=============================================================================== 02007218 <_API_extensions_Run_postdriver>: * * _API_extensions_Run_postdriver */ void _API_extensions_Run_postdriver( void ) { 2007218: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200721c: 39 00 80 71 sethi %hi(0x201c400), %i4 2007220: fa 07 20 b4 ld [ %i4 + 0xb4 ], %i5 ! 201c4b4 <_API_extensions_List> 2007224: b8 17 20 b4 or %i4, 0xb4, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2007228: b8 07 20 04 add %i4, 4, %i4 200722c: 80 a7 40 1c cmp %i5, %i4 2007230: 02 80 00 09 be 2007254 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 2007234: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 2007238: c2 07 60 08 ld [ %i5 + 8 ], %g1 200723c: 9f c0 40 00 call %g1 2007240: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2007244: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2007248: 80 a7 40 1c cmp %i5, %i4 200724c: 32 bf ff fc bne,a 200723c <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2007250: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 2007254: 81 c7 e0 08 ret 2007258: 81 e8 00 00 restore =============================================================================== 0200725c <_API_extensions_Run_postswitch>: * * _API_extensions_Run_postswitch */ void _API_extensions_Run_postswitch( void ) { 200725c: 9d e3 bf a0 save %sp, -96, %sp 2007260: 39 00 80 71 sethi %hi(0x201c400), %i4 2007264: fa 07 20 b4 ld [ %i4 + 0xb4 ], %i5 ! 201c4b4 <_API_extensions_List> 2007268: b8 17 20 b4 or %i4, 0xb4, %i4 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 200726c: b8 07 20 04 add %i4, 4, %i4 2007270: 80 a7 40 1c cmp %i5, %i4 2007274: 02 80 00 0a be 200729c <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN 2007278: 37 00 80 71 sethi %hi(0x201c400), %i3 200727c: b6 16 e0 ec or %i3, 0xec, %i3 ! 201c4ec <_Per_CPU_Information> !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); 2007280: c2 07 60 0c ld [ %i5 + 0xc ], %g1 2007284: 9f c0 40 00 call %g1 2007288: d0 06 e0 0c ld [ %i3 + 0xc ], %o0 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 200728c: fa 07 40 00 ld [ %i5 ], %i5 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2007290: 80 a7 40 1c cmp %i5, %i4 2007294: 32 bf ff fc bne,a 2007284 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN 2007298: c2 07 60 0c ld [ %i5 + 0xc ], %g1 <== NOT EXECUTED 200729c: 81 c7 e0 08 ret 20072a0: 81 e8 00 00 restore =============================================================================== 02010ab4 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010ab4: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2010ab8: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010abc: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; the_message_queue->maximum_message_size = maximum_message_size; 2010ac0: f6 26 20 4c st %i3, [ %i0 + 0x4c ] /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2010ac4: 80 8e e0 03 btst 3, %i3 2010ac8: 02 80 00 0a be 2010af0 <_CORE_message_queue_Initialize+0x3c> 2010acc: a0 10 00 1b mov %i3, %l0 allocated_message_size += sizeof(uint32_t); 2010ad0: a0 06 e0 04 add %i3, 4, %l0 allocated_message_size &= ~(sizeof(uint32_t) - 1); 2010ad4: a0 0c 3f fc and %l0, -4, %l0 } if (allocated_message_size < maximum_message_size) 2010ad8: 80 a6 c0 10 cmp %i3, %l0 2010adc: 08 80 00 05 bleu 2010af0 <_CORE_message_queue_Initialize+0x3c><== ALWAYS TAKEN 2010ae0: ba 10 20 00 clr %i5 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010ae4: b0 0f 60 01 and %i5, 1, %i0 2010ae8: 81 c7 e0 08 ret 2010aec: 81 e8 00 00 restore /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 2010af0: b8 04 20 10 add %l0, 0x10, %i4 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 2010af4: 92 10 00 1a mov %i2, %o1 2010af8: 90 10 00 1c mov %i4, %o0 2010afc: 40 00 3f 91 call 2020940 <.umul> 2010b00: ba 10 20 00 clr %i5 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 2010b04: 80 a2 00 10 cmp %o0, %l0 2010b08: 2a bf ff f8 bcs,a 2010ae8 <_CORE_message_queue_Initialize+0x34><== NEVER TAKEN 2010b0c: b0 0f 60 01 and %i5, 1, %i0 <== NOT EXECUTED /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010b10: 40 00 0c c9 call 2013e34 <_Workspace_Allocate> 2010b14: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010b18: d0 26 20 5c st %o0, [ %i0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010b1c: 80 a2 20 00 cmp %o0, 0 2010b20: 02 bf ff f1 be 2010ae4 <_CORE_message_queue_Initialize+0x30> 2010b24: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010b28: 90 06 20 60 add %i0, 0x60, %o0 2010b2c: 94 10 00 1a mov %i2, %o2 2010b30: 40 00 15 66 call 20160c8 <_Chain_Initialize> 2010b34: 96 10 00 1c mov %i4, %o3 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010b38: c4 06 40 00 ld [ %i1 ], %g2 RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010b3c: 82 06 20 50 add %i0, 0x50, %g1 2010b40: 84 18 a0 01 xor %g2, 1, %g2 2010b44: 80 a0 00 02 cmp %g0, %g2 2010b48: 84 06 20 54 add %i0, 0x54, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 2010b4c: c2 26 20 58 st %g1, [ %i0 + 0x58 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2010b50: c4 26 20 50 st %g2, [ %i0 + 0x50 ] 2010b54: 90 10 00 18 mov %i0, %o0 head->previous = NULL; 2010b58: c0 26 20 54 clr [ %i0 + 0x54 ] 2010b5c: 92 60 3f ff subx %g0, -1, %o1 2010b60: 94 10 20 80 mov 0x80, %o2 2010b64: 96 10 20 06 mov 6, %o3 2010b68: 40 00 0a 26 call 2013400 <_Thread_queue_Initialize> 2010b6c: ba 10 20 01 mov 1, %i5 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010b70: b0 0f 60 01 and %i5, 1, %i0 2010b74: 81 c7 e0 08 ret 2010b78: 81 e8 00 00 restore =============================================================================== 0200756c <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 200756c: 9d e3 bf a0 save %sp, -96, %sp * This routine returns true if thread dispatch indicates * that we are in a critical section. */ RTEMS_INLINE_ROUTINE bool _Thread_Dispatch_in_critical_section(void) { if ( _Thread_Dispatch_disable_level == 0 ) 2007570: 3b 00 80 70 sethi %hi(0x201c000), %i5 2007574: c2 07 62 c0 ld [ %i5 + 0x2c0 ], %g1 ! 201c2c0 <_Thread_Dispatch_disable_level> 2007578: 80 a0 60 00 cmp %g1, 0 200757c: 02 80 00 05 be 2007590 <_CORE_mutex_Seize+0x24> 2007580: f8 27 a0 54 st %i4, [ %fp + 0x54 ] _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 2007584: 80 a6 a0 00 cmp %i2, 0 2007588: 12 80 00 1b bne 20075f4 <_CORE_mutex_Seize+0x88> <== ALWAYS TAKEN 200758c: 03 00 80 71 sethi %hi(0x201c400), %g1 2007590: 90 10 00 18 mov %i0, %o0 2007594: 40 00 14 bf call 200c890 <_CORE_mutex_Seize_interrupt_trylock> 2007598: 92 07 a0 54 add %fp, 0x54, %o1 200759c: 80 a2 20 00 cmp %o0, 0 20075a0: 02 80 00 13 be 20075ec <_CORE_mutex_Seize+0x80> 20075a4: 80 a6 a0 00 cmp %i2, 0 20075a8: 02 80 00 1b be 2007614 <_CORE_mutex_Seize+0xa8> 20075ac: 01 00 00 00 nop * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 20075b0: c4 07 62 c0 ld [ %i5 + 0x2c0 ], %g2 20075b4: 03 00 80 71 sethi %hi(0x201c400), %g1 20075b8: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1 ! 201c4f8 <_Per_CPU_Information+0xc> RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 20075bc: 86 10 20 01 mov 1, %g3 20075c0: c6 26 20 30 st %g3, [ %i0 + 0x30 ] 20075c4: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 20075c8: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 20075cc: 82 00 a0 01 add %g2, 1, %g1 20075d0: c2 27 62 c0 st %g1, [ %i5 + 0x2c0 ] return _Thread_Dispatch_disable_level; 20075d4: c2 07 62 c0 ld [ %i5 + 0x2c0 ], %g1 20075d8: 7f ff eb 0d call 200220c 20075dc: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 20075e0: 90 10 00 18 mov %i0, %o0 20075e4: 7f ff ff c0 call 20074e4 <_CORE_mutex_Seize_interrupt_blocking> 20075e8: 92 10 00 1b mov %i3, %o1 20075ec: 81 c7 e0 08 ret 20075f0: 81 e8 00 00 restore 20075f4: c2 00 60 14 ld [ %g1 + 0x14 ], %g1 20075f8: 80 a0 60 01 cmp %g1, 1 20075fc: 28 bf ff e6 bleu,a 2007594 <_CORE_mutex_Seize+0x28> 2007600: 90 10 00 18 mov %i0, %o0 2007604: 90 10 20 00 clr %o0 2007608: 92 10 20 00 clr %o1 200760c: 40 00 01 dc call 2007d7c <_Internal_error_Occurred> 2007610: 94 10 20 12 mov 0x12, %o2 2007614: 7f ff ea fe call 200220c 2007618: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 200761c: 03 00 80 71 sethi %hi(0x201c400), %g1 2007620: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1 ! 201c4f8 <_Per_CPU_Information+0xc> 2007624: 84 10 20 01 mov 1, %g2 2007628: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 200762c: 81 c7 e0 08 ret 2007630: 81 e8 00 00 restore =============================================================================== 020077a8 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 20077a8: 9d e3 bf a0 save %sp, -96, %sp 20077ac: ba 10 00 18 mov %i0, %i5 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20077b0: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 20077b4: 40 00 07 96 call 200960c <_Thread_queue_Dequeue> 20077b8: 90 10 00 1d mov %i5, %o0 20077bc: 80 a2 20 00 cmp %o0, 0 20077c0: 02 80 00 04 be 20077d0 <_CORE_semaphore_Surrender+0x28> 20077c4: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 20077c8: 81 c7 e0 08 ret 20077cc: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 20077d0: 7f ff ea 8b call 20021fc 20077d4: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 20077d8: c2 07 60 48 ld [ %i5 + 0x48 ], %g1 20077dc: c4 07 60 40 ld [ %i5 + 0x40 ], %g2 20077e0: 80 a0 40 02 cmp %g1, %g2 20077e4: 1a 80 00 05 bcc 20077f8 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 20077e8: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 20077ec: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20077f0: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 20077f4: c2 27 60 48 st %g1, [ %i5 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 20077f8: 7f ff ea 85 call 200220c 20077fc: 01 00 00 00 nop } return status; } 2007800: 81 c7 e0 08 ret 2007804: 81 e8 00 00 restore =============================================================================== 0200c828 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 200c828: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; 200c82c: c0 26 20 04 clr [ %i0 + 4 ] size_t node_size ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200c830: ba 06 20 04 add %i0, 4, %i5 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c834: 80 a6 a0 00 cmp %i2, 0 200c838: 02 80 00 12 be 200c880 <_Chain_Initialize+0x58> <== NEVER TAKEN 200c83c: 90 10 00 18 mov %i0, %o0 200c840: b4 06 bf ff add %i2, -1, %i2 { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; 200c844: 82 10 00 19 mov %i1, %g1 head->previous = NULL; while ( count-- ) { 200c848: 92 10 00 1a mov %i2, %o1 ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; 200c84c: 10 80 00 05 b 200c860 <_Chain_Initialize+0x38> 200c850: 84 10 00 18 mov %i0, %g2 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c854: 84 10 00 01 mov %g1, %g2 200c858: b4 06 bf ff add %i2, -1, %i2 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 200c85c: 82 10 00 03 mov %g3, %g1 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { current->next = next; 200c860: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 200c864: c4 20 60 04 st %g2, [ %g1 + 4 ] Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c868: 80 a6 a0 00 cmp %i2, 0 200c86c: 12 bf ff fa bne 200c854 <_Chain_Initialize+0x2c> 200c870: 86 00 40 1b add %g1, %i3, %g3 * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 200c874: 40 00 2b c1 call 2017778 <.umul> 200c878: 90 10 00 1b mov %i3, %o0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c87c: 90 06 40 08 add %i1, %o0, %o0 current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = tail; 200c880: fa 22 00 00 st %i5, [ %o0 ] tail->previous = current; 200c884: d0 26 20 08 st %o0, [ %i0 + 8 ] } 200c888: 81 c7 e0 08 ret 200c88c: 81 e8 00 00 restore =============================================================================== 020064b8 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 20064b8: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20064bc: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 option_set = (rtems_option) the_thread->Wait.option; _ISR_Disable( level ); 20064c0: 7f ff ef 4f call 20021fc 20064c4: f8 06 20 30 ld [ %i0 + 0x30 ], %i4 pending_events = api->pending_events; 20064c8: c4 07 40 00 ld [ %i5 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 20064cc: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 20064d0: 86 88 40 02 andcc %g1, %g2, %g3 20064d4: 02 80 00 39 be 20065b8 <_Event_Surrender+0x100> 20064d8: 09 00 80 71 sethi %hi(0x201c400), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20064dc: 88 11 20 ec or %g4, 0xec, %g4 ! 201c4ec <_Per_CPU_Information> 20064e0: f2 01 20 08 ld [ %g4 + 8 ], %i1 20064e4: 80 a6 60 00 cmp %i1, 0 20064e8: 32 80 00 1c bne,a 2006558 <_Event_Surrender+0xa0> 20064ec: c8 01 20 0c ld [ %g4 + 0xc ], %g4 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_EVENT); 20064f0: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20064f4: 80 89 21 00 btst 0x100, %g4 20064f8: 02 80 00 30 be 20065b8 <_Event_Surrender+0x100> 20064fc: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2006500: 02 80 00 04 be 2006510 <_Event_Surrender+0x58> 2006504: 80 8f 20 02 btst 2, %i4 2006508: 02 80 00 2c be 20065b8 <_Event_Surrender+0x100> <== NEVER TAKEN 200650c: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006510: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2006514: 84 28 80 03 andn %g2, %g3, %g2 /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2006518: c4 27 40 00 st %g2, [ %i5 ] the_thread->Wait.count = 0; 200651c: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006520: c6 20 40 00 st %g3, [ %g1 ] _ISR_Flash( level ); 2006524: 7f ff ef 3a call 200220c 2006528: 01 00 00 00 nop 200652c: 7f ff ef 34 call 20021fc 2006530: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2006534: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 2006538: 80 a0 60 02 cmp %g1, 2 200653c: 02 80 00 21 be 20065c0 <_Event_Surrender+0x108> 2006540: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2006544: 7f ff ef 32 call 200220c 2006548: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 200654c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2006550: 40 00 0a 64 call 2008ee0 <_Thread_Clear_state> 2006554: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006558: 80 a6 00 04 cmp %i0, %g4 200655c: 32 bf ff e6 bne,a 20064f4 <_Event_Surrender+0x3c> 2006560: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006564: 09 00 80 71 sethi %hi(0x201c400), %g4 2006568: f2 01 21 40 ld [ %g4 + 0x140 ], %i1 ! 201c540 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 200656c: 80 a6 60 02 cmp %i1, 2 2006570: 02 80 00 07 be 200658c <_Event_Surrender+0xd4> <== NEVER TAKEN 2006574: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006578: f2 01 21 40 ld [ %g4 + 0x140 ], %i1 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 200657c: 80 a6 60 01 cmp %i1, 1 2006580: 32 bf ff dd bne,a 20064f4 <_Event_Surrender+0x3c> 2006584: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006588: 80 a0 40 03 cmp %g1, %g3 200658c: 02 80 00 04 be 200659c <_Event_Surrender+0xe4> 2006590: 80 8f 20 02 btst 2, %i4 2006594: 02 80 00 09 be 20065b8 <_Event_Surrender+0x100> <== NEVER TAKEN 2006598: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 200659c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 20065a0: 84 28 80 03 andn %g2, %g3, %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20065a4: c4 27 40 00 st %g2, [ %i5 ] the_thread->Wait.count = 0; 20065a8: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20065ac: c6 20 40 00 st %g3, [ %g1 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20065b0: 82 10 20 03 mov 3, %g1 20065b4: c2 21 21 40 st %g1, [ %g4 + 0x140 ] _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 20065b8: 7f ff ef 15 call 200220c 20065bc: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 20065c0: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 20065c4: 7f ff ef 12 call 200220c 20065c8: 33 04 00 ff sethi %hi(0x1003fc00), %i1 (void) _Watchdog_Remove( &the_thread->Timer ); 20065cc: 40 00 0f 47 call 200a2e8 <_Watchdog_Remove> 20065d0: 90 06 20 48 add %i0, 0x48, %o0 20065d4: b2 16 63 f8 or %i1, 0x3f8, %i1 20065d8: 40 00 0a 42 call 2008ee0 <_Thread_Clear_state> 20065dc: 81 e8 00 00 restore =============================================================================== 020065e0 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 20065e0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 20065e4: 90 10 00 18 mov %i0, %o0 20065e8: 40 00 0b 3c call 20092d8 <_Thread_Get> 20065ec: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20065f0: c2 07 bf fc ld [ %fp + -4 ], %g1 20065f4: 80 a0 60 00 cmp %g1, 0 20065f8: 12 80 00 16 bne 2006650 <_Event_Timeout+0x70> <== NEVER TAKEN 20065fc: ba 10 00 08 mov %o0, %i5 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006600: 7f ff ee ff call 20021fc 2006604: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006608: 03 00 80 71 sethi %hi(0x201c400), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 200660c: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1 ! 201c4f8 <_Per_CPU_Information+0xc> 2006610: 80 a7 40 01 cmp %i5, %g1 2006614: 02 80 00 11 be 2006658 <_Event_Timeout+0x78> 2006618: c0 27 60 24 clr [ %i5 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 200661c: 82 10 20 06 mov 6, %g1 2006620: c2 27 60 34 st %g1, [ %i5 + 0x34 ] _ISR_Enable( level ); 2006624: 7f ff ee fa call 200220c 2006628: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 200662c: 90 10 00 1d mov %i5, %o0 2006630: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2006634: 40 00 0a 2b call 2008ee0 <_Thread_Clear_state> 2006638: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 200663c: 03 00 80 70 sethi %hi(0x201c000), %g1 2006640: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 201c2c0 <_Thread_Dispatch_disable_level> 2006644: 84 00 bf ff add %g2, -1, %g2 2006648: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ] return _Thread_Dispatch_disable_level; 200664c: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1 2006650: 81 c7 e0 08 ret 2006654: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2006658: 03 00 80 71 sethi %hi(0x201c400), %g1 200665c: c4 00 61 40 ld [ %g1 + 0x140 ], %g2 ! 201c540 <_Event_Sync_state> 2006660: 80 a0 a0 01 cmp %g2, 1 2006664: 32 bf ff ef bne,a 2006620 <_Event_Timeout+0x40> 2006668: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 200666c: 84 10 20 02 mov 2, %g2 2006670: c4 20 61 40 st %g2, [ %g1 + 0x140 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006674: 10 bf ff eb b 2006620 <_Event_Timeout+0x40> 2006678: 82 10 20 06 mov 6, %g1 =============================================================================== 0200ca50 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200ca50: 9d e3 bf 98 save %sp, -104, %sp 200ca54: ba 10 00 18 mov %i0, %i5 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200ca58: a0 06 60 04 add %i1, 4, %l0 - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 200ca5c: ec 06 20 10 ld [ %i0 + 0x10 ], %l6 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200ca60: 80 a6 40 10 cmp %i1, %l0 200ca64: 18 80 00 23 bgu 200caf0 <_Heap_Allocate_aligned_with_boundary+0xa0> 200ca68: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200ca6c: 80 a6 e0 00 cmp %i3, 0 200ca70: 12 80 00 7d bne 200cc64 <_Heap_Allocate_aligned_with_boundary+0x214> 200ca74: 80 a6 40 1b cmp %i1, %i3 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200ca78: e2 07 60 08 ld [ %i5 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200ca7c: 80 a7 40 11 cmp %i5, %l1 200ca80: 02 80 00 18 be 200cae0 <_Heap_Allocate_aligned_with_boundary+0x90> 200ca84: b8 10 20 00 clr %i4 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200ca88: 82 05 a0 07 add %l6, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200ca8c: ae 10 20 04 mov 4, %l7 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200ca90: c2 27 bf fc st %g1, [ %fp + -4 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200ca94: 10 80 00 0b b 200cac0 <_Heap_Allocate_aligned_with_boundary+0x70> 200ca98: ae 25 c0 19 sub %l7, %i1, %l7 * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { if ( alignment == 0 ) { 200ca9c: 12 80 00 17 bne 200caf8 <_Heap_Allocate_aligned_with_boundary+0xa8> 200caa0: b0 04 60 08 add %l1, 8, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200caa4: 80 a6 20 00 cmp %i0, 0 200caa8: 12 80 00 5b bne 200cc14 <_Heap_Allocate_aligned_with_boundary+0x1c4> 200caac: b8 07 20 01 inc %i4 break; } block = block->next; 200cab0: e2 04 60 08 ld [ %l1 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200cab4: 80 a7 40 11 cmp %i5, %l1 200cab8: 22 80 00 0b be,a 200cae4 <_Heap_Allocate_aligned_with_boundary+0x94> 200cabc: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200cac0: e4 04 60 04 ld [ %l1 + 4 ], %l2 200cac4: 80 a4 00 12 cmp %l0, %l2 200cac8: 0a bf ff f5 bcs 200ca9c <_Heap_Allocate_aligned_with_boundary+0x4c> 200cacc: 80 a6 a0 00 cmp %i2, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200cad0: e2 04 60 08 ld [ %l1 + 8 ], %l1 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200cad4: 80 a7 40 11 cmp %i5, %l1 200cad8: 12 bf ff fa bne 200cac0 <_Heap_Allocate_aligned_with_boundary+0x70> 200cadc: b8 07 20 01 inc %i4 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200cae0: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 200cae4: 80 a0 40 1c cmp %g1, %i4 200cae8: 0a 80 00 5a bcs 200cc50 <_Heap_Allocate_aligned_with_boundary+0x200> 200caec: b0 10 20 00 clr %i0 stats->max_search = search_count; } return (void *) alloc_begin; } 200caf0: 81 c7 e0 08 ret 200caf4: 81 e8 00 00 restore uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200caf8: c4 07 bf fc ld [ %fp + -4 ], %g2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200cafc: ea 07 60 14 ld [ %i5 + 0x14 ], %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cb00: a4 0c bf fe and %l2, -2, %l2 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200cb04: 82 20 80 15 sub %g2, %l5, %g1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200cb08: a4 04 40 12 add %l1, %l2, %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cb0c: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200cb10: b0 05 c0 12 add %l7, %l2, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200cb14: a4 00 40 12 add %g1, %l2, %l2 200cb18: 40 00 2b fe call 2017b10 <.urem> 200cb1c: 90 10 00 18 mov %i0, %o0 200cb20: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200cb24: 80 a4 80 18 cmp %l2, %i0 200cb28: 1a 80 00 06 bcc 200cb40 <_Heap_Allocate_aligned_with_boundary+0xf0> 200cb2c: a8 04 60 08 add %l1, 8, %l4 200cb30: 90 10 00 12 mov %l2, %o0 200cb34: 40 00 2b f7 call 2017b10 <.urem> 200cb38: 92 10 00 1a mov %i2, %o1 200cb3c: b0 24 80 08 sub %l2, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200cb40: 80 a6 e0 00 cmp %i3, 0 200cb44: 02 80 00 24 be 200cbd4 <_Heap_Allocate_aligned_with_boundary+0x184> 200cb48: 80 a5 00 18 cmp %l4, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200cb4c: a4 06 00 19 add %i0, %i1, %l2 200cb50: 92 10 00 1b mov %i3, %o1 200cb54: 40 00 2b ef call 2017b10 <.urem> 200cb58: 90 10 00 12 mov %l2, %o0 200cb5c: 90 24 80 08 sub %l2, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cb60: 80 a6 00 08 cmp %i0, %o0 200cb64: 1a 80 00 1b bcc 200cbd0 <_Heap_Allocate_aligned_with_boundary+0x180> 200cb68: 80 a2 00 12 cmp %o0, %l2 200cb6c: 1a 80 00 1a bcc 200cbd4 <_Heap_Allocate_aligned_with_boundary+0x184> 200cb70: 80 a5 00 18 cmp %l4, %i0 alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200cb74: a6 05 00 19 add %l4, %i1, %l3 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200cb78: 80 a4 c0 08 cmp %l3, %o0 200cb7c: 08 80 00 08 bleu 200cb9c <_Heap_Allocate_aligned_with_boundary+0x14c> 200cb80: b0 10 20 00 clr %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cb84: 10 bf ff c9 b 200caa8 <_Heap_Allocate_aligned_with_boundary+0x58> 200cb88: 80 a6 20 00 cmp %i0, 0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cb8c: 1a 80 00 11 bcc 200cbd0 <_Heap_Allocate_aligned_with_boundary+0x180> 200cb90: 80 a4 c0 08 cmp %l3, %o0 if ( boundary_line < boundary_floor ) { 200cb94: 18 bf ff c4 bgu 200caa4 <_Heap_Allocate_aligned_with_boundary+0x54><== NEVER TAKEN 200cb98: b0 10 20 00 clr %i0 return 0; } alloc_begin = boundary_line - alloc_size; 200cb9c: b0 22 00 19 sub %o0, %i1, %i0 200cba0: 92 10 00 1a mov %i2, %o1 200cba4: 40 00 2b db call 2017b10 <.urem> 200cba8: 90 10 00 18 mov %i0, %o0 200cbac: 92 10 00 1b mov %i3, %o1 200cbb0: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200cbb4: a4 06 00 19 add %i0, %i1, %l2 200cbb8: 40 00 2b d6 call 2017b10 <.urem> 200cbbc: 90 10 00 12 mov %l2, %o0 200cbc0: 90 24 80 08 sub %l2, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200cbc4: 80 a2 00 12 cmp %o0, %l2 200cbc8: 0a bf ff f1 bcs 200cb8c <_Heap_Allocate_aligned_with_boundary+0x13c> 200cbcc: 80 a6 00 08 cmp %i0, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200cbd0: 80 a5 00 18 cmp %l4, %i0 200cbd4: 18 80 00 22 bgu 200cc5c <_Heap_Allocate_aligned_with_boundary+0x20c> 200cbd8: 82 10 3f f8 mov -8, %g1 200cbdc: 90 10 00 18 mov %i0, %o0 200cbe0: a4 20 40 11 sub %g1, %l1, %l2 200cbe4: 92 10 00 16 mov %l6, %o1 200cbe8: 40 00 2b ca call 2017b10 <.urem> 200cbec: a4 04 80 18 add %l2, %i0, %l2 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200cbf0: 90 a4 80 08 subcc %l2, %o0, %o0 200cbf4: 02 bf ff ad be 200caa8 <_Heap_Allocate_aligned_with_boundary+0x58> 200cbf8: 80 a6 20 00 cmp %i0, 0 200cbfc: 80 a2 00 15 cmp %o0, %l5 return alloc_begin; } } return 0; 200cc00: 82 40 3f ff addx %g0, -1, %g1 200cc04: b0 0e 00 01 and %i0, %g1, %i0 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200cc08: 80 a6 20 00 cmp %i0, 0 200cc0c: 02 bf ff a9 be 200cab0 <_Heap_Allocate_aligned_with_boundary+0x60> 200cc10: b8 07 20 01 inc %i4 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc14: c4 07 60 48 ld [ %i5 + 0x48 ], %g2 stats->searches += search_count; 200cc18: c2 07 60 4c ld [ %i5 + 0x4c ], %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc1c: 84 00 a0 01 inc %g2 stats->searches += search_count; 200cc20: 82 00 40 1c add %g1, %i4, %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200cc24: c4 27 60 48 st %g2, [ %i5 + 0x48 ] stats->searches += search_count; 200cc28: c2 27 60 4c st %g1, [ %i5 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200cc2c: 90 10 00 1d mov %i5, %o0 200cc30: 92 10 00 11 mov %l1, %o1 200cc34: 94 10 00 18 mov %i0, %o2 200cc38: 7f ff ec 01 call 2007c3c <_Heap_Block_allocate> 200cc3c: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200cc40: c2 07 60 44 ld [ %i5 + 0x44 ], %g1 200cc44: 80 a0 40 1c cmp %g1, %i4 200cc48: 1a 80 00 03 bcc 200cc54 <_Heap_Allocate_aligned_with_boundary+0x204> 200cc4c: 01 00 00 00 nop stats->max_search = search_count; 200cc50: f8 27 60 44 st %i4, [ %i5 + 0x44 ] } return (void *) alloc_begin; } 200cc54: 81 c7 e0 08 ret 200cc58: 81 e8 00 00 restore if ( free_size >= min_block_size || free_size == 0 ) { return alloc_begin; } } return 0; 200cc5c: 10 bf ff 92 b 200caa4 <_Heap_Allocate_aligned_with_boundary+0x54> 200cc60: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200cc64: 18 bf ff a3 bgu 200caf0 <_Heap_Allocate_aligned_with_boundary+0xa0> 200cc68: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200cc6c: 22 bf ff 83 be,a 200ca78 <_Heap_Allocate_aligned_with_boundary+0x28> 200cc70: b4 10 00 16 mov %l6, %i2 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200cc74: 10 bf ff 82 b 200ca7c <_Heap_Allocate_aligned_with_boundary+0x2c> 200cc78: e2 07 60 08 ld [ %i5 + 8 ], %l1 =============================================================================== 0200ca5c <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200ca5c: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200ca60: c0 27 bf f8 clr [ %fp + -8 ] Heap_Block *extend_last_block = NULL; 200ca64: c0 27 bf fc clr [ %fp + -4 ] uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200ca68: ba 06 40 1a add %i1, %i2, %i5 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200ca6c: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200ca70: e0 06 20 10 ld [ %i0 + 0x10 ], %l0 uintptr_t const min_block_size = heap->min_block_size; 200ca74: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200ca78: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200ca7c: 80 a6 40 1d cmp %i1, %i5 200ca80: 08 80 00 05 bleu 200ca94 <_Heap_Extend+0x38> 200ca84: a2 10 20 00 clr %l1 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200ca88: b0 0c 60 01 and %l1, 1, %i0 200ca8c: 81 c7 e0 08 ret 200ca90: 81 e8 00 00 restore if ( extend_area_end < extend_area_begin ) { return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200ca94: 90 10 00 19 mov %i1, %o0 200ca98: 92 10 00 1a mov %i2, %o1 200ca9c: 94 10 00 10 mov %l0, %o2 200caa0: 98 07 bf f8 add %fp, -8, %o4 200caa4: 7f ff eb ae call 200795c <_Heap_Get_first_and_last_block> 200caa8: 9a 07 bf fc add %fp, -4, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200caac: 80 8a 20 ff btst 0xff, %o0 200cab0: 02 bf ff f6 be 200ca88 <_Heap_Extend+0x2c> 200cab4: aa 10 20 00 clr %l5 200cab8: a2 10 00 1c mov %i4, %l1 200cabc: ac 10 20 00 clr %l6 200cac0: a6 10 20 00 clr %l3 200cac4: 10 80 00 14 b 200cb14 <_Heap_Extend+0xb8> 200cac8: a8 10 20 00 clr %l4 return false; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200cacc: 2a 80 00 02 bcs,a 200cad4 <_Heap_Extend+0x78> 200cad0: ac 10 00 11 mov %l1, %l6 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cad4: 90 10 00 1a mov %i2, %o0 200cad8: 40 00 16 b6 call 20125b0 <.urem> 200cadc: 92 10 00 10 mov %l0, %o1 200cae0: 82 06 bf f8 add %i2, -8, %g1 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200cae4: 80 a6 80 19 cmp %i2, %i1 200cae8: 02 80 00 1c be 200cb58 <_Heap_Extend+0xfc> 200caec: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200caf0: 80 a6 40 1a cmp %i1, %i2 200caf4: 38 80 00 02 bgu,a 200cafc <_Heap_Extend+0xa0> 200caf8: aa 10 00 01 mov %g1, %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cafc: e2 00 60 04 ld [ %g1 + 4 ], %l1 200cb00: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cb04: a2 04 40 01 add %l1, %g1, %l1 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200cb08: 80 a7 00 11 cmp %i4, %l1 200cb0c: 22 80 00 1b be,a 200cb78 <_Heap_Extend+0x11c> 200cb10: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200cb14: 80 a4 40 1c cmp %l1, %i4 200cb18: 02 80 00 66 be 200ccb0 <_Heap_Extend+0x254> 200cb1c: 82 10 00 11 mov %l1, %g1 uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cb20: 80 a0 40 1d cmp %g1, %i5 200cb24: 0a 80 00 70 bcs 200cce4 <_Heap_Extend+0x288> 200cb28: f4 04 40 00 ld [ %l1 ], %i2 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200cb2c: 80 a0 40 1d cmp %g1, %i5 200cb30: 12 bf ff e7 bne 200cacc <_Heap_Extend+0x70> 200cb34: 80 a7 40 1a cmp %i5, %i2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cb38: 90 10 00 1a mov %i2, %o0 200cb3c: 40 00 16 9d call 20125b0 <.urem> 200cb40: 92 10 00 10 mov %l0, %o1 200cb44: 82 06 bf f8 add %i2, -8, %g1 200cb48: a8 10 00 11 mov %l1, %l4 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200cb4c: 80 a6 80 19 cmp %i2, %i1 200cb50: 12 bf ff e8 bne 200caf0 <_Heap_Extend+0x94> <== ALWAYS TAKEN 200cb54: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; 200cb58: fa 24 40 00 st %i5, [ %l1 ] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cb5c: e2 00 60 04 ld [ %g1 + 4 ], %l1 200cb60: a2 0c 7f fe and %l1, -2, %l1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cb64: a2 04 40 01 add %l1, %g1, %l1 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200cb68: 80 a7 00 11 cmp %i4, %l1 200cb6c: 12 bf ff ea bne 200cb14 <_Heap_Extend+0xb8> <== NEVER TAKEN 200cb70: a6 10 00 01 mov %g1, %l3 if ( extend_area_begin < heap->area_begin ) { 200cb74: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 200cb78: 80 a6 40 01 cmp %i1, %g1 200cb7c: 3a 80 00 55 bcc,a 200ccd0 <_Heap_Extend+0x274> 200cb80: c2 06 20 1c ld [ %i0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200cb84: f2 26 20 18 st %i1, [ %i0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cb88: c2 07 bf f8 ld [ %fp + -8 ], %g1 200cb8c: c4 07 bf fc ld [ %fp + -4 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200cb90: c8 06 20 20 ld [ %i0 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200cb94: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200cb98: fa 20 40 00 st %i5, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200cb9c: b8 10 e0 01 or %g3, 1, %i4 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200cba0: f8 20 60 04 st %i4, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200cba4: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200cba8: 80 a1 00 01 cmp %g4, %g1 200cbac: 08 80 00 43 bleu 200ccb8 <_Heap_Extend+0x25c> 200cbb0: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200cbb4: c2 26 20 20 st %g1, [ %i0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200cbb8: 80 a5 20 00 cmp %l4, 0 200cbbc: 02 80 00 63 be 200cd48 <_Heap_Extend+0x2ec> 200cbc0: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200cbc4: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200cbc8: 92 10 00 1c mov %i4, %o1 200cbcc: 40 00 16 79 call 20125b0 <.urem> 200cbd0: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200cbd4: 80 a2 20 00 cmp %o0, 0 200cbd8: 02 80 00 04 be 200cbe8 <_Heap_Extend+0x18c> 200cbdc: c4 05 00 00 ld [ %l4 ], %g2 return value - remainder + alignment; 200cbe0: b2 06 40 1c add %i1, %i4, %i1 200cbe4: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200cbe8: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200cbec: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200cbf0: 84 25 00 01 sub %l4, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200cbf4: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200cbf8: 90 10 00 18 mov %i0, %o0 200cbfc: 92 10 00 01 mov %g1, %o1 200cc00: 7f ff ff 8d call 200ca34 <_Heap_Free_block> 200cc04: c4 26 7f fc st %g2, [ %i1 + -4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200cc08: 80 a4 e0 00 cmp %l3, 0 200cc0c: 02 80 00 3b be 200ccf8 <_Heap_Extend+0x29c> 200cc10: ba 07 7f f8 add %i5, -8, %i5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cc14: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200cc18: ba 27 40 13 sub %i5, %l3, %i5 200cc1c: 40 00 16 65 call 20125b0 <.urem> 200cc20: 90 10 00 1d mov %i5, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200cc24: c2 04 e0 04 ld [ %l3 + 4 ], %g1 200cc28: ba 27 40 08 sub %i5, %o0, %i5 200cc2c: 82 20 40 1d sub %g1, %i5, %g1 | HEAP_PREV_BLOCK_USED; 200cc30: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200cc34: 84 07 40 13 add %i5, %l3, %g2 200cc38: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cc3c: c2 04 e0 04 ld [ %l3 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200cc40: 90 10 00 18 mov %i0, %o0 200cc44: 82 08 60 01 and %g1, 1, %g1 200cc48: 92 10 00 13 mov %l3, %o1 block->size_and_flag = size | flag; 200cc4c: ba 17 40 01 or %i5, %g1, %i5 200cc50: 7f ff ff 79 call 200ca34 <_Heap_Free_block> 200cc54: fa 24 e0 04 st %i5, [ %l3 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cc58: 80 a4 e0 00 cmp %l3, 0 200cc5c: 02 80 00 34 be 200cd2c <_Heap_Extend+0x2d0> 200cc60: 80 a5 20 00 cmp %l4, 0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cc64: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200cc68: c6 06 20 20 ld [ %i0 + 0x20 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cc6c: c4 00 60 04 ld [ %g1 + 4 ], %g2 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200cc70: 86 20 c0 01 sub %g3, %g1, %g3 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cc74: 84 08 a0 01 and %g2, 1, %g2 block->size_and_flag = size | flag; 200cc78: 84 10 80 03 or %g2, %g3, %g2 200cc7c: c4 20 60 04 st %g2, [ %g1 + 4 ] _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200cc80: c2 06 20 2c ld [ %i0 + 0x2c ], %g1 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200cc84: c4 06 20 30 ld [ %i0 + 0x30 ], %g2 stats->size += extended_size; if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; 200cc88: a2 10 20 01 mov 1, %l1 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200cc8c: a4 20 80 12 sub %g2, %l2, %l2 /* Statistics */ stats->size += extended_size; 200cc90: 82 00 40 12 add %g1, %l2, %g1 if ( extended_size_ptr != NULL ) 200cc94: 80 a6 e0 00 cmp %i3, 0 200cc98: 02 bf ff 7c be 200ca88 <_Heap_Extend+0x2c> <== NEVER TAKEN 200cc9c: c2 26 20 2c st %g1, [ %i0 + 0x2c ] *extended_size_ptr = extended_size; 200cca0: e4 26 c0 00 st %l2, [ %i3 ] return true; } 200cca4: b0 0c 60 01 and %l1, 1, %i0 200cca8: 81 c7 e0 08 ret 200ccac: 81 e8 00 00 restore return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200ccb0: 10 bf ff 9c b 200cb20 <_Heap_Extend+0xc4> 200ccb4: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200ccb8: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 200ccbc: 80 a0 40 02 cmp %g1, %g2 200ccc0: 2a bf ff be bcs,a 200cbb8 <_Heap_Extend+0x15c> 200ccc4: c4 26 20 24 st %g2, [ %i0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200ccc8: 10 bf ff bd b 200cbbc <_Heap_Extend+0x160> 200cccc: 80 a5 20 00 cmp %l4, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200ccd0: 80 a7 40 01 cmp %i5, %g1 200ccd4: 38 bf ff ad bgu,a 200cb88 <_Heap_Extend+0x12c> 200ccd8: fa 26 20 1c st %i5, [ %i0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200ccdc: 10 bf ff ac b 200cb8c <_Heap_Extend+0x130> 200cce0: c2 07 bf f8 ld [ %fp + -8 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cce4: 80 a6 40 1a cmp %i1, %i2 200cce8: 1a bf ff 92 bcc 200cb30 <_Heap_Extend+0xd4> 200ccec: 80 a0 40 1d cmp %g1, %i5 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; 200ccf0: 10 bf ff 66 b 200ca88 <_Heap_Extend+0x2c> 200ccf4: a2 10 20 00 clr %l1 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200ccf8: 80 a5 60 00 cmp %l5, 0 200ccfc: 02 bf ff d7 be 200cc58 <_Heap_Extend+0x1fc> 200cd00: c4 07 bf f8 ld [ %fp + -8 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd04: c6 05 60 04 ld [ %l5 + 4 ], %g3 _Heap_Link_above( 200cd08: c2 07 bf fc ld [ %fp + -4 ], %g1 200cd0c: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200cd10: 84 20 80 15 sub %g2, %l5, %g2 block->size_and_flag = size | flag; 200cd14: 84 10 c0 02 or %g3, %g2, %g2 200cd18: c4 25 60 04 st %g2, [ %l5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200cd1c: c4 00 60 04 ld [ %g1 + 4 ], %g2 200cd20: 84 10 a0 01 or %g2, 1, %g2 200cd24: 10 bf ff cd b 200cc58 <_Heap_Extend+0x1fc> 200cd28: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cd2c: 32 bf ff cf bne,a 200cc68 <_Heap_Extend+0x20c> 200cd30: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200cd34: d2 07 bf f8 ld [ %fp + -8 ], %o1 200cd38: 7f ff ff 3f call 200ca34 <_Heap_Free_block> 200cd3c: 90 10 00 18 mov %i0, %o0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cd40: 10 bf ff ca b 200cc68 <_Heap_Extend+0x20c> 200cd44: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200cd48: 80 a5 a0 00 cmp %l6, 0 200cd4c: 02 bf ff b0 be 200cc0c <_Heap_Extend+0x1b0> 200cd50: 80 a4 e0 00 cmp %l3, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200cd54: ac 25 80 02 sub %l6, %g2, %l6 200cd58: ac 15 a0 01 or %l6, 1, %l6 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200cd5c: 10 bf ff ac b 200cc0c <_Heap_Extend+0x1b0> 200cd60: ec 20 a0 04 st %l6, [ %g2 + 4 ] =============================================================================== 0200cc7c <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200cc7c: 9d e3 bf a0 save %sp, -96, %sp /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200cc80: 80 a6 60 00 cmp %i1, 0 200cc84: 02 80 00 56 be 200cddc <_Heap_Free+0x160> 200cc88: 84 10 20 01 mov 1, %g2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cc8c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200cc90: 40 00 2b a0 call 2017b10 <.urem> 200cc94: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200cc98: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cc9c: ba 06 7f f8 add %i1, -8, %i5 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200cca0: ba 27 40 08 sub %i5, %o0, %i5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cca4: 80 a7 40 01 cmp %i5, %g1 200cca8: 0a 80 00 4d bcs 200cddc <_Heap_Free+0x160> 200ccac: 84 10 20 00 clr %g2 200ccb0: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 200ccb4: 80 a7 40 04 cmp %i5, %g4 200ccb8: 38 80 00 4a bgu,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN 200ccbc: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ccc0: de 07 60 04 ld [ %i5 + 4 ], %o7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200ccc4: b2 0b ff fe and %o7, -2, %i1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200ccc8: 86 06 40 1d add %i1, %i5, %g3 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cccc: 80 a0 40 03 cmp %g1, %g3 200ccd0: 38 80 00 44 bgu,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN 200ccd4: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED 200ccd8: 80 a1 00 03 cmp %g4, %g3 200ccdc: 2a 80 00 41 bcs,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN 200cce0: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED 200cce4: da 00 e0 04 ld [ %g3 + 4 ], %o5 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200cce8: 80 8b 60 01 btst 1, %o5 200ccec: 02 80 00 3c be 200cddc <_Heap_Free+0x160> <== NEVER TAKEN 200ccf0: 98 0b 7f fe and %o5, -2, %o4 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200ccf4: 80 a1 00 03 cmp %g4, %g3 200ccf8: 02 80 00 06 be 200cd10 <_Heap_Free+0x94> 200ccfc: 9a 10 20 00 clr %o5 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd00: 84 00 c0 0c add %g3, %o4, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd04: da 00 a0 04 ld [ %g2 + 4 ], %o5 200cd08: 9a 0b 60 01 and %o5, 1, %o5 return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 200cd0c: 9a 1b 60 01 xor %o5, 1, %o5 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200cd10: 80 8b e0 01 btst 1, %o7 200cd14: 12 80 00 1c bne 200cd84 <_Heap_Free+0x108> 200cd18: 80 8b 60 ff btst 0xff, %o5 uintptr_t const prev_size = block->prev_size; 200cd1c: d6 07 40 00 ld [ %i5 ], %o3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd20: 9e 27 40 0b sub %i5, %o3, %o7 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200cd24: 80 a0 40 0f cmp %g1, %o7 200cd28: 18 80 00 2d bgu 200cddc <_Heap_Free+0x160> <== NEVER TAKEN 200cd2c: 84 10 20 00 clr %g2 200cd30: 80 a1 00 0f cmp %g4, %o7 200cd34: 2a 80 00 2b bcs,a 200cde0 <_Heap_Free+0x164> <== NEVER TAKEN 200cd38: b0 08 a0 01 and %g2, 1, %i0 <== NOT EXECUTED block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cd3c: c2 03 e0 04 ld [ %o7 + 4 ], %g1 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200cd40: 80 88 60 01 btst 1, %g1 200cd44: 02 80 00 26 be 200cddc <_Heap_Free+0x160> <== NEVER TAKEN 200cd48: 80 8b 60 ff btst 0xff, %o5 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200cd4c: 02 80 00 39 be 200ce30 <_Heap_Free+0x1b4> 200cd50: 96 06 40 0b add %i1, %o3, %o3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd54: c2 00 e0 08 ld [ %g3 + 8 ], %g1 200cd58: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200cd5c: c6 06 20 38 ld [ %i0 + 0x38 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 200cd60: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200cd64: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200cd68: 82 00 ff ff add %g3, -1, %g1 200cd6c: c2 26 20 38 st %g1, [ %i0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200cd70: 98 02 c0 0c add %o3, %o4, %o4 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cd74: 82 13 20 01 or %o4, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200cd78: d8 23 00 0f st %o4, [ %o4 + %o7 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cd7c: 10 80 00 0e b 200cdb4 <_Heap_Free+0x138> 200cd80: c2 23 e0 04 st %g1, [ %o7 + 4 ] uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200cd84: 22 80 00 19 be,a 200cde8 <_Heap_Free+0x16c> 200cd88: c4 06 20 08 ld [ %i0 + 8 ], %g2 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cd8c: c4 00 e0 08 ld [ %g3 + 8 ], %g2 200cd90: c2 00 e0 0c ld [ %g3 + 0xc ], %g1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 200cd94: c4 27 60 08 st %g2, [ %i5 + 8 ] new_block->prev = prev; 200cd98: c2 27 60 0c st %g1, [ %i5 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200cd9c: 98 03 00 19 add %o4, %i1, %o4 next->prev = new_block; 200cda0: fa 20 a0 0c st %i5, [ %g2 + 0xc ] prev->next = new_block; 200cda4: fa 20 60 08 st %i5, [ %g1 + 8 ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cda8: 84 13 20 01 or %o4, 1, %g2 next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200cdac: d8 23 00 1d st %o4, [ %o4 + %i5 ] next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cdb0: c4 27 60 04 st %g2, [ %i5 + 4 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cdb4: c4 06 20 40 ld [ %i0 + 0x40 ], %g2 ++stats->frees; 200cdb8: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 stats->free_size += block_size; 200cdbc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cdc0: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; 200cdc4: 82 00 60 01 inc %g1 stats->free_size += block_size; 200cdc8: b2 00 c0 19 add %g3, %i1, %i1 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cdcc: c4 26 20 40 st %g2, [ %i0 + 0x40 ] ++stats->frees; 200cdd0: c2 26 20 50 st %g1, [ %i0 + 0x50 ] stats->free_size += block_size; 200cdd4: f2 26 20 30 st %i1, [ %i0 + 0x30 ] return( true ); 200cdd8: 84 10 20 01 mov 1, %g2 } 200cddc: b0 08 a0 01 and %g2, 1, %i0 200cde0: 81 c7 e0 08 ret 200cde4: 81 e8 00 00 restore next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200cde8: 82 16 60 01 or %i1, 1, %g1 200cdec: c2 27 60 04 st %g1, [ %i5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cdf0: c8 00 e0 04 ld [ %g3 + 4 ], %g4 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200cdf4: f0 27 60 0c st %i0, [ %i5 + 0xc ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200cdf8: c2 06 20 38 ld [ %i0 + 0x38 ], %g1 Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200cdfc: c4 27 60 08 st %g2, [ %i5 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200ce00: fa 20 a0 0c st %i5, [ %g2 + 0xc ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce04: 84 09 3f fe and %g4, -2, %g2 next_block->prev_size = block_size; 200ce08: f2 26 40 1d st %i1, [ %i1 + %i5 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce0c: c4 20 e0 04 st %g2, [ %g3 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200ce10: c4 06 20 3c ld [ %i0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ce14: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200ce18: fa 26 20 08 st %i5, [ %i0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200ce1c: 80 a0 40 02 cmp %g1, %g2 200ce20: 08 bf ff e5 bleu 200cdb4 <_Heap_Free+0x138> 200ce24: c2 26 20 38 st %g1, [ %i0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200ce28: 10 bf ff e3 b 200cdb4 <_Heap_Free+0x138> 200ce2c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200ce30: 82 12 e0 01 or %o3, 1, %g1 200ce34: c2 23 e0 04 st %g1, [ %o7 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce38: c2 00 e0 04 ld [ %g3 + 4 ], %g1 next_block->prev_size = size; 200ce3c: d6 26 40 1d st %o3, [ %i1 + %i5 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ce40: 82 08 7f fe and %g1, -2, %g1 200ce44: 10 bf ff dc b 200cdb4 <_Heap_Free+0x138> 200ce48: c2 20 e0 04 st %g1, [ %g3 + 4 ] =============================================================================== 0200d370 <_Heap_Get_information>: void _Heap_Get_information( Heap_Control *the_heap, Heap_Information_block *the_info ) { 200d370: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *the_block = the_heap->first_block; 200d374: fa 06 20 20 ld [ %i0 + 0x20 ], %i5 Heap_Block *const end = the_heap->last_block; 200d378: f8 06 20 24 ld [ %i0 + 0x24 ], %i4 memset(the_info, 0, sizeof(*the_info)); 200d37c: 92 10 20 00 clr %o1 200d380: 90 10 00 19 mov %i1, %o0 200d384: 40 00 09 1d call 200f7f8 200d388: 94 10 20 18 mov 0x18, %o2 while ( the_block != end ) { 200d38c: 80 a7 40 1c cmp %i5, %i4 200d390: 02 80 00 17 be 200d3ec <_Heap_Get_information+0x7c> <== NEVER TAKEN 200d394: 01 00 00 00 nop 200d398: c6 07 60 04 ld [ %i5 + 4 ], %g3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d39c: 84 08 ff fe and %g3, -2, %g2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d3a0: ba 07 40 02 add %i5, %g2, %i5 if ( info->largest < the_size ) info->largest = the_size; the_block = next_block; } } 200d3a4: c6 07 60 04 ld [ %i5 + 4 ], %g3 while ( the_block != end ) { uintptr_t const the_size = _Heap_Block_size(the_block); Heap_Block *const next_block = _Heap_Block_at(the_block, the_size); Heap_Information *info; if ( _Heap_Is_prev_used(next_block) ) 200d3a8: 80 88 e0 01 btst 1, %g3 200d3ac: 02 80 00 03 be 200d3b8 <_Heap_Get_information+0x48> 200d3b0: 82 10 00 19 mov %i1, %g1 info = &the_info->Used; 200d3b4: 82 06 60 0c add %i1, 0xc, %g1 else info = &the_info->Free; info->number++; 200d3b8: de 00 40 00 ld [ %g1 ], %o7 info->total += the_size; 200d3bc: f0 00 60 08 ld [ %g1 + 8 ], %i0 if ( info->largest < the_size ) 200d3c0: c8 00 60 04 ld [ %g1 + 4 ], %g4 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d3c4: 9e 03 e0 01 inc %o7 info->total += the_size; 200d3c8: b0 06 00 02 add %i0, %g2, %i0 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d3cc: de 20 40 00 st %o7, [ %g1 ] info->total += the_size; if ( info->largest < the_size ) 200d3d0: 80 a1 00 02 cmp %g4, %g2 200d3d4: 1a 80 00 03 bcc 200d3e0 <_Heap_Get_information+0x70> 200d3d8: f0 20 60 08 st %i0, [ %g1 + 8 ] info->largest = the_size; 200d3dc: c4 20 60 04 st %g2, [ %g1 + 4 ] Heap_Block *the_block = the_heap->first_block; Heap_Block *const end = the_heap->last_block; memset(the_info, 0, sizeof(*the_info)); while ( the_block != end ) { 200d3e0: 80 a7 00 1d cmp %i4, %i5 200d3e4: 12 bf ff ef bne 200d3a0 <_Heap_Get_information+0x30> 200d3e8: 84 08 ff fe and %g3, -2, %g2 200d3ec: 81 c7 e0 08 ret 200d3f0: 81 e8 00 00 restore =============================================================================== 02019628 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2019628: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 201962c: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2019630: 7f ff f9 38 call 2017b10 <.urem> 2019634: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2019638: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 201963c: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2019640: 84 20 80 08 sub %g2, %o0, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2019644: 80 a0 80 01 cmp %g2, %g1 2019648: 0a 80 00 16 bcs 20196a0 <_Heap_Size_of_alloc_area+0x78> 201964c: 86 10 20 00 clr %g3 2019650: c8 06 20 24 ld [ %i0 + 0x24 ], %g4 2019654: 80 a0 80 04 cmp %g2, %g4 2019658: 18 80 00 13 bgu 20196a4 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 201965c: b0 08 e0 01 and %g3, 1, %i0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2019660: f0 00 a0 04 ld [ %g2 + 4 ], %i0 2019664: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2019668: 84 06 00 02 add %i0, %g2, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 201966c: 80 a0 40 02 cmp %g1, %g2 2019670: 18 80 00 0d bgu 20196a4 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 2019674: b0 08 e0 01 and %g3, 1, %i0 2019678: 80 a1 00 02 cmp %g4, %g2 201967c: 0a 80 00 0a bcs 20196a4 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 2019680: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2019684: c2 00 a0 04 ld [ %g2 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2019688: 80 88 60 01 btst 1, %g1 201968c: 02 80 00 06 be 20196a4 <_Heap_Size_of_alloc_area+0x7c> <== NEVER TAKEN 2019690: 84 20 80 19 sub %g2, %i1, %g2 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2019694: 86 10 20 01 mov 1, %g3 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2019698: 84 00 a0 04 add %g2, 4, %g2 201969c: c4 26 80 00 st %g2, [ %i2 ] return true; } 20196a0: b0 08 e0 01 and %g3, 1, %i0 20196a4: 81 c7 e0 08 ret 20196a8: 81 e8 00 00 restore =============================================================================== 020086dc <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20086dc: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20086e0: 3b 00 80 21 sethi %hi(0x2008400), %i5 Heap_Control *heap, int source, bool dump ) { uintptr_t const page_size = heap->page_size; 20086e4: e0 06 20 10 ld [ %i0 + 0x10 ], %l0 uintptr_t const min_block_size = heap->min_block_size; 20086e8: f6 06 20 14 ld [ %i0 + 0x14 ], %i3 Heap_Block *const first_block = heap->first_block; 20086ec: f8 06 20 20 ld [ %i0 + 0x20 ], %i4 Heap_Block *const last_block = heap->last_block; 20086f0: e2 06 20 24 ld [ %i0 + 0x24 ], %l1 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20086f4: 80 a6 a0 00 cmp %i2, 0 20086f8: 02 80 00 04 be 2008708 <_Heap_Walk+0x2c> 20086fc: ba 17 62 70 or %i5, 0x270, %i5 2008700: 3b 00 80 21 sethi %hi(0x2008400), %i5 2008704: ba 17 62 78 or %i5, 0x278, %i5 ! 2008678 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008708: 03 00 80 60 sethi %hi(0x2018000), %g1 200870c: c4 00 63 54 ld [ %g1 + 0x354 ], %g2 ! 2018354 <_System_state_Current> 2008710: 80 a0 a0 03 cmp %g2, 3 2008714: 02 80 00 05 be 2008728 <_Heap_Walk+0x4c> 2008718: 82 10 20 01 mov 1, %g1 block = next_block; } while ( block != first_block ); return true; } 200871c: b0 08 60 01 and %g1, 1, %i0 2008720: 81 c7 e0 08 ret 2008724: 81 e8 00 00 restore Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008728: da 06 20 18 ld [ %i0 + 0x18 ], %o5 200872c: c6 06 20 1c ld [ %i0 + 0x1c ], %g3 2008730: c4 06 20 08 ld [ %i0 + 8 ], %g2 2008734: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008738: 90 10 00 19 mov %i1, %o0 200873c: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008740: f8 23 a0 60 st %i4, [ %sp + 0x60 ] 2008744: e2 23 a0 64 st %l1, [ %sp + 0x64 ] 2008748: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 200874c: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008750: 92 10 20 00 clr %o1 2008754: 96 10 00 10 mov %l0, %o3 2008758: 15 00 80 56 sethi %hi(0x2015800), %o2 200875c: 98 10 00 1b mov %i3, %o4 2008760: 9f c7 40 00 call %i5 2008764: 94 12 a1 08 or %o2, 0x108, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 2008768: 80 a4 20 00 cmp %l0, 0 200876c: 02 80 00 28 be 200880c <_Heap_Walk+0x130> 2008770: 80 8c 20 07 btst 7, %l0 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008774: 12 80 00 2d bne 2008828 <_Heap_Walk+0x14c> 2008778: 90 10 00 1b mov %i3, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 200877c: 7f ff e4 d4 call 2001acc <.urem> 2008780: 92 10 00 10 mov %l0, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2008784: 80 a2 20 00 cmp %o0, 0 2008788: 12 80 00 30 bne 2008848 <_Heap_Walk+0x16c> 200878c: 90 07 20 08 add %i4, 8, %o0 2008790: 7f ff e4 cf call 2001acc <.urem> 2008794: 92 10 00 10 mov %l0, %o1 ); return false; } if ( 2008798: 80 a2 20 00 cmp %o0, 0 200879c: 32 80 00 33 bne,a 2008868 <_Heap_Walk+0x18c> 20087a0: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 20087a4: e8 07 20 04 ld [ %i4 + 4 ], %l4 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 20087a8: 80 8d 20 01 btst 1, %l4 20087ac: 22 80 00 36 be,a 2008884 <_Heap_Walk+0x1a8> 20087b0: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20087b4: c2 04 60 04 ld [ %l1 + 4 ], %g1 20087b8: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20087bc: 82 04 40 01 add %l1, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20087c0: c4 00 60 04 ld [ %g1 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20087c4: 80 88 a0 01 btst 1, %g2 20087c8: 02 80 00 0a be 20087f0 <_Heap_Walk+0x114> 20087cc: 80 a7 00 01 cmp %i4, %g1 ); return false; } if ( 20087d0: 02 80 00 33 be 200889c <_Heap_Walk+0x1c0> 20087d4: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20087d8: 92 10 20 01 mov 1, %o1 20087dc: 15 00 80 56 sethi %hi(0x2015800), %o2 20087e0: 9f c7 40 00 call %i5 20087e4: 94 12 a2 80 or %o2, 0x280, %o2 ! 