name >> 0) & 0xff; 2009b50: c2 2f bf f3 stb %g1, [ %fp + -13 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b54: c4 2f bf f0 stb %g2, [ %fp + -16 ] lname[ 1 ] = (u32_name >> 16) & 0xff; 2009b58: c8 2f bf f1 stb %g4, [ %fp + -15 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b5c: 86 10 00 02 mov %g2, %g3 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009b60: b2 86 7f ff addcc %i1, -1, %i1 2009b64: 02 80 00 19 be 2009bc8 <_Objects_Get_name_as_string+0xdc> <== NEVER TAKEN 2009b68: 82 10 00 1a mov %i2, %g1 2009b6c: 80 a0 a0 00 cmp %g2, 0 2009b70: 02 80 00 16 be 2009bc8 <_Objects_Get_name_as_string+0xdc> 2009b74: 1f 00 80 78 sethi %hi(0x201e000), %o7 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; s = lname; 2009b78: 84 07 bf f0 add %fp, -16, %g2 * This method objects the name of an object and returns its name * in the form of a C string. It attempts to be careful about * overflowing the user's string and about returning unprintable characters. */ char *_Objects_Get_name_as_string( 2009b7c: b2 06 80 19 add %i2, %i1, %i1 2009b80: 10 80 00 05 b 2009b94 <_Objects_Get_name_as_string+0xa8> 2009b84: 9e 13 e0 e4 or %o7, 0xe4, %o7 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009b88: 80 a1 20 00 cmp %g4, 0 2009b8c: 02 80 00 0f be 2009bc8 <_Objects_Get_name_as_string+0xdc> 2009b90: c6 08 80 00 ldub [ %g2 ], %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2009b94: f0 03 c0 00 ld [ %o7 ], %i0 2009b98: 88 08 e0 ff and %g3, 0xff, %g4 2009b9c: 88 06 00 04 add %i0, %g4, %g4 2009ba0: c8 49 20 01 ldsb [ %g4 + 1 ], %g4 2009ba4: 80 89 20 97 btst 0x97, %g4 2009ba8: 12 80 00 03 bne 2009bb4 <_Objects_Get_name_as_string+0xc8> 2009bac: 84 00 a0 01 inc %g2 2009bb0: 86 10 20 2a mov 0x2a, %g3 2009bb4: c6 28 40 00 stb %g3, [ %g1 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009bb8: 82 00 60 01 inc %g1 2009bbc: 80 a0 40 19 cmp %g1, %i1 2009bc0: 32 bf ff f2 bne,a 2009b88 <_Objects_Get_name_as_string+0x9c> 2009bc4: c8 48 80 00 ldsb [ %g2 ], %g4 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; _Thread_Enable_dispatch(); 2009bc8: 40 00 03 b1 call 200aa8c <_Thread_Enable_dispatch> 2009bcc: c0 28 40 00 clrb [ %g1 ] return name; } return NULL; /* unreachable path */ } 2009bd0: 81 c7 e0 08 ret 2009bd4: 91 e8 00 1a restore %g0, %i2, %o0 return NULL; if ( name == NULL ) return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009bd8: c2 00 60 88 ld [ %g1 + 0x88 ], %g1 2009bdc: 10 bf ff cc b 2009b0c <_Objects_Get_name_as_string+0x20> 2009be0: f0 00 60 08 ld [ %g1 + 8 ], %i0 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2009be4: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 2009be8: 81 c7 e0 08 ret 2009bec: 91 e8 00 1a restore %g0, %i2, %o0 =============================================================================== 02007f84 <_Objects_Get_next>: Objects_Information *information, Objects_Id id, Objects_Locations *location_p, Objects_Id *next_id_p ) { 2007f84: 9d e3 bf a0 save %sp, -96, %sp Objects_Control *object; Objects_Id next_id; if ( !information ) return NULL; 2007f88: 90 10 20 00 clr %o0 ) { Objects_Control *object; Objects_Id next_id; if ( !information ) 2007f8c: 80 a6 20 00 cmp %i0, 0 2007f90: 02 80 00 19 be 2007ff4 <_Objects_Get_next+0x70> 2007f94: ba 10 00 18 mov %i0, %i5 return NULL; if ( !location_p ) 2007f98: 80 a6 a0 00 cmp %i2, 0 2007f9c: 02 80 00 16 be 2007ff4 <_Objects_Get_next+0x70> 2007fa0: 80 a6 e0 00 cmp %i3, 0 return NULL; if ( !next_id_p ) 2007fa4: 02 80 00 14 be 2007ff4 <_Objects_Get_next+0x70> 2007fa8: 83 2e 60 10 sll %i1, 0x10, %g1 return NULL; if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX) 2007fac: 80 a0 60 00 cmp %g1, 0 2007fb0: 22 80 00 13 be,a 2007ffc <_Objects_Get_next+0x78> 2007fb4: f2 06 20 08 ld [ %i0 + 8 ], %i1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fb8: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 2007fbc: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fc0: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fc4: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fc8: 90 10 00 1d mov %i5, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fcc: 80 a0 80 01 cmp %g2, %g1 2007fd0: 0a 80 00 13 bcs 200801c <_Objects_Get_next+0x98> 2007fd4: 94 10 00 1a mov %i2, %o2 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fd8: 40 00 00 18 call 2008038 <_Objects_Get> 2007fdc: b2 06 60 01 inc %i1 next_id++; } while (*location_p != OBJECTS_LOCAL); 2007fe0: c2 06 80 00 ld [ %i2 ], %g1 2007fe4: 80 a0 60 00 cmp %g1, 0 2007fe8: 32 bf ff f5 bne,a 2007fbc <_Objects_Get_next+0x38> 2007fec: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 *next_id_p = next_id; 2007ff0: f2 26 c0 00 st %i1, [ %i3 ] return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; } 2007ff4: 81 c7 e0 08 ret 2007ff8: 91 e8 00 08 restore %g0, %o0, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007ffc: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 2008000: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2008004: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2008008: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 200800c: 90 10 00 1d mov %i5, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2008010: 80 a0 80 01 cmp %g2, %g1 2008014: 1a bf ff f1 bcc 2007fd8 <_Objects_Get_next+0x54> <== ALWAYS TAKEN 2008018: 94 10 00 1a mov %i2, %o2 { *location_p = OBJECTS_ERROR; 200801c: 82 10 20 01 mov 1, %g1 2008020: c2 26 80 00 st %g1, [ %i2 ] *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; 2008024: 90 10 20 00 clr %o0 *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; 2008028: 82 10 3f ff mov -1, %g1 200802c: c2 26 c0 00 st %g1, [ %i3 ] return 0; } 2008030: 81 c7 e0 08 ret 2008034: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02008d38 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2008d38: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2008d3c: 80 a6 20 00 cmp %i0, 0 2008d40: 12 80 00 06 bne 2008d58 <_Objects_Id_to_name+0x20> 2008d44: 83 36 20 18 srl %i0, 0x18, %g1 2008d48: 03 00 80 76 sethi %hi(0x201d800), %g1 2008d4c: c2 00 60 d8 ld [ %g1 + 0xd8 ], %g1 ! 201d8d8 <_Per_CPU_Information+0xc> 2008d50: f0 00 60 08 ld [ %g1 + 8 ], %i0 2008d54: 83 36 20 18 srl %i0, 0x18, %g1 2008d58: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008d5c: 84 00 7f ff add %g1, -1, %g2 2008d60: 80 a0 a0 02 cmp %g2, 2 2008d64: 18 80 00 17 bgu 2008dc0 <_Objects_Id_to_name+0x88> 2008d68: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008d6c: 83 28 60 02 sll %g1, 2, %g1 2008d70: 05 00 80 75 sethi %hi(0x201d400), %g2 2008d74: 84 10 a2 08 or %g2, 0x208, %g2 ! 201d608 <_Objects_Information_table> 2008d78: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2008d7c: 80 a0 60 00 cmp %g1, 0 2008d80: 02 80 00 10 be 2008dc0 <_Objects_Id_to_name+0x88> 2008d84: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2008d88: 85 28 a0 02 sll %g2, 2, %g2 2008d8c: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2008d90: 80 a2 20 00 cmp %o0, 0 2008d94: 02 80 00 0b be 2008dc0 <_Objects_Id_to_name+0x88> <== NEVER TAKEN 2008d98: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2008d9c: 7f ff ff c9 call 2008cc0 <_Objects_Get> 2008da0: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2008da4: 80 a2 20 00 cmp %o0, 0 2008da8: 02 80 00 06 be 2008dc0 <_Objects_Id_to_name+0x88> 2008dac: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2008db0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2008db4: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008db8: 40 00 03 8d call 2009bec <_Thread_Enable_dispatch> 2008dbc: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2008dc0: 81 c7 e0 08 ret 2008dc4: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02008578 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 2008578: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 200857c: fa 16 20 0a lduh [ %i0 + 0xa ], %i5 block_count = (information->maximum - index_base) / 2008580: f8 16 20 14 lduh [ %i0 + 0x14 ], %i4 2008584: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 2008588: 92 10 00 1c mov %i4, %o1 200858c: 40 00 3c d0 call 20178cc <.udiv> 2008590: 90 22 00 1d sub %o0, %i5, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 2008594: 80 a2 20 00 cmp %o0, 0 2008598: 02 80 00 34 be 2008668 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN 200859c: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 20085a0: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 20085a4: c2 01 00 00 ld [ %g4 ], %g1 20085a8: 80 a7 00 01 cmp %i4, %g1 20085ac: 02 80 00 0f be 20085e8 <_Objects_Shrink_information+0x70> <== NEVER TAKEN 20085b0: 82 10 20 00 clr %g1 20085b4: 10 80 00 07 b 20085d0 <_Objects_Shrink_information+0x58> 20085b8: b6 10 20 04 mov 4, %i3 * the_block - the block to remove * * Output parameters: NONE */ void _Objects_Shrink_information( 20085bc: 86 06 e0 04 add %i3, 4, %g3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 20085c0: 80 a7 00 02 cmp %i4, %g2 20085c4: 02 80 00 0a be 20085ec <_Objects_Shrink_information+0x74> 20085c8: ba 07 40 1c add %i5, %i4, %i5 20085cc: b6 10 00 03 mov %g3, %i3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 20085d0: 82 00 60 01 inc %g1 20085d4: 80 a0 40 08 cmp %g1, %o0 20085d8: 32 bf ff f9 bne,a 20085bc <_Objects_Shrink_information+0x44> 20085dc: c4 01 00 1b ld [ %g4 + %i3 ], %g2 20085e0: 81 c7 e0 08 ret 20085e4: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 20085e8: b6 10 20 00 clr %i3 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 20085ec: 10 80 00 06 b 2008604 <_Objects_Shrink_information+0x8c> 20085f0: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 20085f4: 80 a7 20 00 cmp %i4, 0 20085f8: 22 80 00 12 be,a 2008640 <_Objects_Shrink_information+0xc8> 20085fc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 2008600: 90 10 00 1c mov %i4, %o0 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 2008604: c2 12 20 0a lduh [ %o0 + 0xa ], %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008608: 80 a0 40 1d cmp %g1, %i5 200860c: 0a bf ff fa bcs 20085f4 <_Objects_Shrink_information+0x7c> 2008610: f8 02 00 00 ld [ %o0 ], %i4 (index < (index_base + information->allocation_size))) { 2008614: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 2008618: 84 07 40 02 add %i5, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 200861c: 80 a0 40 02 cmp %g1, %g2 2008620: 1a bf ff f6 bcc 20085f8 <_Objects_Shrink_information+0x80> 2008624: 80 a7 20 00 cmp %i4, 0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 2008628: 7f ff fb 68 call 20073c8 <_Chain_Extract> 200862c: 01 00 00 00 nop } } while ( the_object ); 2008630: 80 a7 20 00 cmp %i4, 0 2008634: 12 bf ff f4 bne 2008604 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN 2008638: 90 10 00 1c mov %i4, %o0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 200863c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 2008640: 40 00 07 b4 call 200a510 <_Workspace_Free> 2008644: d0 00 40 1b ld [ %g1 + %i3 ], %o0 information->object_blocks[ block ] = NULL; 2008648: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 200864c: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 2008650: c0 20 40 1b clr [ %g1 + %i3 ] information->inactive_per_block[ block ] = 0; 2008654: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 2008658: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 200865c: c0 20 c0 1b clr [ %g3 + %i3 ] information->inactive -= information->allocation_size; 2008660: 82 20 80 01 sub %g2, %g1, %g1 2008664: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 2008668: 81 c7 e0 08 ret 200866c: 81 e8 00 00 restore =============================================================================== 0200933c <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200933c: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if (!the_node) return; 2009340: 80 a6 60 00 cmp %i1, 0 2009344: 02 80 00 4c be 2009474 <_RBTree_Extract_unprotected+0x138> 2009348: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 200934c: c2 06 20 08 ld [ %i0 + 8 ], %g1 2009350: 80 a0 40 19 cmp %g1, %i1 2009354: 22 80 00 59 be,a 20094b8 <_RBTree_Extract_unprotected+0x17c> 2009358: c2 06 60 08 ld [ %i1 + 8 ], %g1 the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 200935c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2009360: 80 a0 40 19 cmp %g1, %i1 2009364: 22 80 00 46 be,a 200947c <_RBTree_Extract_unprotected+0x140> 2009368: c2 06 60 04 ld [ %i1 + 4 ], %g1 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 200936c: fa 06 60 04 ld [ %i1 + 4 ], %i5 2009370: 80 a7 60 00 cmp %i5, 0 2009374: 22 80 00 4a be,a 200949c <_RBTree_Extract_unprotected+0x160> 2009378: f8 06 60 08 ld [ %i1 + 8 ], %i4 200937c: c2 06 60 08 ld [ %i1 + 8 ], %g1 2009380: 80 a0 60 00 cmp %g1, 0 2009384: 32 80 00 05 bne,a 2009398 <_RBTree_Extract_unprotected+0x5c> 2009388: c2 07 60 08 ld [ %i5 + 8 ], %g1 200938c: 10 80 00 50 b 20094cc <_RBTree_Extract_unprotected+0x190> 2009390: b8 10 00 1d mov %i5, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 2009394: c2 07 60 08 ld [ %i5 + 8 ], %g1 2009398: 80 a0 60 00 cmp %g1, 0 200939c: 32 bf ff fe bne,a 2009394 <_RBTree_Extract_unprotected+0x58> 20093a0: ba 10 00 01 mov %g1, %i5 * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 20093a4: f8 07 60 04 ld [ %i5 + 4 ], %i4 if(leaf) { 20093a8: 80 a7 20 00 cmp %i4, 0 20093ac: 02 80 00 54 be 20094fc <_RBTree_Extract_unprotected+0x1c0> 20093b0: 01 00 00 00 nop leaf->parent = target->parent; 20093b4: c2 07 40 00 ld [ %i5 ], %g1 20093b8: c2 27 00 00 st %g1, [ %i4 ] } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 20093bc: c4 07 40 00 ld [ %i5 ], %g2 target->parent->child[dir] = leaf; /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 20093c0: c2 06 40 00 ld [ %i1 ], %g1 } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 20093c4: c8 00 a0 04 ld [ %g2 + 4 ], %g4 leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 20093c8: c6 07 60 0c ld [ %i5 + 0xc ], %g3 dir = target != target->parent->child[0]; 20093cc: 88 19 00 1d xor %g4, %i5, %g4 20093d0: 80 a0 00 04 cmp %g0, %g4 20093d4: 88 40 20 00 addx %g0, 0, %g4 target->parent->child[dir] = leaf; 20093d8: 89 29 20 02 sll %g4, 2, %g4 20093dc: 84 00 80 04 add %g2, %g4, %g2 20093e0: f8 20 a0 04 st %i4, [ %g2 + 4 ] /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 20093e4: c4 00 60 04 ld [ %g1 + 4 ], %g2 20093e8: 84 18 80 19 xor %g2, %i1, %g2 20093ec: 80 a0 00 02 cmp %g0, %g2 20093f0: 84 40 20 00 addx %g0, 0, %g2 the_node->parent->child[dir] = target; 20093f4: 85 28 a0 02 sll %g2, 2, %g2 20093f8: 82 00 40 02 add %g1, %g2, %g1 20093fc: fa 20 60 04 st %i5, [ %g1 + 4 ] /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 2009400: c2 06 60 08 ld [ %i1 + 8 ], %g1 2009404: c2 27 60 08 st %g1, [ %i5 + 8 ] if (the_node->child[RBT_RIGHT]) 2009408: c2 06 60 08 ld [ %i1 + 8 ], %g1 200940c: 80 a0 60 00 cmp %g1, 0 2009410: 32 80 00 02 bne,a 2009418 <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN 2009414: fa 20 40 00 st %i5, [ %g1 ] the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 2009418: c2 06 60 04 ld [ %i1 + 4 ], %g1 200941c: c2 27 60 04 st %g1, [ %i5 + 4 ] if (the_node->child[RBT_LEFT]) 2009420: c2 06 60 04 ld [ %i1 + 4 ], %g1 2009424: 80 a0 60 00 cmp %g1, 0 2009428: 32 80 00 02 bne,a 2009430 <_RBTree_Extract_unprotected+0xf4> 200942c: fa 20 40 00 st %i5, [ %g1 ] /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 2009430: c4 06 40 00 ld [ %i1 ], %g2 target->color = the_node->color; 2009434: c2 06 60 0c ld [ %i1 + 0xc ], %g1 /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 2009438: c4 27 40 00 st %g2, [ %i5 ] target->color = the_node->color; 200943c: c2 27 60 0c st %g1, [ %i5 + 0xc ] /* fix coloring. leaf has moved up the tree. The color of the deleted * node is in victim_color. There are two cases: * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node, its child must be red. Paint child black. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 2009440: 80 a0 e0 00 cmp %g3, 0 2009444: 32 80 00 06 bne,a 200945c <_RBTree_Extract_unprotected+0x120> 2009448: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (leaf) { 200944c: 80 a7 20 00 cmp %i4, 0 2009450: 32 80 00 02 bne,a 2009458 <_RBTree_Extract_unprotected+0x11c> 2009454: c0 27 20 0c clr [ %i4 + 0xc ] /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 2009458: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 200945c: c0 26 60 08 clr [ %i1 + 8 ] 2009460: c0 26 60 04 clr [ %i1 + 4 ] 2009464: 80 a0 60 00 cmp %g1, 0 2009468: 02 80 00 03 be 2009474 <_RBTree_Extract_unprotected+0x138> 200946c: c0 26 40 00 clr [ %i1 ] 2009470: c0 20 60 0c clr [ %g1 + 0xc ] 2009474: 81 c7 e0 08 ret 2009478: 81 e8 00 00 restore the_rbtree->first[RBT_LEFT] = NULL; } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { if (the_node->child[RBT_LEFT]) 200947c: 80 a0 60 00 cmp %g1, 0 2009480: 22 80 00 28 be,a 2009520 <_RBTree_Extract_unprotected+0x1e4> 2009484: c2 06 40 00 ld [ %i1 ], %g1 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 2009488: fa 06 60 04 ld [ %i1 + 4 ], %i5 200948c: 80 a7 60 00 cmp %i5, 0 2009490: 12 bf ff bb bne 200937c <_RBTree_Extract_unprotected+0x40><== ALWAYS TAKEN 2009494: c2 26 20 0c st %g1, [ %i0 + 0xc ] * the_node's location in the tree. This may cause the coloring to be * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; 2009498: f8 06 60 08 ld [ %i1 + 8 ], %i4 <== NOT EXECUTED if( leaf ) { 200949c: 80 a7 20 00 cmp %i4, 0 20094a0: 32 80 00 0c bne,a 20094d0 <_RBTree_Extract_unprotected+0x194> 20094a4: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 20094a8: 7f ff fe e0 call 2009028 <_RBTree_Extract_validate_unprotected> 20094ac: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 20094b0: 10 80 00 0a b 20094d8 <_RBTree_Extract_unprotected+0x19c> 20094b4: c2 06 40 00 ld [ %i1 ], %g1 if (!the_node) return; /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { if (the_node->child[RBT_RIGHT]) 20094b8: 80 a0 60 00 cmp %g1, 0 20094bc: 22 80 00 14 be,a 200950c <_RBTree_Extract_unprotected+0x1d0> 20094c0: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 20094c4: 10 bf ff a6 b 200935c <_RBTree_Extract_unprotected+0x20> 20094c8: c2 26 20 08 st %g1, [ %i0 + 8 ] * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { leaf->parent = the_node->parent; 20094cc: c2 06 40 00 ld [ %i1 ], %g1 20094d0: c2 27 00 00 st %g1, [ %i4 ] _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 20094d4: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 20094d8: c6 06 60 0c ld [ %i1 + 0xc ], %g3 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 20094dc: c4 00 60 04 ld [ %g1 + 4 ], %g2 20094e0: 84 18 80 19 xor %g2, %i1, %g2 20094e4: 80 a0 00 02 cmp %g0, %g2 20094e8: 84 40 20 00 addx %g0, 0, %g2 the_node->parent->child[dir] = leaf; 20094ec: 85 28 a0 02 sll %g2, 2, %g2 20094f0: 82 00 40 02 add %g1, %g2, %g1 20094f4: 10 bf ff d3 b 2009440 <_RBTree_Extract_unprotected+0x104> 20094f8: f8 20 60 04 st %i4, [ %g1 + 4 ] leaf = target->child[RBT_LEFT]; if(leaf) { leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 20094fc: 7f ff fe cb call 2009028 <_RBTree_Extract_validate_unprotected> 2009500: 90 10 00 1d mov %i5, %o0 } victim_color = target->color; dir = target != target->parent->child[0]; 2009504: 10 bf ff af b 20093c0 <_RBTree_Extract_unprotected+0x84> 2009508: c4 07 40 00 ld [ %i5 ], %g2 if (the_node == the_rbtree->first[RBT_LEFT]) { if (the_node->child[RBT_RIGHT]) the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 200950c: 80 a6 00 01 cmp %i0, %g1 2009510: 12 bf ff 93 bne 200935c <_RBTree_Extract_unprotected+0x20> 2009514: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 2009518: 10 bf ff 91 b 200935c <_RBTree_Extract_unprotected+0x20> 200951c: c0 26 20 08 clr [ %i0 + 8 ] if (the_node == the_rbtree->first[RBT_RIGHT]) { if (the_node->child[RBT_LEFT]) the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2009520: 80 a6 00 01 cmp %i0, %g1 2009524: 12 bf ff 92 bne 200936c <_RBTree_Extract_unprotected+0x30> 2009528: c2 26 20 0c st %g1, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 200952c: 10 bf ff 90 b 200936c <_RBTree_Extract_unprotected+0x30> 2009530: c0 26 20 0c clr [ %i0 + 0xc ] =============================================================================== 02009028 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 2009028: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 200902c: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; 2009030: c4 00 40 00 ld [ %g1 ], %g2 2009034: 80 a0 a0 00 cmp %g2, 0 2009038: 02 80 00 bf be 2009334 <_RBTree_Extract_validate_unprotected+0x30c> 200903c: 01 00 00 00 nop { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2009040: c4 00 60 04 ld [ %g1 + 4 ], %g2 2009044: 80 a6 00 02 cmp %i0, %g2 2009048: 22 80 00 02 be,a 2009050 <_RBTree_Extract_validate_unprotected+0x28> 200904c: c4 00 60 08 ld [ %g1 + 8 ], %g2 } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 2009050: 98 10 20 01 mov 1, %o4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009054: c6 06 20 0c ld [ %i0 + 0xc ], %g3 2009058: 80 a0 e0 01 cmp %g3, 1 200905c: 22 80 00 58 be,a 20091bc <_RBTree_Extract_validate_unprotected+0x194> 2009060: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2009064: c6 00 40 00 ld [ %g1 ], %g3 2009068: 80 a0 e0 00 cmp %g3, 0 200906c: 02 80 00 53 be 20091b8 <_RBTree_Extract_validate_unprotected+0x190> 2009070: 80 a0 a0 00 cmp %g2, 0 2009074: 22 80 00 07 be,a 2009090 <_RBTree_Extract_validate_unprotected+0x68><== NEVER TAKEN 2009078: c6 00 a0 08 ld [ %g2 + 8 ], %g3 <== NOT EXECUTED 200907c: c8 00 a0 0c ld [ %g2 + 0xc ], %g4 2009080: 80 a1 20 01 cmp %g4, 1 2009084: 22 80 00 28 be,a 2009124 <_RBTree_Extract_validate_unprotected+0xfc> 2009088: de 00 60 04 ld [ %g1 + 4 ], %o7 _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (!