RTEMS 4.11Annotated Report
Thu Jul 28 17:34:04 2011
0200721c <_API_extensions_Run_postdriver>:
/*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
200721c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2007220: 39 00 80 71 sethi %hi(0x201c400), %i4
2007224: fa 07 20 f4 ld [ %i4 + 0xf4 ], %i5 ! 201c4f4 <_API_extensions_List>
2007228: b8 17 20 f4 or %i4, 0xf4, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
200722c: b8 07 20 04 add %i4, 4, %i4
2007230: 80 a7 40 1c cmp %i5, %i4
2007234: 02 80 00 09 be 2007258 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
2007238: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
200723c: c2 07 60 08 ld [ %i5 + 8 ], %g1
2007240: 9f c0 40 00 call %g1
2007244: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2007248: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
200724c: 80 a7 40 1c cmp %i5, %i4
2007250: 32 bf ff fc bne,a 2007240 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2007254: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED
2007258: 81 c7 e0 08 ret
200725c: 81 e8 00 00 restore
02007260 <_API_extensions_Run_postswitch>:
/*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
2007260: 9d e3 bf a0 save %sp, -96, %sp
2007264: 39 00 80 71 sethi %hi(0x201c400), %i4
2007268: fa 07 20 f4 ld [ %i4 + 0xf4 ], %i5 ! 201c4f4 <_API_extensions_List>
200726c: b8 17 20 f4 or %i4, 0xf4, %i4
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2007270: b8 07 20 04 add %i4, 4, %i4
2007274: 80 a7 40 1c cmp %i5, %i4
2007278: 02 80 00 0a be 20072a0 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
200727c: 37 00 80 71 sethi %hi(0x201c400), %i3
2007280: b6 16 e1 2c or %i3, 0x12c, %i3 ! 201c52c <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
2007284: c2 07 60 0c ld [ %i5 + 0xc ], %g1
2007288: 9f c0 40 00 call %g1
200728c: d0 06 e0 0c ld [ %i3 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2007290: fa 07 40 00 ld [ %i5 ], %i5
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2007294: 80 a7 40 1c cmp %i5, %i4
2007298: 32 bf ff fc bne,a 2007288 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
200729c: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED
20072a0: 81 c7 e0 08 ret
20072a4: 81 e8 00 00 restore
02010aac <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010aac: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2010ab0: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required = 0;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010ab4: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
2010ab8: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2010abc: 80 8e e0 03 btst 3, %i3
2010ac0: 02 80 00 0a be 2010ae8 <_CORE_message_queue_Initialize+0x3c>
2010ac4: b8 10 00 1b mov %i3, %i4
allocated_message_size += sizeof(uint32_t);
2010ac8: b8 06 e0 04 add %i3, 4, %i4
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2010acc: b8 0f 3f fc and %i4, -4, %i4
}
if (allocated_message_size < maximum_message_size)
2010ad0: 80 a6 c0 1c cmp %i3, %i4
2010ad4: 08 80 00 05 bleu 2010ae8 <_CORE_message_queue_Initialize+0x3c><== ALWAYS TAKEN
2010ad8: ba 10 20 00 clr %i5
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010adc: b0 0f 60 01 and %i5, 1, %i0 <== NOT EXECUTED
2010ae0: 81 c7 e0 08 ret
2010ae4: 81 e8 00 00 restore
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
if ( !size_t_mult32_with_overflow(
2010ae8: b8 07 20 10 add %i4, 0x10, %i4
size_t a,
size_t b,
size_t *c
)
{
long long x = (long long)a*b;
2010aec: 90 10 20 00 clr %o0
2010af0: 92 10 00 1a mov %i2, %o1
2010af4: 94 10 20 00 clr %o2
2010af8: 96 10 00 1c mov %i4, %o3
2010afc: 40 00 41 1f call 2020f78 <__muldi3>
2010b00: ba 10 20 00 clr %i5
if ( x > SIZE_MAX )
2010b04: 80 a2 20 00 cmp %o0, 0
2010b08: 34 bf ff f6 bg,a 2010ae0 <_CORE_message_queue_Initialize+0x34>
2010b0c: b0 0f 60 01 and %i5, 1, %i0
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010b10: 40 00 0c ca call 2013e38 <_Workspace_Allocate>
2010b14: 90 10 00 09 mov %o1, %o0
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010b18: d0 26 20 5c st %o0, [ %i0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010b1c: 80 a2 20 00 cmp %o0, 0
2010b20: 02 bf ff ef be 2010adc <_CORE_message_queue_Initialize+0x30><== NEVER TAKEN
2010b24: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010b28: 90 06 20 60 add %i0, 0x60, %o0
2010b2c: 94 10 00 1a mov %i2, %o2
2010b30: 40 00 15 65 call 20160c4 <_Chain_Initialize>
2010b34: 96 10 00 1c mov %i4, %o3
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010b38: c4 06 40 00 ld [ %i1 ], %g2
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010b3c: 82 06 20 50 add %i0, 0x50, %g1
2010b40: 84 18 a0 01 xor %g2, 1, %g2
2010b44: 80 a0 00 02 cmp %g0, %g2
2010b48: 84 06 20 54 add %i0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
2010b4c: c2 26 20 58 st %g1, [ %i0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2010b50: c4 26 20 50 st %g2, [ %i0 + 0x50 ]
2010b54: 90 10 00 18 mov %i0, %o0
head->previous = NULL;
2010b58: c0 26 20 54 clr [ %i0 + 0x54 ]
2010b5c: 92 60 3f ff subx %g0, -1, %o1
2010b60: 94 10 20 80 mov 0x80, %o2
2010b64: 96 10 20 06 mov 6, %o3
2010b68: 40 00 0a 27 call 2013404 <_Thread_queue_Initialize>
2010b6c: ba 10 20 01 mov 1, %i5
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010b70: b0 0f 60 01 and %i5, 1, %i0
2010b74: 81 c7 e0 08 ret
2010b78: 81 e8 00 00 restore
020077ac <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
20077ac: 9d e3 bf a0 save %sp, -96, %sp
20077b0: ba 10 00 18 mov %i0, %i5
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20077b4: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
20077b8: 40 00 07 97 call 2009614 <_Thread_queue_Dequeue>
20077bc: 90 10 00 1d mov %i5, %o0
20077c0: 80 a2 20 00 cmp %o0, 0
20077c4: 02 80 00 04 be 20077d4 <_CORE_semaphore_Surrender+0x28>
20077c8: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
20077cc: 81 c7 e0 08 ret
20077d0: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
20077d4: 7f ff ea 84 call 20021e4 <sparc_disable_interrupts>
20077d8: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
20077dc: c2 07 60 48 ld [ %i5 + 0x48 ], %g1
20077e0: c4 07 60 40 ld [ %i5 + 0x40 ], %g2
20077e4: 80 a0 40 02 cmp %g1, %g2
20077e8: 1a 80 00 05 bcc 20077fc <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
20077ec: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
20077f0: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20077f4: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
20077f8: c2 27 60 48 st %g1, [ %i5 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
20077fc: 7f ff ea 7e call 20021f4 <sparc_enable_interrupts>
2007800: 01 00 00 00 nop
}
return status;
}
2007804: 81 c7 e0 08 ret
2007808: 81 e8 00 00 restore
0200c828 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
200c828: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
200c82c: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200c830: ba 06 20 04 add %i0, 4, %i5
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c834: 80 a6 a0 00 cmp %i2, 0
200c838: 02 80 00 12 be 200c880 <_Chain_Initialize+0x58> <== NEVER TAKEN
200c83c: 90 10 00 18 mov %i0, %o0
200c840: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
200c844: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
200c848: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
200c84c: 10 80 00 05 b 200c860 <_Chain_Initialize+0x38>
200c850: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c854: 84 10 00 01 mov %g1, %g2
200c858: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
200c85c: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
200c860: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
200c864: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c868: 80 a6 a0 00 cmp %i2, 0
200c86c: 12 bf ff fa bne 200c854 <_Chain_Initialize+0x2c>
200c870: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
200c874: 40 00 2b ce call 20177ac <.umul>
200c878: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c87c: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
200c880: fa 22 00 00 st %i5, [ %o0 ]
tail->previous = current;
200c884: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
200c888: 81 c7 e0 08 ret
200c88c: 81 e8 00 00 restore
020064a0 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
20064a0: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20064a4: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
20064a8: 7f ff ef 4f call 20021e4 <sparc_disable_interrupts>
20064ac: f8 06 20 30 ld [ %i0 + 0x30 ], %i4
pending_events = api->pending_events;
20064b0: c4 07 40 00 ld [ %i5 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
20064b4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
20064b8: 86 88 40 02 andcc %g1, %g2, %g3
20064bc: 02 80 00 39 be 20065a0 <_Event_Surrender+0x100>
20064c0: 09 00 80 71 sethi %hi(0x201c400), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20064c4: 88 11 21 2c or %g4, 0x12c, %g4 ! 201c52c <_Per_CPU_Information>
20064c8: f2 01 20 08 ld [ %g4 + 8 ], %i1
20064cc: 80 a6 60 00 cmp %i1, 0
20064d0: 32 80 00 1c bne,a 2006540 <_Event_Surrender+0xa0>
20064d4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
20064d8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
20064dc: 80 89 21 00 btst 0x100, %g4
20064e0: 02 80 00 30 be 20065a0 <_Event_Surrender+0x100>
20064e4: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
20064e8: 02 80 00 04 be 20064f8 <_Event_Surrender+0x58>
20064ec: 80 8f 20 02 btst 2, %i4
20064f0: 02 80 00 2c be 20065a0 <_Event_Surrender+0x100> <== NEVER TAKEN
20064f4: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20064f8: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
20064fc: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2006500: c4 27 40 00 st %g2, [ %i5 ]
the_thread->Wait.count = 0;
2006504: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006508: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
200650c: 7f ff ef 3a call 20021f4 <sparc_enable_interrupts>
2006510: 01 00 00 00 nop
2006514: 7f ff ef 34 call 20021e4 <sparc_disable_interrupts>
2006518: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200651c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
2006520: 80 a0 60 02 cmp %g1, 2
2006524: 02 80 00 21 be 20065a8 <_Event_Surrender+0x108>
2006528: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200652c: 7f ff ef 32 call 20021f4 <sparc_enable_interrupts>
2006530: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006534: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2006538: 40 00 0a 6b call 2008ee4 <_Thread_Clear_state>
200653c: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006540: 80 a6 00 04 cmp %i0, %g4
2006544: 32 bf ff e6 bne,a 20064dc <_Event_Surrender+0x3c>
2006548: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
200654c: 09 00 80 71 sethi %hi(0x201c400), %g4
2006550: f2 01 21 80 ld [ %g4 + 0x180 ], %i1 ! 201c580 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2006554: 80 a6 60 02 cmp %i1, 2
2006558: 02 80 00 07 be 2006574 <_Event_Surrender+0xd4> <== NEVER TAKEN
200655c: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2006560: f2 01 21 80 ld [ %g4 + 0x180 ], %i1
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2006564: 80 a6 60 01 cmp %i1, 1
2006568: 32 bf ff dd bne,a 20064dc <_Event_Surrender+0x3c>
200656c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2006570: 80 a0 40 03 cmp %g1, %g3
2006574: 02 80 00 04 be 2006584 <_Event_Surrender+0xe4>
2006578: 80 8f 20 02 btst 2, %i4
200657c: 02 80 00 09 be 20065a0 <_Event_Surrender+0x100> <== NEVER TAKEN
2006580: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006584: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
2006588: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
200658c: c4 27 40 00 st %g2, [ %i5 ]
the_thread->Wait.count = 0;
2006590: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006594: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2006598: 82 10 20 03 mov 3, %g1
200659c: c2 21 21 80 st %g1, [ %g4 + 0x180 ]
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
20065a0: 7f ff ef 15 call 20021f4 <sparc_enable_interrupts>
20065a4: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
20065a8: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
20065ac: 7f ff ef 12 call 20021f4 <sparc_enable_interrupts>
20065b0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
(void) _Watchdog_Remove( &the_thread->Timer );
20065b4: 40 00 0f 4f call 200a2f0 <_Watchdog_Remove>
20065b8: 90 06 20 48 add %i0, 0x48, %o0
20065bc: b2 16 63 f8 or %i1, 0x3f8, %i1
20065c0: 40 00 0a 49 call 2008ee4 <_Thread_Clear_state>
20065c4: 81 e8 00 00 restore
020065c8 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
20065c8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
20065cc: 90 10 00 18 mov %i0, %o0
20065d0: 40 00 0b 44 call 20092e0 <_Thread_Get>
20065d4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20065d8: c2 07 bf fc ld [ %fp + -4 ], %g1
20065dc: 80 a0 60 00 cmp %g1, 0
20065e0: 12 80 00 16 bne 2006638 <_Event_Timeout+0x70> <== NEVER TAKEN
20065e4: ba 10 00 08 mov %o0, %i5
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
20065e8: 7f ff ee ff call 20021e4 <sparc_disable_interrupts>
20065ec: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20065f0: 03 00 80 71 sethi %hi(0x201c400), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
20065f4: c2 00 61 38 ld [ %g1 + 0x138 ], %g1 ! 201c538 <_Per_CPU_Information+0xc>
20065f8: 80 a7 40 01 cmp %i5, %g1
20065fc: 02 80 00 11 be 2006640 <_Event_Timeout+0x78>
2006600: c0 27 60 24 clr [ %i5 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2006604: 82 10 20 06 mov 6, %g1
2006608: c2 27 60 34 st %g1, [ %i5 + 0x34 ]
_ISR_Enable( level );
200660c: 7f ff ee fa call 20021f4 <sparc_enable_interrupts>
2006610: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006614: 90 10 00 1d mov %i5, %o0
2006618: 13 04 00 ff sethi %hi(0x1003fc00), %o1
200661c: 40 00 0a 32 call 2008ee4 <_Thread_Clear_state>
2006620: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2006624: 03 00 80 70 sethi %hi(0x201c000), %g1
2006628: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 201c300 <_Thread_Dispatch_disable_level>
200662c: 84 00 bf ff add %g2, -1, %g2
2006630: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
return _Thread_Dispatch_disable_level;
2006634: c2 00 63 00 ld [ %g1 + 0x300 ], %g1
2006638: 81 c7 e0 08 ret
200663c: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2006640: 03 00 80 71 sethi %hi(0x201c400), %g1
2006644: c4 00 61 80 ld [ %g1 + 0x180 ], %g2 ! 201c580 <_Event_Sync_state>
2006648: 80 a0 a0 01 cmp %g2, 1
200664c: 32 bf ff ef bne,a 2006608 <_Event_Timeout+0x40>
2006650: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2006654: 84 10 20 02 mov 2, %g2
2006658: c4 20 61 80 st %g2, [ %g1 + 0x180 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
200665c: 10 bf ff eb b 2006608 <_Event_Timeout+0x40>
2006660: 82 10 20 06 mov 6, %g1
0200ca50 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200ca50: 9d e3 bf 98 save %sp, -104, %sp
200ca54: ba 10 00 18 mov %i0, %i5
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200ca58: a0 06 60 04 add %i1, 4, %l0
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
200ca5c: ec 06 20 10 ld [ %i0 + 0x10 ], %l6
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
200ca60: 80 a6 40 10 cmp %i1, %l0
200ca64: 18 80 00 23 bgu 200caf0 <_Heap_Allocate_aligned_with_boundary+0xa0>
200ca68: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200ca6c: 80 a6 e0 00 cmp %i3, 0
200ca70: 12 80 00 7d bne 200cc64 <_Heap_Allocate_aligned_with_boundary+0x214>
200ca74: 80 a6 40 1b cmp %i1, %i3
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200ca78: e2 07 60 08 ld [ %i5 + 8 ], %l1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200ca7c: 80 a7 40 11 cmp %i5, %l1
200ca80: 02 80 00 18 be 200cae0 <_Heap_Allocate_aligned_with_boundary+0x90>
200ca84: b8 10 20 00 clr %i4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200ca88: 82 05 a0 07 add %l6, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200ca8c: ae 10 20 04 mov 4, %l7
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200ca90: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200ca94: 10 80 00 0b b 200cac0 <_Heap_Allocate_aligned_with_boundary+0x70>
200ca98: ae 25 c0 19 sub %l7, %i1, %l7
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
if ( alignment == 0 ) {
200ca9c: 12 80 00 17 bne 200caf8 <_Heap_Allocate_aligned_with_boundary+0xa8>
200caa0: b0 04 60 08 add %l1, 8, %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200caa4: 80 a6 20 00 cmp %i0, 0
200caa8: 12 80 00 5b bne 200cc14 <_Heap_Allocate_aligned_with_boundary+0x1c4>
200caac: b8 07 20 01 inc %i4
break;
}
block = block->next;
200cab0: e2 04 60 08 ld [ %l1 + 8 ], %l1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200cab4: 80 a7 40 11 cmp %i5, %l1
200cab8: 22 80 00 0b be,a 200cae4 <_Heap_Allocate_aligned_with_boundary+0x94>
200cabc: c2 07 60 44 ld [ %i5 + 0x44 ], %g1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200cac0: e4 04 60 04 ld [ %l1 + 4 ], %l2
200cac4: 80 a4 00 12 cmp %l0, %l2
200cac8: 0a bf ff f5 bcs 200ca9c <_Heap_Allocate_aligned_with_boundary+0x4c>
200cacc: 80 a6 a0 00 cmp %i2, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200cad0: e2 04 60 08 ld [ %l1 + 8 ], %l1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200cad4: 80 a7 40 11 cmp %i5, %l1
200cad8: 12 bf ff fa bne 200cac0 <_Heap_Allocate_aligned_with_boundary+0x70>
200cadc: b8 07 20 01 inc %i4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200cae0: c2 07 60 44 ld [ %i5 + 0x44 ], %g1
200cae4: 80 a0 40 1c cmp %g1, %i4
200cae8: 0a 80 00 5a bcs 200cc50 <_Heap_Allocate_aligned_with_boundary+0x200>
200caec: b0 10 20 00 clr %i0
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200caf0: 81 c7 e0 08 ret
200caf4: 81 e8 00 00 restore
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200caf8: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200cafc: ea 07 60 14 ld [ %i5 + 0x14 ], %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cb00: a4 0c bf fe and %l2, -2, %l2
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200cb04: 82 20 80 15 sub %g2, %l5, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200cb08: a4 04 40 12 add %l1, %l2, %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cb0c: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200cb10: b0 05 c0 12 add %l7, %l2, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200cb14: a4 00 40 12 add %g1, %l2, %l2
200cb18: 40 00 2c 0b call 2017b44 <.urem>
200cb1c: 90 10 00 18 mov %i0, %o0
200cb20: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200cb24: 80 a4 80 18 cmp %l2, %i0
200cb28: 1a 80 00 06 bcc 200cb40 <_Heap_Allocate_aligned_with_boundary+0xf0>
200cb2c: a8 04 60 08 add %l1, 8, %l4
200cb30: 90 10 00 12 mov %l2, %o0
200cb34: 40 00 2c 04 call 2017b44 <.urem>
200cb38: 92 10 00 1a mov %i2, %o1
200cb3c: b0 24 80 08 sub %l2, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200cb40: 80 a6 e0 00 cmp %i3, 0
200cb44: 02 80 00 24 be 200cbd4 <_Heap_Allocate_aligned_with_boundary+0x184>
200cb48: 80 a5 00 18 cmp %l4, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200cb4c: a4 06 00 19 add %i0, %i1, %l2
200cb50: 92 10 00 1b mov %i3, %o1
200cb54: 40 00 2b fc call 2017b44 <.urem>
200cb58: 90 10 00 12 mov %l2, %o0
200cb5c: 90 24 80 08 sub %l2, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200cb60: 80 a6 00 08 cmp %i0, %o0
200cb64: 1a 80 00 1b bcc 200cbd0 <_Heap_Allocate_aligned_with_boundary+0x180>
200cb68: 80 a2 00 12 cmp %o0, %l2
200cb6c: 1a 80 00 1a bcc 200cbd4 <_Heap_Allocate_aligned_with_boundary+0x184>
200cb70: 80 a5 00 18 cmp %l4, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200cb74: a6 05 00 19 add %l4, %i1, %l3
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
200cb78: 80 a4 c0 08 cmp %l3, %o0
200cb7c: 08 80 00 08 bleu 200cb9c <_Heap_Allocate_aligned_with_boundary+0x14c>
200cb80: b0 10 20 00 clr %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200cb84: 10 bf ff c9 b 200caa8 <_Heap_Allocate_aligned_with_boundary+0x58>
200cb88: 80 a6 20 00 cmp %i0, 0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200cb8c: 1a 80 00 11 bcc 200cbd0 <_Heap_Allocate_aligned_with_boundary+0x180>
200cb90: 80 a4 c0 08 cmp %l3, %o0
if ( boundary_line < boundary_floor ) {
200cb94: 18 bf ff c4 bgu 200caa4 <_Heap_Allocate_aligned_with_boundary+0x54><== NEVER TAKEN
200cb98: b0 10 20 00 clr %i0
return 0;
}
alloc_begin = boundary_line - alloc_size;
200cb9c: b0 22 00 19 sub %o0, %i1, %i0
200cba0: 92 10 00 1a mov %i2, %o1
200cba4: 40 00 2b e8 call 2017b44 <.urem>
200cba8: 90 10 00 18 mov %i0, %o0
200cbac: 92 10 00 1b mov %i3, %o1
200cbb0: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200cbb4: a4 06 00 19 add %i0, %i1, %l2
200cbb8: 40 00 2b e3 call 2017b44 <.urem>
200cbbc: 90 10 00 12 mov %l2, %o0
200cbc0: 90 24 80 08 sub %l2, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200cbc4: 80 a2 00 12 cmp %o0, %l2
200cbc8: 0a bf ff f1 bcs 200cb8c <_Heap_Allocate_aligned_with_boundary+0x13c>
200cbcc: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200cbd0: 80 a5 00 18 cmp %l4, %i0
200cbd4: 18 80 00 22 bgu 200cc5c <_Heap_Allocate_aligned_with_boundary+0x20c>
200cbd8: 82 10 3f f8 mov -8, %g1
200cbdc: 90 10 00 18 mov %i0, %o0
200cbe0: a4 20 40 11 sub %g1, %l1, %l2
200cbe4: 92 10 00 16 mov %l6, %o1
200cbe8: 40 00 2b d7 call 2017b44 <.urem>
200cbec: a4 04 80 18 add %l2, %i0, %l2
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200cbf0: 90 a4 80 08 subcc %l2, %o0, %o0
200cbf4: 02 bf ff ad be 200caa8 <_Heap_Allocate_aligned_with_boundary+0x58>
200cbf8: 80 a6 20 00 cmp %i0, 0
200cbfc: 80 a2 00 15 cmp %o0, %l5
return alloc_begin;
}
}
return 0;
200cc00: 82 40 3f ff addx %g0, -1, %g1
200cc04: b0 0e 00 01 and %i0, %g1, %i0
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200cc08: 80 a6 20 00 cmp %i0, 0
200cc0c: 02 bf ff a9 be 200cab0 <_Heap_Allocate_aligned_with_boundary+0x60>
200cc10: b8 07 20 01 inc %i4
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200cc14: c4 07 60 48 ld [ %i5 + 0x48 ], %g2
stats->searches += search_count;
200cc18: c2 07 60 4c ld [ %i5 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200cc1c: 84 00 a0 01 inc %g2
stats->searches += search_count;
200cc20: 82 00 40 1c add %g1, %i4, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200cc24: c4 27 60 48 st %g2, [ %i5 + 0x48 ]
stats->searches += search_count;
200cc28: c2 27 60 4c st %g1, [ %i5 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200cc2c: 90 10 00 1d mov %i5, %o0
200cc30: 92 10 00 11 mov %l1, %o1
200cc34: 94 10 00 18 mov %i0, %o2
200cc38: 7f ff ec 02 call 2007c40 <_Heap_Block_allocate>
200cc3c: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200cc40: c2 07 60 44 ld [ %i5 + 0x44 ], %g1
200cc44: 80 a0 40 1c cmp %g1, %i4
200cc48: 1a 80 00 03 bcc 200cc54 <_Heap_Allocate_aligned_with_boundary+0x204>
200cc4c: 01 00 00 00 nop
stats->max_search = search_count;
200cc50: f8 27 60 44 st %i4, [ %i5 + 0x44 ]
}
return (void *) alloc_begin;
}
200cc54: 81 c7 e0 08 ret
200cc58: 81 e8 00 00 restore
if ( free_size >= min_block_size || free_size == 0 ) {
return alloc_begin;
}
}
return 0;
200cc5c: 10 bf ff 92 b 200caa4 <_Heap_Allocate_aligned_with_boundary+0x54>
200cc60: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200cc64: 18 bf ff a3 bgu 200caf0 <_Heap_Allocate_aligned_with_boundary+0xa0>
200cc68: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200cc6c: 22 bf ff 83 be,a 200ca78 <_Heap_Allocate_aligned_with_boundary+0x28>
200cc70: b4 10 00 16 mov %l6, %i2
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
200cc74: 10 bf ff 82 b 200ca7c <_Heap_Allocate_aligned_with_boundary+0x2c>
200cc78: e2 07 60 08 ld [ %i5 + 8 ], %l1
0200c858 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c858: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200c85c: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Block *extend_last_block = NULL;
200c860: c0 27 bf fc clr [ %fp + -4 ]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200c864: ba 06 40 1a add %i1, %i2, %i5
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200c868: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200c86c: e0 06 20 10 ld [ %i0 + 0x10 ], %l0
uintptr_t const min_block_size = heap->min_block_size;
200c870: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200c874: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200c878: 80 a6 40 1d cmp %i1, %i5
200c87c: 08 80 00 05 bleu 200c890 <_Heap_Extend+0x38>
200c880: a2 10 20 00 clr %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200c884: b0 0c 60 01 and %l1, 1, %i0
200c888: 81 c7 e0 08 ret
200c88c: 81 e8 00 00 restore
if ( extend_area_end < extend_area_begin ) {
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200c890: 90 10 00 19 mov %i1, %o0
200c894: 92 10 00 1a mov %i2, %o1
200c898: 94 10 00 10 mov %l0, %o2
200c89c: 98 07 bf f8 add %fp, -8, %o4
200c8a0: 7f ff eb af call 200775c <_Heap_Get_first_and_last_block>
200c8a4: 9a 07 bf fc add %fp, -4, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200c8a8: 80 8a 20 ff btst 0xff, %o0
200c8ac: 02 bf ff f6 be 200c884 <_Heap_Extend+0x2c>
200c8b0: aa 10 20 00 clr %l5
200c8b4: a2 10 00 1c mov %i4, %l1
200c8b8: ac 10 20 00 clr %l6
200c8bc: a6 10 20 00 clr %l3
200c8c0: 10 80 00 14 b 200c910 <_Heap_Extend+0xb8>
200c8c4: a8 10 20 00 clr %l4
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c8c8: 2a 80 00 02 bcs,a 200c8d0 <_Heap_Extend+0x78>
200c8cc: ac 10 00 11 mov %l1, %l6
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c8d0: 90 10 00 1a mov %i2, %o0
200c8d4: 40 00 16 b3 call 20123a0 <.urem>
200c8d8: 92 10 00 10 mov %l0, %o1
200c8dc: 82 06 bf f8 add %i2, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c8e0: 80 a6 80 19 cmp %i2, %i1
200c8e4: 02 80 00 1c be 200c954 <_Heap_Extend+0xfc>
200c8e8: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c8ec: 80 a6 40 1a cmp %i1, %i2
200c8f0: 38 80 00 02 bgu,a 200c8f8 <_Heap_Extend+0xa0>
200c8f4: aa 10 00 01 mov %g1, %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c8f8: e2 00 60 04 ld [ %g1 + 4 ], %l1
200c8fc: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c900: a2 04 40 01 add %l1, %g1, %l1
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c904: 80 a7 00 11 cmp %i4, %l1
200c908: 22 80 00 1b be,a 200c974 <_Heap_Extend+0x11c>
200c90c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200c910: 80 a4 40 1c cmp %l1, %i4
200c914: 02 80 00 66 be 200caac <_Heap_Extend+0x254>
200c918: 82 10 00 11 mov %l1, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c91c: 80 a0 40 1d cmp %g1, %i5
200c920: 0a 80 00 70 bcs 200cae0 <_Heap_Extend+0x288>
200c924: f4 04 40 00 ld [ %l1 ], %i2
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c928: 80 a0 40 1d cmp %g1, %i5
200c92c: 12 bf ff e7 bne 200c8c8 <_Heap_Extend+0x70>
200c930: 80 a7 40 1a cmp %i5, %i2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c934: 90 10 00 1a mov %i2, %o0
200c938: 40 00 16 9a call 20123a0 <.urem>
200c93c: 92 10 00 10 mov %l0, %o1
200c940: 82 06 bf f8 add %i2, -8, %g1
200c944: a8 10 00 11 mov %l1, %l4
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c948: 80 a6 80 19 cmp %i2, %i1
200c94c: 12 bf ff e8 bne 200c8ec <_Heap_Extend+0x94> <== ALWAYS TAKEN
200c950: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
200c954: fa 24 40 00 st %i5, [ %l1 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c958: e2 00 60 04 ld [ %g1 + 4 ], %l1
200c95c: a2 0c 7f fe and %l1, -2, %l1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c960: a2 04 40 01 add %l1, %g1, %l1
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c964: 80 a7 00 11 cmp %i4, %l1
200c968: 12 bf ff ea bne 200c910 <_Heap_Extend+0xb8> <== NEVER TAKEN
200c96c: a6 10 00 01 mov %g1, %l3
if ( extend_area_begin < heap->area_begin ) {
200c970: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
200c974: 80 a6 40 01 cmp %i1, %g1
200c978: 3a 80 00 55 bcc,a 200cacc <_Heap_Extend+0x274>
200c97c: c2 06 20 1c ld [ %i0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c980: f2 26 20 18 st %i1, [ %i0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200c984: c2 07 bf f8 ld [ %fp + -8 ], %g1
200c988: c4 07 bf fc ld [ %fp + -4 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c98c: c8 06 20 20 ld [ %i0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200c990: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200c994: fa 20 40 00 st %i5, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200c998: b8 10 e0 01 or %g3, 1, %i4
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200c99c: f8 20 60 04 st %i4, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200c9a0: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200c9a4: 80 a1 00 01 cmp %g4, %g1
200c9a8: 08 80 00 43 bleu 200cab4 <_Heap_Extend+0x25c>
200c9ac: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200c9b0: c2 26 20 20 st %g1, [ %i0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200c9b4: 80 a5 20 00 cmp %l4, 0
200c9b8: 02 80 00 63 be 200cb44 <_Heap_Extend+0x2ec>
200c9bc: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200c9c0: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200c9c4: 92 10 00 1c mov %i4, %o1
200c9c8: 40 00 16 76 call 20123a0 <.urem>
200c9cc: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200c9d0: 80 a2 20 00 cmp %o0, 0
200c9d4: 02 80 00 04 be 200c9e4 <_Heap_Extend+0x18c>
200c9d8: c4 05 00 00 ld [ %l4 ], %g2
return value - remainder + alignment;
200c9dc: b2 06 40 1c add %i1, %i4, %i1
200c9e0: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200c9e4: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200c9e8: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200c9ec: 84 25 00 01 sub %l4, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200c9f0: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200c9f4: 90 10 00 18 mov %i0, %o0