2015a80 <_Status_Object_name_errors_to_status+0x1f0> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20087e8: 10 bf ff cd b 200871c <_Heap_Walk+0x40> 20087ec: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 20087f0: 90 10 00 19 mov %i1, %o0 20087f4: 92 10 20 01 mov 1, %o1 20087f8: 15 00 80 56 sethi %hi(0x2015800), %o2 20087fc: 9f c7 40 00 call %i5 2008800: 94 12 a2 68 or %o2, 0x268, %o2 ! 2015a68 <_Status_Object_name_errors_to_status+0x1d8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008804: 10 bf ff c6 b 200871c <_Heap_Walk+0x40> 2008808: 82 10 20 00 clr %g1 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 200880c: 90 10 00 19 mov %i1, %o0 2008810: 92 10 20 01 mov 1, %o1 2008814: 15 00 80 56 sethi %hi(0x2015800), %o2 2008818: 9f c7 40 00 call %i5 200881c: 94 12 a1 a0 or %o2, 0x1a0, %o2 ! 20159a0 <_Status_Object_name_errors_to_status+0x110> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008820: 10 bf ff bf b 200871c <_Heap_Walk+0x40> 2008824: 82 10 20 00 clr %g1 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008828: 90 10 00 19 mov %i1, %o0 200882c: 92 10 20 01 mov 1, %o1 2008830: 96 10 00 10 mov %l0, %o3 2008834: 15 00 80 56 sethi %hi(0x2015800), %o2 2008838: 9f c7 40 00 call %i5 200883c: 94 12 a1 b8 or %o2, 0x1b8, %o2 ! 20159b8 <_Status_Object_name_errors_to_status+0x128> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008840: 10 bf ff b7 b 200871c <_Heap_Walk+0x40> 2008844: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008848: 90 10 00 19 mov %i1, %o0 200884c: 92 10 20 01 mov 1, %o1 2008850: 96 10 00 1b mov %i3, %o3 2008854: 15 00 80 56 sethi %hi(0x2015800), %o2 2008858: 9f c7 40 00 call %i5 200885c: 94 12 a1 d8 or %o2, 0x1d8, %o2 ! 20159d8 <_Status_Object_name_errors_to_status+0x148> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008860: 10 bf ff af b 200871c <_Heap_Walk+0x40> 2008864: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008868: 92 10 20 01 mov 1, %o1 200886c: 96 10 00 1c mov %i4, %o3 2008870: 15 00 80 56 sethi %hi(0x2015800), %o2 2008874: 9f c7 40 00 call %i5 2008878: 94 12 a2 00 or %o2, 0x200, %o2 ! 2015a00 <_Status_Object_name_errors_to_status+0x170> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200887c: 10 bf ff a8 b 200871c <_Heap_Walk+0x40> 2008880: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 2008884: 92 10 20 01 mov 1, %o1 2008888: 15 00 80 56 sethi %hi(0x2015800), %o2 200888c: 9f c7 40 00 call %i5 2008890: 94 12 a2 38 or %o2, 0x238, %o2 ! 2015a38 <_Status_Object_name_errors_to_status+0x1a8> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008894: 10 bf ff a2 b 200871c <_Heap_Walk+0x40> 2008898: 82 10 20 00 clr %g1 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 200889c: f4 06 20 08 ld [ %i0 + 8 ], %i2 int source, Heap_Walk_printer printer, Heap_Control *heap ) { uintptr_t const page_size = heap->page_size; 20088a0: ea 06 20 10 ld [ %i0 + 0x10 ], %l5 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 20088a4: 80 a6 00 1a cmp %i0, %i2 20088a8: 02 80 00 0d be 20088dc <_Heap_Walk+0x200> 20088ac: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20088b0: 80 a0 40 1a cmp %g1, %i2 20088b4: 28 80 00 bc bleu,a 2008ba4 <_Heap_Walk+0x4c8> <== ALWAYS TAKEN 20088b8: e6 06 20 24 ld [ %i0 + 0x24 ], %l3 if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 20088bc: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 20088c0: 92 10 20 01 mov 1, %o1 20088c4: 96 10 00 1a mov %i2, %o3 20088c8: 15 00 80 56 sethi %hi(0x2015800), %o2 20088cc: 9f c7 40 00 call %i5 20088d0: 94 12 a2 b0 or %o2, 0x2b0, %o2 ! 2015ab0 <_Status_Object_name_errors_to_status+0x220> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20088d4: 10 bf ff 92 b 200871c <_Heap_Walk+0x40> 20088d8: 82 10 20 00 clr %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20088dc: 2d 00 80 57 sethi %hi(0x2015c00), %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20088e0: 2f 00 80 57 sethi %hi(0x2015c00), %l7 ); return false; } if ( _Heap_Is_used( free_block ) ) { 20088e4: a4 10 00 1c mov %i4, %l2 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20088e8: ac 15 a0 e0 or %l6, 0xe0, %l6 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 20088ec: ae 15 e0 c8 or %l7, 0xc8, %l7 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 20088f0: 2b 00 80 57 sethi %hi(0x2015c00), %l5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 20088f4: a6 0d 3f fe and %l4, -2, %l3 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20088f8: b4 04 c0 12 add %l3, %l2, %i2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 20088fc: 80 a0 40 1a cmp %g1, %i2 2008900: 28 80 00 0b bleu,a 200892c <_Heap_Walk+0x250> <== ALWAYS TAKEN 2008904: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2008908: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 200890c: 92 10 20 01 mov 1, %o1 2008910: 96 10 00 12 mov %l2, %o3 2008914: 15 00 80 56 sethi %hi(0x2015800), %o2 2008918: 98 10 00 1a mov %i2, %o4 200891c: 9f c7 40 00 call %i5 2008920: 94 12 a3 58 or %o2, 0x358, %o2 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 2008924: 10 bf ff 7e b 200871c <_Heap_Walk+0x40> 2008928: 82 10 20 00 clr %g1 200892c: 80 a0 40 1a cmp %g1, %i2 2008930: 0a bf ff f7 bcs 200890c <_Heap_Walk+0x230> 2008934: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008938: 82 1c 80 11 xor %l2, %l1, %g1 200893c: 80 a0 00 01 cmp %g0, %g1 2008940: 82 40 20 00 addx %g0, 0, %g1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008944: 90 10 00 13 mov %l3, %o0 2008948: c2 27 bf fc st %g1, [ %fp + -4 ] 200894c: 7f ff e4 60 call 2001acc <.urem> 2008950: 92 10 00 10 mov %l0, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008954: 80 a2 20 00 cmp %o0, 0 2008958: 02 80 00 05 be 200896c <_Heap_Walk+0x290> 200895c: c2 07 bf fc ld [ %fp + -4 ], %g1 2008960: 80 88 60 ff btst 0xff, %g1 2008964: 12 80 00 76 bne 2008b3c <_Heap_Walk+0x460> 2008968: 90 10 00 19 mov %i1, %o0 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 200896c: 80 a6 c0 13 cmp %i3, %l3 2008970: 08 80 00 05 bleu 2008984 <_Heap_Walk+0x2a8> 2008974: 80 a4 80 1a cmp %l2, %i2 2008978: 80 88 60 ff btst 0xff, %g1 200897c: 12 80 00 78 bne 2008b5c <_Heap_Walk+0x480> <== ALWAYS TAKEN 2008980: 80 a4 80 1a cmp %l2, %i2 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008984: 2a 80 00 06 bcs,a 200899c <_Heap_Walk+0x2c0> 2008988: c2 06 a0 04 ld [ %i2 + 4 ], %g1 200898c: 80 88 60 ff btst 0xff, %g1 2008990: 12 80 00 7d bne 2008b84 <_Heap_Walk+0x4a8> 2008994: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008998: c2 06 a0 04 ld [ %i2 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200899c: 80 88 60 01 btst 1, %g1 20089a0: 02 80 00 19 be 2008a04 <_Heap_Walk+0x328> 20089a4: a8 0d 20 01 and %l4, 1, %l4 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 20089a8: 80 a5 20 00 cmp %l4, 0 20089ac: 22 80 00 0e be,a 20089e4 <_Heap_Walk+0x308> 20089b0: da 04 80 00 ld [ %l2 ], %o5 (*printer)( 20089b4: 90 10 00 19 mov %i1, %o0 20089b8: 92 10 20 00 clr %o1 20089bc: 94 10 00 17 mov %l7, %o2 20089c0: 96 10 00 12 mov %l2, %o3 20089c4: 9f c7 40 00 call %i5 20089c8: 98 10 00 13 mov %l3, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20089cc: 80 a7 00 1a cmp %i4, %i2 20089d0: 02 80 00 42 be 2008ad8 <_Heap_Walk+0x3fc> 20089d4: a4 10 00 1a mov %i2, %l2 20089d8: e8 06 a0 04 ld [ %i2 + 4 ], %l4 20089dc: 10 bf ff c6 b 20088f4 <_Heap_Walk+0x218> 20089e0: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 20089e4: 96 10 00 12 mov %l2, %o3 20089e8: 90 10 00 19 mov %i1, %o0 20089ec: 92 10 20 00 clr %o1 20089f0: 94 10 00 16 mov %l6, %o2 20089f4: 9f c7 40 00 call %i5 20089f8: 98 10 00 13 mov %l3, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 20089fc: 10 bf ff f5 b 20089d0 <_Heap_Walk+0x2f4> 2008a00: 80 a7 00 1a cmp %i4, %i2 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008a04: da 04 a0 0c ld [ %l2 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a08: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008a0c: 05 00 80 56 sethi %hi(0x2015800), %g2 return _Heap_Free_list_head(heap)->next; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_last( Heap_Control *heap ) { return _Heap_Free_list_tail(heap)->prev; 2008a10: c8 06 20 0c ld [ %i0 + 0xc ], %g4 2008a14: 80 a0 40 0d cmp %g1, %o5 2008a18: 02 80 00 05 be 2008a2c <_Heap_Walk+0x350> 2008a1c: 86 10 a0 c8 or %g2, 0xc8, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008a20: 80 a6 00 0d cmp %i0, %o5 2008a24: 02 80 00 3c be 2008b14 <_Heap_Walk+0x438> 2008a28: 86 15 60 90 or %l5, 0x90, %g3 block->next, block->next == last_free_block ? 2008a2c: c2 04 a0 08 ld [ %l2 + 8 ], %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a30: 1f 00 80 56 sethi %hi(0x2015800), %o7 2008a34: 80 a1 00 01 cmp %g4, %g1 2008a38: 02 80 00 05 be 2008a4c <_Heap_Walk+0x370> 2008a3c: 84 13 e0 e8 or %o7, 0xe8, %g2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008a40: 80 a6 00 01 cmp %i0, %g1 2008a44: 02 80 00 31 be 2008b08 <_Heap_Walk+0x42c> 2008a48: 84 15 60 90 or %l5, 0x90, %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008a4c: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008a50: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2008a54: c4 23 a0 64 st %g2, [ %sp + 0x64 ] 2008a58: 90 10 00 19 mov %i1, %o0 2008a5c: 92 10 20 00 clr %o1 2008a60: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008a64: 96 10 00 12 mov %l2, %o3 2008a68: 94 12 a0 20 or %o2, 0x20, %o2 2008a6c: 9f c7 40 00 call %i5 2008a70: 98 10 00 13 mov %l3, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008a74: da 06 80 00 ld [ %i2 ], %o5 2008a78: 80 a4 c0 0d cmp %l3, %o5 2008a7c: 12 80 00 19 bne 2008ae0 <_Heap_Walk+0x404> 2008a80: 80 a5 20 00 cmp %l4, 0 ); return false; } if ( !prev_used ) { 2008a84: 02 80 00 27 be 2008b20 <_Heap_Walk+0x444> 2008a88: 90 10 00 19 mov %i1, %o0 return &heap->free_list; } RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Free_list_first( Heap_Control *heap ) { return _Heap_Free_list_head(heap)->next; 2008a8c: c2 06 20 08 ld [ %i0 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008a90: 80 a6 00 01 cmp %i0, %g1 2008a94: 02 80 00 0b be 2008ac0 <_Heap_Walk+0x3e4> <== NEVER TAKEN 2008a98: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 2008a9c: 80 a4 80 01 cmp %l2, %g1 2008aa0: 02 bf ff cc be 20089d0 <_Heap_Walk+0x2f4> 2008aa4: 80 a7 00 1a cmp %i4, %i2 return true; } free_block = free_block->next; 2008aa8: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008aac: 80 a6 00 01 cmp %i0, %g1 2008ab0: 12 bf ff fc bne 2008aa0 <_Heap_Walk+0x3c4> 2008ab4: 80 a4 80 01 cmp %l2, %g1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008ab8: 90 10 00 19 mov %i1, %o0 2008abc: 92 10 20 01 mov 1, %o1 2008ac0: 96 10 00 12 mov %l2, %o3 2008ac4: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008ac8: 9f c7 40 00 call %i5 2008acc: 94 12 a1 08 or %o2, 0x108, %o2 ! 2015d08 <_Status_Object_name_errors_to_status+0x478> return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008ad0: 10 bf ff 13 b 200871c <_Heap_Walk+0x40> 2008ad4: 82 10 20 00 clr %g1 } block = next_block; } while ( block != first_block ); return true; 2008ad8: 10 bf ff 11 b 200871c <_Heap_Walk+0x40> 2008adc: 82 10 20 01 mov 1, %g1 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 2008ae0: f4 23 a0 5c st %i2, [ %sp + 0x5c ] 2008ae4: 90 10 00 19 mov %i1, %o0 2008ae8: 92 10 20 01 mov 1, %o1 2008aec: 96 10 00 12 mov %l2, %o3 2008af0: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008af4: 98 10 00 13 mov %l3, %o4 2008af8: 9f c7 40 00 call %i5 2008afc: 94 12 a0 58 or %o2, 0x58, %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008b00: 10 bf ff 07 b 200871c <_Heap_Walk+0x40> 2008b04: 82 10 20 00 clr %g1 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008b08: 05 00 80 56 sethi %hi(0x2015800), %g2 2008b0c: 10 bf ff d0 b 2008a4c <_Heap_Walk+0x370> 2008b10: 84 10 a0 f8 or %g2, 0xf8, %g2 ! 20158f8 <_Status_Object_name_errors_to_status+0x68> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008b14: 07 00 80 56 sethi %hi(0x2015800), %g3 2008b18: 10 bf ff c5 b 2008a2c <_Heap_Walk+0x350> 2008b1c: 86 10 e0 d8 or %g3, 0xd8, %g3 ! 20158d8 <_Status_Object_name_errors_to_status+0x48> return false; } if ( !prev_used ) { (*printer)( 2008b20: 92 10 20 01 mov 1, %o1 2008b24: 96 10 00 12 mov %l2, %o3 2008b28: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b2c: 9f c7 40 00 call %i5 2008b30: 94 12 a0 98 or %o2, 0x98, %o2 ! 2015c98 <_Status_Object_name_errors_to_status+0x408> return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008b34: 10 bf fe fa b 200871c <_Heap_Walk+0x40> 2008b38: 82 10 20 00 clr %g1 return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 2008b3c: 92 10 20 01 mov 1, %o1 2008b40: 96 10 00 12 mov %l2, %o3 2008b44: 15 00 80 56 sethi %hi(0x2015800), %o2 2008b48: 98 10 00 13 mov %l3, %o4 2008b4c: 9f c7 40 00 call %i5 2008b50: 94 12 a3 88 or %o2, 0x388, %o2 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 2008b54: 10 bf fe f2 b 200871c <_Heap_Walk+0x40> 2008b58: 82 10 20 00 clr %g1 } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 2008b5c: 90 10 00 19 mov %i1, %o0 2008b60: 92 10 20 01 mov 1, %o1 2008b64: 96 10 00 12 mov %l2, %o3 2008b68: 15 00 80 56 sethi %hi(0x2015800), %o2 2008b6c: 98 10 00 13 mov %l3, %o4 2008b70: 94 12 a3 b8 or %o2, 0x3b8, %o2 2008b74: 9f c7 40 00 call %i5 2008b78: 9a 10 00 1b mov %i3, %o5 block, block_size, min_block_size ); return false; 2008b7c: 10 bf fe e8 b 200871c <_Heap_Walk+0x40> 2008b80: 82 10 20 00 clr %g1 } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 2008b84: 92 10 20 01 mov 1, %o1 2008b88: 96 10 00 12 mov %l2, %o3 2008b8c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008b90: 98 10 00 1a mov %i2, %o4 2008b94: 9f c7 40 00 call %i5 2008b98: 94 12 a3 e8 or %o2, 0x3e8, %o2 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2008b9c: 10 bf fe e0 b 200871c <_Heap_Walk+0x40> 2008ba0: 82 10 20 00 clr %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008ba4: 80 a6 80 13 cmp %i2, %l3 2008ba8: 18 bf ff 46 bgu 20088c0 <_Heap_Walk+0x1e4> <== NEVER TAKEN 2008bac: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008bb0: c2 27 bf fc st %g1, [ %fp + -4 ] 2008bb4: 90 06 a0 08 add %i2, 8, %o0 2008bb8: 7f ff e3 c5 call 2001acc <.urem> 2008bbc: 92 10 00 15 mov %l5, %o1 ); return false; } if ( 2008bc0: 80 a2 20 00 cmp %o0, 0 2008bc4: 12 80 00 36 bne 2008c9c <_Heap_Walk+0x5c0> <== NEVER TAKEN 2008bc8: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008bcc: c4 06 a0 04 ld [ %i2 + 4 ], %g2 2008bd0: 84 08 bf fe and %g2, -2, %g2 block = next_block; } while ( block != first_block ); return true; } 2008bd4: 84 06 80 02 add %i2, %g2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008bd8: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008bdc: 80 88 a0 01 btst 1, %g2 2008be0: 12 80 00 27 bne 2008c7c <_Heap_Walk+0x5a0> <== NEVER TAKEN 2008be4: 84 10 00 18 mov %i0, %g2 2008be8: 10 80 00 19 b 2008c4c <_Heap_Walk+0x570> 2008bec: a4 10 00 1a mov %i2, %l2 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008bf0: 80 a6 00 1a cmp %i0, %i2 2008bf4: 02 bf ff 3a be 20088dc <_Heap_Walk+0x200> 2008bf8: 80 a6 80 01 cmp %i2, %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008bfc: 0a bf ff 31 bcs 20088c0 <_Heap_Walk+0x1e4> 2008c00: 90 10 00 19 mov %i1, %o0 2008c04: 80 a6 80 13 cmp %i2, %l3 2008c08: 18 bf ff 2f bgu 20088c4 <_Heap_Walk+0x1e8> <== NEVER TAKEN 2008c0c: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008c10: c2 27 bf fc st %g1, [ %fp + -4 ] 2008c14: 90 06 a0 08 add %i2, 8, %o0 2008c18: 7f ff e3 ad call 2001acc <.urem> 2008c1c: 92 10 00 15 mov %l5, %o1 ); return false; } if ( 2008c20: 80 a2 20 00 cmp %o0, 0 2008c24: 12 80 00 1e bne 2008c9c <_Heap_Walk+0x5c0> 2008c28: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008c2c: c6 06 a0 04 ld [ %i2 + 4 ], %g3 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c30: 84 10 00 12 mov %l2, %g2 2008c34: 86 08 ff fe and %g3, -2, %g3 block = next_block; } while ( block != first_block ); return true; } 2008c38: 86 06 80 03 add %i2, %g3, %g3 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008c3c: c6 00 e0 04 ld [ %g3 + 4 ], %g3 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c40: 80 88 e0 01 btst 1, %g3 2008c44: 12 80 00 0e bne 2008c7c <_Heap_Walk+0x5a0> 2008c48: a4 10 00 1a mov %i2, %l2 ); return false; } if ( free_block->prev != prev_block ) { 2008c4c: d8 06 a0 0c ld [ %i2 + 0xc ], %o4 2008c50: 80 a3 00 02 cmp %o4, %g2 2008c54: 22 bf ff e7 be,a 2008bf0 <_Heap_Walk+0x514> 2008c58: f4 06 a0 08 ld [ %i2 + 8 ], %i2 (*printer)( 2008c5c: 90 10 00 19 mov %i1, %o0 2008c60: 92 10 20 01 mov 1, %o1 2008c64: 96 10 00 1a mov %i2, %o3 2008c68: 15 00 80 56 sethi %hi(0x2015800), %o2 2008c6c: 9f c7 40 00 call %i5 2008c70: 94 12 a3 20 or %o2, 0x320, %o2 ! 2015b20 <_Status_Object_name_errors_to_status+0x290> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c74: 10 bf fe aa b 200871c <_Heap_Walk+0x40> 2008c78: 82 10 20 00 clr %g1 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c7c: 90 10 00 19 mov %i1, %o0 2008c80: 92 10 20 01 mov 1, %o1 2008c84: 96 10 00 1a mov %i2, %o3 2008c88: 15 00 80 56 sethi %hi(0x2015800), %o2 2008c8c: 9f c7 40 00 call %i5 2008c90: 94 12 a3 00 or %o2, 0x300, %o2 ! 2015b00 <_Status_Object_name_errors_to_status+0x270> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c94: 10 bf fe a2 b 200871c <_Heap_Walk+0x40> 2008c98: 82 10 20 00 clr %g1 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008c9c: 90 10 00 19 mov %i1, %o0 2008ca0: 92 10 20 01 mov 1, %o1 2008ca4: 96 10 00 1a mov %i2, %o3 2008ca8: 15 00 80 56 sethi %hi(0x2015800), %o2 2008cac: 9f c7 40 00 call %i5 2008cb0: 94 12 a2 d0 or %o2, 0x2d0, %o2 ! 2015ad0 <_Status_Object_name_errors_to_status+0x240> if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008cb4: 10 bf fe 9a b 200871c <_Heap_Walk+0x40> 2008cb8: 82 10 20 00 clr %g1 =============================================================================== 02007134 <_IO_Initialize_all_drivers>: * * Output Parameters: NONE */ void _IO_Initialize_all_drivers( void ) { 2007134: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2007138: 39 00 80 71 sethi %hi(0x201c400), %i4 200713c: c2 07 21 84 ld [ %i4 + 0x184 ], %g1 ! 201c584 <_IO_Number_of_drivers> 2007140: 80 a0 60 00 cmp %g1, 0 2007144: 02 80 00 0c be 2007174 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 2007148: ba 10 20 00 clr %i5 200714c: b8 17 21 84 or %i4, 0x184, %i4 (void) rtems_io_initialize( major, 0, NULL ); 2007150: 90 10 00 1d mov %i5, %o0 2007154: 92 10 20 00 clr %o1 2007158: 40 00 15 9c call 200c7c8 200715c: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2007160: c2 07 00 00 ld [ %i4 ], %g1 2007164: ba 07 60 01 inc %i5 2007168: 80 a0 40 1d cmp %g1, %i5 200716c: 18 bf ff fa bgu 2007154 <_IO_Initialize_all_drivers+0x20> 2007170: 90 10 00 1d mov %i5, %o0 2007174: 81 c7 e0 08 ret 2007178: 81 e8 00 00 restore =============================================================================== 02007068 <_IO_Manager_initialization>: * workspace. * */ void _IO_Manager_initialization(void) { 2007068: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = Configuration.Device_driver_table; 200706c: 03 00 80 6d sethi %hi(0x201b400), %g1 2007070: 82 10 61 dc or %g1, 0x1dc, %g1 ! 201b5dc drivers_in_table = Configuration.number_of_device_drivers; 2007074: f8 00 60 30 ld [ %g1 + 0x30 ], %i4 number_of_drivers = Configuration.maximum_drivers; 2007078: f2 00 60 2c ld [ %g1 + 0x2c ], %i1 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 200707c: 80 a7 00 19 cmp %i4, %i1 2007080: 0a 80 00 08 bcs 20070a0 <_IO_Manager_initialization+0x38> 2007084: fa 00 60 34 ld [ %g1 + 0x34 ], %i5 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 2007088: 03 00 80 71 sethi %hi(0x201c400), %g1 200708c: fa 20 61 88 st %i5, [ %g1 + 0x188 ] ! 201c588 <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 2007090: 03 00 80 71 sethi %hi(0x201c400), %g1 2007094: f8 20 61 84 st %i4, [ %g1 + 0x184 ] ! 201c584 <_IO_Number_of_drivers> return; 2007098: 81 c7 e0 08 ret 200709c: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 20070a0: 83 2e 60 03 sll %i1, 3, %g1 20070a4: b5 2e 60 05 sll %i1, 5, %i2 20070a8: b4 26 80 01 sub %i2, %g1, %i2 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 20070ac: 40 00 0d 19 call 200a510 <_Workspace_Allocate_or_fatal_error> 20070b0: 90 10 00 1a mov %i2, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 20070b4: 03 00 80 71 sethi %hi(0x201c400), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 20070b8: 37 00 80 71 sethi %hi(0x201c400), %i3 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 20070bc: f2 20 61 84 st %i1, [ %g1 + 0x184 ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 20070c0: d0 26 e1 88 st %o0, [ %i3 + 0x188 ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 20070c4: 92 10 20 00 clr %o1 20070c8: 40 00 21 11 call 200f50c 20070cc: 94 10 00 1a mov %i2, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 20070d0: 80 a7 20 00 cmp %i4, 0 20070d4: 02 bf ff f1 be 2007098 <_IO_Manager_initialization+0x30> <== NEVER TAKEN 20070d8: f6 06 e1 88 ld [ %i3 + 0x188 ], %i3 20070dc: 82 10 20 00 clr %g1 20070e0: 88 10 20 00 clr %g4 _IO_Driver_address_table[index] = driver_table[index]; 20070e4: c4 07 40 01 ld [ %i5 + %g1 ], %g2 20070e8: 86 07 40 01 add %i5, %g1, %g3 20070ec: c4 26 c0 01 st %g2, [ %i3 + %g1 ] 20070f0: f4 00 e0 04 ld [ %g3 + 4 ], %i2 20070f4: 84 06 c0 01 add %i3, %g1, %g2 20070f8: f4 20 a0 04 st %i2, [ %g2 + 4 ] 20070fc: f4 00 e0 08 ld [ %g3 + 8 ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007100: 88 01 20 01 inc %g4 _IO_Driver_address_table[index] = driver_table[index]; 2007104: f4 20 a0 08 st %i2, [ %g2 + 8 ] 2007108: f4 00 e0 0c ld [ %g3 + 0xc ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 200710c: 82 00 60 18 add %g1, 0x18, %g1 _IO_Driver_address_table[index] = driver_table[index]; 2007110: f4 20 a0 0c st %i2, [ %g2 + 0xc ] 2007114: f4 00 e0 10 ld [ %g3 + 0x10 ], %i2 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007118: 80 a1 00 1c cmp %g4, %i4 _IO_Driver_address_table[index] = driver_table[index]; 200711c: f4 20 a0 10 st %i2, [ %g2 + 0x10 ] 2007120: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2007124: 12 bf ff f0 bne 20070e4 <_IO_Manager_initialization+0x7c> 2007128: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 200712c: 81 c7 e0 08 ret 2007130: 81 e8 00 00 restore =============================================================================== 02007e30 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007e30: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007e34: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007e38: ba 10 00 18 mov %i0, %i5 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007e3c: 80 a0 60 00 cmp %g1, 0 2007e40: 02 80 00 19 be 2007ea4 <_Objects_Allocate+0x74> <== NEVER TAKEN 2007e44: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007e48: b8 07 60 20 add %i5, 0x20, %i4 2007e4c: 7f ff fd 63 call 20073d8 <_Chain_Get> 2007e50: 90 10 00 1c mov %i4, %o0 if ( information->auto_extend ) { 2007e54: c2 0f 60 12 ldub [ %i5 + 0x12 ], %g1 2007e58: 80 a0 60 00 cmp %g1, 0 2007e5c: 02 80 00 12 be 2007ea4 <_Objects_Allocate+0x74> 2007e60: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007e64: 80 a2 20 00 cmp %o0, 0 2007e68: 02 80 00 11 be 2007eac <_Objects_Allocate+0x7c> 2007e6c: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007e70: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 2007e74: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007e78: d2 17 60 14 lduh [ %i5 + 0x14 ], %o1 2007e7c: 40 00 3e 79 call 2017860 <.udiv> 2007e80: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007e84: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2007e88: 91 2a 20 02 sll %o0, 2, %o0 2007e8c: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2007e90: c4 17 60 2c lduh [ %i5 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2007e94: 86 00 ff ff add %g3, -1, %g3 2007e98: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 2007e9c: 82 00 bf ff add %g2, -1, %g1 2007ea0: c2 37 60 2c sth %g1, [ %i5 + 0x2c ] ); } #endif return the_object; } 2007ea4: 81 c7 e0 08 ret 2007ea8: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 2007eac: 40 00 00 10 call 2007eec <_Objects_Extend_information> 2007eb0: 90 10 00 1d mov %i5, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007eb4: 7f ff fd 49 call 20073d8 <_Chain_Get> 2007eb8: 90 10 00 1c mov %i4, %o0 } if ( the_object ) { 2007ebc: b0 92 20 00 orcc %o0, 0, %i0 2007ec0: 32 bf ff ed bne,a 2007e74 <_Objects_Allocate+0x44> 2007ec4: c2 17 60 0a lduh [ %i5 + 0xa ], %g1 ); } #endif return the_object; } 2007ec8: 81 c7 e0 08 ret 2007ecc: 81 e8 00 00 restore =============================================================================== 02007eec <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 2007eec: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007ef0: e0 06 20 34 ld [ %i0 + 0x34 ], %l0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007ef4: f8 16 20 0a lduh [ %i0 + 0xa ], %i4 index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007ef8: 80 a4 20 00 cmp %l0, 0 2007efc: 02 80 00 a6 be 2008194 <_Objects_Extend_information+0x2a8> 2007f00: f2 16 20 10 lduh [ %i0 + 0x10 ], %i1 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2007f04: f4 16 20 14 lduh [ %i0 + 0x14 ], %i2 2007f08: b3 2e 60 10 sll %i1, 0x10, %i1 2007f0c: 92 10 00 1a mov %i2, %o1 2007f10: 40 00 3e 54 call 2017860 <.udiv> 2007f14: 91 36 60 10 srl %i1, 0x10, %o0 2007f18: a7 2a 20 10 sll %o0, 0x10, %l3 2007f1c: a7 34 e0 10 srl %l3, 0x10, %l3 for ( ; block < block_count; block++ ) { 2007f20: 80 a4 e0 00 cmp %l3, 0 2007f24: 02 80 00 a3 be 20081b0 <_Objects_Extend_information+0x2c4><== NEVER TAKEN 2007f28: 90 10 00 1a mov %i2, %o0 if ( information->object_blocks[ block ] == NULL ) { 2007f2c: c2 04 00 00 ld [ %l0 ], %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007f30: ba 10 00 1c mov %i4, %i5 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007f34: 80 a0 60 00 cmp %g1, 0 2007f38: 12 80 00 08 bne 2007f58 <_Objects_Extend_information+0x6c><== ALWAYS TAKEN 2007f3c: b6 10 20 00 clr %i3 do_extend = false; 2007f40: 10 80 00 a0 b 20081c0 <_Objects_Extend_information+0x2d4> <== NOT EXECUTED 2007f44: b4 10 20 00 clr %i2 <== NOT EXECUTED block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007f48: c2 04 00 01 ld [ %l0 + %g1 ], %g1 2007f4c: 80 a0 60 00 cmp %g1, 0 2007f50: 22 80 00 08 be,a 2007f70 <_Objects_Extend_information+0x84> 2007f54: b4 10 20 00 clr %i2 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007f58: b6 06 e0 01 inc %i3 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 2007f5c: ba 07 40 1a add %i5, %i2, %i5 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007f60: 80 a4 c0 1b cmp %l3, %i3 2007f64: 18 bf ff f9 bgu 2007f48 <_Objects_Extend_information+0x5c> 2007f68: 83 2e e0 02 sll %i3, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007f6c: b4 10 20 01 mov 1, %i2 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007f70: b3 36 60 10 srl %i1, 0x10, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007f74: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007f78: b2 06 40 08 add %i1, %o0, %i1 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007f7c: 82 10 63 ff or %g1, 0x3ff, %g1 2007f80: 