_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 200908c: c6 00 a0 08 ld [ %g2 + 8 ], %g3 2009090: 80 a0 e0 00 cmp %g3, 0 2009094: 22 80 00 07 be,a 20090b0 <_RBTree_Extract_validate_unprotected+0x88> 2009098: c6 00 a0 04 ld [ %g2 + 4 ], %g3 200909c: c6 00 e0 0c ld [ %g3 + 0xc ], %g3 20090a0: 80 a0 e0 01 cmp %g3, 1 20090a4: 22 80 00 4c be,a 20091d4 <_RBTree_Extract_validate_unprotected+0x1ac> 20090a8: c6 00 60 04 ld [ %g1 + 4 ], %g3 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 20090ac: c6 00 a0 04 ld [ %g2 + 4 ], %g3 20090b0: 80 a0 e0 00 cmp %g3, 0 20090b4: 22 80 00 07 be,a 20090d0 <_RBTree_Extract_validate_unprotected+0xa8> 20090b8: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 20090bc: c6 00 e0 0c ld [ %g3 + 0xc ], %g3 20090c0: 80 a0 e0 01 cmp %g3, 1 20090c4: 22 80 00 44 be,a 20091d4 <_RBTree_Extract_validate_unprotected+0x1ac> 20090c8: c6 00 60 04 ld [ %g1 + 4 ], %g3 sibling->color = RBT_RED; 20090cc: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 20090d0: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20090d4: 80 a0 a0 01 cmp %g2, 1 20090d8: 22 80 00 38 be,a 20091b8 <_RBTree_Extract_validate_unprotected+0x190> 20090dc: c0 20 60 0c clr [ %g1 + 0xc ] if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; 20090e0: c6 00 40 00 ld [ %g1 ], %g3 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 20090e4: 80 a0 e0 00 cmp %g3, 0 20090e8: 02 80 00 0a be 2009110 <_RBTree_Extract_validate_unprotected+0xe8><== NEVER TAKEN 20090ec: 84 10 20 00 clr %g2 if(!(the_node->parent->parent)) return NULL; 20090f0: c8 00 c0 00 ld [ %g3 ], %g4 20090f4: 80 a1 20 00 cmp %g4, 0 20090f8: 02 80 00 07 be 2009114 <_RBTree_Extract_validate_unprotected+0xec> 20090fc: b0 10 00 01 mov %g1, %i0 if(the_node == the_node->parent->child[RBT_LEFT]) 2009100: c4 00 e0 04 ld [ %g3 + 4 ], %g2 2009104: 80 a0 40 02 cmp %g1, %g2 2009108: 22 80 00 05 be,a 200911c <_RBTree_Extract_validate_unprotected+0xf4> 200910c: c4 00 e0 08 ld [ %g3 + 8 ], %g2 c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; c->parent = the_node->parent; the_node->parent = c; 2009110: b0 10 00 01 mov %g1, %i0 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 2009114: 10 bf ff d0 b 2009054 <_RBTree_Extract_validate_unprotected+0x2c> 2009118: 82 10 00 03 mov %g3, %g1 200911c: 10 bf ff ce b 2009054 <_RBTree_Extract_validate_unprotected+0x2c> 2009120: 82 10 00 03 mov %g3, %g1 * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 2009124: c8 20 60 0c st %g4, [ %g1 + 0xc ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2009128: 9e 1b c0 18 xor %o7, %i0, %o7 200912c: 80 a0 00 0f cmp %g0, %o7 2009130: 9a 40 20 00 addx %g0, 0, %o5 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 2009134: 88 21 00 0d sub %g4, %o5, %g4 2009138: 89 29 20 02 sll %g4, 2, %g4 200913c: 88 00 40 04 add %g1, %g4, %g4 2009140: de 01 20 04 ld [ %g4 + 4 ], %o7 2009144: 80 a3 e0 00 cmp %o7, 0 2009148: 02 80 00 16 be 20091a0 <_RBTree_Extract_validate_unprotected+0x178><== NEVER TAKEN 200914c: c0 20 a0 0c clr [ %g2 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2009150: 85 2b 60 02 sll %o5, 2, %g2 2009154: 96 03 c0 02 add %o7, %g2, %o3 2009158: d4 02 e0 04 ld [ %o3 + 4 ], %o2 200915c: d4 21 20 04 st %o2, [ %g4 + 4 ] if (c->child[dir]) 2009160: c8 02 e0 04 ld [ %o3 + 4 ], %g4 2009164: 80 a1 20 00 cmp %g4, 0 2009168: 02 80 00 04 be 2009178 <_RBTree_Extract_validate_unprotected+0x150><== NEVER TAKEN 200916c: 84 03 c0 02 add %o7, %g2, %g2 c->child[dir]->parent = the_node; 2009170: c2 21 00 00 st %g1, [ %g4 ] 2009174: c6 00 40 00 ld [ %g1 ], %g3 c->child[dir] = the_node; 2009178: c2 20 a0 04 st %g1, [ %g2 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200917c: c4 00 e0 04 ld [ %g3 + 4 ], %g2 c->parent = the_node->parent; 2009180: c6 23 c0 00 st %g3, [ %o7 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009184: 84 18 40 02 xor %g1, %g2, %g2 c->parent = the_node->parent; the_node->parent = c; 2009188: de 20 40 00 st %o7, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200918c: 80 a0 00 02 cmp %g0, %g2 2009190: 84 40 20 00 addx %g0, 0, %g2 2009194: 85 28 a0 02 sll %g2, 2, %g2 2009198: 86 00 c0 02 add %g3, %g2, %g3 200919c: de 20 e0 04 st %o7, [ %g3 + 4 ] _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; 20091a0: 80 a0 00 0d cmp %g0, %o5 20091a4: 84 60 3f ff subx %g0, -1, %g2 20091a8: 85 28 a0 02 sll %g2, 2, %g2 20091ac: 84 00 40 02 add %g1, %g2, %g2 20091b0: 10 bf ff b7 b 200908c <_RBTree_Extract_validate_unprotected+0x64> 20091b4: c4 00 a0 04 ld [ %g2 + 4 ], %g2 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 20091b8: c2 06 00 00 ld [ %i0 ], %g1 20091bc: c2 00 40 00 ld [ %g1 ], %g1 20091c0: 80 a0 60 00 cmp %g1, 0 20091c4: 22 80 00 02 be,a 20091cc <_RBTree_Extract_validate_unprotected+0x1a4> 20091c8: c0 26 20 0c clr [ %i0 + 0xc ] 20091cc: 81 c7 e0 08 ret 20091d0: 81 e8 00 00 restore * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 20091d4: 86 18 c0 18 xor %g3, %i0, %g3 20091d8: 80 a0 00 03 cmp %g0, %g3 20091dc: 86 40 20 00 addx %g0, 0, %g3 if (!_RBTree_Is_red(sibling->child[!dir])) { 20091e0: 80 a0 00 03 cmp %g0, %g3 20091e4: 9e 60 3f ff subx %g0, -1, %o7 20091e8: 9f 2b e0 02 sll %o7, 2, %o7 20091ec: 88 00 80 0f add %g2, %o7, %g4 20091f0: c8 01 20 04 ld [ %g4 + 4 ], %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 20091f4: 80 a1 20 00 cmp %g4, 0 20091f8: 22 80 00 07 be,a 2009214 <_RBTree_Extract_validate_unprotected+0x1ec> 20091fc: 89 28 e0 02 sll %g3, 2, %g4 2009200: da 01 20 0c ld [ %g4 + 0xc ], %o5 2009204: 80 a3 60 01 cmp %o5, 1 2009208: 22 80 00 28 be,a 20092a8 <_RBTree_Extract_validate_unprotected+0x280> 200920c: de 00 60 0c ld [ %g1 + 0xc ], %o7 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; 2009210: 89 28 e0 02 sll %g3, 2, %g4 2009214: 88 00 80 04 add %g2, %g4, %g4 2009218: d6 01 20 04 ld [ %g4 + 4 ], %o3 * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { sibling->color = RBT_RED; 200921c: 88 10 20 01 mov 1, %g4 sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); 2009220: 98 18 e0 01 xor %g3, 1, %o4 * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { sibling->color = RBT_RED; 2009224: c8 20 a0 0c st %g4, [ %g2 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 2009228: 9a 21 00 0c sub %g4, %o4, %o5 200922c: 9b 2b 60 02 sll %o5, 2, %o5 2009230: 9a 00 80 0d add %g2, %o5, %o5 2009234: c8 03 60 04 ld [ %o5 + 4 ], %g4 2009238: 80 a1 20 00 cmp %g4, 0 200923c: 02 80 00 16 be 2009294 <_RBTree_Extract_validate_unprotected+0x26c><== NEVER TAKEN 2009240: c0 22 e0 0c clr [ %o3 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2009244: 99 2b 20 02 sll %o4, 2, %o4 2009248: 96 01 00 0c add %g4, %o4, %o3 200924c: d4 02 e0 04 ld [ %o3 + 4 ], %o2 2009250: d4 23 60 04 st %o2, [ %o5 + 4 ] if (c->child[dir]) 2009254: da 02 e0 04 ld [ %o3 + 4 ], %o5 2009258: 80 a3 60 00 cmp %o5, 0 200925c: 32 80 00 02 bne,a 2009264 <_RBTree_Extract_validate_unprotected+0x23c> 2009260: c4 23 40 00 st %g2, [ %o5 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009264: da 00 80 00 ld [ %g2 ], %o5 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 2009268: 98 01 00 0c add %g4, %o4, %o4 200926c: c4 23 20 04 st %g2, [ %o4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009270: d8 03 60 04 ld [ %o5 + 4 ], %o4 c->parent = the_node->parent; 2009274: da 21 00 00 st %o5, [ %g4 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009278: 98 18 80 0c xor %g2, %o4, %o4 c->parent = the_node->parent; the_node->parent = c; 200927c: c8 20 80 00 st %g4, [ %g2 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009280: 80 a0 00 0c cmp %g0, %o4 2009284: 84 40 20 00 addx %g0, 0, %g2 2009288: 85 28 a0 02 sll %g2, 2, %g2 200928c: 9a 03 40 02 add %o5, %g2, %o5 2009290: c8 23 60 04 st %g4, [ %o5 + 4 ] sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; 2009294: 84 00 40 0f add %g1, %o7, %g2 2009298: c4 00 a0 04 ld [ %g2 + 4 ], %g2 200929c: 9e 00 80 0f add %g2, %o7, %o7 20092a0: c8 03 e0 04 ld [ %o7 + 4 ], %g4 } sibling->color = parent->color; 20092a4: de 00 60 0c ld [ %g1 + 0xc ], %o7 20092a8: de 20 a0 0c st %o7, [ %g2 + 0xc ] parent->color = RBT_BLACK; 20092ac: c0 20 60 0c clr [ %g1 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 20092b0: 9e 10 20 01 mov 1, %o7 20092b4: 9e 23 c0 03 sub %o7, %g3, %o7 20092b8: 9f 2b e0 02 sll %o7, 2, %o7 20092bc: 9e 00 40 0f add %g1, %o7, %o7 20092c0: c4 03 e0 04 ld [ %o7 + 4 ], %g2 20092c4: 80 a0 a0 00 cmp %g2, 0 20092c8: 02 bf ff bc be 20091b8 <_RBTree_Extract_validate_unprotected+0x190><== NEVER TAKEN 20092cc: c0 21 20 0c clr [ %g4 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 20092d0: 87 28 e0 02 sll %g3, 2, %g3 20092d4: 88 00 80 03 add %g2, %g3, %g4 20092d8: da 01 20 04 ld [ %g4 + 4 ], %o5 20092dc: da 23 e0 04 st %o5, [ %o7 + 4 ] if (c->child[dir]) 20092e0: c8 01 20 04 ld [ %g4 + 4 ], %g4 20092e4: 80 a1 20 00 cmp %g4, 0 20092e8: 32 80 00 02 bne,a 20092f0 <_RBTree_Extract_validate_unprotected+0x2c8> 20092ec: c2 21 00 00 st %g1, [ %g4 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20092f0: c8 00 40 00 ld [ %g1 ], %g4 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 20092f4: 86 00 80 03 add %g2, %g3, %g3 20092f8: c2 20 e0 04 st %g1, [ %g3 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20092fc: c6 01 20 04 ld [ %g4 + 4 ], %g3 c->parent = the_node->parent; 2009300: c8 20 80 00 st %g4, [ %g2 ] the_node->parent = c; 2009304: c4 20 40 00 st %g2, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009308: 86 18 40 03 xor %g1, %g3, %g3 200930c: 80 a0 00 03 cmp %g0, %g3 2009310: 82 40 20 00 addx %g0, 0, %g1 2009314: 83 28 60 02 sll %g1, 2, %g1 2009318: 88 01 00 01 add %g4, %g1, %g4 sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 200931c: c2 06 00 00 ld [ %i0 ], %g1 2009320: c4 21 20 04 st %g2, [ %g4 + 4 ] 2009324: c2 00 40 00 ld [ %g1 ], %g1 2009328: 80 a0 60 00 cmp %g1, 0 200932c: 22 bf ff a8 be,a 20091cc <_RBTree_Extract_validate_unprotected+0x1a4><== NEVER TAKEN 2009330: c0 26 20 0c clr [ %i0 + 0xc ] <== NOT EXECUTED 2009334: 81 c7 e0 08 ret 2009338: 81 e8 00 00 restore =============================================================================== 020095a8 <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, RBTree_Node *search_node ) { 20095a8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 20095ac: 7f ff e6 8f call 2002fe8 20095b0: b8 10 00 18 mov %i0, %i4 20095b4: ba 10 00 08 mov %o0, %i5 return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); return return_node; } 20095b8: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; int compare_result; while (iter_node) { 20095bc: 80 a6 20 00 cmp %i0, 0 20095c0: 32 80 00 0c bne,a 20095f0 <_RBTree_Find+0x48> <== ALWAYS TAKEN 20095c4: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 20095c8: 30 80 00 10 b,a 2009608 <_RBTree_Find+0x60> <== NOT EXECUTED compare_result = the_rbtree->compare_function(the_node, iter_node); if (compare_result == 0) { return(iter_node); } RBTree_Direction dir = (compare_result != -1); 20095cc: 80 a0 00 01 cmp %g0, %g1 20095d0: 82 40 20 00 addx %g0, 0, %g1 iter_node = iter_node->child[dir]; 20095d4: 83 28 60 02 sll %g1, 2, %g1 20095d8: b0 06 00 01 add %i0, %g1, %i0 20095dc: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Node *the_node ) { RBTree_Node* iter_node = the_rbtree->root; int compare_result; while (iter_node) { 20095e0: 80 a6 20 00 cmp %i0, 0 20095e4: 02 80 00 09 be 2009608 <_RBTree_Find+0x60> <== NEVER TAKEN 20095e8: 01 00 00 00 nop compare_result = the_rbtree->compare_function(the_node, iter_node); 20095ec: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 20095f0: 92 10 00 18 mov %i0, %o1 20095f4: 9f c0 40 00 call %g1 20095f8: 90 10 00 19 mov %i1, %o0 if (compare_result == 0) { 20095fc: 80 a2 20 00 cmp %o0, 0 2009600: 12 bf ff f3 bne 20095cc <_RBTree_Find+0x24> 2009604: 82 38 00 08 xnor %g0, %o0, %g1 RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); return_node = _RBTree_Find_unprotected( the_rbtree, search_node ); _ISR_Enable( level ); 2009608: 7f ff e6 7c call 2002ff8 200960c: 90 10 00 1d mov %i5, %o0 return return_node; } 2009610: 81 c7 e0 08 ret 2009614: 81 e8 00 00 restore =============================================================================== 020098fc <_RBTree_Initialize>: void *compare_function, void *starting_address, size_t number_nodes, size_t node_size ) { 20098fc: 9d e3 bf a0 save %sp, -96, %sp size_t count; RBTree_Node *next; /* TODO: Error message? */ if (!the_rbtree) return; 2009900: 80 a6 20 00 cmp %i0, 0 2009904: 02 80 00 0e be 200993c <_RBTree_Initialize+0x40> <== NEVER TAKEN 2009908: 80 a6 e0 00 cmp %i3, 0 RTEMS_INLINE_ROUTINE void _RBTree_Initialize_empty( RBTree_Control *the_rbtree, void *compare_function ) { the_rbtree->permanent_null = NULL; 200990c: c0 26 00 00 clr [ %i0 ] the_rbtree->root = NULL; 2009910: c0 26 20 04 clr [ %i0 + 4 ] the_rbtree->first[0] = NULL; 2009914: c0 26 20 08 clr [ %i0 + 8 ] the_rbtree->first[1] = NULL; 2009918: c0 26 20 0c clr [ %i0 + 0xc ] /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function); count = number_nodes; next = starting_address; while ( count-- ) { 200991c: 02 80 00 08 be 200993c <_RBTree_Initialize+0x40> <== NEVER TAKEN 2009920: f2 26 20 10 st %i1, [ %i0 + 0x10 ] _RBTree_Insert(the_rbtree, next); 2009924: 92 10 00 1a mov %i2, %o1 2009928: 7f ff ff eb call 20098d4 <_RBTree_Insert> 200992c: 90 10 00 18 mov %i0, %o0 /* could do sanity checks here */ _RBTree_Initialize_empty(the_rbtree, compare_function); count = number_nodes; next = starting_address; while ( count-- ) { 2009930: b6 86 ff ff addcc %i3, -1, %i3 2009934: 12 bf ff fc bne 2009924 <_RBTree_Initialize+0x28> 2009938: b4 06 80 1c add %i2, %i4, %i2 200993c: 81 c7 e0 08 ret 2009940: 81 e8 00 00 restore =============================================================================== 02009654 <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 2009654: 9d e3 bf a0 save %sp, -96, %sp } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 2009658: 96 10 20 01 mov 1, %o3 ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 200965c: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 2009660: c4 00 40 00 ld [ %g1 ], %g2 2009664: 86 90 a0 00 orcc %g2, 0, %g3 2009668: 22 80 00 06 be,a 2009680 <_RBTree_Validate_insert_unprotected+0x2c> 200966c: c0 26 20 0c clr [ %i0 + 0xc ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009670: c8 00 60 0c ld [ %g1 + 0xc ], %g4 2009674: 80 a1 20 01 cmp %g4, 1 2009678: 22 80 00 04 be,a 2009688 <_RBTree_Validate_insert_unprotected+0x34> 200967c: c8 00 80 00 ld [ %g2 ], %g4 2009680: 81 c7 e0 08 ret 2009684: 81 e8 00 00 restore ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2009688: 80 a1 20 00 cmp %g4, 0 200968c: 02 80 00 0c be 20096bc <_RBTree_Validate_insert_unprotected+0x68><== NEVER TAKEN 2009690: de 00 a0 04 ld [ %g2 + 4 ], %o7 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2009694: 80 a0 40 0f cmp %g1, %o7 2009698: 02 80 00 59 be 20097fc <_RBTree_Validate_insert_unprotected+0x1a8> 200969c: 88 10 00 0f mov %o7, %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 20096a0: 80 a1 20 00 cmp %g4, 0 20096a4: 22 80 00 07 be,a 20096c0 <_RBTree_Validate_insert_unprotected+0x6c> 20096a8: c8 00 60 04 ld [ %g1 + 4 ], %g4 20096ac: da 01 20 0c ld [ %g4 + 0xc ], %o5 20096b0: 80 a3 60 01 cmp %o5, 1 20096b4: 22 80 00 4c be,a 20097e4 <_RBTree_Validate_insert_unprotected+0x190> 20096b8: c0 20 60 0c clr [ %g1 + 0xc ] the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 20096bc: c8 00 60 04 ld [ %g1 + 4 ], %g4 RBTree_Direction pdir = the_node->parent != g->child[0]; 20096c0: 9e 18 40 0f xor %g1, %o7, %o7 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 20096c4: 88 19 00 18 xor %g4, %i0, %g4 20096c8: 80 a0 00 04 cmp %g0, %g4 20096cc: 9a 40 20 00 addx %g0, 0, %o5 RBTree_Direction pdir = the_node->parent != g->child[0]; 20096d0: 80 a0 00 0f cmp %g0, %o7 20096d4: 88 40 20 00 addx %g0, 0, %g4 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 20096d8: 80 a3 40 04 cmp %o5, %g4 20096dc: 02 80 00 46 be 20097f4 <_RBTree_Validate_insert_unprotected+0x1a0> 20096e0: 98 22 c0 0d sub %o3, %o5, %o4 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 20096e4: 98 22 c0 04 sub %o3, %g4, %o4 20096e8: 9b 2b 20 02 sll %o4, 2, %o5 20096ec: 9a 00 40 0d add %g1, %o5, %o5 20096f0: de 03 60 04 ld [ %o5 + 4 ], %o7 20096f4: 80 a3 e0 00 cmp %o7, 0 20096f8: 02 80 00 16 be 2009750 <_RBTree_Validate_insert_unprotected+0xfc><== NEVER TAKEN 20096fc: 89 29 20 02 sll %g4, 2, %g4 c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2009700: 94 03 c0 04 add %o7, %g4, %o2 2009704: d2 02 a0 04 ld [ %o2 + 4 ], %o1 2009708: d2 23 60 04 st %o1, [ %o5 + 4 ] if (c->child[dir]) 200970c: da 02 a0 04 ld [ %o2 + 4 ], %o5 2009710: 80 a3 60 00 cmp %o5, 0 2009714: 22 80 00 05 be,a 2009728 <_RBTree_Validate_insert_unprotected+0xd4> 2009718: 9a 03 c0 04 add %o7, %g4, %o5 c->child[dir]->parent = the_node; 200971c: c2 23 40 00 st %g1, [ %o5 ] 2009720: c4 00 40 00 ld [ %g1 ], %g2 c->child[dir] = the_node; 2009724: 9a 03 c0 04 add %o7, %g4, %o5 2009728: c2 23 60 04 st %g1, [ %o5 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200972c: da 00 a0 04 ld [ %g2 + 4 ], %o5 c->parent = the_node->parent; 2009730: c4 23 c0 00 st %g2, [ %o7 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009734: 9a 18 40 0d xor %g1, %o5, %o5 c->parent = the_node->parent; the_node->parent = c; 2009738: de 20 40 00 st %o7, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200973c: 80 a0 00 0d cmp %g0, %o5 2009740: 82 40 20 00 addx %g0, 0, %g1 2009744: 83 28 60 02 sll %g1, 2, %g1 2009748: 84 00 80 01 add %g2, %g1, %g2 200974c: de 20 a0 04 st %o7, [ %g2 + 4 ] _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; 2009750: b0 06 00 04 add %i0, %g4, %i0 2009754: f0 06 20 04 ld [ %i0 + 4 ], %i0 2009758: c2 06 00 00 ld [ %i0 ], %g1 } the_node->parent->color = RBT_BLACK; 200975c: c0 20 60 0c clr [ %g1 + 0xc ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 2009760: 88 00 c0 04 add %g3, %g4, %g4 2009764: c2 01 20 04 ld [ %g4 + 4 ], %g1 2009768: 80 a0 60 00 cmp %g1, 0 200976c: 02 bf ff bc be 200965c <_RBTree_Validate_insert_unprotected+0x8><== NEVER TAKEN 2009770: d6 20 e0 0c st %o3, [ %g3 + 0xc ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2009774: 99 2b 20 02 sll %o4, 2, %o4 2009778: 84 00 40 0c add %g1, %o4, %g2 200977c: de 00 a0 04 ld [ %g2 + 4 ], %o7 2009780: de 21 20 04 st %o7, [ %g4 + 4 ] if (c->child[dir]) 2009784: c4 00 a0 04 ld [ %g2 + 4 ], %g2 2009788: 80 a0 a0 00 cmp %g2, 0 200978c: 32 80 00 02 bne,a 2009794 <_RBTree_Validate_insert_unprotected+0x140> 2009790: c6 20 80 00 st %g3, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009794: c4 00 c0 00 ld [ %g3 ], %g2 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 2009798: 98 00 40 0c add %g1, %o4, %o4 200979c: c6 23 20 04 st %g3, [ %o4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20097a0: c8 00 a0 04 ld [ %g2 + 4 ], %g4 c->parent = the_node->parent; 20097a4: c4 20 40 00 st %g2, [ %g1 ] the_node->parent = c; 20097a8: c2 20 c0 00 st %g1, [ %g3 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20097ac: 88 19 00 03 xor %g4, %g3, %g4 20097b0: 80 a0 00 04 cmp %g0, %g4 20097b4: 86 40 20 00 addx %g0, 0, %g3 20097b8: 87 28 e0 02 sll %g3, 2, %g3 20097bc: 84 00 80 03 add %g2, %g3, %g2 20097c0: c2 20 a0 04 st %g1, [ %g2 + 4 ] ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 20097c4: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 20097c8: c4 00 40 00 ld [ %g1 ], %g2 20097cc: 86 90 a0 00 orcc %g2, 0, %g3 20097d0: 32 bf ff a9 bne,a 2009674 <_RBTree_Validate_insert_unprotected+0x20><== ALWAYS TAKEN 20097d4: c8 00 60 0c ld [ %g1 + 0xc ], %g4 /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); } } if(!the_node->parent->parent) the_node->color = RBT_BLACK; 20097d8: c0 26 20 0c clr [ %i0 + 0xc ] <== NOT EXECUTED 20097dc: 81 c7 e0 08 ret <== NOT EXECUTED 20097e0: 81 e8 00 00 restore <== NOT EXECUTED g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; 20097e4: c0 21 20 0c clr [ %g4 + 0xc ] g->color = RBT_RED; 20097e8: da 20 a0 0c st %o5, [ %g2 + 0xc ] 20097ec: 10 bf ff 9c b 200965c <_RBTree_Validate_insert_unprotected+0x8> 20097f0: b0 10 00 02 mov %g2, %i0 20097f4: 10 bf ff da b 200975c <_RBTree_Validate_insert_unprotected+0x108> 20097f8: 89 2b 60 02 sll %o5, 2, %g4 if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) return the_node->parent->child[RBT_RIGHT]; 20097fc: 10 bf ff a9 b 20096a0 <_RBTree_Validate_insert_unprotected+0x4c> 2009800: c8 00 a0 08 ld [ %g2 + 8 ], %g4 =============================================================================== 02006d28 <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 2006d28: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 2006d2c: 03 00 80 6d sethi %hi(0x201b400), %g1 2006d30: 82 10 62 94 or %g1, 0x294, %g1 ! 