200c9f8: 92 10 00 01 mov %g1, %o1
200c9fc: 7f ff ff 8d call 200c830 <_Heap_Free_block>
200ca00: c4 26 7f fc st %g2, [ %i1 + -4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200ca04: 80 a4 e0 00 cmp %l3, 0
200ca08: 02 80 00 3b be 200caf4 <_Heap_Extend+0x29c>
200ca0c: ba 07 7f f8 add %i5, -8, %i5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ca10: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200ca14: ba 27 40 13 sub %i5, %l3, %i5
200ca18: 40 00 16 62 call 20123a0 <.urem>
200ca1c: 90 10 00 1d mov %i5, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200ca20: c2 04 e0 04 ld [ %l3 + 4 ], %g1
200ca24: ba 27 40 08 sub %i5, %o0, %i5
200ca28: 82 20 40 1d sub %g1, %i5, %g1
| HEAP_PREV_BLOCK_USED;
200ca2c: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200ca30: 84 07 40 13 add %i5, %l3, %g2
200ca34: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ca38: c2 04 e0 04 ld [ %l3 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200ca3c: 90 10 00 18 mov %i0, %o0
200ca40: 82 08 60 01 and %g1, 1, %g1
200ca44: 92 10 00 13 mov %l3, %o1
block->size_and_flag = size | flag;
200ca48: ba 17 40 01 or %i5, %g1, %i5
200ca4c: 7f ff ff 79 call 200c830 <_Heap_Free_block>
200ca50: fa 24 e0 04 st %i5, [ %l3 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200ca54: 80 a4 e0 00 cmp %l3, 0
200ca58: 02 80 00 34 be 200cb28 <_Heap_Extend+0x2d0>
200ca5c: 80 a5 20 00 cmp %l4, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200ca60: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200ca64: c6 06 20 20 ld [ %i0 + 0x20 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ca68: c4 00 60 04 ld [ %g1 + 4 ], %g2
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200ca6c: 86 20 c0 01 sub %g3, %g1, %g3
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ca70: 84 08 a0 01 and %g2, 1, %g2
block->size_and_flag = size | flag;
200ca74: 84 10 80 03 or %g2, %g3, %g2
200ca78: c4 20 60 04 st %g2, [ %g1 + 4 ]
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200ca7c: c2 06 20 2c ld [ %i0 + 0x2c ], %g1
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200ca80: c4 06 20 30 ld [ %i0 + 0x30 ], %g2
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
200ca84: a2 10 20 01 mov 1, %l1
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200ca88: a4 20 80 12 sub %g2, %l2, %l2
/* Statistics */
stats->size += extended_size;
200ca8c: 82 00 40 12 add %g1, %l2, %g1
if ( extended_size_ptr != NULL )
200ca90: 80 a6 e0 00 cmp %i3, 0
200ca94: 02 bf ff 7c be 200c884 <_Heap_Extend+0x2c> <== NEVER TAKEN
200ca98: c2 26 20 2c st %g1, [ %i0 + 0x2c ]
*extended_size_ptr = extended_size;
200ca9c: e4 26 c0 00 st %l2, [ %i3 ]
return true;
}
200caa0: b0 0c 60 01 and %l1, 1, %i0
200caa4: 81 c7 e0 08 ret
200caa8: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200caac: 10 bf ff 9c b 200c91c <_Heap_Extend+0xc4>
200cab0: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200cab4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
200cab8: 80 a0 40 02 cmp %g1, %g2
200cabc: 2a bf ff be bcs,a 200c9b4 <_Heap_Extend+0x15c>
200cac0: c4 26 20 24 st %g2, [ %i0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200cac4: 10 bf ff bd b 200c9b8 <_Heap_Extend+0x160>
200cac8: 80 a5 20 00 cmp %l4, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200cacc: 80 a7 40 01 cmp %i5, %g1
200cad0: 38 bf ff ad bgu,a 200c984 <_Heap_Extend+0x12c>
200cad4: fa 26 20 1c st %i5, [ %i0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cad8: 10 bf ff ac b 200c988 <_Heap_Extend+0x130>
200cadc: c2 07 bf f8 ld [ %fp + -8 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cae0: 80 a6 40 1a cmp %i1, %i2
200cae4: 1a bf ff 92 bcc 200c92c <_Heap_Extend+0xd4>
200cae8: 80 a0 40 1d cmp %g1, %i5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
200caec: 10 bf ff 66 b 200c884 <_Heap_Extend+0x2c>
200caf0: a2 10 20 00 clr %l1
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200caf4: 80 a5 60 00 cmp %l5, 0
200caf8: 02 bf ff d7 be 200ca54 <_Heap_Extend+0x1fc>
200cafc: c4 07 bf f8 ld [ %fp + -8 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cb00: c6 05 60 04 ld [ %l5 + 4 ], %g3
_Heap_Link_above(
200cb04: c2 07 bf fc ld [ %fp + -4 ], %g1
200cb08: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200cb0c: 84 20 80 15 sub %g2, %l5, %g2
block->size_and_flag = size | flag;
200cb10: 84 10 c0 02 or %g3, %g2, %g2
200cb14: c4 25 60 04 st %g2, [ %l5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200cb18: c4 00 60 04 ld [ %g1 + 4 ], %g2
200cb1c: 84 10 a0 01 or %g2, 1, %g2
200cb20: 10 bf ff cd b 200ca54 <_Heap_Extend+0x1fc>
200cb24: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200cb28: 32 bf ff cf bne,a 200ca64 <_Heap_Extend+0x20c>
200cb2c: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200cb30: d2 07 bf f8 ld [ %fp + -8 ], %o1
200cb34: 7f ff ff 3f call 200c830 <_Heap_Free_block>
200cb38: 90 10 00 18 mov %i0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cb3c: 10 bf ff ca b 200ca64 <_Heap_Extend+0x20c>
200cb40: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200cb44: 80 a5 a0 00 cmp %l6, 0
200cb48: 02 bf ff b0 be 200ca08 <_Heap_Extend+0x1b0>
200cb4c: 80 a4 e0 00 cmp %l3, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200cb50: ac 25 80 02 sub %l6, %g2, %l6
200cb54: ac 15 a0 01 or %l6, 1, %l6
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200cb58: 10 bf ff ac b 200ca08 <_Heap_Extend+0x1b0>
200cb5c: ec 20 a0 04 st %l6, [ %g2 + 4 ]
0200cc7c <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200cc7c: 9d e3 bf a0 save %sp, -96, %sp
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200cc80: 80 a6 60 00 cmp %i1, 0
200cc84: 02 80 00 56 be 200cddc <_Heap_Free+0x160>
200cc88: 84 10 20 01 mov 1, %g2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cc8c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200cc90: 40 00 2b ad call 2017b44 <.urem>
200cc94: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200cc98: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cc9c: ba 06 7f f8 add %i1, -8, %i5
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cca0: ba 27 40 08 sub %i5, %o0, %i5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cca4: 80 a7 40 01 cmp %i5, %g1
200cca8: 0a 80 00 4d bcs 200cddc <_Heap_Free+0x160>
200ccac: 84 10 20 00 clr %g2
200ccb0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
200ccb4: 80 a7 40 04 cmp %i5, %g4
200ccb8: 38 80 00 4a bgu,a 200cde0 <_Heap_Free+0x164>
200ccbc: b0 08 a0 01 and %g2, 1, %i0
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200ccc0: de 07 60 04 ld [ %i5 + 4 ], %o7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200ccc4: b2 0b ff fe and %o7, -2, %i1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200ccc8: 86 06 40 1d add %i1, %i5, %g3
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cccc: 80 a0 40 03 cmp %g1, %g3
200ccd0: 38 80 00 44 bgu,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN
200ccd4: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED
200ccd8: 80 a1 00 03 cmp %g4, %g3
200ccdc: 2a 80 00 41 bcs,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN
200cce0: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED
200cce4: da 00 e0 04 ld [ %g3 + 4 ], %o5
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200cce8: 80 8b 60 01 btst 1, %o5
200ccec: 02 80 00 3c be 200cddc <_Heap_Free+0x160> <== NEVER TAKEN
200ccf0: 98 0b 7f fe and %o5, -2, %o4
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200ccf4: 80 a1 00 03 cmp %g4, %g3
200ccf8: 02 80 00 06 be 200cd10 <_Heap_Free+0x94>
200ccfc: 9a 10 20 00 clr %o5
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cd00: 84 00 c0 0c add %g3, %o4, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cd04: da 00 a0 04 ld [ %g2 + 4 ], %o5
200cd08: 9a 0b 60 01 and %o5, 1, %o5
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
200cd0c: 9a 1b 60 01 xor %o5, 1, %o5
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200cd10: 80 8b e0 01 btst 1, %o7
200cd14: 12 80 00 1c bne 200cd84 <_Heap_Free+0x108>
200cd18: 80 8b 60 ff btst 0xff, %o5
uintptr_t const prev_size = block->prev_size;
200cd1c: d6 07 40 00 ld [ %i5 ], %o3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cd20: 9e 27 40 0b sub %i5, %o3, %o7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cd24: 80 a0 40 0f cmp %g1, %o7
200cd28: 18 80 00 2d bgu 200cddc <_Heap_Free+0x160> <== NEVER TAKEN
200cd2c: 84 10 20 00 clr %g2
200cd30: 80 a1 00 0f cmp %g4, %o7
200cd34: 2a 80 00 2b bcs,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN
200cd38: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cd3c: c2 03 e0 04 ld [ %o7 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200cd40: 80 88 60 01 btst 1, %g1
200cd44: 02 80 00 26 be 200cddc <_Heap_Free+0x160> <== NEVER TAKEN
200cd48: 80 8b 60 ff btst 0xff, %o5
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200cd4c: 02 80 00 39 be 200ce30 <_Heap_Free+0x1b4>
200cd50: 96 06 40 0b add %i1, %o3, %o3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cd54: c2 00 e0 08 ld [ %g3 + 8 ], %g1
200cd58: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cd5c: c6 06 20 38 ld [ %i0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
200cd60: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200cd64: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200cd68: 82 00 ff ff add %g3, -1, %g1
200cd6c: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200cd70: 98 02 c0 0c add %o3, %o4, %o4
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cd74: 82 13 20 01 or %o4, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200cd78: d8 23 00 0f st %o4, [ %o4 + %o7 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cd7c: 10 80 00 0e b 200cdb4 <_Heap_Free+0x138>
200cd80: c2 23 e0 04 st %g1, [ %o7 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200cd84: 22 80 00 19 be,a 200cde8 <_Heap_Free+0x16c>
200cd88: c4 06 20 08 ld [ %i0 + 8 ], %g2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cd8c: c4 00 e0 08 ld [ %g3 + 8 ], %g2
200cd90: c2 00 e0 0c ld [ %g3 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
200cd94: c4 27 60 08 st %g2, [ %i5 + 8 ]
new_block->prev = prev;
200cd98: c2 27 60 0c st %g1, [ %i5 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200cd9c: 98 03 00 19 add %o4, %i1, %o4
next->prev = new_block;
200cda0: fa 20 a0 0c st %i5, [ %g2 + 0xc ]
prev->next = new_block;
200cda4: fa 20 60 08 st %i5, [ %g1 + 8 ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cda8: 84 13 20 01 or %o4, 1, %g2
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200cdac: d8 23 00 1d st %o4, [ %o4 + %i5 ]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cdb0: c4 27 60 04 st %g2, [ %i5 + 4 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cdb4: c4 06 20 40 ld [ %i0 + 0x40 ], %g2
++stats->frees;
200cdb8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
stats->free_size += block_size;
200cdbc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cdc0: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
200cdc4: 82 00 60 01 inc %g1
stats->free_size += block_size;
200cdc8: b2 00 c0 19 add %g3, %i1, %i1
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cdcc: c4 26 20 40 st %g2, [ %i0 + 0x40 ]
++stats->frees;
200cdd0: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
stats->free_size += block_size;
200cdd4: f2 26 20 30 st %i1, [ %i0 + 0x30 ]
return( true );
200cdd8: 84 10 20 01 mov 1, %g2
}
200cddc: b0 08 a0 01 and %g2, 1, %i0
200cde0: 81 c7 e0 08 ret
200cde4: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200cde8: 82 16 60 01 or %i1, 1, %g1
200cdec: c2 27 60 04 st %g1, [ %i5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cdf0: c8 00 e0 04 ld [ %g3 + 4 ], %g4
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200cdf4: f0 27 60 0c st %i0, [ %i5 + 0xc ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200cdf8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200cdfc: c4 27 60 08 st %g2, [ %i5 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200ce00: fa 20 a0 0c st %i5, [ %g2 + 0xc ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce04: 84 09 3f fe and %g4, -2, %g2
next_block->prev_size = block_size;
200ce08: f2 26 40 1d st %i1, [ %i1 + %i5 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce0c: c4 20 e0 04 st %g2, [ %g3 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200ce10: c4 06 20 3c ld [ %i0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200ce14: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200ce18: fa 26 20 08 st %i5, [ %i0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200ce1c: 80 a0 40 02 cmp %g1, %g2
200ce20: 08 bf ff e5 bleu 200cdb4 <_Heap_Free+0x138>
200ce24: c2 26 20 38 st %g1, [ %i0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200ce28: 10 bf ff e3 b 200cdb4 <_Heap_Free+0x138>
200ce2c: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200ce30: 82 12 e0 01 or %o3, 1, %g1
200ce34: c2 23 e0 04 st %g1, [ %o7 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce38: c2 00 e0 04 ld [ %g3 + 4 ], %g1
next_block->prev_size = size;
200ce3c: d6 26 40 1d st %o3, [ %i1 + %i5 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ce40: 82 08 7f fe and %g1, -2, %g1
200ce44: 10 bf ff dc b 200cdb4 <_Heap_Free+0x138>
200ce48: c2 20 e0 04 st %g1, [ %g3 + 4 ]
0200d364 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
200d364: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
200d368: fa 06 20 20 ld [ %i0 + 0x20 ], %i5
Heap_Block *const end = the_heap->last_block;
200d36c: f8 06 20 24 ld [ %i0 + 0x24 ], %i4
memset(the_info, 0, sizeof(*the_info));
200d370: 92 10 20 00 clr %o1
200d374: 90 10 00 19 mov %i1, %o0
200d378: 40 00 09 1d call 200f7ec <memset>
200d37c: 94 10 20 18 mov 0x18, %o2
while ( the_block != end ) {
200d380: 80 a7 40 1c cmp %i5, %i4
200d384: 02 80 00 17 be 200d3e0 <_Heap_Get_information+0x7c> <== NEVER TAKEN
200d388: 01 00 00 00 nop
200d38c: c6 07 60 04 ld [ %i5 + 4 ], %g3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d390: 84 08 ff fe and %g3, -2, %g2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d394: ba 07 40 02 add %i5, %g2, %i5
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
200d398: c6 07 60 04 ld [ %i5 + 4 ], %g3
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
200d39c: 80 88 e0 01 btst 1, %g3
200d3a0: 02 80 00 03 be 200d3ac <_Heap_Get_information+0x48>
200d3a4: 82 10 00 19 mov %i1, %g1
info = &the_info->Used;
200d3a8: 82 06 60 0c add %i1, 0xc, %g1
else
info = &the_info->Free;
info->number++;
200d3ac: de 00 40 00 ld [ %g1 ], %o7
info->total += the_size;
200d3b0: f0 00 60 08 ld [ %g1 + 8 ], %i0
if ( info->largest < the_size )
200d3b4: c8 00 60 04 ld [ %g1 + 4 ], %g4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d3b8: 9e 03 e0 01 inc %o7
info->total += the_size;
200d3bc: b0 06 00 02 add %i0, %g2, %i0
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d3c0: de 20 40 00 st %o7, [ %g1 ]
info->total += the_size;
if ( info->largest < the_size )
200d3c4: 80 a1 00 02 cmp %g4, %g2
200d3c8: 1a 80 00 03 bcc 200d3d4 <_Heap_Get_information+0x70>
200d3cc: f0 20 60 08 st %i0, [ %g1 + 8 ]
info->largest = the_size;
200d3d0: c4 20 60 04 st %g2, [ %g1 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
200d3d4: 80 a7 00 1d cmp %i4, %i5
200d3d8: 12 bf ff ef bne 200d394 <_Heap_Get_information+0x30>
200d3dc: 84 08 ff fe and %g3, -2, %g2
200d3e0: 81 c7 e0 08 ret
200d3e4: 81 e8 00 00 restore
0201965c <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
201965c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2019660: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
2019664: 7f ff f9 38 call 2017b44 <.urem>
2019668: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
201966c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2019670: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
2019674: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2019678: 80 a0 80 01 cmp %g2, %g1
201967c: 0a 80 00 16 bcs 20196d4 <_Heap_Size_of_alloc_area+0x78>
2019680: 86 10 20 00 clr %g3
2019684: c8 06 20 24 ld [ %i0 + 0x24 ], %g4
2019688: 80 a0 80 04 cmp %g2, %g4
201968c: 18 80 00 13 bgu 20196d8 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
2019690: b0 08 e0 01 and %g3, 1, %i0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2019694: f0 00 a0 04 ld [ %g2 + 4 ], %i0
2019698: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
201969c: 84 06 00 02 add %i0, %g2, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20196a0: 80 a0 40 02 cmp %g1, %g2
20196a4: 18 80 00 0d bgu 20196d8 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
20196a8: b0 08 e0 01 and %g3, 1, %i0
20196ac: 80 a1 00 02 cmp %g4, %g2
20196b0: 0a 80 00 0a bcs 20196d8 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
20196b4: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20196b8: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
20196bc: 80 88 60 01 btst 1, %g1
20196c0: 02 80 00 06 be 20196d8 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN
20196c4: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
20196c8: 86 10 20 01 mov 1, %g3
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
20196cc: 84 00 a0 04 add %g2, 4, %g2
20196d0: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
20196d4: b0 08 e0 01 and %g3, 1, %i0
20196d8: 81 c7 e0 08 ret
20196dc: 81 e8 00 00 restore
020086d4 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20086d4: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20086d8: 3b 00 80 21 sethi %hi(0x2008400), %i5
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
20086dc: e0 06 20 10 ld [ %i0 + 0x10 ], %l0
uintptr_t const min_block_size = heap->min_block_size;
20086e0: f6 06 20 14 ld [ %i0 + 0x14 ], %i3
Heap_Block *const first_block = heap->first_block;
20086e4: f8 06 20 20 ld [ %i0 + 0x20 ], %i4
Heap_Block *const last_block = heap->last_block;
20086e8: e2 06 20 24 ld [ %i0 + 0x24 ], %l1
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20086ec: 80 a6 a0 00 cmp %i2, 0
20086f0: 02 80 00 04 be 2008700 <_Heap_Walk+0x2c>
20086f4: ba 17 62 68 or %i5, 0x268, %i5
20086f8: 3b 00 80 21 sethi %hi(0x2008400), %i5
20086fc: ba 17 62 70 or %i5, 0x270, %i5 ! 2008670 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2008700: 03 00 80 60 sethi %hi(0x2018000), %g1
2008704: c4 00 63 54 ld [ %g1 + 0x354 ], %g2 ! 2018354 <_System_state_Current>
2008708: 80 a0 a0 03 cmp %g2, 3
200870c: 02 80 00 05 be 2008720 <_Heap_Walk+0x4c>
2008710: 82 10 20 01 mov 1, %g1
block = next_block;
} while ( block != first_block );
return true;
}
2008714: b0 08 60 01 and %g1, 1, %i0
2008718: 81 c7 e0 08 ret
200871c: 81 e8 00 00 restore
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2008720: da 06 20 18 ld [ %i0 + 0x18 ], %o5
2008724: c6 06 20 1c ld [ %i0 + 0x1c ], %g3
2008728: c4 06 20 08 ld [ %i0 + 8 ], %g2
200872c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2008730: 90 10 00 19 mov %i1, %o0
2008734: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008738: f8 23 a0 60 st %i4, [ %sp + 0x60 ]
200873c: e2 23 a0 64 st %l1, [ %sp + 0x64 ]
2008740: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2008744: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2008748: 92 10 20 00 clr %o1
200874c: 96 10 00 10 mov %l0, %o3
2008750: 15 00 80 56 sethi %hi(0x2015800), %o2
2008754: 98 10 00 1b mov %i3, %o4
2008758: 9f c7 40 00 call %i5
200875c: 94 12 a1 08 or %o2, 0x108, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2008760: 80 a4 20 00 cmp %l0, 0
2008764: 02 80 00 28 be 2008804 <_Heap_Walk+0x130>
2008768: 80 8c 20 07 btst 7, %l0
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
200876c: 12 80 00 2d bne 2008820 <_Heap_Walk+0x14c>
2008770: 90 10 00 1b mov %i3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008774: 7f ff e4 d6 call 2001acc <.urem>
2008778: 92 10 00 10 mov %l0, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
200877c: 80 a2 20 00 cmp %o0, 0
2008780: 12 80 00 30 bne 2008840 <_Heap_Walk+0x16c>
2008784: 90 07 20 08 add %i4, 8, %o0
2008788: 7f ff e4 d1 call 2001acc <.urem>
200878c: 92 10 00 10 mov %l0, %o1
);
return false;
}
if (
2008790: 80 a2 20 00 cmp %o0, 0
2008794: 32 80 00 33 bne,a 2008860 <_Heap_Walk+0x18c>
2008798: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
200879c: e8 07 20 04 ld [ %i4 + 4 ], %l4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
20087a0: 80 8d 20 01 btst 1, %l4
20087a4: 22 80 00 36 be,a 200887c <_Heap_Walk+0x1a8>
20087a8: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20087ac: c2 04 60 04 ld [ %l1 + 4 ], %g1
20087b0: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20087b4: 82 04 40 01 add %l1, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20087b8: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20087bc: 80 88 a0 01 btst 1, %g2
20087c0: 02 80 00 0a be 20087e8 <_Heap_Walk+0x114>
20087c4: 80 a7 00 01 cmp %i4, %g1
);
return false;
}
if (
20087c8: 02 80 00 33 be 2008894 <_Heap_Walk+0x1c0>
20087cc: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20087d0: 92 10 20 01 mov 1, %o1
20087d4: 15 00 80 56 sethi %hi(0x2015800), %o2
20087d8: 9f c7 40 00 call %i5
20087dc: 94 12 a2 80 or %o2, 0x280, %o2 ! 2015a80 <_Status_Object_name_errors_to_status+0x1f0>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20087e0: 10 bf ff cd b 2008714 <_Heap_Walk+0x40>
20087e4: 82 10 20 00 clr %g1
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
20087e8: 90 10 00 19 mov %i1, %o0
20087ec: 92 10 20 01 mov 1, %o1
20087f0: 15 00 80 56 sethi %hi(0x2015800), %o2
20087f4: 9f c7 40 00 call %i5
20087f8: 94 12 a2 68 or %o2, 0x268, %o2 ! 2015a68 <_Status_Object_name_errors_to_status+0x1d8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20087fc: 10 bf ff c6 b 2008714 <_Heap_Walk+0x40>
2008800: 82 10 20 00 clr %g1
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008804: 90 10 00 19 mov %i1, %o0
2008808: 92 10 20 01 mov 1, %o1
200880c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008810: 9f c7 40 00 call %i5
2008814: 94 12 a1 a0 or %o2, 0x1a0, %o2 ! 20159a0 <_Status_Object_name_errors_to_status+0x110>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008818: 10 bf ff bf b 2008714 <_Heap_Walk+0x40>
200881c: 82 10 20 00 clr %g1
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008820: 90 10 00 19 mov %i1, %o0
2008824: 92 10 20 01 mov 1, %o1
2008828: 96 10 00 10 mov %l0, %o3
200882c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008830: 9f c7 40 00 call %i5
2008834: 94 12 a1 b8 or %o2, 0x1b8, %o2 ! 20159b8 <_Status_Object_name_errors_to_status+0x128>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008838: 10 bf ff b7 b 2008714 <_Heap_Walk+0x40>
200883c: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008840: 90 10 00 19 mov %i1, %o0
2008844: 92 10 20 01 mov 1, %o1
2008848: 96 10 00 1b mov %i3, %o3
200884c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008850: 9f c7 40 00 call %i5
2008854: 94 12 a1 d8 or %o2, 0x1d8, %o2 ! 20159d8 <_Status_Object_name_errors_to_status+0x148>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008858: 10 bf ff af b 2008714 <_Heap_Walk+0x40>
200885c: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008860: 92 10 20 01 mov 1, %o1
2008864: 96 10 00 1c mov %i4, %o3
2008868: 15 00 80 56 sethi %hi(0x2015800), %o2
200886c: 9f c7 40 00 call %i5
2008870: 94 12 a2 00 or %o2, 0x200, %o2 ! 2015a00 <_Status_Object_name_errors_to_status+0x170>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008874: 10 bf ff a8 b 2008714 <_Heap_Walk+0x40>
2008878: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
200887c: 92 10 20 01 mov 1, %o1
2008880: 15 00 80 56 sethi %hi(0x2015800), %o2
2008884: 9f c7 40 00 call %i5
2008888: 94 12 a2 38 or %o2, 0x238, %o2 ! 2015a38 <_Status_Object_name_errors_to_status+0x1a8>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200888c: 10 bf ff a2 b 2008714 <_Heap_Walk+0x40>
2008890: 82 10 20 00 clr %g1
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2008894: f4 06 20 08 ld [ %i0 + 8 ], %i2
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
2008898: ea 06 20 10 ld [ %i0 + 0x10 ], %l5
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
200889c: 80 a6 00 1a cmp %i0, %i2
20088a0: 02 80 00 0d be 20088d4 <_Heap_Walk+0x200>
20088a4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20088a8: 80 a0 40 1a cmp %g1, %i2
20088ac: 28 80 00 bc bleu,a 2008b9c <_Heap_Walk+0x4c8> <== ALWAYS TAKEN
20088b0: e6 06 20 24 ld [ %i0 + 0x24 ], %l3
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
20088b4: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
20088b8: 92 10 20 01 mov 1, %o1
20088bc: 96 10 00 1a mov %i2, %o3
20088c0: 15 00 80 56 sethi %hi(0x2015800), %o2
20088c4: 9f c7 40 00 call %i5
20088c8: 94 12 a2 b0 or %o2, 0x2b0, %o2 ! 2015ab0 <_Status_Object_name_errors_to_status+0x220>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20088cc: 10 bf ff 92 b 2008714 <_Heap_Walk+0x40>
20088d0: 82 10 20 00 clr %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20088d4: 2d 00 80 57 sethi %hi(0x2015c00), %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20088d8: 2f 00 80 57 sethi %hi(0x2015c00), %l7
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
20088dc: a4 10 00 1c mov %i4, %l2
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20088e0: ac 15 a0 e0 or %l6, 0xe0, %l6
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
20088e4: ae 15 e0 c8 or %l7, 0xc8, %l7
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
20088e8: 2b 00 80 57 sethi %hi(0x2015c00), %l5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20088ec: a6 0d 3f fe and %l4, -2, %l3
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20088f0: b4 04 c0 12 add %l3, %l2, %i2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20088f4: 80 a0 40 1a cmp %g1, %i2
20088f8: 28 80 00 0b bleu,a 2008924 <_Heap_Walk+0x250> <== ALWAYS TAKEN
20088fc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
2008900: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008904: 92 10 20 01 mov 1, %o1
2008908: 96 10 00 12 mov %l2, %o3
200890c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008910: 98 10 00 1a mov %i2, %o4
2008914: 9f c7 40 00 call %i5
2008918: 94 12 a3 58 or %o2, 0x358, %o2
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
200891c: 10 bf ff 7e b 2008714 <_Heap_Walk+0x40>
2008920: 82 10 20 00 clr %g1
2008924: 80 a0 40 1a cmp %g1, %i2
2008928: 0a bf ff f7 bcs 2008904 <_Heap_Walk+0x230>
200892c: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2008930: 82 1c 80 11 xor %l2, %l1, %g1
2008934: 80 a0 00 01 cmp %g0, %g1
2008938: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
200893c: 90 10 00 13 mov %l3, %o0
2008940: c2 27 bf fc st %g1, [ %fp + -4 ]
2008944: 7f ff e4 62 call 2001acc <.urem>
2008948: 92 10 00 10 mov %l0, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
200894c: 80 a2 20 00 cmp %o0, 0
2008950: 02 80 00 05 be 2008964 <_Heap_Walk+0x290>
2008954: c2 07 bf fc ld [ %fp + -4 ], %g1
2008958: 80 88 60 ff btst 0xff, %g1
200895c: 12 80 00 76 bne 2008b34 <_Heap_Walk+0x460>
2008960: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008964: 80 a6 c0 13 cmp %i3, %l3
2008968: 08 80 00 05 bleu 200897c <_Heap_Walk+0x2a8>
200896c: 80 a4 80 1a cmp %l2, %i2
2008970: 80 88 60 ff btst 0xff, %g1
2008974: 12 80 00 78 bne 2008b54 <_Heap_Walk+0x480> <== ALWAYS TAKEN
2008978: 80 a4 80 1a cmp %l2, %i2
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
200897c: 2a 80 00 06 bcs,a 2008994 <_Heap_Walk+0x2c0>
2008980: c2 06 a0 04 ld [ %i2 + 4 ], %g1
2008984: 80 88 60 ff btst 0xff, %g1
2008988: 12 80 00 7d bne 2008b7c <_Heap_Walk+0x4a8>
200898c: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008990: c2 06 a0 04 ld [ %i2 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2008994: 80 88 60 01 btst 1, %g1
2008998: 02 80 00 19 be 20089fc <_Heap_Walk+0x328>
200899c: a8 0d 20 01 and %l4, 1, %l4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
20089a0: 80 a5 20 00 cmp %l4, 0
20089a4: 22 80 00 0e be,a 20089dc <_Heap_Walk+0x308>
20089a8: da 04 80 00 ld [ %l2 ], %o5
(*printer)(
20089ac: 90 10 00 19 mov %i1, %o0
20089b0: 92 10 20 00 clr %o1
20089b4: 94 10 00 17 mov %l7, %o2
20089b8: 96 10 00 12 mov %l2, %o3
20089bc: 9f c7 40 00 call %i5
20089c0: 98 10 00 13 mov %l3, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20089c4: 80 a7 00 1a cmp %i4, %i2
20089c8: 02 80 00 42 be 2008ad0 <_Heap_Walk+0x3fc>
20089cc: a4 10 00 1a mov %i2, %l2
20089d0: e8 06 a0 04 ld [ %i2 + 4 ], %l4
20089d4: 10 bf ff c6 b 20088ec <_Heap_Walk+0x218>
20089d8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
20089dc: 96 10 00 12 mov %l2, %o3
20089e0: 90 10 00 19 mov %i1, %o0
20089e4: 92 10 20 00 clr %o1
20089e8: 94 10 00 16 mov %l6, %o2
20089ec: 9f c7 40 00 call %i5
20089f0: 98 10 00 13 mov %l3, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
20089f4: 10 bf ff f5 b 20089c8 <_Heap_Walk+0x2f4>
20089f8: 80 a7 00 1a cmp %i4, %i2
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
20089fc: da 04 a0 0c ld [ %l2 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008a00: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008a04: 05 00 80 56 sethi %hi(0x2015800), %g2
return _Heap_Free_list_head(heap)->next;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap )
{
return _Heap_Free_list_tail(heap)->prev;
2008a08: c8 06 20 0c ld [ %i0 + 0xc ], %g4
2008a0c: 80 a0 40 0d cmp %g1, %o5
2008a10: 02 80 00 05 be 2008a24 <_Heap_Walk+0x350>
2008a14: 86 10 a0 c8 or %g2, 0xc8, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008a18: 80 a6 00 0d cmp %i0, %o5
2008a1c: 02 80 00 3c be 2008b0c <_Heap_Walk+0x438>
2008a20: 86 15 60 90 or %l5, 0x90, %g3
block->next,
block->next == last_free_block ?