80 a6 40 01 cmp %i1, %g1 2007f84: 18 80 00 93 bgu 20081d0 <_Objects_Extend_information+0x2e4> 2007f88: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 2007f8c: 40 00 3d fb call 2017778 <.umul> 2007f90: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2007f94: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2007f98: 80 a0 60 00 cmp %g1, 0 2007f9c: 02 80 00 6a be 2008144 <_Objects_Extend_information+0x258> 2007fa0: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 2007fa4: 40 00 09 4d call 200a4d8 <_Workspace_Allocate> 2007fa8: 01 00 00 00 nop if ( !new_object_block ) 2007fac: a0 92 20 00 orcc %o0, 0, %l0 2007fb0: 02 80 00 88 be 20081d0 <_Objects_Extend_information+0x2e4> 2007fb4: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 2007fb8: 80 8e a0 ff btst 0xff, %i2 2007fbc: 22 80 00 3f be,a 20080b8 <_Objects_Extend_information+0x1cc> 2007fc0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 */ /* * Up the block count and maximum */ block_count++; 2007fc4: b4 04 e0 01 add %l3, 1, %i2 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007fc8: 91 2e a0 01 sll %i2, 1, %o0 2007fcc: 90 02 00 1a add %o0, %i2, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 2007fd0: 90 06 40 08 add %i1, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007fd4: 90 02 00 1c add %o0, %i4, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 2007fd8: 40 00 09 40 call 200a4d8 <_Workspace_Allocate> 2007fdc: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { 2007fe0: a2 92 20 00 orcc %o0, 0, %l1 2007fe4: 02 80 00 79 be 20081c8 <_Objects_Extend_information+0x2dc> 2007fe8: b5 2e a0 02 sll %i2, 2, %i2 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 2007fec: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2007ff0: 80 a7 00 01 cmp %i4, %g1 2007ff4: a4 04 40 1a add %l1, %i2, %l2 2007ff8: 0a 80 00 57 bcs 2008154 <_Objects_Extend_information+0x268> 2007ffc: b4 04 80 1a add %l2, %i2, %i2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2008000: 80 a7 20 00 cmp %i4, 0 2008004: 02 80 00 07 be 2008020 <_Objects_Extend_information+0x134><== NEVER TAKEN 2008008: 82 10 20 00 clr %g1 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 200800c: 85 28 60 02 sll %g1, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2008010: 82 00 60 01 inc %g1 2008014: 80 a7 00 01 cmp %i4, %g1 2008018: 18 bf ff fd bgu 200800c <_Objects_Extend_information+0x120><== NEVER TAKEN 200801c: c0 20 80 1a clr [ %g2 + %i2 ] 2008020: a7 2c e0 02 sll %l3, 2, %l3 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2008024: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 2008028: c0 24 40 13 clr [ %l1 + %l3 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 200802c: 86 07 40 03 add %i5, %g3, %g3 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008030: 80 a7 40 03 cmp %i5, %g3 2008034: 1a 80 00 0a bcc 200805c <_Objects_Extend_information+0x170><== NEVER TAKEN 2008038: c0 24 80 13 clr [ %l2 + %l3 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 200803c: 83 2f 60 02 sll %i5, 2, %g1 2008040: 84 10 00 1d mov %i5, %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008044: 82 06 80 01 add %i2, %g1, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 2008048: c0 20 40 00 clr [ %g1 ] object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 200804c: 84 00 a0 01 inc %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2008050: 80 a0 c0 02 cmp %g3, %g2 2008054: 18 bf ff fd bgu 2008048 <_Objects_Extend_information+0x15c> 2008058: 82 00 60 04 add %g1, 4, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 200805c: 7f ff e8 68 call 20021fc 2008060: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2008064: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2008068: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 200806c: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2008070: f2 36 20 10 sth %i1, [ %i0 + 0x10 ] 2008074: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2008078: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 200807c: e2 26 20 34 st %l1, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 2008080: e4 26 20 30 st %l2, [ %i0 + 0x30 ] information->local_table = local_table; 2008084: f4 26 20 1c st %i2, [ %i0 + 0x1c ] information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2008088: b3 2e 60 10 sll %i1, 0x10, %i1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 200808c: 03 00 00 40 sethi %hi(0x10000), %g1 2008090: b3 36 60 10 srl %i1, 0x10, %i1 2008094: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2008098: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 200809c: 82 10 40 19 or %g1, %i1, %g1 20080a0: c2 26 20 0c st %g1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 20080a4: 7f ff e8 5a call 200220c 20080a8: 01 00 00 00 nop _Workspace_Free( old_tables ); 20080ac: 40 00 09 13 call 200a4f8 <_Workspace_Free> 20080b0: 90 10 00 1c mov %i4, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 20080b4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20080b8: b7 2e e0 02 sll %i3, 2, %i3 20080bc: e0 20 40 1b st %l0, [ %g1 + %i3 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 20080c0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 20080c4: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 20080c8: d2 00 40 1b ld [ %g1 + %i3 ], %o1 20080cc: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 20080d0: 90 07 bf f4 add %fp, -12, %o0 20080d4: 40 00 11 d5 call 200c828 <_Chain_Initialize> 20080d8: 39 00 00 40 sethi %hi(0x10000), %i4 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 20080dc: 10 80 00 0d b 2008110 <_Objects_Extend_information+0x224> 20080e0: b4 06 20 20 add %i0, 0x20, %i2 the_object->id = _Objects_Build_id( 20080e4: c6 16 20 04 lduh [ %i0 + 4 ], %g3 20080e8: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20080ec: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20080f0: 84 10 80 1c or %g2, %i4, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20080f4: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20080f8: 84 10 80 1d or %g2, %i5, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 20080fc: 90 10 00 1a mov %i2, %o0 2008100: 92 10 00 01 mov %g1, %o1 index++; 2008104: ba 07 60 01 inc %i5 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2008108: 7f ff fc a0 call 2007388 <_Chain_Append> 200810c: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2008110: 7f ff fc b2 call 20073d8 <_Chain_Get> 2008114: 90 07 bf f4 add %fp, -12, %o0 2008118: 82 92 20 00 orcc %o0, 0, %g1 200811c: 32 bf ff f2 bne,a 20080e4 <_Objects_Extend_information+0x1f8> 2008120: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2008124: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 2008128: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 200812c: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2008130: c8 20 c0 1b st %g4, [ %g3 + %i3 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2008134: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 2008138: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 200813c: 81 c7 e0 08 ret 2008140: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 2008144: 40 00 08 f3 call 200a510 <_Workspace_Allocate_or_fatal_error> 2008148: 01 00 00 00 nop 200814c: 10 bf ff 9b b 2007fb8 <_Objects_Extend_information+0xcc> 2008150: a0 10 00 08 mov %o0, %l0 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2008154: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 2008158: a7 2c e0 02 sll %l3, 2, %l3 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 200815c: 40 00 1c b0 call 200f41c 2008160: 94 10 00 13 mov %l3, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 2008164: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 2008168: 94 10 00 13 mov %l3, %o2 200816c: 40 00 1c ac call 200f41c 2008170: 90 10 00 12 mov %l2, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2008174: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2008178: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 200817c: b8 07 00 01 add %i4, %g1, %i4 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2008180: 90 10 00 1a mov %i2, %o0 2008184: 40 00 1c a6 call 200f41c 2008188: 95 2f 20 02 sll %i4, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 200818c: 10 bf ff a7 b 2008028 <_Objects_Extend_information+0x13c> 2008190: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2008194: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2008198: ba 10 00 1c mov %i4, %i5 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 200819c: b4 10 20 01 mov 1, %i2 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20081a0: b6 10 20 00 clr %i3 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 20081a4: a6 10 20 00 clr %l3 20081a8: 10 bf ff 72 b 2007f70 <_Objects_Extend_information+0x84> 20081ac: b3 2e 60 10 sll %i1, 0x10, %i1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 20081b0: ba 10 00 1c mov %i4, %i5 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 20081b4: b4 10 20 01 mov 1, %i2 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 20081b8: 10 bf ff 6e b 2007f70 <_Objects_Extend_information+0x84> <== NOT EXECUTED 20081bc: b6 10 20 00 clr %i3 <== NOT EXECUTED 20081c0: 10 bf ff 6c b 2007f70 <_Objects_Extend_information+0x84> <== NOT EXECUTED 20081c4: b6 10 20 00 clr %i3 <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 20081c8: 40 00 08 cc call 200a4f8 <_Workspace_Free> 20081cc: 90 10 00 10 mov %l0, %o0 return; 20081d0: 81 c7 e0 08 ret 20081d4: 81 e8 00 00 restore =============================================================================== 0200827c <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 200827c: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2008280: 80 a6 60 00 cmp %i1, 0 2008284: 02 80 00 17 be 20082e0 <_Objects_Get_information+0x64> 2008288: ba 10 20 00 clr %i5 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 200828c: 40 00 12 f0 call 200ce4c <_Objects_API_maximum_class> 2008290: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2008294: 80 a2 20 00 cmp %o0, 0 2008298: 02 80 00 12 be 20082e0 <_Objects_Get_information+0x64> 200829c: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 20082a0: 0a 80 00 10 bcs 20082e0 <_Objects_Get_information+0x64> 20082a4: 03 00 80 70 sethi %hi(0x201c000), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 20082a8: b1 2e 20 02 sll %i0, 2, %i0 20082ac: 82 10 62 28 or %g1, 0x228, %g1 20082b0: c2 00 40 18 ld [ %g1 + %i0 ], %g1 20082b4: 80 a0 60 00 cmp %g1, 0 20082b8: 02 80 00 0a be 20082e0 <_Objects_Get_information+0x64> <== NEVER TAKEN 20082bc: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 20082c0: fa 00 40 19 ld [ %g1 + %i1 ], %i5 if ( !info ) 20082c4: 80 a7 60 00 cmp %i5, 0 20082c8: 02 80 00 06 be 20082e0 <_Objects_Get_information+0x64> <== NEVER TAKEN 20082cc: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 20082d0: c2 17 60 10 lduh [ %i5 + 0x10 ], %g1 return NULL; 20082d4: 80 a0 00 01 cmp %g0, %g1 20082d8: 82 60 20 00 subx %g0, 0, %g1 20082dc: ba 0f 40 01 and %i5, %g1, %i5 #endif return info; } 20082e0: 81 c7 e0 08 ret 20082e4: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02009ad8 <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 2009ad8: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2009adc: 80 a6 60 00 cmp %i1, 0 2009ae0: 02 80 00 3c be 2009bd0 <_Objects_Get_name_as_string+0xf8> 2009ae4: 80 a6 a0 00 cmp %i2, 0 return NULL; if ( name == NULL ) 2009ae8: 02 80 00 35 be 2009bbc <_Objects_Get_name_as_string+0xe4> 2009aec: 80 a6 20 00 cmp %i0, 0 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009af0: 02 80 00 35 be 2009bc4 <_Objects_Get_name_as_string+0xec> 2009af4: 03 00 80 7c sethi %hi(0x201f000), %g1 information = _Objects_Get_information_id( tmpId ); 2009af8: 7f ff ff ba call 20099e0 <_Objects_Get_information_id> 2009afc: 90 10 00 18 mov %i0, %o0 if ( !information ) 2009b00: 80 a2 20 00 cmp %o0, 0 2009b04: 02 80 00 33 be 2009bd0 <_Objects_Get_name_as_string+0xf8> 2009b08: 92 10 00 18 mov %i0, %o1 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 2009b0c: 40 00 00 34 call 2009bdc <_Objects_Get> 2009b10: 94 07 bf fc add %fp, -4, %o2 switch ( location ) { 2009b14: c2 07 bf fc ld [ %fp + -4 ], %g1 2009b18: 80 a0 60 00 cmp %g1, 0 2009b1c: 32 80 00 2e bne,a 2009bd4 <_Objects_Get_name_as_string+0xfc> 2009b20: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 2009b24: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 2009b28: c0 2f bf f4 clrb [ %fp + -12 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b2c: 85 30 60 18 srl %g1, 0x18, %g2 lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; 2009b30: 87 30 60 08 srl %g1, 8, %g3 #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; 2009b34: 89 30 60 10 srl %g1, 0x10, %g4 lname[ 2 ] = (u32_name >> 8) & 0xff; 2009b38: c6 2f bf f2 stb %g3, [ %fp + -14 ] lname[ 3 ] = (u32_name >> 0) & 0xff; 2009b3c: c2 2f bf f3 stb %g1, [ %fp + -13 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b40: c4 2f bf f0 stb %g2, [ %fp + -16 ] lname[ 1 ] = (u32_name >> 16) & 0xff; 2009b44: c8 2f bf f1 stb %g4, [ %fp + -15 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009b48: 86 10 00 02 mov %g2, %g3 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009b4c: b2 86 7f ff addcc %i1, -1, %i1 2009b50: 02 80 00 19 be 2009bb4 <_Objects_Get_name_as_string+0xdc> <== NEVER TAKEN 2009b54: 82 10 00 1a mov %i2, %g1 2009b58: 80 a0 a0 00 cmp %g2, 0 2009b5c: 02 80 00 16 be 2009bb4 <_Objects_Get_name_as_string+0xdc> 2009b60: 1f 00 80 78 sethi %hi(0x201e000), %o7 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; s = lname; 2009b64: 84 07 bf f0 add %fp, -16, %g2 * This method objects the name of an object and returns its name * in the form of a C string. It attempts to be careful about * overflowing the user's string and about returning unprintable characters. */ char *_Objects_Get_name_as_string( 2009b68: b2 06 80 19 add %i2, %i1, %i1 2009b6c: 10 80 00 05 b 2009b80 <_Objects_Get_name_as_string+0xa8> 2009b70: 9e 13 e0 64 or %o7, 0x64, %o7 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009b74: 80 a1 20 00 cmp %g4, 0 2009b78: 02 80 00 0f be 2009bb4 <_Objects_Get_name_as_string+0xdc> 2009b7c: c6 08 80 00 ldub [ %g2 ], %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2009b80: f0 03 c0 00 ld [ %o7 ], %i0 2009b84: 88 08 e0 ff and %g3, 0xff, %g4 2009b88: 88 06 00 04 add %i0, %g4, %g4 2009b8c: c8 49 20 01 ldsb [ %g4 + 1 ], %g4 2009b90: 80 89 20 97 btst 0x97, %g4 2009b94: 12 80 00 03 bne 2009ba0 <_Objects_Get_name_as_string+0xc8> 2009b98: 84 00 a0 01 inc %g2 2009b9c: 86 10 20 2a mov 0x2a, %g3 2009ba0: c6 28 40 00 stb %g3, [ %g1 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009ba4: 82 00 60 01 inc %g1 2009ba8: 80 a0 40 19 cmp %g1, %i1 2009bac: 32 bf ff f2 bne,a 2009b74 <_Objects_Get_name_as_string+0x9c> 2009bb0: c8 48 80 00 ldsb [ %g2 ], %g4 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; _Thread_Enable_dispatch(); 2009bb4: 40 00 03 b1 call 200aa78 <_Thread_Enable_dispatch> 2009bb8: c0 28 40 00 clrb [ %g1 ] return name; } return NULL; /* unreachable path */ } 2009bbc: 81 c7 e0 08 ret 2009bc0: 91 e8 00 1a restore %g0, %i2, %o0 return NULL; if ( name == NULL ) return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009bc4: c2 00 60 08 ld [ %g1 + 8 ], %g1 2009bc8: 10 bf ff cc b 2009af8 <_Objects_Get_name_as_string+0x20> 2009bcc: f0 00 60 08 ld [ %g1 + 8 ], %i0 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2009bd0: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 2009bd4: 81 c7 e0 08 ret 2009bd8: 91 e8 00 1a restore %g0, %i2, %o0 =============================================================================== 02007f7c <_Objects_Get_next>: Objects_Information *information, Objects_Id id, Objects_Locations *location_p, Objects_Id *next_id_p ) { 2007f7c: 9d e3 bf a0 save %sp, -96, %sp Objects_Control *object; Objects_Id next_id; if ( !information ) return NULL; 2007f80: 90 10 20 00 clr %o0 ) { Objects_Control *object; Objects_Id next_id; if ( !information ) 2007f84: 80 a6 20 00 cmp %i0, 0 2007f88: 02 80 00 19 be 2007fec <_Objects_Get_next+0x70> 2007f8c: ba 10 00 18 mov %i0, %i5 return NULL; if ( !location_p ) 2007f90: 80 a6 a0 00 cmp %i2, 0 2007f94: 02 80 00 16 be 2007fec <_Objects_Get_next+0x70> 2007f98: 80 a6 e0 00 cmp %i3, 0 return NULL; if ( !next_id_p ) 2007f9c: 02 80 00 14 be 2007fec <_Objects_Get_next+0x70> 2007fa0: 83 2e 60 10 sll %i1, 0x10, %g1 return NULL; if (_Objects_Get_index(id) == OBJECTS_ID_INITIAL_INDEX) 2007fa4: 80 a0 60 00 cmp %g1, 0 2007fa8: 22 80 00 13 be,a 2007ff4 <_Objects_Get_next+0x78> 2007fac: f2 06 20 08 ld [ %i0 + 8 ], %i1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fb0: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 2007fb4: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fb8: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fbc: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fc0: 90 10 00 1d mov %i5, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007fc4: 80 a0 80 01 cmp %g2, %g1 2007fc8: 0a 80 00 13 bcs 2008014 <_Objects_Get_next+0x98> 2007fcc: 94 10 00 1a mov %i2, %o2 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007fd0: 40 00 00 18 call 2008030 <_Objects_Get> 2007fd4: b2 06 60 01 inc %i1 next_id++; } while (*location_p != OBJECTS_LOCAL); 2007fd8: c2 06 80 00 ld [ %i2 ], %g1 2007fdc: 80 a0 60 00 cmp %g1, 0 2007fe0: 32 bf ff f5 bne,a 2007fb4 <_Objects_Get_next+0x38> 2007fe4: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 *next_id_p = next_id; 2007fe8: f2 26 c0 00 st %i1, [ %i3 ] return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; } 2007fec: 81 c7 e0 08 ret 2007ff0: 91 e8 00 08 restore %g0, %o0, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2007ff4: c4 17 60 10 lduh [ %i5 + 0x10 ], %g2 2007ff8: 83 2e 60 10 sll %i1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2007ffc: 92 10 00 19 mov %i1, %o1 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2008000: 83 30 60 10 srl %g1, 0x10, %g1 *location_p = OBJECTS_ERROR; goto final; } /* try to grab one */ object = _Objects_Get(information, next_id, location_p); 2008004: 90 10 00 1d mov %i5, %o0 else next_id = id; do { /* walked off end of list? */ if (_Objects_Get_index(next_id) > information->maximum) 2008008: 80 a0 80 01 cmp %g2, %g1 200800c: 1a bf ff f1 bcc 2007fd0 <_Objects_Get_next+0x54> <== ALWAYS TAKEN 2008010: 94 10 00 1a mov %i2, %o2 { *location_p = OBJECTS_ERROR; 2008014: 82 10 20 01 mov 1, %g1 2008018: c2 26 80 00 st %g1, [ %i2 ] *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; return 0; 200801c: 90 10 20 00 clr %o0 *next_id_p = next_id; return object; final: *next_id_p = OBJECTS_ID_FINAL; 2008020: 82 10 3f ff mov -1, %g1 2008024: c2 26 c0 00 st %g1, [ %i3 ] return 0; } 2008028: 81 c7 e0 08 ret 200802c: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02008d24 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2008d24: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2008d28: 80 a6 20 00 cmp %i0, 0 2008d2c: 12 80 00 06 bne 2008d44 <_Objects_Id_to_name+0x20> 2008d30: 83 36 20 18 srl %i0, 0x18, %g1 2008d34: 03 00 80 76 sethi %hi(0x201d800), %g1 2008d38: c2 00 60 68 ld [ %g1 + 0x68 ], %g1 ! 201d868 <_Per_CPU_Information+0xc> 2008d3c: f0 00 60 08 ld [ %g1 + 8 ], %i0 2008d40: 83 36 20 18 srl %i0, 0x18, %g1 2008d44: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008d48: 84 00 7f ff add %g1, -1, %g2 2008d4c: 80 a0 a0 02 cmp %g2, 2 2008d50: 18 80 00 17 bgu 2008dac <_Objects_Id_to_name+0x88> 2008d54: ba 10 20 03 mov 3, %i5 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2008d58: 83 28 60 02 sll %g1, 2, %g1 2008d5c: 05 00 80 75 sethi %hi(0x201d400), %g2 2008d60: 84 10 a1 98 or %g2, 0x198, %g2 ! 201d598 <_Objects_Information_table> 2008d64: c2 00 80 01 ld [ %g2 + %g1 ], %g1 2008d68: 80 a0 60 00 cmp %g1, 0 2008d6c: 02 80 00 10 be 2008dac <_Objects_Id_to_name+0x88> 2008d70: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 2008d74: 85 28 a0 02 sll %g2, 2, %g2 2008d78: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2008d7c: 80 a2 20 00 cmp %o0, 0 2008d80: 02 80 00 0b be 2008dac <_Objects_Id_to_name+0x88> <== NEVER TAKEN 2008d84: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 2008d88: 7f ff ff c9 call 2008cac <_Objects_Get> 2008d8c: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2008d90: 80 a2 20 00 cmp %o0, 0 2008d94: 02 80 00 06 be 2008dac <_Objects_Id_to_name+0x88> 2008d98: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2008d9c: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2008da0: ba 10 20 00 clr %i5 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2008da4: 40 00 03 8d call 2009bd8 <_Thread_Enable_dispatch> 2008da8: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2008dac: 81 c7 e0 08 ret 2008db0: 91 e8 00 1d restore %g0, %i5, %o0 =============================================================================== 02008564 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 2008564: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 2008568: fa 16 20 0a lduh [ %i0 + 0xa ], %i5 block_count = (information->maximum - index_base) / 200856c: f8 16 20 14 lduh [ %i0 + 0x14 ], %i4 2008570: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 2008574: 92 10 00 1c mov %i4, %o1 2008578: 40 00 3c ba call 2017860 <.udiv> 200857c: 90 22 00 1d sub %o0, %i5, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 2008580: 80 a2 20 00 cmp %o0, 0 2008584: 02 80 00 34 be 2008654 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN 2008588: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 200858c: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 2008590: c2 01 00 00 ld [ %g4 ], %g1 2008594: 80 a7 00 01 cmp %i4, %g1 2008598: 02 80 00 0f be 20085d4 <_Objects_Shrink_information+0x70> <== NEVER TAKEN 200859c: 82 10 20 00 clr %g1 20085a0: 10 80 00 07 b 20085bc <_Objects_Shrink_information+0x58> 20085a4: b6 10 20 04 mov 4, %i3 * the_block - the block to remove * * Output parameters: NONE */ void _Objects_Shrink_information( 20085a8: 86 06 e0 04 add %i3, 4, %g3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 20085ac: 80 a7 00 02 cmp %i4, %g2 20085b0: 02 80 00 0a be 20085d8 <_Objects_Shrink_information+0x74> 20085b4: ba 07 40 1c add %i5, %i4, %i5 20085b8: b6 10 00 03 mov %g3, %i3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 20085bc: 82 00 60 01 inc %g1 20085c0: 80 a0 40 08 cmp %g1, %o0 20085c4: 32 bf ff f9 bne,a 20085a8 <_Objects_Shrink_information+0x44> 20085c8: c4 01 00 1b ld [ %g4 + %i3 ], %g2 20085cc: 81 c7 e0 08 ret 20085d0: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 20085d4: b6 10 20 00 clr %i3 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 20085d8: 10 80 00 06 b 20085f0 <_Objects_Shrink_information+0x8c> 20085dc: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 20085e0: 80 a7 20 00 cmp %i4, 0 20085e4: 22 80 00 12 be,a 200862c <_Objects_Shrink_information+0xc8> 20085e8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 20085ec: 90 10 00 1c mov %i4, %o0 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 20085f0: c2 12 20 0a lduh [ %o0 + 0xa ], %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 20085f4: 80 a0 40 1d cmp %g1, %i5 20085f8: 0a bf ff fa bcs 20085e0 <_Objects_Shrink_information+0x7c> 20085fc: f8 02 00 00 ld [ %o0 ], %i4 (index < (index_base + information->allocation_size))) { 2008600: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 2008604: 84 07 40 02 add %i5, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008608: 80 a0 40 02 cmp %g1, %g2 200860c: 1a bf ff f6 bcc 20085e4 <_Objects_Shrink_information+0x80> 2008610: 80 a7 20 00 cmp %i4, 0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 2008614: 7f ff fb 68 call 20073b4 <_Chain_Extract> 2008618: 01 00 00 00 nop } } while ( the_object ); 200861c: 80 a7 20 00 cmp %i4, 0 2008620: 12 bf ff f4 bne 20085f0 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN 2008624: 90 10 00 1c mov %i4, %o0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 2008628: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 200862c: 40 00 07 b3 call 200a4f8 <_Workspace_Free> 2008630: d0 00 40 1b ld [ %g1 + %i3 ], %o0 information->object_blocks[ block ] = NULL; 2008634: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 2008638: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 200863c: c0 20 40 1b clr [ %g1 + %i3 ] information->inactive_per_block[ block ] = 0; 2008640: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 2008644: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 2008648: c0 20 c0 1b clr [ %g3 + %i3 ] information->inactive -= information->allocation_size; 200864c: 82 20 80 01 sub %g2, %g1, %g1 2008650: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 2008654: 81 c7 e0 08 ret 2008658: 81 e8 00 00 restore =============================================================================== 02008dd0 <_RBTree_Extract_unprotected>: */ void _RBTree_Extract_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 2008dd0: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *leaf, *target; RBTree_Color victim_color; RBTree_Direction dir; if(!the_node) return; 2008dd4: 80 a6 60 00 cmp %i1, 0 2008dd8: 02 80 00 4e be 2008f10 <_RBTree_Extract_unprotected+0x140> 2008ddc: 01 00 00 00 nop /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { 2008de0: c2 06 20 08 ld [ %i0 + 8 ], %g1 2008de4: 80 a0 40 19 cmp %g1, %i1 2008de8: 22 80 00 5b be,a 2008f54 <_RBTree_Extract_unprotected+0x184> 2008dec: c2 06 60 08 ld [ %i1 + 8 ], %g1 the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { 2008df0: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2008df4: 80 a0 40 19 cmp %g1, %i1 2008df8: 22 80 00 48 be,a 2008f18 <_RBTree_Extract_unprotected+0x148> 2008dfc: c2 06 60 04 ld [ %i1 + 4 ], %g1 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 2008e00: fa 06 60 04 ld [ %i1 + 4 ], %i5 2008e04: 80 a7 60 00 cmp %i5, 0 2008e08: 22 80 00 4c be,a 2008f38 <_RBTree_Extract_unprotected+0x168><== ALWAYS TAKEN 2008e0c: f8 06 60 08 ld [ %i1 + 8 ], %i4 2008e10: c2 06 60 08 ld [ %i1 + 8 ], %g1 2008e14: 80 a0 60 00 cmp %g1, 0 2008e18: 32 80 00 05 bne,a 2008e2c <_RBTree_Extract_unprotected+0x5c><== NEVER TAKEN 2008e1c: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 2008e20: 10 80 00 52 b 2008f68 <_RBTree_Extract_unprotected+0x198> 2008e24: b8 10 00 1d mov %i5, %i4 target = the_node->child[RBT_LEFT]; /* find max in node->child[RBT_LEFT] */ while (target->child[RBT_RIGHT]) target = target->child[RBT_RIGHT]; 2008e28: c2 07 60 08 ld [ %i5 + 8 ], %g1 <== NOT EXECUTED 2008e2c: 80 a0 60 00 cmp %g1, 0 <== NOT EXECUTED 2008e30: 32 bf ff fe bne,a 2008e28 <_RBTree_Extract_unprotected+0x58><== NOT EXECUTED 2008e34: ba 10 00 01 mov %g1, %i5 <== NOT EXECUTED * target's position (target is the right child of target->parent) * when target vacates it. if there is no child, then target->parent * should become NULL. This may cause the coloring to be violated. * For now we store the color of the node being deleted in victim_color. */ leaf = target->child[RBT_LEFT]; 2008e38: f8 07 60 04 ld [ %i5 + 4 ], %i4 <== NOT EXECUTED if(leaf) { 2008e3c: 80 a7 20 00 cmp %i4, 0 <== NOT EXECUTED 2008e40: 02 80 00 56 be 2008f98 <_RBTree_Extract_unprotected+0x1c8><== NOT EXECUTED 2008e44: 01 00 00 00 nop <== NOT EXECUTED leaf->parent = target->parent; 2008e48: c2 07 40 00 ld [ %i5 ], %g1 <== NOT EXECUTED 2008e4c: c2 27 00 00 st %g1, [ %i4 ] <== NOT EXECUTED } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 2008e50: c4 07 40 00 ld [ %i5 ], %g2 <== NOT EXECUTED target->parent->child[dir] = leaf; /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 2008e54: c2 06 40 00 ld [ %i1 ], %g1 <== NOT EXECUTED } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 2008e58: c8 00 a0 04 ld [ %g2 + 4 ], %g4 <== NOT EXECUTED * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; target->color = the_node->color; 2008e5c: c6 06 60 10 ld [ %i1 + 0x10 ], %g3 <== NOT EXECUTED } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; dir = target != target->parent->child[0]; 2008e60: 88 19 00 1d xor %g4, %i5, %g4 <== NOT EXECUTED 2008e64: 80 a0 00 04 cmp %g0, %g4 <== NOT EXECUTED 2008e68: 88 40 20 00 addx %g0, 0, %g4 <== NOT EXECUTED target->parent->child[dir] = leaf; 2008e6c: 89 29 20 02 sll %g4, 2, %g4 <== NOT EXECUTED 2008e70: 84 00 80 04 add %g2, %g4, %g2 <== NOT EXECUTED 2008e74: f8 20 a0 04 st %i4, [ %g2 + 4 ] <== NOT EXECUTED /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 2008e78: c8 00 60 04 ld [ %g1 + 4 ], %g4 <== NOT EXECUTED leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); } victim_color = target->color; 2008e7c: c4 07 60 10 ld [ %i5 + 0x10 ], %g2 <== NOT EXECUTED dir = target != target->parent->child[0]; target->parent->child[dir] = leaf; /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; 2008e80: 88 19 00 19 xor %g4, %i1, %g4 <== NOT EXECUTED 2008e84: 80 a0 00 04 cmp %g0, %g4 <== NOT EXECUTED 2008e88: 88 40 20 00 addx %g0, 0, %g4 <== NOT EXECUTED the_node->parent->child[dir] = target; 2008e8c: 89 29 20 02 sll %g4, 2, %g4 <== NOT EXECUTED 2008e90: 82 00 40 04 add %g1, %g4, %g1 <== NOT EXECUTED 2008e94: fa 20 60 04 st %i5, [ %g1 + 4 ] <== NOT EXECUTED /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 2008e98: c2 06 60 08 ld [ %i1 + 8 ], %g1 <== NOT EXECUTED * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; target->color = the_node->color; 2008e9c: c6 27 60 10 st %g3, [ %i5 + 0x10 ] <== NOT EXECUTED /* now replace the_node with target */ dir = the_node != the_node->parent->child[0]; the_node->parent->child[dir] = target; /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; 2008ea0: c2 27 60 08 st %g1, [ %i5 + 8 ] <== NOT EXECUTED the_node->child[RBT_RIGHT]->parent = target; target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 2008ea4: c2 06 60 04 ld [ %i1 + 4 ], %g1 <== NOT EXECUTED dir = the_node != the_node->parent->child[0]; the_node->parent->child[dir] = target; /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; the_node->child[RBT_RIGHT]->parent = target; 2008ea8: c6 06 60 08 ld [ %i1 + 8 ], %g3 <== NOT EXECUTED target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; 2008eac: c2 27 60 04 st %g1, [ %i5 + 4 ] <== NOT EXECUTED the_node->child[RBT_LEFT]->parent = target; 2008eb0: c2 06 60 04 ld [ %i1 + 4 ], %g1 <== NOT EXECUTED dir = the_node != the_node->parent->child[0]; the_node->parent->child[dir] = target; /* set target's new children to the original node's children */ target->child[RBT_RIGHT] = the_node->child[RBT_RIGHT]; the_node->child[RBT_RIGHT]->parent = target; 2008eb4: fa 20 c0 00 st %i5, [ %g3 ] <== NOT EXECUTED target->child[RBT_LEFT] = the_node->child[RBT_LEFT]; the_node->child[RBT_LEFT]->parent = target; 2008eb8: fa 20 40 00 st %i5, [ %g1 ] <== NOT EXECUTED /* finally, update the parent node and recolor. target has completely * replaced the_node, and target's child has moved up the tree if needed. * the_node is no longer part of the tree, although it has valid pointers * still. */ target->parent = the_node->parent; 2008ebc: c2 06 40 00 ld [ %i1 ], %g1 <== NOT EXECUTED 2008ec0: c2 27 40 00 st %g1, [ %i5 ] <== NOT EXECUTED * 1. Deleted a red node, its child must be black. Nothing must be done. * 2. Deleted a black node and the child is red. Paint child black. * 3. Deleted a black node and its child is black. This requires some * care and rotations. */ if (victim_color == RBT_BLACK) { /* eliminate case 1 */ 2008ec4: 80 a0 a0 00 cmp %g2, 0 2008ec8: 32 80 00 0c bne,a 2008ef8 <_RBTree_Extract_unprotected+0x128> 2008ecc: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008ed0: 80 a7 20 00 cmp %i4, 0 2008ed4: 22 80 00 09 be,a 2008ef8 <_RBTree_Extract_unprotected+0x128> 2008ed8: c2 06 20 04 ld [ %i0 + 4 ], %g1 2008edc: c2 07 20 10 ld [ %i4 + 0x10 ], %g1 2008ee0: 80 a0 60 01 cmp %g1, 1 2008ee4: 22 80 00 04 be,a 2008ef4 <_RBTree_Extract_unprotected+0x124><== ALWAYS TAKEN 2008ee8: c0 27 20 10 clr [ %i4 + 0x10 ] if (_RBTree_Is_red(leaf)) leaf->color = RBT_BLACK; /* case 2 */ else if(leaf) _RBTree_Extract_validate_unprotected(leaf); /* case 3 */ 2008eec: 7f ff fe e6 call 2008a84 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED 2008ef0: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED /* Wipe the_node */ _RBTree_Set_off_rbtree(the_node); /* set root to black, if it exists */ if (the_rbtree->root) the_rbtree->root->color = RBT_BLACK; 2008ef4: c2 06 20 04 ld [ %i0 + 4 ], %g1 */ RTEMS_INLINE_ROUTINE void _RBTree_Set_off_rbtree( RBTree_Node *node ) { node->parent = node->child[RBT_LEFT] = node->child[RBT_RIGHT] = NULL; 2008ef8: c0 26 60 08 clr [ %i1 + 8 ] 2008efc: c0 26 60 04 clr [ %i1 + 4 ] 2008f00: 80 a0 60 00 cmp %g1, 0 2008f04: 02 80 00 03 be 2008f10 <_RBTree_Extract_unprotected+0x140> 2008f08: c0 26 40 00 clr [ %i1 ] 2008f0c: c0 20 60 10 clr [ %g1 + 0x10 ] 2008f10: 81 c7 e0 08 ret 2008f14: 81 e8 00 00 restore the_rbtree->first[RBT_LEFT] = NULL; } } /* check if max needs to be updated: note, min can equal max (1 element) */ if (the_node == the_rbtree->first[RBT_RIGHT]) { if (the_node->child[RBT_LEFT]) 2008f18: 80 a0 60 00 cmp %g1, 0 2008f1c: 22 80 00 28 be,a 2008fbc <_RBTree_Extract_unprotected+0x1ec> 2008f20: c2 06 40 00 ld [ %i1 ], %g1 * either max in node->child[RBT_LEFT] or min in node->child[RBT_RIGHT], * and replace the_node with the target node. This maintains the binary * search tree property, but may violate the red-black properties. */ if (the_node->child[RBT_LEFT] && the_node->child[RBT_RIGHT]) { 2008f24: fa 06 60 04 ld [ %i1 + 4 ], %i5 2008f28: 80 a7 60 00 cmp %i5, 0 2008f2c: 12 bf ff b9 bne 2008e10 <_RBTree_Extract_unprotected+0x40><== ALWAYS TAKEN 2008f30: c2 26 20 0c st %g1, [ %i0 + 0xc ] * the_node's location in the tree. This may cause the coloring to be * violated. We will fix it later. * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; 2008f34: f8 06 60 08 ld [ %i1 + 8 ], %i4 <== NOT EXECUTED if( leaf ) { 2008f38: 80 a7 20 00 cmp %i4, 0 2008f3c: 32 80 00 0c bne,a 2008f6c <_RBTree_Extract_unprotected+0x19c> 2008f40: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); 2008f44: 7f ff fe d0 call 2008a84 <_RBTree_Extract_validate_unprotected> 2008f48: 90 10 00 19 mov %i1, %o0 } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008f4c: 10 80 00 0a b 2008f74 <_RBTree_Extract_unprotected+0x1a4> 2008f50: c2 06 40 00 ld [ %i1 ], %g1 if(!the_node) return; /* check if min needs to be updated */ if (the_node == the_rbtree->first[RBT_LEFT]) { if (the_node->child[RBT_RIGHT]) 2008f54: 80 a0 60 00 cmp %g1, 0 2008f58: 22 80 00 14 be,a 2008fa8 <_RBTree_Extract_unprotected+0x1d8> 2008f5c: c2 06 40 00 ld [ %i1 ], %g1 the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; 2008f60: 10 bf ff a4 b 2008df0 <_RBTree_Extract_unprotected+0x20> 2008f64: c2 26 20 08 st %g1, [ %i0 + 8 ] * For now we store the color of the node being deleted in victim_color. */ leaf = the_node->child[RBT_LEFT] ? the_node->child[RBT_LEFT] : the_node->child[RBT_RIGHT]; if( leaf ) { leaf->parent = the_node->parent; 2008f68: c2 06 40 00 ld [ %i1 ], %g1 2008f6c: c2 27 00 00 st %g1, [ %i4 ] _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008f70: c2 06 40 00 ld [ %i1 ], %g1 leaf->parent = the_node->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(the_node); } victim_color = the_node->color; 2008f74: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 /* remove the_node from the tree */ dir = the_node != the_node->parent->child[0]; 2008f78: c6 00 60 04 ld [ %g1 + 4 ], %g3 2008f7c: 86 18 c0 19 xor %g3, %i1, %g3 2008f80: 80 a0 00 03 cmp %g0, %g3 2008f84: 86 40 20 00 addx %g0, 0, %g3 the_node->parent->child[dir] = leaf; 2008f88: 87 28 e0 02 sll %g3, 2, %g3 2008f8c: 82 00 40 03 add %g1, %g3, %g1 2008f90: 10 bf ff cd b 2008ec4 <_RBTree_Extract_unprotected+0xf4> 2008f94: f8 20 60 04 st %i4, [ %g1 + 4 ] leaf = target->child[RBT_LEFT]; if(leaf) { leaf->parent = target->parent; } else { /* fix the tree here if the child is a null leaf. */ _RBTree_Extract_validate_unprotected(target); 2008f98: 7f ff fe bb call 2008a84 <_RBTree_Extract_validate_unprotected><== NOT EXECUTED 2008f9c: 90 10 00 1d mov %i5, %o0 <== NOT EXECUTED } victim_color = target->color; dir = target != target->parent->child[0]; 2008fa0: 10 bf ff ad b 2008e54 <_RBTree_Extract_unprotected+0x84> <== NOT EXECUTED 2008fa4: c4 07 40 00 ld [ %i5 ], %g2 <== NOT EXECUTED if (the_node == the_rbtree->first[RBT_LEFT]) { if (the_node->child[RBT_RIGHT]) the_rbtree->first[RBT_LEFT] = the_node->child[RBT_RIGHT]; else { the_rbtree->first[RBT_LEFT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008fa8: 80 a6 00 01 cmp %i0, %g1 2008fac: 12 bf ff 91 bne 2008df0 <_RBTree_Extract_unprotected+0x20> 2008fb0: c2 26 20 08 st %g1, [ %i0 + 8 ] the_rbtree->first[RBT_LEFT])) the_rbtree->first[RBT_LEFT] = NULL; 2008fb4: 10 bf ff 8f b 2008df0 <_RBTree_Extract_unprotected+0x20> 2008fb8: c0 26 20 08 clr [ %i0 + 8 ] if (the_node == the_rbtree->first[RBT_RIGHT]) { if (the_node->child[RBT_LEFT]) the_rbtree->first[RBT_RIGHT] = the_node->child[RBT_LEFT]; else { the_rbtree->first[RBT_RIGHT] = the_node->parent; if(_RBTree_Are_nodes_equal((RBTree_Node *)the_rbtree, 2008fbc: 80 a6 00 01 cmp %i0, %g1 2008fc0: 12 bf ff 90 bne 2008e00 <_RBTree_Extract_unprotected+0x30> 2008fc4: c2 26 20 0c st %g1, [ %i0 + 0xc ] the_rbtree->first[RBT_RIGHT])) the_rbtree->first[RBT_RIGHT] = NULL; 2008fc8: 10 bf ff 8e b 2008e00 <_RBTree_Extract_unprotected+0x30> 2008fcc: c0 26 20 0c clr [ %i0 + 0xc ] =============================================================================== 02008a84 <_RBTree_Extract_validate_unprotected>: * of the extract operation. */ void _RBTree_Extract_validate_unprotected( RBTree_Node *the_node ) { 2008a84: 9d e3 bf a0 save %sp, -96, %sp RBTree_Node *parent, *sibling; RBTree_Direction dir; parent = the_node->parent; 2008a88: c4 06 00 00 ld [ %i0 ], %g2 if(!parent->parent) return; 2008a8c: c2 00 80 00 ld [ %g2 ], %g1 2008a90: 80 a0 60 00 cmp %g1, 0 2008a94: 02 80 00 cd be 2008dc8 <_RBTree_Extract_validate_unprotected+0x344> 2008a98: 01 00 00 00 nop { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 2008a9c: c2 00 a0 04 ld [ %g2 + 4 ], %g1 2008aa0: 80 a6 00 01 cmp %i0, %g1 2008aa4: 22 80 00 02 be,a 2008aac <_RBTree_Extract_validate_unprotected+0x28> 2008aa8: c2 00 a0 08 ld [ %g2 + 8 ], %g1 /* sibling is black, see if both of its children are also black. */ if (sibling && !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && !_RBTree_Is_red(sibling->child[RBT_LEFT])) { sibling->color = RBT_RED; 2008aac: 96 10 20 01 mov 1, %o3 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008ab0: 80 a6 20 00 cmp %i0, 0 2008ab4: 22 80 00 07 be,a 2008ad0 <_RBTree_Extract_validate_unprotected+0x4c><== NEVER TAKEN 2008ab8: c6 00 80 00 ld [ %g2 ], %g3 <== NOT EXECUTED 2008abc: c6 06 20 10 ld [ %i0 + 0x10 ], %g3 2008ac0: 80 a0 e0 01 cmp %g3, 1 2008ac4: 22 80 00 5b be,a 2008c30 <_RBTree_Extract_validate_unprotected+0x1ac> 2008ac8: c2 06 00 00 ld [ %i0 ], %g1 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2008acc: c6 00 80 00 ld [ %g2 ], %g3 2008ad0: 80 a0 e0 00 cmp %g3, 0 2008ad4: 02 80 00 56 be 2008c2c <_RBTree_Extract_validate_unprotected+0x1a8> 2008ad8: 80 a0 60 00 cmp %g1, 0 2008adc: 02 bf ff f6 be 2008ab4 <_RBTree_Extract_validate_unprotected+0x30><== NEVER TAKEN 2008ae0: 80 a6 20 00 cmp %i0, 0 2008ae4: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 2008ae8: 80 a1 20 01 cmp %g4, 1 2008aec: 22 80 00 27 be,a 2008b88 <_RBTree_Extract_validate_unprotected+0x104> 2008af0: de 00 a0 04 ld [ %g2 + 4 ], %o7 sibling = parent->child[!dir]; } /* sibling is black, see if both of its children are also black. */ if (sibling && !_RBTree_Is_red(sibling->child[RBT_RIGHT]) && 2008af4: c6 00 60 08 ld [ %g1 + 8 ], %g3 2008af8: 80 a0 e0 00 cmp %g3, 0 2008afc: 22 80 00 07 be,a 2008b18 <_RBTree_Extract_validate_unprotected+0x94> 2008b00: c6 00 60 04 ld [ %g1 + 4 ], %g3 2008b04: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 2008b08: 80 a0 e0 01 cmp %g3, 1 2008b0c: 22 80 00 57 be,a 2008c68 <_RBTree_Extract_validate_unprotected+0x1e4> 2008b10: c6 00 a0 04 ld [ %g2 + 4 ], %g3 !_RBTree_Is_red(sibling->child[RBT_LEFT])) { 2008b14: c6 00 60 04 ld [ %g1 + 4 ], %g3 2008b18: 80 a0 e0 00 cmp %g3, 0 2008b1c: 22 80 00 07 be,a 2008b38 <_RBTree_Extract_validate_unprotected+0xb4> 2008b20: d6 20 60 10 st %o3, [ %g1 + 0x10 ] 2008b24: c6 00 e0 10 ld [ %g3 + 0x10 ], %g3 2008b28: 80 a0 e0 01 cmp %g3, 1 2008b2c: 22 80 00 4f be,a 2008c68 <_RBTree_Extract_validate_unprotected+0x1e4> 2008b30: c6 00 a0 04 ld [ %g2 + 4 ], %g3 sibling->color = RBT_RED; 2008b34: d6 20 60 10 st %o3, [ %g1 + 0x10 ] 2008b38: c2 00 a0 10 ld [ %g2 + 0x10 ], %g1 2008b3c: 80 a0 60 01 cmp %g1, 1 2008b40: 22 80 00 3b be,a 2008c2c <_RBTree_Extract_validate_unprotected+0x1a8> 2008b44: c0 20 a0 10 clr [ %g2 + 0x10 ] if (_RBTree_Is_red(parent)) { parent->color = RBT_BLACK; break; } the_node = parent; /* done if parent is red */ parent = the_node->parent; 2008b48: c6 00 80 00 ld [ %g2 ], %g3 RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 2008b4c: 80 a0 e0 00 cmp %g3, 0 2008b50: 02 80 00 3e be 2008c48 <_RBTree_Extract_validate_unprotected+0x1c4><== NEVER TAKEN 2008b54: b0 10 00 02 mov %g2, %i0 if(!(the_node->parent->parent)) return NULL; 2008b58: c2 00 c0 00 ld [ %g3 ], %g1 2008b5c: 80 a0 60 00 cmp %g1, 0 2008b60: 02 80 00 3d be 2008c54 <_RBTree_Extract_validate_unprotected+0x1d0> 2008b64: 82 10 20 00 clr %g1 if(the_node == the_node->parent->child[RBT_LEFT]) 2008b68: c2 00 e0 04 ld [ %g3 + 4 ], %g1 2008b6c: 80 a0 80 01 cmp %g2, %g1 2008b70: 02 80 00 3b be 2008c5c <_RBTree_Extract_validate_unprotected+0x1d8> 2008b74: 80 a6 20 00 cmp %i0, 0 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008b78: 12 bf ff d1 bne 2008abc <_RBTree_Extract_validate_unprotected+0x38><== ALWAYS TAKEN 2008b7c: 84 10 00 03 mov %g3, %g2 if(!parent->parent) return; sibling = _RBTree_Sibling(the_node); /* continue to correct tree as long as the_node is black and not the root */ while (!_RBTree_Is_red(the_node) && parent->parent) { 2008b80: 10 bf ff d4 b 2008ad0 <_RBTree_Extract_validate_unprotected+0x4c><== NOT EXECUTED 2008b84: c6 00 80 00 ld [ %g2 ], %g3 <== NOT EXECUTED * then rotate parent left, making the sibling be the_node's grandparent. * Now the_node has a black sibling and red parent. After rotation, * update sibling pointer. */ if (_RBTree_Is_red(sibling)) { parent->color = RBT_RED; 2008b88: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] sibling->color = RBT_BLACK; dir = the_node != parent->child[0]; 2008b8c: 9e 1b c0 18 xor %o7, %i0, %o7 2008b90: 80 a0 00 0f cmp %g0, %o7 2008b94: 9a 40 20 00 addx %g0, 0, %o5 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 2008b98: 88 21 00 0d sub %g4, %o5, %g4 2008b9c: 89 29 20 02 sll %g4, 2, %g4 2008ba0: 88 00 80 04 add %g2, %g4, %g4 2008ba4: de 01 20 04 ld [ %g4 + 4 ], %o7 2008ba8: 80 a3 e0 00 cmp %o7, 0 2008bac: 02 80 00 16 be 2008c04 <_RBTree_Extract_validate_unprotected+0x180><== NEVER TAKEN 2008bb0: c0 20 60 10 clr [ %g1 + 0x10 ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2008bb4: 83 2b 60 02 sll %o5, 2, %g1 2008bb8: 98 03 c0 01 add %o7, %g1, %o4 2008bbc: d4 03 20 04 ld [ %o4 + 4 ], %o2 2008bc0: d4 21 20 04 st %o2, [ %g4 + 4 ] if (c->child[dir]) 2008bc4: c8 03 20 04 ld [ %o4 + 4 ], %g4 2008bc8: 80 a1 20 00 cmp %g4, 0 2008bcc: 02 80 00 04 be 2008bdc <_RBTree_Extract_validate_unprotected+0x158><== NEVER TAKEN 2008bd0: 82 03 c0 01 add %o7, %g1, %g1 c->child[dir]->parent = the_node; 2008bd4: c4 21 00 00 st %g2, [ %g4 ] 2008bd8: c6 00 80 00 ld [ %g2 ], %g3 c->child[dir] = the_node; 2008bdc: c4 20 60 04 st %g2, [ %g1 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008be0: c2 00 e0 04 ld [ %g3 + 4 ], %g1 c->parent = the_node->parent; 2008be4: c6 23 c0 00 st %g3, [ %o7 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008be8: 82 18 80 01 xor %g2, %g1, %g1 c->parent = the_node->parent; the_node->parent = c; 2008bec: de 20 80 00 st %o7, [ %g2 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008bf0: 80 a0 00 01 cmp %g0, %g1 2008bf4: 82 40 20 00 addx %g0, 0, %g1 2008bf8: 83 28 60 02 sll %g1, 2, %g1 2008bfc: 86 00 c0 01 add %g3, %g1, %g3 2008c00: de 20 e0 04 st %o7, [ %g3 + 4 ] _RBTree_Rotate(parent, dir); sibling = parent->child[!dir]; 2008c04: 80 a0 00 0d cmp %g0, %o5 2008c08: 82 60 3f ff subx %g0, -1, %g1 2008c0c: 83 28 60 02 sll %g1, 2, %g1 2008c10: 82 00 80 01 add %g2, %g1, %g1 2008c14: c2 00 60 04 ld [ %g1 + 4 ], %g1 } /* sibling is black, see if both of its children are also black. */ if (sibling && 2008c18: 80 a0 60 00 cmp %g1, 0 2008c1c: 32 bf ff b7 bne,a 2008af8 <_RBTree_Extract_validate_unprotected+0x74><== ALWAYS TAKEN 2008c20: c6 00 60 08 ld [ %g1 + 8 ], %g3 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008c24: 10 bf ff a4 b 2008ab4 <_RBTree_Extract_validate_unprotected+0x30><== NOT EXECUTED 2008c28: 80 a6 20 00 cmp %i0, 0 <== NOT EXECUTED sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 2008c2c: c2 06 00 00 ld [ %i0 ], %g1 2008c30: c2 00 40 00 ld [ %g1 ], %g1 2008c34: 80 a0 60 00 cmp %g1, 0 2008c38: 22 80 00 02 be,a 2008c40 <_RBTree_Extract_validate_unprotected+0x1bc> 2008c3c: c0 26 20 10 clr [ %i0 + 0x10 ] 2008c40: 81 c7 e0 08 ret 2008c44: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Sibling( RBTree_Node *the_node ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; 2008c48: 82 10 20 00 clr %g1 <== NOT EXECUTED 2008c4c: 10 bf ff 99 b 2008ab0 <_RBTree_Extract_validate_unprotected+0x2c><== NOT EXECUTED 2008c50: 84 10 20 00 clr %g2 <== NOT EXECUTED if(!(the_node->parent->parent)) return NULL; 2008c54: 10 bf ff 97 b 2008ab0 <_RBTree_Extract_validate_unprotected+0x2c> 2008c58: 84 10 00 03 mov %g3, %g2 if(the_node == the_node->parent->child[RBT_LEFT]) return the_node->parent->child[RBT_RIGHT]; 2008c5c: c2 00 e0 08 ld [ %g3 + 8 ], %g1 2008c60: 10 bf ff 94 b 2008ab0 <_RBTree_Extract_validate_unprotected+0x2c> 2008c64: 84 10 00 03 mov %g3, %g2 * cases, either the_node is to the left or the right of the parent. * In both cases, first check if one of sibling's children is black, * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; 2008c68: 86 18 c0 18 xor %g3, %i0, %g3 2008c6c: 80 a0 00 03 cmp %g0, %g3 2008c70: 86 40 20 00 addx %g0, 0, %g3 if (!_RBTree_Is_red(sibling->child[!dir])) { 2008c74: 80 a0 00 03 cmp %g0, %g3 2008c78: 9e 60 3f ff subx %g0, -1, %o7 2008c7c: 9f 2b e0 02 sll %o7, 2, %o7 2008c80: 88 00 40 0f add %g1, %o7, %g4 2008c84: c8 01 20 04 ld [ %g4 + 4 ], %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2008c88: 80 a1 20 00 cmp %g4, 0 2008c8c: 22 80 00 07 be,a 2008ca8 <_RBTree_Extract_validate_unprotected+0x224> 2008c90: 89 28 e0 02 sll %g3, 2, %g4 2008c94: da 01 20 10 ld [ %g4 + 0x10 ], %o5 2008c98: 80 a3 60 01 cmp %o5, 1 2008c9c: 22 80 00 28 be,a 2008d3c <_RBTree_Extract_validate_unprotected+0x2b8> 2008ca0: de 00 a0 10 ld [ %g2 + 0x10 ], %o7 sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; 2008ca4: 89 28 e0 02 sll %g3, 2, %g4 2008ca8: 88 00 40 04 add %g1, %g4, %g4 _RBTree_Rotate(sibling, !dir); 2008cac: 98 18 e0 01 xor %g3, 1, %o4 * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { sibling->color = RBT_RED; sibling->child[dir]->color = RBT_BLACK; 2008cb0: d6 01 20 04 ld [ %g4 + 4 ], %o3 * and if so rotate in the proper direction and update sibling pointer. * Then switch the sibling and parent colors, and rotate through parent. */ dir = the_node != parent->child[0]; if (!_RBTree_Is_red(sibling->child[!dir])) { sibling->color = RBT_RED; 2008cb4: 88 10 20 01 mov 1, %g4 2008cb8: c8 20 60 10 st %g4, [ %g1 + 0x10 ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 2008cbc: 88 21 00 0c sub %g4, %o4, %g4 2008cc0: 9b 29 20 02 sll %g4, 2, %o5 2008cc4: 9a 00 40 0d add %g1, %o5, %o5 2008cc8: c8 03 60 04 ld [ %o5 + 4 ], %g4 2008ccc: 80 a1 20 00 cmp %g4, 0 2008cd0: 02 80 00 16 be 2008d28 <_RBTree_Extract_validate_unprotected+0x2a4><== NEVER TAKEN 2008cd4: c0 22 e0 10 clr [ %o3 + 0x10 ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2008cd8: 99 2b 20 02 sll %o4, 2, %o4 2008cdc: 96 01 00 0c add %g4, %o4, %o3 2008ce0: d4 02 e0 04 ld [ %o3 + 4 ], %o2 2008ce4: d4 23 60 04 st %o2, [ %o5 + 4 ] if (c->child[dir]) 2008ce8: da 02 e0 04 ld [ %o3 + 4 ], %o5 2008cec: 80 a3 60 00 cmp %o5, 0 2008cf0: 32 80 00 02 bne,a 2008cf8 <_RBTree_Extract_validate_unprotected+0x274> 2008cf4: c2 23 40 00 st %g1, [ %o5 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008cf8: da 00 40 00 ld [ %g1 ], %o5 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 2008cfc: 98 01 00 0c add %g4, %o4, %o4 2008d00: c2 23 20 04 st %g1, [ %o4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008d04: d8 03 60 04 ld [ %o5 + 4 ], %o4 c->parent = the_node->parent; 2008d08: da 21 00 00 st %o5, [ %g4 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008d0c: 98 18 40 0c xor %g1, %o4, %o4 c->parent = the_node->parent; the_node->parent = c; 2008d10: c8 20 40 00 st %g4, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008d14: 80 a0 00 0c cmp %g0, %o4 2008d18: 82 40 20 00 addx %g0, 0, %g1 2008d1c: 83 28 60 02 sll %g1, 2, %g1 2008d20: 9a 03 40 01 add %o5, %g1, %o5 2008d24: c8 23 60 04 st %g4, [ %o5 + 4 ] sibling->child[dir]->color = RBT_BLACK; _RBTree_Rotate(sibling, !dir); sibling = parent->child[!dir]; 2008d28: 82 00 80 0f add %g2, %o7, %g1 2008d2c: c2 00 60 04 ld [ %g1 + 4 ], %g1 2008d30: 9e 00 40 0f add %g1, %o7, %o7 2008d34: c8 03 e0 04 ld [ %o7 + 4 ], %g4 } sibling->color = parent->color; 2008d38: de 00 a0 10 ld [ %g2 + 0x10 ], %o7 2008d3c: de 20 60 10 st %o7, [ %g1 + 0x10 ] parent->color = RBT_BLACK; 2008d40: c0 20 a0 10 clr [ %g2 + 0x10 ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 2008d44: 9e 10 20 01 mov 1, %o7 2008d48: 9e 23 c0 03 sub %o7, %g3, %o7 2008d4c: 9f 2b e0 02 sll %o7, 2, %o7 2008d50: 9e 00 80 0f add %g2, %o7, %o7 2008d54: c2 03 e0 04 ld [ %o7 + 4 ], %g1 2008d58: 80 a0 60 00 cmp %g1, 0 2008d5c: 02 bf ff b4 be 2008c2c <_RBTree_Extract_validate_unprotected+0x1a8><== NEVER TAKEN 2008d60: c0 21 20 10 clr [ %g4 + 0x10 ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2008d64: 87 28 e0 02 sll %g3, 2, %g3 2008d68: 88 00 40 03 add %g1, %g3, %g4 2008d6c: da 01 20 04 ld [ %g4 + 4 ], %o5 2008d70: da 23 e0 04 st %o5, [ %o7 + 4 ] if (c->child[dir]) 2008d74: c8 01 20 04 ld [ %g4 + 4 ], %g4 2008d78: 80 a1 20 00 cmp %g4, 0 2008d7c: 32 80 00 02 bne,a 2008d84 <_RBTree_Extract_validate_unprotected+0x300> 2008d80: c4 21 00 00 st %g2, [ %g4 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008d84: c8 00 80 00 ld [ %g2 ], %g4 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 2008d88: 86 00 40 03 add %g1, %g3, %g3 2008d8c: c4 20 e0 04 st %g2, [ %g3 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008d90: c6 01 20 04 ld [ %g4 + 4 ], %g3 c->parent = the_node->parent; 2008d94: c8 20 40 00 st %g4, [ %g1 ] the_node->parent = c; 2008d98: c2 20 80 00 st %g1, [ %g2 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2008d9c: 86 18 c0 02 xor %g3, %g2, %g3 2008da0: 80 a0 00 03 cmp %g0, %g3 2008da4: 84 40 20 00 addx %g0, 0, %g2 2008da8: 85 28 a0 02 sll %g2, 2, %g2 2008dac: 88 01 00 02 add %g4, %g2, %g4 2008db0: c2 21 20 04 st %g1, [ %g4 + 4 ] sibling->child[!dir]->color = RBT_BLACK; _RBTree_Rotate(parent, dir); break; /* done */ } } /* while */ if(!the_node->parent->parent) the_node->color = RBT_BLACK; 2008db4: c2 06 00 00 ld [ %i0 ], %g1 2008db8: c2 00 40 00 ld [ %g1 ], %g1 2008dbc: 80 a0 60 00 cmp %g1, 0 2008dc0: 22 bf ff a0 be,a 2008c40 <_RBTree_Extract_validate_unprotected+0x1bc><== NEVER TAKEN 2008dc4: c0 26 20 10 clr [ %i0 + 0x10 ] <== NOT EXECUTED 2008dc8: 81 c7 e0 08 ret 2008dcc: 81 e8 00 00 restore =============================================================================== 02009044 <_RBTree_Find>: RBTree_Node *_RBTree_Find( RBTree_Control *the_rbtree, unsigned int the_value ) { 2009044: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); 2009048: 7f ff e6 87 call 2002a64 200904c: 01 00 00 00 nop return_node = _RBTree_Find_unprotected( the_rbtree, the_value ); _ISR_Enable( level ); return return_node; } 2009050: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Control *the_rbtree, unsigned int the_value ) { RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { 2009054: 80 a6 20 00 cmp %i0, 0 2009058: 32 80 00 0b bne,a 2009084 <_RBTree_Find+0x40> <== ALWAYS TAKEN 200905c: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2009060: 30 80 00 0c b,a 2009090 <_RBTree_Find+0x4c> <== NOT EXECUTED if (the_value == iter_node->value) return(iter_node); RBTree_Direction dir = the_value > iter_node->value; 2009064: 82 40 20 00 addx %g0, 0, %g1 iter_node = iter_node->child[dir]; 2009068: 83 28 60 02 sll %g1, 2, %g1 200906c: b0 06 00 01 add %i0, %g1, %i0 2009070: f0 06 20 04 ld [ %i0 + 4 ], %i0 RBTree_Control *the_rbtree, unsigned int the_value ) { RBTree_Node* iter_node = the_rbtree->root; while (iter_node) { 2009074: 80 a6 20 00 cmp %i0, 0 2009078: 02 80 00 06 be 2009090 <_RBTree_Find+0x4c> <== NEVER TAKEN 200907c: 01 00 00 00 nop if (the_value == iter_node->value) return(iter_node); 2009080: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2009084: 80 a6 40 01 cmp %i1, %g1 2009088: 12 bf ff f7 bne 2009064 <_RBTree_Find+0x20> 200908c: 80 a0 40 19 cmp %g1, %i1 RBTree_Node *return_node; return_node = NULL; _ISR_Disable( level ); return_node = _RBTree_Find_unprotected( the_rbtree, the_value ); _ISR_Enable( level ); 2009090: 7f ff e6 79 call 2002a74 2009094: 01 00 00 00 nop return return_node; } 2009098: 81 c7 e0 08 ret 200909c: 81 e8 00 00 restore =============================================================================== 02008ff8 <_RBTree_Find_header>: */ RBTree_Control *_RBTree_Find_header( RBTree_Node *the_node ) { 2008ff8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; RBTree_Control *return_header; return_header = NULL; _ISR_Disable( level ); 2008ffc: 7f ff e6 9a call 2002a64 2009000: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE RBTree_Control *_RBTree_Find_header_unprotected( RBTree_Node *the_node ) { if(!the_node) return NULL; 2009004: 80 a6 20 00 cmp %i0, 0 2009008: 02 80 00 0b be 2009034 <_RBTree_Find_header+0x3c> <== NEVER TAKEN 200900c: ba 10 20 00 clr %i5 if(!