201b694 2006d34: fa 00 60 2c ld [ %g1 + 0x2c ], %i5 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 2006d38: 80 a7 60 00 cmp %i5, 0 2006d3c: 02 80 00 18 be 2006d9c <_RTEMS_tasks_Initialize_user_tasks_body+0x74> 2006d40: f6 00 60 28 ld [ %g1 + 0x28 ], %i3 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006d44: 80 a6 e0 00 cmp %i3, 0 2006d48: 02 80 00 15 be 2006d9c <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN 2006d4c: b8 10 20 00 clr %i4 return_value = rtems_task_create( 2006d50: d4 07 60 04 ld [ %i5 + 4 ], %o2 2006d54: d0 07 40 00 ld [ %i5 ], %o0 2006d58: d2 07 60 08 ld [ %i5 + 8 ], %o1 2006d5c: d6 07 60 14 ld [ %i5 + 0x14 ], %o3 2006d60: d8 07 60 0c ld [ %i5 + 0xc ], %o4 2006d64: 7f ff ff 70 call 2006b24 2006d68: 9a 07 bf fc add %fp, -4, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 2006d6c: 94 92 20 00 orcc %o0, 0, %o2 2006d70: 12 80 00 0d bne 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2006d74: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 2006d78: d4 07 60 18 ld [ %i5 + 0x18 ], %o2 2006d7c: 40 00 00 0e call 2006db4 2006d80: d2 07 60 10 ld [ %i5 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2006d84: 94 92 20 00 orcc %o0, 0, %o2 2006d88: 12 80 00 07 bne 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2006d8c: b8 07 20 01 inc %i4 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006d90: 80 a7 00 1b cmp %i4, %i3 2006d94: 12 bf ff ef bne 2006d50 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN 2006d98: ba 07 60 1c add %i5, 0x1c, %i5 2006d9c: 81 c7 e0 08 ret 2006da0: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 2006da4: 90 10 20 01 mov 1, %o0 2006da8: 40 00 03 fa call 2007d90 <_Internal_error_Occurred> 2006dac: 92 10 20 01 mov 1, %o1 =============================================================================== 0200c598 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200c598: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200c59c: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200c5a0: 80 a7 60 00 cmp %i5, 0 200c5a4: 02 80 00 1e be 200c61c <_RTEMS_tasks_Post_switch_extension+0x84><== NEVER TAKEN 200c5a8: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200c5ac: 7f ff d7 0e call 20021e4 200c5b0: 01 00 00 00 nop signal_set = asr->signals_posted; 200c5b4: f8 07 60 14 ld [ %i5 + 0x14 ], %i4 asr->signals_posted = 0; 200c5b8: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200c5bc: 7f ff d7 0e call 20021f4 200c5c0: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200c5c4: 80 a7 20 00 cmp %i4, 0 200c5c8: 32 80 00 04 bne,a 200c5d8 <_RTEMS_tasks_Post_switch_extension+0x40> 200c5cc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200c5d0: 81 c7 e0 08 ret 200c5d4: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5d8: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c5dc: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5e0: 94 07 bf fc add %fp, -4, %o2 200c5e4: 37 00 00 3f sethi %hi(0xfc00), %i3 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c5e8: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5ec: 40 00 07 e0 call 200e56c 200c5f0: 92 16 e3 ff or %i3, 0x3ff, %o1 (*asr->handler)( signal_set ); 200c5f4: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200c5f8: 9f c0 40 00 call %g1 200c5fc: 90 10 00 1c mov %i4, %o0 asr->nest_level -= 1; 200c600: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c604: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200c608: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c60c: 92 16 e3 ff or %i3, 0x3ff, %o1 200c610: 94 07 bf fc add %fp, -4, %o2 200c614: 40 00 07 d6 call 200e56c 200c618: c2 27 60 1c st %g1, [ %i5 + 0x1c ] 200c61c: 81 c7 e0 08 ret 200c620: 81 e8 00 00 restore =============================================================================== 0200c500 <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200c500: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 200c504: 80 a0 60 00 cmp %g1, 0 200c508: 22 80 00 0c be,a 200c538 <_RTEMS_tasks_Switch_extension+0x38> 200c50c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 tvp->tval = *tvp->ptr; 200c510: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200c514: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200c518: c8 00 80 00 ld [ %g2 ], %g4 200c51c: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; 200c520: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200c524: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200c528: 80 a0 60 00 cmp %g1, 0 200c52c: 32 bf ff fa bne,a 200c514 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN 200c530: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200c534: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 while (tvp) { 200c538: 80 a0 60 00 cmp %g1, 0 200c53c: 02 80 00 0b be 200c568 <_RTEMS_tasks_Switch_extension+0x68> 200c540: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200c544: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200c548: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200c54c: c8 00 80 00 ld [ %g2 ], %g4 200c550: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; 200c554: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200c558: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200c55c: 80 a0 60 00 cmp %g1, 0 200c560: 32 bf ff fa bne,a 200c548 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN 200c564: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED 200c568: 81 c3 e0 08 retl =============================================================================== 02007aa8 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007aa8: 9d e3 bf 98 save %sp, -104, %sp 2007aac: 11 00 80 78 sethi %hi(0x201e000), %o0 2007ab0: 92 10 00 18 mov %i0, %o1 2007ab4: 90 12 20 14 or %o0, 0x14, %o0 2007ab8: 40 00 08 27 call 2009b54 <_Objects_Get> 2007abc: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007ac0: c2 07 bf fc ld [ %fp + -4 ], %g1 2007ac4: 80 a0 60 00 cmp %g1, 0 2007ac8: 12 80 00 17 bne 2007b24 <_Rate_monotonic_Timeout+0x7c> <== NEVER TAKEN 2007acc: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007ad0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007ad4: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007ad8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007adc: 80 88 80 01 btst %g2, %g1 2007ae0: 22 80 00 08 be,a 2007b00 <_Rate_monotonic_Timeout+0x58> 2007ae4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007ae8: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007aec: c2 07 60 08 ld [ %i5 + 8 ], %g1 2007af0: 80 a0 80 01 cmp %g2, %g1 2007af4: 02 80 00 1a be 2007b5c <_Rate_monotonic_Timeout+0xb4> 2007af8: 13 04 00 ff sethi %hi(0x1003fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007afc: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007b00: 80 a0 60 01 cmp %g1, 1 2007b04: 02 80 00 0a be 2007b2c <_Rate_monotonic_Timeout+0x84> 2007b08: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007b0c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007b10: 03 00 80 78 sethi %hi(0x201e000), %g1 2007b14: c4 00 61 80 ld [ %g1 + 0x180 ], %g2 ! 201e180 <_Thread_Dispatch_disable_level> 2007b18: 84 00 bf ff add %g2, -1, %g2 2007b1c: c4 20 61 80 st %g2, [ %g1 + 0x180 ] return _Thread_Dispatch_disable_level; 2007b20: c2 00 61 80 ld [ %g1 + 0x180 ], %g1 2007b24: 81 c7 e0 08 ret 2007b28: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007b2c: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 2007b30: 90 10 00 1d mov %i5, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007b34: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007b38: 7f ff fe 5a call 20074a0 <_Rate_monotonic_Initiate_statistics> 2007b3c: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007b40: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007b44: 11 00 80 78 sethi %hi(0x201e000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007b48: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007b4c: 90 12 22 3c or %o0, 0x23c, %o0 2007b50: 40 00 0f e9 call 200baf4 <_Watchdog_Insert> 2007b54: 92 07 60 10 add %i5, 0x10, %o1 2007b58: 30 bf ff ee b,a 2007b10 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007b5c: 40 00 0a df call 200a6d8 <_Thread_Clear_state> 2007b60: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 2007b64: 10 bf ff f5 b 2007b38 <_Rate_monotonic_Timeout+0x90> 2007b68: 90 10 00 1d mov %i5, %o0 =============================================================================== 02009260 <_Scheduler_simple_Ready_queue_enqueue_first>: { Chain_Control *ready; Chain_Node *the_node; Thread_Control *current; ready = (Chain_Control *)_Scheduler.information; 2009260: 03 00 80 71 sethi %hi(0x201c400), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2009264: c2 00 62 14 ld [ %g1 + 0x214 ], %g1 ! 201c614 <_Scheduler> */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2009268: c6 02 20 14 ld [ %o0 + 0x14 ], %g3 200926c: c2 00 40 00 ld [ %g1 ], %g1 2009270: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2009274: 80 a0 80 03 cmp %g2, %g3 2009278: 3a 80 00 08 bcc,a 2009298 <_Scheduler_simple_Ready_queue_enqueue_first+0x38> 200927c: c2 00 60 04 ld [ %g1 + 4 ], %g1 * Do NOT need to check for end of chain because there is always * at least one task on the ready chain -- the IDLE task. It can * never block, should never attempt to obtain a semaphore or mutex, * and thus will always be there. */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { 2009280: c2 00 40 00 ld [ %g1 ], %g1 current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2009284: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2009288: 80 a0 80 03 cmp %g2, %g3 200928c: 2a bf ff fe bcs,a 2009284 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN 2009290: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED current = (Thread_Control *)current->Object.Node.previous; 2009294: c2 00 60 04 ld [ %g1 + 4 ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2009298: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 200929c: c2 22 20 04 st %g1, [ %o0 + 4 ] before_node = after_node->next; after_node->next = the_node; 20092a0: d0 20 40 00 st %o0, [ %g1 ] the_node->next = before_node; 20092a4: c4 22 00 00 st %g2, [ %o0 ] } } /* enqueue */ _Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node ); } 20092a8: 81 c3 e0 08 retl 20092ac: d0 20 a0 04 st %o0, [ %g2 + 4 ] =============================================================================== 020078c4 <_TOD_Tickle_ticks>: * * Output parameters: NONE */ void _TOD_Tickle_ticks( void ) { 20078c4: 9d e3 bf 98 save %sp, -104, %sp /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078c8: 05 00 80 71 sethi %hi(0x201c400), %g2 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078cc: 03 00 80 6d sethi %hi(0x201b400), %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078d0: c6 00 a0 3c ld [ %g2 + 0x3c ], %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078d4: c2 00 62 58 ld [ %g1 + 0x258 ], %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078d8: 86 00 e0 01 inc %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078dc: bb 28 60 07 sll %g1, 7, %i5 20078e0: 89 28 60 02 sll %g1, 2, %g4 20078e4: 88 27 40 04 sub %i5, %g4, %g4 20078e8: 82 01 00 01 add %g4, %g1, %g1 20078ec: 83 28 60 03 sll %g1, 3, %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 20078f0: 92 07 bf f8 add %fp, -8, %o1 /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078f4: c6 20 a0 3c st %g3, [ %g2 + 0x3c ] { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078f8: c2 27 bf fc st %g1, [ %fp + -4 ] 20078fc: c0 27 bf f8 clr [ %fp + -8 ] /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007900: 11 00 80 70 sethi %hi(0x201c000), %o0 2007904: 40 00 09 2e call 2009dbc <_Timespec_Add_to> 2007908: 90 12 23 ac or %o0, 0x3ac, %o0 ! 201c3ac <_TOD_Uptime> /* we do not care how much the uptime changed */ /* Update the timespec format TOD */ seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick ); 200790c: 92 07 bf f8 add %fp, -8, %o1 2007910: 11 00 80 70 sethi %hi(0x201c000), %o0 2007914: 40 00 09 2a call 2009dbc <_Timespec_Add_to> 2007918: 90 12 23 bc or %o0, 0x3bc, %o0 ! 201c3bc <_TOD_Now> while ( seconds ) { 200791c: ba 92 20 00 orcc %o0, 0, %i5 2007920: 02 80 00 08 be 2007940 <_TOD_Tickle_ticks+0x7c> 2007924: 39 00 80 70 sethi %hi(0x201c000), %i4 */ RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void ) { _Watchdog_Tickle( &_Watchdog_Seconds_chain ); 2007928: b8 17 23 e0 or %i4, 0x3e0, %i4 ! 201c3e0 <_Watchdog_Seconds_chain> 200792c: 40 00 0a ab call 200a3d8 <_Watchdog_Tickle> 2007930: 90 10 00 1c mov %i4, %o0 2007934: ba 87 7f ff addcc %i5, -1, %i5 2007938: 12 bf ff fd bne 200792c <_TOD_Tickle_ticks+0x68> <== NEVER TAKEN 200793c: 01 00 00 00 nop 2007940: 81 c7 e0 08 ret 2007944: 81 e8 00 00 restore =============================================================================== 020074f8 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20074f8: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20074fc: 03 00 80 77 sethi %hi(0x201dc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007500: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007504: 80 a6 20 00 cmp %i0, 0 2007508: 02 80 00 2c be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN 200750c: d2 00 61 68 ld [ %g1 + 0x168 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007510: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007514: 40 00 48 fd call 2019908 <.udiv> 2007518: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200751c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007520: 80 a2 00 01 cmp %o0, %g1 2007524: 28 80 00 26 bleu,a 20075bc <_TOD_Validate+0xc4> 2007528: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 200752c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007530: 80 a0 60 3b cmp %g1, 0x3b 2007534: 38 80 00 22 bgu,a 20075bc <_TOD_Validate+0xc4> 2007538: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 200753c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 2007540: 80 a0 60 3b cmp %g1, 0x3b 2007544: 38 80 00 1e bgu,a 20075bc <_TOD_Validate+0xc4> 2007548: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 200754c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2007550: 80 a0 60 17 cmp %g1, 0x17 2007554: 38 80 00 1a bgu,a 20075bc <_TOD_Validate+0xc4> 2007558: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 200755c: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007560: 80 a0 60 00 cmp %g1, 0 2007564: 02 80 00 15 be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007568: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 200756c: 38 80 00 14 bgu,a 20075bc <_TOD_Validate+0xc4> 2007570: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007574: c4 06 00 00 ld [ %i0 ], %g2 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007578: 80 a0 a7 c3 cmp %g2, 0x7c3 200757c: 28 80 00 10 bleu,a 20075bc <_TOD_Validate+0xc4> 2007580: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007584: c6 06 20 08 ld [ %i0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007588: 80 a0 e0 00 cmp %g3, 0 200758c: 02 80 00 0b be 20075b8 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007590: 80 88 a0 03 btst 3, %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007594: 32 80 00 0c bne,a 20075c4 <_TOD_Validate+0xcc> 2007598: 83 28 60 02 sll %g1, 2, %g1 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 200759c: 82 00 60 0d add %g1, 0xd, %g1 20075a0: 05 00 80 72 sethi %hi(0x201c800), %g2 20075a4: 83 28 60 02 sll %g1, 2, %g1 20075a8: 84 10 a2 78 or %g2, 0x278, %g2 20075ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20075b0: 80 a0 40 03 cmp %g1, %g3 20075b4: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 20075b8: b0 0f 60 01 and %i5, 1, %i0 20075bc: 81 c7 e0 08 ret 20075c0: 81 e8 00 00 restore return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20075c4: 05 00 80 72 sethi %hi(0x201c800), %g2 20075c8: 84 10 a2 78 or %g2, 0x278, %g2 ! 201ca78 <_TOD_Days_per_month> 20075cc: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20075d0: 80 a0 40 03 cmp %g1, %g3 20075d4: 10 bf ff f9 b 20075b8 <_TOD_Validate+0xc0> 20075d8: ba 60 3f ff subx %g0, -1, %i5 =============================================================================== 02008dc8 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008dc8: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2008dcc: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2008dd0: 40 00 03 9f call 2009c4c <_Thread_Set_transient> 2008dd4: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008dd8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008ddc: 80 a0 40 19 cmp %g1, %i1 2008de0: 02 80 00 05 be 2008df4 <_Thread_Change_priority+0x2c> 2008de4: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 2008de8: 90 10 00 18 mov %i0, %o0 2008dec: 40 00 03 7e call 2009be4 <_Thread_Set_priority> 2008df0: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2008df4: 7f ff e4 fc call 20021e4 2008df8: 01 00 00 00 nop 2008dfc: b2 10 00 08 mov %o0, %i1 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2008e00: f6 07 60 10 ld [ %i5 + 0x10 ], %i3 if ( state != STATES_TRANSIENT ) { 2008e04: 80 a6 e0 04 cmp %i3, 4 2008e08: 02 80 00 18 be 2008e68 <_Thread_Change_priority+0xa0> 2008e0c: 80 8f 20 04 btst 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2008e10: 02 80 00 0b be 2008e3c <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 2008e14: 82 0e ff fb and %i3, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 2008e18: 7f ff e4 f7 call 20021f4 <== NOT EXECUTED 2008e1c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 2008e20: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 2008e24: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008e28: 80 8e c0 01 btst %i3, %g1 <== NOT EXECUTED 2008e2c: 32 80 00 0d bne,a 2008e60 <_Thread_Change_priority+0x98> <== NOT EXECUTED 2008e30: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED 2008e34: 81 c7 e0 08 ret 2008e38: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008e3c: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 2008e40: 7f ff e4 ed call 20021f4 2008e44: 90 10 00 19 mov %i1, %o0 2008e48: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008e4c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008e50: 80 8e c0 01 btst %i3, %g1 2008e54: 02 bf ff f8 be 2008e34 <_Thread_Change_priority+0x6c> 2008e58: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008e5c: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2008e60: 40 00 03 30 call 2009b20 <_Thread_queue_Requeue> 2008e64: 93 e8 00 1d restore %g0, %i5, %o1 2008e68: 39 00 80 6d sethi %hi(0x201b400), %i4 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008e6c: 12 80 00 08 bne 2008e8c <_Thread_Change_priority+0xc4> <== NEVER TAKEN 2008e70: b8 17 23 34 or %i4, 0x334, %i4 ! 201b734 <_Scheduler> * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); if ( prepend_it ) 2008e74: 80 a6 a0 00 cmp %i2, 0 2008e78: 02 80 00 1b be 2008ee4 <_Thread_Change_priority+0x11c> 2008e7c: c0 27 60 10 clr [ %i5 + 0x10 ] */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2008e80: c2 07 20 28 ld [ %i4 + 0x28 ], %g1 2008e84: 9f c0 40 00 call %g1 2008e88: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008e8c: 7f ff e4 da call 20021f4 2008e90: 90 10 00 19 mov %i1, %o0 2008e94: 7f ff e4 d4 call 20021e4 2008e98: 01 00 00 00 nop 2008e9c: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008ea0: c2 07 20 08 ld [ %i4 + 8 ], %g1 2008ea4: 9f c0 40 00 call %g1 2008ea8: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008eac: 03 00 80 71 sethi %hi(0x201c400), %g1 2008eb0: 82 10 61 5c or %g1, 0x15c, %g1 ! 201c55c <_Per_CPU_Information> 2008eb4: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008eb8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008ebc: 80 a0 80 03 cmp %g2, %g3 2008ec0: 02 80 00 07 be 2008edc <_Thread_Change_priority+0x114> 2008ec4: 01 00 00 00 nop 2008ec8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2008ecc: 80 a0 a0 00 cmp %g2, 0 2008ed0: 02 80 00 03 be 2008edc <_Thread_Change_priority+0x114> 2008ed4: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2008ed8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2008edc: 7f ff e4 c6 call 20021f4 2008ee0: 81 e8 00 00 restore */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2008ee4: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 2008ee8: 9f c0 40 00 call %g1 2008eec: 90 10 00 1d mov %i5, %o0 2008ef0: 30 bf ff e7 b,a 2008e8c <_Thread_Change_priority+0xc4> =============================================================================== 0200910c <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 200910c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009110: 90 10 00 18 mov %i0, %o0 2009114: 40 00 00 77 call 20092f0 <_Thread_Get> 2009118: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200911c: c2 07 bf fc ld [ %fp + -4 ], %g1 2009120: 80 a0 60 00 cmp %g1, 0 2009124: 12 80 00 09 bne 2009148 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2009128: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 200912c: 7f ff ff 72 call 2008ef4 <_Thread_Clear_state> 2009130: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009134: 03 00 80 70 sethi %hi(0x201c000), %g1 2009138: c4 00 63 30 ld [ %g1 + 0x330 ], %g2 ! 