2008a24: c2 04 a0 08 ld [ %l2 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008a28: 1f 00 80 56 sethi %hi(0x2015800), %o7
2008a2c: 80 a1 00 01 cmp %g4, %g1
2008a30: 02 80 00 05 be 2008a44 <_Heap_Walk+0x370>
2008a34: 84 13 e0 e8 or %o7, 0xe8, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008a38: 80 a6 00 01 cmp %i0, %g1
2008a3c: 02 80 00 31 be 2008b00 <_Heap_Walk+0x42c>
2008a40: 84 15 60 90 or %l5, 0x90, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008a44: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008a48: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
2008a4c: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
2008a50: 90 10 00 19 mov %i1, %o0
2008a54: 92 10 20 00 clr %o1
2008a58: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008a5c: 96 10 00 12 mov %l2, %o3
2008a60: 94 12 a0 20 or %o2, 0x20, %o2
2008a64: 9f c7 40 00 call %i5
2008a68: 98 10 00 13 mov %l3, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008a6c: da 06 80 00 ld [ %i2 ], %o5
2008a70: 80 a4 c0 0d cmp %l3, %o5
2008a74: 12 80 00 19 bne 2008ad8 <_Heap_Walk+0x404>
2008a78: 80 a5 20 00 cmp %l4, 0
);
return false;
}
if ( !prev_used ) {
2008a7c: 02 80 00 27 be 2008b18 <_Heap_Walk+0x444>
2008a80: 90 10 00 19 mov %i1, %o0
return &heap->free_list;
}
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap )
{
return _Heap_Free_list_head(heap)->next;
2008a84: c2 06 20 08 ld [ %i0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008a88: 80 a6 00 01 cmp %i0, %g1
2008a8c: 02 80 00 0b be 2008ab8 <_Heap_Walk+0x3e4> <== NEVER TAKEN
2008a90: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
2008a94: 80 a4 80 01 cmp %l2, %g1
2008a98: 02 bf ff cc be 20089c8 <_Heap_Walk+0x2f4>
2008a9c: 80 a7 00 1a cmp %i4, %i2
return true;
}
free_block = free_block->next;
2008aa0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008aa4: 80 a6 00 01 cmp %i0, %g1
2008aa8: 12 bf ff fc bne 2008a98 <_Heap_Walk+0x3c4>
2008aac: 80 a4 80 01 cmp %l2, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008ab0: 90 10 00 19 mov %i1, %o0
2008ab4: 92 10 20 01 mov 1, %o1
2008ab8: 96 10 00 12 mov %l2, %o3
2008abc: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008ac0: 9f c7 40 00 call %i5
2008ac4: 94 12 a1 08 or %o2, 0x108, %o2 ! 2015d08 <_Status_Object_name_errors_to_status+0x478>
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008ac8: 10 bf ff 13 b 2008714 <_Heap_Walk+0x40>
2008acc: 82 10 20 00 clr %g1
}
block = next_block;
} while ( block != first_block );
return true;
2008ad0: 10 bf ff 11 b 2008714 <_Heap_Walk+0x40>
2008ad4: 82 10 20 01 mov 1, %g1
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
2008ad8: f4 23 a0 5c st %i2, [ %sp + 0x5c ]
2008adc: 90 10 00 19 mov %i1, %o0
2008ae0: 92 10 20 01 mov 1, %o1
2008ae4: 96 10 00 12 mov %l2, %o3
2008ae8: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008aec: 98 10 00 13 mov %l3, %o4
2008af0: 9f c7 40 00 call %i5
2008af4: 94 12 a0 58 or %o2, 0x58, %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008af8: 10 bf ff 07 b 2008714 <_Heap_Walk+0x40>
2008afc: 82 10 20 00 clr %g1
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008b00: 05 00 80 56 sethi %hi(0x2015800), %g2
2008b04: 10 bf ff d0 b 2008a44 <_Heap_Walk+0x370>
2008b08: 84 10 a0 f8 or %g2, 0xf8, %g2 ! 20158f8 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008b0c: 07 00 80 56 sethi %hi(0x2015800), %g3
2008b10: 10 bf ff c5 b 2008a24 <_Heap_Walk+0x350>
2008b14: 86 10 e0 d8 or %g3, 0xd8, %g3 ! 20158d8 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
2008b18: 92 10 20 01 mov 1, %o1
2008b1c: 96 10 00 12 mov %l2, %o3
2008b20: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008b24: 9f c7 40 00 call %i5
2008b28: 94 12 a0 98 or %o2, 0x98, %o2 ! 2015c98 <_Status_Object_name_errors_to_status+0x408>
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008b2c: 10 bf fe fa b 2008714 <_Heap_Walk+0x40>
2008b30: 82 10 20 00 clr %g1
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
2008b34: 92 10 20 01 mov 1, %o1
2008b38: 96 10 00 12 mov %l2, %o3
2008b3c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008b40: 98 10 00 13 mov %l3, %o4
2008b44: 9f c7 40 00 call %i5
2008b48: 94 12 a3 88 or %o2, 0x388, %o2
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
2008b4c: 10 bf fe f2 b 2008714 <_Heap_Walk+0x40>
2008b50: 82 10 20 00 clr %g1
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
2008b54: 90 10 00 19 mov %i1, %o0
2008b58: 92 10 20 01 mov 1, %o1
2008b5c: 96 10 00 12 mov %l2, %o3
2008b60: 15 00 80 56 sethi %hi(0x2015800), %o2
2008b64: 98 10 00 13 mov %l3, %o4
2008b68: 94 12 a3 b8 or %o2, 0x3b8, %o2
2008b6c: 9f c7 40 00 call %i5
2008b70: 9a 10 00 1b mov %i3, %o5
block,
block_size,
min_block_size
);
return false;
2008b74: 10 bf fe e8 b 2008714 <_Heap_Walk+0x40>
2008b78: 82 10 20 00 clr %g1
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
2008b7c: 92 10 20 01 mov 1, %o1
2008b80: 96 10 00 12 mov %l2, %o3
2008b84: 15 00 80 56 sethi %hi(0x2015800), %o2
2008b88: 98 10 00 1a mov %i2, %o4
2008b8c: 9f c7 40 00 call %i5
2008b90: 94 12 a3 e8 or %o2, 0x3e8, %o2
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2008b94: 10 bf fe e0 b 2008714 <_Heap_Walk+0x40>
2008b98: 82 10 20 00 clr %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008b9c: 80 a6 80 13 cmp %i2, %l3
2008ba0: 18 bf ff 46 bgu 20088b8 <_Heap_Walk+0x1e4> <== NEVER TAKEN
2008ba4: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008ba8: c2 27 bf fc st %g1, [ %fp + -4 ]
2008bac: 90 06 a0 08 add %i2, 8, %o0
2008bb0: 7f ff e3 c7 call 2001acc <.urem>
2008bb4: 92 10 00 15 mov %l5, %o1
);
return false;
}
if (
2008bb8: 80 a2 20 00 cmp %o0, 0
2008bbc: 12 80 00 36 bne 2008c94 <_Heap_Walk+0x5c0> <== NEVER TAKEN
2008bc0: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008bc4: c4 06 a0 04 ld [ %i2 + 4 ], %g2
2008bc8: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008bcc: 84 06 80 02 add %i2, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008bd0: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008bd4: 80 88 a0 01 btst 1, %g2
2008bd8: 12 80 00 27 bne 2008c74 <_Heap_Walk+0x5a0> <== NEVER TAKEN
2008bdc: 84 10 00 18 mov %i0, %g2
2008be0: 10 80 00 19 b 2008c44 <_Heap_Walk+0x570>
2008be4: a4 10 00 1a mov %i2, %l2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008be8: 80 a6 00 1a cmp %i0, %i2
2008bec: 02 bf ff 3a be 20088d4 <_Heap_Walk+0x200>
2008bf0: 80 a6 80 01 cmp %i2, %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008bf4: 0a bf ff 31 bcs 20088b8 <_Heap_Walk+0x1e4>
2008bf8: 90 10 00 19 mov %i1, %o0
2008bfc: 80 a6 80 13 cmp %i2, %l3
2008c00: 18 bf ff 2f bgu 20088bc <_Heap_Walk+0x1e8> <== NEVER TAKEN
2008c04: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008c08: c2 27 bf fc st %g1, [ %fp + -4 ]
2008c0c: 90 06 a0 08 add %i2, 8, %o0
2008c10: 7f ff e3 af call 2001acc <.urem>
2008c14: 92 10 00 15 mov %l5, %o1
);
return false;
}
if (
2008c18: 80 a2 20 00 cmp %o0, 0
2008c1c: 12 80 00 1e bne 2008c94 <_Heap_Walk+0x5c0>
2008c20: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008c24: c6 06 a0 04 ld [ %i2 + 4 ], %g3
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c28: 84 10 00 12 mov %l2, %g2
2008c2c: 86 08 ff fe and %g3, -2, %g3
block = next_block;
} while ( block != first_block );
return true;
}
2008c30: 86 06 80 03 add %i2, %g3, %g3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008c34: c6 00 e0 04 ld [ %g3 + 4 ], %g3
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c38: 80 88 e0 01 btst 1, %g3
2008c3c: 12 80 00 0e bne 2008c74 <_Heap_Walk+0x5a0>
2008c40: a4 10 00 1a mov %i2, %l2
);
return false;
}
if ( free_block->prev != prev_block ) {
2008c44: d8 06 a0 0c ld [ %i2 + 0xc ], %o4
2008c48: 80 a3 00 02 cmp %o4, %g2
2008c4c: 22 bf ff e7 be,a 2008be8 <_Heap_Walk+0x514>
2008c50: f4 06 a0 08 ld [ %i2 + 8 ], %i2
(*printer)(
2008c54: 90 10 00 19 mov %i1, %o0
2008c58: 92 10 20 01 mov 1, %o1
2008c5c: 96 10 00 1a mov %i2, %o3
2008c60: 15 00 80 56 sethi %hi(0x2015800), %o2
2008c64: 9f c7 40 00 call %i5
2008c68: 94 12 a3 20 or %o2, 0x320, %o2 ! 2015b20 <_Status_Object_name_errors_to_status+0x290>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c6c: 10 bf fe aa b 2008714 <_Heap_Walk+0x40>
2008c70: 82 10 20 00 clr %g1
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008c74: 90 10 00 19 mov %i1, %o0
2008c78: 92 10 20 01 mov 1, %o1
2008c7c: 96 10 00 1a mov %i2, %o3
2008c80: 15 00 80 56 sethi %hi(0x2015800), %o2
2008c84: 9f c7 40 00 call %i5
2008c88: 94 12 a3 00 or %o2, 0x300, %o2 ! 2015b00 <_Status_Object_name_errors_to_status+0x270>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c8c: 10 bf fe a2 b 2008714 <_Heap_Walk+0x40>
2008c90: 82 10 20 00 clr %g1
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008c94: 90 10 00 19 mov %i1, %o0
2008c98: 92 10 20 01 mov 1, %o1
2008c9c: 96 10 00 1a mov %i2, %o3
2008ca0: 15 00 80 56 sethi %hi(0x2015800), %o2
2008ca4: 9f c7 40 00 call %i5
2008ca8: 94 12 a2 d0 or %o2, 0x2d0, %o2 ! 2015ad0 <_Status_Object_name_errors_to_status+0x240>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008cac: 10 bf fe 9a b 2008714 <_Heap_Walk+0x40>
2008cb0: 82 10 20 00 clr %g1
02007138 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
2007138: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
200713c: 39 00 80 71 sethi %hi(0x201c400), %i4
2007140: c2 07 21 c4 ld [ %i4 + 0x1c4 ], %g1 ! 201c5c4 <_IO_Number_of_drivers>
2007144: 80 a0 60 00 cmp %g1, 0
2007148: 02 80 00 0c be 2007178 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
200714c: ba 10 20 00 clr %i5
2007150: b8 17 21 c4 or %i4, 0x1c4, %i4
(void) rtems_io_initialize( major, 0, NULL );
2007154: 90 10 00 1d mov %i5, %o0
2007158: 92 10 20 00 clr %o1
200715c: 40 00 15 9b call 200c7c8 <rtems_io_initialize>
2007160: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2007164: c2 07 00 00 ld [ %i4 ], %g1
2007168: ba 07 60 01 inc %i5
200716c: 80 a0 40 1d cmp %g1, %i5
2007170: 18 bf ff fa bgu 2007158 <_IO_Initialize_all_drivers+0x20>
2007174: 90 10 00 1d mov %i5, %o0
2007178: 81 c7 e0 08 ret
200717c: 81 e8 00 00 restore
0200706c <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
200706c: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
2007070: 03 00 80 6d sethi %hi(0x201b400), %g1
2007074: 82 10 62 1c or %g1, 0x21c, %g1 ! 201b61c <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
2007078: f8 00 60 30 ld [ %g1 + 0x30 ], %i4
number_of_drivers = Configuration.maximum_drivers;
200707c: f2 00 60 2c ld [ %g1 + 0x2c ], %i1
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2007080: 80 a7 00 19 cmp %i4, %i1
2007084: 0a 80 00 08 bcs 20070a4 <_IO_Manager_initialization+0x38>
2007088: fa 00 60 34 ld [ %g1 + 0x34 ], %i5
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
200708c: 03 00 80 71 sethi %hi(0x201c400), %g1
2007090: fa 20 61 c8 st %i5, [ %g1 + 0x1c8 ] ! 201c5c8 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
2007094: 03 00 80 71 sethi %hi(0x201c400), %g1
2007098: f8 20 61 c4 st %i4, [ %g1 + 0x1c4 ] ! 201c5c4 <_IO_Number_of_drivers>
return;
200709c: 81 c7 e0 08 ret
20070a0: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
20070a4: 83 2e 60 03 sll %i1, 3, %g1
20070a8: b5 2e 60 05 sll %i1, 5, %i2
20070ac: b4 26 80 01 sub %i2, %g1, %i2
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
20070b0: 40 00 0d 1a call 200a518 <_Workspace_Allocate_or_fatal_error>
20070b4: 90 10 00 1a mov %i2, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
20070b8: 03 00 80 71 sethi %hi(0x201c400), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
20070bc: 37 00 80 71 sethi %hi(0x201c400), %i3
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
20070c0: f2 20 61 c4 st %i1, [ %g1 + 0x1c4 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
20070c4: d0 26 e1 c8 st %o0, [ %i3 + 0x1c8 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
20070c8: 92 10 20 00 clr %o1
20070cc: 40 00 21 10 call 200f50c <memset>
20070d0: 94 10 00 1a mov %i2, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
20070d4: 80 a7 20 00 cmp %i4, 0
20070d8: 02 bf ff f1 be 200709c <_IO_Manager_initialization+0x30> <== NEVER TAKEN
20070dc: f6 06 e1 c8 ld [ %i3 + 0x1c8 ], %i3
20070e0: 82 10 20 00 clr %g1
20070e4: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
20070e8: c4 07 40 01 ld [ %i5 + %g1 ], %g2
20070ec: 86 07 40 01 add %i5, %g1, %g3
20070f0: c4 26 c0 01 st %g2, [ %i3 + %g1 ]
20070f4: f4 00 e0 04 ld [ %g3 + 4 ], %i2
20070f8: 84 06 c0 01 add %i3, %g1, %g2
20070fc: f4 20 a0 04 st %i2, [ %g2 + 4 ]
2007100: f4 00 e0 08 ld [ %g3 + 8 ], %i2
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2007104: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
2007108: f4 20 a0 08 st %i2, [ %g2 + 8 ]
200710c: f4 00 e0 0c ld [ %g3 + 0xc ], %i2
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2007110: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
2007114: f4 20 a0 0c st %i2, [ %g2 + 0xc ]
2007118: f4 00 e0 10 ld [ %g3 + 0x10 ], %i2
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
200711c: 80 a1 00 1c cmp %g4, %i4
_IO_Driver_address_table[index] = driver_table[index];
2007120: f4 20 a0 10 st %i2, [ %g2 + 0x10 ]
2007124: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2007128: 12 bf ff f0 bne 20070e8 <_IO_Manager_initialization+0x7c>
200712c: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
2007130: 81 c7 e0 08 ret
2007134: 81 e8 00 00 restore
02007e34 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007e34: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007e38: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007e3c: ba 10 00 18 mov %i0, %i5
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007e40: 80 a0 60 00 cmp %g1, 0
2007e44: 02 80 00 19 be 2007ea8 <_Objects_Allocate+0x74> <== NEVER TAKEN
2007e48: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007e4c: b8 07 60 20 add %i5, 0x20, %i4
2007e50: 7f ff fd 63 call 20073dc <_Chain_Get>
2007e54: 90 10 00 1c mov %i4, %o0
if ( information->auto_extend ) {
2007e58: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1
2007e5c: 80 a0 60 00 cmp %g1, 0
2007e60: 02 80 00 12 be 2007ea8 <_Objects_Allocate+0x74>
2007e64: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007e68: 80 a2 20 00 cmp %o0, 0
2007e6c: 02 80 00 11 be 2007eb0 <_Objects_Allocate+0x7c>
2007e70: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2007e74: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
2007e78: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007e7c: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1
2007e80: 40 00 3e 85 call 2017894 <.udiv>
2007e84: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007e88: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2007e8c: 91 2a 20 02 sll %o0, 2, %o0
2007e90: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
2007e94: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
2007e98: 86 00 ff ff add %g3, -1, %g3
2007e9c: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
2007ea0: 82 00 bf ff add %g2, -1, %g1
2007ea4: c2 37 60 2c sth %g1, [ %i5 + 0x2c ]
);
}
#endif
return the_object;
}
2007ea8: 81 c7 e0 08 ret
2007eac: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
2007eb0: 40 00 00 10 call 2007ef0 <_Objects_Extend_information>
2007eb4: 90 10 00 1d mov %i5, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007eb8: 7f ff fd 49 call 20073dc <_Chain_Get>
2007ebc: 90 10 00 1c mov %i4, %o0
}
if ( the_object ) {
2007ec0: b0 92 20 00 orcc %o0, 0, %i0
2007ec4: 32 bf ff ed bne,a 2007e78 <_Objects_Allocate+0x44>
2007ec8: c2 17 60 0a lduh [ %i5 + 0xa ], %g1
);
}
#endif
return the_object;
}
2007ecc: 81 c7 e0 08 ret
2007ed0: 81 e8 00 00 restore
02007ef0 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
2007ef0: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007ef4: e0 06 20 34 ld [ %i0 + 0x34 ], %l0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007ef8: f8 16 20 0a lduh [ %i0 + 0xa ], %i4
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007efc: 80 a4 20 00 cmp %l0, 0
2007f00: 02 80 00 a6 be 2008198 <_Objects_Extend_information+0x2a8>
2007f04: f2 16 20 10 lduh [ %i0 + 0x10 ], %i1
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2007f08: f4 16 20 14 lduh [ %i0 + 0x14 ], %i2
2007f0c: b3 2e 60 10 sll %i1, 0x10, %i1
2007f10: 92 10 00 1a mov %i2, %o1
2007f14: 40 00 3e 60 call 2017894 <.udiv>
2007f18: 91 36 60 10 srl %i1, 0x10, %o0
2007f1c: a7 2a 20 10 sll %o0, 0x10, %l3
2007f20: a7 34 e0 10 srl %l3, 0x10, %l3
for ( ; block < block_count; block++ ) {
2007f24: 80 a4 e0 00 cmp %l3, 0
2007f28: 02 80 00 a3 be 20081b4 <_Objects_Extend_information+0x2c4><== NEVER TAKEN
2007f2c: 90 10 00 1a mov %i2, %o0
if ( information->object_blocks[ block ] == NULL ) {
2007f30: c2 04 00 00 ld [ %l0 ], %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007f34: ba 10 00 1c mov %i4, %i5
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007f38: 80 a0 60 00 cmp %g1, 0
2007f3c: 12 80 00 08 bne 2007f5c <_Objects_Extend_information+0x6c><== ALWAYS TAKEN
2007f40: b6 10 20 00 clr %i3
do_extend = false;
2007f44: 10 80 00 a0 b 20081c4 <_Objects_Extend_information+0x2d4> <== NOT EXECUTED
2007f48: b4 10 20 00 clr %i2 <== NOT EXECUTED
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007f4c: c2 04 00 01 ld [ %l0 + %g1 ], %g1
2007f50: 80 a0 60 00 cmp %g1, 0
2007f54: 22 80 00 08 be,a 2007f74 <_Objects_Extend_information+0x84>
2007f58: b4 10 20 00 clr %i2
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007f5c: b6 06 e0 01 inc %i3
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
2007f60: ba 07 40 1a add %i5, %i2, %i5
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007f64: 80 a4 c0 1b cmp %l3, %i3
2007f68: 18 bf ff f9 bgu 2007f4c <_Objects_Extend_information+0x5c>
2007f6c: 83 2e e0 02 sll %i3, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007f70: b4 10 20 01 mov 1, %i2
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007f74: b3 36 60 10 srl %i1, 0x10, %i1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007f78: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007f7c: b2 06 40 08 add %i1, %o0, %i1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007f80: 82 10 63 ff or %g1, 0x3ff, %g1
2007f84: 80 a6 40 01 cmp %i1, %g1
2007f88: 18 80 00 93 bgu 20081d4 <_Objects_Extend_information+0x2e4>
2007f8c: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
2007f90: 40 00 3e 07 call 20177ac <.umul>
2007f94: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
2007f98: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
2007f9c: 80 a0 60 00 cmp %g1, 0
2007fa0: 02 80 00 6a be 2008148 <_Objects_Extend_information+0x258>
2007fa4: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
2007fa8: 40 00 09 4e call 200a4e0 <_Workspace_Allocate>
2007fac: 01 00 00 00 nop
if ( !new_object_block )
2007fb0: a0 92 20 00 orcc %o0, 0, %l0
2007fb4: 02 80 00 88 be 20081d4 <_Objects_Extend_information+0x2e4>
2007fb8: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
2007fbc: 80 8e a0 ff btst 0xff, %i2
2007fc0: 22 80 00 3f be,a 20080bc <_Objects_Extend_information+0x1cc>
2007fc4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
2007fc8: b4 04 e0 01 add %l3, 1, %i2
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007fcc: 91 2e a0 01 sll %i2, 1, %o0
2007fd0: 90 02 00 1a add %o0, %i2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
2007fd4: 90 06 40 08 add %i1, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007fd8: 90 02 00 1c add %o0, %i4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
2007fdc: 40 00 09 41 call 200a4e0 <_Workspace_Allocate>
2007fe0: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
2007fe4: a2 92 20 00 orcc %o0, 0, %l1
2007fe8: 02 80 00 79 be 20081cc <_Objects_Extend_information+0x2dc>
2007fec: b5 2e a0 02 sll %i2, 2, %i2
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
2007ff0: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2007ff4: 80 a7 00 01 cmp %i4, %g1
2007ff8: a4 04 40 1a add %l1, %i2, %l2
2007ffc: 0a 80 00 57 bcs 2008158 <_Objects_Extend_information+0x268>
2008000: b4 04 80 1a add %l2, %i2, %i2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2008004: 80 a7 20 00 cmp %i4, 0
2008008: 02 80 00 07 be 2008024 <_Objects_Extend_information+0x134><== NEVER TAKEN
200800c: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2008010: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2008014: 82 00 60 01 inc %g1
2008018: 80 a7 00 01 cmp %i4, %g1
200801c: 18 bf ff fd bgu 2008010 <_Objects_Extend_information+0x120><== NEVER TAKEN
2008020: c0 20 80 1a clr [ %g2 + %i2 ]
2008024: a7 2c e0 02 sll %l3, 2, %l3
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2008028: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
200802c: c0 24 40 13 clr [ %l1 + %l3 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2008030: 86 07 40 03 add %i5, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2008034: 80 a7 40 03 cmp %i5, %g3
2008038: 1a 80 00 0a bcc 2008060 <_Objects_Extend_information+0x170><== NEVER TAKEN
200803c: c0 24 80 13 clr [ %l2 + %l3 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2008040: 83 2f 60 02 sll %i5, 2, %g1
2008044: 84 10 00 1d mov %i5, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2008048: 82 06 80 01 add %i2, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
200804c: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
2008050: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2008054: 80 a0 c0 02 cmp %g3, %g2
2008058: 18 bf ff fd bgu 200804c <_Objects_Extend_information+0x15c>
200805c: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
2008060: 7f ff e8 61 call 20021e4 <sparc_disable_interrupts>
2008064: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2008068: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
200806c: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
2008070: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2008074: f2 36 20 10 sth %i1, [ %i0 + 0x10 ]
2008078: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
200807c: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
2008080: e2 26 20 34 st %l1, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
2008084: e4 26 20 30 st %l2, [ %i0 + 0x30 ]
information->local_table = local_table;
2008088: f4 26 20 1c st %i2, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
200808c: b3 2e 60 10 sll %i1, 0x10, %i1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2008090: 03 00 00 40 sethi %hi(0x10000), %g1
2008094: b3 36 60 10 srl %i1, 0x10, %i1
2008098: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
200809c: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20080a0: 82 10 40 19 or %g1, %i1, %g1
20080a4: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
20080a8: 7f ff e8 53 call 20021f4 <sparc_enable_interrupts>
20080ac: 01 00 00 00 nop
_Workspace_Free( old_tables );
20080b0: 40 00 09 14 call 200a500 <_Workspace_Free>
20080b4: 90 10 00 1c mov %i4, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
20080b8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20080bc: b7 2e e0 02 sll %i3, 2, %i3
20080c0: e0 20 40 1b st %l0, [ %g1 + %i3 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
20080c4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
20080c8: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
20080cc: d2 00 40 1b ld [ %g1 + %i3 ], %o1
20080d0: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
20080d4: 90 07 bf f4 add %fp, -12, %o0
20080d8: 40 00 11 d4 call 200c828 <_Chain_Initialize>
20080dc: 39 00 00 40 sethi %hi(0x10000), %i4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
20080e0: 10 80 00 0d b 2008114 <_Objects_Extend_information+0x224>
20080e4: b4 06 20 20 add %i0, 0x20, %i2
the_object->id = _Objects_Build_id(
20080e8: c6 16 20 04 lduh [ %i0 + 4 ], %g3
20080ec: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20080f0: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20080f4: 84 10 80 1c or %g2, %i4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20080f8: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20080fc: 84 10 80 1d or %g2, %i5, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2008100: 90 10 00 1a mov %i2, %o0
2008104: 92 10 00 01 mov %g1, %o1
index++;
2008108: ba 07 60 01 inc %i5
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
200810c: 7f ff fc a0 call 200738c <_Chain_Append>
2008110: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2008114: 7f ff fc b2 call 20073dc <_Chain_Get>
2008118: 90 07 bf f4 add %fp, -12, %o0
200811c: 82 92 20 00 orcc %o0, 0, %g1
2008120: 32 bf ff f2 bne,a 20080e8 <_Objects_Extend_information+0x1f8>
2008124: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2008128: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
200812c: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2008130: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2008134: c8 20 c0 1b st %g4, [ %g3 + %i3 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2008138: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
200813c: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2008140: 81 c7 e0 08 ret
2008144: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
2008148: 40 00 08 f4 call 200a518 <_Workspace_Allocate_or_fatal_error>
200814c: 01 00 00 00 nop
2008150: 10 bf ff 9b b 2007fbc <_Objects_Extend_information+0xcc>
2008154: a0 10 00 08 mov %o0, %l0
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2008158: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
200815c: a7 2c e0 02 sll %l3, 2, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2008160: 40 00 1c af call 200f41c <memcpy>
2008164: 94 10 00 13 mov %l3, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
2008168: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
200816c: 94 10 00 13 mov %l3, %o2
2008170: 40 00 1c ab call 200f41c <memcpy>
2008174: 90 10 00 12 mov %l2, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2008178: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
200817c: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2008180: b8 07 00 01 add %i4, %g1, %i4
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2008184: 90 10 00 1a mov %i2, %o0
2008188: 40 00 1c a5 call 200f41c <memcpy>
200818c: 95 2f 20 02 sll %i4, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2008190: 10 bf ff a7 b 200802c <_Objects_Extend_information+0x13c>
2008194: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2008198: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
200819c: ba 10 00 1c mov %i4, %i5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20081a0: b4 10 20 01 mov 1, %i2
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20081a4: b6 10 20 00 clr %i3
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
20081a8: a6 10 20 00 clr %l3
20081ac: 10 bf ff 72 b 2007f74 <_Objects_Extend_information+0x84>
20081b0: b3 2e 60 10 sll %i1, 0x10, %i1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
20081b4: ba 10 00 1c mov %i4, %i5 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
20081b8: b4 10 20 01 mov 1, %i2 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
20081bc: 10 bf ff 6e b 2007f74 <_Objects_Extend_information+0x84> <== NOT EXECUTED
20081c0: b6 10 20 00 clr %i3 <== NOT EXECUTED
20081c4: 10 bf ff 6c b 2007f74 <_Objects_Extend_information+0x84> <== NOT EXECUTED
20081c8: b6 10 20 00 clr %i3 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
20081cc: 40 00 08 cd call 200a500 <_Workspace_Free>
20081d0: 90 10 00 10 mov %l0, %o0
return;
20081d4: 81 c7 e0 08 ret
20081d8: 81 e8 00 00 restore
02008280 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2008280: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2008284: 80 a6 60 00 cmp %i1, 0
2008288: 02 80 00 17 be 20082e4 <_Objects_Get_information+0x64>
200828c: ba 10 20 00 clr %i5
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2008290: 40 00 12 ef call 200ce4c <_Objects_API_maximum_class>
2008294: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2008298: 80 a2 20 00 cmp %o0, 0
200829c: 02 80 00 12 be 20082e4 <_Objects_Get_information+0x64>
20082a0: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
20082a4: 0a 80 00 10 bcs 20082e4 <_Objects_Get_information+0x64>
20082a8: 03 00 80 70 sethi %hi(0x201c000), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
20082ac: b1 2e 20 02 sll %i0, 2, %i0
20082b0: 82 10 62 68 or %g1, 0x268, %g1
20082b4: c2 00 40 18 ld [ %g1 + %i0 ], %g1
20082b8: 80 a0 60 00 cmp %g1, 0
20082bc: 02 80 00 0a be 20082e4 <_Objects_Get_information+0x64> <== NEVER TAKEN
20082c0: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
20082c4: fa 00 40 19 ld [ %g1 + %i1 ], %i5
if ( !info )
20082c8: 80 a7 60 00 cmp %i5, 0
20082cc: 02 80 00 06 be 20082e4 <_Objects_Get_information+0x64> <== NEVER TAKEN
20082d0: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20082d4: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1
return NULL;
20082d8: 80 a0 00 01 cmp %g0, %g1
20082dc: 82 60 20 00 subx %g0, 0, %g1
20082e0: ba 0f 40 01 and %i5, %g1, %i5
#endif
return info;
}
20082e4: 81 c7 e0 08 ret
20082e8: 91 e8 00 1d restore %g0, %i5, %o0
02009adc <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
2009adc: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
2009ae0: 80 a6 60 00 cmp %i1, 0
2009ae4: 02 80 00 3c be 2009bd4 <_Objects_Get_name_as_string+0xf8>
2009ae8: 80 a6 a0 00 cmp %i2, 0
return NULL;
if ( name == NULL )
2009aec: 02 80 00 35 be 2009bc0 <_Objects_Get_name_as_string+0xe4>
2009af0: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009af4: 02 80 00 35 be 2009bc8 <_Objects_Get_name_as_string+0xec>
2009af8: 03 00 80 7c sethi %hi(0x201f000), %g1
information = _Objects_Get_information_id( tmpId );
2009afc: 7f ff ff ba call 20099e4 <_Objects_Get_information_id>
2009b00: 90 10 00 18 mov %i0, %o0
if ( !information )
2009b04: 80 a2 20 00 cmp %o0, 0
2009b08: 02 80 00 33 be 2009bd4 <_Objects_Get_name_as_string+0xf8>
2009b0c: 92 10 00 18 mov %i0, %o1
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
2009b10: 40 00 00 34 call 2009be0 <_Objects_Get>
2009b14: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
2009b18: c2 07 bf fc ld [ %fp + -4 ], %g1
2009b1c: 80 a0 60 00 cmp %g1, 0
2009b20: 32 80 00 2e bne,a 2009bd8 <_Objects_Get_name_as_string+0xfc>
2009b24: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
2009b28: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
2009b2c: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009b30: 85 30 60 18 srl %g1, 0x18, %g2
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009b34: 87 30 60 08 srl %g1, 8, %g3
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009b38: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009b3c: c6 2f bf f2 stb %g3, [ %fp + -14 ]
lname[ 3 ] = (u32_name >> 0) & 0xff;
2009b40: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009b44: c4 2f bf f0 stb %g2, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009b48: c8 2f bf f1 stb %g4, [ %fp + -15 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009b4c: 86 10 00 02 mov %g2, %g3
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009b50: b2 86 7f ff addcc %i1, -1, %i1
2009b54: 02 80 00 19 be 2009bb8 <_Objects_Get_name_as_string+0xdc> <== NEVER TAKEN
2009b58: 82 10 00 1a mov %i2, %g1
2009b5c: 80 a0 a0 00 cmp %g2, 0
2009b60: 02 80 00 16 be 2009bb8 <_Objects_Get_name_as_string+0xdc>
2009b64: 1f 00 80 78 sethi %hi(0x201e000), %o7
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
s = lname;
2009b68: 84 07 bf f0 add %fp, -16, %g2
* This method objects the name of an object and returns its name
* in the form of a C string. It attempts to be careful about
* overflowing the user's string and about returning unprintable characters.
*/
char *_Objects_Get_name_as_string(
2009b6c: b2 06 80 19 add %i2, %i1, %i1
2009b70: 10 80 00 05 b 2009b84 <_Objects_Get_name_as_string+0xa8>
2009b74: 9e 13 e0 b4 or %o7, 0xb4, %o7
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009b78: 80 a1 20 00 cmp %g4, 0
2009b7c: 02 80 00 0f be 2009bb8 <_Objects_Get_name_as_string+0xdc>
2009b80: c6 08 80 00 ldub [ %g2 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
2009b84: f0 03 c0 00 ld [ %o7 ], %i0
2009b88: 88 08 e0 ff and %g3, 0xff, %g4
2009b8c: 88 06 00 04 add %i0, %g4, %g4
2009b90: c8 49 20 01 ldsb [ %g4 + 1 ], %g4
2009b94: 80 89 20 97 btst 0x97, %g4
2009b98: 12 80 00 03 bne 2009ba4 <_Objects_Get_name_as_string+0xc8>
2009b9c: 84 00 a0 01 inc %g2
2009ba0: 86 10 20 2a mov 0x2a, %g3
2009ba4: c6 28 40 00 stb %g3, [ %g1 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009ba8: 82 00 60 01 inc %g1
2009bac: 80 a0 40 19 cmp %g1, %i1
2009bb0: 32 bf ff f2 bne,a 2009b78 <_Objects_Get_name_as_string+0x9c>
2009bb4: c8 48 80 00 ldsb [ %g2 ], %g4
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
2009bb8: 40 00 03 b1 call 200aa7c <_Thread_Enable_dispatch>
2009bbc: c0 28 40 00 clrb [ %g1 ]
return name;
}
return NULL; /* unreachable path */
}
2009bc0: 81 c7 e0 08 ret
2009bc4: 91 e8 00 1a restore %g0, %i2, %o0
return NULL;
if ( name == NULL )
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009bc8: c2 00 60 58 ld [ %g1 + 0x58 ], %g1
2009bcc: 10 bf ff cc b 2009afc <_Objects_Get_name_as_string+0x20>
2009bd0: f0 00 60 08 ld [ %g1 + 8 ], %i0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
2009bd4: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
2009bd8: 81 c7 e0 08 ret
2009bdc: 91 e8 00 1a restore %g0, %i2, %o0
02007f74 <_Objects_Get_next>:
Objects_Information *information,
Objects_Id id,
Objects_Locations *location_p,
Objects_Id *next_id_p
)
{
2007f74: 9d e3 bf a0 save %sp, -96, %sp
Objects_Control *object;
Objects_Id next_id;
if ( !information )
return NULL;
2007f78: 90 10 20 00 clr %o0
)
{
Objects_Control *object;
Objects_Id next_id;
if ( !information )
2007f7c: 80 a6 20 00 cmp %i0, 0
2007f80: 02 80 00 19 be 2007fe4 <_Objects_Get_next+0x70>
2007f84: ba 10 00 18 mov %i0, %i5
return NULL;
if ( !location_p )
2007f88: 80 a6 a0 00 cmp %i2, 0
2007f8c: 02 80 00 16 be 2007fe4 <_Objects_Get_next+0x70>
2007f90: 80 a6 e0 00 cmp %i3, 0
return NULL;
if ( !next_id_p )
2007f94: 02 80 00 14 be 2007fe4 <_Objects_Get_next+0x70>
2007f98: 83 2e 60 10 sll %i1, 0x10, %g1
return NULL;
if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX)
2007f9c: 80 a0 60 00 cmp %g1, 0
2007fa0: 22 80 00 13 be,a 2007fec <_Objects_Get_next+0x78>
2007fa4: f2 06 20 08 ld [ %i0 + 8 ], %i1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fa8: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2
2007fac: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007fb0: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fb4: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007fb8: 90 10 00 1d mov %i5, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fbc: 80 a0 80 01 cmp %g2, %g1
2007fc0: 0a 80 00 13 bcs 200800c <_Objects_Get_next+0x98>
2007fc4: 94 10 00 1a mov %i2, %o2
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007fc8: 40 00 00 18 call 2008028 <_Objects_Get>
2007fcc: b2 06 60 01 inc %i1
next_id++;
} while (*location_p != OBJECTS_LOCAL);
2007fd0: c2 06 80 00 ld [ %i2 ], %g1
2007fd4: 80 a0 60 00 cmp %g1, 0
2007fd8: 32 bf ff f5 bne,a 2007fac <_Objects_Get_next+0x38>
2007fdc: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2
*next_id_p = next_id;
2007fe0: f2 26 c0 00 st %i1, [ %i3 ]
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
}
2007fe4: 81 c7 e0 08 ret
2007fe8: 91 e8 00 08 restore %g0, %o0, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007fec: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2
2007ff0: 83 2e 60 10 sll %i1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007ff4: 92 10 00 19 mov %i1, %o1
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2007ff8: 83 30 60 10 srl %g1, 0x10, %g1
*location_p = OBJECTS_ERROR;
goto final;
}
/* try to grab one */
object = _Objects_Get(information, next_id, location_p);
2007ffc: 90 10 00 1d mov %i5, %o0
else
next_id = id;
do {
/* walked off end of list? */
if (_Objects_Get_index(next_id) > information->maximum)
2008000: 80 a0 80 01 cmp %g2, %g1
2008004: 1a bf ff f1 bcc 2007fc8 <_Objects_Get_next+0x54> <== ALWAYS TAKEN
2008008: 94 10 00 1a mov %i2, %o2
{
*location_p = OBJECTS_ERROR;
200800c: 82 10 20 01 mov 1, %g1
2008010: c2 26 80 00 st %g1, [ %i2 ]
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
return 0;
2008014: 90 10 20 00 clr %o0
*next_id_p = next_id;
return object;
final:
*next_id_p = OBJECTS_ID_FINAL;
2008018: 82 10 3f ff mov -1, %g1
200801c: c2 26 c0 00 st %g1, [ %i3 ]
return 0;
}
2008020: 81 c7 e0 08 ret
2008024: 91 e8 00 08 restore %g0, %o0, %o0
02008d28 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2008d28: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2008d2c: 80 a6 20 00 cmp %i0, 0
2008d30: 12 80 00 06 bne 2008d48 <_Objects_Id_to_name+0x20>
2008d34: 83 36 20 18 srl %i0, 0x18, %g1
2008d38: 03 00 80 76 sethi %hi(0x201d800), %g1
2008d3c: c2 00 60 98 ld [ %g1 + 0x98 ], %g1 ! 201d898 <_Per_CPU_Information+0xc>
2008d40: f0 00 60 08 ld [ %g1 + 8 ], %i0
2008d44: 83 36 20 18 srl %i0, 0x18, %g1
2008d48: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2008d4c: 84 00 7f ff add %g1, -1, %g2
2008d50: 80 a0 a0 02 cmp %g2, 2
2008d54: 18 80 00 17 bgu 2008db0 <_Objects_Id_to_name+0x88>
2008d58: ba 10 20 03 mov 3, %i5
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2008d5c: 83 28 60 02 sll %g1, 2, %g1
2008d60: 05 00 80 75 sethi %hi(0x201d400), %g2
2008d64: 84 10 a1 c8 or %g2, 0x1c8, %g2 ! 201d5c8 <_Objects_Information_table>
2008d68: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2008d6c: 80 a0 60 00 cmp %g1, 0
2008d70: 02 80 00 10 be 2008db0 <_Objects_Id_to_name+0x88>
2008d74: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
2008d78: 85 28 a0 02 sll %g2, 2, %g2
2008d7c: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2008d80: 80 a2 20 00 cmp %o0, 0
2008d84: 02 80 00 0b be 2008db0 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
2008d88: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2008d8c: 7f ff ff c9 call 2008cb0 <_Objects_Get>
2008d90: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2008d94: 80 a2 20 00 cmp %o0, 0
2008d98: 02 80 00 06 be 2008db0 <_Objects_Id_to_name+0x88>
2008d9c: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2008da0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2008da4: ba 10 20 00 clr %i5
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2008da8: 40 00 03 8d call 2009bdc <_Thread_Enable_dispatch>
2008dac: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2008db0: 81 c7 e0 08 ret
2008db4: 91 e8 00 1d restore %g0, %i5, %o0
02008568 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
2008568: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
200856c: fa 16 20 0a lduh [ %i0 + 0xa ], %i5
block_count = (information->maximum - index_base) /
2008570: f8 16 20 14 lduh [ %i0 + 0x14 ], %i4
2008574: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
2008578: 92 10 00 1c mov %i4, %o1
200857c: 40 00 3c c6 call 2017894 <.udiv>
2008580: 90 22 00 1d sub %o0, %i5, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2008584: 80 a2 20 00 cmp %o0, 0
2008588: 02 80 00 34 be 2008658 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN
200858c: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
2008590: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
2008594: c2 01 00 00 ld [ %g4 ], %g1
2008598: 80 a7 00 01 cmp %i4, %g1
200859c: 02 80 00 0f be 20085d8 <_Objects_Shrink_information+0x70> <== NEVER TAKEN
20085a0: 82 10 20 00 clr %g1
20085a4: 10 80 00 07 b 20085c0 <_Objects_Shrink_information+0x58>
20085a8: b6 10 20 04 mov 4, %i3
* the_block - the block to remove
*
* Output parameters: NONE
*/
void _Objects_Shrink_information(
20085ac: 86 06 e0 04 add %i3, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
20085b0: 80 a7 00 02 cmp %i4, %g2
20085b4: 02 80 00 0a be 20085dc <_Objects_Shrink_information+0x74>
20085b8: ba 07 40 1c add %i5, %i4, %i5
20085bc: b6 10 00 03 mov %g3, %i3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
20085c0: 82 00 60 01 inc %g1
20085c4: 80 a0 40 08 cmp %g1, %o0
20085c8: 32 bf ff f9 bne,a 20085ac <_Objects_Shrink_information+0x44>
20085cc: c4 01 00 1b ld [ %g4 + %i3 ], %g2
20085d0: 81 c7 e0 08 ret
20085d4: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
20085d8: b6 10 20 00 clr %i3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
20085dc: 10 80 00 06 b 20085f4 <_Objects_Shrink_information+0x8c>
20085e0: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
20085e4: 80 a7 20 00 cmp %i4, 0
20085e8: 22 80 00 12 be,a 2008630 <_Objects_Shrink_information+0xc8>
20085ec: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
20085f0: 90 10 00 1c mov %i4, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
20085f4: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
20085f8: 80 a0 40 1d cmp %g1, %i5
20085fc: 0a bf ff fa bcs 20085e4 <_Objects_Shrink_information+0x7c>
2008600: f8 02 00 00 ld [ %o0 ], %i4
(index < (index_base + information->allocation_size))) {
2008604: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
2008608: 84 07 40 02 add %i5, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
200860c: 80 a0 40 02 cmp %g1, %g2
2008610: 1a bf ff f6 bcc 20085e8 <_Objects_Shrink_information+0x80>
2008614: 80 a7 20 00 cmp %i4, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
2008618: 7f ff fb 68 call 20073b8 <_Chain_Extract>
200861c: 01 00 00 00 nop
}
}
while ( the_object );
2008620: 80 a7 20 00 cmp %i4, 0
2008624: 12 bf ff f4 bne 20085f4 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
2008628: 90 10 00 1c mov %i4, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
200862c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
2008630: 40 00 07 b4 call 200a500 <_Workspace_Free>
2008634: d0 00 40 1b ld [ %g1 + %i3 ], %o0
information->object_blocks[ block ] = NULL;
2008638: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
200863c: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
2008640: c0 20 40 1b clr [ %g1 + %i3 ]
information->inactive_per_block[ block ] = 0;
2008644: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
2008648: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
200864c: c0 20 c0 1b clr [ %g3 + %i3 ]
information->inactive -= information->allocation_size;
2008650: 82 20 80 01 sub %g2, %g1, %g1
2008654: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
2008658: 81 c7 e0 08 ret
200865c: 81 e8 00 00 restore
02008fb0 <_RBTree_Extract_unprotected>:
*/
void _RBTree_Extract_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
2008fb0: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *leaf, *target;
RBTree_Color victim_color;
RBTree_Direction dir;
if(!the_node) return;
2008fb4: 80 a6 60 00 cmp %i1, 0
2008fb8: 02 80 00 52 be 2009100 <_RBTree_Extract_unprotected+0x150>
2008fbc: 01 00 00 00 nop
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
2008fc0: c2 06 20 08 ld [ %i0 + 8 ], %g1
2008fc4: 80 a0 40 19 cmp %g1, %i1
2008fc8: 22 80 00 5f be,a 2009144 <_RBTree_Extract_unprotected+0x194>
2008fcc: c2 06 60 08 ld [ %i1 + 8 ], %g1
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
2008fd0: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2008fd4: 80 a0 40 19 cmp %g1, %i1
2008fd8: 22 80 00 4c be,a 2009108 <_RBTree_Extract_unprotected+0x158>
2008fdc: c2 06 60 04 ld [ %i1 + 4 ], %g1
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
2008fe0: fa 06 60 04 ld [ %i1 + 4 ], %i5
2008fe4: 80 a7 60 00 cmp %i5, 0
2008fe8: 22 80 00 50 be,a 2009128 <_RBTree_Extract_unprotected+0x178>
2008fec: f8 06 60 08 ld [ %i1 + 8 ], %i4
2008ff0: c2 06 60 08 ld [ %i1 + 8 ], %g1
2008ff4: 80 a0 60 00 cmp %g1, 0
2008ff8: 32 80 00 05 bne,a 200900c <_RBTree_Extract_unprotected+0x5c>
2008ffc: c2 07 60 08 ld [ %i5 + 8 ], %g1
2009000: 10 80 00 56 b 2009158 <_RBTree_Extract_unprotected+0x1a8>
2009004: b8 10 00 1d mov %i5, %i4
target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */
while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT];
2009008: c2 07 60 08 ld [ %i5 + 8 ], %g1
200900c: 80 a0 60 00 cmp %g1, 0
2009010: 32 bf ff fe bne,a 2009008 <_RBTree_Extract_unprotected+0x58>
2009014: ba 10 00 01 mov %g1, %i5
* target's position (target is the right child of target->parent)
* when target vacates it. if there is no child, then target->parent
* should become NULL. This may cause the coloring to be violated.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = target->child[RBT_LEFT];
2009018: f8 07 60 04 ld [ %i5 + 4 ], %i4
if(leaf) {
200901c: 80 a7 20 00 cmp %i4, 0
2009020: 02 80 00 5a be 2009188 <_RBTree_Extract_unprotected+0x1d8><== ALWAYS TAKEN
2009024: 01 00 00 00 nop
leaf->parent = target->parent;
2009028: c2 07 40 00 ld [ %i5 ], %g1 <== NOT EXECUTED
200902c: c2 27 00 00 st %g1, [ %i4 ] <== NOT EXECUTED
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
2009030: c4 07 40 00 ld [ %i5 ], %g2 <== NOT EXECUTED
target->parent->child[dir] = leaf;
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
2009034: c2 06 40 00 ld [ %i1 ], %g1
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
dir = target != target->parent->child[0];
2009038: c8 00 a0 04 ld [ %g2 + 4 ], %g4
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
}
victim_color = target->color;
200903c: c6 07 60 10 ld [ %i5 + 0x10 ], %g3
dir = target != target->parent->child[0];
2009040: 88 19 00 1d xor %g4, %i5, %g4
2009044: 80 a0 00 04 cmp %g0, %g4
2009048: 88 40 20 00 addx %g0, 0, %g4
target->parent->child[dir] = leaf;
200904c: 89 29 20 02 sll %g4, 2, %g4
2009050: 84 00 80 04 add %g2, %g4, %g2
2009054: f8 20 a0 04 st %i4, [ %g2 + 4 ]
/* now replace the_node with target */
dir = the_node != the_node->parent->child[0];
2009058: c4 00 60 04 ld [ %g1 + 4 ], %g2
200905c: 84 18 80 19 xor %g2, %i1, %g2
2009060: 80 a0 00 02 cmp %g0, %g2
2009064: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = target;
2009068: 85 28 a0 02 sll %g2, 2, %g2
200906c: 82 00 40 02 add %g1, %g2, %g1
2009070: fa 20 60 04 st %i5, [ %g1 + 4 ]
/* set target's new children to the original node's children */
target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT];
2009074: c2 06 60 08 ld [ %i1 + 8 ], %g1
2009078: c2 27 60 08 st %g1, [ %i5 + 8 ]
if (the_node->child[RBT_RIGHT])
200907c: c2 06 60 08 ld [ %i1 + 8 ], %g1
2009080: 80 a0 60 00 cmp %g1, 0
2009084: 32 80 00 02 bne,a 200908c <_RBTree_Extract_unprotected+0xdc><== ALWAYS TAKEN
2009088: fa 20 40 00 st %i5, [ %g1 ]
the_node->child[RBT_RIGHT]->parent = target;
target->child[RBT_LEFT] = the_node->child[RBT_LEFT];
200908c: c2 06 60 04 ld [ %i1 + 4 ], %g1
2009090: c2 27 60 04 st %g1, [ %i5 + 4 ]
if (the_node->child[RBT_LEFT])
2009094: c2 06 60 04 ld [ %i1 + 4 ], %g1
2009098: 80 a0 60 00 cmp %g1, 0
200909c: 32 80 00 02 bne,a 20090a4 <_RBTree_Extract_unprotected+0xf4>
20090a0: fa 20 40 00 st %i5, [ %g1 ]
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
20090a4: c4 06 40 00 ld [ %i1 ], %g2
target->color = the_node->color;
20090a8: c2 06 60 10 ld [ %i1 + 0x10 ], %g1
/* finally, update the parent node and recolor. target has completely
* replaced the_node, and target's child has moved up the tree if needed.