(the_node->parent)) return NULL; 2009010: fa 06 00 00 ld [ %i0 ], %i5 2009014: 80 a7 60 00 cmp %i5, 0 2009018: 32 80 00 04 bne,a 2009028 <_RBTree_Find_header+0x30> <== ALWAYS TAKEN 200901c: c2 07 40 00 ld [ %i5 ], %g1 2009020: 30 80 00 05 b,a 2009034 <_RBTree_Find_header+0x3c> <== NOT EXECUTED 2009024: c2 07 40 00 ld [ %i5 ], %g1 while(the_node->parent) the_node = the_node->parent; 2009028: 80 a0 60 00 cmp %g1, 0 200902c: 32 bf ff fe bne,a 2009024 <_RBTree_Find_header+0x2c> 2009030: ba 10 00 01 mov %g1, %i5 return_header = _RBTree_Find_header_unprotected( the_node ); _ISR_Enable( level ); 2009034: 7f ff e6 90 call 2002a74 2009038: b0 10 00 1d mov %i5, %i0 return return_header; } 200903c: 81 c7 e0 08 ret 2009040: 81 e8 00 00 restore =============================================================================== 0200928c <_RBTree_Insert_unprotected>: */ RBTree_Node *_RBTree_Insert_unprotected( RBTree_Control *the_rbtree, RBTree_Node *the_node ) { 200928c: 9d e3 bf a0 save %sp, -96, %sp if(!the_node) return (RBTree_Node*)-1; 2009290: 80 a6 60 00 cmp %i1, 0 2009294: 02 80 00 14 be 20092e4 <_RBTree_Insert_unprotected+0x58> <== NEVER TAKEN 2009298: 82 10 3f ff mov -1, %g1 RBTree_Node *iter_node = the_rbtree->root; 200929c: c2 06 20 04 ld [ %i0 + 4 ], %g1 if (!iter_node) { /* special case: first node inserted */ 20092a0: 80 a0 60 00 cmp %g1, 0 20092a4: 22 80 00 23 be,a 2009330 <_RBTree_Insert_unprotected+0xa4> 20092a8: c0 26 60 10 clr [ %i1 + 0x10 ] the_node->color = RBT_RED; iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { the_rbtree->first[dir] = the_node; 20092ac: 10 80 00 0a b 20092d4 <_RBTree_Insert_unprotected+0x48> 20092b0: c6 06 60 0c ld [ %i1 + 0xc ], %g3 the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; 20092b4: 9e 40 20 00 addx %g0, 0, %o7 if (!iter_node->child[dir]) { 20092b8: 89 2b e0 02 sll %o7, 2, %g4 20092bc: 88 00 40 04 add %g1, %g4, %g4 20092c0: c4 01 20 04 ld [ %g4 + 4 ], %g2 20092c4: 80 a0 a0 00 cmp %g2, 0 20092c8: 22 80 00 09 be,a 20092ec <_RBTree_Insert_unprotected+0x60> 20092cc: c0 26 60 08 clr [ %i1 + 8 ] 20092d0: 82 10 00 02 mov %g2, %g1 the_node->parent = (RBTree_Node *) the_rbtree; the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; } else { /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); 20092d4: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20092d8: 80 a0 c0 02 cmp %g3, %g2 20092dc: 12 bf ff f6 bne 20092b4 <_RBTree_Insert_unprotected+0x28> 20092e0: 80 a0 80 03 cmp %g2, %g3 /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); } return (RBTree_Node*)0; } 20092e4: 81 c7 e0 08 ret 20092e8: 91 e8 00 01 restore %g0, %g1, %o0 /* typical binary search tree insert, descend tree to leaf and insert */ while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 20092ec: c0 26 60 04 clr [ %i1 + 4 ] RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_First( RBTree_Control *the_rbtree, RBTree_Direction dir ) { return the_rbtree->first[dir]; 20092f0: 9e 03 e0 02 add %o7, 2, %o7 20092f4: 9f 2b e0 02 sll %o7, 2, %o7 the_node->color = RBT_RED; iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { 20092f8: c4 06 00 0f ld [ %i0 + %o7 ], %g2 while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 20092fc: 86 10 20 01 mov 1, %g3 iter_node->child[dir] = the_node; 2009300: f2 21 20 04 st %i1, [ %g4 + 4 ] while (iter_node) { if(the_node->value == iter_node->value) return(iter_node); RBTree_Direction dir = the_node->value > iter_node->value; if (!iter_node->child[dir]) { the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; the_node->color = RBT_RED; 2009304: c6 26 60 10 st %g3, [ %i1 + 0x10 ] iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { 2009308: 80 a0 40 02 cmp %g1, %g2 200930c: 02 80 00 07 be 2009328 <_RBTree_Insert_unprotected+0x9c> 2009310: c2 26 40 00 st %g1, [ %i1 ] } } /* while(iter_node) */ /* verify red-black properties */ _RBTree_Validate_insert_unprotected(the_node); 2009314: 7f ff ff 72 call 20090dc <_RBTree_Validate_insert_unprotected> 2009318: 90 10 00 19 mov %i1, %o0 } return (RBTree_Node*)0; 200931c: 82 10 20 00 clr %g1 } 2009320: 81 c7 e0 08 ret 2009324: 91 e8 00 01 restore %g0, %g1, %o0 the_node->color = RBT_RED; iter_node->child[dir] = the_node; the_node->parent = iter_node; /* update min/max */ if (_RBTree_Is_first(the_rbtree, iter_node, dir)) { the_rbtree->first[dir] = the_node; 2009328: 10 bf ff fb b 2009314 <_RBTree_Insert_unprotected+0x88> 200932c: f2 26 00 0f st %i1, [ %i0 + %o7 ] RBTree_Node *iter_node = the_rbtree->root; if (!iter_node) { /* special case: first node inserted */ the_node->color = RBT_BLACK; the_rbtree->root = the_node; 2009330: f2 26 20 04 st %i1, [ %i0 + 4 ] the_rbtree->first[0] = the_rbtree->first[1] = the_node; 2009334: f2 26 20 0c st %i1, [ %i0 + 0xc ] 2009338: f2 26 20 08 st %i1, [ %i0 + 8 ] the_node->parent = (RBTree_Node *) the_rbtree; 200933c: f0 26 40 00 st %i0, [ %i1 ] the_node->child[RBT_LEFT] = the_node->child[RBT_RIGHT] = NULL; 2009340: c0 26 60 08 clr [ %i1 + 8 ] 2009344: 10 bf ff e8 b 20092e4 <_RBTree_Insert_unprotected+0x58> 2009348: c0 26 60 04 clr [ %i1 + 4 ] =============================================================================== 020090dc <_RBTree_Validate_insert_unprotected>: * append operation. */ void _RBTree_Validate_insert_unprotected( RBTree_Node *the_node ) { 20090dc: 9d e3 bf a0 save %sp, -96, %sp } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; RBTree_Direction pdir = the_node->parent != g->child[0]; /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 20090e0: 96 10 20 01 mov 1, %o3 ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 20090e4: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 20090e8: c4 00 40 00 ld [ %g1 ], %g2 20090ec: 86 90 a0 00 orcc %g2, 0, %g3 20090f0: 22 80 00 06 be,a 2009108 <_RBTree_Validate_insert_unprotected+0x2c> 20090f4: c0 26 20 10 clr [ %i0 + 0x10 ] */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 20090f8: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 20090fc: 80 a1 20 01 cmp %g4, 1 2009100: 22 80 00 04 be,a 2009110 <_RBTree_Validate_insert_unprotected+0x34> 2009104: c8 00 80 00 ld [ %g2 ], %g4 2009108: 81 c7 e0 08 ret 200910c: 81 e8 00 00 restore ) { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(!(the_node->parent->parent->parent)) return NULL; 2009110: 80 a1 20 00 cmp %g4, 0 2009114: 02 80 00 0c be 2009144 <_RBTree_Validate_insert_unprotected+0x68><== NEVER TAKEN 2009118: de 00 a0 04 ld [ %g2 + 4 ], %o7 { if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) 200911c: 80 a0 40 0f cmp %g1, %o7 2009120: 02 80 00 59 be 2009284 <_RBTree_Validate_insert_unprotected+0x1a8> 2009124: 88 10 00 0f mov %o7, %g4 */ RTEMS_INLINE_ROUTINE bool _RBTree_Is_red( const RBTree_Node *the_node ) { return (the_node && the_node->color == RBT_RED); 2009128: 80 a1 20 00 cmp %g4, 0 200912c: 22 80 00 07 be,a 2009148 <_RBTree_Validate_insert_unprotected+0x6c> 2009130: c8 00 60 04 ld [ %g1 + 4 ], %g4 2009134: da 01 20 10 ld [ %g4 + 0x10 ], %o5 2009138: 80 a3 60 01 cmp %o5, 1 200913c: 22 80 00 4c be,a 200926c <_RBTree_Validate_insert_unprotected+0x190> 2009140: c0 20 60 10 clr [ %g1 + 0x10 ] the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 2009144: c8 00 60 04 ld [ %g1 + 4 ], %g4 RBTree_Direction pdir = the_node->parent != g->child[0]; 2009148: 9e 18 40 0f xor %g1, %o7, %o7 the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; g->color = RBT_RED; the_node = g; } else { /* if uncle is black */ RBTree_Direction dir = the_node != the_node->parent->child[0]; 200914c: 88 19 00 18 xor %g4, %i0, %g4 2009150: 80 a0 00 04 cmp %g0, %g4 2009154: 9a 40 20 00 addx %g0, 0, %o5 RBTree_Direction pdir = the_node->parent != g->child[0]; 2009158: 80 a0 00 0f cmp %g0, %o7 200915c: 88 40 20 00 addx %g0, 0, %g4 /* ensure node is on the same branch direction as parent */ if (dir != pdir) { 2009160: 80 a3 40 04 cmp %o5, %g4 2009164: 02 80 00 46 be 200927c <_RBTree_Validate_insert_unprotected+0x1a0> 2009168: 98 22 c0 0d sub %o3, %o5, %o4 RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 200916c: 98 22 c0 04 sub %o3, %g4, %o4 2009170: 9b 2b 20 02 sll %o4, 2, %o5 2009174: 9a 00 40 0d add %g1, %o5, %o5 2009178: de 03 60 04 ld [ %o5 + 4 ], %o7 200917c: 80 a3 e0 00 cmp %o7, 0 2009180: 02 80 00 16 be 20091d8 <_RBTree_Validate_insert_unprotected+0xfc><== NEVER TAKEN 2009184: 89 29 20 02 sll %g4, 2, %g4 c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 2009188: 94 03 c0 04 add %o7, %g4, %o2 200918c: d2 02 a0 04 ld [ %o2 + 4 ], %o1 2009190: d2 23 60 04 st %o1, [ %o5 + 4 ] if (c->child[dir]) 2009194: da 02 a0 04 ld [ %o2 + 4 ], %o5 2009198: 80 a3 60 00 cmp %o5, 0 200919c: 22 80 00 05 be,a 20091b0 <_RBTree_Validate_insert_unprotected+0xd4> 20091a0: 9a 03 c0 04 add %o7, %g4, %o5 c->child[dir]->parent = the_node; 20091a4: c2 23 40 00 st %g1, [ %o5 ] 20091a8: c4 00 40 00 ld [ %g1 ], %g2 c->child[dir] = the_node; 20091ac: 9a 03 c0 04 add %o7, %g4, %o5 20091b0: c2 23 60 04 st %g1, [ %o5 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20091b4: da 00 a0 04 ld [ %g2 + 4 ], %o5 c->parent = the_node->parent; 20091b8: c4 23 c0 00 st %g2, [ %o7 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20091bc: 9a 18 40 0d xor %g1, %o5, %o5 c->parent = the_node->parent; the_node->parent = c; 20091c0: de 20 40 00 st %o7, [ %g1 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 20091c4: 80 a0 00 0d cmp %g0, %o5 20091c8: 82 40 20 00 addx %g0, 0, %g1 20091cc: 83 28 60 02 sll %g1, 2, %g1 20091d0: 84 00 80 01 add %g2, %g1, %g2 20091d4: de 20 a0 04 st %o7, [ %g2 + 4 ] _RBTree_Rotate(the_node->parent, pdir); the_node = the_node->child[pdir]; 20091d8: b0 06 00 04 add %i0, %g4, %i0 20091dc: f0 06 20 04 ld [ %i0 + 4 ], %i0 20091e0: c2 06 00 00 ld [ %i0 ], %g1 } the_node->parent->color = RBT_BLACK; 20091e4: c0 20 60 10 clr [ %g1 + 0x10 ] RBTree_Direction dir ) { RBTree_Node *c; if (the_node == NULL) return; if (the_node->child[(1-dir)] == NULL) return; 20091e8: 88 00 c0 04 add %g3, %g4, %g4 20091ec: c2 01 20 04 ld [ %g4 + 4 ], %g1 20091f0: 80 a0 60 00 cmp %g1, 0 20091f4: 02 bf ff bc be 20090e4 <_RBTree_Validate_insert_unprotected+0x8><== NEVER TAKEN 20091f8: d6 20 e0 10 st %o3, [ %g3 + 0x10 ] c = the_node->child[(1-dir)]; the_node->child[(1-dir)] = c->child[dir]; 20091fc: 99 2b 20 02 sll %o4, 2, %o4 2009200: 84 00 40 0c add %g1, %o4, %g2 2009204: de 00 a0 04 ld [ %g2 + 4 ], %o7 2009208: de 21 20 04 st %o7, [ %g4 + 4 ] if (c->child[dir]) 200920c: c4 00 a0 04 ld [ %g2 + 4 ], %g2 2009210: 80 a0 a0 00 cmp %g2, 0 2009214: 32 80 00 02 bne,a 200921c <_RBTree_Validate_insert_unprotected+0x140> 2009218: c6 20 80 00 st %g3, [ %g2 ] c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 200921c: c4 00 c0 00 ld [ %g3 ], %g2 the_node->child[(1-dir)] = c->child[dir]; if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; 2009220: 98 00 40 0c add %g1, %o4, %o4 2009224: c6 23 20 04 st %g3, [ %o4 + 4 ] the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009228: c8 00 a0 04 ld [ %g2 + 4 ], %g4 c->parent = the_node->parent; 200922c: c4 20 40 00 st %g2, [ %g1 ] the_node->parent = c; 2009230: c2 20 c0 00 st %g1, [ %g3 ] if (c->child[dir]) c->child[dir]->parent = the_node; c->child[dir] = the_node; the_node->parent->child[the_node != the_node->parent->child[0]] = c; 2009234: 88 19 00 03 xor %g4, %g3, %g4 2009238: 80 a0 00 04 cmp %g0, %g4 200923c: 86 40 20 00 addx %g0, 0, %g3 2009240: 87 28 e0 02 sll %g3, 2, %g3 2009244: 84 00 80 03 add %g2, %g3, %g2 2009248: c2 20 a0 04 st %g1, [ %g2 + 4 ] ISR_Level level; _ISR_Disable( level ); _RBTree_Insert_unprotected( tree, node ); _ISR_Enable( level ); } 200924c: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE RBTree_Node *_RBTree_Parent( RBTree_Node *the_node ) { if (!the_node->parent->parent) return NULL; 2009250: c4 00 40 00 ld [ %g1 ], %g2 2009254: 86 90 a0 00 orcc %g2, 0, %g3 2009258: 32 bf ff a9 bne,a 20090fc <_RBTree_Validate_insert_unprotected+0x20><== ALWAYS TAKEN 200925c: c8 00 60 10 ld [ %g1 + 0x10 ], %g4 /* now rotate grandparent in the other branch direction (toward uncle) */ _RBTree_Rotate(g, (1-pdir)); } } if(!the_node->parent->parent) the_node->color = RBT_BLACK; 2009260: c0 26 20 10 clr [ %i0 + 0x10 ] <== NOT EXECUTED 2009264: 81 c7 e0 08 ret <== NOT EXECUTED 2009268: 81 e8 00 00 restore <== NOT EXECUTED g = the_node->parent->parent; /* if uncle is red, repaint uncle/parent black and grandparent red */ if(_RBTree_Is_red(u)) { the_node->parent->color = RBT_BLACK; u->color = RBT_BLACK; 200926c: c0 21 20 10 clr [ %g4 + 0x10 ] g->color = RBT_RED; 2009270: da 20 a0 10 st %o5, [ %g2 + 0x10 ] 2009274: 10 bf ff 9c b 20090e4 <_RBTree_Validate_insert_unprotected+0x8> 2009278: b0 10 00 02 mov %g2, %i0 200927c: 10 bf ff da b 20091e4 <_RBTree_Validate_insert_unprotected+0x108> 2009280: 89 2b 60 02 sll %o5, 2, %g4 if(!the_node) return NULL; if(!(the_node->parent)) return NULL; if(!(the_node->parent->parent)) return NULL; if(the_node == the_node->parent->child[RBT_LEFT]) return the_node->parent->child[RBT_RIGHT]; 2009284: 10 bf ff a9 b 2009128 <_RBTree_Validate_insert_unprotected+0x4c> 2009288: c8 00 a0 08 ld [ %g2 + 8 ], %g4 =============================================================================== 02006d30 <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 2006d30: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 2006d34: 03 00 80 6d sethi %hi(0x201b400), %g1 2006d38: 82 10 62 24 or %g1, 0x224, %g1 ! 201b624 2006d3c: fa 00 60 2c ld [ %g1 + 0x2c ], %i5 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 2006d40: 80 a7 60 00 cmp %i5, 0 2006d44: 02 80 00 18 be 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x74> 2006d48: f6 00 60 28 ld [ %g1 + 0x28 ], %i3 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006d4c: 80 a6 e0 00 cmp %i3, 0 2006d50: 02 80 00 15 be 2006da4 <_RTEMS_tasks_Initialize_user_tasks_body+0x74><== NEVER TAKEN 2006d54: b8 10 20 00 clr %i4 return_value = rtems_task_create( 2006d58: d4 07 60 04 ld [ %i5 + 4 ], %o2 2006d5c: d0 07 40 00 ld [ %i5 ], %o0 2006d60: d2 07 60 08 ld [ %i5 + 8 ], %o1 2006d64: d6 07 60 14 ld [ %i5 + 0x14 ], %o3 2006d68: d8 07 60 0c ld [ %i5 + 0xc ], %o4 2006d6c: 7f ff ff 70 call 2006b2c 2006d70: 9a 07 bf fc add %fp, -4, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 2006d74: 94 92 20 00 orcc %o0, 0, %o2 2006d78: 12 80 00 0d bne 2006dac <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2006d7c: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 2006d80: d4 07 60 18 ld [ %i5 + 0x18 ], %o2 2006d84: 40 00 00 0e call 2006dbc 2006d88: d2 07 60 10 ld [ %i5 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2006d8c: 94 92 20 00 orcc %o0, 0, %o2 2006d90: 12 80 00 07 bne 2006dac <_RTEMS_tasks_Initialize_user_tasks_body+0x7c> 2006d94: b8 07 20 01 inc %i4 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006d98: 80 a7 00 1b cmp %i4, %i3 2006d9c: 12 bf ff ef bne 2006d58 <_RTEMS_tasks_Initialize_user_tasks_body+0x28><== NEVER TAKEN 2006da0: ba 07 60 1c add %i5, 0x1c, %i5 2006da4: 81 c7 e0 08 ret 2006da8: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 2006dac: 90 10 20 01 mov 1, %o0 2006db0: 40 00 03 f3 call 2007d7c <_Internal_error_Occurred> 2006db4: 92 10 20 01 mov 1, %o1 =============================================================================== 0200c588 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200c588: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200c58c: fa 06 21 58 ld [ %i0 + 0x158 ], %i5 if ( !api ) 200c590: 80 a7 60 00 cmp %i5, 0 200c594: 02 80 00 1e be 200c60c <_RTEMS_tasks_Post_switch_extension+0x84><== NEVER TAKEN 200c598: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200c59c: 7f ff d7 18 call 20021fc 200c5a0: 01 00 00 00 nop signal_set = asr->signals_posted; 200c5a4: f8 07 60 14 ld [ %i5 + 0x14 ], %i4 asr->signals_posted = 0; 200c5a8: c0 27 60 14 clr [ %i5 + 0x14 ] _ISR_Enable( level ); 200c5ac: 7f ff d7 18 call 200220c 200c5b0: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200c5b4: 80 a7 20 00 cmp %i4, 0 200c5b8: 32 80 00 04 bne,a 200c5c8 <_RTEMS_tasks_Post_switch_extension+0x40> 200c5bc: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200c5c0: 81 c7 e0 08 ret 200c5c4: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5c8: d0 07 60 10 ld [ %i5 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c5cc: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5d0: 94 07 bf fc add %fp, -4, %o2 200c5d4: 37 00 00 3f sethi %hi(0xfc00), %i3 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c5d8: c2 27 60 1c st %g1, [ %i5 + 0x1c ] rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5dc: 40 00 07 d6 call 200e534 200c5e0: 92 16 e3 ff or %i3, 0x3ff, %o1 (*asr->handler)( signal_set ); 200c5e4: c2 07 60 0c ld [ %i5 + 0xc ], %g1 200c5e8: 9f c0 40 00 call %g1 200c5ec: 90 10 00 1c mov %i4, %o0 asr->nest_level -= 1; 200c5f0: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5f4: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200c5f8: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c5fc: 92 16 e3 ff or %i3, 0x3ff, %o1 200c600: 94 07 bf fc add %fp, -4, %o2 200c604: 40 00 07 cc call 200e534 200c608: c2 27 60 1c st %g1, [ %i5 + 0x1c ] 200c60c: 81 c7 e0 08 ret 200c610: 81 e8 00 00 restore =============================================================================== 0200c4f0 <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200c4f0: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 200c4f4: 80 a0 60 00 cmp %g1, 0 200c4f8: 22 80 00 0c be,a 200c528 <_RTEMS_tasks_Switch_extension+0x38> 200c4fc: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 tvp->tval = *tvp->ptr; 200c500: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200c504: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200c508: c8 00 80 00 ld [ %g2 ], %g4 200c50c: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; 200c510: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200c514: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200c518: 80 a0 60 00 cmp %g1, 0 200c51c: 32 bf ff fa bne,a 200c504 <_RTEMS_tasks_Switch_extension+0x14><== NEVER TAKEN 200c520: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200c524: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 while (tvp) { 200c528: 80 a0 60 00 cmp %g1, 0 200c52c: 02 80 00 0b be 200c558 <_RTEMS_tasks_Switch_extension+0x68> 200c530: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200c534: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200c538: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200c53c: c8 00 80 00 ld [ %g2 ], %g4 200c540: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; 200c544: c6 20 80 00 st %g3, [ %g2 ] tvp = (rtems_task_variable_t *)tvp->next; 200c548: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200c54c: 80 a0 60 00 cmp %g1, 0 200c550: 32 bf ff fa bne,a 200c538 <_RTEMS_tasks_Switch_extension+0x48><== NEVER TAKEN 200c554: c4 00 60 04 ld [ %g1 + 4 ], %g2 <== NOT EXECUTED 200c558: 81 c3 e0 08 retl =============================================================================== 02007ab0 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007ab0: 9d e3 bf 98 save %sp, -104, %sp 2007ab4: 11 00 80 77 sethi %hi(0x201dc00), %o0 2007ab8: 92 10 00 18 mov %i0, %o1 2007abc: 90 12 23 94 or %o0, 0x394, %o0 2007ac0: 40 00 08 20 call 2009b40 <_Objects_Get> 2007ac4: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007ac8: c2 07 bf fc ld [ %fp + -4 ], %g1 2007acc: 80 a0 60 00 cmp %g1, 0 2007ad0: 12 80 00 17 bne 2007b2c <_Rate_monotonic_Timeout+0x7c> <== NEVER TAKEN 2007ad4: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007ad8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007adc: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007ae0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007ae4: 80 88 80 01 btst %g2, %g1 2007ae8: 22 80 00 08 be,a 2007b08 <_Rate_monotonic_Timeout+0x58> 2007aec: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007af0: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007af4: c2 07 60 08 ld [ %i5 + 8 ], %g1 2007af8: 80 a0 80 01 cmp %g2, %g1 2007afc: 02 80 00 1a be 2007b64 <_Rate_monotonic_Timeout+0xb4> 2007b00: 13 04 00 ff sethi %hi(0x1003fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007b04: c2 07 60 38 ld [ %i5 + 0x38 ], %g1 2007b08: 80 a0 60 01 cmp %g1, 1 2007b0c: 02 80 00 0a be 2007b34 <_Rate_monotonic_Timeout+0x84> 2007b10: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007b14: c2 27 60 38 st %g1, [ %i5 + 0x38 ] * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2007b18: 03 00 80 78 sethi %hi(0x201e000), %g1 2007b1c: c4 00 61 00 ld [ %g1 + 0x100 ], %g2 ! 201e100 <_Thread_Dispatch_disable_level> 2007b20: 84 00 bf ff add %g2, -1, %g2 2007b24: c4 20 61 00 st %g2, [ %g1 + 0x100 ] return _Thread_Dispatch_disable_level; 2007b28: c2 00 61 00 ld [ %g1 + 0x100 ], %g1 2007b2c: 81 c7 e0 08 ret 2007b30: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007b34: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 2007b38: 90 10 00 1d mov %i5, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007b3c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007b40: 7f ff fe 5a call 20074a8 <_Rate_monotonic_Initiate_statistics> 2007b44: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007b48: c2 07 60 3c ld [ %i5 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007b4c: 11 00 80 78 sethi %hi(0x201e000), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007b50: c2 27 60 1c st %g1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007b54: 90 12 21 bc or %o0, 0x1bc, %o0 2007b58: 40 00 0f e1 call 200badc <_Watchdog_Insert> 2007b5c: 92 07 60 10 add %i5, 0x10, %o1 2007b60: 30 bf ff ee b,a 2007b18 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007b64: 40 00 0a d8 call 200a6c4 <_Thread_Clear_state> 2007b68: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 2007b6c: 10 bf ff f5 b 2007b40 <_Rate_monotonic_Timeout+0x90> 2007b70: 90 10 00 1d mov %i5, %o0 =============================================================================== 02008ca8 <_Scheduler_priority_Yield>: * ready chain * select heir */ void _Scheduler_priority_Yield(void) { 2008ca8: 9d e3 bf a0 save %sp, -96, %sp Scheduler_priority_Per_thread *sched_info; ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 2008cac: 37 00 80 71 sethi %hi(0x201c400), %i3 2008cb0: b6 16 e0 ec or %i3, 0xec, %i3 ! 201c4ec <_Per_CPU_Information> 2008cb4: fa 06 e0 0c ld [ %i3 + 0xc ], %i5 sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info; ready = sched_info->ready_chain; 2008cb8: c2 07 60 8c ld [ %i5 + 0x8c ], %g1 _ISR_Disable( level ); 2008cbc: 7f ff e5 50 call 20021fc 2008cc0: f8 00 40 00 ld [ %g1 ], %i4 2008cc4: b0 10 00 08 mov %o0, %i0 if ( !_Chain_Has_only_one_node( ready ) ) { 2008cc8: c4 07 00 00 ld [ %i4 ], %g2 2008ccc: c2 07 20 08 ld [ %i4 + 8 ], %g1 2008cd0: 80 a0 80 01 cmp %g2, %g1 2008cd4: 02 80 00 17 be 2008d30 <_Scheduler_priority_Yield+0x88> 2008cd8: 86 07 20 04 add %i4, 4, %g3 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2008cdc: c2 07 60 04 ld [ %i5 + 4 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 2008ce0: c4 07 40 00 ld [ %i5 ], %g2 previous = the_node->previous; next->previous = previous; 2008ce4: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 2008ce8: c4 20 40 00 st %g2, [ %g1 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 2008cec: c2 07 20 08 ld [ %i4 + 8 ], %g1 the_node->next = tail; 2008cf0: c6 27 40 00 st %g3, [ %i5 ] tail->previous = the_node; 2008cf4: fa 27 20 08 st %i5, [ %i4 + 8 ] old_last->next = the_node; 2008cf8: fa 20 40 00 st %i5, [ %g1 ] the_node->previous = old_last; 2008cfc: c2 27 60 04 st %g1, [ %i5 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 2008d00: 7f ff e5 43 call 200220c 2008d04: 01 00 00 00 nop 2008d08: 7f ff e5 3d call 20021fc 2008d0c: 01 00 00 00 nop 2008d10: b0 10 00 08 mov %o0, %i0 if ( _Thread_Is_heir( executing ) ) 2008d14: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1 2008d18: 80 a7 40 01 cmp %i5, %g1 2008d1c: 02 80 00 0b be 2008d48 <_Scheduler_priority_Yield+0xa0> <== ALWAYS TAKEN 2008d20: 82 10 20 01 mov 1, %g1 _Thread_Heir = (Thread_Control *) _Chain_First( ready ); _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 2008d24: c2 2e e0 18 stb %g1, [ %i3 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 2008d28: 7f ff e5 39 call 200220c 2008d2c: 81 e8 00 00 restore if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) _Chain_First( ready ); _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) 2008d30: c2 06 e0 10 ld [ %i3 + 0x10 ], %g1 2008d34: 80 a7 40 01 cmp %i5, %g1 2008d38: 02 bf ff fc be 2008d28 <_Scheduler_priority_Yield+0x80> <== ALWAYS TAKEN 2008d3c: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 2008d40: c2 2e e0 18 stb %g1, [ %i3 + 0x18 ] <== NOT EXECUTED 2008d44: 30 bf ff f9 b,a 2008d28 <_Scheduler_priority_Yield+0x80> <== NOT EXECUTED _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) _Chain_First( ready ); 2008d48: c2 07 00 00 ld [ %i4 ], %g1 2008d4c: c2 26 e0 10 st %g1, [ %i3 + 0x10 ] _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 2008d50: 82 10 20 01 mov 1, %g1 2008d54: c2 2e e0 18 stb %g1, [ %i3 + 0x18 ] 2008d58: 30 bf ff f4 b,a 2008d28 <_Scheduler_priority_Yield+0x80> =============================================================================== 0200924c <_Scheduler_simple_Ready_queue_enqueue_first>: { Chain_Control *ready; Chain_Node *the_node; Thread_Control *current; ready = (Chain_Control *)_Scheduler.information; 200924c: 03 00 80 71 sethi %hi(0x201c400), %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2009250: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 201c5a4 <_Scheduler> */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2009254: c6 02 20 14 ld [ %o0 + 0x14 ], %g3 2009258: c2 00 40 00 ld [ %g1 ], %g1 200925c: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2009260: 80 a0 80 03 cmp %g2, %g3 2009264: 3a 80 00 08 bcc,a 2009284 <_Scheduler_simple_Ready_queue_enqueue_first+0x38> 2009268: c2 00 60 04 ld [ %g1 + 4 ], %g1 * Do NOT need to check for end of chain because there is always * at least one task on the ready chain -- the IDLE task. It can * never block, should never attempt to obtain a semaphore or mutex, * and thus will always be there. */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { 200926c: c2 00 40 00 ld [ %g1 ], %g1 current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2009270: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2009274: 80 a0 80 03 cmp %g2, %g3 2009278: 2a bf ff fe bcs,a 2009270 <_Scheduler_simple_Ready_queue_enqueue_first+0x24><== NEVER TAKEN 200927c: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED current = (Thread_Control *)current->Object.Node.previous; 2009280: c2 00 60 04 ld [ %g1 + 4 ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2009284: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2009288: c2 22 20 04 st %g1, [ %o0 + 4 ] before_node = after_node->next; after_node->next = the_node; 200928c: d0 20 40 00 st %o0, [ %g1 ] the_node->next = before_node; 2009290: c4 22 00 00 st %g2, [ %o0 ] } } /* enqueue */ _Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node ); } 2009294: 81 c3 e0 08 retl 2009298: d0 20 a0 04 st %o0, [ %g2 + 4 ] =============================================================================== 020078b0 <_TOD_Tickle_ticks>: * * Output parameters: NONE */ void _TOD_Tickle_ticks( void ) { 20078b0: 9d e3 bf 98 save %sp, -104, %sp /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078b4: 05 00 80 70 sethi %hi(0x201c000), %g2 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078b8: 03 00 80 6d sethi %hi(0x201b400), %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078bc: c6 00 a3 cc ld [ %g2 + 0x3cc ], %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078c0: c2 00 61 e8 ld [ %g1 + 0x1e8 ], %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078c4: 86 00 e0 01 inc %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078c8: bb 28 60 07 sll %g1, 7, %i5 20078cc: 89 28 60 02 sll %g1, 2, %g4 20078d0: 88 27 40 04 sub %i5, %g4, %g4 20078d4: 82 01 00 01 add %g4, %g1, %g1 20078d8: 83 28 60 03 sll %g1, 3, %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 20078dc: 92 07 bf f8 add %fp, -8, %o1 /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20078e0: c6 20 a3 cc st %g3, [ %g2 + 0x3cc ] { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20078e4: c2 27 bf fc st %g1, [ %fp + -4 ] 20078e8: c0 27 bf f8 clr [ %fp + -8 ] /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 20078ec: 11 00 80 70 sethi %hi(0x201c000), %o0 20078f0: 40 00 09 2d call 2009da4 <_Timespec_Add_to> 20078f4: 90 12 23 3c or %o0, 0x33c, %o0 ! 201c33c <_TOD_Uptime> /* we do not care how much the uptime changed */ /* Update the timespec format TOD */ seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick ); 20078f8: 92 07 bf f8 add %fp, -8, %o1 20078fc: 11 00 80 70 sethi %hi(0x201c000), %o0 2007900: 40 00 09 29 call 2009da4 <_Timespec_Add_to> 2007904: 90 12 23 4c or %o0, 0x34c, %o0 ! 201c34c <_TOD_Now> while ( seconds ) { 2007908: ba 92 20 00 orcc %o0, 0, %i5 200790c: 02 80 00 08 be 200792c <_TOD_Tickle_ticks+0x7c> 2007910: 39 00 80 70 sethi %hi(0x201c000), %i4 */ RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void ) { _Watchdog_Tickle( &_Watchdog_Seconds_chain ); 2007914: b8 17 23 70 or %i4, 0x370, %i4 ! 