201c330 <_Thread_Dispatch_disable_level> 200913c: 84 00 bf ff add %g2, -1, %g2 2009140: c4 20 63 30 st %g2, [ %g1 + 0x330 ] return _Thread_Dispatch_disable_level; 2009144: c2 00 63 30 ld [ %g1 + 0x330 ], %g1 2009148: 81 c7 e0 08 ret 200914c: 81 e8 00 00 restore =============================================================================== 02009150 <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2009150: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2009154: 21 00 80 70 sethi %hi(0x201c000), %l0 2009158: c2 04 23 30 ld [ %l0 + 0x330 ], %g1 ! 201c330 <_Thread_Dispatch_disable_level> 200915c: 82 00 60 01 inc %g1 2009160: c2 24 23 30 st %g1, [ %l0 + 0x330 ] return _Thread_Dispatch_disable_level; 2009164: c2 04 23 30 ld [ %l0 + 0x330 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2009168: 39 00 80 71 sethi %hi(0x201c400), %i4 200916c: b8 17 21 5c or %i4, 0x15c, %i4 ! 201c55c <_Per_CPU_Information> _ISR_Disable( level ); 2009170: 7f ff e4 1d call 20021e4 2009174: fa 07 20 0c ld [ %i4 + 0xc ], %i5 while ( _Thread_Dispatch_necessary == true ) { 2009178: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1 200917c: 80 a0 60 00 cmp %g1, 0 2009180: 02 80 00 48 be 20092a0 <_Thread_Dispatch+0x150> 2009184: 01 00 00 00 nop heir = _Thread_Heir; 2009188: f6 07 20 10 ld [ %i4 + 0x10 ], %i3 _Thread_Dispatch_necessary = false; 200918c: c0 2f 20 18 clrb [ %i4 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2009190: 80 a7 40 1b cmp %i5, %i3 2009194: 02 80 00 43 be 20092a0 <_Thread_Dispatch+0x150> 2009198: f6 27 20 0c st %i3, [ %i4 + 0xc ] 200919c: 31 00 80 70 sethi %hi(0x201c000), %i0 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 20091a0: 23 00 80 70 sethi %hi(0x201c000), %l1 20091a4: b0 16 23 b8 or %i0, 0x3b8, %i0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 20091a8: b2 07 20 1c add %i4, 0x1c, %i1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 20091ac: 10 80 00 37 b 2009288 <_Thread_Dispatch+0x138> 20091b0: 35 00 80 70 sethi %hi(0x201c000), %i2 rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 20091b4: 7f ff e4 10 call 20021f4 20091b8: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 20091bc: 40 00 0e 0e call 200c9f4 <_TOD_Get_uptime> 20091c0: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 20091c4: 90 10 00 19 mov %i1, %o0 20091c8: 92 07 bf f0 add %fp, -16, %o1 20091cc: 40 00 03 15 call 2009e20 <_Timespec_Subtract> 20091d0: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 20091d4: 90 07 60 84 add %i5, 0x84, %o0 20091d8: 40 00 02 f9 call 2009dbc <_Timespec_Add_to> 20091dc: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 20091e0: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20091e4: c2 06 00 00 ld [ %i0 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 20091e8: c4 27 20 1c st %g2, [ %i4 + 0x1c ] 20091ec: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20091f0: 80 a0 60 00 cmp %g1, 0 20091f4: 02 80 00 06 be 200920c <_Thread_Dispatch+0xbc> <== NEVER TAKEN 20091f8: c4 27 20 20 st %g2, [ %i4 + 0x20 ] executing->libc_reent = *_Thread_libc_reent; 20091fc: c4 00 40 00 ld [ %g1 ], %g2 2009200: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2009204: c4 06 e1 54 ld [ %i3 + 0x154 ], %g2 2009208: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 200920c: 90 10 00 1d mov %i5, %o0 2009210: 40 00 03 c8 call 200a130 <_User_extensions_Thread_switch> 2009214: 92 10 00 1b mov %i3, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2009218: 90 07 60 c8 add %i5, 0xc8, %o0 200921c: 40 00 05 0c call 200a64c <_CPU_Context_switch> 2009220: 92 06 e0 c8 add %i3, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2009224: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 2009228: 80 a0 60 00 cmp %g1, 0 200922c: 02 80 00 0c be 200925c <_Thread_Dispatch+0x10c> 2009230: d0 06 a3 b4 ld [ %i2 + 0x3b4 ], %o0 2009234: 80 a7 40 08 cmp %i5, %o0 2009238: 02 80 00 09 be 200925c <_Thread_Dispatch+0x10c> 200923c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2009240: 02 80 00 04 be 2009250 <_Thread_Dispatch+0x100> 2009244: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2009248: 40 00 04 c7 call 200a564 <_CPU_Context_save_fp> 200924c: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2009250: 40 00 04 e2 call 200a5d8 <_CPU_Context_restore_fp> 2009254: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 2009258: fa 26 a3 b4 st %i5, [ %i2 + 0x3b4 ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 200925c: 7f ff e3 e2 call 20021e4 2009260: fa 07 20 0c ld [ %i4 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2009264: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1 2009268: 80 a0 60 00 cmp %g1, 0 200926c: 02 80 00 0d be 20092a0 <_Thread_Dispatch+0x150> 2009270: 01 00 00 00 nop heir = _Thread_Heir; 2009274: f6 07 20 10 ld [ %i4 + 0x10 ], %i3 _Thread_Dispatch_necessary = false; 2009278: c0 2f 20 18 clrb [ %i4 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 200927c: 80 a6 c0 1d cmp %i3, %i5 2009280: 02 80 00 08 be 20092a0 <_Thread_Dispatch+0x150> <== NEVER TAKEN 2009284: f6 27 20 0c st %i3, [ %i4 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2009288: c2 06 e0 7c ld [ %i3 + 0x7c ], %g1 200928c: 80 a0 60 01 cmp %g1, 1 2009290: 12 bf ff c9 bne 20091b4 <_Thread_Dispatch+0x64> 2009294: c2 04 62 94 ld [ %l1 + 0x294 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2009298: 10 bf ff c7 b 20091b4 <_Thread_Dispatch+0x64> 200929c: c2 26 e0 78 st %g1, [ %i3 + 0x78 ] * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 20092a0: c0 24 23 30 clr [ %l0 + 0x330 ] } post_switch: _Thread_Dispatch_set_disable_level( 0 ); _ISR_Enable( level ); 20092a4: 7f ff e3 d4 call 20021f4 20092a8: 01 00 00 00 nop _API_extensions_Run_postswitch(); 20092ac: 7f ff f7 f1 call 2007270 <_API_extensions_Run_postswitch> 20092b0: 01 00 00 00 nop } 20092b4: 81 c7 e0 08 ret 20092b8: 81 e8 00 00 restore =============================================================================== 0200e910 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200e910: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200e914: 03 00 80 71 sethi %hi(0x201c400), %g1 200e918: fa 00 61 68 ld [ %g1 + 0x168 ], %i5 ! 201c568 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e91c: 3f 00 80 3a sethi %hi(0x200e800), %i7 200e920: be 17 e1 10 or %i7, 0x110, %i7 ! 200e910 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e924: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200e928: 7f ff ce 33 call 20021f4 200e92c: 91 2a 20 08 sll %o0, 8, %o0 doneConstructors = 1; #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e930: c4 07 61 50 ld [ %i5 + 0x150 ], %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e934: 03 00 80 6f sethi %hi(0x201bc00), %g1 doneConstructors = 1; 200e938: 86 10 20 01 mov 1, %g3 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e93c: f6 08 63 f0 ldub [ %g1 + 0x3f0 ], %i3 doneConstructors = 1; #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e940: 80 a0 a0 00 cmp %g2, 0 200e944: 02 80 00 0c be 200e974 <_Thread_Handler+0x64> 200e948: c6 28 63 f0 stb %g3, [ %g1 + 0x3f0 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e94c: 39 00 80 70 sethi %hi(0x201c000), %i4 200e950: d0 07 23 b4 ld [ %i4 + 0x3b4 ], %o0 ! 201c3b4 <_Thread_Allocated_fp> 200e954: 80 a7 40 08 cmp %i5, %o0 200e958: 02 80 00 07 be 200e974 <_Thread_Handler+0x64> 200e95c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e960: 22 80 00 05 be,a 200e974 <_Thread_Handler+0x64> 200e964: fa 27 23 b4 st %i5, [ %i4 + 0x3b4 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e968: 7f ff ee ff call 200a564 <_CPU_Context_save_fp> 200e96c: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200e970: fa 27 23 b4 st %i5, [ %i4 + 0x3b4 ] /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200e974: 7f ff ed 6d call 2009f28 <_User_extensions_Thread_begin> 200e978: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e97c: 7f ff ea 50 call 20092bc <_Thread_Enable_dispatch> 200e980: b7 2e e0 18 sll %i3, 0x18, %i3 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200e984: 80 a6 e0 00 cmp %i3, 0 200e988: 02 80 00 0c be 200e9b8 <_Thread_Handler+0xa8> 200e98c: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e990: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200e994: 80 a0 60 00 cmp %g1, 0 200e998: 22 80 00 0c be,a 200e9c8 <_Thread_Handler+0xb8> <== ALWAYS TAKEN 200e99c: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200e9a0: 7f ff ed 76 call 2009f78 <_User_extensions_Thread_exitted> 200e9a4: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200e9a8: 90 10 20 00 clr %o0 200e9ac: 92 10 20 01 mov 1, %o1 200e9b0: 7f ff e4 f8 call 2007d90 <_Internal_error_Occurred> 200e9b4: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200e9b8: 40 00 33 14 call 201b608 <_init> 200e9bc: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e9c0: 10 bf ff f5 b 200e994 <_Thread_Handler+0x84> 200e9c4: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e9c8: 9f c0 40 00 call %g1 200e9cc: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200e9d0: 10 bf ff f4 b 200e9a0 <_Thread_Handler+0x90> 200e9d4: d0 27 60 28 st %o0, [ %i5 + 0x28 ] =============================================================================== 020093a0 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 20093a0: 9d e3 bf a0 save %sp, -96, %sp 20093a4: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 20093a8: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 20093ac: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 20093b0: c0 26 61 58 clr [ %i1 + 0x158 ] 20093b4: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 20093b8: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 20093bc: 90 10 00 19 mov %i1, %o0 20093c0: 40 00 02 32 call 2009c88 <_Thread_Stack_Allocate> 20093c4: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 20093c8: 80 a2 00 1b cmp %o0, %i3 20093cc: 0a 80 00 4b bcs 20094f8 <_Thread_Initialize+0x158> 20093d0: 80 a2 20 00 cmp %o0, 0 20093d4: 02 80 00 49 be 20094f8 <_Thread_Initialize+0x158> <== NEVER TAKEN 20093d8: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 20093dc: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 20093e0: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 20093e4: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 20093e8: 12 80 00 48 bne 2009508 <_Thread_Initialize+0x168> 20093ec: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20093f0: 23 00 80 70 sethi %hi(0x201c000), %l1 20093f4: c2 04 63 c4 ld [ %l1 + 0x3c4 ], %g1 ! 201c3c4 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 20093f8: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 20093fc: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2009400: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2009404: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2009408: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 200940c: 80 a0 60 00 cmp %g1, 0 2009410: 12 80 00 46 bne 2009528 <_Thread_Initialize+0x188> 2009414: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2009418: c0 26 61 60 clr [ %i1 + 0x160 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 200941c: b8 10 20 00 clr %i4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2009420: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2009424: 03 00 80 6d sethi %hi(0x201b400), %g1 2009428: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 200942c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2 2009430: c2 00 63 4c ld [ %g1 + 0x34c ], %g1 2009434: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2009438: c4 07 a0 68 ld [ %fp + 0x68 ], %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 200943c: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2009440: c4 26 60 ac st %g2, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2009444: 84 10 20 01 mov 1, %g2 the_thread->Wait.queue = NULL; 2009448: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 200944c: c4 26 60 10 st %g2, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2009450: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2009454: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2009458: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 200945c: 9f c0 40 00 call %g1 2009460: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2009464: b4 92 20 00 orcc %o0, 0, %i2 2009468: 22 80 00 13 be,a 20094b4 <_Thread_Initialize+0x114> 200946c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2009470: 90 10 00 19 mov %i1, %o0 2009474: 40 00 01 dc call 2009be4 <_Thread_Set_priority> 2009478: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200947c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2009480: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2009484: c0 26 60 84 clr [ %i1 + 0x84 ] 2009488: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200948c: 83 28 60 02 sll %g1, 2, %g1 2009490: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2009494: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2009498: 90 10 00 19 mov %i1, %o0 200949c: 40 00 02 de call 200a014 <_User_extensions_Thread_create> 20094a0: b0 10 20 01 mov 1, %i0 if ( extension_status ) 20094a4: 80 8a 20 ff btst 0xff, %o0 20094a8: 32 80 00 12 bne,a 20094f0 <_Thread_Initialize+0x150> 20094ac: b0 0e 20 01 and %i0, 1, %i0 return true; failed: _Workspace_Free( the_thread->libc_reent ); 20094b0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 20094b4: 40 00 04 17 call 200a510 <_Workspace_Free> 20094b8: b0 10 20 00 clr %i0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 20094bc: 40 00 04 15 call 200a510 <_Workspace_Free> 20094c0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 20094c4: 40 00 04 13 call 200a510 <_Workspace_Free> 20094c8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 20094cc: 40 00 04 11 call 200a510 <_Workspace_Free> 20094d0: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 20094d4: 40 00 04 0f call 200a510 <_Workspace_Free> 20094d8: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 20094dc: 40 00 04 0d call 200a510 <_Workspace_Free> 20094e0: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 20094e4: 40 00 02 04 call 2009cf4 <_Thread_Stack_Free> 20094e8: 90 10 00 19 mov %i1, %o0 return false; } 20094ec: b0 0e 20 01 and %i0, 1, %i0 20094f0: 81 c7 e0 08 ret 20094f4: 81 e8 00 00 restore * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 20094f8: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 20094fc: b0 0e 20 01 and %i0, 1, %i0 2009500: 81 c7 e0 08 ret 2009504: 81 e8 00 00 restore /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2009508: 40 00 03 fa call 200a4f0 <_Workspace_Allocate> 200950c: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2009510: b6 92 20 00 orcc %o0, 0, %i3 2009514: 32 bf ff b8 bne,a 20093f4 <_Thread_Initialize+0x54> 2009518: 23 00 80 70 sethi %hi(0x201c000), %l1 * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 200951c: b8 10 20 00 clr %i4 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2009520: 10 bf ff e4 b 20094b0 <_Thread_Initialize+0x110> 2009524: b4 10 20 00 clr %i2 /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { extensions_area = _Workspace_Allocate( 2009528: 82 00 60 01 inc %g1 200952c: 40 00 03 f1 call 200a4f0 <_Workspace_Allocate> 2009530: 91 28 60 02 sll %g1, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2009534: b8 92 20 00 orcc %o0, 0, %i4 2009538: 02 80 00 10 be 2009578 <_Thread_Initialize+0x1d8> 200953c: 86 10 00 1c mov %i4, %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 2009540: f8 26 61 60 st %i4, [ %i1 + 0x160 ] 2009544: c8 04 63 c4 ld [ %l1 + 0x3c4 ], %g4 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009548: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 200954c: 10 80 00 03 b 2009558 <_Thread_Initialize+0x1b8> 2009550: 82 10 20 00 clr %g1 2009554: c6 06 61 60 ld [ %i1 + 0x160 ], %g3 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 2009558: 85 28 a0 02 sll %g2, 2, %g2 200955c: c0 20 c0 02 clr [ %g3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009560: 82 00 60 01 inc %g1 2009564: 80 a0 40 04 cmp %g1, %g4 2009568: 08 bf ff fb bleu 2009554 <_Thread_Initialize+0x1b4> 200956c: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2009570: 10 bf ff ad b 2009424 <_Thread_Initialize+0x84> 2009574: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2009578: 10 bf ff ce b 20094b0 <_Thread_Initialize+0x110> 200957c: b4 10 20 00 clr %i2 =============================================================================== 02009b20 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009b20: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2009b24: 80 a6 20 00 cmp %i0, 0 2009b28: 02 80 00 13 be 2009b74 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 2009b2c: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009b30: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 2009b34: 80 a7 20 01 cmp %i4, 1 2009b38: 02 80 00 04 be 2009b48 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 2009b3c: 01 00 00 00 nop 2009b40: 81 c7 e0 08 ret <== NOT EXECUTED 2009b44: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2009b48: 7f ff e1 a7 call 20021e4 2009b4c: 01 00 00 00 nop 2009b50: ba 10 00 08 mov %o0, %i5 2009b54: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 2009b58: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009b5c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009b60: 80 88 80 01 btst %g2, %g1 2009b64: 12 80 00 06 bne 2009b7c <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 2009b68: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 2009b6c: 7f ff e1 a2 call 20021f4 2009b70: 90 10 00 1d mov %i5, %o0 2009b74: 81 c7 e0 08 ret 2009b78: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2009b7c: 92 10 00 19 mov %i1, %o1 2009b80: 94 10 20 01 mov 1, %o2 2009b84: 40 00 0d 1f call 200d000 <_Thread_queue_Extract_priority_helper> 2009b88: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2009b8c: 90 10 00 18 mov %i0, %o0 2009b90: 92 10 00 19 mov %i1, %o1 2009b94: 7f ff ff 35 call 2009868 <_Thread_queue_Enqueue_priority> 2009b98: 94 07 bf fc add %fp, -4, %o2 2009b9c: 30 bf ff f4 b,a 2009b6c <_Thread_queue_Requeue+0x4c> =============================================================================== 02009ba0 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009ba0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009ba4: 90 10 00 18 mov %i0, %o0 2009ba8: 7f ff fd d2 call 20092f0 <_Thread_Get> 2009bac: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009bb0: c2 07 bf fc ld [ %fp + -4 ], %g1 2009bb4: 80 a0 60 00 cmp %g1, 0 2009bb8: 12 80 00 09 bne 2009bdc <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009bbc: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2009bc0: 40 00 0d 49 call 200d0e4 <_Thread_queue_Process_timeout> 2009bc4: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009bc8: 03 00 80 70 sethi %hi(0x201c000), %g1 2009bcc: c4 00 63 30 ld [ %g1 + 0x330 ], %g2 ! 