* the_node is no longer part of the tree, although it has valid pointers
* still.
*/
target->parent = the_node->parent;
20090ac: c4 27 40 00 st %g2, [ %i5 ]
target->color = the_node->color;
20090b0: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
* 1. Deleted a red node, its child must be black. Nothing must be done.
* 2. Deleted a black node and the child is red. Paint child black.
* 3. Deleted a black node and its child is black. This requires some
* care and rotations.
*/
if (victim_color == RBT_BLACK) { /* eliminate case 1 */
20090b4: 80 a0 e0 00 cmp %g3, 0
20090b8: 32 80 00 0c bne,a 20090e8 <_RBTree_Extract_unprotected+0x138>
20090bc: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
20090c0: 80 a7 20 00 cmp %i4, 0
20090c4: 22 80 00 09 be,a 20090e8 <_RBTree_Extract_unprotected+0x138>
20090c8: c2 06 20 04 ld [ %i0 + 4 ], %g1
20090cc: c2 07 20 10 ld [ %i4 + 0x10 ], %g1
20090d0: 80 a0 60 01 cmp %g1, 1
20090d4: 22 80 00 04 be,a 20090e4 <_RBTree_Extract_unprotected+0x134><== ALWAYS TAKEN
20090d8: c0 27 20 10 clr [ %i4 + 0x10 ]
if (_RBTree_Is_red(leaf))
leaf->color = RBT_BLACK; /* case 2 */
else if(leaf)
_RBTree_Extract_validate_unprotected(leaf); /* case 3 */
20090dc: 7f ff fe e2 call 2008c64 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED
20090e0: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
/* Wipe the_node */
_RBTree_Set_off_rbtree(the_node);
/* set root to black, if it exists */
if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK;
20090e4: c2 06 20 04 ld [ %i0 + 4 ], %g1
*/
RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree(
RBTree_Node *node
)
{
node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL;
20090e8: c0 26 60 08 clr [ %i1 + 8 ]
20090ec: c0 26 60 04 clr [ %i1 + 4 ]
20090f0: 80 a0 60 00 cmp %g1, 0
20090f4: 02 80 00 03 be 2009100 <_RBTree_Extract_unprotected+0x150>
20090f8: c0 26 40 00 clr [ %i1 ]
20090fc: c0 20 60 10 clr [ %g1 + 0x10 ]
2009100: 81 c7 e0 08 ret
2009104: 81 e8 00 00 restore
the_rbtree->first[RBT_LEFT] = NULL;
}
}
/* check if max needs to be updated: note, min can equal max (1 element) */
if (the_node == the_rbtree->first[RBT_RIGHT]) {
if (the_node->child[RBT_LEFT])
2009108: 80 a0 60 00 cmp %g1, 0
200910c: 22 80 00 28 be,a 20091ac <_RBTree_Extract_unprotected+0x1fc>
2009110: c2 06 40 00 ld [ %i1 ], %g1
* either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT],
* and replace the_node with the target node. This maintains the binary
* search tree property, but may violate the red-black properties.
*/
if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) {
2009114: fa 06 60 04 ld [ %i1 + 4 ], %i5
2009118: 80 a7 60 00 cmp %i5, 0
200911c: 12 bf ff b5 bne 2008ff0 <_RBTree_Extract_unprotected+0x40><== ALWAYS TAKEN
2009120: c2 26 20 0c st %g1, [ %i0 + 0xc ]
* the_node's location in the tree. This may cause the coloring to be
* violated. We will fix it later.
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
2009124: f8 06 60 08 ld [ %i1 + 8 ], %i4 <== NOT EXECUTED
if( leaf ) {
2009128: 80 a7 20 00 cmp %i4, 0
200912c: 32 80 00 0c bne,a 200915c <_RBTree_Extract_unprotected+0x1ac>
2009130: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
2009134: 7f ff fe cc call 2008c64 <_RBTree_Extract_validate_unprotected>
2009138: 90 10 00 19 mov %i1, %o0
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
200913c: 10 80 00 0a b 2009164 <_RBTree_Extract_unprotected+0x1b4>
2009140: c2 06 40 00 ld [ %i1 ], %g1
if(!the_node) return;
/* check if min needs to be updated */
if (the_node == the_rbtree->first[RBT_LEFT]) {
if (the_node->child[RBT_RIGHT])
2009144: 80 a0 60 00 cmp %g1, 0
2009148: 22 80 00 14 be,a 2009198 <_RBTree_Extract_unprotected+0x1e8>
200914c: c2 06 40 00 ld [ %i1 ], %g1
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
2009150: 10 bf ff a0 b 2008fd0 <_RBTree_Extract_unprotected+0x20>
2009154: c2 26 20 08 st %g1, [ %i0 + 8 ]
* For now we store the color of the node being deleted in victim_color.
*/
leaf = the_node->child[RBT_LEFT] ?
the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT];
if( leaf ) {
leaf->parent = the_node->parent;
2009158: c2 06 40 00 ld [ %i1 ], %g1
200915c: c2 27 00 00 st %g1, [ %i4 ]
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2009160: c2 06 40 00 ld [ %i1 ], %g1
leaf->parent = the_node->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(the_node);
}
victim_color = the_node->color;
2009164: c6 06 60 10 ld [ %i1 + 0x10 ], %g3
/* remove the_node from the tree */
dir = the_node != the_node->parent->child[0];
2009168: c4 00 60 04 ld [ %g1 + 4 ], %g2
200916c: 84 18 80 19 xor %g2, %i1, %g2
2009170: 80 a0 00 02 cmp %g0, %g2
2009174: 84 40 20 00 addx %g0, 0, %g2
the_node->parent->child[dir] = leaf;
2009178: 85 28 a0 02 sll %g2, 2, %g2
200917c: 82 00 40 02 add %g1, %g2, %g1
2009180: 10 bf ff cd b 20090b4 <_RBTree_Extract_unprotected+0x104>
2009184: f8 20 60 04 st %i4, [ %g1 + 4 ]
leaf = target->child[RBT_LEFT];
if(leaf) {
leaf->parent = target->parent;
} else {
/* fix the tree here if the child is a null leaf. */
_RBTree_Extract_validate_unprotected(target);
2009188: 7f ff fe b7 call 2008c64 <_RBTree_Extract_validate_unprotected>
200918c: 90 10 00 1d mov %i5, %o0
}
victim_color = target->color;
dir = target != target->parent->child[0];
2009190: 10 bf ff a9 b 2009034 <_RBTree_Extract_unprotected+0x84>
2009194: c4 07 40 00 ld [ %i5 ], %g2
if (the_node == the_rbtree->first[RBT_LEFT]) {
if (the_node->child[RBT_RIGHT])
the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT];
else {
the_rbtree->first[RBT_LEFT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
2009198: 80 a6 00 01 cmp %i0, %g1
200919c: 12 bf ff 8d bne 2008fd0 <_RBTree_Extract_unprotected+0x20>
20091a0: c2 26 20 08 st %g1, [ %i0 + 8 ]
the_rbtree->first[RBT_LEFT]))
the_rbtree->first[RBT_LEFT] = NULL;
20091a4: 10 bf ff 8b b 2008fd0 <_RBTree_Extract_unprotected+0x20>
20091a8: c0 26 20 08 clr [ %i0 + 8 ]
if (the_node == the_rbtree->first[RBT_RIGHT]) {
if (the_node->child[RBT_LEFT])
the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT];
else {
the_rbtree->first[RBT_RIGHT] = the_node->parent;
if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree,
20091ac: 80 a6 00 01 cmp %i0, %g1
20091b0: 12 bf ff 8c bne 2008fe0 <_RBTree_Extract_unprotected+0x30>
20091b4: c2 26 20 0c st %g1, [ %i0 + 0xc ]
the_rbtree->first[RBT_RIGHT]))
the_rbtree->first[RBT_RIGHT] = NULL;
20091b8: 10 bf ff 8a b 2008fe0 <_RBTree_Extract_unprotected+0x30>
20091bc: c0 26 20 0c clr [ %i0 + 0xc ]
02008c64 <_RBTree_Extract_validate_unprotected>:
* of the extract operation.
*/
void _RBTree_Extract_validate_unprotected(
RBTree_Node *the_node
)
{
2008c64: 9d e3 bf a0 save %sp, -96, %sp
RBTree_Node *parent, *sibling;
RBTree_Direction dir;
parent = the_node->parent;
2008c68: c4 06 00 00 ld [ %i0 ], %g2
if(!parent->parent) return;
2008c6c: c2 00 80 00 ld [ %g2 ], %g1
2008c70: 80 a0 60 00 cmp %g1, 0
2008c74: 02 80 00 cd be 2008fa8 <_RBTree_Extract_validate_unprotected+0x344>
2008c78: 01 00 00 00 nop
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
2008c7c: c2 00 a0 04 ld [ %g2 + 4 ], %g1
2008c80: 80 a6 00 01 cmp %i0, %g1
2008c84: 22 80 00 02 be,a 2008c8c <_RBTree_Extract_validate_unprotected+0x28>
2008c88: c2 00 a0 08 ld [ %g2 + 8 ], %g1
/* sibling is black, see if both of its children are also black. */
if (sibling &&
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
sibling->color = RBT_RED;
2008c8c: 96 10 20 01 mov 1, %o3
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008c90: 80 a6 20 00 cmp %i0, 0
2008c94: 22 80 00 07 be,a 2008cb0 <_RBTree_Extract_validate_unprotected+0x4c><== NEVER TAKEN
2008c98: c6 00 80 00 ld [ %g2 ], %g3 <== NOT EXECUTED
2008c9c: c6 06 20 10 ld [ %i0 + 0x10 ], %g3
2008ca0: 80 a0 e0 01 cmp %g3, 1
2008ca4: 22 80 00 5b be,a 2008e10 <_RBTree_Extract_validate_unprotected+0x1ac>
2008ca8: c2 06 00 00 ld [ %i0 ], %g1
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
2008cac: c6 00 80 00 ld [ %g2 ], %g3
2008cb0: 80 a0 e0 00 cmp %g3, 0
2008cb4: 02 80 00 56 be 2008e0c <_RBTree_Extract_validate_unprotected+0x1a8>
2008cb8: 80 a0 60 00 cmp %g1, 0
2008cbc: 02 bf ff f6 be 2008c94 <_RBTree_Extract_validate_unprotected+0x30><== NEVER TAKEN
2008cc0: 80 a6 20 00 cmp %i0, 0
2008cc4: c8 00 60 10 ld [ %g1 + 0x10 ], %g4
2008cc8: 80 a1 20 01 cmp %g4, 1
2008ccc: 22 80 00 27 be,a 2008d68 <_RBTree_Extract_validate_unprotected+0x104>
2008cd0: de 00 a0 04 ld [ %g2 + 4 ], %o7
sibling = parent->child[!dir];
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
!_RBTree_Is_red(sibling->child[RBT_RIGHT]) &&
2008cd4: c6 00 60 08 ld [ %g1 + 8 ], %g3
2008cd8: 80 a0 e0 00 cmp %g3, 0
2008cdc: 22 80 00 07 be,a 2008cf8 <_RBTree_Extract_validate_unprotected+0x94>
2008ce0: c6 00 60 04 ld [ %g1 + 4 ], %g3
2008ce4: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
2008ce8: 80 a0 e0 01 cmp %g3, 1
2008cec: 22 80 00 57 be,a 2008e48 <_RBTree_Extract_validate_unprotected+0x1e4>
2008cf0: c6 00 a0 04 ld [ %g2 + 4 ], %g3
!_RBTree_Is_red(sibling->child[RBT_LEFT])) {
2008cf4: c6 00 60 04 ld [ %g1 + 4 ], %g3
2008cf8: 80 a0 e0 00 cmp %g3, 0
2008cfc: 22 80 00 07 be,a 2008d18 <_RBTree_Extract_validate_unprotected+0xb4>
2008d00: d6 20 60 10 st %o3, [ %g1 + 0x10 ]
2008d04: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3
2008d08: 80 a0 e0 01 cmp %g3, 1
2008d0c: 22 80 00 4f be,a 2008e48 <_RBTree_Extract_validate_unprotected+0x1e4>
2008d10: c6 00 a0 04 ld [ %g2 + 4 ], %g3
sibling->color = RBT_RED;
2008d14: d6 20 60 10 st %o3, [ %g1 + 0x10 ]
2008d18: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1
2008d1c: 80 a0 60 01 cmp %g1, 1
2008d20: 22 80 00 3b be,a 2008e0c <_RBTree_Extract_validate_unprotected+0x1a8>
2008d24: c0 20 a0 10 clr [ %g2 + 0x10 ]
if (_RBTree_Is_red(parent)) {
parent->color = RBT_BLACK;
break;
}
the_node = parent; /* done if parent is red */
parent = the_node->parent;
2008d28: c6 00 80 00 ld [ %g2 ], %g3
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
2008d2c: 80 a0 e0 00 cmp %g3, 0
2008d30: 02 80 00 3e be 2008e28 <_RBTree_Extract_validate_unprotected+0x1c4><== NEVER TAKEN
2008d34: b0 10 00 02 mov %g2, %i0
if(!(the_node->parent->parent)) return NULL;
2008d38: c2 00 c0 00 ld [ %g3 ], %g1
2008d3c: 80 a0 60 00 cmp %g1, 0
2008d40: 02 80 00 3d be 2008e34 <_RBTree_Extract_validate_unprotected+0x1d0>
2008d44: 82 10 20 00 clr %g1
if(the_node == the_node->parent->child[RBT_LEFT])
2008d48: c2 00 e0 04 ld [ %g3 + 4 ], %g1
2008d4c: 80 a0 80 01 cmp %g2, %g1
2008d50: 02 80 00 3b be 2008e3c <_RBTree_Extract_validate_unprotected+0x1d8>
2008d54: 80 a6 20 00 cmp %i0, 0
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008d58: 12 bf ff d1 bne 2008c9c <_RBTree_Extract_validate_unprotected+0x38><== ALWAYS TAKEN
2008d5c: 84 10 00 03 mov %g3, %g2
if(!parent->parent) return;
sibling = _RBTree_Sibling(the_node);
/* continue to correct tree as long as the_node is black and not the root */
while (!_RBTree_Is_red(the_node) && parent->parent) {
2008d60: 10 bf ff d4 b 2008cb0 <_RBTree_Extract_validate_unprotected+0x4c><== NOT EXECUTED
2008d64: c6 00 80 00 ld [ %g2 ], %g3 <== NOT EXECUTED
* then rotate parent left, making the sibling be the_node's grandparent.
* Now the_node has a black sibling and red parent. After rotation,
* update sibling pointer.
*/
if (_RBTree_Is_red(sibling)) {
parent->color = RBT_RED;
2008d68: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
sibling->color = RBT_BLACK;
dir = the_node != parent->child[0];
2008d6c: 9e 1b c0 18 xor %o7, %i0, %o7
2008d70: 80 a0 00 0f cmp %g0, %o7
2008d74: 9a 40 20 00 addx %g0, 0, %o5
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
2008d78: 88 21 00 0d sub %g4, %o5, %g4
2008d7c: 89 29 20 02 sll %g4, 2, %g4
2008d80: 88 00 80 04 add %g2, %g4, %g4
2008d84: de 01 20 04 ld [ %g4 + 4 ], %o7
2008d88: 80 a3 e0 00 cmp %o7, 0
2008d8c: 02 80 00 16 be 2008de4 <_RBTree_Extract_validate_unprotected+0x180><== NEVER TAKEN
2008d90: c0 20 60 10 clr [ %g1 + 0x10 ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
2008d94: 83 2b 60 02 sll %o5, 2, %g1
2008d98: 98 03 c0 01 add %o7, %g1, %o4
2008d9c: d4 03 20 04 ld [ %o4 + 4 ], %o2
2008da0: d4 21 20 04 st %o2, [ %g4 + 4 ]
if (c->child[dir])
2008da4: c8 03 20 04 ld [ %o4 + 4 ], %g4
2008da8: 80 a1 20 00 cmp %g4, 0
2008dac: 02 80 00 04 be 2008dbc <_RBTree_Extract_validate_unprotected+0x158><== NEVER TAKEN
2008db0: 82 03 c0 01 add %o7, %g1, %g1
c->child[dir]->parent = the_node;
2008db4: c4 21 00 00 st %g2, [ %g4 ]
2008db8: c6 00 80 00 ld [ %g2 ], %g3
c->child[dir] = the_node;
2008dbc: c4 20 60 04 st %g2, [ %g1 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008dc0: c2 00 e0 04 ld [ %g3 + 4 ], %g1
c->parent = the_node->parent;
2008dc4: c6 23 c0 00 st %g3, [ %o7 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008dc8: 82 18 80 01 xor %g2, %g1, %g1
c->parent = the_node->parent;
the_node->parent = c;
2008dcc: de 20 80 00 st %o7, [ %g2 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008dd0: 80 a0 00 01 cmp %g0, %g1
2008dd4: 82 40 20 00 addx %g0, 0, %g1
2008dd8: 83 28 60 02 sll %g1, 2, %g1
2008ddc: 86 00 c0 01 add %g3, %g1, %g3
2008de0: de 20 e0 04 st %o7, [ %g3 + 4 ]
_RBTree_Rotate(parent, dir);
sibling = parent->child[!dir];
2008de4: 80 a0 00 0d cmp %g0, %o5
2008de8: 82 60 3f ff subx %g0, -1, %g1
2008dec: 83 28 60 02 sll %g1, 2, %g1
2008df0: 82 00 80 01 add %g2, %g1, %g1
2008df4: c2 00 60 04 ld [ %g1 + 4 ], %g1
}
/* sibling is black, see if both of its children are also black. */
if (sibling &&
2008df8: 80 a0 60 00 cmp %g1, 0
2008dfc: 32 bf ff b7 bne,a 2008cd8 <_RBTree_Extract_validate_unprotected+0x74><== ALWAYS TAKEN
2008e00: c6 00 60 08 ld [ %g1 + 8 ], %g3
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008e04: 10 bf ff a4 b 2008c94 <_RBTree_Extract_validate_unprotected+0x30><== NOT EXECUTED
2008e08: 80 a6 20 00 cmp %i0, 0 <== NOT EXECUTED
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
2008e0c: c2 06 00 00 ld [ %i0 ], %g1
2008e10: c2 00 40 00 ld [ %g1 ], %g1
2008e14: 80 a0 60 00 cmp %g1, 0
2008e18: 22 80 00 02 be,a 2008e20 <_RBTree_Extract_validate_unprotected+0x1bc>
2008e1c: c0 26 20 10 clr [ %i0 + 0x10 ]
2008e20: 81 c7 e0 08 ret
2008e24: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
2008e28: 82 10 20 00 clr %g1 <== NOT EXECUTED
2008e2c: 10 bf ff 99 b 2008c90 <_RBTree_Extract_validate_unprotected+0x2c><== NOT EXECUTED
2008e30: 84 10 20 00 clr %g2 <== NOT EXECUTED
if(!(the_node->parent->parent)) return NULL;
2008e34: 10 bf ff 97 b 2008c90 <_RBTree_Extract_validate_unprotected+0x2c>
2008e38: 84 10 00 03 mov %g3, %g2
if(the_node == the_node->parent->child[RBT_LEFT])
return the_node->parent->child[RBT_RIGHT];
2008e3c: c2 00 e0 08 ld [ %g3 + 8 ], %g1
2008e40: 10 bf ff 94 b 2008c90 <_RBTree_Extract_validate_unprotected+0x2c>
2008e44: 84 10 00 03 mov %g3, %g2
* cases, either the_node is to the left or the right of the parent.
* In both cases, first check if one of sibling's children is black,
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
2008e48: 86 18 c0 18 xor %g3, %i0, %g3
2008e4c: 80 a0 00 03 cmp %g0, %g3
2008e50: 86 40 20 00 addx %g0, 0, %g3
if (!_RBTree_Is_red(sibling->child[!dir])) {
2008e54: 80 a0 00 03 cmp %g0, %g3
2008e58: 9e 60 3f ff subx %g0, -1, %o7
2008e5c: 9f 2b e0 02 sll %o7, 2, %o7
2008e60: 88 00 40 0f add %g1, %o7, %g4
2008e64: c8 01 20 04 ld [ %g4 + 4 ], %g4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2008e68: 80 a1 20 00 cmp %g4, 0
2008e6c: 22 80 00 07 be,a 2008e88 <_RBTree_Extract_validate_unprotected+0x224>
2008e70: 89 28 e0 02 sll %g3, 2, %g4
2008e74: da 01 20 10 ld [ %g4 + 0x10 ], %o5
2008e78: 80 a3 60 01 cmp %o5, 1
2008e7c: 22 80 00 28 be,a 2008f1c <_RBTree_Extract_validate_unprotected+0x2b8>
2008e80: de 00 a0 10 ld [ %g2 + 0x10 ], %o7
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
2008e84: 89 28 e0 02 sll %g3, 2, %g4
2008e88: 88 00 40 04 add %g1, %g4, %g4
_RBTree_Rotate(sibling, !dir);
2008e8c: 98 18 e0 01 xor %g3, 1, %o4
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
sibling->color = RBT_RED;
sibling->child[dir]->color = RBT_BLACK;
2008e90: d6 01 20 04 ld [ %g4 + 4 ], %o3
* and if so rotate in the proper direction and update sibling pointer.
* Then switch the sibling and parent colors, and rotate through parent.
*/
dir = the_node != parent->child[0];
if (!_RBTree_Is_red(sibling->child[!dir])) {
sibling->color = RBT_RED;
2008e94: 88 10 20 01 mov 1, %g4
2008e98: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
2008e9c: 88 21 00 0c sub %g4, %o4, %g4
2008ea0: 9b 29 20 02 sll %g4, 2, %o5
2008ea4: 9a 00 40 0d add %g1, %o5, %o5
2008ea8: c8 03 60 04 ld [ %o5 + 4 ], %g4
2008eac: 80 a1 20 00 cmp %g4, 0
2008eb0: 02 80 00 16 be 2008f08 <_RBTree_Extract_validate_unprotected+0x2a4><== NEVER TAKEN
2008eb4: c0 22 e0 10 clr [ %o3 + 0x10 ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
2008eb8: 99 2b 20 02 sll %o4, 2, %o4
2008ebc: 96 01 00 0c add %g4, %o4, %o3
2008ec0: d4 02 e0 04 ld [ %o3 + 4 ], %o2
2008ec4: d4 23 60 04 st %o2, [ %o5 + 4 ]
if (c->child[dir])
2008ec8: da 02 e0 04 ld [ %o3 + 4 ], %o5
2008ecc: 80 a3 60 00 cmp %o5, 0
2008ed0: 32 80 00 02 bne,a 2008ed8 <_RBTree_Extract_validate_unprotected+0x274>
2008ed4: c2 23 40 00 st %g1, [ %o5 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008ed8: da 00 40 00 ld [ %g1 ], %o5
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
2008edc: 98 01 00 0c add %g4, %o4, %o4
2008ee0: c2 23 20 04 st %g1, [ %o4 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008ee4: d8 03 60 04 ld [ %o5 + 4 ], %o4
c->parent = the_node->parent;
2008ee8: da 21 00 00 st %o5, [ %g4 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008eec: 98 18 40 0c xor %g1, %o4, %o4
c->parent = the_node->parent;
the_node->parent = c;
2008ef0: c8 20 40 00 st %g4, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008ef4: 80 a0 00 0c cmp %g0, %o4
2008ef8: 82 40 20 00 addx %g0, 0, %g1
2008efc: 83 28 60 02 sll %g1, 2, %g1
2008f00: 9a 03 40 01 add %o5, %g1, %o5
2008f04: c8 23 60 04 st %g4, [ %o5 + 4 ]
sibling->child[dir]->color = RBT_BLACK;
_RBTree_Rotate(sibling, !dir);
sibling = parent->child[!dir];
2008f08: 82 00 80 0f add %g2, %o7, %g1
2008f0c: c2 00 60 04 ld [ %g1 + 4 ], %g1
2008f10: 9e 00 40 0f add %g1, %o7, %o7
2008f14: c8 03 e0 04 ld [ %o7 + 4 ], %g4
}
sibling->color = parent->color;
2008f18: de 00 a0 10 ld [ %g2 + 0x10 ], %o7
2008f1c: de 20 60 10 st %o7, [ %g1 + 0x10 ]
parent->color = RBT_BLACK;
2008f20: c0 20 a0 10 clr [ %g2 + 0x10 ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
2008f24: 9e 10 20 01 mov 1, %o7
2008f28: 9e 23 c0 03 sub %o7, %g3, %o7
2008f2c: 9f 2b e0 02 sll %o7, 2, %o7
2008f30: 9e 00 80 0f add %g2, %o7, %o7
2008f34: c2 03 e0 04 ld [ %o7 + 4 ], %g1
2008f38: 80 a0 60 00 cmp %g1, 0
2008f3c: 02 bf ff b4 be 2008e0c <_RBTree_Extract_validate_unprotected+0x1a8><== NEVER TAKEN
2008f40: c0 21 20 10 clr [ %g4 + 0x10 ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
2008f44: 87 28 e0 02 sll %g3, 2, %g3
2008f48: 88 00 40 03 add %g1, %g3, %g4
2008f4c: da 01 20 04 ld [ %g4 + 4 ], %o5
2008f50: da 23 e0 04 st %o5, [ %o7 + 4 ]
if (c->child[dir])
2008f54: c8 01 20 04 ld [ %g4 + 4 ], %g4
2008f58: 80 a1 20 00 cmp %g4, 0
2008f5c: 32 80 00 02 bne,a 2008f64 <_RBTree_Extract_validate_unprotected+0x300>
2008f60: c4 21 00 00 st %g2, [ %g4 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008f64: c8 00 80 00 ld [ %g2 ], %g4
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
2008f68: 86 00 40 03 add %g1, %g3, %g3
2008f6c: c4 20 e0 04 st %g2, [ %g3 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008f70: c6 01 20 04 ld [ %g4 + 4 ], %g3
c->parent = the_node->parent;
2008f74: c8 20 40 00 st %g4, [ %g1 ]
the_node->parent = c;
2008f78: c2 20 80 00 st %g1, [ %g2 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2008f7c: 86 18 c0 02 xor %g3, %g2, %g3
2008f80: 80 a0 00 03 cmp %g0, %g3
2008f84: 84 40 20 00 addx %g0, 0, %g2
2008f88: 85 28 a0 02 sll %g2, 2, %g2
2008f8c: 88 01 00 02 add %g4, %g2, %g4
2008f90: c2 21 20 04 st %g1, [ %g4 + 4 ]
sibling->child[!dir]->color = RBT_BLACK;
_RBTree_Rotate(parent, dir);
break; /* done */
}
} /* while */
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
2008f94: c2 06 00 00 ld [ %i0 ], %g1
2008f98: c2 00 40 00 ld [ %g1 ], %g1
2008f9c: 80 a0 60 00 cmp %g1, 0
2008fa0: 22 bf ff a0 be,a 2008e20 <_RBTree_Extract_validate_unprotected+0x1bc><== NEVER TAKEN
2008fa4: c0 26 20 10 clr [ %i0 + 0x10 ] <== NOT EXECUTED
2008fa8: 81 c7 e0 08 ret
2008fac: 81 e8 00 00 restore
02009234 <_RBTree_Find>:
RBTree_Node *_RBTree_Find(
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
2009234: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
2009238: 7f ff e6 7f call 2002c34 <sparc_disable_interrupts>
200923c: 01 00 00 00 nop
return_node = _RBTree_Find_unprotected( the_rbtree, the_value );
_ISR_Enable( level );
return return_node;
}
2009240: f0 06 20 04 ld [ %i0 + 4 ], %i0
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
2009244: 80 a6 20 00 cmp %i0, 0
2009248: 32 80 00 0b bne,a 2009274 <_RBTree_Find+0x40> <== ALWAYS TAKEN
200924c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2009250: 30 80 00 0c b,a 2009280 <_RBTree_Find+0x4c> <== NOT EXECUTED
if (the_value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_value > iter_node->value;
2009254: 82 40 20 00 addx %g0, 0, %g1
iter_node = iter_node->child[dir];
2009258: 83 28 60 02 sll %g1, 2, %g1
200925c: b0 06 00 01 add %i0, %g1, %i0
2009260: f0 06 20 04 ld [ %i0 + 4 ], %i0
RBTree_Control *the_rbtree,
unsigned int the_value
)
{
RBTree_Node* iter_node = the_rbtree->root;
while (iter_node) {
2009264: 80 a6 20 00 cmp %i0, 0
2009268: 02 80 00 06 be 2009280 <_RBTree_Find+0x4c> <== NEVER TAKEN
200926c: 01 00 00 00 nop
if (the_value == iter_node->value) return(iter_node);
2009270: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2009274: 80 a6 40 01 cmp %i1, %g1
2009278: 12 bf ff f7 bne 2009254 <_RBTree_Find+0x20>
200927c: 80 a0 40 19 cmp %g1, %i1
RBTree_Node *return_node;
return_node = NULL;
_ISR_Disable( level );
return_node = _RBTree_Find_unprotected( the_rbtree, the_value );
_ISR_Enable( level );
2009280: 7f ff e6 71 call 2002c44 <sparc_enable_interrupts>
2009284: 01 00 00 00 nop
return return_node;
}
2009288: 81 c7 e0 08 ret
200928c: 81 e8 00 00 restore
020091e8 <_RBTree_Find_header>:
*/
RBTree_Control *_RBTree_Find_header(
RBTree_Node *the_node
)
{
20091e8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
RBTree_Control *return_header;
return_header = NULL;
_ISR_Disable( level );
20091ec: 7f ff e6 92 call 2002c34 <sparc_disable_interrupts>
20091f0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE RBTree_Control *_RBTree_Find_header_unprotected(
RBTree_Node *the_node
)
{
if(!the_node) return NULL;
20091f4: 80 a6 20 00 cmp %i0, 0
20091f8: 02 80 00 0b be 2009224 <_RBTree_Find_header+0x3c> <== NEVER TAKEN
20091fc: ba 10 20 00 clr %i5
if(!(the_node->parent)) return NULL;
2009200: fa 06 00 00 ld [ %i0 ], %i5
2009204: 80 a7 60 00 cmp %i5, 0
2009208: 32 80 00 04 bne,a 2009218 <_RBTree_Find_header+0x30> <== ALWAYS TAKEN
200920c: c2 07 40 00 ld [ %i5 ], %g1
2009210: 30 80 00 05 b,a 2009224 <_RBTree_Find_header+0x3c> <== NOT EXECUTED
2009214: c2 07 40 00 ld [ %i5 ], %g1
while(the_node->parent) the_node = the_node->parent;
2009218: 80 a0 60 00 cmp %g1, 0
200921c: 32 bf ff fe bne,a 2009214 <_RBTree_Find_header+0x2c>
2009220: ba 10 00 01 mov %g1, %i5
return_header = _RBTree_Find_header_unprotected( the_node );
_ISR_Enable( level );
2009224: 7f ff e6 88 call 2002c44 <sparc_enable_interrupts>
2009228: b0 10 00 1d mov %i5, %i0
return return_header;
}
200922c: 81 c7 e0 08 ret
2009230: 81 e8 00 00 restore
0200947c <_RBTree_Insert_unprotected>:
*/
RBTree_Node *_RBTree_Insert_unprotected(
RBTree_Control *the_rbtree,
RBTree_Node *the_node
)
{
200947c: 9d e3 bf a0 save %sp, -96, %sp
if(!the_node) return (RBTree_Node*)-1;
2009480: 80 a6 60 00 cmp %i1, 0
2009484: 02 80 00 14 be 20094d4 <_RBTree_Insert_unprotected+0x58> <== NEVER TAKEN
2009488: 82 10 3f ff mov -1, %g1
RBTree_Node *iter_node = the_rbtree->root;
200948c: c2 06 20 04 ld [ %i0 + 4 ], %g1
if (!iter_node) { /* special case: first node inserted */
2009490: 80 a0 60 00 cmp %g1, 0
2009494: 22 80 00 23 be,a 2009520 <_RBTree_Insert_unprotected+0xa4>
2009498: c0 26 60 10 clr [ %i1 + 0x10 ]
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
the_rbtree->first[dir] = the_node;
200949c: 10 80 00 0a b 20094c4 <_RBTree_Insert_unprotected+0x48>
20094a0: c6 06 60 0c ld [ %i1 + 0xc ], %g3
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
20094a4: 9e 40 20 00 addx %g0, 0, %o7
if (!iter_node->child[dir]) {
20094a8: 89 2b e0 02 sll %o7, 2, %g4
20094ac: 88 00 40 04 add %g1, %g4, %g4
20094b0: c4 01 20 04 ld [ %g4 + 4 ], %g2
20094b4: 80 a0 a0 00 cmp %g2, 0
20094b8: 22 80 00 09 be,a 20094dc <_RBTree_Insert_unprotected+0x60>
20094bc: c0 26 60 08 clr [ %i1 + 8 ]
20094c0: 82 10 00 02 mov %g2, %g1
the_node->parent = (RBTree_Node *) the_rbtree;
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
} else {
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
20094c4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
20094c8: 80 a0 c0 02 cmp %g3, %g2
20094cc: 12 bf ff f6 bne 20094a4 <_RBTree_Insert_unprotected+0x28>
20094d0: 80 a0 80 03 cmp %g2, %g3
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
}
return (RBTree_Node*)0;
}
20094d4: 81 c7 e0 08 ret
20094d8: 91 e8 00 01 restore %g0, %g1, %o0
/* typical binary search tree insert, descend tree to leaf and insert */
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
20094dc: c0 26 60 04 clr [ %i1 + 4 ]
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First(
RBTree_Control *the_rbtree,
RBTree_Direction dir
)
{
return the_rbtree->first[dir];
20094e0: 9e 03 e0 02 add %o7, 2, %o7
20094e4: 9f 2b e0 02 sll %o7, 2, %o7
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
20094e8: c4 06 00 0f ld [ %i0 + %o7 ], %g2
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
20094ec: 86 10 20 01 mov 1, %g3
iter_node->child[dir] = the_node;
20094f0: f2 21 20 04 st %i1, [ %g4 + 4 ]
while (iter_node) {
if(the_node->value == iter_node->value) return(iter_node);
RBTree_Direction dir = the_node->value > iter_node->value;
if (!iter_node->child[dir]) {
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
the_node->color = RBT_RED;
20094f4: c6 26 60 10 st %g3, [ %i1 + 0x10 ]
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
20094f8: 80 a0 40 02 cmp %g1, %g2
20094fc: 02 80 00 07 be 2009518 <_RBTree_Insert_unprotected+0x9c>
2009500: c2 26 40 00 st %g1, [ %i1 ]
}
} /* while(iter_node) */
/* verify red-black properties */
_RBTree_Validate_insert_unprotected(the_node);
2009504: 7f ff ff 72 call 20092cc <_RBTree_Validate_insert_unprotected>
2009508: 90 10 00 19 mov %i1, %o0
}
return (RBTree_Node*)0;
200950c: 82 10 20 00 clr %g1
}
2009510: 81 c7 e0 08 ret
2009514: 91 e8 00 01 restore %g0, %g1, %o0
the_node->color = RBT_RED;
iter_node->child[dir] = the_node;
the_node->parent = iter_node;
/* update min/max */
if (_RBTree_Is_first(the_rbtree, iter_node, dir)) {
the_rbtree->first[dir] = the_node;
2009518: 10 bf ff fb b 2009504 <_RBTree_Insert_unprotected+0x88>
200951c: f2 26 00 0f st %i1, [ %i0 + %o7 ]
RBTree_Node *iter_node = the_rbtree->root;
if (!iter_node) { /* special case: first node inserted */
the_node->color = RBT_BLACK;
the_rbtree->root = the_node;
2009520: f2 26 20 04 st %i1, [ %i0 + 4 ]
the_rbtree->first[0] = the_rbtree->first[1] = the_node;
2009524: f2 26 20 0c st %i1, [ %i0 + 0xc ]
2009528: f2 26 20 08 st %i1, [ %i0 + 8 ]
the_node->parent = (RBTree_Node *) the_rbtree;
200952c: f0 26 40 00 st %i0, [ %i1 ]
the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL;
2009530: c0 26 60 08 clr [ %i1 + 8 ]
2009534: 10 bf ff e8 b 20094d4 <_RBTree_Insert_unprotected+0x58>
2009538: c0 26 60 04 clr [ %i1 + 4 ]
020092cc <_RBTree_Validate_insert_unprotected>:
* append operation.