201c370 <_Watchdog_Seconds_chain> 2007918: 40 00 0a aa call 200a3c0 <_Watchdog_Tickle> 200791c: 90 10 00 1c mov %i4, %o0 2007920: ba 87 7f ff addcc %i5, -1, %i5 2007924: 12 bf ff fd bne 2007918 <_TOD_Tickle_ticks+0x68> <== NEVER TAKEN 2007928: 01 00 00 00 nop 200792c: 81 c7 e0 08 ret 2007930: 81 e8 00 00 restore =============================================================================== 02007500 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007500: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007504: 03 00 80 77 sethi %hi(0x201dc00), %g1 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) return false; 2007508: ba 10 20 00 clr %i5 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200750c: 80 a6 20 00 cmp %i0, 0 2007510: 02 80 00 2c be 20075c0 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007514: d2 00 60 e8 ld [ %g1 + 0xe8 ], %o1 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007518: 11 00 03 d0 sethi %hi(0xf4000), %o0 200751c: 40 00 48 e0 call 201989c <.udiv> 2007520: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007524: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 2007528: 80 a2 00 01 cmp %o0, %g1 200752c: 28 80 00 26 bleu,a 20075c4 <_TOD_Validate+0xc4> 2007530: b0 0f 60 01 and %i5, 1, %i0 (the_tod->ticks >= ticks_per_second) || 2007534: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2007538: 80 a0 60 3b cmp %g1, 0x3b 200753c: 38 80 00 22 bgu,a 20075c4 <_TOD_Validate+0xc4> 2007540: b0 0f 60 01 and %i5, 1, %i0 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2007544: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 2007548: 80 a0 60 3b cmp %g1, 0x3b 200754c: 38 80 00 1e bgu,a 20075c4 <_TOD_Validate+0xc4> 2007550: b0 0f 60 01 and %i5, 1, %i0 (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2007554: c2 06 20 0c ld [ %i0 + 0xc ], %g1 2007558: 80 a0 60 17 cmp %g1, 0x17 200755c: 38 80 00 1a bgu,a 20075c4 <_TOD_Validate+0xc4> 2007560: b0 0f 60 01 and %i5, 1, %i0 (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2007564: c2 06 20 04 ld [ %i0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007568: 80 a0 60 00 cmp %g1, 0 200756c: 02 80 00 15 be 20075c0 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007570: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 2007574: 38 80 00 14 bgu,a 20075c4 <_TOD_Validate+0xc4> 2007578: b0 0f 60 01 and %i5, 1, %i0 (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 200757c: c4 06 00 00 ld [ %i0 ], %g2 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007580: 80 a0 a7 c3 cmp %g2, 0x7c3 2007584: 28 80 00 10 bleu,a 20075c4 <_TOD_Validate+0xc4> 2007588: b0 0f 60 01 and %i5, 1, %i0 (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 200758c: c6 06 20 08 ld [ %i0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007590: 80 a0 e0 00 cmp %g3, 0 2007594: 02 80 00 0b be 20075c0 <_TOD_Validate+0xc0> <== NEVER TAKEN 2007598: 80 88 a0 03 btst 3, %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 200759c: 32 80 00 0c bne,a 20075cc <_TOD_Validate+0xcc> 20075a0: 83 28 60 02 sll %g1, 2, %g1 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 20075a4: 82 00 60 0d add %g1, 0xd, %g1 20075a8: 05 00 80 72 sethi %hi(0x201c800), %g2 20075ac: 83 28 60 02 sll %g1, 2, %g1 20075b0: 84 10 a2 08 or %g2, 0x208, %g2 20075b4: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20075b8: 80 a0 40 03 cmp %g1, %g3 20075bc: ba 60 3f ff subx %g0, -1, %i5 if ( the_tod->day > days_in_month ) return false; return true; } 20075c0: b0 0f 60 01 and %i5, 1, %i0 20075c4: 81 c7 e0 08 ret 20075c8: 81 e8 00 00 restore return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20075cc: 05 00 80 72 sethi %hi(0x201c800), %g2 20075d0: 84 10 a2 08 or %g2, 0x208, %g2 ! 201ca08 <_TOD_Days_per_month> 20075d4: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20075d8: 80 a0 40 03 cmp %g1, %g3 20075dc: 10 bf ff f9 b 20075c0 <_TOD_Validate+0xc0> 20075e0: ba 60 3f ff subx %g0, -1, %i5 =============================================================================== 02008db4 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008db4: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 2008db8: f8 06 20 10 ld [ %i0 + 0x10 ], %i4 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2008dbc: 40 00 03 9e call 2009c34 <_Thread_Set_transient> 2008dc0: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008dc4: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008dc8: 80 a0 40 19 cmp %g1, %i1 2008dcc: 02 80 00 05 be 2008de0 <_Thread_Change_priority+0x2c> 2008dd0: ba 10 00 18 mov %i0, %i5 _Thread_Set_priority( the_thread, new_priority ); 2008dd4: 90 10 00 18 mov %i0, %o0 2008dd8: 40 00 03 7d call 2009bcc <_Thread_Set_priority> 2008ddc: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 2008de0: 7f ff e5 07 call 20021fc 2008de4: 01 00 00 00 nop 2008de8: b2 10 00 08 mov %o0, %i1 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 2008dec: f6 07 60 10 ld [ %i5 + 0x10 ], %i3 if ( state != STATES_TRANSIENT ) { 2008df0: 80 a6 e0 04 cmp %i3, 4 2008df4: 02 80 00 18 be 2008e54 <_Thread_Change_priority+0xa0> 2008df8: 80 8f 20 04 btst 4, %i4 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2008dfc: 02 80 00 0b be 2008e28 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 2008e00: 82 0e ff fb and %i3, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 2008e04: 7f ff e5 02 call 200220c <== NOT EXECUTED 2008e08: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 2008e0c: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 2008e10: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008e14: 80 8e c0 01 btst %i3, %g1 <== NOT EXECUTED 2008e18: 32 80 00 0d bne,a 2008e4c <_Thread_Change_priority+0x98> <== NOT EXECUTED 2008e1c: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 <== NOT EXECUTED 2008e20: 81 c7 e0 08 ret 2008e24: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008e28: c2 27 60 10 st %g1, [ %i5 + 0x10 ] _ISR_Enable( level ); 2008e2c: 7f ff e4 f8 call 200220c 2008e30: 90 10 00 19 mov %i1, %o0 2008e34: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008e38: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008e3c: 80 8e c0 01 btst %i3, %g1 2008e40: 02 bf ff f8 be 2008e20 <_Thread_Change_priority+0x6c> 2008e44: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008e48: f0 07 60 44 ld [ %i5 + 0x44 ], %i0 2008e4c: 40 00 03 2f call 2009b08 <_Thread_queue_Requeue> 2008e50: 93 e8 00 1d restore %g0, %i5, %o1 2008e54: 39 00 80 6d sethi %hi(0x201b400), %i4 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008e58: 12 80 00 08 bne 2008e78 <_Thread_Change_priority+0xc4> <== NEVER TAKEN 2008e5c: b8 17 22 c4 or %i4, 0x2c4, %i4 ! 201b6c4 <_Scheduler> * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); if ( prepend_it ) 2008e60: 80 a6 a0 00 cmp %i2, 0 2008e64: 02 80 00 1b be 2008ed0 <_Thread_Change_priority+0x11c> 2008e68: c0 27 60 10 clr [ %i5 + 0x10 ] */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2008e6c: c2 07 20 28 ld [ %i4 + 0x28 ], %g1 2008e70: 9f c0 40 00 call %g1 2008e74: 90 10 00 1d mov %i5, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008e78: 7f ff e4 e5 call 200220c 2008e7c: 90 10 00 19 mov %i1, %o0 2008e80: 7f ff e4 df call 20021fc 2008e84: 01 00 00 00 nop 2008e88: b0 10 00 08 mov %o0, %i0 * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008e8c: c2 07 20 08 ld [ %i4 + 8 ], %g1 2008e90: 9f c0 40 00 call %g1 2008e94: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008e98: 03 00 80 71 sethi %hi(0x201c400), %g1 2008e9c: 82 10 60 ec or %g1, 0xec, %g1 ! 201c4ec <_Per_CPU_Information> 2008ea0: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 2008ea4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008ea8: 80 a0 80 03 cmp %g2, %g3 2008eac: 02 80 00 07 be 2008ec8 <_Thread_Change_priority+0x114> 2008eb0: 01 00 00 00 nop 2008eb4: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 2008eb8: 80 a0 a0 00 cmp %g2, 0 2008ebc: 02 80 00 03 be 2008ec8 <_Thread_Change_priority+0x114> 2008ec0: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 2008ec4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2008ec8: 7f ff e4 d1 call 200220c 2008ecc: 81 e8 00 00 restore */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 2008ed0: c2 07 20 24 ld [ %i4 + 0x24 ], %g1 2008ed4: 9f c0 40 00 call %g1 2008ed8: 90 10 00 1d mov %i5, %o0 2008edc: 30 bf ff e7 b,a 2008e78 <_Thread_Change_priority+0xc4> =============================================================================== 020090f8 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 20090f8: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 20090fc: 90 10 00 18 mov %i0, %o0 2009100: 40 00 00 76 call 20092d8 <_Thread_Get> 2009104: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009108: c2 07 bf fc ld [ %fp + -4 ], %g1 200910c: 80 a0 60 00 cmp %g1, 0 2009110: 12 80 00 09 bne 2009134 <_Thread_Delay_ended+0x3c> <== NEVER TAKEN 2009114: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2009118: 7f ff ff 72 call 2008ee0 <_Thread_Clear_state> 200911c: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009120: 03 00 80 70 sethi %hi(0x201c000), %g1 2009124: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 201c2c0 <_Thread_Dispatch_disable_level> 2009128: 84 00 bf ff add %g2, -1, %g2 200912c: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ] return _Thread_Dispatch_disable_level; 2009130: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1 2009134: 81 c7 e0 08 ret 2009138: 81 e8 00 00 restore =============================================================================== 0200913c <_Thread_Dispatch>: * INTERRUPT LATENCY: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 200913c: 9d e3 bf 90 save %sp, -112, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2009140: 21 00 80 70 sethi %hi(0x201c000), %l0 2009144: c2 04 22 c0 ld [ %l0 + 0x2c0 ], %g1 ! 201c2c0 <_Thread_Dispatch_disable_level> 2009148: 82 00 60 01 inc %g1 200914c: c2 24 22 c0 st %g1, [ %l0 + 0x2c0 ] return _Thread_Dispatch_disable_level; 2009150: c2 04 22 c0 ld [ %l0 + 0x2c0 ], %g1 #endif /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; 2009154: 39 00 80 71 sethi %hi(0x201c400), %i4 2009158: b8 17 20 ec or %i4, 0xec, %i4 ! 201c4ec <_Per_CPU_Information> _ISR_Disable( level ); 200915c: 7f ff e4 28 call 20021fc 2009160: fa 07 20 0c ld [ %i4 + 0xc ], %i5 while ( _Thread_Dispatch_necessary == true ) { 2009164: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1 2009168: 80 a0 60 00 cmp %g1, 0 200916c: 02 80 00 48 be 200928c <_Thread_Dispatch+0x150> 2009170: 01 00 00 00 nop heir = _Thread_Heir; 2009174: f6 07 20 10 ld [ %i4 + 0x10 ], %i3 _Thread_Dispatch_necessary = false; 2009178: c0 2f 20 18 clrb [ %i4 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 200917c: 80 a7 40 1b cmp %i5, %i3 2009180: 02 80 00 43 be 200928c <_Thread_Dispatch+0x150> 2009184: f6 27 20 0c st %i3, [ %i4 + 0xc ] 2009188: 31 00 80 70 sethi %hi(0x201c000), %i0 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 200918c: 23 00 80 70 sethi %hi(0x201c000), %l1 2009190: b0 16 23 48 or %i0, 0x348, %i0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2009194: b2 07 20 1c add %i4, 0x1c, %i1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 2009198: 10 80 00 37 b 2009274 <_Thread_Dispatch+0x138> 200919c: 35 00 80 70 sethi %hi(0x201c000), %i2 rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 20091a0: 7f ff e4 1b call 200220c 20091a4: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 20091a8: 40 00 0e 0f call 200c9e4 <_TOD_Get_uptime> 20091ac: 90 07 bf f0 add %fp, -16, %o0 _Timestamp_Subtract( 20091b0: 90 10 00 19 mov %i1, %o0 20091b4: 92 07 bf f0 add %fp, -16, %o1 20091b8: 40 00 03 14 call 2009e08 <_Timespec_Subtract> 20091bc: 94 07 bf f8 add %fp, -8, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 20091c0: 90 07 60 84 add %i5, 0x84, %o0 20091c4: 40 00 02 f8 call 2009da4 <_Timespec_Add_to> 20091c8: 92 07 bf f8 add %fp, -8, %o1 _Thread_Time_of_last_context_switch = uptime; 20091cc: c4 07 bf f0 ld [ %fp + -16 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20091d0: c2 06 00 00 ld [ %i0 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 20091d4: c4 27 20 1c st %g2, [ %i4 + 0x1c ] 20091d8: c4 07 bf f4 ld [ %fp + -12 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 20091dc: 80 a0 60 00 cmp %g1, 0 20091e0: 02 80 00 06 be 20091f8 <_Thread_Dispatch+0xbc> <== NEVER TAKEN 20091e4: c4 27 20 20 st %g2, [ %i4 + 0x20 ] executing->libc_reent = *_Thread_libc_reent; 20091e8: c4 00 40 00 ld [ %g1 ], %g2 20091ec: c4 27 61 54 st %g2, [ %i5 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 20091f0: c4 06 e1 54 ld [ %i3 + 0x154 ], %g2 20091f4: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 20091f8: 90 10 00 1d mov %i5, %o0 20091fc: 40 00 03 c7 call 200a118 <_User_extensions_Thread_switch> 2009200: 92 10 00 1b mov %i3, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2009204: 90 07 60 c8 add %i5, 0xc8, %o0 2009208: 40 00 05 0b call 200a634 <_CPU_Context_switch> 200920c: 92 06 e0 c8 add %i3, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2009210: c2 07 61 50 ld [ %i5 + 0x150 ], %g1 2009214: 80 a0 60 00 cmp %g1, 0 2009218: 02 80 00 0c be 2009248 <_Thread_Dispatch+0x10c> 200921c: d0 06 a3 44 ld [ %i2 + 0x344 ], %o0 2009220: 80 a7 40 08 cmp %i5, %o0 2009224: 02 80 00 09 be 2009248 <_Thread_Dispatch+0x10c> 2009228: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200922c: 02 80 00 04 be 200923c <_Thread_Dispatch+0x100> 2009230: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2009234: 40 00 04 c6 call 200a54c <_CPU_Context_save_fp> 2009238: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 200923c: 40 00 04 e1 call 200a5c0 <_CPU_Context_restore_fp> 2009240: 90 07 61 50 add %i5, 0x150, %o0 _Thread_Allocated_fp = executing; 2009244: fa 26 a3 44 st %i5, [ %i2 + 0x344 ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 2009248: 7f ff e3 ed call 20021fc 200924c: fa 07 20 0c ld [ %i4 + 0xc ], %i5 /* * Now determine if we need to perform a dispatch on the current CPU. */ executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2009250: c2 0f 20 18 ldub [ %i4 + 0x18 ], %g1 2009254: 80 a0 60 00 cmp %g1, 0 2009258: 02 80 00 0d be 200928c <_Thread_Dispatch+0x150> 200925c: 01 00 00 00 nop heir = _Thread_Heir; 2009260: f6 07 20 10 ld [ %i4 + 0x10 ], %i3 _Thread_Dispatch_necessary = false; 2009264: c0 2f 20 18 clrb [ %i4 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2009268: 80 a6 c0 1d cmp %i3, %i5 200926c: 02 80 00 08 be 200928c <_Thread_Dispatch+0x150> <== NEVER TAKEN 2009270: f6 27 20 0c st %i3, [ %i4 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2009274: c2 06 e0 7c ld [ %i3 + 0x7c ], %g1 2009278: 80 a0 60 01 cmp %g1, 1 200927c: 12 bf ff c9 bne 20091a0 <_Thread_Dispatch+0x64> 2009280: c2 04 62 24 ld [ %l1 + 0x224 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2009284: 10 bf ff c7 b 20091a0 <_Thread_Dispatch+0x64> 2009288: c2 26 e0 78 st %g1, [ %i3 + 0x78 ] * This routine sets thread dispatch level to the * value passed in. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_set_disable_level(uint32_t value) { _Thread_Dispatch_disable_level = value; 200928c: c0 24 22 c0 clr [ %l0 + 0x2c0 ] } post_switch: _Thread_Dispatch_set_disable_level( 0 ); _ISR_Enable( level ); 2009290: 7f ff e3 df call 200220c 2009294: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2009298: 7f ff f7 f1 call 200725c <_API_extensions_Run_postswitch> 200929c: 01 00 00 00 nop } 20092a0: 81 c7 e0 08 ret 20092a4: 81 e8 00 00 restore =============================================================================== 0200e8d8 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200e8d8: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200e8dc: 03 00 80 71 sethi %hi(0x201c400), %g1 200e8e0: fa 00 60 f8 ld [ %g1 + 0xf8 ], %i5 ! 201c4f8 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e8e4: 3f 00 80 3a sethi %hi(0x200e800), %i7 200e8e8: be 17 e0 d8 or %i7, 0xd8, %i7 ! 200e8d8 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e8ec: d0 07 60 ac ld [ %i5 + 0xac ], %o0 _ISR_Set_level(level); 200e8f0: 7f ff ce 47 call 200220c 200e8f4: 91 2a 20 08 sll %o0, 8, %o0 doneConstructors = 1; #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e8f8: c4 07 61 50 ld [ %i5 + 0x150 ], %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e8fc: 03 00 80 6f sethi %hi(0x201bc00), %g1 doneConstructors = 1; 200e900: 86 10 20 01 mov 1, %g3 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e904: f6 08 63 80 ldub [ %g1 + 0x380 ], %i3 doneConstructors = 1; #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e908: 80 a0 a0 00 cmp %g2, 0 200e90c: 02 80 00 0c be 200e93c <_Thread_Handler+0x64> 200e910: c6 28 63 80 stb %g3, [ %g1 + 0x380 ] #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e914: 39 00 80 70 sethi %hi(0x201c000), %i4 200e918: d0 07 23 44 ld [ %i4 + 0x344 ], %o0 ! 201c344 <_Thread_Allocated_fp> 200e91c: 80 a7 40 08 cmp %i5, %o0 200e920: 02 80 00 07 be 200e93c <_Thread_Handler+0x64> 200e924: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e928: 22 80 00 05 be,a 200e93c <_Thread_Handler+0x64> 200e92c: fa 27 23 44 st %i5, [ %i4 + 0x344 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e930: 7f ff ef 07 call 200a54c <_CPU_Context_save_fp> 200e934: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200e938: fa 27 23 44 st %i5, [ %i4 + 0x344 ] /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200e93c: 7f ff ed 75 call 2009f10 <_User_extensions_Thread_begin> 200e940: 90 10 00 1d mov %i5, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e944: 7f ff ea 59 call 20092a8 <_Thread_Enable_dispatch> 200e948: b7 2e e0 18 sll %i3, 0x18, %i3 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200e94c: 80 a6 e0 00 cmp %i3, 0 200e950: 02 80 00 0c be 200e980 <_Thread_Handler+0xa8> 200e954: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e958: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 200e95c: 80 a0 60 00 cmp %g1, 0 200e960: 22 80 00 0c be,a 200e990 <_Thread_Handler+0xb8> <== ALWAYS TAKEN 200e964: c2 07 60 90 ld [ %i5 + 0x90 ], %g1 * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200e968: 7f ff ed 7e call 2009f60 <_User_extensions_Thread_exitted> 200e96c: 90 10 00 1d mov %i5, %o0 _Internal_error_Occurred( 200e970: 90 10 20 00 clr %o0 200e974: 92 10 20 01 mov 1, %o1 200e978: 7f ff e5 01 call 2007d7c <_Internal_error_Occurred> 200e97c: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200e980: 40 00 33 08 call 201b5a0 <_init> 200e984: 01 00 00 00 nop #endif } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e988: 10 bf ff f5 b 200e95c <_Thread_Handler+0x84> 200e98c: c2 07 60 94 ld [ %i5 + 0x94 ], %g1 executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e990: 9f c0 40 00 call %g1 200e994: d0 07 60 9c ld [ %i5 + 0x9c ], %o0 } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200e998: 10 bf ff f4 b 200e968 <_Thread_Handler+0x90> 200e99c: d0 27 60 28 st %o0, [ %i5 + 0x28 ] =============================================================================== 02009388 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2009388: 9d e3 bf a0 save %sp, -96, %sp 200938c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2009390: f4 0f a0 5f ldub [ %fp + 0x5f ], %i2 2009394: e0 00 40 00 ld [ %g1 ], %l0 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2009398: c0 26 61 58 clr [ %i1 + 0x158 ] 200939c: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 20093a0: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 20093a4: 90 10 00 19 mov %i1, %o0 20093a8: 40 00 02 32 call 2009c70 <_Thread_Stack_Allocate> 20093ac: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 20093b0: 80 a2 00 1b cmp %o0, %i3 20093b4: 0a 80 00 4b bcs 20094e0 <_Thread_Initialize+0x158> 20093b8: 80 a2 20 00 cmp %o0, 0 20093bc: 02 80 00 49 be 20094e0 <_Thread_Initialize+0x158> <== NEVER TAKEN 20093c0: 80 a7 20 00 cmp %i4, 0 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 20093c4: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 20093c8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 20093cc: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 20093d0: 12 80 00 48 bne 20094f0 <_Thread_Initialize+0x168> 20093d4: b6 10 20 00 clr %i3 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20093d8: 23 00 80 70 sethi %hi(0x201c000), %l1 20093dc: c2 04 63 54 ld [ %l1 + 0x354 ], %g1 ! 201c354 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 20093e0: f6 26 61 50 st %i3, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 20093e4: f6 26 60 bc st %i3, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20093e8: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 20093ec: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 20093f0: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20093f4: 80 a0 60 00 cmp %g1, 0 20093f8: 12 80 00 46 bne 2009510 <_Thread_Initialize+0x188> 20093fc: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2009400: c0 26 61 60 clr [ %i1 + 0x160 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2009404: b8 10 20 00 clr %i4 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2009408: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 200940c: 03 00 80 6d sethi %hi(0x201b400), %g1 2009410: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2009414: c4 07 a0 64 ld [ %fp + 0x64 ], %g2 2009418: c2 00 62 dc ld [ %g1 + 0x2dc ], %g1 200941c: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2009420: c4 07 a0 68 ld [ %fp + 0x68 ], %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2009424: f4 2e 60 a0 stb %i2, [ %i1 + 0xa0 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2009428: c4 26 60 ac st %g2, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 200942c: 84 10 20 01 mov 1, %g2 the_thread->Wait.queue = NULL; 2009430: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 2009434: c4 26 60 10 st %g2, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2009438: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 200943c: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2009440: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2009444: 9f c0 40 00 call %g1 2009448: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 200944c: b4 92 20 00 orcc %o0, 0, %i2 2009450: 22 80 00 13 be,a 200949c <_Thread_Initialize+0x114> 2009454: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2009458: 90 10 00 19 mov %i1, %o0 200945c: 40 00 01 dc call 2009bcc <_Thread_Set_priority> 2009460: 92 10 00 1d mov %i5, %o1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2009464: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2009468: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 200946c: c0 26 60 84 clr [ %i1 + 0x84 ] 2009470: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2009474: 83 28 60 02 sll %g1, 2, %g1 2009478: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200947c: e0 26 60 0c st %l0, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2009480: 90 10 00 19 mov %i1, %o0 2009484: 40 00 02 de call 2009ffc <_User_extensions_Thread_create> 2009488: b0 10 20 01 mov 1, %i0 if ( extension_status ) 200948c: 80 8a 20 ff btst 0xff, %o0 2009490: 32 80 00 12 bne,a 20094d8 <_Thread_Initialize+0x150> 2009494: b0 0e 20 01 and %i0, 1, %i0 return true; failed: _Workspace_Free( the_thread->libc_reent ); 2009498: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 200949c: 40 00 04 17 call 200a4f8 <_Workspace_Free> 20094a0: b0 10 20 00 clr %i0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 20094a4: 40 00 04 15 call 200a4f8 <_Workspace_Free> 20094a8: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 20094ac: 40 00 04 13 call 200a4f8 <_Workspace_Free> 20094b0: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 20094b4: 40 00 04 11 call 200a4f8 <_Workspace_Free> 20094b8: 90 10 00 1c mov %i4, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 20094bc: 40 00 04 0f call 200a4f8 <_Workspace_Free> 20094c0: 90 10 00 1b mov %i3, %o0 #endif _Workspace_Free( sched ); 20094c4: 40 00 04 0d call 200a4f8 <_Workspace_Free> 20094c8: 90 10 00 1a mov %i2, %o0 _Thread_Stack_Free( the_thread ); 20094cc: 40 00 02 04 call 2009cdc <_Thread_Stack_Free> 20094d0: 90 10 00 19 mov %i1, %o0 return false; } 20094d4: b0 0e 20 01 and %i0, 1, %i0 20094d8: 81 c7 e0 08 ret 20094dc: 81 e8 00 00 restore * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); if ( !actual_stack_size || actual_stack_size < stack_size ) return false; /* stack allocation failed */ 20094e0: b0 10 20 00 clr %i0 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 20094e4: b0 0e 20 01 and %i0, 1, %i0 20094e8: 81 c7 e0 08 ret 20094ec: 81 e8 00 00 restore /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 20094f0: 40 00 03 fa call 200a4d8 <_Workspace_Allocate> 20094f4: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 20094f8: b6 92 20 00 orcc %o0, 0, %i3 20094fc: 32 bf ff b8 bne,a 20093dc <_Thread_Initialize+0x54> 2009500: 23 00 80 70 sethi %hi(0x201c000), %l1 * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2009504: b8 10 20 00 clr %i4 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2009508: 10 bf ff e4 b 2009498 <_Thread_Initialize+0x110> 200950c: b4 10 20 00 clr %i2 /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { extensions_area = _Workspace_Allocate( 2009510: 82 00 60 01 inc %g1 2009514: 40 00 03 f1 call 200a4d8 <_Workspace_Allocate> 2009518: 91 28 60 02 sll %g1, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 200951c: b8 92 20 00 orcc %o0, 0, %i4 2009520: 02 80 00 10 be 2009560 <_Thread_Initialize+0x1d8> 2009524: 86 10 00 1c mov %i4, %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 2009528: f8 26 61 60 st %i4, [ %i1 + 0x160 ] 200952c: c8 04 63 54 ld [ %l1 + 0x354 ], %g4 * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009530: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2009534: 10 80 00 03 b 2009540 <_Thread_Initialize+0x1b8> 2009538: 82 10 20 00 clr %g1 200953c: c6 06 61 60 ld [ %i1 + 0x160 ], %g3 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 2009540: 85 28 a0 02 sll %g2, 2, %g2 2009544: c0 20 c0 02 clr [ %g3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009548: 82 00 60 01 inc %g1 200954c: 80 a0 40 04 cmp %g1, %g4 2009550: 08 bf ff fb bleu 200953c <_Thread_Initialize+0x1b4> 2009554: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2009558: 10 bf ff ad b 200940c <_Thread_Initialize+0x84> 200955c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2009560: 10 bf ff ce b 2009498 <_Thread_Initialize+0x110> 2009564: b4 10 20 00 clr %i2 =============================================================================== 02009b08 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009b08: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2009b0c: 80 a6 20 00 cmp %i0, 0 2009b10: 02 80 00 13 be 2009b5c <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 2009b14: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009b18: f8 06 20 34 ld [ %i0 + 0x34 ], %i4 2009b1c: 80 a7 20 01 cmp %i4, 1 2009b20: 02 80 00 04 be 2009b30 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 2009b24: 01 00 00 00 nop 2009b28: 81 c7 e0 08 ret <== NOT EXECUTED 2009b2c: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2009b30: 7f ff e1 b3 call 20021fc 2009b34: 01 00 00 00 nop 2009b38: ba 10 00 08 mov %o0, %i5 2009b3c: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 2009b40: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009b44: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009b48: 80 88 80 01 btst %g2, %g1 2009b4c: 12 80 00 06 bne 2009b64 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 2009b50: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 2009b54: 7f ff e1 ae call 200220c 2009b58: 90 10 00 1d mov %i5, %o0 2009b5c: 81 c7 e0 08 ret 2009b60: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2009b64: 92 10 00 19 mov %i1, %o1 2009b68: 94 10 20 01 mov 1, %o2 2009b6c: 40 00 0d 21 call 200cff0 <_Thread_queue_Extract_priority_helper> 2009b70: f8 26 20 30 st %i4, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2009b74: 90 10 00 18 mov %i0, %o0 2009b78: 92 10 00 19 mov %i1, %o1 2009b7c: 7f ff ff 35 call 2009850 <_Thread_queue_Enqueue_priority> 2009b80: 94 07 bf fc add %fp, -4, %o2 2009b84: 30 bf ff f4 b,a 2009b54 <_Thread_queue_Requeue+0x4c> =============================================================================== 02009b88 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009b88: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009b8c: 90 10 00 18 mov %i0, %o0 2009b90: 7f ff fd d2 call 20092d8 <_Thread_Get> 2009b94: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2009b98: c2 07 bf fc ld [ %fp + -4 ], %g1 2009b9c: 80 a0 60 00 cmp %g1, 0 2009ba0: 12 80 00 09 bne 2009bc4 <_Thread_queue_Timeout+0x3c> <== NEVER TAKEN 2009ba4: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 2009ba8: 40 00 0d 4b call 200d0d4 <_Thread_queue_Process_timeout> 2009bac: 01 00 00 00 nop * * This routine decrements the thread dispatch level. */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_decrement_disable_level(void) { _Thread_Dispatch_disable_level--; 2009bb0: 03 00 80 70 sethi %hi(0x201c000), %g1 2009bb4: c4 00 62 c0 ld [ %g1 + 0x2c0 ], %g2 ! 