201c330 <_Thread_Dispatch_disable_level> 2009bd0: 84 00 bf ff add %g2, -1, %g2 2009bd4: c4 20 63 30 st %g2, [ %g1 + 0x330 ] return _Thread_Dispatch_disable_level; 2009bd8: c2 00 63 30 ld [ %g1 + 0x330 ], %g1 2009bdc: 81 c7 e0 08 ret 2009be0: 81 e8 00 00 restore =============================================================================== 0201649c <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 201649c: 9d e3 bf 88 save %sp, -120, %sp 20164a0: 23 00 80 e7 sethi %hi(0x2039c00), %l1 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20164a4: a6 07 bf e8 add %fp, -24, %l3 20164a8: b2 07 bf ec add %fp, -20, %i1 20164ac: b6 07 bf f4 add %fp, -12, %i3 20164b0: a4 07 bf f8 add %fp, -8, %l2 20164b4: 21 00 80 e7 sethi %hi(0x2039c00), %l0 20164b8: 29 00 80 e7 sethi %hi(0x2039c00), %l4 20164bc: f2 27 bf e8 st %i1, [ %fp + -24 ] head->previous = NULL; 20164c0: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20164c4: e6 27 bf f0 st %l3, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20164c8: e4 27 bf f4 st %l2, [ %fp + -12 ] head->previous = NULL; 20164cc: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20164d0: f6 27 bf fc st %i3, [ %fp + -4 ] 20164d4: a2 14 63 1c or %l1, 0x31c, %l1 20164d8: b8 06 20 30 add %i0, 0x30, %i4 20164dc: a0 14 22 9c or %l0, 0x29c, %l0 20164e0: b4 06 20 68 add %i0, 0x68, %i2 20164e4: a8 15 22 10 or %l4, 0x210, %l4 20164e8: ae 06 20 08 add %i0, 8, %l7 20164ec: ac 06 20 40 add %i0, 0x40, %l6 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 20164f0: aa 10 20 01 mov 1, %l5 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 20164f4: e6 26 20 78 st %l3, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20164f8: c2 04 40 00 ld [ %l1 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20164fc: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016500: 94 10 00 1b mov %i3, %o2 2016504: 90 10 00 1c mov %i4, %o0 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016508: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201650c: 40 00 12 c3 call 201b018 <_Watchdog_Adjust_to_chain> 2016510: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016514: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016518: fa 04 00 00 ld [ %l0 ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 201651c: 80 a7 40 0a cmp %i5, %o2 2016520: 18 80 00 2e bgu 20165d8 <_Timer_server_Body+0x13c> 2016524: 92 27 40 0a sub %i5, %o2, %o1 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 2016528: 80 a7 40 0a cmp %i5, %o2 201652c: 0a 80 00 2f bcs 20165e8 <_Timer_server_Body+0x14c> 2016530: 90 10 00 1a mov %i2, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 2016534: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016538: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 201653c: 40 00 03 06 call 2017154 <_Chain_Get> 2016540: 01 00 00 00 nop if ( timer == NULL ) { 2016544: 92 92 20 00 orcc %o0, 0, %o1 2016548: 02 80 00 10 be 2016588 <_Timer_server_Body+0xec> 201654c: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016550: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2016554: 80 a0 60 01 cmp %g1, 1 2016558: 02 80 00 28 be 20165f8 <_Timer_server_Body+0x15c> 201655c: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016560: 12 bf ff f6 bne 2016538 <_Timer_server_Body+0x9c> <== NEVER TAKEN 2016564: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016568: 40 00 12 dd call 201b0dc <_Watchdog_Insert> 201656c: 90 10 00 1a mov %i2, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016570: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016574: 40 00 02 f8 call 2017154 <_Chain_Get> 2016578: 01 00 00 00 nop if ( timer == NULL ) { 201657c: 92 92 20 00 orcc %o0, 0, %o1 2016580: 32 bf ff f5 bne,a 2016554 <_Timer_server_Body+0xb8> <== NEVER TAKEN 2016584: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2016588: 7f ff e2 51 call 200eecc 201658c: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 2016590: c2 07 bf e8 ld [ %fp + -24 ], %g1 2016594: 80 a0 40 19 cmp %g1, %i1 2016598: 02 80 00 1c be 2016608 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN 201659c: 01 00 00 00 nop ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 20165a0: 7f ff e2 4f call 200eedc <== NOT EXECUTED 20165a4: 01 00 00 00 nop <== NOT EXECUTED static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20165a8: c2 04 40 00 ld [ %l1 ], %g1 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20165ac: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20165b0: 94 10 00 1b mov %i3, %o2 <== NOT EXECUTED 20165b4: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20165b8: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20165bc: 40 00 12 97 call 201b018 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED 20165c0: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 20165c4: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20165c8: fa 04 00 00 ld [ %l0 ], %i5 <== NOT EXECUTED /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 20165cc: 80 a7 40 0a cmp %i5, %o2 <== NOT EXECUTED 20165d0: 08 bf ff d7 bleu 201652c <_Timer_server_Body+0x90> <== NOT EXECUTED 20165d4: 92 27 40 0a sub %i5, %o2, %o1 <== NOT EXECUTED /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20165d8: 90 10 00 1a mov %i2, %o0 20165dc: 40 00 12 8f call 201b018 <_Watchdog_Adjust_to_chain> 20165e0: 94 10 00 1b mov %i3, %o2 20165e4: 30 bf ff d4 b,a 2016534 <_Timer_server_Body+0x98> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20165e8: 92 10 20 01 mov 1, %o1 20165ec: 40 00 12 5c call 201af5c <_Watchdog_Adjust> 20165f0: 94 22 80 1d sub %o2, %i5, %o2 20165f4: 30 bf ff d0 b,a 2016534 <_Timer_server_Body+0x98> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20165f8: 90 10 00 1c mov %i4, %o0 20165fc: 40 00 12 b8 call 201b0dc <_Watchdog_Insert> 2016600: 92 02 60 10 add %o1, 0x10, %o1 2016604: 30 bf ff cd b,a 2016538 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 2016608: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 201660c: 7f ff e2 34 call 200eedc 2016610: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016614: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016618: 80 a0 40 12 cmp %g1, %l2 201661c: 12 80 00 0c bne 201664c <_Timer_server_Body+0x1b0> 2016620: 01 00 00 00 nop 2016624: 30 80 00 13 b,a 2016670 <_Timer_server_Body+0x1d4> Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; new_first->previous = head; 2016628: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 201662c: c2 27 bf f4 st %g1, [ %fp + -12 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 2016630: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 2016634: 7f ff e2 2a call 200eedc 2016638: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 201663c: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 2016640: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 2016644: 9f c0 40 00 call %g1 2016648: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 201664c: 7f ff e2 20 call 200eecc 2016650: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2016654: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016658: 80 a7 40 12 cmp %i5, %l2 201665c: 32 bf ff f3 bne,a 2016628 <_Timer_server_Body+0x18c> 2016660: c2 07 40 00 ld [ %i5 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016664: 7f ff e2 1e call 200eedc 2016668: 01 00 00 00 nop 201666c: 30 bf ff a2 b,a 20164f4 <_Timer_server_Body+0x58> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2016670: c0 2e 20 7c clrb [ %i0 + 0x7c ] * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2016674: c2 05 00 00 ld [ %l4 ], %g1 2016678: 82 00 60 01 inc %g1 201667c: c2 25 00 00 st %g1, [ %l4 ] return _Thread_Dispatch_disable_level; 2016680: c2 05 00 00 ld [ %l4 ], %g1 /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016684: d0 06 00 00 ld [ %i0 ], %o0 2016688: 40 00 10 9f call 201a904 <_Thread_Set_state> 201668c: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016690: 7f ff ff 5b call 20163fc <_Timer_server_Reset_interval_system_watchdog> 2016694: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016698: 7f ff ff 6d call 201644c <_Timer_server_Reset_tod_system_watchdog> 201669c: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 20166a0: 40 00 0e 23 call 2019f2c <_Thread_Enable_dispatch> 20166a4: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20166a8: 90 10 00 17 mov %l7, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 20166ac: ea 2e 20 7c stb %l5, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20166b0: 40 00 12 ed call 201b264 <_Watchdog_Remove> 20166b4: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20166b8: 40 00 12 eb call 201b264 <_Watchdog_Remove> 20166bc: 90 10 00 16 mov %l6, %o0 20166c0: 30 bf ff 8d b,a 20164f4 <_Timer_server_Body+0x58> =============================================================================== 020166c4 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 20166c4: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 20166c8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 20166cc: 80 a0 60 00 cmp %g1, 0 20166d0: 02 80 00 05 be 20166e4 <_Timer_server_Schedule_operation_method+0x20> 20166d4: ba 10 00 19 mov %i1, %i5 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 20166d8: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 20166dc: 40 00 02 8a call 2017104 <_Chain_Append> 20166e0: 81 e8 00 00 restore * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 20166e4: 03 00 80 e7 sethi %hi(0x2039c00), %g1 20166e8: c4 00 62 10 ld [ %g1 + 0x210 ], %g2 ! 2039e10 <_Thread_Dispatch_disable_level> 20166ec: 84 00 a0 01 inc %g2 20166f0: c4 20 62 10 st %g2, [ %g1 + 0x210 ] return _Thread_Dispatch_disable_level; 20166f4: c2 00 62 10 ld [ %g1 + 0x210 ], %g1 * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 20166f8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 20166fc: 80 a0 60 01 cmp %g1, 1 2016700: 02 80 00 28 be 20167a0 <_Timer_server_Schedule_operation_method+0xdc> 2016704: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016708: 02 80 00 04 be 2016718 <_Timer_server_Schedule_operation_method+0x54> 201670c: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016710: 40 00 0e 07 call 2019f2c <_Thread_Enable_dispatch> 2016714: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016718: 7f ff e1 ed call 200eecc 201671c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2016720: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016724: c6 06 20 74 ld [ %i0 + 0x74 ], %g3 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016728: 88 06 20 6c add %i0, 0x6c, %g4 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 201672c: 03 00 80 e7 sethi %hi(0x2039c00), %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016730: 80 a0 80 04 cmp %g2, %g4 2016734: 02 80 00 0d be 2016768 <_Timer_server_Schedule_operation_method+0xa4> 2016738: c2 00 62 9c ld [ %g1 + 0x29c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 201673c: de 00 a0 10 ld [ %g2 + 0x10 ], %o7 if ( snapshot > last_snapshot ) { 2016740: 80 a0 40 03 cmp %g1, %g3 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016744: 88 03 c0 03 add %o7, %g3, %g4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016748: 08 80 00 07 bleu 2016764 <_Timer_server_Schedule_operation_method+0xa0> 201674c: 88 21 00 01 sub %g4, %g1, %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016750: 86 20 40 03 sub %g1, %g3, %g3 if (delta_interval > delta) { 2016754: 80 a3 c0 03 cmp %o7, %g3 2016758: 08 80 00 03 bleu 2016764 <_Timer_server_Schedule_operation_method+0xa0><== NEVER TAKEN 201675c: 88 10 20 00 clr %g4 delta_interval -= delta; 2016760: 88 23 c0 03 sub %o7, %g3, %g4 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016764: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016768: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 201676c: 7f ff e1 dc call 200eedc 2016770: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016774: 90 06 20 68 add %i0, 0x68, %o0 2016778: 40 00 12 59 call 201b0dc <_Watchdog_Insert> 201677c: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2016780: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016784: 80 a0 60 00 cmp %g1, 0 2016788: 12 bf ff e2 bne 2016710 <_Timer_server_Schedule_operation_method+0x4c> 201678c: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016790: 7f ff ff 2f call 201644c <_Timer_server_Reset_tod_system_watchdog> 2016794: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016798: 40 00 0d e5 call 2019f2c <_Thread_Enable_dispatch> 201679c: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20167a0: 7f ff e1 cb call 200eecc 20167a4: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 20167a8: 05 00 80 e7 sethi %hi(0x2039c00), %g2 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20167ac: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 20167b0: c4 00 a3 1c ld [ %g2 + 0x31c ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 20167b4: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20167b8: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 20167bc: 80 a0 40 03 cmp %g1, %g3 20167c0: 02 80 00 08 be 20167e0 <_Timer_server_Schedule_operation_method+0x11c> 20167c4: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 20167c8: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 20167cc: 80 a1 00 0f cmp %g4, %o7 20167d0: 1a 80 00 03 bcc 20167dc <_Timer_server_Schedule_operation_method+0x118> 20167d4: 86 10 20 00 clr %g3 delta_interval -= delta; 20167d8: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 20167dc: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 20167e0: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 20167e4: 7f ff e1 be call 200eedc 20167e8: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20167ec: 90 06 20 30 add %i0, 0x30, %o0 20167f0: 40 00 12 3b call 201b0dc <_Watchdog_Insert> 20167f4: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20167f8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20167fc: 80 a0 60 00 cmp %g1, 0 2016800: 12 bf ff c4 bne 2016710 <_Timer_server_Schedule_operation_method+0x4c> 2016804: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016808: 7f ff fe fd call 20163fc <_Timer_server_Reset_interval_system_watchdog> 201680c: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016810: 40 00 0d c7 call 2019f2c <_Thread_Enable_dispatch> 2016814: 81 e8 00 00 restore =============================================================================== 02009dbc <_Timespec_Add_to>: uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { 2009dbc: 9d e3 bf a0 save %sp, -96, %sp 2009dc0: 82 10 00 18 mov %i0, %g1 uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009dc4: c6 06 00 00 ld [ %i0 ], %g3 time->tv_nsec += add->tv_nsec; 2009dc8: c8 00 60 04 ld [ %g1 + 4 ], %g4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 2009dcc: f0 06 40 00 ld [ %i1 ], %i0 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 2009dd0: c4 06 60 04 ld [ %i1 + 4 ], %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009dd4: 86 00 c0 18 add %g3, %i0, %g3 time->tv_nsec += add->tv_nsec; 2009dd8: 84 01 00 02 add %g4, %g2, %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009ddc: c6 20 40 00 st %g3, [ %g1 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009de0: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 2009de4: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 2009de8: 80 a0 80 04 cmp %g2, %g4 2009dec: 08 80 00 0b bleu 2009e18 <_Timespec_Add_to+0x5c> 2009df0: c4 20 60 04 st %g2, [ %g1 + 4 ] time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 2009df4: 1f 31 19 4d sethi %hi(0xc4653400), %o7 2009df8: 9e 13 e2 00 or %o7, 0x200, %o7 ! c4653600 2009dfc: 84 00 80 0f add %g2, %o7, %g2 time->tv_sec++; 2009e00: 86 00 e0 01 inc %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009e04: 80 a0 80 04 cmp %g2, %g4 2009e08: 18 bf ff fd bgu 2009dfc <_Timespec_Add_to+0x40> <== NEVER TAKEN 2009e0c: b0 06 20 01 inc %i0 2009e10: c4 20 60 04 st %g2, [ %g1 + 4 ] 2009e14: c6 20 40 00 st %g3, [ %g1 ] time->tv_sec++; seconds++; } return seconds; } 2009e18: 81 c7 e0 08 ret 2009e1c: 81 e8 00 00 restore =============================================================================== 02009fc4 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009fc4: 9d e3 bf a0 save %sp, -96, %sp 2009fc8: 39 00 80 71 sethi %hi(0x201c400), %i4 2009fcc: b8 17 21 18 or %i4, 0x118, %i4 ! 201c518 <_User_extensions_List> 2009fd0: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009fd4: 80 a7 40 1c cmp %i5, %i4 2009fd8: 02 80 00 0d be 200a00c <_User_extensions_Fatal+0x48> <== NEVER TAKEN 2009fdc: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 2009fe0: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2009fe4: 80 a0 60 00 cmp %g1, 0 2009fe8: 02 80 00 05 be 2009ffc <_User_extensions_Fatal+0x38> 2009fec: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 2009ff0: 92 10 00 19 mov %i1, %o1 2009ff4: 9f c0 40 00 call %g1 2009ff8: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009ffc: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a000: 80 a7 40 1c cmp %i5, %i4 200a004: 32 bf ff f8 bne,a 2009fe4 <_User_extensions_Fatal+0x20> 200a008: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 200a00c: 81 c7 e0 08 ret 200a010: 81 e8 00 00 restore =============================================================================== 02009e70 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009e70: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009e74: 07 00 80 6d sethi %hi(0x201b400), %g3 2009e78: 86 10 e2 4c or %g3, 0x24c, %g3 ! 201b64c initial_extensions = Configuration.User_extension_table; 2009e7c: f6 00 e0 3c ld [ %g3 + 0x3c ], %i3 2009e80: 3b 00 80 71 sethi %hi(0x201c400), %i5 2009e84: 09 00 80 70 sethi %hi(0x201c000), %g4 2009e88: 84 17 61 18 or %i5, 0x118, %g2 2009e8c: 82 11 23 34 or %g4, 0x334, %g1 2009e90: b4 00 a0 04 add %g2, 4, %i2 2009e94: b8 00 60 04 add %g1, 4, %i4 2009e98: f4 27 61 18 st %i2, [ %i5 + 0x118 ] head->previous = NULL; 2009e9c: c0 20 a0 04 clr [ %g2 + 4 ] tail->previous = head; 2009ea0: c4 20 a0 08 st %g2, [ %g2 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009ea4: f8 21 23 34 st %i4, [ %g4 + 0x334 ] head->previous = NULL; 2009ea8: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009eac: c2 20 60 08 st %g1, [ %g1 + 8 ] _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009eb0: 80 a6 e0 00 cmp %i3, 0 2009eb4: 02 80 00 1b be 2009f20 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009eb8: f4 00 e0 38 ld [ %g3 + 0x38 ], %i2 extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009ebc: 83 2e a0 02 sll %i2, 2, %g1 2009ec0: b9 2e a0 04 sll %i2, 4, %i4 2009ec4: b8 27 00 01 sub %i4, %g1, %i4 2009ec8: b8 07 00 1a add %i4, %i2, %i4 2009ecc: b9 2f 20 02 sll %i4, 2, %i4 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009ed0: 40 00 01 96 call 200a528 <_Workspace_Allocate_or_fatal_error> 2009ed4: 90 10 00 1c mov %i4, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009ed8: 92 10 20 00 clr %o1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009edc: ba 10 00 08 mov %o0, %i5 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009ee0: 40 00 15 99 call 200f544 2009ee4: 94 10 00 1c mov %i4, %o2 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009ee8: 80 a6 a0 00 cmp %i2, 0 2009eec: 02 80 00 0d be 2009f20 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009ef0: b8 10 20 00 clr %i4 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009ef4: 92 10 00 1b mov %i3, %o1 2009ef8: 94 10 20 20 mov 0x20, %o2 2009efc: 40 00 15 56 call 200f454 2009f00: 90 07 60 14 add %i5, 0x14, %o0 _User_extensions_Add_set( extension ); 2009f04: 40 00 0c 9b call 200d170 <_User_extensions_Add_set> 2009f08: 90 10 00 1d mov %i5, %o0 2009f0c: b8 07 20 01 inc %i4 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009f10: ba 07 60 34 add %i5, 0x34, %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009f14: 80 a7 00 1a cmp %i4, %i2 2009f18: 12 bf ff f7 bne 2009ef4 <_User_extensions_Handler_initialization+0x84> 2009f1c: b6 06 e0 20 add %i3, 0x20, %i3 2009f20: 81 c7 e0 08 ret 2009f24: 81 e8 00 00 restore =============================================================================== 02009f28 <_User_extensions_Thread_begin>: #include void _User_extensions_Thread_begin ( Thread_Control *executing ) { 2009f28: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2009f2c: 39 00 80 71 sethi %hi(0x201c400), %i4 2009f30: fa 07 21 18 ld [ %i4 + 0x118 ], %i5 ! 201c518 <_User_extensions_List> 2009f34: b8 17 21 18 or %i4, 0x118, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009f38: b8 07 20 04 add %i4, 4, %i4 2009f3c: 80 a7 40 1c cmp %i5, %i4 2009f40: 02 80 00 0c be 2009f70 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN 2009f44: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_begin != NULL ) 2009f48: c2 07 60 28 ld [ %i5 + 0x28 ], %g1 2009f4c: 80 a0 60 00 cmp %g1, 0 2009f50: 02 80 00 04 be 2009f60 <_User_extensions_Thread_begin+0x38> 2009f54: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_begin)( executing ); 2009f58: 9f c0 40 00 call %g1 2009f5c: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009f60: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009f64: 80 a7 40 1c cmp %i5, %i4 2009f68: 32 bf ff f9 bne,a 2009f4c <_User_extensions_Thread_begin+0x24> 2009f6c: c2 07 60 28 ld [ %i5 + 0x28 ], %g1 2009f70: 81 c7 e0 08 ret 2009f74: 81 e8 00 00 restore =============================================================================== 0200a014 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 200a014: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a018: 39 00 80 71 sethi %hi(0x201c400), %i4 200a01c: fa 07 21 18 ld [ %i4 + 0x118 ], %i5 ! 201c518 <_User_extensions_List> 200a020: b8 17 21 18 or %i4, 0x118, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 200a024: b8 07 20 04 add %i4, 4, %i4 200a028: 80 a7 40 1c cmp %i5, %i4 200a02c: 02 80 00 12 be 200a074 <_User_extensions_Thread_create+0x60><== NEVER TAKEN 200a030: 82 10 20 01 mov 1, %g1 the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 200a034: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 200a038: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 200a03c: 80 a0 60 00 cmp %g1, 0 200a040: 02 80 00 08 be 200a060 <_User_extensions_Thread_create+0x4c> 200a044: 84 16 e1 5c or %i3, 0x15c, %g2 status = (*the_extension->Callouts.thread_create)( 200a048: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a04c: 9f c0 40 00 call %g1 200a050: 92 10 00 18 mov %i0, %o1 _Thread_Executing, the_thread ); if ( !status ) 200a054: 80 8a 20 ff btst 0xff, %o0 200a058: 02 80 00 0a be 200a080 <_User_extensions_Thread_create+0x6c> 200a05c: 82 10 20 00 clr %g1 User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a060: fa 07 40 00 ld [ %i5 ], %i5 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 200a064: 80 a7 40 1c cmp %i5, %i4 200a068: 32 bf ff f5 bne,a 200a03c <_User_extensions_Thread_create+0x28> 200a06c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 if ( !status ) return false; } } return true; 200a070: 82 10 20 01 mov 1, %g1 } 200a074: b0 08 60 01 and %g1, 1, %i0 200a078: 81 c7 e0 08 ret 200a07c: 81 e8 00 00 restore 200a080: b0 08 60 01 and %g1, 1, %i0 200a084: 81 c7 e0 08 ret 200a088: 81 e8 00 00 restore =============================================================================== 0200a08c <_User_extensions_Thread_delete>: #include void _User_extensions_Thread_delete ( Thread_Control *the_thread ) { 200a08c: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last( Chain_Control *the_chain ) { return _Chain_Tail( the_chain )->previous; 200a090: 39 00 80 71 sethi %hi(0x201c400), %i4 200a094: b8 17 21 18 or %i4, 0x118, %i4 ! 