*/
void _RBTree_Validate_insert_unprotected(
RBTree_Node *the_node
)
{
20092cc: 9d e3 bf a0 save %sp, -96, %sp
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
RBTree_Direction pdir = the_node->parent != g->child[0];
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
20092d0: 96 10 20 01 mov 1, %o3
ISR_Level level;
_ISR_Disable( level );
_RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
20092d4: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
20092d8: c4 00 40 00 ld [ %g1 ], %g2
20092dc: 86 90 a0 00 orcc %g2, 0, %g3
20092e0: 22 80 00 06 be,a 20092f8 <_RBTree_Validate_insert_unprotected+0x2c>
20092e4: c0 26 20 10 clr [ %i0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
20092e8: c8 00 60 10 ld [ %g1 + 0x10 ], %g4
20092ec: 80 a1 20 01 cmp %g4, 1
20092f0: 22 80 00 04 be,a 2009300 <_RBTree_Validate_insert_unprotected+0x34>
20092f4: c8 00 80 00 ld [ %g2 ], %g4
20092f8: 81 c7 e0 08 ret
20092fc: 81 e8 00 00 restore
)
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(!(the_node->parent->parent->parent)) return NULL;
2009300: 80 a1 20 00 cmp %g4, 0
2009304: 02 80 00 0c be 2009334 <_RBTree_Validate_insert_unprotected+0x68><== NEVER TAKEN
2009308: de 00 a0 04 ld [ %g2 + 4 ], %o7
{
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
200930c: 80 a0 40 0f cmp %g1, %o7
2009310: 02 80 00 59 be 2009474 <_RBTree_Validate_insert_unprotected+0x1a8>
2009314: 88 10 00 0f mov %o7, %g4
*/
RTEMS_INLINE_ROUTINE bool _RBTree_Is_red(
const RBTree_Node *the_node
)
{
return (the_node && the_node->color == RBT_RED);
2009318: 80 a1 20 00 cmp %g4, 0
200931c: 22 80 00 07 be,a 2009338 <_RBTree_Validate_insert_unprotected+0x6c>
2009320: c8 00 60 04 ld [ %g1 + 4 ], %g4
2009324: da 01 20 10 ld [ %g4 + 0x10 ], %o5
2009328: 80 a3 60 01 cmp %o5, 1
200932c: 22 80 00 4c be,a 200945c <_RBTree_Validate_insert_unprotected+0x190>
2009330: c0 20 60 10 clr [ %g1 + 0x10 ]
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
2009334: c8 00 60 04 ld [ %g1 + 4 ], %g4
RBTree_Direction pdir = the_node->parent != g->child[0];
2009338: 9e 18 40 0f xor %g1, %o7, %o7
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
g->color = RBT_RED;
the_node = g;
} else { /* if uncle is black */
RBTree_Direction dir = the_node != the_node->parent->child[0];
200933c: 88 19 00 18 xor %g4, %i0, %g4
2009340: 80 a0 00 04 cmp %g0, %g4
2009344: 9a 40 20 00 addx %g0, 0, %o5
RBTree_Direction pdir = the_node->parent != g->child[0];
2009348: 80 a0 00 0f cmp %g0, %o7
200934c: 88 40 20 00 addx %g0, 0, %g4
/* ensure node is on the same branch direction as parent */
if (dir != pdir) {
2009350: 80 a3 40 04 cmp %o5, %g4
2009354: 02 80 00 46 be 200946c <_RBTree_Validate_insert_unprotected+0x1a0>
2009358: 98 22 c0 0d sub %o3, %o5, %o4
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
200935c: 98 22 c0 04 sub %o3, %g4, %o4
2009360: 9b 2b 20 02 sll %o4, 2, %o5
2009364: 9a 00 40 0d add %g1, %o5, %o5
2009368: de 03 60 04 ld [ %o5 + 4 ], %o7
200936c: 80 a3 e0 00 cmp %o7, 0
2009370: 02 80 00 16 be 20093c8 <_RBTree_Validate_insert_unprotected+0xfc><== NEVER TAKEN
2009374: 89 29 20 02 sll %g4, 2, %g4
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
2009378: 94 03 c0 04 add %o7, %g4, %o2
200937c: d2 02 a0 04 ld [ %o2 + 4 ], %o1
2009380: d2 23 60 04 st %o1, [ %o5 + 4 ]
if (c->child[dir])
2009384: da 02 a0 04 ld [ %o2 + 4 ], %o5
2009388: 80 a3 60 00 cmp %o5, 0
200938c: 22 80 00 05 be,a 20093a0 <_RBTree_Validate_insert_unprotected+0xd4>
2009390: 9a 03 c0 04 add %o7, %g4, %o5
c->child[dir]->parent = the_node;
2009394: c2 23 40 00 st %g1, [ %o5 ]
2009398: c4 00 40 00 ld [ %g1 ], %g2
c->child[dir] = the_node;
200939c: 9a 03 c0 04 add %o7, %g4, %o5
20093a0: c2 23 60 04 st %g1, [ %o5 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20093a4: da 00 a0 04 ld [ %g2 + 4 ], %o5
c->parent = the_node->parent;
20093a8: c4 23 c0 00 st %g2, [ %o7 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20093ac: 9a 18 40 0d xor %g1, %o5, %o5
c->parent = the_node->parent;
the_node->parent = c;
20093b0: de 20 40 00 st %o7, [ %g1 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
20093b4: 80 a0 00 0d cmp %g0, %o5
20093b8: 82 40 20 00 addx %g0, 0, %g1
20093bc: 83 28 60 02 sll %g1, 2, %g1
20093c0: 84 00 80 01 add %g2, %g1, %g2
20093c4: de 20 a0 04 st %o7, [ %g2 + 4 ]
_RBTree_Rotate(the_node->parent, pdir);
the_node = the_node->child[pdir];
20093c8: b0 06 00 04 add %i0, %g4, %i0
20093cc: f0 06 20 04 ld [ %i0 + 4 ], %i0
20093d0: c2 06 00 00 ld [ %i0 ], %g1
}
the_node->parent->color = RBT_BLACK;
20093d4: c0 20 60 10 clr [ %g1 + 0x10 ]
RBTree_Direction dir
)
{
RBTree_Node *c;
if (the_node == NULL) return;
if (the_node->child[(1-dir)] == NULL) return;
20093d8: 88 00 c0 04 add %g3, %g4, %g4
20093dc: c2 01 20 04 ld [ %g4 + 4 ], %g1
20093e0: 80 a0 60 00 cmp %g1, 0
20093e4: 02 bf ff bc be 20092d4 <_RBTree_Validate_insert_unprotected+0x8><== NEVER TAKEN
20093e8: d6 20 e0 10 st %o3, [ %g3 + 0x10 ]
c = the_node->child[(1-dir)];
the_node->child[(1-dir)] = c->child[dir];
20093ec: 99 2b 20 02 sll %o4, 2, %o4
20093f0: 84 00 40 0c add %g1, %o4, %g2
20093f4: de 00 a0 04 ld [ %g2 + 4 ], %o7
20093f8: de 21 20 04 st %o7, [ %g4 + 4 ]
if (c->child[dir])
20093fc: c4 00 a0 04 ld [ %g2 + 4 ], %g2
2009400: 80 a0 a0 00 cmp %g2, 0
2009404: 32 80 00 02 bne,a 200940c <_RBTree_Validate_insert_unprotected+0x140>
2009408: c6 20 80 00 st %g3, [ %g2 ]
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
200940c: c4 00 c0 00 ld [ %g3 ], %g2
the_node->child[(1-dir)] = c->child[dir];
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
2009410: 98 00 40 0c add %g1, %o4, %o4
2009414: c6 23 20 04 st %g3, [ %o4 + 4 ]
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2009418: c8 00 a0 04 ld [ %g2 + 4 ], %g4
c->parent = the_node->parent;
200941c: c4 20 40 00 st %g2, [ %g1 ]
the_node->parent = c;
2009420: c2 20 c0 00 st %g1, [ %g3 ]
if (c->child[dir])
c->child[dir]->parent = the_node;
c->child[dir] = the_node;
the_node->parent->child[the_node != the_node->parent->child[0]] = c;
2009424: 88 19 00 03 xor %g4, %g3, %g4
2009428: 80 a0 00 04 cmp %g0, %g4
200942c: 86 40 20 00 addx %g0, 0, %g3
2009430: 87 28 e0 02 sll %g3, 2, %g3
2009434: 84 00 80 03 add %g2, %g3, %g2
2009438: c2 20 a0 04 st %g1, [ %g2 + 4 ]
ISR_Level level;
_ISR_Disable( level );
_RBTree_Insert_unprotected( tree, node );
_ISR_Enable( level );
}
200943c: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent(
RBTree_Node *the_node
)
{
if (!the_node->parent->parent) return NULL;
2009440: c4 00 40 00 ld [ %g1 ], %g2
2009444: 86 90 a0 00 orcc %g2, 0, %g3
2009448: 32 bf ff a9 bne,a 20092ec <_RBTree_Validate_insert_unprotected+0x20><== ALWAYS TAKEN
200944c: c8 00 60 10 ld [ %g1 + 0x10 ], %g4
/* now rotate grandparent in the other branch direction (toward uncle) */
_RBTree_Rotate(g, (1-pdir));
}
}
if(!the_node->parent->parent) the_node->color = RBT_BLACK;
2009450: c0 26 20 10 clr [ %i0 + 0x10 ] <== NOT EXECUTED
2009454: 81 c7 e0 08 ret <== NOT EXECUTED
2009458: 81 e8 00 00 restore <== NOT EXECUTED
g = the_node->parent->parent;
/* if uncle is red, repaint uncle/parent black and grandparent red */
if(_RBTree_Is_red(u)) {
the_node->parent->color = RBT_BLACK;
u->color = RBT_BLACK;
200945c: c0 21 20 10 clr [ %g4 + 0x10 ]
g->color = RBT_RED;
2009460: da 20 a0 10 st %o5, [ %g2 + 0x10 ]
2009464: 10 bf ff 9c b 20092d4 <_RBTree_Validate_insert_unprotected+0x8>
2009468: b0 10 00 02 mov %g2, %i0
200946c: 10 bf ff da b 20093d4 <_RBTree_Validate_insert_unprotected+0x108>
2009470: 89 2b 60 02 sll %o5, 2, %g4
if(!the_node) return NULL;
if(!(the_node->parent)) return NULL;
if(!(the_node->parent->parent)) return NULL;
if(the_node == the_node->parent->child[RBT_LEFT])
return the_node->parent->child[RBT_RIGHT];
2009474: 10 bf ff a9 b 2009318 <_RBTree_Validate_insert_unprotected+0x4c>
2009478: c8 00 a0 08 ld [ %g2 + 8 ], %g4
02006d18 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
2006d18: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
2006d1c: 03 00 80 6d sethi %hi(0x201b400), %g1
2006d20: 82 10 62 64 or %g1, 0x264, %g1 ! 201b664 <Configuration_RTEMS_API>
2006d24: fa 00 60 2c ld [ %g1 + 0x2c ], %i5
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
2006d28: 80 a7 60 00 cmp %i5, 0
2006d2c: 02 80 00 18 be 2006d8c <_RTEMS_tasks_Initialize_user_tasks_body+0x74>
2006d30: f6 00 60 28 ld [ %g1 + 0x28 ], %i3
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006d34: 80 a6 e0 00 cmp %i3, 0
2006d38: 02 80 00 15 be 2006d8c <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN
2006d3c: b8 10 20 00 clr %i4
return_value = rtems_task_create(
2006d40: d4 07 60 04 ld [ %i5 + 4 ], %o2
2006d44: d0 07 40 00 ld [ %i5 ], %o0
2006d48: d2 07 60 08 ld [ %i5 + 8 ], %o1
2006d4c: d6 07 60 14 ld [ %i5 + 0x14 ], %o3
2006d50: d8 07 60 0c ld [ %i5 + 0xc ], %o4
2006d54: 7f ff ff 70 call 2006b14 <rtems_task_create>
2006d58: 9a 07 bf fc add %fp, -4, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
2006d5c: 94 92 20 00 orcc %o0, 0, %o2
2006d60: 12 80 00 0d bne 2006d94 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2006d64: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
2006d68: d4 07 60 18 ld [ %i5 + 0x18 ], %o2
2006d6c: 40 00 00 0e call 2006da4 <rtems_task_start>
2006d70: d2 07 60 10 ld [ %i5 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2006d74: 94 92 20 00 orcc %o0, 0, %o2
2006d78: 12 80 00 07 bne 2006d94 <_RTEMS_tasks_Initialize_user_tasks_body+0x7c>
2006d7c: b8 07 20 01 inc %i4
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006d80: 80 a7 00 1b cmp %i4, %i3
2006d84: 12 bf ff ef bne 2006d40 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN
2006d88: ba 07 60 1c add %i5, 0x1c, %i5
2006d8c: 81 c7 e0 08 ret
2006d90: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
2006d94: 90 10 20 01 mov 1, %o0
2006d98: 40 00 03 fa call 2007d80 <_Internal_error_Occurred>
2006d9c: 92 10 20 01 mov 1, %o1
0200c588 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200c588: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200c58c: fa 06 21 58 ld [ %i0 + 0x158 ], %i5
if ( !api )
200c590: 80 a7 60 00 cmp %i5, 0
200c594: 02 80 00 1e be 200c60c <_RTEMS_tasks_Post_switch_extension+0x84><== NEVER TAKEN
200c598: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200c59c: 7f ff d7 12 call 20021e4 <sparc_disable_interrupts>
200c5a0: 01 00 00 00 nop
signal_set = asr->signals_posted;
200c5a4: f8 07 60 14 ld [ %i5 + 0x14 ], %i4
asr->signals_posted = 0;
200c5a8: c0 27 60 14 clr [ %i5 + 0x14 ]
_ISR_Enable( level );
200c5ac: 7f ff d7 12 call 20021f4 <sparc_enable_interrupts>
200c5b0: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200c5b4: 80 a7 20 00 cmp %i4, 0
200c5b8: 32 80 00 04 bne,a 200c5c8 <_RTEMS_tasks_Post_switch_extension+0x40>
200c5bc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200c5c0: 81 c7 e0 08 ret
200c5c4: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c5c8: d0 07 60 10 ld [ %i5 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200c5cc: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c5d0: 94 07 bf fc add %fp, -4, %o2
200c5d4: 37 00 00 3f sethi %hi(0xfc00), %i3
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200c5d8: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c5dc: 40 00 07 d6 call 200e534 <rtems_task_mode>
200c5e0: 92 16 e3 ff or %i3, 0x3ff, %o1
(*asr->handler)( signal_set );
200c5e4: c2 07 60 0c ld [ %i5 + 0xc ], %g1
200c5e8: 9f c0 40 00 call %g1
200c5ec: 90 10 00 1c mov %i4, %o0
asr->nest_level -= 1;
200c5f0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c5f4: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200c5f8: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c5fc: 92 16 e3 ff or %i3, 0x3ff, %o1
200c600: 94 07 bf fc add %fp, -4, %o2
200c604: 40 00 07 cc call 200e534 <rtems_task_mode>
200c608: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
200c60c: 81 c7 e0 08 ret
200c610: 81 e8 00 00 restore
0200c4f0 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200c4f0: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
200c4f4: 80 a0 60 00 cmp %g1, 0
200c4f8: 22 80 00 0c be,a 200c528 <_RTEMS_tasks_Switch_extension+0x38>
200c4fc: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
tvp->tval = *tvp->ptr;
200c500: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200c504: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200c508: c8 00 80 00 ld [ %g2 ], %g4
200c50c: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
200c510: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200c514: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200c518: 80 a0 60 00 cmp %g1, 0
200c51c: 32 bf ff fa bne,a 200c504 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN
200c520: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200c524: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
while (tvp) {
200c528: 80 a0 60 00 cmp %g1, 0
200c52c: 02 80 00 0b be 200c558 <_RTEMS_tasks_Switch_extension+0x68>
200c530: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200c534: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200c538: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200c53c: c8 00 80 00 ld [ %g2 ], %g4
200c540: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
200c544: c6 20 80 00 st %g3, [ %g2 ]
tvp = (rtems_task_variable_t *)tvp->next;
200c548: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200c54c: 80 a0 60 00 cmp %g1, 0
200c550: 32 bf ff fa bne,a 200c538 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN
200c554: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED
200c558: 81 c3 e0 08 retl
02007a98 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007a98: 9d e3 bf 98 save %sp, -104, %sp
2007a9c: 11 00 80 77 sethi %hi(0x201dc00), %o0
2007aa0: 92 10 00 18 mov %i0, %o1
2007aa4: 90 12 23 d4 or %o0, 0x3d4, %o0
2007aa8: 40 00 08 27 call 2009b44 <_Objects_Get>
2007aac: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007ab0: c2 07 bf fc ld [ %fp + -4 ], %g1
2007ab4: 80 a0 60 00 cmp %g1, 0
2007ab8: 12 80 00 17 bne 2007b14 <_Rate_monotonic_Timeout+0x7c> <== NEVER TAKEN
2007abc: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007ac0: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007ac4: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007ac8: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007acc: 80 88 80 01 btst %g2, %g1
2007ad0: 22 80 00 08 be,a 2007af0 <_Rate_monotonic_Timeout+0x58>
2007ad4: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2007ad8: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007adc: c2 07 60 08 ld [ %i5 + 8 ], %g1
2007ae0: 80 a0 80 01 cmp %g2, %g1
2007ae4: 02 80 00 1a be 2007b4c <_Rate_monotonic_Timeout+0xb4>
2007ae8: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007aec: c2 07 60 38 ld [ %i5 + 0x38 ], %g1
2007af0: 80 a0 60 01 cmp %g1, 1
2007af4: 02 80 00 0a be 2007b1c <_Rate_monotonic_Timeout+0x84>
2007af8: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007afc: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2007b00: 03 00 80 78 sethi %hi(0x201e000), %g1
2007b04: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 201e140 <_Thread_Dispatch_disable_level>
2007b08: 84 00 bf ff add %g2, -1, %g2
2007b0c: c4 20 61 40 st %g2, [ %g1 + 0x140 ]
return _Thread_Dispatch_disable_level;
2007b10: c2 00 61 40 ld [ %g1 + 0x140 ], %g1
2007b14: 81 c7 e0 08 ret
2007b18: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007b1c: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
2007b20: 90 10 00 1d mov %i5, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007b24: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007b28: 7f ff fe 5a call 2007490 <_Rate_monotonic_Initiate_statistics>
2007b2c: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007b30: c2 07 60 3c ld [ %i5 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007b34: 11 00 80 78 sethi %hi(0x201e000), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007b38: c2 27 60 1c st %g1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007b3c: 90 12 21 fc or %o0, 0x1fc, %o0
2007b40: 40 00 0f e9 call 200bae4 <_Watchdog_Insert>
2007b44: 92 07 60 10 add %i5, 0x10, %o1
2007b48: 30 bf ff ee b,a 2007b00 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007b4c: 40 00 0a df call 200a6c8 <_Thread_Clear_state>
2007b50: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
2007b54: 10 bf ff f5 b 2007b28 <_Rate_monotonic_Timeout+0x90>
2007b58: 90 10 00 1d mov %i5, %o0
02009250 <_Scheduler_simple_Ready_queue_enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
2009250: 03 00 80 71 sethi %hi(0x201c400), %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2009254: c2 00 61 d4 ld [ %g1 + 0x1d4 ], %g1 ! 201c5d4 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
2009258: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
200925c: c2 00 40 00 ld [ %g1 ], %g1
2009260: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
2009264: 80 a0 80 03 cmp %g2, %g3
2009268: 3a 80 00 08 bcc,a 2009288 <_Scheduler_simple_Ready_queue_enqueue_first+0x38>
200926c: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
2009270: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
2009274: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
2009278: 80 a0 80 03 cmp %g2, %g3
200927c: 2a bf ff fe bcs,a 2009274 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN
2009280: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
2009284: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2009288: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
200928c: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2009290: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
2009294: c4 22 00 00 st %g2, [ %o0 ]
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
2009298: 81 c3 e0 08 retl
200929c: d0 20 a0 04 st %o0, [ %g2 + 4 ]
020078b4 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
20078b4: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078b8: 05 00 80 71 sethi %hi(0x201c400), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078bc: 03 00 80 6d sethi %hi(0x201b400), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078c0: c6 00 a0 0c ld [ %g2 + 0xc ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078c4: c2 00 62 28 ld [ %g1 + 0x228 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078c8: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078cc: bb 28 60 07 sll %g1, 7, %i5
20078d0: 89 28 60 02 sll %g1, 2, %g4
20078d4: 88 27 40 04 sub %i5, %g4, %g4
20078d8: 82 01 00 01 add %g4, %g1, %g1
20078dc: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
20078e0: 92 07 bf f8 add %fp, -8, %o1
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20078e4: c6 20 a0 0c st %g3, [ %g2 + 0xc ]
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20078e8: c2 27 bf fc st %g1, [ %fp + -4 ]
20078ec: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
20078f0: 11 00 80 70 sethi %hi(0x201c000), %o0
20078f4: 40 00 09 2e call 2009dac <_Timespec_Add_to>
20078f8: 90 12 23 7c or %o0, 0x37c, %o0 ! 201c37c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
20078fc: 92 07 bf f8 add %fp, -8, %o1
2007900: 11 00 80 70 sethi %hi(0x201c000), %o0
2007904: 40 00 09 2a call 2009dac <_Timespec_Add_to>
2007908: 90 12 23 8c or %o0, 0x38c, %o0 ! 201c38c <_TOD_Now>
while ( seconds ) {
200790c: ba 92 20 00 orcc %o0, 0, %i5
2007910: 02 80 00 08 be 2007930 <_TOD_Tickle_ticks+0x7c>
2007914: 39 00 80 70 sethi %hi(0x201c000), %i4
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
2007918: b8 17 23 b0 or %i4, 0x3b0, %i4 ! 201c3b0 <_Watchdog_Seconds_chain>
200791c: 40 00 0a ab call 200a3c8 <_Watchdog_Tickle>
2007920: 90 10 00 1c mov %i4, %o0
2007924: ba 87 7f ff addcc %i5, -1, %i5
2007928: 12 bf ff fd bne 200791c <_TOD_Tickle_ticks+0x68> <== NEVER TAKEN
200792c: 01 00 00 00 nop
2007930: 81 c7 e0 08 ret
2007934: 81 e8 00 00 restore
020074e8 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20074e8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
20074ec: 03 00 80 77 sethi %hi(0x201dc00), %g1
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
20074f0: ba 10 20 00 clr %i5
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
20074f4: 80 a6 20 00 cmp %i0, 0
20074f8: 02 80 00 2c be 20075a8 <_TOD_Validate+0xc0> <== NEVER TAKEN
20074fc: d2 00 61 38 ld [ %g1 + 0x138 ], %o1
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007500: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007504: 40 00 48 f3 call 20198d0 <.udiv>
2007508: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200750c: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
2007510: 80 a2 00 01 cmp %o0, %g1
2007514: 28 80 00 26 bleu,a 20075ac <_TOD_Validate+0xc4>
2007518: b0 0f 60 01 and %i5, 1, %i0
(the_tod->ticks >= ticks_per_second) ||
200751c: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2007520: 80 a0 60 3b cmp %g1, 0x3b
2007524: 38 80 00 22 bgu,a 20075ac <_TOD_Validate+0xc4>
2007528: b0 0f 60 01 and %i5, 1, %i0
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
200752c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
2007530: 80 a0 60 3b cmp %g1, 0x3b
2007534: 38 80 00 1e bgu,a 20075ac <_TOD_Validate+0xc4>
2007538: b0 0f 60 01 and %i5, 1, %i0
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
200753c: c2 06 20 0c ld [ %i0 + 0xc ], %g1
2007540: 80 a0 60 17 cmp %g1, 0x17
2007544: 38 80 00 1a bgu,a 20075ac <_TOD_Validate+0xc4>
2007548: b0 0f 60 01 and %i5, 1, %i0
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
200754c: c2 06 20 04 ld [ %i0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2007550: 80 a0 60 00 cmp %g1, 0
2007554: 02 80 00 15 be 20075a8 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007558: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
200755c: 38 80 00 14 bgu,a 20075ac <_TOD_Validate+0xc4>
2007560: b0 0f 60 01 and %i5, 1, %i0
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007564: c4 06 00 00 ld [ %i0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2007568: 80 a0 a7 c3 cmp %g2, 0x7c3
200756c: 28 80 00 10 bleu,a 20075ac <_TOD_Validate+0xc4>
2007570: b0 0f 60 01 and %i5, 1, %i0
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007574: c6 06 20 08 ld [ %i0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007578: 80 a0 e0 00 cmp %g3, 0
200757c: 02 80 00 0b be 20075a8 <_TOD_Validate+0xc0> <== NEVER TAKEN
2007580: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007584: 32 80 00 0c bne,a 20075b4 <_TOD_Validate+0xcc>
2007588: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
200758c: 82 00 60 0d add %g1, 0xd, %g1
2007590: 05 00 80 72 sethi %hi(0x201c800), %g2
2007594: 83 28 60 02 sll %g1, 2, %g1
2007598: 84 10 a2 48 or %g2, 0x248, %g2
200759c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20075a0: 80 a0 40 03 cmp %g1, %g3
20075a4: ba 60 3f ff subx %g0, -1, %i5
if ( the_tod->day > days_in_month )
return false;
return true;
}
20075a8: b0 0f 60 01 and %i5, 1, %i0
20075ac: 81 c7 e0 08 ret
20075b0: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20075b4: 05 00 80 72 sethi %hi(0x201c800), %g2
20075b8: 84 10 a2 48 or %g2, 0x248, %g2 ! 201ca48 <_TOD_Days_per_month>
20075bc: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20075c0: 80 a0 40 03 cmp %g1, %g3
20075c4: 10 bf ff f9 b 20075a8 <_TOD_Validate+0xc0>
20075c8: ba 60 3f ff subx %g0, -1, %i5
02008db8 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2008db8: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
2008dbc: f8 06 20 10 ld [ %i0 + 0x10 ], %i4
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2008dc0: 40 00 03 9f call 2009c3c <_Thread_Set_transient>
2008dc4: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2008dc8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2008dcc: 80 a0 40 19 cmp %g1, %i1
2008dd0: 02 80 00 05 be 2008de4 <_Thread_Change_priority+0x2c>
2008dd4: ba 10 00 18 mov %i0, %i5
_Thread_Set_priority( the_thread, new_priority );
2008dd8: 90 10 00 18 mov %i0, %o0
2008ddc: 40 00 03 7e call 2009bd4 <_Thread_Set_priority>
2008de0: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
2008de4: 7f ff e5 00 call 20021e4 <sparc_disable_interrupts>
2008de8: 01 00 00 00 nop
2008dec: b2 10 00 08 mov %o0, %i1
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2008df0: f6 07 60 10 ld [ %i5 + 0x10 ], %i3
if ( state != STATES_TRANSIENT ) {
2008df4: 80 a6 e0 04 cmp %i3, 4
2008df8: 02 80 00 18 be 2008e58 <_Thread_Change_priority+0xa0>
2008dfc: 80 8f 20 04 btst 4, %i4
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2008e00: 02 80 00 0b be 2008e2c <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
2008e04: 82 0e ff fb and %i3, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
2008e08: 7f ff e4 fb call 20021f4 <sparc_enable_interrupts> <== NOT EXECUTED
2008e0c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
2008e10: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
2008e14: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008e18: 80 8e c0 01 btst %i3, %g1 <== NOT EXECUTED
2008e1c: 32 80 00 0d bne,a 2008e50 <_Thread_Change_priority+0x98> <== NOT EXECUTED
2008e20: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED
2008e24: 81 c7 e0 08 ret
2008e28: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008e2c: c2 27 60 10 st %g1, [ %i5 + 0x10 ]
_ISR_Enable( level );
2008e30: 7f ff e4 f1 call 20021f4 <sparc_enable_interrupts>
2008e34: 90 10 00 19 mov %i1, %o0
2008e38: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008e3c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008e40: 80 8e c0 01 btst %i3, %g1
2008e44: 02 bf ff f8 be 2008e24 <_Thread_Change_priority+0x6c>
2008e48: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2008e4c: f0 07 60 44 ld [ %i5 + 0x44 ], %i0
2008e50: 40 00 03 30 call 2009b10 <_Thread_queue_Requeue>
2008e54: 93 e8 00 1d restore %g0, %i5, %o1
2008e58: 39 00 80 6d sethi %hi(0x201b400), %i4
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008e5c: 12 80 00 08 bne 2008e7c <_Thread_Change_priority+0xc4> <== NEVER TAKEN
2008e60: b8 17 23 04 or %i4, 0x304, %i4 ! 201b704 <_Scheduler>
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
2008e64: 80 a6 a0 00 cmp %i2, 0
2008e68: 02 80 00 1b be 2008ed4 <_Thread_Change_priority+0x11c>
2008e6c: c0 27 60 10 clr [ %i5 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2008e70: c2 07 20 28 ld [ %i4 + 0x28 ], %g1
2008e74: 9f c0 40 00 call %g1
2008e78: 90 10 00 1d mov %i5, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008e7c: 7f ff e4 de call 20021f4 <sparc_enable_interrupts>
2008e80: 90 10 00 19 mov %i1, %o0
2008e84: 7f ff e4 d8 call 20021e4 <sparc_disable_interrupts>
2008e88: 01 00 00 00 nop
2008e8c: b0 10 00 08 mov %o0, %i0
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2008e90: c2 07 20 08 ld [ %i4 + 8 ], %g1
2008e94: 9f c0 40 00 call %g1
2008e98: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2008e9c: 03 00 80 71 sethi %hi(0x201c400), %g1
2008ea0: 82 10 61 2c or %g1, 0x12c, %g1 ! 201c52c <_Per_CPU_Information>
2008ea4: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
2008ea8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2008eac: 80 a0 80 03 cmp %g2, %g3
2008eb0: 02 80 00 07 be 2008ecc <_Thread_Change_priority+0x114>
2008eb4: 01 00 00 00 nop
2008eb8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
2008ebc: 80 a0 a0 00 cmp %g2, 0
2008ec0: 02 80 00 03 be 2008ecc <_Thread_Change_priority+0x114>
2008ec4: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
2008ec8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
2008ecc: 7f ff e4 ca call 20021f4 <sparc_enable_interrupts>
2008ed0: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
2008ed4: c2 07 20 24 ld [ %i4 + 0x24 ], %g1
2008ed8: 9f c0 40 00 call %g1
2008edc: 90 10 00 1d mov %i5, %o0
2008ee0: 30 bf ff e7 b,a 2008e7c <_Thread_Change_priority+0xc4>
020090fc <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
20090fc: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009100: 90 10 00 18 mov %i0, %o0
2009104: 40 00 00 77 call 20092e0 <_Thread_Get>
2009108: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200910c: c2 07 bf fc ld [ %fp + -4 ], %g1
2009110: 80 a0 60 00 cmp %g1, 0
2009114: 12 80 00 09 bne 2009138 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN
2009118: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
200911c: 7f ff ff 72 call 2008ee4 <_Thread_Clear_state>
2009120: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009124: 03 00 80 70 sethi %hi(0x201c000), %g1
2009128: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 201c300 <_Thread_Dispatch_disable_level>
200912c: 84 00 bf ff add %g2, -1, %g2
2009130: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
return _Thread_Dispatch_disable_level;
2009134: c2 00 63 00 ld [ %g1 + 0x300 ], %g1
2009138: 81 c7 e0 08 ret
200913c: 81 e8 00 00 restore
02009140 <_Thread_Dispatch>:
* INTERRUPT LATENCY:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2009140: 9d e3 bf 90 save %sp, -112, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2009144: 21 00 80 70 sethi %hi(0x201c000), %l0
2009148: c2 04 23 00 ld [ %l0 + 0x300 ], %g1 ! 201c300 <_Thread_Dispatch_disable_level>
200914c: 82 00 60 01 inc %g1
2009150: c2 24 23 00 st %g1, [ %l0 + 0x300 ]
return _Thread_Dispatch_disable_level;
2009154: c2 04 23 00 ld [ %l0 + 0x300 ], %g1
#endif
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
2009158: 39 00 80 71 sethi %hi(0x201c400), %i4
200915c: b8 17 21 2c or %i4, 0x12c, %i4 ! 201c52c <_Per_CPU_Information>
_ISR_Disable( level );
2009160: 7f ff e4 21 call 20021e4 <sparc_disable_interrupts>
2009164: fa 07 20 0c ld [ %i4 + 0xc ], %i5
while ( _Thread_Dispatch_necessary == true ) {
2009168: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1
200916c: 80 a0 60 00 cmp %g1, 0
2009170: 02 80 00 48 be 2009290 <_Thread_Dispatch+0x150>
2009174: 01 00 00 00 nop
heir = _Thread_Heir;
2009178: f6 07 20 10 ld [ %i4 + 0x10 ], %i3
_Thread_Dispatch_necessary = false;
200917c: c0 2f 20 18 clrb [ %i4 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2009180: 80 a7 40 1b cmp %i5, %i3
2009184: 02 80 00 43 be 2009290 <_Thread_Dispatch+0x150>
2009188: f6 27 20 0c st %i3, [ %i4 + 0xc ]
200918c: 31 00 80 70 sethi %hi(0x201c000), %i0
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2009190: 23 00 80 70 sethi %hi(0x201c000), %l1
2009194: b0 16 23 88 or %i0, 0x388, %i0
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2009198: b2 07 20 1c add %i4, 0x1c, %i1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200919c: 10 80 00 37 b 2009278 <_Thread_Dispatch+0x138>
20091a0: 35 00 80 70 sethi %hi(0x201c000), %i2
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
20091a4: 7f ff e4 14 call 20021f4 <sparc_enable_interrupts>
20091a8: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
20091ac: 40 00 0e 0e call 200c9e4 <_TOD_Get_uptime>
20091b0: 90 07 bf f0 add %fp, -16, %o0
_Timestamp_Subtract(
20091b4: 90 10 00 19 mov %i1, %o0
20091b8: 92 07 bf f0 add %fp, -16, %o1
20091bc: 40 00 03 15 call 2009e10 <_Timespec_Subtract>
20091c0: 94 07 bf f8 add %fp, -8, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
20091c4: 90 07 60 84 add %i5, 0x84, %o0
20091c8: 40 00 02 f9 call 2009dac <_Timespec_Add_to>
20091cc: 92 07 bf f8 add %fp, -8, %o1
_Thread_Time_of_last_context_switch = uptime;
20091d0: c4 07 bf f0 ld [ %fp + -16 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20091d4: c2 06 00 00 ld [ %i0 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
20091d8: c4 27 20 1c st %g2, [ %i4 + 0x1c ]
20091dc: c4 07 bf f4 ld [ %fp + -12 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
20091e0: 80 a0 60 00 cmp %g1, 0
20091e4: 02 80 00 06 be 20091fc <_Thread_Dispatch+0xbc> <== NEVER TAKEN
20091e8: c4 27 20 20 st %g2, [ %i4 + 0x20 ]
executing->libc_reent = *_Thread_libc_reent;
20091ec: c4 00 40 00 ld [ %g1 ], %g2
20091f0: c4 27 61 54 st %g2, [ %i5 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
20091f4: c4 06 e1 54 ld [ %i3 + 0x154 ], %g2
20091f8: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
20091fc: 90 10 00 1d mov %i5, %o0
2009200: 40 00 03 c8 call 200a120 <_User_extensions_Thread_switch>
2009204: 92 10 00 1b mov %i3, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2009208: 90 07 60 c8 add %i5, 0xc8, %o0
200920c: 40 00 05 0c call 200a63c <_CPU_Context_switch>
2009210: 92 06 e0 c8 add %i3, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2009214: c2 07 61 50 ld [ %i5 + 0x150 ], %g1
2009218: 80 a0 60 00 cmp %g1, 0
200921c: 02 80 00 0c be 200924c <_Thread_Dispatch+0x10c>
2009220: d0 06 a3 84 ld [ %i2 + 0x384 ], %o0
2009224: 80 a7 40 08 cmp %i5, %o0
2009228: 02 80 00 09 be 200924c <_Thread_Dispatch+0x10c>
200922c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2009230: 02 80 00 04 be 2009240 <_Thread_Dispatch+0x100>
2009234: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2009238: 40 00 04 c7 call 200a554 <_CPU_Context_save_fp>
200923c: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2009240: 40 00 04 e2 call 200a5c8 <_CPU_Context_restore_fp>
2009244: 90 07 61 50 add %i5, 0x150, %o0
_Thread_Allocated_fp = executing;
2009248: fa 26 a3 84 st %i5, [ %i2 + 0x384 ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
200924c: 7f ff e3 e6 call 20021e4 <sparc_disable_interrupts>
2009250: fa 07 20 0c ld [ %i4 + 0xc ], %i5
/*
* Now determine if we need to perform a dispatch on the current CPU.
*/
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2009254: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1
2009258: 80 a0 60 00 cmp %g1, 0
200925c: 02 80 00 0d be 2009290 <_Thread_Dispatch+0x150>
2009260: 01 00 00 00 nop
heir = _Thread_Heir;
2009264: f6 07 20 10 ld [ %i4 + 0x10 ], %i3
_Thread_Dispatch_necessary = false;
2009268: c0 2f 20 18 clrb [ %i4 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
200926c: 80 a6 c0 1d cmp %i3, %i5
2009270: 02 80 00 08 be 2009290 <_Thread_Dispatch+0x150> <== NEVER TAKEN
2009274: f6 27 20 0c st %i3, [ %i4 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2009278: c2 06 e0 7c ld [ %i3 + 0x7c ], %g1
200927c: 80 a0 60 01 cmp %g1, 1
2009280: 12 bf ff c9 bne 20091a4 <_Thread_Dispatch+0x64>
2009284: c2 04 62 64 ld [ %l1 + 0x264 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2009288: 10 bf ff c7 b 20091a4 <_Thread_Dispatch+0x64>
200928c: c2 26 e0 78 st %g1, [ %i3 + 0x78 ]
* This routine sets thread dispatch level to the
* value passed in.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value)
{
_Thread_Dispatch_disable_level = value;
2009290: c0 24 23 00 clr [ %l0 + 0x300 ]
}
post_switch:
_Thread_Dispatch_set_disable_level( 0 );
_ISR_Enable( level );
2009294: 7f ff e3 d8 call 20021f4 <sparc_enable_interrupts>
2009298: 01 00 00 00 nop
_API_extensions_Run_postswitch();
200929c: 7f ff f7 f1 call 2007260 <_API_extensions_Run_postswitch>
20092a0: 01 00 00 00 nop
}
20092a4: 81 c7 e0 08 ret
20092a8: 81 e8 00 00 restore
0200e8d8 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200e8d8: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200e8dc: 03 00 80 71 sethi %hi(0x201c400), %g1
200e8e0: fa 00 61 38 ld [ %g1 + 0x138 ], %i5 ! 201c538 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e8e4: 3f 00 80 3a sethi %hi(0x200e800), %i7
200e8e8: be 17 e0 d8 or %i7, 0xd8, %i7 ! 200e8d8 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e8ec: d0 07 60 ac ld [ %i5 + 0xac ], %o0
_ISR_Set_level(level);
200e8f0: 7f ff ce 41 call 20021f4 <sparc_enable_interrupts>
200e8f4: 91 2a 20 08 sll %o0, 8, %o0
doneConstructors = 1;
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e8f8: c4 07 61 50 ld [ %i5 + 0x150 ], %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e8fc: 03 00 80 6f sethi %hi(0x201bc00), %g1
doneConstructors = 1;
200e900: 86 10 20 01 mov 1, %g3
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e904: f6 08 63 c0 ldub [ %g1 + 0x3c0 ], %i3
doneConstructors = 1;
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e908: 80 a0 a0 00 cmp %g2, 0
200e90c: 02 80 00 0c be 200e93c <_Thread_Handler+0x64>
200e910: c6 28 63 c0 stb %g3, [ %g1 + 0x3c0 ]
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e914: 39 00 80 70 sethi %hi(0x201c000), %i4
200e918: d0 07 23 84 ld [ %i4 + 0x384 ], %o0 ! 201c384 <_Thread_Allocated_fp>
200e91c: 80 a7 40 08 cmp %i5, %o0
200e920: 02 80 00 07 be 200e93c <_Thread_Handler+0x64>
200e924: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e928: 22 80 00 05 be,a 200e93c <_Thread_Handler+0x64>
200e92c: fa 27 23 84 st %i5, [ %i4 + 0x384 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e930: 7f ff ef 09 call 200a554 <_CPU_Context_save_fp>
200e934: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200e938: fa 27 23 84 st %i5, [ %i4 + 0x384 ]
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200e93c: 7f ff ed 77 call 2009f18 <_User_extensions_Thread_begin>
200e940: 90 10 00 1d mov %i5, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e944: 7f ff ea 5a call 20092ac <_Thread_Enable_dispatch>
200e948: b7 2e e0 18 sll %i3, 0x18, %i3
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200e94c: 80 a6 e0 00 cmp %i3, 0
200e950: 02 80 00 0c be 200e980 <_Thread_Handler+0xa8>
200e954: 01 00 00 00 nop
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e958: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
200e95c: 80 a0 60 00 cmp %g1, 0
200e960: 22 80 00 0c be,a 200e990 <_Thread_Handler+0xb8> <== ALWAYS TAKEN
200e964: c2 07 60 90 ld [ %i5 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200e968: 7f ff ed 80 call 2009f68 <_User_extensions_Thread_exitted>
200e96c: 90 10 00 1d mov %i5, %o0
_Internal_error_Occurred(
200e970: 90 10 20 00 clr %o0
200e974: 92 10 20 01 mov 1, %o1
200e978: 7f ff e5 02 call 2007d80 <_Internal_error_Occurred>
200e97c: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200e980: 40 00 33 16 call 201b5d8 <_init>
200e984: 01 00 00 00 nop
#endif
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e988: 10 bf ff f5 b 200e95c <_Thread_Handler+0x84>
200e98c: c2 07 60 94 ld [ %i5 + 0x94 ], %g1
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e990: 9f c0 40 00 call %g1
200e994: d0 07 60 9c ld [ %i5 + 0x9c ], %o0
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200e998: 10 bf ff f4 b 200e968 <_Thread_Handler+0x90>
200e99c: d0 27 60 28 st %o0, [ %i5 + 0x28 ]
02009390 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2009390: 9d e3 bf a0 save %sp, -96, %sp
2009394: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2009398: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2
200939c: e0 00 40 00 ld [ %g1 ], %l0
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
20093a0: c0 26 61 58 clr [ %i1 + 0x158 ]
20093a4: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
20093a8: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
20093ac: 90 10 00 19 mov %i1, %o0
20093b0: 40 00 02 32 call 2009c78 <_Thread_Stack_Allocate>
20093b4: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
20093b8: 80 a2 00 1b cmp %o0, %i3
20093bc: 0a 80 00 4b bcs 20094e8 <_Thread_Initialize+0x158>
20093c0: 80 a2 20 00 cmp %o0, 0
20093c4: 02 80 00 49 be 20094e8 <_Thread_Initialize+0x158> <== NEVER TAKEN
20093c8: 80 a7 20 00 cmp %i4, 0
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
20093cc: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
20093d0: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
20093d4: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
20093d8: 12 80 00 48 bne 20094f8 <_Thread_Initialize+0x168>
20093dc: b6 10 20 00 clr %i3
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20093e0: 23 00 80 70 sethi %hi(0x201c000), %l1
20093e4: c2 04 63 94 ld [ %l1 + 0x394 ], %g1 ! 201c394 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
20093e8: f6 26 61 50 st %i3, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
20093ec: f6 26 60 bc st %i3, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20093f0: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
20093f4: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
20093f8: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20093fc: 80 a0 60 00 cmp %g1, 0
2009400: 12 80 00 46 bne 2009518 <_Thread_Initialize+0x188>
2009404: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2009408: c0 26 61 60 clr [ %i1 + 0x160 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200940c: b8 10 20 00 clr %i4
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2009410: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2009414: 03 00 80 6d sethi %hi(0x201b400), %g1
2009418: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
200941c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
2009420: c2 00 63 1c ld [ %g1 + 0x31c ], %g1
2009424: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2009428: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
200942c: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2009430: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2009434: 84 10 20 01 mov 1, %g2
the_thread->Wait.queue = NULL;
2009438: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
200943c: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2009440: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2009444: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2009448: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
200944c: 9f c0 40 00 call %g1
2009450: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2009454: b4 92 20 00 orcc %o0, 0, %i2
2009458: 22 80 00 13 be,a 20094a4 <_Thread_Initialize+0x114>
200945c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2009460: 90 10 00 19 mov %i1, %o0
2009464: 40 00 01 dc call 2009bd4 <_Thread_Set_priority>
2009468: 92 10 00 1d mov %i5, %o1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200946c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2009470: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2009474: c0 26 60 84 clr [ %i1 + 0x84 ]
2009478: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200947c: 83 28 60 02 sll %g1, 2, %g1
2009480: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2009484: e0 26 60 0c st %l0, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2009488: 90 10 00 19 mov %i1, %o0
200948c: 40 00 02 de call 200a004 <_User_extensions_Thread_create>
2009490: b0 10 20 01 mov 1, %i0
if ( extension_status )
2009494: 80 8a 20 ff btst 0xff, %o0
2009498: 32 80 00 12 bne,a 20094e0 <_Thread_Initialize+0x150>
200949c: b0 0e 20 01 and %i0, 1, %i0
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
20094a0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
20094a4: 40 00 04 17 call 200a500 <_Workspace_Free>
20094a8: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
20094ac: 40 00 04 15 call 200a500 <_Workspace_Free>
20094b0: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
20094b4: 40 00 04 13 call 200a500 <_Workspace_Free>
20094b8: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
20094bc: 40 00 04 11 call 200a500 <_Workspace_Free>
20094c0: 90 10 00 1c mov %i4, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
20094c4: 40 00 04 0f call 200a500 <_Workspace_Free>
20094c8: 90 10 00 1b mov %i3, %o0
#endif
_Workspace_Free( sched );
20094cc: 40 00 04 0d call 200a500 <_Workspace_Free>
20094d0: 90 10 00 1a mov %i2, %o0
_Thread_Stack_Free( the_thread );
20094d4: 40 00 02 04 call 2009ce4 <_Thread_Stack_Free>
20094d8: 90 10 00 19 mov %i1, %o0
return false;
}
20094dc: b0 0e 20 01 and %i0, 1, %i0
20094e0: 81 c7 e0 08 ret
20094e4: 81 e8 00 00 restore
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
if ( !actual_stack_size || actual_stack_size < stack_size )
return false; /* stack allocation failed */
20094e8: b0 10 20 00 clr %i0
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
20094ec: b0 0e 20 01 and %i0, 1, %i0
20094f0: 81 c7 e0 08 ret
20094f4: 81 e8 00 00 restore
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
20094f8: 40 00 03 fa call 200a4e0 <_Workspace_Allocate>
20094fc: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2009500: b6 92 20 00 orcc %o0, 0, %i3
2009504: 32 bf ff b8 bne,a 20093e4 <_Thread_Initialize+0x54>
2009508: 23 00 80 70 sethi %hi(0x201c000), %l1
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
200950c: b8 10 20 00 clr %i4
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
2009510: 10 bf ff e4 b 20094a0 <_Thread_Initialize+0x110>
2009514: b4 10 20 00 clr %i2
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
extensions_area = _Workspace_Allocate(
2009518: 82 00 60 01 inc %g1
200951c: 40 00 03 f1 call 200a4e0 <_Workspace_Allocate>
2009520: 91 28 60 02 sll %g1, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2009524: b8 92 20 00 orcc %o0, 0, %i4
2009528: 02 80 00 10 be 2009568 <_Thread_Initialize+0x1d8>
200952c: 86 10 00 1c mov %i4, %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2009530: f8 26 61 60 st %i4, [ %i1 + 0x160 ]
2009534: c8 04 63 94 ld [ %l1 + 0x394 ], %g4
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2009538: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200953c: 10 80 00 03 b 2009548 <_Thread_Initialize+0x1b8>
2009540: 82 10 20 00 clr %g1
2009544: c6 06 61 60 ld [ %i1 + 0x160 ], %g3
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
2009548: 85 28 a0 02 sll %g2, 2, %g2
200954c: c0 20 c0 02 clr [ %g3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2009550: 82 00 60 01 inc %g1
2009554: 80 a0 40 04 cmp %g1, %g4
2009558: 08 bf ff fb bleu 2009544 <_Thread_Initialize+0x1b4>
200955c: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2009560: 10 bf ff ad b 2009414 <_Thread_Initialize+0x84>
2009564: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
2009568: 10 bf ff ce b 20094a0 <_Thread_Initialize+0x110>
200956c: b4 10 20 00 clr %i2
02009b10 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2009b10: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2009b14: 80 a6 20 00 cmp %i0, 0
2009b18: 02 80 00 13 be 2009b64 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
2009b1c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2009b20: f8 06 20 34 ld [ %i0 + 0x34 ], %i4
2009b24: 80 a7 20 01 cmp %i4, 1
2009b28: 02 80 00 04 be 2009b38 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
2009b2c: 01 00 00 00 nop
2009b30: 81 c7 e0 08 ret <== NOT EXECUTED
2009b34: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2009b38: 7f ff e1 ab call 20021e4 <sparc_disable_interrupts>
2009b3c: 01 00 00 00 nop
2009b40: ba 10 00 08 mov %o0, %i5
2009b44: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
2009b48: 03 00 00 ef sethi %hi(0x3bc00), %g1
2009b4c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2009b50: 80 88 80 01 btst %g2, %g1
2009b54: 12 80 00 06 bne 2009b6c <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
2009b58: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
2009b5c: 7f ff e1 a6 call 20021f4 <sparc_enable_interrupts>
2009b60: 90 10 00 1d mov %i5, %o0
2009b64: 81 c7 e0 08 ret
2009b68: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2009b6c: 92 10 00 19 mov %i1, %o1
2009b70: 94 10 20 01 mov 1, %o2
2009b74: 40 00 0d 1f call 200cff0 <_Thread_queue_Extract_priority_helper>
2009b78: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2009b7c: 90 10 00 18 mov %i0, %o0
2009b80: 92 10 00 19 mov %i1, %o1
2009b84: 7f ff ff 35 call 2009858 <_Thread_queue_Enqueue_priority>
2009b88: 94 07 bf fc add %fp, -4, %o2
2009b8c: 30 bf ff f4 b,a 2009b5c <_Thread_queue_Requeue+0x4c>
02009b90 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2009b90: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009b94: 90 10 00 18 mov %i0, %o0
2009b98: 7f ff fd d2 call 20092e0 <_Thread_Get>
2009b9c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2009ba0: c2 07 bf fc ld [ %fp + -4 ], %g1
2009ba4: 80 a0 60 00 cmp %g1, 0
2009ba8: 12 80 00 09 bne 2009bcc <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN
2009bac: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
2009bb0: 40 00 0d 49 call 200d0d4 <_Thread_queue_Process_timeout>
2009bb4: 01 00 00 00 nop
*
* This routine decrements the thread dispatch level.
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void)
{
_Thread_Dispatch_disable_level--;
2009bb8: 03 00 80 70 sethi %hi(0x201c000), %g1
2009bbc: c4 00 63 00 ld [ %g1 + 0x300 ], %g2 ! 201c300 <_Thread_Dispatch_disable_level>
2009bc0: 84 00 bf ff add %g2, -1, %g2
2009bc4: c4 20 63 00 st %g2, [ %g1 + 0x300 ]
return _Thread_Dispatch_disable_level;
2009bc8: c2 00 63 00 ld [ %g1 + 0x300 ], %g1
2009bcc: 81 c7 e0 08 ret
2009bd0: 81 e8 00 00 restore
0201648c <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
201648c: 9d e3 bf 88 save %sp, -120, %sp
2016490: 23 00 80 e7 sethi %hi(0x2039c00), %l1
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016494: a6 07 bf e8 add %fp, -24, %l3
2016498: b2 07 bf ec add %fp, -20, %i1
201649c: b6 07 bf f4 add %fp, -12, %i3
20164a0: a4 07 bf f8 add %fp, -8, %l2
20164a4: 21 00 80 e7 sethi %hi(0x2039c00), %l0
20164a8: 29 00 80 e7 sethi %hi(0x2039c00), %l4
20164ac: f2 27 bf e8 st %i1, [ %fp + -24 ]
head->previous = NULL;
20164b0: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
20164b4: e6 27 bf f0 st %l3, [ %fp + -16 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20164b8: e4 27 bf f4 st %l2, [ %fp + -12 ]
head->previous = NULL;
20164bc: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
20164c0: f6 27 bf fc st %i3, [ %fp + -4 ]
20164c4: a2 14 62 dc or %l1, 0x2dc, %l1
20164c8: b8 06 20 30 add %i0, 0x30, %i4
20164cc: a0 14 22 5c or %l0, 0x25c, %l0
20164d0: b4 06 20 68 add %i0, 0x68, %i2
20164d4: a8 15 21 d0 or %l4, 0x1d0, %l4
20164d8: ae 06 20 08 add %i0, 8, %l7
20164dc: ac 06 20 40 add %i0, 0x40, %l6
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
20164e0: aa 10 20 01 mov 1, %l5
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
20164e4: e6 26 20 78 st %l3, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20164e8: c2 04 40 00 ld [ %l1 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
20164ec: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20164f0: 94 10 00 1b mov %i3, %o2
20164f4: 90 10 00 1c mov %i4, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20164f8: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20164fc: 40 00 12 c3 call 201b008 <_Watchdog_Adjust_to_chain>
2016500: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016504: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016508: fa 04 00 00 ld [ %l0 ], %i5
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
201650c: 80 a7 40 0a cmp %i5, %o2
2016510: 18 80 00 2e bgu 20165c8 <_Timer_server_Body+0x13c>
2016514: 92 27 40 0a sub %i5, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
2016518: 80 a7 40 0a cmp %i5, %o2
201651c: 0a 80 00 2f bcs 20165d8 <_Timer_server_Body+0x14c>
2016520: 90 10 00 1a mov %i2, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
2016524: fa 26 20 74 st %i5, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016528: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
201652c: 40 00 03 06 call 2017144 <_Chain_Get>
2016530: 01 00 00 00 nop
if ( timer == NULL ) {
2016534: 92 92 20 00 orcc %o0, 0, %o1
2016538: 02 80 00 10 be 2016578 <_Timer_server_Body+0xec>
201653c: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016540: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2016544: 80 a0 60 01 cmp %g1, 1
2016548: 02 80 00 28 be 20165e8 <_Timer_server_Body+0x15c>
201654c: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016550: 12 bf ff f6 bne 2016528 <_Timer_server_Body+0x9c> <== NEVER TAKEN
2016554: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016558: 40 00 12 dd call 201b0cc <_Watchdog_Insert>
201655c: 90 10 00 1a mov %i2, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016560: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016564: 40 00 02 f8 call 2017144 <_Chain_Get>
2016568: 01 00 00 00 nop
if ( timer == NULL ) {
201656c: 92 92 20 00 orcc %o0, 0, %o1
2016570: 32 bf ff f5 bne,a 2016544 <_Timer_server_Body+0xb8> <== NEVER TAKEN
2016574: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016578: 7f ff e2 55 call 200eecc <sparc_disable_interrupts>
201657c: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2016580: c2 07 bf e8 ld [ %fp + -24 ], %g1
2016584: 80 a0 40 19 cmp %g1, %i1
2016588: 02 80 00 1c be 20165f8 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
201658c: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2016590: 7f ff e2 53 call 200eedc <sparc_enable_interrupts> <== NOT EXECUTED
2016594: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016598: c2 04 40 00 ld [ %l1 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201659c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20165a0: 94 10 00 1b mov %i3, %o2 <== NOT EXECUTED
20165a4: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20165a8: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20165ac: 40 00 12 97 call 201b008 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
20165b0: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
20165b4: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20165b8: fa 04 00 00 ld [ %l0 ], %i5 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
20165bc: 80 a7 40 0a cmp %i5, %o2 <== NOT EXECUTED
20165c0: 08 bf ff d7 bleu 201651c <_Timer_server_Body+0x90> <== NOT EXECUTED
20165c4: 92 27 40 0a sub %i5, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20165c8: 90 10 00 1a mov %i2, %o0
20165cc: 40 00 12 8f call 201b008 <_Watchdog_Adjust_to_chain>
20165d0: 94 10 00 1b mov %i3, %o2
20165d4: 30 bf ff d4 b,a 2016524 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20165d8: 92 10 20 01 mov 1, %o1
20165dc: 40 00 12 5c call 201af4c <_Watchdog_Adjust>
20165e0: 94 22 80 1d sub %o2, %i5, %o2
20165e4: 30 bf ff d0 b,a 2016524 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
20165e8: 90 10 00 1c mov %i4, %o0
20165ec: 40 00 12 b8 call 201b0cc <_Watchdog_Insert>
20165f0: 92 02 60 10 add %o1, 0x10, %o1
20165f4: 30 bf ff cd b,a 2016528 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
20165f8: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
20165fc: 7f ff e2 38 call 200eedc <sparc_enable_interrupts>
2016600: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016604: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016608: 80 a0 40 12 cmp %g1, %l2
201660c: 12 80 00 0c bne 201663c <_Timer_server_Body+0x1b0>
2016610: 01 00 00 00 nop
2016614: 30 80 00 13 b,a 2016660 <_Timer_server_Body+0x1d4>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
2016618: f6 20 60 04 st %i3, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
201661c: c2 27 bf f4 st %g1, [ %fp + -12 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
2016620: c0 27 60 08 clr [ %i5 + 8 ]
_ISR_Enable( level );
2016624: 7f ff e2 2e call 200eedc <sparc_enable_interrupts>
2016628: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
201662c: d0 07 60 20 ld [ %i5 + 0x20 ], %o0
2016630: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
2016634: 9f c0 40 00 call %g1
2016638: d2 07 60 24 ld [ %i5 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
201663c: 7f ff e2 24 call 200eecc <sparc_disable_interrupts>
2016640: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2016644: fa 07 bf f4 ld [ %fp + -12 ], %i5
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016648: 80 a7 40 12 cmp %i5, %l2
201664c: 32 bf ff f3 bne,a 2016618 <_Timer_server_Body+0x18c>
2016650: c2 07 40 00 ld [ %i5 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016654: 7f ff e2 22 call 200eedc <sparc_enable_interrupts>
2016658: 01 00 00 00 nop
201665c: 30 bf ff a2 b,a 20164e4 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2016660: c0 2e 20 7c clrb [ %i0 + 0x7c ]
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2016664: c2 05 00 00 ld [ %l4 ], %g1
2016668: 82 00 60 01 inc %g1
201666c: c2 25 00 00 st %g1, [ %l4 ]
return _Thread_Dispatch_disable_level;
2016670: c2 05 00 00 ld [ %l4 ], %g1
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016674: d0 06 00 00 ld [ %i0 ], %o0
2016678: 40 00 10 9f call 201a8f4 <_Thread_Set_state>
201667c: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016680: 7f ff ff 5b call 20163ec <_Timer_server_Reset_interval_system_watchdog>
2016684: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016688: 7f ff ff 6d call 201643c <_Timer_server_Reset_tod_system_watchdog>
201668c: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016690: 40 00 0e 23 call 2019f1c <_Thread_Enable_dispatch>
2016694: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016698: 90 10 00 17 mov %l7, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
201669c: ea 2e 20 7c stb %l5, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
20166a0: 40 00 12 ed call 201b254 <_Watchdog_Remove>
20166a4: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
20166a8: 40 00 12 eb call 201b254 <_Watchdog_Remove>
20166ac: 90 10 00 16 mov %l6, %o0
20166b0: 30 bf ff 8d b,a 20164e4 <_Timer_server_Body+0x58>
020166b4 <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
20166b4: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
20166b8: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
20166bc: 80 a0 60 00 cmp %g1, 0
20166c0: 02 80 00 05 be 20166d4 <_Timer_server_Schedule_operation_method+0x20>
20166c4: ba 10 00 19 mov %i1, %i5
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
20166c8: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
20166cc: 40 00 02 8a call 20170f4 <_Chain_Append>
20166d0: 81 e8 00 00 restore
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
20166d4: 03 00 80 e7 sethi %hi(0x2039c00), %g1
20166d8: c4 00 61 d0 ld [ %g1 + 0x1d0 ], %g2 ! 2039dd0 <_Thread_Dispatch_disable_level>
20166dc: 84 00 a0 01 inc %g2
20166e0: c4 20 61 d0 st %g2, [ %g1 + 0x1d0 ]
return _Thread_Dispatch_disable_level;
20166e4: c2 00 61 d0 ld [ %g1 + 0x1d0 ], %g1
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20166e8: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
20166ec: 80 a0 60 01 cmp %g1, 1
20166f0: 02 80 00 28 be 2016790 <_Timer_server_Schedule_operation_method+0xdc>
20166f4: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20166f8: 02 80 00 04 be 2016708 <_Timer_server_Schedule_operation_method+0x54>
20166fc: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016700: 40 00 0e 07 call 2019f1c <_Thread_Enable_dispatch>
2016704: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016708: 7f ff e1 f1 call 200eecc <sparc_disable_interrupts>
201670c: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
2016710: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016714: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016718: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
201671c: 03 00 80 e7 sethi %hi(0x2039c00), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016720: 80 a0 80 04 cmp %g2, %g4
2016724: 02 80 00 0d be 2016758 <_Timer_server_Schedule_operation_method+0xa4>
2016728: c2 00 62 5c ld [ %g1 + 0x25c ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
201672c: de 00 a0 10 ld [ %g2 + 0x10 ], %o7
if ( snapshot > last_snapshot ) {
2016730: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016734: 88 03 c0 03 add %o7, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016738: 08 80 00 07 bleu 2016754 <_Timer_server_Schedule_operation_method+0xa0>
201673c: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016740: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
2016744: 80 a3 c0 03 cmp %o7, %g3
2016748: 08 80 00 03 bleu 2016754 <_Timer_server_Schedule_operation_method+0xa0><== NEVER TAKEN
201674c: 88 10 20 00 clr %g4
delta_interval -= delta;
2016750: 88 23 c0 03 sub %o7, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016754: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016758: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
201675c: 7f ff e1 e0 call 200eedc <sparc_enable_interrupts>
2016760: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016764: 90 06 20 68 add %i0, 0x68, %o0
2016768: 40 00 12 59 call 201b0cc <_Watchdog_Insert>
201676c: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
2016770: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016774: 80 a0 60 00 cmp %g1, 0
2016778: 12 bf ff e2 bne 2016700 <_Timer_server_Schedule_operation_method+0x4c>
201677c: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016780: 7f ff ff 2f call 201643c <_Timer_server_Reset_tod_system_watchdog>
2016784: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016788: 40 00 0d e5 call 2019f1c <_Thread_Enable_dispatch>
201678c: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016790: 7f ff e1 cf call 200eecc <sparc_disable_interrupts>
2016794: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016798: 05 00 80 e7 sethi %hi(0x2039c00), %g2
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
201679c: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
20167a0: c4 00 a2 dc ld [ %g2 + 0x2dc ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
20167a4: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
20167a8: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
20167ac: 80 a0 40 03 cmp %g1, %g3
20167b0: 02 80 00 08 be 20167d0 <_Timer_server_Schedule_operation_method+0x11c>
20167b4: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
20167b8: de 00 60 10 ld [ %g1 + 0x10 ], %o7
if (delta_interval > delta) {
20167bc: 80 a1 00 0f cmp %g4, %o7
20167c0: 1a 80 00 03 bcc 20167cc <_Timer_server_Schedule_operation_method+0x118>
20167c4: 86 10 20 00 clr %g3
delta_interval -= delta;
20167c8: 86 23 c0 04 sub %o7, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
20167cc: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
20167d0: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
20167d4: 7f ff e1 c2 call 200eedc <sparc_enable_interrupts>
20167d8: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
20167dc: 90 06 20 30 add %i0, 0x30, %o0
20167e0: 40 00 12 3b call 201b0cc <_Watchdog_Insert>
20167e4: 92 07 60 10 add %i5, 0x10, %o1
if ( !ts->active ) {
20167e8: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
20167ec: 80 a0 60 00 cmp %g1, 0
20167f0: 12 bf ff c4 bne 2016700 <_Timer_server_Schedule_operation_method+0x4c>
20167f4: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
20167f8: 7f ff fe fd call 20163ec <_Timer_server_Reset_interval_system_watchdog>
20167fc: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016800: 40 00 0d c7 call 2019f1c <_Thread_Enable_dispatch>
2016804: 81 e8 00 00 restore
02009dac <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
2009dac: 9d e3 bf a0 save %sp, -96, %sp
2009db0: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009db4: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
2009db8: c8 00 60 04 ld [ %g1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
2009dbc: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
2009dc0: c4 06 60 04 ld [ %i1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009dc4: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
2009dc8: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009dcc: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009dd0: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
2009dd4: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_END+0x395ac9ff>
2009dd8: 80 a0 80 04 cmp %g2, %g4
2009ddc: 08 80 00 0b bleu 2009e08 <_Timespec_Add_to+0x5c>
2009de0: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
2009de4: 1f 31 19 4d sethi %hi(0xc4653400), %o7
2009de8: 9e 13 e2 00 or %o7, 0x200, %o7 ! c4653600 <RAM_END+0xc2253600>
2009dec: 84 00 80 0f add %g2, %o7, %g2
time->tv_sec++;
2009df0: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009df4: 80 a0 80 04 cmp %g2, %g4
2009df8: 18 bf ff fd bgu 2009dec <_Timespec_Add_to+0x40> <== NEVER TAKEN
2009dfc: b0 06 20 01 inc %i0
2009e00: c4 20 60 04 st %g2, [ %g1 + 4 ]
2009e04: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
2009e08: 81 c7 e0 08 ret
2009e0c: 81 e8 00 00 restore
02009fb4 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2009fb4: 9d e3 bf a0 save %sp, -96, %sp
2009fb8: 39 00 80 71 sethi %hi(0x201c400), %i4
2009fbc: b8 17 20 e8 or %i4, 0xe8, %i4 ! 201c4e8 <_User_extensions_List>
2009fc0: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009fc4: 80 a7 40 1c cmp %i5, %i4
2009fc8: 02 80 00 0d be 2009ffc <_User_extensions_Fatal+0x48> <== NEVER TAKEN
2009fcc: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
2009fd0: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2009fd4: 80 a0 60 00 cmp %g1, 0
2009fd8: 02 80 00 05 be 2009fec <_User_extensions_Fatal+0x38>
2009fdc: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
2009fe0: 92 10 00 19 mov %i1, %o1
2009fe4: 9f c0 40 00 call %g1
2009fe8: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009fec: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009ff0: 80 a7 40 1c cmp %i5, %i4
2009ff4: 32 bf ff f8 bne,a 2009fd4 <_User_extensions_Fatal+0x20>
2009ff8: c2 07 60 30 ld [ %i5 + 0x30 ], %g1
2009ffc: 81 c7 e0 08 ret
200a000: 81 e8 00 00 restore
02009e60 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009e60: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009e64: 07 00 80 6d sethi %hi(0x201b400), %g3
2009e68: 86 10 e2 1c or %g3, 0x21c, %g3 ! 201b61c <Configuration>
initial_extensions = Configuration.User_extension_table;
2009e6c: f6 00 e0 3c ld [ %g3 + 0x3c ], %i3
2009e70: 3b 00 80 71 sethi %hi(0x201c400), %i5
2009e74: 09 00 80 70 sethi %hi(0x201c000), %g4
2009e78: 84 17 60 e8 or %i5, 0xe8, %g2
2009e7c: 82 11 23 04 or %g4, 0x304, %g1
2009e80: b4 00 a0 04 add %g2, 4, %i2
2009e84: b8 00 60 04 add %g1, 4, %i4
2009e88: f4 27 60 e8 st %i2, [ %i5 + 0xe8 ]
head->previous = NULL;
2009e8c: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
2009e90: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009e94: f8 21 23 04 st %i4, [ %g4 + 0x304 ]
head->previous = NULL;
2009e98: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009e9c: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009ea0: 80 a6 e0 00 cmp %i3, 0
2009ea4: 02 80 00 1b be 2009f10 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009ea8: f4 00 e0 38 ld [ %g3 + 0x38 ], %i2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009eac: 83 2e a0 02 sll %i2, 2, %g1
2009eb0: b9 2e a0 04 sll %i2, 4, %i4
2009eb4: b8 27 00 01 sub %i4, %g1, %i4
2009eb8: b8 07 00 1a add %i4, %i2, %i4
2009ebc: b9 2f 20 02 sll %i4, 2, %i4
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
2009ec0: 40 00 01 96 call 200a518 <_Workspace_Allocate_or_fatal_error>
2009ec4: 90 10 00 1c mov %i4, %o0
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009ec8: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
2009ecc: ba 10 00 08 mov %o0, %i5
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009ed0: 40 00 15 8f call 200f50c <memset>
2009ed4: 94 10 00 1c mov %i4, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009ed8: 80 a6 a0 00 cmp %i2, 0
2009edc: 02 80 00 0d be 2009f10 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009ee0: b8 10 20 00 clr %i4
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009ee4: 92 10 00 1b mov %i3, %o1
2009ee8: 94 10 20 20 mov 0x20, %o2
2009eec: 40 00 15 4c call 200f41c <memcpy>
2009ef0: 90 07 60 14 add %i5, 0x14, %o0
_User_extensions_Add_set( extension );
2009ef4: 40 00 0c 9b call 200d160 <_User_extensions_Add_set>
2009ef8: 90 10 00 1d mov %i5, %o0
2009efc: b8 07 20 01 inc %i4
_User_extensions_Add_set_with_table (extension, &initial_extensions[i]);
extension++;
2009f00: ba 07 60 34 add %i5, 0x34, %i5
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009f04: 80 a7 00 1a cmp %i4, %i2
2009f08: 12 bf ff f7 bne 2009ee4 <_User_extensions_Handler_initialization+0x84>
2009f0c: b6 06 e0 20 add %i3, 0x20, %i3
2009f10: 81 c7 e0 08 ret
2009f14: 81 e8 00 00 restore
02009f18 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
2009f18: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
2009f1c: 39 00 80 71 sethi %hi(0x201c400), %i4
2009f20: fa 07 20 e8 ld [ %i4 + 0xe8 ], %i5 ! 201c4e8 <_User_extensions_List>
2009f24: b8 17 20 e8 or %i4, 0xe8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009f28: b8 07 20 04 add %i4, 4, %i4
2009f2c: 80 a7 40 1c cmp %i5, %i4
2009f30: 02 80 00 0c be 2009f60 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
2009f34: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
2009f38: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
2009f3c: 80 a0 60 00 cmp %g1, 0
2009f40: 02 80 00 04 be 2009f50 <_User_extensions_Thread_begin+0x38>
2009f44: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
2009f48: 9f c0 40 00 call %g1