201c518 <_User_extensions_List> 200a098: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a09c: 80 a7 40 1c cmp %i5, %i4 200a0a0: 02 80 00 0d be 200a0d4 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN 200a0a4: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_delete != NULL ) 200a0a8: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 200a0ac: 80 a0 60 00 cmp %g1, 0 200a0b0: 02 80 00 05 be 200a0c4 <_User_extensions_Thread_delete+0x38> 200a0b4: 84 16 e1 5c or %i3, 0x15c, %g2 (*the_extension->Callouts.thread_delete)( 200a0b8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a0bc: 9f c0 40 00 call %g1 200a0c0: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 200a0c4: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a0c8: 80 a7 40 1c cmp %i5, %i4 200a0cc: 32 bf ff f8 bne,a 200a0ac <_User_extensions_Thread_delete+0x20> 200a0d0: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 200a0d4: 81 c7 e0 08 ret 200a0d8: 81 e8 00 00 restore =============================================================================== 02009f78 <_User_extensions_Thread_exitted>: } void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009f78: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last( Chain_Control *the_chain ) { return _Chain_Tail( the_chain )->previous; 2009f7c: 39 00 80 71 sethi %hi(0x201c400), %i4 2009f80: b8 17 21 18 or %i4, 0x118, %i4 ! 201c518 <_User_extensions_List> 2009f84: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009f88: 80 a7 40 1c cmp %i5, %i4 2009f8c: 02 80 00 0c be 2009fbc <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN 2009f90: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009f94: c2 07 60 2c ld [ %i5 + 0x2c ], %g1 2009f98: 80 a0 60 00 cmp %g1, 0 2009f9c: 02 80 00 04 be 2009fac <_User_extensions_Thread_exitted+0x34> 2009fa0: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_exitted)( executing ); 2009fa4: 9f c0 40 00 call %g1 2009fa8: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009fac: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009fb0: 80 a7 40 1c cmp %i5, %i4 2009fb4: 32 bf ff f9 bne,a 2009f98 <_User_extensions_Thread_exitted+0x20> 2009fb8: c2 07 60 2c ld [ %i5 + 0x2c ], %g1 2009fbc: 81 c7 e0 08 ret 2009fc0: 81 e8 00 00 restore =============================================================================== 0200a91c <_User_extensions_Thread_restart>: #include void _User_extensions_Thread_restart ( Thread_Control *the_thread ) { 200a91c: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a920: 39 00 80 74 sethi %hi(0x201d000), %i4 200a924: fa 07 20 38 ld [ %i4 + 0x38 ], %i5 ! 201d038 <_User_extensions_List> 200a928: b8 17 20 38 or %i4, 0x38, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a92c: b8 07 20 04 add %i4, 4, %i4 200a930: 80 a7 40 1c cmp %i5, %i4 200a934: 02 80 00 0d be 200a968 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN 200a938: 37 00 80 74 sethi %hi(0x201d000), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_restart != NULL ) 200a93c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200a940: 80 a0 60 00 cmp %g1, 0 200a944: 02 80 00 05 be 200a958 <_User_extensions_Thread_restart+0x3c> 200a948: 84 16 e0 7c or %i3, 0x7c, %g2 (*the_extension->Callouts.thread_restart)( 200a94c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a950: 9f c0 40 00 call %g1 200a954: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a958: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a95c: 80 a7 40 1c cmp %i5, %i4 200a960: 32 bf ff f8 bne,a 200a940 <_User_extensions_Thread_restart+0x24> 200a964: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200a968: 81 c7 e0 08 ret 200a96c: 81 e8 00 00 restore =============================================================================== 0200a0dc <_User_extensions_Thread_start>: #include void _User_extensions_Thread_start ( Thread_Control *the_thread ) { 200a0dc: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a0e0: 39 00 80 71 sethi %hi(0x201c400), %i4 200a0e4: fa 07 21 18 ld [ %i4 + 0x118 ], %i5 ! 201c518 <_User_extensions_List> 200a0e8: b8 17 21 18 or %i4, 0x118, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a0ec: b8 07 20 04 add %i4, 4, %i4 200a0f0: 80 a7 40 1c cmp %i5, %i4 200a0f4: 02 80 00 0d be 200a128 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN 200a0f8: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_start != NULL ) 200a0fc: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200a100: 80 a0 60 00 cmp %g1, 0 200a104: 02 80 00 05 be 200a118 <_User_extensions_Thread_start+0x3c> 200a108: 84 16 e1 5c or %i3, 0x15c, %g2 (*the_extension->Callouts.thread_start)( 200a10c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a110: 9f c0 40 00 call %g1 200a114: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a118: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a11c: 80 a7 40 1c cmp %i5, %i4 200a120: 32 bf ff f8 bne,a 200a100 <_User_extensions_Thread_start+0x24> 200a124: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200a128: 81 c7 e0 08 ret 200a12c: 81 e8 00 00 restore =============================================================================== 0200a130 <_User_extensions_Thread_switch>: void _User_extensions_Thread_switch ( Thread_Control *executing, Thread_Control *heir ) { 200a130: 9d e3 bf a0 save %sp, -96, %sp 200a134: 39 00 80 70 sethi %hi(0x201c000), %i4 200a138: fa 07 23 34 ld [ %i4 + 0x334 ], %i5 ! 201c334 <_User_extensions_Switches_list> 200a13c: b8 17 23 34 or %i4, 0x334, %i4 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 200a140: b8 07 20 04 add %i4, 4, %i4 200a144: 80 a7 40 1c cmp %i5, %i4 200a148: 02 80 00 0a be 200a170 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN 200a14c: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); 200a150: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a154: 90 10 00 18 mov %i0, %o0 200a158: 9f c0 40 00 call %g1 200a15c: 92 10 00 19 mov %i1, %o1 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { 200a160: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 200a164: 80 a7 40 1c cmp %i5, %i4 200a168: 32 bf ff fb bne,a 200a154 <_User_extensions_Thread_switch+0x24> 200a16c: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a170: 81 c7 e0 08 ret 200a174: 81 e8 00 00 restore =============================================================================== 0200bbec <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200bbec: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200bbf0: 7f ff dc d0 call 2002f30 200bbf4: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bbf8: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200bbfc: b6 06 20 04 add %i0, 4, %i3 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200bc00: 80 a0 40 1b cmp %g1, %i3 200bc04: 02 80 00 1e be 200bc7c <_Watchdog_Adjust+0x90> 200bc08: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200bc0c: 12 80 00 1e bne 200bc84 <_Watchdog_Adjust+0x98> 200bc10: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bc14: 80 a6 a0 00 cmp %i2, 0 200bc18: 02 80 00 19 be 200bc7c <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc1c: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bc20: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 200bc24: 80 a6 80 1c cmp %i2, %i4 200bc28: 1a 80 00 0a bcc 200bc50 <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN 200bc2c: b2 10 20 01 mov 1, %i1 _Watchdog_First( header )->delta_interval -= units; 200bc30: 10 80 00 1c b 200bca0 <_Watchdog_Adjust+0xb4> <== NOT EXECUTED 200bc34: b8 27 00 1a sub %i4, %i2, %i4 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bc38: 02 80 00 11 be 200bc7c <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc3c: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bc40: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 200bc44: 80 a7 00 1a cmp %i4, %i2 200bc48: 38 80 00 16 bgu,a 200bca0 <_Watchdog_Adjust+0xb4> 200bc4c: b8 27 00 1a sub %i4, %i2, %i4 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200bc50: f2 20 60 10 st %i1, [ %g1 + 0x10 ] _ISR_Enable( level ); 200bc54: 7f ff dc bb call 2002f40 200bc58: 01 00 00 00 nop _Watchdog_Tickle( header ); 200bc5c: 40 00 00 ab call 200bf08 <_Watchdog_Tickle> 200bc60: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200bc64: 7f ff dc b3 call 2002f30 200bc68: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bc6c: c2 07 40 00 ld [ %i5 ], %g1 if ( _Chain_Is_empty( header ) ) 200bc70: 80 a6 c0 01 cmp %i3, %g1 200bc74: 32 bf ff f1 bne,a 200bc38 <_Watchdog_Adjust+0x4c> 200bc78: b4 a6 80 1c subcc %i2, %i4, %i2 } break; } } _ISR_Enable( level ); 200bc7c: 7f ff dc b1 call 2002f40 200bc80: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200bc84: 12 bf ff fe bne 200bc7c <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc88: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200bc8c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200bc90: b4 00 80 1a add %g2, %i2, %i2 200bc94: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200bc98: 7f ff dc aa call 2002f40 200bc9c: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200bca0: 10 bf ff f7 b 200bc7c <_Watchdog_Adjust+0x90> 200bca4: f8 20 60 10 st %i4, [ %g1 + 0x10 ] =============================================================================== 0200a300 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 200a300: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200a304: 7f ff df b8 call 20021e4 200a308: 01 00 00 00 nop previous_state = the_watchdog->state; 200a30c: fa 06 20 08 ld [ %i0 + 8 ], %i5 switch ( previous_state ) { 200a310: 80 a7 60 01 cmp %i5, 1 200a314: 02 80 00 2a be 200a3bc <_Watchdog_Remove+0xbc> 200a318: 03 00 80 71 sethi %hi(0x201c400), %g1 200a31c: 1a 80 00 09 bcc 200a340 <_Watchdog_Remove+0x40> 200a320: 80 a7 60 03 cmp %i5, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a324: 03 00 80 71 sethi %hi(0x201c400), %g1 200a328: c2 00 60 3c ld [ %g1 + 0x3c ], %g1 ! 201c43c <_Watchdog_Ticks_since_boot> 200a32c: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a330: 7f ff df b1 call 20021f4 200a334: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a338: 81 c7 e0 08 ret 200a33c: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 200a340: 18 bf ff fa bgu 200a328 <_Watchdog_Remove+0x28> <== NEVER TAKEN 200a344: 03 00 80 71 sethi %hi(0x201c400), %g1 } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; _ISR_Enable( level ); return( previous_state ); } 200a348: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200a34c: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200a350: c4 00 40 00 ld [ %g1 ], %g2 200a354: 80 a0 a0 00 cmp %g2, 0 200a358: 02 80 00 07 be 200a374 <_Watchdog_Remove+0x74> 200a35c: 05 00 80 71 sethi %hi(0x201c400), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200a360: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200a364: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 200a368: 84 00 c0 02 add %g3, %g2, %g2 200a36c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200a370: 05 00 80 71 sethi %hi(0x201c400), %g2 200a374: c4 00 a0 38 ld [ %g2 + 0x38 ], %g2 ! 201c438 <_Watchdog_Sync_count> 200a378: 80 a0 a0 00 cmp %g2, 0 200a37c: 22 80 00 07 be,a 200a398 <_Watchdog_Remove+0x98> 200a380: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200a384: 05 00 80 71 sethi %hi(0x201c400), %g2 200a388: c6 00 a1 64 ld [ %g2 + 0x164 ], %g3 ! 201c564 <_Per_CPU_Information+0x8> 200a38c: 05 00 80 70 sethi %hi(0x201c000), %g2 200a390: c6 20 a3 d8 st %g3, [ %g2 + 0x3d8 ] ! 201c3d8 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200a394: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 200a398: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200a39c: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3a0: 03 00 80 71 sethi %hi(0x201c400), %g1 200a3a4: c2 00 60 3c ld [ %g1 + 0x3c ], %g1 ! 201c43c <_Watchdog_Ticks_since_boot> 200a3a8: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a3ac: 7f ff df 92 call 20021f4 200a3b0: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a3b4: 81 c7 e0 08 ret 200a3b8: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3bc: c2 00 60 3c ld [ %g1 + 0x3c ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 200a3c0: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3c4: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a3c8: 7f ff df 8b call 20021f4 200a3cc: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a3d0: 81 c7 e0 08 ret 200a3d4: 81 e8 00 00 restore =============================================================================== 0200b41c <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200b41c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200b420: 7f ff dd a5 call 2002ab4 200b424: 01 00 00 00 nop 200b428: ba 10 00 08 mov %o0, %i5 printk( "Watchdog Chain: %s %p\n", name, header ); 200b42c: 11 00 80 70 sethi %hi(0x201c000), %o0 200b430: 94 10 00 19 mov %i1, %o2 200b434: 92 10 00 18 mov %i0, %o1 200b438: 7f ff e4 bd call 200472c 200b43c: 90 12 23 60 or %o0, 0x360, %o0 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b440: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b444: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200b448: 80 a7 00 19 cmp %i4, %i1 200b44c: 02 80 00 0f be 200b488 <_Watchdog_Report_chain+0x6c> 200b450: 11 00 80 70 sethi %hi(0x201c000), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200b454: 92 10 00 1c mov %i4, %o1 200b458: 40 00 00 0f call 200b494 <_Watchdog_Report> 200b45c: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200b460: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200b464: 80 a7 00 19 cmp %i4, %i1 200b468: 12 bf ff fc bne 200b458 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200b46c: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200b470: 11 00 80 70 sethi %hi(0x201c000), %o0 200b474: 92 10 00 18 mov %i0, %o1 200b478: 7f ff e4 ad call 200472c 200b47c: 90 12 23 78 or %o0, 0x378, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200b480: 7f ff dd 91 call 2002ac4 200b484: 91 e8 00 1d restore %g0, %i5, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200b488: 7f ff e4 a9 call 200472c 200b48c: 90 12 23 88 or %o0, 0x388, %o0 200b490: 30 bf ff fc b,a 200b480 <_Watchdog_Report_chain+0x64> =============================================================================== 02007184 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2007184: 9d e3 bf 98 save %sp, -104, %sp 2007188: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 200718c: 40 00 01 84 call 200779c <_Chain_Get> 2007190: 90 10 00 1d mov %i5, %o0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2007194: 92 10 20 00 clr %o1 2007198: b8 10 00 08 mov %o0, %i4 200719c: 94 10 00 1a mov %i2, %o2 20071a0: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20071a4: 80 a7 20 00 cmp %i4, 0 20071a8: 12 80 00 0a bne 20071d0 20071ac: 96 07 bf fc add %fp, -4, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 20071b0: 7f ff fc f4 call 2006580 20071b4: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 20071b8: 80 a2 20 00 cmp %o0, 0 20071bc: 02 bf ff f4 be 200718c <== NEVER TAKEN 20071c0: b0 10 00 08 mov %o0, %i0 timeout, &out ); } *node_ptr = node; 20071c4: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 20071c8: 81 c7 e0 08 ret 20071cc: 81 e8 00 00 restore rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20071d0: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 20071d4: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 20071d8: 81 c7 e0 08 ret 20071dc: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02007e08 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007e08: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007e0c: 03 00 80 67 sethi %hi(0x2019c00), %g1 2007e10: c4 00 62 a4 ld [ %g1 + 0x2a4 ], %g2 ! 2019ea4 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007e14: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 2007e18: 03 00 80 67 sethi %hi(0x2019c00), %g1 if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 2007e1c: 88 10 20 12 mov 0x12, %g4 rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007e20: 80 a0 a0 00 cmp %g2, 0 2007e24: 02 80 00 04 be 2007e34 2007e28: de 00 63 34 ld [ %g1 + 0x334 ], %o7 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 2007e2c: 81 c7 e0 08 ret 2007e30: 91 e8 00 04 restore %g0, %g4, %o0 rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 2007e34: 80 a6 a0 00 cmp %i2, 0 2007e38: 02 80 00 40 be 2007f38 2007e3c: 80 a6 60 00 cmp %i1, 0 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 2007e40: 02 80 00 3e be 2007f38 2007e44: de 26 80 00 st %o7, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007e48: c4 06 40 00 ld [ %i1 ], %g2 2007e4c: 80 a0 a0 00 cmp %g2, 0 2007e50: 22 80 00 37 be,a 2007f2c 2007e54: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 2007e58: 80 a3 c0 18 cmp %o7, %i0 2007e5c: 08 bf ff f4 bleu 2007e2c 2007e60: 88 10 20 0a mov 0xa, %g4 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2007e64: 05 00 80 67 sethi %hi(0x2019c00), %g2 2007e68: c8 00 a0 70 ld [ %g2 + 0x70 ], %g4 ! 2019c70 <_Thread_Dispatch_disable_level> 2007e6c: 88 01 20 01 inc %g4 2007e70: c8 20 a0 70 st %g4, [ %g2 + 0x70 ] return _Thread_Dispatch_disable_level; 2007e74: c4 00 a0 70 ld [ %g2 + 0x70 ], %g2 return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 2007e78: 80 a6 20 00 cmp %i0, 0 2007e7c: 12 80 00 32 bne 2007f44 2007e80: 1f 00 80 67 sethi %hi(0x2019c00), %o7 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2007e84: c8 00 63 34 ld [ %g1 + 0x334 ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007e88: 80 a1 20 00 cmp %g4, 0 2007e8c: 02 80 00 45 be 2007fa0 <== NEVER TAKEN 2007e90: c2 03 e3 38 ld [ %o7 + 0x338 ], %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007e94: 10 80 00 06 b 2007eac 2007e98: c4 00 40 00 ld [ %g1 ], %g2 rtems_device_major_number n = _IO_Number_of_drivers; rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007e9c: 80 a6 00 04 cmp %i0, %g4 2007ea0: 02 80 00 35 be 2007f74 2007ea4: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007ea8: c4 00 40 00 ld [ %g1 ], %g2 2007eac: 80 a0 a0 00 cmp %g2, 0 2007eb0: 32 bf ff fb bne,a 2007e9c 2007eb4: b0 06 20 01 inc %i0 2007eb8: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007ebc: 80 a0 a0 00 cmp %g2, 0 2007ec0: 32 bf ff f7 bne,a 2007e9c 2007ec4: b0 06 20 01 inc %i0 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007ec8: f0 26 80 00 st %i0, [ %i2 ] 2007ecc: 83 2e 20 03 sll %i0, 3, %g1 if ( m != n ) 2007ed0: 80 a1 00 18 cmp %g4, %i0 2007ed4: 02 80 00 29 be 2007f78 <== NEVER TAKEN 2007ed8: 9b 2e 20 05 sll %i0, 5, %o5 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007edc: c8 00 c0 00 ld [ %g3 ], %g4 2007ee0: c4 03 e3 38 ld [ %o7 + 0x338 ], %g2 2007ee4: 82 23 40 01 sub %o5, %g1, %g1 2007ee8: c8 20 80 01 st %g4, [ %g2 + %g1 ] 2007eec: c8 00 e0 04 ld [ %g3 + 4 ], %g4 2007ef0: 82 00 80 01 add %g2, %g1, %g1 2007ef4: c8 20 60 04 st %g4, [ %g1 + 4 ] 2007ef8: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007efc: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f00: c4 20 60 08 st %g2, [ %g1 + 8 ] 2007f04: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007f08: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f0c: c4 20 60 0c st %g2, [ %g1 + 0xc ] 2007f10: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 2007f14: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 2007f18: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 2007f1c: 40 00 08 04 call 2009f2c <_Thread_Enable_dispatch> 2007f20: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 2007f24: 40 00 21 24 call 20103b4 2007f28: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f2c: 80 a0 a0 00 cmp %g2, 0 2007f30: 12 bf ff cb bne 2007e5c 2007f34: 80 a3 c0 18 cmp %o7, %i0 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 2007f38: 88 10 20 09 mov 9, %g4 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 2007f3c: 81 c7 e0 08 ret 2007f40: 91 e8 00 04 restore %g0, %g4, %o0 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 2007f44: c8 03 e3 38 ld [ %o7 + 0x338 ], %g4 2007f48: 83 2e 20 03 sll %i0, 3, %g1 2007f4c: 9b 2e 20 05 sll %i0, 5, %o5 2007f50: 84 23 40 01 sub %o5, %g1, %g2 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f54: d8 01 00 02 ld [ %g4 + %g2 ], %o4 2007f58: 80 a3 20 00 cmp %o4, 0 2007f5c: 02 80 00 0b be 2007f88 2007f60: 84 01 00 02 add %g4, %g2, %g2 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 2007f64: 40 00 07 f2 call 2009f2c <_Thread_Enable_dispatch> 2007f68: 01 00 00 00 nop return RTEMS_RESOURCE_IN_USE; 2007f6c: 10 bf ff b0 b 2007e2c 2007f70: 88 10 20 0c mov 0xc, %g4 ! c if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007f74: f0 26 80 00 st %i0, [ %i2 ] if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 2007f78: 40 00 07 ed call 2009f2c <_Thread_Enable_dispatch> 2007f7c: 01 00 00 00 nop return sc; 2007f80: 10 bf ff ab b 2007e2c 2007f84: 88 10 20 05 mov 5, %g4 ! 5 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f88: c4 00 a0 04 ld [ %g2 + 4 ], %g2 2007f8c: 80 a0 a0 00 cmp %g2, 0 2007f90: 12 bf ff f5 bne 2007f64 2007f94: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 2007f98: 10 bf ff d1 b 2007edc 2007f9c: f0 26 80 00 st %i0, [ %i2 ] if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007fa0: 10 bf ff f6 b 2007f78 <== NOT EXECUTED 2007fa4: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED =============================================================================== 02009524 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009524: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009528: 80 a6 20 00 cmp %i0, 0 200952c: 02 80 00 23 be 20095b8 <== NEVER TAKEN 2009530: 37 00 80 7b sethi %hi(0x201ec00), %i3 2009534: b6 16 e1 7c or %i3, 0x17c, %i3 ! 