2009f4c: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009f50: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009f54: 80 a7 40 1c cmp %i5, %i4
2009f58: 32 bf ff f9 bne,a 2009f3c <_User_extensions_Thread_begin+0x24>
2009f5c: c2 07 60 28 ld [ %i5 + 0x28 ], %g1
2009f60: 81 c7 e0 08 ret
2009f64: 81 e8 00 00 restore
0200a004 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
200a004: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a008: 39 00 80 71 sethi %hi(0x201c400), %i4
200a00c: fa 07 20 e8 ld [ %i4 + 0xe8 ], %i5 ! 201c4e8 <_User_extensions_List>
200a010: b8 17 20 e8 or %i4, 0xe8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
200a014: b8 07 20 04 add %i4, 4, %i4
200a018: 80 a7 40 1c cmp %i5, %i4
200a01c: 02 80 00 12 be 200a064 <_User_extensions_Thread_create+0x60><== NEVER TAKEN
200a020: 82 10 20 01 mov 1, %g1
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
200a024: 37 00 80 71 sethi %hi(0x201c400), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
200a028: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
200a02c: 80 a0 60 00 cmp %g1, 0
200a030: 02 80 00 08 be 200a050 <_User_extensions_Thread_create+0x4c>
200a034: 84 16 e1 2c or %i3, 0x12c, %g2
status = (*the_extension->Callouts.thread_create)(
200a038: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a03c: 9f c0 40 00 call %g1
200a040: 92 10 00 18 mov %i0, %o1
_Thread_Executing,
the_thread
);
if ( !status )
200a044: 80 8a 20 ff btst 0xff, %o0
200a048: 02 80 00 0a be 200a070 <_User_extensions_Thread_create+0x6c>
200a04c: 82 10 20 00 clr %g1
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200a050: fa 07 40 00 ld [ %i5 ], %i5
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
200a054: 80 a7 40 1c cmp %i5, %i4
200a058: 32 bf ff f5 bne,a 200a02c <_User_extensions_Thread_create+0x28>
200a05c: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
200a060: 82 10 20 01 mov 1, %g1
}
200a064: b0 08 60 01 and %g1, 1, %i0
200a068: 81 c7 e0 08 ret
200a06c: 81 e8 00 00 restore
200a070: b0 08 60 01 and %g1, 1, %i0
200a074: 81 c7 e0 08 ret
200a078: 81 e8 00 00 restore
0200a07c <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
200a07c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last(
Chain_Control *the_chain
)
{
return _Chain_Tail( the_chain )->previous;
200a080: 39 00 80 71 sethi %hi(0x201c400), %i4
200a084: b8 17 20 e8 or %i4, 0xe8, %i4 ! 201c4e8 <_User_extensions_List>
200a088: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200a08c: 80 a7 40 1c cmp %i5, %i4
200a090: 02 80 00 0d be 200a0c4 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
200a094: 37 00 80 71 sethi %hi(0x201c400), %i3
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
200a098: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
200a09c: 80 a0 60 00 cmp %g1, 0
200a0a0: 02 80 00 05 be 200a0b4 <_User_extensions_Thread_delete+0x38>
200a0a4: 84 16 e1 2c or %i3, 0x12c, %g2
(*the_extension->Callouts.thread_delete)(
200a0a8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a0ac: 9f c0 40 00 call %g1
200a0b0: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
200a0b4: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
200a0b8: 80 a7 40 1c cmp %i5, %i4
200a0bc: 32 bf ff f8 bne,a 200a09c <_User_extensions_Thread_delete+0x20>
200a0c0: c2 07 60 20 ld [ %i5 + 0x20 ], %g1
200a0c4: 81 c7 e0 08 ret
200a0c8: 81 e8 00 00 restore
02009f68 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
2009f68: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last(
Chain_Control *the_chain
)
{
return _Chain_Tail( the_chain )->previous;
2009f6c: 39 00 80 71 sethi %hi(0x201c400), %i4
2009f70: b8 17 20 e8 or %i4, 0xe8, %i4 ! 201c4e8 <_User_extensions_List>
2009f74: fa 07 20 08 ld [ %i4 + 8 ], %i5
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009f78: 80 a7 40 1c cmp %i5, %i4
2009f7c: 02 80 00 0c be 2009fac <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
2009f80: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
2009f84: c2 07 60 2c ld [ %i5 + 0x2c ], %g1
2009f88: 80 a0 60 00 cmp %g1, 0
2009f8c: 02 80 00 04 be 2009f9c <_User_extensions_Thread_exitted+0x34>
2009f90: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
2009f94: 9f c0 40 00 call %g1
2009f98: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009f9c: fa 07 60 04 ld [ %i5 + 4 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009fa0: 80 a7 40 1c cmp %i5, %i4
2009fa4: 32 bf ff f9 bne,a 2009f88 <_User_extensions_Thread_exitted+0x20>
2009fa8: c2 07 60 2c ld [ %i5 + 0x2c ], %g1
2009fac: 81 c7 e0 08 ret
2009fb0: 81 e8 00 00 restore
0200a90c <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
200a90c: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a910: 39 00 80 73 sethi %hi(0x201cc00), %i4
200a914: fa 07 23 f8 ld [ %i4 + 0x3f8 ], %i5 ! 201cff8 <_User_extensions_List>
200a918: b8 17 23 f8 or %i4, 0x3f8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a91c: b8 07 20 04 add %i4, 4, %i4
200a920: 80 a7 40 1c cmp %i5, %i4
200a924: 02 80 00 0d be 200a958 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
200a928: 37 00 80 74 sethi %hi(0x201d000), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
200a92c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200a930: 80 a0 60 00 cmp %g1, 0
200a934: 02 80 00 05 be 200a948 <_User_extensions_Thread_restart+0x3c>
200a938: 84 16 e0 3c or %i3, 0x3c, %g2
(*the_extension->Callouts.thread_restart)(
200a93c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a940: 9f c0 40 00 call %g1
200a944: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200a948: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a94c: 80 a7 40 1c cmp %i5, %i4
200a950: 32 bf ff f8 bne,a 200a930 <_User_extensions_Thread_restart+0x24>
200a954: c2 07 60 1c ld [ %i5 + 0x1c ], %g1
200a958: 81 c7 e0 08 ret
200a95c: 81 e8 00 00 restore
0200a0cc <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
200a0cc: 9d e3 bf a0 save %sp, -96, %sp
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First(
Chain_Control *the_chain
)
{
return _Chain_Head( the_chain )->next;
200a0d0: 39 00 80 71 sethi %hi(0x201c400), %i4
200a0d4: fa 07 20 e8 ld [ %i4 + 0xe8 ], %i5 ! 201c4e8 <_User_extensions_List>
200a0d8: b8 17 20 e8 or %i4, 0xe8, %i4
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a0dc: b8 07 20 04 add %i4, 4, %i4
200a0e0: 80 a7 40 1c cmp %i5, %i4
200a0e4: 02 80 00 0d be 200a118 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
200a0e8: 37 00 80 71 sethi %hi(0x201c400), %i3
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
200a0ec: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200a0f0: 80 a0 60 00 cmp %g1, 0
200a0f4: 02 80 00 05 be 200a108 <_User_extensions_Thread_start+0x3c>
200a0f8: 84 16 e1 2c or %i3, 0x12c, %g2
(*the_extension->Callouts.thread_start)(
200a0fc: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a100: 9f c0 40 00 call %g1
200a104: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200a108: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a10c: 80 a7 40 1c cmp %i5, %i4
200a110: 32 bf ff f8 bne,a 200a0f0 <_User_extensions_Thread_start+0x24>
200a114: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
200a118: 81 c7 e0 08 ret
200a11c: 81 e8 00 00 restore
0200a120 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
200a120: 9d e3 bf a0 save %sp, -96, %sp
200a124: 39 00 80 70 sethi %hi(0x201c000), %i4
200a128: fa 07 23 04 ld [ %i4 + 0x304 ], %i5 ! 201c304 <_User_extensions_Switches_list>
200a12c: b8 17 23 04 or %i4, 0x304, %i4
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
200a130: b8 07 20 04 add %i4, 4, %i4
200a134: 80 a7 40 1c cmp %i5, %i4
200a138: 02 80 00 0a be 200a160 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
200a13c: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
200a140: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a144: 90 10 00 18 mov %i0, %o0
200a148: 9f c0 40 00 call %g1
200a14c: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
200a150: fa 07 40 00 ld [ %i5 ], %i5
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
200a154: 80 a7 40 1c cmp %i5, %i4
200a158: 32 bf ff fb bne,a 200a144 <_User_extensions_Thread_switch+0x24>
200a15c: c2 07 60 08 ld [ %i5 + 8 ], %g1
200a160: 81 c7 e0 08 ret
200a164: 81 e8 00 00 restore
0200bbdc <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200bbdc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200bbe0: 7f ff dc d4 call 2002f30 <sparc_disable_interrupts>
200bbe4: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200bbe8: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200bbec: b6 06 20 04 add %i0, 4, %i3
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200bbf0: 80 a0 40 1b cmp %g1, %i3
200bbf4: 02 80 00 1e be 200bc6c <_Watchdog_Adjust+0x90>
200bbf8: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200bbfc: 12 80 00 1e bne 200bc74 <_Watchdog_Adjust+0x98>
200bc00: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bc04: 80 a6 a0 00 cmp %i2, 0
200bc08: 02 80 00 19 be 200bc6c <_Watchdog_Adjust+0x90> <== NEVER TAKEN
200bc0c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bc10: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
200bc14: 80 a6 80 1c cmp %i2, %i4
200bc18: 1a 80 00 0a bcc 200bc40 <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN
200bc1c: b2 10 20 01 mov 1, %i1
_Watchdog_First( header )->delta_interval -= units;
200bc20: 10 80 00 1c b 200bc90 <_Watchdog_Adjust+0xb4> <== NOT EXECUTED
200bc24: b8 27 00 1a sub %i4, %i2, %i4 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bc28: 02 80 00 11 be 200bc6c <_Watchdog_Adjust+0x90> <== NEVER TAKEN
200bc2c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bc30: f8 00 60 10 ld [ %g1 + 0x10 ], %i4
200bc34: 80 a7 00 1a cmp %i4, %i2
200bc38: 38 80 00 16 bgu,a 200bc90 <_Watchdog_Adjust+0xb4>
200bc3c: b8 27 00 1a sub %i4, %i2, %i4
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200bc40: f2 20 60 10 st %i1, [ %g1 + 0x10 ]
_ISR_Enable( level );
200bc44: 7f ff dc bf call 2002f40 <sparc_enable_interrupts>
200bc48: 01 00 00 00 nop
_Watchdog_Tickle( header );
200bc4c: 40 00 00 ab call 200bef8 <_Watchdog_Tickle>
200bc50: 90 10 00 1d mov %i5, %o0
_ISR_Disable( level );
200bc54: 7f ff dc b7 call 2002f30 <sparc_disable_interrupts>
200bc58: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200bc5c: c2 07 40 00 ld [ %i5 ], %g1
if ( _Chain_Is_empty( header ) )
200bc60: 80 a6 c0 01 cmp %i3, %g1
200bc64: 32 bf ff f1 bne,a 200bc28 <_Watchdog_Adjust+0x4c>
200bc68: b4 a6 80 1c subcc %i2, %i4, %i2
}
break;
}
}
_ISR_Enable( level );
200bc6c: 7f ff dc b5 call 2002f40 <sparc_enable_interrupts>
200bc70: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200bc74: 12 bf ff fe bne 200bc6c <_Watchdog_Adjust+0x90> <== NEVER TAKEN
200bc78: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200bc7c: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200bc80: b4 00 80 1a add %g2, %i2, %i2
200bc84: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200bc88: 7f ff dc ae call 2002f40 <sparc_enable_interrupts>
200bc8c: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200bc90: 10 bf ff f7 b 200bc6c <_Watchdog_Adjust+0x90>
200bc94: f8 20 60 10 st %i4, [ %g1 + 0x10 ]
0200a2f0 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
200a2f0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
200a2f4: 7f ff df bc call 20021e4 <sparc_disable_interrupts>
200a2f8: 01 00 00 00 nop
previous_state = the_watchdog->state;
200a2fc: fa 06 20 08 ld [ %i0 + 8 ], %i5
switch ( previous_state ) {
200a300: 80 a7 60 01 cmp %i5, 1
200a304: 02 80 00 2a be 200a3ac <_Watchdog_Remove+0xbc>
200a308: 03 00 80 71 sethi %hi(0x201c400), %g1
200a30c: 1a 80 00 09 bcc 200a330 <_Watchdog_Remove+0x40>
200a310: 80 a7 60 03 cmp %i5, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a314: 03 00 80 71 sethi %hi(0x201c400), %g1
200a318: c2 00 60 0c ld [ %g1 + 0xc ], %g1 ! 201c40c <_Watchdog_Ticks_since_boot>
200a31c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a320: 7f ff df b5 call 20021f4 <sparc_enable_interrupts>
200a324: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200a328: 81 c7 e0 08 ret
200a32c: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
200a330: 18 bf ff fa bgu 200a318 <_Watchdog_Remove+0x28> <== NEVER TAKEN
200a334: 03 00 80 71 sethi %hi(0x201c400), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
200a338: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200a33c: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200a340: c4 00 40 00 ld [ %g1 ], %g2
200a344: 80 a0 a0 00 cmp %g2, 0
200a348: 02 80 00 07 be 200a364 <_Watchdog_Remove+0x74>
200a34c: 05 00 80 71 sethi %hi(0x201c400), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200a350: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200a354: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
200a358: 84 00 c0 02 add %g3, %g2, %g2
200a35c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200a360: 05 00 80 71 sethi %hi(0x201c400), %g2
200a364: c4 00 a0 08 ld [ %g2 + 8 ], %g2 ! 201c408 <_Watchdog_Sync_count>
200a368: 80 a0 a0 00 cmp %g2, 0
200a36c: 22 80 00 07 be,a 200a388 <_Watchdog_Remove+0x98>
200a370: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200a374: 05 00 80 71 sethi %hi(0x201c400), %g2
200a378: c6 00 a1 34 ld [ %g2 + 0x134 ], %g3 ! 201c534 <_Per_CPU_Information+0x8>
200a37c: 05 00 80 70 sethi %hi(0x201c000), %g2
200a380: c6 20 a3 a8 st %g3, [ %g2 + 0x3a8 ] ! 201c3a8 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200a384: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
200a388: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200a38c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a390: 03 00 80 71 sethi %hi(0x201c400), %g1
200a394: c2 00 60 0c ld [ %g1 + 0xc ], %g1 ! 201c40c <_Watchdog_Ticks_since_boot>
200a398: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a39c: 7f ff df 96 call 20021f4 <sparc_enable_interrupts>
200a3a0: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200a3a4: 81 c7 e0 08 ret
200a3a8: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a3ac: c2 00 60 0c ld [ %g1 + 0xc ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
200a3b0: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a3b4: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a3b8: 7f ff df 8f call 20021f4 <sparc_enable_interrupts>
200a3bc: b0 10 00 1d mov %i5, %i0
return( previous_state );
}
200a3c0: 81 c7 e0 08 ret
200a3c4: 81 e8 00 00 restore
0200b40c <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200b40c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200b410: 7f ff dd a9 call 2002ab4 <sparc_disable_interrupts>
200b414: 01 00 00 00 nop
200b418: ba 10 00 08 mov %o0, %i5
printk( "Watchdog Chain: %s %p\n", name, header );
200b41c: 11 00 80 70 sethi %hi(0x201c000), %o0
200b420: 94 10 00 19 mov %i1, %o2
200b424: 92 10 00 18 mov %i0, %o1
200b428: 7f ff e4 bd call 200471c <printk>
200b42c: 90 12 23 20 or %o0, 0x320, %o0
*/
RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_head( the_chain )->next;
200b430: f8 06 40 00 ld [ %i1 ], %i4
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b434: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200b438: 80 a7 00 19 cmp %i4, %i1
200b43c: 02 80 00 0f be 200b478 <_Watchdog_Report_chain+0x6c>
200b440: 11 00 80 70 sethi %hi(0x201c000), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200b444: 92 10 00 1c mov %i4, %o1
200b448: 40 00 00 0f call 200b484 <_Watchdog_Report>
200b44c: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200b450: f8 07 00 00 ld [ %i4 ], %i4
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200b454: 80 a7 00 19 cmp %i4, %i1
200b458: 12 bf ff fc bne 200b448 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200b45c: 92 10 00 1c mov %i4, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200b460: 11 00 80 70 sethi %hi(0x201c000), %o0
200b464: 92 10 00 18 mov %i0, %o1
200b468: 7f ff e4 ad call 200471c <printk>
200b46c: 90 12 23 38 or %o0, 0x338, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200b470: 7f ff dd 95 call 2002ac4 <sparc_enable_interrupts>
200b474: 91 e8 00 1d restore %g0, %i5, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200b478: 7f ff e4 a9 call 200471c <printk>
200b47c: 90 12 23 48 or %o0, 0x348, %o0
200b480: 30 bf ff fc b,a 200b470 <_Watchdog_Report_chain+0x64>
02007174 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2007174: 9d e3 bf 98 save %sp, -104, %sp
2007178: ba 10 00 18 mov %i0, %i5
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
200717c: 40 00 01 84 call 200778c <_Chain_Get>
2007180: 90 10 00 1d mov %i5, %o0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2007184: 92 10 20 00 clr %o1
2007188: b8 10 00 08 mov %o0, %i4
200718c: 94 10 00 1a mov %i2, %o2
2007190: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
2007194: 80 a7 20 00 cmp %i4, 0
2007198: 12 80 00 0a bne 20071c0 <rtems_chain_get_with_wait+0x4c>
200719c: 96 07 bf fc add %fp, -4, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
20071a0: 7f ff fc f4 call 2006570 <rtems_event_receive>
20071a4: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
20071a8: 80 a2 20 00 cmp %o0, 0
20071ac: 02 bf ff f4 be 200717c <rtems_chain_get_with_wait+0x8> <== NEVER TAKEN
20071b0: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
20071b4: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
20071b8: 81 c7 e0 08 ret
20071bc: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20071c0: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
20071c4: f8 26 c0 00 st %i4, [ %i3 ]
return sc;
}
20071c8: 81 c7 e0 08 ret
20071cc: 91 e8 00 08 restore %g0, %o0, %o0
02007df8 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2007df8: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2007dfc: 03 00 80 67 sethi %hi(0x2019c00), %g1
2007e00: c4 00 62 74 ld [ %g1 + 0x274 ], %g2 ! 2019e74 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2007e04: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
2007e08: 03 00 80 67 sethi %hi(0x2019c00), %g1
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
2007e0c: 88 10 20 12 mov 0x12, %g4
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2007e10: 80 a0 a0 00 cmp %g2, 0
2007e14: 02 80 00 04 be 2007e24 <rtems_io_register_driver+0x2c>
2007e18: de 00 63 04 ld [ %g1 + 0x304 ], %o7
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
2007e1c: 81 c7 e0 08 ret
2007e20: 91 e8 00 04 restore %g0, %g4, %o0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
2007e24: 80 a6 a0 00 cmp %i2, 0
2007e28: 02 80 00 40 be 2007f28 <rtems_io_register_driver+0x130>
2007e2c: 80 a6 60 00 cmp %i1, 0
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
2007e30: 02 80 00 3e be 2007f28 <rtems_io_register_driver+0x130>
2007e34: de 26 80 00 st %o7, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007e38: c4 06 40 00 ld [ %i1 ], %g2
2007e3c: 80 a0 a0 00 cmp %g2, 0
2007e40: 22 80 00 37 be,a 2007f1c <rtems_io_register_driver+0x124>
2007e44: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
2007e48: 80 a3 c0 18 cmp %o7, %i0
2007e4c: 08 bf ff f4 bleu 2007e1c <rtems_io_register_driver+0x24>
2007e50: 88 10 20 0a mov 0xa, %g4
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2007e54: 05 00 80 67 sethi %hi(0x2019c00), %g2
2007e58: c8 00 a0 40 ld [ %g2 + 0x40 ], %g4 ! 2019c40 <_Thread_Dispatch_disable_level>
2007e5c: 88 01 20 01 inc %g4
2007e60: c8 20 a0 40 st %g4, [ %g2 + 0x40 ]
return _Thread_Dispatch_disable_level;
2007e64: c4 00 a0 40 ld [ %g2 + 0x40 ], %g2
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
2007e68: 80 a6 20 00 cmp %i0, 0
2007e6c: 12 80 00 32 bne 2007f34 <rtems_io_register_driver+0x13c>
2007e70: 1f 00 80 67 sethi %hi(0x2019c00), %o7
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
2007e74: c8 00 63 04 ld [ %g1 + 0x304 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2007e78: 80 a1 20 00 cmp %g4, 0
2007e7c: 02 80 00 45 be 2007f90 <rtems_io_register_driver+0x198> <== NEVER TAKEN
2007e80: c2 03 e3 08 ld [ %o7 + 0x308 ], %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007e84: 10 80 00 06 b 2007e9c <rtems_io_register_driver+0xa4>
2007e88: c4 00 40 00 ld [ %g1 ], %g2
rtems_device_major_number n = _IO_Number_of_drivers;
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2007e8c: 80 a6 00 04 cmp %i0, %g4
2007e90: 02 80 00 35 be 2007f64 <rtems_io_register_driver+0x16c>
2007e94: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007e98: c4 00 40 00 ld [ %g1 ], %g2
2007e9c: 80 a0 a0 00 cmp %g2, 0
2007ea0: 32 bf ff fb bne,a 2007e8c <rtems_io_register_driver+0x94>
2007ea4: b0 06 20 01 inc %i0
2007ea8: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007eac: 80 a0 a0 00 cmp %g2, 0
2007eb0: 32 bf ff f7 bne,a 2007e8c <rtems_io_register_driver+0x94>
2007eb4: b0 06 20 01 inc %i0
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2007eb8: f0 26 80 00 st %i0, [ %i2 ]
2007ebc: 83 2e 20 03 sll %i0, 3, %g1
if ( m != n )
2007ec0: 80 a1 00 18 cmp %g4, %i0
2007ec4: 02 80 00 29 be 2007f68 <rtems_io_register_driver+0x170> <== NEVER TAKEN
2007ec8: 9b 2e 20 05 sll %i0, 5, %o5
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007ecc: c8 00 c0 00 ld [ %g3 ], %g4
2007ed0: c4 03 e3 08 ld [ %o7 + 0x308 ], %g2
2007ed4: 82 23 40 01 sub %o5, %g1, %g1
2007ed8: c8 20 80 01 st %g4, [ %g2 + %g1 ]
2007edc: c8 00 e0 04 ld [ %g3 + 4 ], %g4
2007ee0: 82 00 80 01 add %g2, %g1, %g1
2007ee4: c8 20 60 04 st %g4, [ %g1 + 4 ]
2007ee8: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2007eec: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007ef0: c4 20 60 08 st %g2, [ %g1 + 8 ]
2007ef4: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2007ef8: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007efc: c4 20 60 0c st %g2, [ %g1 + 0xc ]
2007f00: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
2007f04: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
2007f08: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
2007f0c: 40 00 08 04 call 2009f1c <_Thread_Enable_dispatch>
2007f10: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
2007f14: 40 00 21 24 call 20103a4 <rtems_io_initialize>
2007f18: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f1c: 80 a0 a0 00 cmp %g2, 0
2007f20: 12 bf ff cb bne 2007e4c <rtems_io_register_driver+0x54>
2007f24: 80 a3 c0 18 cmp %o7, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
2007f28: 88 10 20 09 mov 9, %g4
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
2007f2c: 81 c7 e0 08 ret
2007f30: 91 e8 00 04 restore %g0, %g4, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
2007f34: c8 03 e3 08 ld [ %o7 + 0x308 ], %g4
2007f38: 83 2e 20 03 sll %i0, 3, %g1
2007f3c: 9b 2e 20 05 sll %i0, 5, %o5
2007f40: 84 23 40 01 sub %o5, %g1, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f44: d8 01 00 02 ld [ %g4 + %g2 ], %o4
2007f48: 80 a3 20 00 cmp %o4, 0
2007f4c: 02 80 00 0b be 2007f78 <rtems_io_register_driver+0x180>
2007f50: 84 01 00 02 add %g4, %g2, %g2
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
2007f54: 40 00 07 f2 call 2009f1c <_Thread_Enable_dispatch>
2007f58: 01 00 00 00 nop
return RTEMS_RESOURCE_IN_USE;
2007f5c: 10 bf ff b0 b 2007e1c <rtems_io_register_driver+0x24>
2007f60: 88 10 20 0c mov 0xc, %g4 ! c <PROM_START+0xc>
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2007f64: f0 26 80 00 st %i0, [ %i2 ]
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2007f68: 40 00 07 ed call 2009f1c <_Thread_Enable_dispatch>
2007f6c: 01 00 00 00 nop
return sc;
2007f70: 10 bf ff ab b 2007e1c <rtems_io_register_driver+0x24>
2007f74: 88 10 20 05 mov 5, %g4 ! 5 <PROM_START+0x5>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f78: c4 00 a0 04 ld [ %g2 + 4 ], %g2
2007f7c: 80 a0 a0 00 cmp %g2, 0
2007f80: 12 bf ff f5 bne 2007f54 <rtems_io_register_driver+0x15c>
2007f84: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2007f88: 10 bf ff d1 b 2007ecc <rtems_io_register_driver+0xd4>
2007f8c: f0 26 80 00 st %i0, [ %i2 ]
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
2007f90: 10 bf ff f6 b 2007f68 <rtems_io_register_driver+0x170> <== NOT EXECUTED
2007f94: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
02009514 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2009514: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009518: 80 a6 20 00 cmp %i0, 0
200951c: 02 80 00 23 be 20095a8 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
2009520: 37 00 80 7b sethi %hi(0x201ec00), %i3
2009524: b6 16 e1 4c or %i3, 0x14c, %i3 ! 201ed4c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009528: b4 06 e0 0c add %i3, 0xc, %i2
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
200952c: c2 06 c0 00 ld [ %i3 ], %g1
2009530: 80 a0 60 00 cmp %g1, 0
2009534: 22 80 00 1a be,a 200959c <rtems_iterate_over_all_threads+0x88>
2009538: b6 06 e0 04 add %i3, 4, %i3
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
200953c: f8 00 60 04 ld [ %g1 + 4 ], %i4
if ( !information )
2009540: 80 a7 20 00 cmp %i4, 0
2009544: 22 80 00 16 be,a 200959c <rtems_iterate_over_all_threads+0x88>
2009548: b6 06 e0 04 add %i3, 4, %i3
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200954c: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1
2009550: 84 90 60 00 orcc %g1, 0, %g2
2009554: 22 80 00 12 be,a 200959c <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
2009558: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED
200955c: ba 10 20 01 mov 1, %i5
the_thread = (Thread_Control *)information->local_table[ i ];
2009560: c6 07 20 1c ld [ %i4 + 0x1c ], %g3
2009564: 83 2f 60 02 sll %i5, 2, %g1
2009568: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
200956c: 90 90 60 00 orcc %g1, 0, %o0
2009570: 02 80 00 05 be 2009584 <rtems_iterate_over_all_threads+0x70>
2009574: ba 07 60 01 inc %i5
continue;
(*routine)(the_thread);
2009578: 9f c6 00 00 call %i0
200957c: 01 00 00 00 nop
2009580: c4 17 20 10 lduh [ %i4 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009584: 83 28 a0 10 sll %g2, 0x10, %g1
2009588: 83 30 60 10 srl %g1, 0x10, %g1
200958c: 80 a0 40 1d cmp %g1, %i5
2009590: 3a bf ff f5 bcc,a 2009564 <rtems_iterate_over_all_threads+0x50>
2009594: c6 07 20 1c ld [ %i4 + 0x1c ], %g3
2009598: b6 06 e0 04 add %i3, 4, %i3
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200959c: 80 a6 c0 1a cmp %i3, %i2
20095a0: 32 bf ff e4 bne,a 2009530 <rtems_iterate_over_all_threads+0x1c>
20095a4: c2 06 c0 00 ld [ %i3 ], %g1
20095a8: 81 c7 e0 08 ret
20095ac: 81 e8 00 00 restore
020081a4 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
20081a4: 9d e3 bf a0 save %sp, -96, %sp
20081a8: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
20081ac: 80 a6 a0 00 cmp %i2, 0
20081b0: 02 80 00 21 be 2008234 <rtems_object_get_class_information+0x90>
20081b4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
20081b8: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
20081bc: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
20081c0: 40 00 07 61 call 2009f44 <_Objects_Get_information>
20081c4: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
20081c8: 80 a2 20 00 cmp %o0, 0
20081cc: 02 80 00 1a be 2008234 <rtems_object_get_class_information+0x90>
20081d0: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20081d4: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
20081d8: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20081dc: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
20081e0: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20081e4: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20081e8: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
20081ec: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
20081f0: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20081f4: 80 a1 20 00 cmp %g4, 0
20081f8: 02 80 00 0d be 200822c <rtems_object_get_class_information+0x88><== NEVER TAKEN
20081fc: 84 10 20 00 clr %g2
2008200: de 02 20 1c ld [ %o0 + 0x1c ], %o7
2008204: 86 10 20 01 mov 1, %g3
2008208: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
200820c: 87 28 e0 02 sll %g3, 2, %g3
2008210: c6 03 c0 03 ld [ %o7 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008214: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
2008218: 80 a0 00 03 cmp %g0, %g3
200821c: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008220: 80 a1 00 01 cmp %g4, %g1
2008224: 1a bf ff fa bcc 200820c <rtems_object_get_class_information+0x68>
2008228: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
200822c: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
2008230: b0 10 20 00 clr %i0
}
2008234: 81 c7 e0 08 ret
2008238: 81 e8 00 00 restore
02013dbc <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2013dbc: 9d e3 bf a0 save %sp, -96, %sp
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2013dc0: 80 a6 20 00 cmp %i0, 0
2013dc4: 12 80 00 04 bne 2013dd4 <rtems_partition_create+0x18>
2013dc8: 82 10 20 03 mov 3, %g1
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2013dcc: 81 c7 e0 08 ret
2013dd0: 91 e8 00 01 restore %g0, %g1, %o0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
return RTEMS_INVALID_NAME;
if ( !starting_address )
2013dd4: 80 a6 60 00 cmp %i1, 0
2013dd8: 02 bf ff fd be 2013dcc <rtems_partition_create+0x10>
2013ddc: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
if ( !id )
2013de0: 80 a7 60 00 cmp %i5, 0
2013de4: 02 bf ff fa be 2013dcc <rtems_partition_create+0x10> <== NEVER TAKEN
2013de8: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2013dec: 02 bf ff f8 be 2013dcc <rtems_partition_create+0x10>
2013df0: 82 10 20 08 mov 8, %g1
2013df4: 80 a6 a0 00 cmp %i2, 0
2013df8: 02 bf ff f5 be 2013dcc <rtems_partition_create+0x10>
2013dfc: 80 a6 80 1b cmp %i2, %i3
2013e00: 0a bf ff f3 bcs 2013dcc <rtems_partition_create+0x10>
2013e04: 80 8e e0 07 btst 7, %i3
2013e08: 12 bf ff f1 bne 2013dcc <rtems_partition_create+0x10>
2013e0c: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2013e10: 12 bf ff ef bne 2013dcc <rtems_partition_create+0x10>
2013e14: 82 10 20 09 mov 9, %g1
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
2013e18: 03 00 80 e7 sethi %hi(0x2039c00), %g1
2013e1c: c4 00 61 d0 ld [ %g1 + 0x1d0 ], %g2 ! 2039dd0 <_Thread_Dispatch_disable_level>
2013e20: 84 00 a0 01 inc %g2
2013e24: c4 20 61 d0 st %g2, [ %g1 + 0x1d0 ]
return _Thread_Dispatch_disable_level;
2013e28: c2 00 61 d0 ld [ %g1 + 0x1d0 ], %g1
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
2013e2c: 23 00 80 e6 sethi %hi(0x2039800), %l1
2013e30: 40 00 13 0d call 2018a64 <_Objects_Allocate>
2013e34: 90 14 63 e4 or %l1, 0x3e4, %o0 ! 2039be4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2013e38: a0 92 20 00 orcc %o0, 0, %l0
2013e3c: 02 80 00 1a be 2013ea4 <rtems_partition_create+0xe8>
2013e40: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
2013e44: f8 24 20 1c st %i4, [ %l0 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2013e48: f2 24 20 10 st %i1, [ %l0 + 0x10 ]
the_partition->length = length;
2013e4c: f4 24 20 14 st %i2, [ %l0 + 0x14 ]
the_partition->buffer_size = buffer_size;
2013e50: f6 24 20 18 st %i3, [ %l0 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2013e54: c0 24 20 20 clr [ %l0 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2013e58: 40 00 57 df call 2029dd4 <.udiv>
2013e5c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2013e60: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2013e64: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2013e68: 96 10 00 1b mov %i3, %o3
2013e6c: b8 04 20 24 add %l0, 0x24, %i4
2013e70: 40 00 0c c4 call 2017180 <_Chain_Initialize>
2013e74: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2013e78: c4 14 20 0a lduh [ %l0 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2013e7c: a2 14 63 e4 or %l1, 0x3e4, %l1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2013e80: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2013e84: c2 04 20 08 ld [ %l0 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2013e88: 85 28 a0 02 sll %g2, 2, %g2
2013e8c: e0 20 c0 02 st %l0, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2013e90: f0 24 20 0c st %i0, [ %l0 + 0xc ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2013e94: 40 00 18 22 call 2019f1c <_Thread_Enable_dispatch>
2013e98: c2 27 40 00 st %g1, [ %i5 ]
return RTEMS_SUCCESSFUL;
2013e9c: 10 bf ff cc b 2013dcc <rtems_partition_create+0x10>
2013ea0: 82 10 20 00 clr %g1
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
2013ea4: 40 00 18 1e call 2019f1c <_Thread_Enable_dispatch>
2013ea8: 01 00 00 00 nop
return RTEMS_TOO_MANY;
2013eac: 10 bf ff c8 b 2013dcc <rtems_partition_create+0x10>
2013eb0: 82 10 20 05 mov 5, %g1 ! 5 <PROM_START+0x5>
020075f0 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
20075f0: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
20075f4: 11 00 80 77 sethi %hi(0x201dc00), %o0
20075f8: 92 10 00 18 mov %i0, %o1
20075fc: 90 12 23 d4 or %o0, 0x3d4, %o0
2007600: 40 00 09 51 call 2009b44 <_Objects_Get>
2007604: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007608: c2 07 bf fc ld [ %fp + -4 ], %g1
200760c: 80 a0 60 00 cmp %g1, 0
2007610: 12 80 00 0d bne 2007644 <rtems_rate_monotonic_period+0x54>
2007614: ba 10 00 08 mov %o0, %i5
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007618: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
200761c: 39 00 80 78 sethi %hi(0x201e000), %i4
2007620: b8 17 23 6c or %i4, 0x36c, %i4 ! 201e36c <_Per_CPU_Information>
2007624: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007628: 80 a0 80 01 cmp %g2, %g1
200762c: 02 80 00 08 be 200764c <rtems_rate_monotonic_period+0x5c>
2007630: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2007634: 40 00 0d 17 call 200aa90 <_Thread_Enable_dispatch>
2007638: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
200763c: 81 c7 e0 08 ret
2007640: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007644: 81 c7 e0 08 ret
2007648: 91 e8 20 04 restore %g0, 4, %o0
if ( !_Thread_Is_executing( the_period->owner ) ) {
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
200764c: 12 80 00 0e bne 2007684 <rtems_rate_monotonic_period+0x94>
2007650: 01 00 00 00 nop
switch ( the_period->state ) {
2007654: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007658: 80 a0 60 04 cmp %g1, 4
200765c: 18 80 00 06 bgu 2007674 <rtems_rate_monotonic_period+0x84><== NEVER TAKEN
2007660: b0 10 20 00 clr %i0
2007664: 83 28 60 02 sll %g1, 2, %g1
2007668: 05 00 80 70 sethi %hi(0x201c000), %g2
200766c: 84 10 a0 04 or %g2, 4, %g2 ! 201c004 <CSWTCH.2>
2007670: f0 00 80 01 ld [ %g2 + %g1 ], %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007674: 40 00 0d 07 call 200aa90 <_Thread_Enable_dispatch>
2007678: 01 00 00 00 nop
return RTEMS_TIMEOUT;
200767c: 81 c7 e0 08 ret
2007680: 81 e8 00 00 restore
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
2007684: 7f ff ed e8 call 2002e24 <sparc_disable_interrupts>
2007688: 01 00 00 00 nop
200768c: b4 10 00 08 mov %o0, %i2
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007690: f6 07 60 38 ld [ %i5 + 0x38 ], %i3
2007694: 80 a6 e0 00 cmp %i3, 0
2007698: 02 80 00 14 be 20076e8 <rtems_rate_monotonic_period+0xf8>