201ed7c <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009538: b4 06 e0 0c add %i3, 0xc, %i2 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 200953c: c2 06 c0 00 ld [ %i3 ], %g1 2009540: 80 a0 60 00 cmp %g1, 0 2009544: 22 80 00 1a be,a 20095ac 2009548: b6 06 e0 04 add %i3, 4, %i3 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 200954c: f8 00 60 04 ld [ %g1 + 4 ], %i4 if ( !information ) 2009550: 80 a7 20 00 cmp %i4, 0 2009554: 22 80 00 16 be,a 20095ac 2009558: b6 06 e0 04 add %i3, 4, %i3 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 200955c: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1 2009560: 84 90 60 00 orcc %g1, 0, %g2 2009564: 22 80 00 12 be,a 20095ac <== NEVER TAKEN 2009568: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED 200956c: ba 10 20 01 mov 1, %i5 the_thread = (Thread_Control *)information->local_table[ i ]; 2009570: c6 07 20 1c ld [ %i4 + 0x1c ], %g3 2009574: 83 2f 60 02 sll %i5, 2, %g1 2009578: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 if ( !the_thread ) 200957c: 90 90 60 00 orcc %g1, 0, %o0 2009580: 02 80 00 05 be 2009594 2009584: ba 07 60 01 inc %i5 continue; (*routine)(the_thread); 2009588: 9f c6 00 00 call %i0 200958c: 01 00 00 00 nop 2009590: c4 17 20 10 lduh [ %i4 + 0x10 ], %g2 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009594: 83 28 a0 10 sll %g2, 0x10, %g1 2009598: 83 30 60 10 srl %g1, 0x10, %g1 200959c: 80 a0 40 1d cmp %g1, %i5 20095a0: 3a bf ff f5 bcc,a 2009574 20095a4: c6 07 20 1c ld [ %i4 + 0x1c ], %g3 20095a8: b6 06 e0 04 add %i3, 4, %i3 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 20095ac: 80 a6 c0 1a cmp %i3, %i2 20095b0: 32 bf ff e4 bne,a 2009540 20095b4: c2 06 c0 00 ld [ %i3 ], %g1 20095b8: 81 c7 e0 08 ret 20095bc: 81 e8 00 00 restore =============================================================================== 020081b4 : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 20081b4: 9d e3 bf a0 save %sp, -96, %sp 20081b8: 90 10 00 18 mov %i0, %o0 int i; /* * Validate parameters and look up information structure. */ if ( !info ) 20081bc: 80 a6 a0 00 cmp %i2, 0 20081c0: 02 80 00 21 be 2008244 20081c4: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 20081c8: 93 2e 60 10 sll %i1, 0x10, %o1 if ( !obj_info ) return RTEMS_INVALID_NUMBER; 20081cc: b0 10 20 0a mov 0xa, %i0 * Validate parameters and look up information structure. */ if ( !info ) return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 20081d0: 40 00 07 61 call 2009f54 <_Objects_Get_information> 20081d4: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 20081d8: 80 a2 20 00 cmp %o0, 0 20081dc: 02 80 00 1a be 2008244 20081e0: 01 00 00 00 nop /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20081e4: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 20081e8: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20081ec: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20081f0: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20081f4: c4 26 a0 04 st %g2, [ %i2 + 4 ] return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20081f8: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20081fc: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; 2008200: c8 26 a0 08 st %g4, [ %i2 + 8 ] for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008204: 80 a1 20 00 cmp %g4, 0 2008208: 02 80 00 0d be 200823c <== NEVER TAKEN 200820c: 84 10 20 00 clr %g2 2008210: de 02 20 1c ld [ %o0 + 0x1c ], %o7 2008214: 86 10 20 01 mov 1, %g3 2008218: 82 10 20 01 mov 1, %g1 if ( !obj_info->local_table[i] ) 200821c: 87 28 e0 02 sll %g3, 2, %g3 2008220: c6 03 c0 03 ld [ %o7 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008224: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 2008228: 80 a0 00 03 cmp %g0, %g3 200822c: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008230: 80 a1 00 01 cmp %g4, %g1 2008234: 1a bf ff fa bcc 200821c 2008238: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 200823c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 2008240: b0 10 20 00 clr %i0 } 2008244: 81 c7 e0 08 ret 2008248: 81 e8 00 00 restore =============================================================================== 02013dcc : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2013dcc: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2013dd0: 80 a6 20 00 cmp %i0, 0 2013dd4: 12 80 00 04 bne 2013de4 2013dd8: 82 10 20 03 mov 3, %g1 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2013ddc: 81 c7 e0 08 ret 2013de0: 91 e8 00 01 restore %g0, %g1, %o0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) return RTEMS_INVALID_NAME; if ( !starting_address ) 2013de4: 80 a6 60 00 cmp %i1, 0 2013de8: 02 bf ff fd be 2013ddc 2013dec: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2013df0: 80 a7 60 00 cmp %i5, 0 2013df4: 02 bf ff fa be 2013ddc <== NEVER TAKEN 2013df8: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2013dfc: 02 bf ff f8 be 2013ddc 2013e00: 82 10 20 08 mov 8, %g1 2013e04: 80 a6 a0 00 cmp %i2, 0 2013e08: 02 bf ff f5 be 2013ddc 2013e0c: 80 a6 80 1b cmp %i2, %i3 2013e10: 0a bf ff f3 bcs 2013ddc 2013e14: 80 8e e0 07 btst 7, %i3 2013e18: 12 bf ff f1 bne 2013ddc 2013e1c: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2013e20: 12 bf ff ef bne 2013ddc 2013e24: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2013e28: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2013e2c: c4 00 62 10 ld [ %g1 + 0x210 ], %g2 ! 2039e10 <_Thread_Dispatch_disable_level> 2013e30: 84 00 a0 01 inc %g2 2013e34: c4 20 62 10 st %g2, [ %g1 + 0x210 ] return _Thread_Dispatch_disable_level; 2013e38: c2 00 62 10 ld [ %g1 + 0x210 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2013e3c: 23 00 80 e7 sethi %hi(0x2039c00), %l1 2013e40: 40 00 13 0d call 2018a74 <_Objects_Allocate> 2013e44: 90 14 60 24 or %l1, 0x24, %o0 ! 2039c24 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2013e48: a0 92 20 00 orcc %o0, 0, %l0 2013e4c: 02 80 00 1a be 2013eb4 2013e50: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 2013e54: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2013e58: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2013e5c: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2013e60: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2013e64: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2013e68: 40 00 57 e9 call 2029e0c <.udiv> 2013e6c: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2013e70: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2013e74: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2013e78: 96 10 00 1b mov %i3, %o3 2013e7c: b8 04 20 24 add %l0, 0x24, %i4 2013e80: 40 00 0c c4 call 2017190 <_Chain_Initialize> 2013e84: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2013e88: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2013e8c: a2 14 60 24 or %l1, 0x24, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2013e90: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2013e94: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2013e98: 85 28 a0 02 sll %g2, 2, %g2 2013e9c: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2013ea0: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2013ea4: 40 00 18 22 call 2019f2c <_Thread_Enable_dispatch> 2013ea8: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2013eac: 10 bf ff cc b 2013ddc 2013eb0: 82 10 20 00 clr %g1 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2013eb4: 40 00 18 1e call 2019f2c <_Thread_Enable_dispatch> 2013eb8: 01 00 00 00 nop return RTEMS_TOO_MANY; 2013ebc: 10 bf ff c8 b 2013ddc 2013ec0: 82 10 20 05 mov 5, %g1 ! 5 =============================================================================== 02007600 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007600: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 2007604: 11 00 80 78 sethi %hi(0x201e000), %o0 2007608: 92 10 00 18 mov %i0, %o1 200760c: 90 12 20 14 or %o0, 0x14, %o0 2007610: 40 00 09 51 call 2009b54 <_Objects_Get> 2007614: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007618: c2 07 bf fc ld [ %fp + -4 ], %g1 200761c: 80 a0 60 00 cmp %g1, 0 2007620: 12 80 00 0d bne 2007654 2007624: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007628: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 200762c: 39 00 80 78 sethi %hi(0x201e000), %i4 2007630: b8 17 23 ac or %i4, 0x3ac, %i4 ! 201e3ac <_Per_CPU_Information> 2007634: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007638: 80 a0 80 01 cmp %g2, %g1 200763c: 02 80 00 08 be 200765c 2007640: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 2007644: 40 00 0d 17 call 200aaa0 <_Thread_Enable_dispatch> 2007648: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 200764c: 81 c7 e0 08 ret 2007650: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007654: 81 c7 e0 08 ret 2007658: 91 e8 20 04 restore %g0, 4, %o0 if ( !_Thread_Is_executing( the_period->owner ) ) { _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { 200765c: 12 80 00 0e bne 2007694 2007660: 01 00 00 00 nop switch ( the_period->state ) { 2007664: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007668: 80 a0 60 04 cmp %g1, 4 200766c: 18 80 00 06 bgu 2007684 <== NEVER TAKEN 2007670: b0 10 20 00 clr %i0 2007674: 83 28 60 02 sll %g1, 2, %g1 2007678: 05 00 80 70 sethi %hi(0x201c000), %g2 200767c: 84 10 a0 44 or %g2, 0x44, %g2 ! 201c044 2007680: f0 00 80 01 ld [ %g2 + %g1 ], %i0 the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007684: 40 00 0d 07 call 200aaa0 <_Thread_Enable_dispatch> 2007688: 01 00 00 00 nop return RTEMS_TIMEOUT; 200768c: 81 c7 e0 08 ret 2007690: 81 e8 00 00 restore } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 2007694: 7f ff ed e4 call 2002e24 2007698: 01 00 00 00 nop 200769c: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20076a0: f6 07 60 38 ld [ %i5 + 0x38 ], %i3 20076a4: 80 a6 e0 00 cmp %i3, 0 20076a8: 02 80 00 14 be 20076f8 20076ac: 80 a6 e0 02 cmp %i3, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20076b0: 02 80 00 29 be 2007754 20076b4: 80 a6 e0 04 cmp %i3, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20076b8: 12 bf ff e5 bne 200764c <== NEVER TAKEN 20076bc: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20076c0: 7f ff ff 92 call 2007508 <_Rate_monotonic_Update_statistics> 20076c4: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20076c8: 7f ff ed db call 2002e34 20076cc: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20076d0: 82 10 20 02 mov 2, %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20076d4: 92 07 60 10 add %i5, 0x10, %o1 20076d8: 11 00 80 78 sethi %hi(0x201e000), %o0 the_period->next_length = length; 20076dc: f2 27 60 3c st %i1, [ %i5 + 0x3c ] 20076e0: 90 12 22 3c or %o0, 0x23c, %o0 */ _Rate_monotonic_Update_statistics( the_period ); _ISR_Enable( level ); the_period->state = RATE_MONOTONIC_ACTIVE; 20076e4: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20076e8: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20076ec: 40 00 11 02 call 200baf4 <_Watchdog_Insert> 20076f0: b0 10 20 06 mov 6, %i0 20076f4: 30 bf ff e4 b,a 2007684 return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 20076f8: 7f ff ed cf call 2002e34 20076fc: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007700: 7f ff ff 68 call 20074a0 <_Rate_monotonic_Initiate_statistics> 2007704: 90 10 00 1d mov %i5, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007708: 82 10 20 02 mov 2, %g1 200770c: 92 07 60 10 add %i5, 0x10, %o1 2007710: c2 27 60 38 st %g1, [ %i5 + 0x38 ] 2007714: 11 00 80 78 sethi %hi(0x201e000), %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007718: 03 00 80 1e sethi %hi(0x2007800), %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200771c: 90 12 22 3c or %o0, 0x23c, %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007720: 82 10 62 a8 or %g1, 0x2a8, %g1 the_watchdog->id = id; 2007724: f0 27 60 30 st %i0, [ %i5 + 0x30 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007728: c2 27 60 2c st %g1, [ %i5 + 0x2c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200772c: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 2007730: c0 27 60 34 clr [ %i5 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 2007734: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007738: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200773c: 40 00 10 ee call 200baf4 <_Watchdog_Insert> 2007740: b0 10 20 00 clr %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007744: 40 00 0c d7 call 200aaa0 <_Thread_Enable_dispatch> 2007748: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 200774c: 81 c7 e0 08 ret 2007750: 81 e8 00 00 restore if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007754: 7f ff ff 6d call 2007508 <_Rate_monotonic_Update_statistics> 2007758: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 200775c: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007760: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007764: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007768: 7f ff ed b3 call 2002e34 200776c: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007770: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007774: c4 07 60 08 ld [ %i5 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007778: 90 10 00 01 mov %g1, %o0 200777c: 13 00 00 10 sethi %hi(0x4000), %o1 2007780: 40 00 0f 1a call 200b3e8 <_Thread_Set_state> 2007784: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007788: 7f ff ed a7 call 2002e24 200778c: 01 00 00 00 nop local_state = the_period->state; 2007790: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 2007794: f6 27 60 38 st %i3, [ %i5 + 0x38 ] _ISR_Enable( level ); 2007798: 7f ff ed a7 call 2002e34 200779c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20077a0: 80 a6 a0 03 cmp %i2, 3 20077a4: 22 80 00 06 be,a 20077bc 20077a8: d0 07 20 0c ld [ %i4 + 0xc ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 20077ac: 40 00 0c bd call 200aaa0 <_Thread_Enable_dispatch> 20077b0: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20077b4: 81 c7 e0 08 ret 20077b8: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20077bc: 40 00 0b c7 call 200a6d8 <_Thread_Clear_state> 20077c0: 13 00 00 10 sethi %hi(0x4000), %o1 20077c4: 30 bf ff fa b,a 20077ac =============================================================================== 020077c8 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 20077c8: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 20077cc: 80 a6 60 00 cmp %i1, 0 20077d0: 02 80 00 48 be 20078f0 <== NEVER TAKEN 20077d4: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 20077d8: 13 00 80 70 sethi %hi(0x201c000), %o1 20077dc: 9f c6 40 00 call %i1 20077e0: 92 12 60 58 or %o1, 0x58, %o1 ! 201c058 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 20077e4: 90 10 00 18 mov %i0, %o0 20077e8: 13 00 80 70 sethi %hi(0x201c000), %o1 20077ec: 9f c6 40 00 call %i1 20077f0: 92 12 60 78 or %o1, 0x78, %o1 ! 201c078 (*print)( context, "--- Wall times are in seconds ---\n" ); 20077f4: 90 10 00 18 mov %i0, %o0 20077f8: 13 00 80 70 sethi %hi(0x201c000), %o1 20077fc: 9f c6 40 00 call %i1 2007800: 92 12 60 a0 or %o1, 0xa0, %o1 ! 201c0a0 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007804: 90 10 00 18 mov %i0, %o0 2007808: 13 00 80 70 sethi %hi(0x201c000), %o1 200780c: 9f c6 40 00 call %i1 2007810: 92 12 60 c8 or %o1, 0xc8, %o1 ! 201c0c8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007814: 90 10 00 18 mov %i0, %o0 2007818: 13 00 80 70 sethi %hi(0x201c000), %o1 200781c: 9f c6 40 00 call %i1 2007820: 92 12 61 18 or %o1, 0x118, %o1 ! 201c118 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007824: 39 00 80 78 sethi %hi(0x201e000), %i4 2007828: b8 17 20 14 or %i4, 0x14, %i4 ! 201e014 <_Rate_monotonic_Information> 200782c: fa 07 20 08 ld [ %i4 + 8 ], %i5 2007830: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007834: 80 a7 40 01 cmp %i5, %g1 2007838: 18 80 00 2e bgu 20078f0 <== NEVER TAKEN 200783c: 35 00 80 70 sethi %hi(0x201c000), %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007840: 23 00 80 70 sethi %hi(0x201c000), %l1 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007844: 21 00 80 70 sethi %hi(0x201c000), %l0 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007848: 37 00 80 6c sethi %hi(0x201b000), %i3 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 200784c: b4 16 a1 68 or %i2, 0x168, %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007850: a2 14 61 80 or %l1, 0x180, %l1 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 2007854: a0 14 21 a0 or %l0, 0x1a0, %l0 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007858: 10 80 00 06 b 2007870 200785c: b6 16 e2 d8 or %i3, 0x2d8, %i3 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007860: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007864: 80 a0 40 1d cmp %g1, %i5 2007868: 0a 80 00 22 bcs 20078f0 200786c: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007870: 90 10 00 1d mov %i5, %o0 2007874: 40 00 19 4f call 200ddb0 2007878: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 200787c: 80 a2 20 00 cmp %o0, 0 2007880: 32 bf ff f8 bne,a 2007860 2007884: c2 07 20 0c ld [ %i4 + 0xc ], %g1 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007888: 92 07 bf d8 add %fp, -40, %o1 200788c: 40 00 19 78 call 200de6c 2007890: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007894: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007898: 92 10 20 05 mov 5, %o1 200789c: 40 00 00 b4 call 2007b6c 20078a0: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20078a4: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20078a8: 92 10 00 1a mov %i2, %o1 20078ac: 94 10 00 1d mov %i5, %o2 20078b0: 90 10 00 18 mov %i0, %o0 20078b4: 9f c6 40 00 call %i1 20078b8: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20078bc: c2 07 bf a0 ld [ %fp + -96 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20078c0: 94 07 bf f0 add %fp, -16, %o2 20078c4: 90 07 bf b8 add %fp, -72, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20078c8: 80 a0 60 00 cmp %g1, 0 20078cc: 12 80 00 0b bne 20078f8 20078d0: 92 10 00 1b mov %i3, %o1 (*print)( context, "\n" ); 20078d4: 9f c6 40 00 call %i1 20078d8: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20078dc: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20078e0: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20078e4: 80 a0 40 1d cmp %g1, %i5 20078e8: 1a bf ff e3 bcc 2007874 <== ALWAYS TAKEN 20078ec: 90 10 00 1d mov %i5, %o0 20078f0: 81 c7 e0 08 ret 20078f4: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20078f8: 40 00 0f 43 call 200b604 <_Timespec_Divide_by_integer> 20078fc: 92 10 00 01 mov %g1, %o1 (*print)( context, 2007900: d0 07 bf ac ld [ %fp + -84 ], %o0 2007904: 40 00 46 39 call 20191e8 <.div> 2007908: 92 10 23 e8 mov 0x3e8, %o1 200790c: aa 10 00 08 mov %o0, %l5 2007910: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007914: 40 00 46 35 call 20191e8 <.div> 2007918: 92 10 23 e8 mov 0x3e8, %o1 200791c: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007920: a6 10 00 08 mov %o0, %l3 2007924: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007928: e4 07 bf a8 ld [ %fp + -88 ], %l2 200792c: e8 07 bf b0 ld [ %fp + -80 ], %l4 2007930: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007934: 40 00 46 2d call 20191e8 <.div> 2007938: 92 10 23 e8 mov 0x3e8, %o1 200793c: 96 10 00 15 mov %l5, %o3 2007940: 98 10 00 14 mov %l4, %o4 2007944: 9a 10 00 13 mov %l3, %o5 2007948: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 200794c: 92 10 00 11 mov %l1, %o1 2007950: 94 10 00 12 mov %l2, %o2 2007954: 9f c6 40 00 call %i1 2007958: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 200795c: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007960: 94 07 bf f0 add %fp, -16, %o2 2007964: 40 00 0f 28 call 200b604 <_Timespec_Divide_by_integer> 2007968: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 200796c: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007970: 40 00 46 1e call 20191e8 <.div> 2007974: 92 10 23 e8 mov 0x3e8, %o1 2007978: a8 10 00 08 mov %o0, %l4 200797c: d0 07 bf cc ld [ %fp + -52 ], %o0 2007980: 40 00 46 1a call 20191e8 <.div> 2007984: 92 10 23 e8 mov 0x3e8, %o1 2007988: c2 07 bf f0 ld [ %fp + -16 ], %g1 200798c: a4 10 00 08 mov %o0, %l2 2007990: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007994: ea 07 bf c0 ld [ %fp + -64 ], %l5 2007998: e6 07 bf c8 ld [ %fp + -56 ], %l3 200799c: 92 10 23 e8 mov 0x3e8, %o1 20079a0: 40 00 46 12 call 20191e8 <.div> 20079a4: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20079a8: 92 10 00 10 mov %l0, %o1 20079ac: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20079b0: 94 10 00 15 mov %l5, %o2 20079b4: 90 10 00 18 mov %i0, %o0 20079b8: 96 10 00 14 mov %l4, %o3 20079bc: 98 10 00 13 mov %l3, %o4 20079c0: 9f c6 40 00 call %i1 20079c4: 9a 10 00 12 mov %l2, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20079c8: 10 bf ff a6 b 2007860 20079cc: c2 07 20 0c ld [ %i4 + 0xc ], %g1 =============================================================================== 020079e8 : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 20079e8: 9d e3 bf a0 save %sp, -96, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 20079ec: 03 00 80 78 sethi %hi(0x201e000), %g1 20079f0: c4 00 61 80 ld [ %g1 + 0x180 ], %g2 ! 