200769c: 80 a6 e0 02 cmp %i3, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20076a0: 02 80 00 29 be 2007744 <rtems_rate_monotonic_period+0x154>
20076a4: 80 a6 e0 04 cmp %i3, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20076a8: 12 bf ff e5 bne 200763c <rtems_rate_monotonic_period+0x4c><== NEVER TAKEN
20076ac: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20076b0: 7f ff ff 92 call 20074f8 <_Rate_monotonic_Update_statistics>
20076b4: 90 10 00 1d mov %i5, %o0
_ISR_Enable( level );
20076b8: 7f ff ed df call 2002e34 <sparc_enable_interrupts>
20076bc: 90 10 00 1a mov %i2, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20076c0: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20076c4: 92 07 60 10 add %i5, 0x10, %o1
20076c8: 11 00 80 78 sethi %hi(0x201e000), %o0
the_period->next_length = length;
20076cc: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
20076d0: 90 12 21 fc or %o0, 0x1fc, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
20076d4: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20076d8: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20076dc: 40 00 11 02 call 200bae4 <_Watchdog_Insert>
20076e0: b0 10 20 06 mov 6, %i0
20076e4: 30 bf ff e4 b,a 2007674 <rtems_rate_monotonic_period+0x84>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
20076e8: 7f ff ed d3 call 2002e34 <sparc_enable_interrupts>
20076ec: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20076f0: 7f ff ff 68 call 2007490 <_Rate_monotonic_Initiate_statistics>
20076f4: 90 10 00 1d mov %i5, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20076f8: 82 10 20 02 mov 2, %g1
20076fc: 92 07 60 10 add %i5, 0x10, %o1
2007700: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
2007704: 11 00 80 78 sethi %hi(0x201e000), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007708: 03 00 80 1e sethi %hi(0x2007800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200770c: 90 12 21 fc or %o0, 0x1fc, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007710: 82 10 62 98 or %g1, 0x298, %g1
the_watchdog->id = id;
2007714: f0 27 60 30 st %i0, [ %i5 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007718: c2 27 60 2c st %g1, [ %i5 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200771c: c0 27 60 18 clr [ %i5 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
2007720: c0 27 60 34 clr [ %i5 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
2007724: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007728: f2 27 60 1c st %i1, [ %i5 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200772c: 40 00 10 ee call 200bae4 <_Watchdog_Insert>
2007730: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007734: 40 00 0c d7 call 200aa90 <_Thread_Enable_dispatch>
2007738: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
200773c: 81 c7 e0 08 ret
2007740: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007744: 7f ff ff 6d call 20074f8 <_Rate_monotonic_Update_statistics>
2007748: 90 10 00 1d mov %i5, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
200774c: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007750: f2 27 60 3c st %i1, [ %i5 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007754: c2 27 60 38 st %g1, [ %i5 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
2007758: 7f ff ed b7 call 2002e34 <sparc_enable_interrupts>
200775c: 90 10 00 1a mov %i2, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007760: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007764: c4 07 60 08 ld [ %i5 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007768: 90 10 00 01 mov %g1, %o0
200776c: 13 00 00 10 sethi %hi(0x4000), %o1
2007770: 40 00 0f 1a call 200b3d8 <_Thread_Set_state>
2007774: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007778: 7f ff ed ab call 2002e24 <sparc_disable_interrupts>
200777c: 01 00 00 00 nop
local_state = the_period->state;
2007780: f4 07 60 38 ld [ %i5 + 0x38 ], %i2
the_period->state = RATE_MONOTONIC_ACTIVE;
2007784: f6 27 60 38 st %i3, [ %i5 + 0x38 ]
_ISR_Enable( level );
2007788: 7f ff ed ab call 2002e34 <sparc_enable_interrupts>
200778c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007790: 80 a6 a0 03 cmp %i2, 3
2007794: 22 80 00 06 be,a 20077ac <rtems_rate_monotonic_period+0x1bc>
2007798: d0 07 20 0c ld [ %i4 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
200779c: 40 00 0c bd call 200aa90 <_Thread_Enable_dispatch>
20077a0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20077a4: 81 c7 e0 08 ret
20077a8: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20077ac: 40 00 0b c7 call 200a6c8 <_Thread_Clear_state>
20077b0: 13 00 00 10 sethi %hi(0x4000), %o1
20077b4: 30 bf ff fa b,a 200779c <rtems_rate_monotonic_period+0x1ac>
020077b8 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
20077b8: 9d e3 bf 38 save %sp, -200, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
20077bc: 80 a6 60 00 cmp %i1, 0
20077c0: 02 80 00 48 be 20078e0 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
20077c4: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
20077c8: 13 00 80 70 sethi %hi(0x201c000), %o1
20077cc: 9f c6 40 00 call %i1
20077d0: 92 12 60 18 or %o1, 0x18, %o1 ! 201c018 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
20077d4: 90 10 00 18 mov %i0, %o0
20077d8: 13 00 80 70 sethi %hi(0x201c000), %o1
20077dc: 9f c6 40 00 call %i1
20077e0: 92 12 60 38 or %o1, 0x38, %o1 ! 201c038 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
20077e4: 90 10 00 18 mov %i0, %o0
20077e8: 13 00 80 70 sethi %hi(0x201c000), %o1
20077ec: 9f c6 40 00 call %i1
20077f0: 92 12 60 60 or %o1, 0x60, %o1 ! 201c060 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
20077f4: 90 10 00 18 mov %i0, %o0
20077f8: 13 00 80 70 sethi %hi(0x201c000), %o1
20077fc: 9f c6 40 00 call %i1
2007800: 92 12 60 88 or %o1, 0x88, %o1 ! 201c088 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007804: 90 10 00 18 mov %i0, %o0
2007808: 13 00 80 70 sethi %hi(0x201c000), %o1
200780c: 9f c6 40 00 call %i1
2007810: 92 12 60 d8 or %o1, 0xd8, %o1 ! 201c0d8 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007814: 39 00 80 77 sethi %hi(0x201dc00), %i4
2007818: b8 17 23 d4 or %i4, 0x3d4, %i4 ! 201dfd4 <_Rate_monotonic_Information>
200781c: fa 07 20 08 ld [ %i4 + 8 ], %i5
2007820: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007824: 80 a7 40 01 cmp %i5, %g1
2007828: 18 80 00 2e bgu 20078e0 <rtems_rate_monotonic_report_statistics_with_plugin+0x128><== NEVER TAKEN
200782c: 35 00 80 70 sethi %hi(0x201c000), %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007830: 23 00 80 70 sethi %hi(0x201c000), %l1
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007834: 21 00 80 70 sethi %hi(0x201c000), %l0
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007838: 37 00 80 6c sethi %hi(0x201b000), %i3
rtems_object_get_name( the_status.owner, sizeof(name), name );
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
200783c: b4 16 a1 28 or %i2, 0x128, %i2
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007840: a2 14 61 40 or %l1, 0x140, %l1
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
(*print)( context,
2007844: a0 14 21 60 or %l0, 0x160, %l0
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007848: 10 80 00 06 b 2007860 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
200784c: b6 16 e2 98 or %i3, 0x298, %i3
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007850: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007854: 80 a0 40 1d cmp %g1, %i5
2007858: 0a 80 00 22 bcs 20078e0 <rtems_rate_monotonic_report_statistics_with_plugin+0x128>
200785c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007860: 90 10 00 1d mov %i5, %o0
2007864: 40 00 19 4f call 200dda0 <rtems_rate_monotonic_get_statistics>
2007868: 92 07 bf a0 add %fp, -96, %o1
if ( status != RTEMS_SUCCESSFUL )
200786c: 80 a2 20 00 cmp %o0, 0
2007870: 32 bf ff f8 bne,a 2007850 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
2007874: c2 07 20 0c ld [ %i4 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007878: 92 07 bf d8 add %fp, -40, %o1
200787c: 40 00 19 78 call 200de5c <rtems_rate_monotonic_get_status>
2007880: 90 10 00 1d mov %i5, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007884: d0 07 bf d8 ld [ %fp + -40 ], %o0
2007888: 92 10 20 05 mov 5, %o1
200788c: 40 00 00 b4 call 2007b5c <rtems_object_get_name>
2007890: 94 07 bf f8 add %fp, -8, %o2
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007894: d8 1f bf a0 ldd [ %fp + -96 ], %o4
2007898: 92 10 00 1a mov %i2, %o1
200789c: 94 10 00 1d mov %i5, %o2
20078a0: 90 10 00 18 mov %i0, %o0
20078a4: 9f c6 40 00 call %i1
20078a8: 96 07 bf f8 add %fp, -8, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20078ac: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20078b0: 94 07 bf f0 add %fp, -16, %o2
20078b4: 90 07 bf b8 add %fp, -72, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20078b8: 80 a0 60 00 cmp %g1, 0
20078bc: 12 80 00 0b bne 20078e8 <rtems_rate_monotonic_report_statistics_with_plugin+0x130>
20078c0: 92 10 00 1b mov %i3, %o1
(*print)( context, "\n" );
20078c4: 9f c6 40 00 call %i1
20078c8: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20078cc: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20078d0: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20078d4: 80 a0 40 1d cmp %g1, %i5
20078d8: 1a bf ff e3 bcc 2007864 <rtems_rate_monotonic_report_statistics_with_plugin+0xac><== ALWAYS TAKEN
20078dc: 90 10 00 1d mov %i5, %o0
20078e0: 81 c7 e0 08 ret
20078e4: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20078e8: 40 00 0f 43 call 200b5f4 <_Timespec_Divide_by_integer>
20078ec: 92 10 00 01 mov %g1, %o1
(*print)( context,
20078f0: d0 07 bf ac ld [ %fp + -84 ], %o0
20078f4: 40 00 46 2f call 20191b0 <.div>
20078f8: 92 10 23 e8 mov 0x3e8, %o1
20078fc: aa 10 00 08 mov %o0, %l5
2007900: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007904: 40 00 46 2b call 20191b0 <.div>
2007908: 92 10 23 e8 mov 0x3e8, %o1
200790c: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007910: a6 10 00 08 mov %o0, %l3
2007914: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007918: e4 07 bf a8 ld [ %fp + -88 ], %l2
200791c: e8 07 bf b0 ld [ %fp + -80 ], %l4
2007920: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007924: 40 00 46 23 call 20191b0 <.div>
2007928: 92 10 23 e8 mov 0x3e8, %o1
200792c: 96 10 00 15 mov %l5, %o3
2007930: 98 10 00 14 mov %l4, %o4
2007934: 9a 10 00 13 mov %l3, %o5
2007938: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
200793c: 92 10 00 11 mov %l1, %o1
2007940: 94 10 00 12 mov %l2, %o2
2007944: 9f c6 40 00 call %i1
2007948: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
200794c: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007950: 94 07 bf f0 add %fp, -16, %o2
2007954: 40 00 0f 28 call 200b5f4 <_Timespec_Divide_by_integer>
2007958: 90 07 bf d0 add %fp, -48, %o0
(*print)( context,
200795c: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007960: 40 00 46 14 call 20191b0 <.div>
2007964: 92 10 23 e8 mov 0x3e8, %o1
2007968: a8 10 00 08 mov %o0, %l4
200796c: d0 07 bf cc ld [ %fp + -52 ], %o0
2007970: 40 00 46 10 call 20191b0 <.div>
2007974: 92 10 23 e8 mov 0x3e8, %o1
2007978: c2 07 bf f0 ld [ %fp + -16 ], %g1
200797c: a4 10 00 08 mov %o0, %l2
2007980: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007984: ea 07 bf c0 ld [ %fp + -64 ], %l5
2007988: e6 07 bf c8 ld [ %fp + -56 ], %l3
200798c: 92 10 23 e8 mov 0x3e8, %o1
2007990: 40 00 46 08 call 20191b0 <.div>
2007994: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007998: 92 10 00 10 mov %l0, %o1
200799c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
20079a0: 94 10 00 15 mov %l5, %o2
20079a4: 90 10 00 18 mov %i0, %o0
20079a8: 96 10 00 14 mov %l4, %o3
20079ac: 98 10 00 13 mov %l3, %o4
20079b0: 9f c6 40 00 call %i1
20079b4: 9a 10 00 12 mov %l2, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20079b8: 10 bf ff a6 b 2007850 <rtems_rate_monotonic_report_statistics_with_plugin+0x98>
20079bc: c2 07 20 0c ld [ %i4 + 0xc ], %g1
020079d8 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
20079d8: 9d e3 bf a0 save %sp, -96, %sp
*
* This rountine increments the thread dispatch level
*/
RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void)
{
_Thread_Dispatch_disable_level++;
20079dc: 03 00 80 78 sethi %hi(0x201e000), %g1
20079e0: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 201e140 <_Thread_Dispatch_disable_level>
20079e4: 84 00 a0 01 inc %g2
20079e8: c4 20 61 40 st %g2, [ %g1 + 0x140 ]
return _Thread_Dispatch_disable_level;
20079ec: c2 00 61 40 ld [ %g1 + 0x140 ], %g1
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20079f0: 39 00 80 77 sethi %hi(0x201dc00), %i4
20079f4: b8 17 23 d4 or %i4, 0x3d4, %i4 ! 201dfd4 <_Rate_monotonic_Information>
20079f8: fa 07 20 08 ld [ %i4 + 8 ], %i5
20079fc: c2 07 20 0c ld [ %i4 + 0xc ], %g1
2007a00: 80 a7 40 01 cmp %i5, %g1
2007a04: 18 80 00 09 bgu 2007a28 <rtems_rate_monotonic_reset_all_statistics+0x50><== NEVER TAKEN
2007a08: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
2007a0c: 40 00 00 09 call 2007a30 <rtems_rate_monotonic_reset_statistics>
2007a10: 90 10 00 1d mov %i5, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007a14: c2 07 20 0c ld [ %i4 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007a18: ba 07 60 01 inc %i5
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007a1c: 80 a0 40 1d cmp %g1, %i5
2007a20: 1a bf ff fb bcc 2007a0c <rtems_rate_monotonic_reset_all_statistics+0x34>
2007a24: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2007a28: 40 00 0c 1a call 200aa90 <_Thread_Enable_dispatch>
2007a2c: 81 e8 00 00 restore
02015378 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2015378: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
201537c: 80 a6 60 00 cmp %i1, 0
2015380: 12 80 00 04 bne 2015390 <rtems_signal_send+0x18>
2015384: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015388: 81 c7 e0 08 ret
201538c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2015390: 90 10 00 18 mov %i0, %o0
2015394: 40 00 12 ef call 2019f50 <_Thread_Get>
2015398: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
201539c: c2 07 bf fc ld [ %fp + -4 ], %g1
20153a0: 80 a0 60 00 cmp %g1, 0
20153a4: 12 80 00 20 bne 2015424 <rtems_signal_send+0xac>
20153a8: b8 10 00 08 mov %o0, %i4
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20153ac: fa 02 21 58 ld [ %o0 + 0x158 ], %i5
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20153b0: c2 07 60 0c ld [ %i5 + 0xc ], %g1
20153b4: 80 a0 60 00 cmp %g1, 0
20153b8: 02 80 00 1e be 2015430 <rtems_signal_send+0xb8>
20153bc: 01 00 00 00 nop
if ( asr->is_enabled ) {
20153c0: c2 0f 60 08 ldub [ %i5 + 8 ], %g1
20153c4: 80 a0 60 00 cmp %g1, 0
20153c8: 02 80 00 1e be 2015440 <rtems_signal_send+0xc8>
20153cc: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20153d0: 7f ff e6 bf call 200eecc <sparc_disable_interrupts>
20153d4: 01 00 00 00 nop
*signal_set |= signals;
20153d8: c2 07 60 14 ld [ %i5 + 0x14 ], %g1
20153dc: b2 10 40 19 or %g1, %i1, %i1
20153e0: f2 27 60 14 st %i1, [ %i5 + 0x14 ]
_ISR_Enable( _level );
20153e4: 7f ff e6 be call 200eedc <sparc_enable_interrupts>
20153e8: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20153ec: 03 00 80 e8 sethi %hi(0x203a000), %g1
20153f0: 82 10 60 04 or %g1, 4, %g1 ! 203a004 <_Per_CPU_Information>
20153f4: c4 00 60 08 ld [ %g1 + 8 ], %g2
20153f8: 80 a0 a0 00 cmp %g2, 0
20153fc: 02 80 00 06 be 2015414 <rtems_signal_send+0x9c>
2015400: 01 00 00 00 nop
2015404: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015408: 80 a7 00 02 cmp %i4, %g2
201540c: 02 80 00 15 be 2015460 <rtems_signal_send+0xe8> <== ALWAYS TAKEN
2015410: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015414: 40 00 12 c2 call 2019f1c <_Thread_Enable_dispatch>
2015418: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201541c: 10 bf ff db b 2015388 <rtems_signal_send+0x10>
2015420: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2015424: 82 10 20 04 mov 4, %g1
}
2015428: 81 c7 e0 08 ret
201542c: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
2015430: 40 00 12 bb call 2019f1c <_Thread_Enable_dispatch>
2015434: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
2015438: 10 bf ff d4 b 2015388 <rtems_signal_send+0x10>
201543c: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015440: 7f ff e6 a3 call 200eecc <sparc_disable_interrupts>
2015444: 01 00 00 00 nop
*signal_set |= signals;
2015448: c2 07 60 18 ld [ %i5 + 0x18 ], %g1
201544c: b2 10 40 19 or %g1, %i1, %i1
2015450: f2 27 60 18 st %i1, [ %i5 + 0x18 ]
_ISR_Enable( _level );
2015454: 7f ff e6 a2 call 200eedc <sparc_enable_interrupts>
2015458: 01 00 00 00 nop
201545c: 30 bf ff ee b,a 2015414 <rtems_signal_send+0x9c>
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
if ( asr->is_enabled ) {
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
2015460: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015464: 30 bf ff ec b,a 2015414 <rtems_signal_send+0x9c>
0200e534 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200e534: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200e538: 80 a6 a0 00 cmp %i2, 0
200e53c: 02 80 00 3b be 200e628 <rtems_task_mode+0xf4>
200e540: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200e544: 21 00 80 71 sethi %hi(0x201c400), %l0
200e548: a0 14 21 2c or %l0, 0x12c, %l0 ! 201c52c <_Per_CPU_Information>
200e54c: fa 04 20 0c ld [ %l0 + 0xc ], %i5
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e550: c4 0f 60 74 ldub [ %i5 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e554: c2 07 60 7c ld [ %i5 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e558: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200e55c: f8 07 61 58 ld [ %i5 + 0x158 ], %i4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e560: b6 60 3f ff subx %g0, -1, %i3
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e564: 80 a0 60 00 cmp %g1, 0
200e568: 12 80 00 40 bne 200e668 <rtems_task_mode+0x134>
200e56c: b7 2e e0 08 sll %i3, 8, %i3
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e570: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
200e574: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e578: 7f ff f0 8c call 200a7a8 <_CPU_ISR_Get_level>
200e57c: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e580: a3 2c 60 0a sll %l1, 0xa, %l1
200e584: a2 14 40 08 or %l1, %o0, %l1
old_mode |= _ISR_Get_level();
200e588: b6 14 40 1b or %l1, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e58c: 80 8e 61 00 btst 0x100, %i1
200e590: 02 80 00 06 be 200e5a8 <rtems_task_mode+0x74>
200e594: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e598: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200e59c: 80 a0 00 01 cmp %g0, %g1
200e5a0: 82 60 3f ff subx %g0, -1, %g1
200e5a4: c2 2f 60 74 stb %g1, [ %i5 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200e5a8: 80 8e 62 00 btst 0x200, %i1
200e5ac: 12 80 00 21 bne 200e630 <rtems_task_mode+0xfc>
200e5b0: 80 8e 22 00 btst 0x200, %i0
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e5b4: 80 8e 60 0f btst 0xf, %i1
200e5b8: 12 80 00 27 bne 200e654 <rtems_task_mode+0x120>
200e5bc: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e5c0: 80 8e 64 00 btst 0x400, %i1
200e5c4: 02 80 00 14 be 200e614 <rtems_task_mode+0xe0>
200e5c8: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e5cc: c4 0f 20 08 ldub [ %i4 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200e5d0: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200e5d4: 80 a0 00 18 cmp %g0, %i0
200e5d8: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e5dc: 80 a0 80 01 cmp %g2, %g1
200e5e0: 22 80 00 0e be,a 200e618 <rtems_task_mode+0xe4>
200e5e4: 03 00 80 71 sethi %hi(0x201c400), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200e5e8: 7f ff ce ff call 20021e4 <sparc_disable_interrupts>
200e5ec: c2 2f 20 08 stb %g1, [ %i4 + 8 ]
_signals = information->signals_pending;
200e5f0: c4 07 20 18 ld [ %i4 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
200e5f4: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
information->signals_posted = _signals;
200e5f8: c4 27 20 14 st %g2, [ %i4 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200e5fc: c2 27 20 18 st %g1, [ %i4 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200e600: 7f ff ce fd call 20021f4 <sparc_enable_interrupts>
200e604: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200e608: c2 07 20 14 ld [ %i4 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200e60c: 80 a0 00 01 cmp %g0, %g1
200e610: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200e614: 03 00 80 71 sethi %hi(0x201c400), %g1
200e618: c4 00 60 54 ld [ %g1 + 0x54 ], %g2 ! 201c454 <_System_state_Current>
200e61c: 80 a0 a0 03 cmp %g2, 3
200e620: 02 80 00 1f be 200e69c <rtems_task_mode+0x168>
200e624: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
200e628: 81 c7 e0 08 ret
200e62c: 91 e8 00 01 restore %g0, %g1, %o0
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
200e630: 22 bf ff e1 be,a 200e5b4 <rtems_task_mode+0x80>
200e634: c0 27 60 7c clr [ %i5 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e638: 03 00 80 70 sethi %hi(0x201c000), %g1
200e63c: c2 00 62 64 ld [ %g1 + 0x264 ], %g1 ! 201c264 <_Thread_Ticks_per_timeslice>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e640: 80 8e 60 0f btst 0xf, %i1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e644: c2 27 60 78 st %g1, [ %i5 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200e648: 82 10 20 01 mov 1, %g1
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e64c: 02 bf ff dd be 200e5c0 <rtems_task_mode+0x8c>
200e650: c2 27 60 7c st %g1, [ %i5 + 0x7c ]
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e654: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e658: 7f ff ce e7 call 20021f4 <sparc_enable_interrupts>
200e65c: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e660: 10 bf ff d9 b 200e5c4 <rtems_task_mode+0x90>
200e664: 80 8e 64 00 btst 0x400, %i1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e668: c2 0f 20 08 ldub [ %i4 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200e66c: b6 16 e2 00 or %i3, 0x200, %i3
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e670: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e674: 7f ff f0 4d call 200a7a8 <_CPU_ISR_Get_level>
200e678: a2 60 3f ff subx %g0, -1, %l1
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e67c: a3 2c 60 0a sll %l1, 0xa, %l1
200e680: a2 14 40 08 or %l1, %o0, %l1
old_mode |= _ISR_Get_level();
200e684: b6 14 40 1b or %l1, %i3, %i3
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e688: 80 8e 61 00 btst 0x100, %i1
200e68c: 02 bf ff c7 be 200e5a8 <rtems_task_mode+0x74>
200e690: f6 26 80 00 st %i3, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e694: 10 bf ff c2 b 200e59c <rtems_task_mode+0x68>
200e698: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
200e69c: 80 88 e0 ff btst 0xff, %g3
200e6a0: 12 80 00 0a bne 200e6c8 <rtems_task_mode+0x194>
200e6a4: c4 04 20 0c ld [ %l0 + 0xc ], %g2
200e6a8: c6 04 20 10 ld [ %l0 + 0x10 ], %g3
200e6ac: 80 a0 80 03 cmp %g2, %g3
200e6b0: 02 bf ff de be 200e628 <rtems_task_mode+0xf4>
200e6b4: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200e6b8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200e6bc: 80 a0 a0 00 cmp %g2, 0
200e6c0: 02 bf ff da be 200e628 <rtems_task_mode+0xf4> <== NEVER TAKEN
200e6c4: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200e6c8: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
200e6cc: c2 2c 20 18 stb %g1, [ %l0 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200e6d0: 7f ff ea 9c call 2009140 <_Thread_Dispatch>
200e6d4: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200e6d8: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e6dc: 81 c7 e0 08 ret
200e6e0: 91 e8 00 01 restore %g0, %g1, %o0
0200b1e4 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200b1e4: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200b1e8: 80 a6 60 00 cmp %i1, 0
200b1ec: 02 80 00 07 be 200b208 <rtems_task_set_priority+0x24>
200b1f0: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200b1f4: 03 00 80 65 sethi %hi(0x2019400), %g1
200b1f8: c2 08 63 cc ldub [ %g1 + 0x3cc ], %g1 ! 20197cc <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200b1fc: 80 a6 40 01 cmp %i1, %g1
200b200: 18 80 00 1c bgu 200b270 <rtems_task_set_priority+0x8c>
200b204: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200b208: 80 a6 a0 00 cmp %i2, 0
200b20c: 02 80 00 19 be 200b270 <rtems_task_set_priority+0x8c>
200b210: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200b214: 40 00 09 d3 call 200d960 <_Thread_Get>
200b218: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200b21c: c2 07 bf fc ld [ %fp + -4 ], %g1
200b220: 80 a0 60 00 cmp %g1, 0
200b224: 12 80 00 13 bne 200b270 <rtems_task_set_priority+0x8c>
200b228: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200b22c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200b230: 80 a6 60 00 cmp %i1, 0
200b234: 02 80 00 0d be 200b268 <rtems_task_set_priority+0x84>
200b238: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200b23c: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200b240: 80 a0 60 00 cmp %g1, 0
200b244: 02 80 00 06 be 200b25c <rtems_task_set_priority+0x78>
200b248: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200b24c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200b250: 80 a6 40 01 cmp %i1, %g1
200b254: 1a 80 00 05 bcc 200b268 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200b258: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200b25c: 92 10 00 19 mov %i1, %o1
200b260: 40 00 08 76 call 200d438 <_Thread_Change_priority>
200b264: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200b268: 40 00 09 b1 call 200d92c <_Thread_Enable_dispatch>
200b26c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200b270: 81 c7 e0 08 ret
200b274: 81 e8 00 00 restore
02007634 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
2007634: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
2007638: 80 a6 60 00 cmp %i1, 0
200763c: 02 80 00 1e be 20076b4 <rtems_task_variable_delete+0x80>
2007640: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
2007644: 90 10 00 18 mov %i0, %o0
2007648: 40 00 09 56 call 2009ba0 <_Thread_Get>
200764c: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007650: c2 07 bf fc ld [ %fp + -4 ], %g1
2007654: 80 a0 60 00 cmp %g1, 0
2007658: 12 80 00 19 bne 20076bc <rtems_task_variable_delete+0x88>
200765c: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
2007660: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007664: 80 a0 60 00 cmp %g1, 0
2007668: 02 80 00 10 be 20076a8 <rtems_task_variable_delete+0x74>
200766c: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007670: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007674: 80 a0 80 19 cmp %g2, %i1
2007678: 32 80 00 09 bne,a 200769c <rtems_task_variable_delete+0x68>
200767c: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
2007680: 10 80 00 18 b 20076e0 <rtems_task_variable_delete+0xac>
2007684: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2007688: 80 a0 80 19 cmp %g2, %i1
200768c: 22 80 00 0e be,a 20076c4 <rtems_task_variable_delete+0x90>
2007690: c4 02 40 00 ld [ %o1 ], %g2
2007694: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
2007698: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
200769c: 80 a2 60 00 cmp %o1, 0
20076a0: 32 bf ff fa bne,a 2007688 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
20076a4: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
20076a8: 40 00 09 31 call 2009b6c <_Thread_Enable_dispatch>
20076ac: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
20076b0: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20076b4: 81 c7 e0 08 ret
20076b8: 91 e8 00 01 restore %g0, %g1, %o0
20076bc: 81 c7 e0 08 ret
20076c0: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
20076c4: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
20076c8: 40 00 00 2d call 200777c <_RTEMS_Tasks_Invoke_task_variable_dtor>
20076cc: 01 00 00 00 nop
_Thread_Enable_dispatch();
20076d0: 40 00 09 27 call 2009b6c <_Thread_Enable_dispatch>
20076d4: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20076d8: 10 bf ff f7 b 20076b4 <rtems_task_variable_delete+0x80>
20076dc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
20076e0: 92 10 00 01 mov %g1, %o1
20076e4: 10 bf ff f9 b 20076c8 <rtems_task_variable_delete+0x94>
20076e8: c4 22 21 64 st %g2, [ %o0 + 0x164 ]
020076ec <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
20076ec: 9d e3 bf 98 save %sp, -104, %sp
20076f0: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
20076f4: 80 a6 60 00 cmp %i1, 0
20076f8: 02 80 00 1b be 2007764 <rtems_task_variable_get+0x78>
20076fc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
2007700: 80 a6 a0 00 cmp %i2, 0
2007704: 02 80 00 1c be 2007774 <rtems_task_variable_get+0x88>
2007708: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
200770c: 40 00 09 25 call 2009ba0 <_Thread_Get>
2007710: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007714: c2 07 bf fc ld [ %fp + -4 ], %g1
2007718: 80 a0 60 00 cmp %g1, 0
200771c: 12 80 00 12 bne 2007764 <rtems_task_variable_get+0x78>
2007720: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
2007724: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007728: 80 a0 60 00 cmp %g1, 0
200772c: 32 80 00 07 bne,a 2007748 <rtems_task_variable_get+0x5c>
2007730: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007734: 30 80 00 0e b,a 200776c <rtems_task_variable_get+0x80>
2007738: 80 a0 60 00 cmp %g1, 0
200773c: 02 80 00 0c be 200776c <rtems_task_variable_get+0x80> <== NEVER TAKEN
2007740: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007744: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007748: 80 a0 80 19 cmp %g2, %i1
200774c: 32 bf ff fb bne,a 2007738 <rtems_task_variable_get+0x4c>
2007750: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
2007754: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
2007758: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
200775c: 40 00 09 04 call 2009b6c <_Thread_Enable_dispatch>
2007760: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2007764: 81 c7 e0 08 ret
2007768: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
200776c: 40 00 09 00 call 2009b6c <_Thread_Enable_dispatch>
2007770: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
2007774: 81 c7 e0 08 ret
2007778: 81 e8 00 00 restore
02015dd8 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2015dd8: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get (
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
2015ddc: 11 00 80 e8 sethi %hi(0x203a000), %o0
2015de0: 92 10 00 18 mov %i0, %o1
2015de4: 90 12 20 a4 or %o0, 0xa4, %o0
2015de8: 40 00 0c 7a call 2018fd0 <_Objects_Get>
2015dec: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2015df0: c2 07 bf fc ld [ %fp + -4 ], %g1
2015df4: 80 a0 60 00 cmp %g1, 0
2015df8: 12 80 00 0c bne 2015e28 <rtems_timer_cancel+0x50>
2015dfc: 01 00 00 00 nop
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2015e00: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2015e04: 80 a0 60 04 cmp %g1, 4
2015e08: 02 80 00 04 be 2015e18 <rtems_timer_cancel+0x40> <== NEVER TAKEN
2015e0c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2015e10: 40 00 15 11 call 201b254 <_Watchdog_Remove>
2015e14: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2015e18: 40 00 10 41 call 2019f1c <_Thread_Enable_dispatch>
2015e1c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2015e20: 81 c7 e0 08 ret
2015e24: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015e28: 81 c7 e0 08 ret
2015e2c: 91 e8 20 04 restore %g0, 4, %o0
02016300 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016300: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016304: 03 00 80 e8 sethi %hi(0x203a000), %g1
2016308: fa 00 60 e4 ld [ %g1 + 0xe4 ], %i5 ! 203a0e4 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
201630c: b8 10 00 18 mov %i0, %i4
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2016310: 80 a7 60 00 cmp %i5, 0
2016314: 02 80 00 32 be 20163dc <rtems_timer_server_fire_when+0xdc>
2016318: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
201631c: 03 00 80 e7 sethi %hi(0x2039c00), %g1
2016320: c2 08 61 e0 ldub [ %g1 + 0x1e0 ], %g1 ! 2039de0 <_TOD_Is_set>
2016324: 80 a0 60 00 cmp %g1, 0
2016328: 02 80 00 2d be 20163dc <rtems_timer_server_fire_when+0xdc><== NEVER TAKEN
201632c: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
2016330: 80 a6 a0 00 cmp %i2, 0
2016334: 02 80 00 2a be 20163dc <rtems_timer_server_fire_when+0xdc>
2016338: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
201633c: 90 10 00 19 mov %i1, %o0
2016340: 7f ff f3 d5 call 2013294 <_TOD_Validate>
2016344: b0 10 20 14 mov 0x14, %i0
2016348: 80 8a 20 ff btst 0xff, %o0
201634c: 02 80 00 24 be 20163dc <rtems_timer_server_fire_when+0xdc>
2016350: 01 00 00 00 nop
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2016354: 7f ff f3 9c call 20131c4 <_TOD_To_seconds>
2016358: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
201635c: 21 00 80 e7 sethi %hi(0x2039c00), %l0
2016360: c2 04 22 5c ld [ %l0 + 0x25c ], %g1 ! 2039e5c <_TOD_Now>
2016364: 80 a2 00 01 cmp %o0, %g1
2016368: 08 80 00 1d bleu 20163dc <rtems_timer_server_fire_when+0xdc>
201636c: b2 10 00 08 mov %o0, %i1
2016370: 92 10 00 1c mov %i4, %o1
2016374: 11 00 80 e8 sethi %hi(0x203a000), %o0
2016378: 94 07 bf fc add %fp, -4, %o2
201637c: 40 00 0b 15 call 2018fd0 <_Objects_Get>
2016380: 90 12 20 a4 or %o0, 0xa4, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016384: c2 07 bf fc ld [ %fp + -4 ], %g1
2016388: 80 a0 60 00 cmp %g1, 0
201638c: 12 80 00 16 bne 20163e4 <rtems_timer_server_fire_when+0xe4>
2016390: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016394: 40 00 13 b0 call 201b254 <_Watchdog_Remove>
2016398: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201639c: c4 04 22 5c ld [ %l0 + 0x25c ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
20163a0: c2 07 60 04 ld [ %i5 + 4 ], %g1
20163a4: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20163a8: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
20163ac: 90 10 00 1d mov %i5, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20163b0: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20163b4: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
20163b8: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
20163bc: f8 26 20 30 st %i4, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
20163c0: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20163c4: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20163c8: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
20163cc: 9f c0 40 00 call %g1
20163d0: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
20163d4: 40 00 0e d2 call 2019f1c <_Thread_Enable_dispatch>
20163d8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20163dc: 81 c7 e0 08 ret
20163e0: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20163e4: 81 c7 e0 08 ret
20163e8: 91 e8 20 04 restore %g0, 4, %o0