201e180 <_Thread_Dispatch_disable_level> 20079f4: 84 00 a0 01 inc %g2 20079f8: c4 20 61 80 st %g2, [ %g1 + 0x180 ] return _Thread_Dispatch_disable_level; 20079fc: c2 00 61 80 ld [ %g1 + 0x180 ], %g1 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a00: 39 00 80 78 sethi %hi(0x201e000), %i4 2007a04: b8 17 20 14 or %i4, 0x14, %i4 ! 201e014 <_Rate_monotonic_Information> 2007a08: fa 07 20 08 ld [ %i4 + 8 ], %i5 2007a0c: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007a10: 80 a7 40 01 cmp %i5, %g1 2007a14: 18 80 00 09 bgu 2007a38 <== NEVER TAKEN 2007a18: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { (void) rtems_rate_monotonic_reset_statistics( id ); 2007a1c: 40 00 00 09 call 2007a40 2007a20: 90 10 00 1d mov %i5, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a24: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007a28: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a2c: 80 a0 40 1d cmp %g1, %i5 2007a30: 1a bf ff fb bcc 2007a1c 2007a34: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2007a38: 40 00 0c 1a call 200aaa0 <_Thread_Enable_dispatch> 2007a3c: 81 e8 00 00 restore =============================================================================== 02015388 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2015388: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 201538c: 80 a6 60 00 cmp %i1, 0 2015390: 12 80 00 04 bne 20153a0 2015394: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015398: 81 c7 e0 08 ret 201539c: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20153a0: 90 10 00 18 mov %i0, %o0 20153a4: 40 00 12 ef call 2019f60 <_Thread_Get> 20153a8: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20153ac: c2 07 bf fc ld [ %fp + -4 ], %g1 20153b0: 80 a0 60 00 cmp %g1, 0 20153b4: 12 80 00 20 bne 2015434 20153b8: b8 10 00 08 mov %o0, %i4 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20153bc: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20153c0: c2 07 60 0c ld [ %i5 + 0xc ], %g1 20153c4: 80 a0 60 00 cmp %g1, 0 20153c8: 02 80 00 1e be 2015440 20153cc: 01 00 00 00 nop if ( asr->is_enabled ) { 20153d0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 20153d4: 80 a0 60 00 cmp %g1, 0 20153d8: 02 80 00 1e be 2015450 20153dc: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20153e0: 7f ff e6 bb call 200eecc 20153e4: 01 00 00 00 nop *signal_set |= signals; 20153e8: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 20153ec: b2 10 40 19 or %g1, %i1, %i1 20153f0: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 20153f4: 7f ff e6 ba call 200eedc 20153f8: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 20153fc: 03 00 80 e8 sethi %hi(0x203a000), %g1 2015400: 82 10 60 44 or %g1, 0x44, %g1 ! 203a044 <_Per_CPU_Information> 2015404: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015408: 80 a0 a0 00 cmp %g2, 0 201540c: 02 80 00 06 be 2015424 2015410: 01 00 00 00 nop 2015414: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015418: 80 a7 00 02 cmp %i4, %g2 201541c: 02 80 00 15 be 2015470 <== ALWAYS TAKEN 2015420: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015424: 40 00 12 c2 call 2019f2c <_Thread_Enable_dispatch> 2015428: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201542c: 10 bf ff db b 2015398 2015430: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2015434: 82 10 20 04 mov 4, %g1 } 2015438: 81 c7 e0 08 ret 201543c: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 2015440: 40 00 12 bb call 2019f2c <_Thread_Enable_dispatch> 2015444: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2015448: 10 bf ff d4 b 2015398 201544c: 82 10 20 0b mov 0xb, %g1 ! b rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015450: 7f ff e6 9f call 200eecc 2015454: 01 00 00 00 nop *signal_set |= signals; 2015458: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 201545c: b2 10 40 19 or %g1, %i1, %i1 2015460: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2015464: 7f ff e6 9e call 200eedc 2015468: 01 00 00 00 nop 201546c: 30 bf ff ee b,a 2015424 if ( ! _ASR_Is_null_handler( asr->handler ) ) { if ( asr->is_enabled ) { _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) _Thread_Dispatch_necessary = true; 2015470: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2015474: 30 bf ff ec b,a 2015424 =============================================================================== 0200e56c : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200e56c: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200e570: 80 a6 a0 00 cmp %i2, 0 200e574: 02 80 00 3b be 200e660 200e578: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200e57c: 21 00 80 71 sethi %hi(0x201c400), %l0 200e580: a0 14 21 5c or %l0, 0x15c, %l0 ! 201c55c <_Per_CPU_Information> 200e584: fa 04 20 0c ld [ %l0 + 0xc ], %i5 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e588: c4 0f 60 74 ldub [ %i5 + 0x74 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e58c: c2 07 60 7c ld [ %i5 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e590: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200e594: f8 07 61 58 ld [ %i5 + 0x158 ], %i4 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e598: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e59c: 80 a0 60 00 cmp %g1, 0 200e5a0: 12 80 00 40 bne 200e6a0 200e5a4: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e5a8: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 200e5ac: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e5b0: 7f ff f0 82 call 200a7b8 <_CPU_ISR_Get_level> 200e5b4: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e5b8: a3 2c 60 0a sll %l1, 0xa, %l1 200e5bc: a2 14 40 08 or %l1, %o0, %l1 old_mode |= _ISR_Get_level(); 200e5c0: b6 14 40 1b or %l1, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e5c4: 80 8e 61 00 btst 0x100, %i1 200e5c8: 02 80 00 06 be 200e5e0 200e5cc: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e5d0: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200e5d4: 80 a0 00 01 cmp %g0, %g1 200e5d8: 82 60 3f ff subx %g0, -1, %g1 200e5dc: c2 2f 60 74 stb %g1, [ %i5 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200e5e0: 80 8e 62 00 btst 0x200, %i1 200e5e4: 12 80 00 21 bne 200e668 200e5e8: 80 8e 22 00 btst 0x200, %i0 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e5ec: 80 8e 60 0f btst 0xf, %i1 200e5f0: 12 80 00 27 bne 200e68c 200e5f4: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e5f8: 80 8e 64 00 btst 0x400, %i1 200e5fc: 02 80 00 14 be 200e64c 200e600: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e604: c4 0f 20 08 ldub [ %i4 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200e608: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200e60c: 80 a0 00 18 cmp %g0, %i0 200e610: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e614: 80 a0 80 01 cmp %g2, %g1 200e618: 22 80 00 0e be,a 200e650 200e61c: 03 00 80 71 sethi %hi(0x201c400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200e620: 7f ff ce f1 call 20021e4 200e624: c2 2f 20 08 stb %g1, [ %i4 + 8 ] _signals = information->signals_pending; 200e628: c4 07 20 18 ld [ %i4 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 200e62c: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 information->signals_posted = _signals; 200e630: c4 27 20 14 st %g2, [ %i4 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200e634: c2 27 20 18 st %g1, [ %i4 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200e638: 7f ff ce ef call 20021f4 200e63c: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200e640: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200e644: 80 a0 00 01 cmp %g0, %g1 200e648: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200e64c: 03 00 80 71 sethi %hi(0x201c400), %g1 200e650: c4 00 60 84 ld [ %g1 + 0x84 ], %g2 ! 201c484 <_System_state_Current> 200e654: 80 a0 a0 03 cmp %g2, 3 200e658: 02 80 00 1f be 200e6d4 200e65c: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 200e660: 81 c7 e0 08 ret 200e664: 91 e8 00 01 restore %g0, %g1, %o0 */ if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { 200e668: 22 bf ff e1 be,a 200e5ec 200e66c: c0 27 60 7c clr [ %i5 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e670: 03 00 80 70 sethi %hi(0x201c000), %g1 200e674: c2 00 62 94 ld [ %g1 + 0x294 ], %g1 ! 201c294 <_Thread_Ticks_per_timeslice> } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e678: 80 8e 60 0f btst 0xf, %i1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e67c: c2 27 60 78 st %g1, [ %i5 + 0x78 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200e680: 82 10 20 01 mov 1, %g1 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e684: 02 bf ff dd be 200e5f8 200e688: c2 27 60 7c st %g1, [ %i5 + 0x7c ] */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e68c: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e690: 7f ff ce d9 call 20021f4 200e694: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e698: 10 bf ff d9 b 200e5fc 200e69c: 80 8e 64 00 btst 0x400, %i1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e6a0: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200e6a4: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e6a8: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e6ac: 7f ff f0 43 call 200a7b8 <_CPU_ISR_Get_level> 200e6b0: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e6b4: a3 2c 60 0a sll %l1, 0xa, %l1 200e6b8: a2 14 40 08 or %l1, %o0, %l1 old_mode |= _ISR_Get_level(); 200e6bc: b6 14 40 1b or %l1, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e6c0: 80 8e 61 00 btst 0x100, %i1 200e6c4: 02 bf ff c7 be 200e5e0 200e6c8: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e6cc: 10 bf ff c2 b 200e5d4 200e6d0: 82 0e 21 00 and %i0, 0x100, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 200e6d4: 80 88 e0 ff btst 0xff, %g3 200e6d8: 12 80 00 0a bne 200e700 200e6dc: c4 04 20 0c ld [ %l0 + 0xc ], %g2 200e6e0: c6 04 20 10 ld [ %l0 + 0x10 ], %g3 200e6e4: 80 a0 80 03 cmp %g2, %g3 200e6e8: 02 bf ff de be 200e660 200e6ec: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e6f0: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200e6f4: 80 a0 a0 00 cmp %g2, 0 200e6f8: 02 bf ff da be 200e660 <== NEVER TAKEN 200e6fc: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e700: 82 10 20 01 mov 1, %g1 ! 1 200e704: c2 2c 20 18 stb %g1, [ %l0 + 0x18 ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e708: 7f ff ea 92 call 2009150 <_Thread_Dispatch> 200e70c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e710: 82 10 20 00 clr %g1 ! 0 } 200e714: 81 c7 e0 08 ret 200e718: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200b1f4 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200b1f4: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200b1f8: 80 a6 60 00 cmp %i1, 0 200b1fc: 02 80 00 07 be 200b218 200b200: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200b204: 03 00 80 65 sethi %hi(0x2019400), %g1 200b208: c2 08 63 fc ldub [ %g1 + 0x3fc ], %g1 ! 20197fc */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200b20c: 80 a6 40 01 cmp %i1, %g1 200b210: 18 80 00 1c bgu 200b280 200b214: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200b218: 80 a6 a0 00 cmp %i2, 0 200b21c: 02 80 00 19 be 200b280 200b220: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200b224: 40 00 09 d3 call 200d970 <_Thread_Get> 200b228: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200b22c: c2 07 bf fc ld [ %fp + -4 ], %g1 200b230: 80 a0 60 00 cmp %g1, 0 200b234: 12 80 00 13 bne 200b280 200b238: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200b23c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200b240: 80 a6 60 00 cmp %i1, 0 200b244: 02 80 00 0d be 200b278 200b248: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200b24c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200b250: 80 a0 60 00 cmp %g1, 0 200b254: 02 80 00 06 be 200b26c 200b258: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200b25c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200b260: 80 a6 40 01 cmp %i1, %g1 200b264: 1a 80 00 05 bcc 200b278 <== ALWAYS TAKEN 200b268: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200b26c: 92 10 00 19 mov %i1, %o1 200b270: 40 00 08 76 call 200d448 <_Thread_Change_priority> 200b274: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200b278: 40 00 09 b1 call 200d93c <_Thread_Enable_dispatch> 200b27c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200b280: 81 c7 e0 08 ret 200b284: 81 e8 00 00 restore =============================================================================== 02007644 : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 2007644: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 2007648: 80 a6 60 00 cmp %i1, 0 200764c: 02 80 00 1e be 20076c4 2007650: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 2007654: 90 10 00 18 mov %i0, %o0 2007658: 40 00 09 56 call 2009bb0 <_Thread_Get> 200765c: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007660: c2 07 bf fc ld [ %fp + -4 ], %g1 2007664: 80 a0 60 00 cmp %g1, 0 2007668: 12 80 00 19 bne 20076cc 200766c: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 2007670: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007674: 80 a0 60 00 cmp %g1, 0 2007678: 02 80 00 10 be 20076b8 200767c: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007680: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007684: 80 a0 80 19 cmp %g2, %i1 2007688: 32 80 00 09 bne,a 20076ac 200768c: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2007690: 10 80 00 18 b 20076f0 2007694: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 2007698: 80 a0 80 19 cmp %g2, %i1 200769c: 22 80 00 0e be,a 20076d4 20076a0: c4 02 40 00 ld [ %o1 ], %g2 20076a4: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 20076a8: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 20076ac: 80 a2 60 00 cmp %o1, 0 20076b0: 32 bf ff fa bne,a 2007698 <== ALWAYS TAKEN 20076b4: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 20076b8: 40 00 09 31 call 2009b7c <_Thread_Enable_dispatch> 20076bc: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 20076c0: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20076c4: 81 c7 e0 08 ret 20076c8: 91 e8 00 01 restore %g0, %g1, %o0 20076cc: 81 c7 e0 08 ret 20076d0: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 20076d4: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 20076d8: 40 00 00 2d call 200778c <_RTEMS_Tasks_Invoke_task_variable_dtor> 20076dc: 01 00 00 00 nop _Thread_Enable_dispatch(); 20076e0: 40 00 09 27 call 2009b7c <_Thread_Enable_dispatch> 20076e4: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20076e8: 10 bf ff f7 b 20076c4 20076ec: 82 10 20 00 clr %g1 ! 0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 20076f0: 92 10 00 01 mov %g1, %o1 20076f4: 10 bf ff f9 b 20076d8 20076f8: c4 22 21 64 st %g2, [ %o0 + 0x164 ] =============================================================================== 020076fc : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 20076fc: 9d e3 bf 98 save %sp, -104, %sp 2007700: 90 10 00 18 mov %i0, %o0 Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 2007704: 80 a6 60 00 cmp %i1, 0 2007708: 02 80 00 1b be 2007774 200770c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !result ) 2007710: 80 a6 a0 00 cmp %i2, 0 2007714: 02 80 00 1c be 2007784 2007718: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 200771c: 40 00 09 25 call 2009bb0 <_Thread_Get> 2007720: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007724: c2 07 bf fc ld [ %fp + -4 ], %g1 2007728: 80 a0 60 00 cmp %g1, 0 200772c: 12 80 00 12 bne 2007774 2007730: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 2007734: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007738: 80 a0 60 00 cmp %g1, 0 200773c: 32 80 00 07 bne,a 2007758 2007740: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007744: 30 80 00 0e b,a 200777c 2007748: 80 a0 60 00 cmp %g1, 0 200774c: 02 80 00 0c be 200777c <== NEVER TAKEN 2007750: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007754: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007758: 80 a0 80 19 cmp %g2, %i1 200775c: 32 bf ff fb bne,a 2007748 2007760: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 2007764: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 2007768: b0 10 20 00 clr %i0 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; _Thread_Enable_dispatch(); 200776c: 40 00 09 04 call 2009b7c <_Thread_Enable_dispatch> 2007770: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 2007774: 81 c7 e0 08 ret 2007778: 81 e8 00 00 restore } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 200777c: 40 00 09 00 call 2009b7c <_Thread_Enable_dispatch> 2007780: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; 2007784: 81 c7 e0 08 ret 2007788: 81 e8 00 00 restore =============================================================================== 02015de8 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2015de8: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2015dec: 11 00 80 e8 sethi %hi(0x203a000), %o0 2015df0: 92 10 00 18 mov %i0, %o1 2015df4: 90 12 20 e4 or %o0, 0xe4, %o0 2015df8: 40 00 0c 7a call 2018fe0 <_Objects_Get> 2015dfc: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2015e00: c2 07 bf fc ld [ %fp + -4 ], %g1 2015e04: 80 a0 60 00 cmp %g1, 0 2015e08: 12 80 00 0c bne 2015e38 2015e0c: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2015e10: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2015e14: 80 a0 60 04 cmp %g1, 4 2015e18: 02 80 00 04 be 2015e28 <== NEVER TAKEN 2015e1c: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2015e20: 40 00 15 11 call 201b264 <_Watchdog_Remove> 2015e24: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2015e28: 40 00 10 41 call 2019f2c <_Thread_Enable_dispatch> 2015e2c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2015e30: 81 c7 e0 08 ret 2015e34: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015e38: 81 c7 e0 08 ret 2015e3c: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 02016310 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016310: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016314: 03 00 80 e8 sethi %hi(0x203a000), %g1 2016318: fa 00 61 24 ld [ %g1 + 0x124 ], %i5 ! 203a124 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 201631c: b8 10 00 18 mov %i0, %i4 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016320: 80 a7 60 00 cmp %i5, 0 2016324: 02 80 00 32 be 20163ec 2016328: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 201632c: 03 00 80 e7 sethi %hi(0x2039c00), %g1 2016330: c2 08 62 20 ldub [ %g1 + 0x220 ], %g1 ! 2039e20 <_TOD_Is_set> 2016334: 80 a0 60 00 cmp %g1, 0 2016338: 02 80 00 2d be 20163ec <== NEVER TAKEN 201633c: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016340: 80 a6 a0 00 cmp %i2, 0 2016344: 02 80 00 2a be 20163ec 2016348: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 201634c: 90 10 00 19 mov %i1, %o0 2016350: 7f ff f3 d5 call 20132a4 <_TOD_Validate> 2016354: b0 10 20 14 mov 0x14, %i0 2016358: 80 8a 20 ff btst 0xff, %o0 201635c: 02 80 00 24 be 20163ec 2016360: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016364: 7f ff f3 9c call 20131d4 <_TOD_To_seconds> 2016368: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 201636c: 21 00 80 e7 sethi %hi(0x2039c00), %l0 2016370: c2 04 22 9c ld [ %l0 + 0x29c ], %g1 ! 2039e9c <_TOD_Now> 2016374: 80 a2 00 01 cmp %o0, %g1 2016378: 08 80 00 1d bleu 20163ec 201637c: b2 10 00 08 mov %o0, %i1 2016380: 92 10 00 1c mov %i4, %o1 2016384: 11 00 80 e8 sethi %hi(0x203a000), %o0 2016388: 94 07 bf fc add %fp, -4, %o2 201638c: 40 00 0b 15 call 2018fe0 <_Objects_Get> 2016390: 90 12 20 e4 or %o0, 0xe4, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016394: c2 07 bf fc ld [ %fp + -4 ], %g1 2016398: 80 a0 60 00 cmp %g1, 0 201639c: 12 80 00 16 bne 20163f4 20163a0: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20163a4: 40 00 13 b0 call 201b264 <_Watchdog_Remove> 20163a8: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20163ac: c4 04 22 9c ld [ %l0 + 0x29c ], %g2 (*timer_server->schedule_operation)( timer_server, the_timer ); 20163b0: c2 07 60 04 ld [ %i5 + 4 ], %g1 20163b4: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20163b8: b2 26 40 02 sub %i1, %g2, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20163bc: 90 10 00 1d mov %i5, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20163c0: 84 10 20 03 mov 3, %g2 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20163c4: f4 26 20 2c st %i2, [ %i0 + 0x2c ] 20163c8: c4 26 20 38 st %g2, [ %i0 + 0x38 ] the_watchdog->id = id; 20163cc: f8 26 20 30 st %i4, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20163d0: f6 26 20 34 st %i3, [ %i0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20163d4: f2 26 20 1c st %i1, [ %i0 + 0x1c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20163d8: c0 26 20 18 clr [ %i0 + 0x18 ] (*timer_server->schedule_operation)( timer_server, the_timer ); 20163dc: 9f c0 40 00 call %g1 20163e0: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 20163e4: 40 00 0e d2 call 2019f2c <_Thread_Enable_dispatch> 20163e8: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20163ec: 81 c7 e0 08 ret 20163f0: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20163f4: 81 c7 e0 08 ret 20163f8: 91 e8 20 04 restore %g0, 4, %o0