201c2c0 <_Thread_Dispatch_disable_level> 2009bb8: 84 00 bf ff add %g2, -1, %g2 2009bbc: c4 20 62 c0 st %g2, [ %g1 + 0x2c0 ] return _Thread_Dispatch_disable_level; 2009bc0: c2 00 62 c0 ld [ %g1 + 0x2c0 ], %g1 2009bc4: 81 c7 e0 08 ret 2009bc8: 81 e8 00 00 restore =============================================================================== 020163c8 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20163c8: 9d e3 bf 88 save %sp, -120, %sp 20163cc: 23 00 80 f0 sethi %hi(0x203c000), %l1 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20163d0: a6 07 bf e8 add %fp, -24, %l3 20163d4: b2 07 bf ec add %fp, -20, %i1 20163d8: b6 07 bf f4 add %fp, -12, %i3 20163dc: a4 07 bf f8 add %fp, -8, %l2 20163e0: 21 00 80 f0 sethi %hi(0x203c000), %l0 20163e4: 29 00 80 f0 sethi %hi(0x203c000), %l4 20163e8: f2 27 bf e8 st %i1, [ %fp + -24 ] head->previous = NULL; 20163ec: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20163f0: e6 27 bf f0 st %l3, [ %fp + -16 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20163f4: e4 27 bf f4 st %l2, [ %fp + -12 ] head->previous = NULL; 20163f8: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20163fc: f6 27 bf fc st %i3, [ %fp + -4 ] 2016400: a2 14 63 ac or %l1, 0x3ac, %l1 2016404: b8 06 20 30 add %i0, 0x30, %i4 2016408: a0 14 23 2c or %l0, 0x32c, %l0 201640c: b4 06 20 68 add %i0, 0x68, %i2 2016410: a8 15 22 a0 or %l4, 0x2a0, %l4 2016414: ae 06 20 08 add %i0, 8, %l7 2016418: ac 06 20 40 add %i0, 0x40, %l6 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 201641c: aa 10 20 01 mov 1, %l5 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2016420: e6 26 20 78 st %l3, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016424: c2 04 40 00 ld [ %l1 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2016428: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201642c: 94 10 00 1b mov %i3, %o2 2016430: 90 10 00 1c mov %i4, %o0 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016434: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016438: 40 00 12 b9 call 201af1c <_Watchdog_Adjust_to_chain> 201643c: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016440: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016444: fa 04 00 00 ld [ %l0 ], %i5 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2016448: 80 a7 40 0a cmp %i5, %o2 201644c: 18 80 00 2e bgu 2016504 <_Timer_server_Body+0x13c> 2016450: 92 27 40 0a sub %i5, %o2, %o1 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 2016454: 80 a7 40 0a cmp %i5, %o2 2016458: 0a 80 00 2f bcs 2016514 <_Timer_server_Body+0x14c> 201645c: 90 10 00 1a mov %i2, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 2016460: fa 26 20 74 st %i5, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016464: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016468: 40 00 02 ff call 2017064 <_Chain_Get> 201646c: 01 00 00 00 nop if ( timer == NULL ) { 2016470: 92 92 20 00 orcc %o0, 0, %o1 2016474: 02 80 00 10 be 20164b4 <_Timer_server_Body+0xec> 2016478: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201647c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2016480: 80 a0 60 01 cmp %g1, 1 2016484: 02 80 00 28 be 2016524 <_Timer_server_Body+0x15c> 2016488: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 201648c: 12 bf ff f6 bne 2016464 <_Timer_server_Body+0x9c> <== NEVER TAKEN 2016490: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016494: 40 00 12 d3 call 201afe0 <_Watchdog_Insert> 2016498: 90 10 00 1a mov %i2, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 201649c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 20164a0: 40 00 02 f1 call 2017064 <_Chain_Get> 20164a4: 01 00 00 00 nop if ( timer == NULL ) { 20164a8: 92 92 20 00 orcc %o0, 0, %o1 20164ac: 32 bf ff f5 bne,a 2016480 <_Timer_server_Body+0xb8> <== NEVER TAKEN 20164b0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 20164b4: 7f ff e2 55 call 200ee08 20164b8: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 20164bc: c2 07 bf e8 ld [ %fp + -24 ], %g1 20164c0: 80 a0 40 19 cmp %g1, %i1 20164c4: 02 80 00 1c be 2016534 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN 20164c8: 01 00 00 00 nop ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 20164cc: 7f ff e2 53 call 200ee18 <== NOT EXECUTED 20164d0: 01 00 00 00 nop <== NOT EXECUTED static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20164d4: c2 04 40 00 ld [ %l1 ], %g1 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20164d8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20164dc: 94 10 00 1b mov %i3, %o2 <== NOT EXECUTED 20164e0: 90 10 00 1c mov %i4, %o0 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20164e4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20164e8: 40 00 12 8d call 201af1c <_Watchdog_Adjust_to_chain> <== NOT EXECUTED 20164ec: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 20164f0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20164f4: fa 04 00 00 ld [ %l0 ], %i5 <== NOT EXECUTED /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 20164f8: 80 a7 40 0a cmp %i5, %o2 <== NOT EXECUTED 20164fc: 08 bf ff d7 bleu 2016458 <_Timer_server_Body+0x90> <== NOT EXECUTED 2016500: 92 27 40 0a sub %i5, %o2, %o1 <== NOT EXECUTED /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016504: 90 10 00 1a mov %i2, %o0 2016508: 40 00 12 85 call 201af1c <_Watchdog_Adjust_to_chain> 201650c: 94 10 00 1b mov %i3, %o2 2016510: 30 bf ff d4 b,a 2016460 <_Timer_server_Body+0x98> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016514: 92 10 20 01 mov 1, %o1 2016518: 40 00 12 52 call 201ae60 <_Watchdog_Adjust> 201651c: 94 22 80 1d sub %o2, %i5, %o2 2016520: 30 bf ff d0 b,a 2016460 <_Timer_server_Body+0x98> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016524: 90 10 00 1c mov %i4, %o0 2016528: 40 00 12 ae call 201afe0 <_Watchdog_Insert> 201652c: 92 02 60 10 add %o1, 0x10, %o1 2016530: 30 bf ff cd b,a 2016464 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 2016534: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 2016538: 7f ff e2 38 call 200ee18 201653c: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016540: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016544: 80 a0 40 12 cmp %g1, %l2 2016548: 12 80 00 0c bne 2016578 <_Timer_server_Body+0x1b0> 201654c: 01 00 00 00 nop 2016550: 30 80 00 13 b,a 201659c <_Timer_server_Body+0x1d4> Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; new_first->previous = head; 2016554: f6 20 60 04 st %i3, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 2016558: c2 27 bf f4 st %g1, [ %fp + -12 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 201655c: c0 27 60 08 clr [ %i5 + 8 ] _ISR_Enable( level ); 2016560: 7f ff e2 2e call 200ee18 2016564: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2016568: d0 07 60 20 ld [ %i5 + 0x20 ], %o0 201656c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 2016570: 9f c0 40 00 call %g1 2016574: d2 07 60 24 ld [ %i5 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2016578: 7f ff e2 24 call 200ee08 201657c: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 2016580: fa 07 bf f4 ld [ %fp + -12 ], %i5 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016584: 80 a7 40 12 cmp %i5, %l2 2016588: 32 bf ff f3 bne,a 2016554 <_Timer_server_Body+0x18c> 201658c: c2 07 40 00 ld [ %i5 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016590: 7f ff e2 22 call 200ee18 2016594: 01 00 00 00 nop 2016598: 30 bf ff a2 b,a 2016420 <_Timer_server_Body+0x58> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 201659c: c0 2e 20 7c clrb [ %i0 + 0x7c ] * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 20165a0: c2 05 00 00 ld [ %l4 ], %g1 20165a4: 82 00 60 01 inc %g1 20165a8: c2 25 00 00 st %g1, [ %l4 ] return _Thread_Dispatch_disable_level; 20165ac: c2 05 00 00 ld [ %l4 ], %g1 /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 20165b0: d0 06 00 00 ld [ %i0 ], %o0 20165b4: 40 00 10 95 call 201a808 <_Thread_Set_state> 20165b8: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 20165bc: 7f ff ff 5b call 2016328 <_Timer_server_Reset_interval_system_watchdog> 20165c0: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 20165c4: 7f ff ff 6d call 2016378 <_Timer_server_Reset_tod_system_watchdog> 20165c8: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 20165cc: 40 00 0e 1a call 2019e34 <_Thread_Enable_dispatch> 20165d0: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20165d4: 90 10 00 17 mov %l7, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 20165d8: ea 2e 20 7c stb %l5, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 20165dc: 40 00 12 e3 call 201b168 <_Watchdog_Remove> 20165e0: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20165e4: 40 00 12 e1 call 201b168 <_Watchdog_Remove> 20165e8: 90 10 00 16 mov %l6, %o0 20165ec: 30 bf ff 8d b,a 2016420 <_Timer_server_Body+0x58> =============================================================================== 020165f0 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 20165f0: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 20165f4: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 20165f8: 80 a0 60 00 cmp %g1, 0 20165fc: 02 80 00 05 be 2016610 <_Timer_server_Schedule_operation_method+0x20> 2016600: ba 10 00 19 mov %i1, %i5 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016604: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016608: 40 00 02 83 call 2017014 <_Chain_Append> 201660c: 81 e8 00 00 restore * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2016610: 03 00 80 f0 sethi %hi(0x203c000), %g1 2016614: c4 00 62 a0 ld [ %g1 + 0x2a0 ], %g2 ! 203c2a0 <_Thread_Dispatch_disable_level> 2016618: 84 00 a0 01 inc %g2 201661c: c4 20 62 a0 st %g2, [ %g1 + 0x2a0 ] return _Thread_Dispatch_disable_level; 2016620: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016624: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016628: 80 a0 60 01 cmp %g1, 1 201662c: 02 80 00 28 be 20166cc <_Timer_server_Schedule_operation_method+0xdc> 2016630: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016634: 02 80 00 04 be 2016644 <_Timer_server_Schedule_operation_method+0x54> 2016638: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 201663c: 40 00 0d fe call 2019e34 <_Thread_Enable_dispatch> 2016640: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016644: 7f ff e1 f1 call 200ee08 2016648: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 201664c: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016650: c6 06 20 74 ld [ %i0 + 0x74 ], %g3 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016654: 88 06 20 6c add %i0, 0x6c, %g4 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016658: 03 00 80 f0 sethi %hi(0x203c000), %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 201665c: 80 a0 80 04 cmp %g2, %g4 2016660: 02 80 00 0d be 2016694 <_Timer_server_Schedule_operation_method+0xa4> 2016664: c2 00 63 2c ld [ %g1 + 0x32c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016668: de 00 a0 10 ld [ %g2 + 0x10 ], %o7 if ( snapshot > last_snapshot ) { 201666c: 80 a0 40 03 cmp %g1, %g3 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016670: 88 03 c0 03 add %o7, %g3, %g4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016674: 08 80 00 07 bleu 2016690 <_Timer_server_Schedule_operation_method+0xa0> 2016678: 88 21 00 01 sub %g4, %g1, %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 201667c: 86 20 40 03 sub %g1, %g3, %g3 if (delta_interval > delta) { 2016680: 80 a3 c0 03 cmp %o7, %g3 2016684: 08 80 00 03 bleu 2016690 <_Timer_server_Schedule_operation_method+0xa0><== NEVER TAKEN 2016688: 88 10 20 00 clr %g4 delta_interval -= delta; 201668c: 88 23 c0 03 sub %o7, %g3, %g4 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016690: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016694: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016698: 7f ff e1 e0 call 200ee18 201669c: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 20166a0: 90 06 20 68 add %i0, 0x68, %o0 20166a4: 40 00 12 4f call 201afe0 <_Watchdog_Insert> 20166a8: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 20166ac: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 20166b0: 80 a0 60 00 cmp %g1, 0 20166b4: 12 bf ff e2 bne 201663c <_Timer_server_Schedule_operation_method+0x4c> 20166b8: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 20166bc: 7f ff ff 2f call 2016378 <_Timer_server_Reset_tod_system_watchdog> 20166c0: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 20166c4: 40 00 0d dc call 2019e34 <_Thread_Enable_dispatch> 20166c8: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20166cc: 7f ff e1 cf call 200ee08 20166d0: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 20166d4: 05 00 80 f0 sethi %hi(0x203c000), %g2 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 20166d8: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 20166dc: c4 00 a3 ac ld [ %g2 + 0x3ac ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 20166e0: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20166e4: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 20166e8: 80 a0 40 03 cmp %g1, %g3 20166ec: 02 80 00 08 be 201670c <_Timer_server_Schedule_operation_method+0x11c> 20166f0: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 20166f4: de 00 60 10 ld [ %g1 + 0x10 ], %o7 if (delta_interval > delta) { 20166f8: 80 a1 00 0f cmp %g4, %o7 20166fc: 1a 80 00 03 bcc 2016708 <_Timer_server_Schedule_operation_method+0x118> 2016700: 86 10 20 00 clr %g3 delta_interval -= delta; 2016704: 86 23 c0 04 sub %o7, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016708: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 201670c: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016710: 7f ff e1 c2 call 200ee18 2016714: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016718: 90 06 20 30 add %i0, 0x30, %o0 201671c: 40 00 12 31 call 201afe0 <_Watchdog_Insert> 2016720: 92 07 60 10 add %i5, 0x10, %o1 if ( !ts->active ) { 2016724: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016728: 80 a0 60 00 cmp %g1, 0 201672c: 12 bf ff c4 bne 201663c <_Timer_server_Schedule_operation_method+0x4c> 2016730: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016734: 7f ff fe fd call 2016328 <_Timer_server_Reset_interval_system_watchdog> 2016738: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 201673c: 40 00 0d be call 2019e34 <_Thread_Enable_dispatch> 2016740: 81 e8 00 00 restore =============================================================================== 02009da4 <_Timespec_Add_to>: uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { 2009da4: 9d e3 bf a0 save %sp, -96, %sp 2009da8: 82 10 00 18 mov %i0, %g1 uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009dac: c6 06 00 00 ld [ %i0 ], %g3 time->tv_nsec += add->tv_nsec; 2009db0: c8 00 60 04 ld [ %g1 + 4 ], %g4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 2009db4: f0 06 40 00 ld [ %i1 ], %i0 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 2009db8: c4 06 60 04 ld [ %i1 + 4 ], %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009dbc: 86 00 c0 18 add %g3, %i0, %g3 time->tv_nsec += add->tv_nsec; 2009dc0: 84 01 00 02 add %g4, %g2, %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009dc4: c6 20 40 00 st %g3, [ %g1 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009dc8: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 2009dcc: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 2009dd0: 80 a0 80 04 cmp %g2, %g4 2009dd4: 08 80 00 0b bleu 2009e00 <_Timespec_Add_to+0x5c> 2009dd8: c4 20 60 04 st %g2, [ %g1 + 4 ] time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 2009ddc: 1f 31 19 4d sethi %hi(0xc4653400), %o7 2009de0: 9e 13 e2 00 or %o7, 0x200, %o7 ! c4653600 2009de4: 84 00 80 0f add %g2, %o7, %g2 time->tv_sec++; 2009de8: 86 00 e0 01 inc %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009dec: 80 a0 80 04 cmp %g2, %g4 2009df0: 18 bf ff fd bgu 2009de4 <_Timespec_Add_to+0x40> <== NEVER TAKEN 2009df4: b0 06 20 01 inc %i0 2009df8: c4 20 60 04 st %g2, [ %g1 + 4 ] 2009dfc: c6 20 40 00 st %g3, [ %g1 ] time->tv_sec++; seconds++; } return seconds; } 2009e00: 81 c7 e0 08 ret 2009e04: 81 e8 00 00 restore =============================================================================== 02009fac <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009fac: 9d e3 bf a0 save %sp, -96, %sp 2009fb0: 39 00 80 71 sethi %hi(0x201c400), %i4 2009fb4: b8 17 20 a8 or %i4, 0xa8, %i4 ! 201c4a8 <_User_extensions_List> 2009fb8: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009fbc: 80 a7 40 1c cmp %i5, %i4 2009fc0: 02 80 00 0d be 2009ff4 <_User_extensions_Fatal+0x48> <== NEVER TAKEN 2009fc4: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 2009fc8: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2009fcc: 80 a0 60 00 cmp %g1, 0 2009fd0: 02 80 00 05 be 2009fe4 <_User_extensions_Fatal+0x38> 2009fd4: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 2009fd8: 92 10 00 19 mov %i1, %o1 2009fdc: 9f c0 40 00 call %g1 2009fe0: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009fe4: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009fe8: 80 a7 40 1c cmp %i5, %i4 2009fec: 32 bf ff f8 bne,a 2009fcc <_User_extensions_Fatal+0x20> 2009ff0: c2 07 60 30 ld [ %i5 + 0x30 ], %g1 2009ff4: 81 c7 e0 08 ret 2009ff8: 81 e8 00 00 restore =============================================================================== 02009e58 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009e58: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009e5c: 07 00 80 6d sethi %hi(0x201b400), %g3 2009e60: 86 10 e1 dc or %g3, 0x1dc, %g3 ! 201b5dc initial_extensions = Configuration.User_extension_table; 2009e64: f6 00 e0 3c ld [ %g3 + 0x3c ], %i3 2009e68: 3b 00 80 71 sethi %hi(0x201c400), %i5 2009e6c: 09 00 80 70 sethi %hi(0x201c000), %g4 2009e70: 84 17 60 a8 or %i5, 0xa8, %g2 2009e74: 82 11 22 c4 or %g4, 0x2c4, %g1 2009e78: b4 00 a0 04 add %g2, 4, %i2 2009e7c: b8 00 60 04 add %g1, 4, %i4 2009e80: f4 27 60 a8 st %i2, [ %i5 + 0xa8 ] head->previous = NULL; 2009e84: c0 20 a0 04 clr [ %g2 + 4 ] tail->previous = head; 2009e88: c4 20 a0 08 st %g2, [ %g2 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009e8c: f8 21 22 c4 st %i4, [ %g4 + 0x2c4 ] head->previous = NULL; 2009e90: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009e94: c2 20 60 08 st %g1, [ %g1 + 8 ] _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009e98: 80 a6 e0 00 cmp %i3, 0 2009e9c: 02 80 00 1b be 2009f08 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009ea0: f4 00 e0 38 ld [ %g3 + 0x38 ], %i2 extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009ea4: 83 2e a0 02 sll %i2, 2, %g1 2009ea8: b9 2e a0 04 sll %i2, 4, %i4 2009eac: b8 27 00 01 sub %i4, %g1, %i4 2009eb0: b8 07 00 1a add %i4, %i2, %i4 2009eb4: b9 2f 20 02 sll %i4, 2, %i4 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009eb8: 40 00 01 96 call 200a510 <_Workspace_Allocate_or_fatal_error> 2009ebc: 90 10 00 1c mov %i4, %o0 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009ec0: 92 10 20 00 clr %o1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) 2009ec4: ba 10 00 08 mov %o0, %i5 _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009ec8: 40 00 15 91 call 200f50c 2009ecc: 94 10 00 1c mov %i4, %o2 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009ed0: 80 a6 a0 00 cmp %i2, 0 2009ed4: 02 80 00 0d be 2009f08 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009ed8: b8 10 20 00 clr %i4 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009edc: 92 10 00 1b mov %i3, %o1 2009ee0: 94 10 20 20 mov 0x20, %o2 2009ee4: 40 00 15 4e call 200f41c 2009ee8: 90 07 60 14 add %i5, 0x14, %o0 _User_extensions_Add_set( extension ); 2009eec: 40 00 0c 9d call 200d160 <_User_extensions_Add_set> 2009ef0: 90 10 00 1d mov %i5, %o0 2009ef4: b8 07 20 01 inc %i4 _User_extensions_Add_set_with_table (extension, &initial_extensions[i]); extension++; 2009ef8: ba 07 60 34 add %i5, 0x34, %i5 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009efc: 80 a7 00 1a cmp %i4, %i2 2009f00: 12 bf ff f7 bne 2009edc <_User_extensions_Handler_initialization+0x84> 2009f04: b6 06 e0 20 add %i3, 0x20, %i3 2009f08: 81 c7 e0 08 ret 2009f0c: 81 e8 00 00 restore =============================================================================== 02009f10 <_User_extensions_Thread_begin>: #include void _User_extensions_Thread_begin ( Thread_Control *executing ) { 2009f10: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 2009f14: 39 00 80 71 sethi %hi(0x201c400), %i4 2009f18: fa 07 20 a8 ld [ %i4 + 0xa8 ], %i5 ! 201c4a8 <_User_extensions_List> 2009f1c: b8 17 20 a8 or %i4, 0xa8, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009f20: b8 07 20 04 add %i4, 4, %i4 2009f24: 80 a7 40 1c cmp %i5, %i4 2009f28: 02 80 00 0c be 2009f58 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN 2009f2c: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_begin != NULL ) 2009f30: c2 07 60 28 ld [ %i5 + 0x28 ], %g1 2009f34: 80 a0 60 00 cmp %g1, 0 2009f38: 02 80 00 04 be 2009f48 <_User_extensions_Thread_begin+0x38> 2009f3c: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_begin)( executing ); 2009f40: 9f c0 40 00 call %g1 2009f44: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009f48: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009f4c: 80 a7 40 1c cmp %i5, %i4 2009f50: 32 bf ff f9 bne,a 2009f34 <_User_extensions_Thread_begin+0x24> 2009f54: c2 07 60 28 ld [ %i5 + 0x28 ], %g1 2009f58: 81 c7 e0 08 ret 2009f5c: 81 e8 00 00 restore =============================================================================== 02009ffc <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009ffc: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a000: 39 00 80 71 sethi %hi(0x201c400), %i4 200a004: fa 07 20 a8 ld [ %i4 + 0xa8 ], %i5 ! 201c4a8 <_User_extensions_List> 200a008: b8 17 20 a8 or %i4, 0xa8, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 200a00c: b8 07 20 04 add %i4, 4, %i4 200a010: 80 a7 40 1c cmp %i5, %i4 200a014: 02 80 00 12 be 200a05c <_User_extensions_Thread_create+0x60><== NEVER TAKEN 200a018: 82 10 20 01 mov 1, %g1 the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 200a01c: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 200a020: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 200a024: 80 a0 60 00 cmp %g1, 0 200a028: 02 80 00 08 be 200a048 <_User_extensions_Thread_create+0x4c> 200a02c: 84 16 e0 ec or %i3, 0xec, %g2 status = (*the_extension->Callouts.thread_create)( 200a030: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a034: 9f c0 40 00 call %g1 200a038: 92 10 00 18 mov %i0, %o1 _Thread_Executing, the_thread ); if ( !status ) 200a03c: 80 8a 20 ff btst 0xff, %o0 200a040: 02 80 00 0a be 200a068 <_User_extensions_Thread_create+0x6c> 200a044: 82 10 20 00 clr %g1 User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a048: fa 07 40 00 ld [ %i5 ], %i5 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 200a04c: 80 a7 40 1c cmp %i5, %i4 200a050: 32 bf ff f5 bne,a 200a024 <_User_extensions_Thread_create+0x28> 200a054: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 if ( !status ) return false; } } return true; 200a058: 82 10 20 01 mov 1, %g1 } 200a05c: b0 08 60 01 and %g1, 1, %i0 200a060: 81 c7 e0 08 ret 200a064: 81 e8 00 00 restore 200a068: b0 08 60 01 and %g1, 1, %i0 200a06c: 81 c7 e0 08 ret 200a070: 81 e8 00 00 restore =============================================================================== 0200a074 <_User_extensions_Thread_delete>: #include void _User_extensions_Thread_delete ( Thread_Control *the_thread ) { 200a074: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last( Chain_Control *the_chain ) { return _Chain_Tail( the_chain )->previous; 200a078: 39 00 80 71 sethi %hi(0x201c400), %i4 200a07c: b8 17 20 a8 or %i4, 0xa8, %i4 ! 201c4a8 <_User_extensions_List> 200a080: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a084: 80 a7 40 1c cmp %i5, %i4 200a088: 02 80 00 0d be 200a0bc <_User_extensions_Thread_delete+0x48><== NEVER TAKEN 200a08c: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_delete != NULL ) 200a090: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 200a094: 80 a0 60 00 cmp %g1, 0 200a098: 02 80 00 05 be 200a0ac <_User_extensions_Thread_delete+0x38> 200a09c: 84 16 e0 ec or %i3, 0xec, %g2 (*the_extension->Callouts.thread_delete)( 200a0a0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a0a4: 9f c0 40 00 call %g1 200a0a8: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 200a0ac: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 200a0b0: 80 a7 40 1c cmp %i5, %i4 200a0b4: 32 bf ff f8 bne,a 200a094 <_User_extensions_Thread_delete+0x20> 200a0b8: c2 07 60 20 ld [ %i5 + 0x20 ], %g1 200a0bc: 81 c7 e0 08 ret 200a0c0: 81 e8 00 00 restore =============================================================================== 02009f60 <_User_extensions_Thread_exitted>: } void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009f60: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Last( Chain_Control *the_chain ) { return _Chain_Tail( the_chain )->previous; 2009f64: 39 00 80 71 sethi %hi(0x201c400), %i4 2009f68: b8 17 20 a8 or %i4, 0xa8, %i4 ! 201c4a8 <_User_extensions_List> 2009f6c: fa 07 20 08 ld [ %i4 + 8 ], %i5 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009f70: 80 a7 40 1c cmp %i5, %i4 2009f74: 02 80 00 0c be 2009fa4 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN 2009f78: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009f7c: c2 07 60 2c ld [ %i5 + 0x2c ], %g1 2009f80: 80 a0 60 00 cmp %g1, 0 2009f84: 02 80 00 04 be 2009f94 <_User_extensions_Thread_exitted+0x34> 2009f88: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_exitted)( executing ); 2009f8c: 9f c0 40 00 call %g1 2009f90: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009f94: fa 07 60 04 ld [ %i5 + 4 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009f98: 80 a7 40 1c cmp %i5, %i4 2009f9c: 32 bf ff f9 bne,a 2009f80 <_User_extensions_Thread_exitted+0x20> 2009fa0: c2 07 60 2c ld [ %i5 + 0x2c ], %g1 2009fa4: 81 c7 e0 08 ret 2009fa8: 81 e8 00 00 restore =============================================================================== 0200a904 <_User_extensions_Thread_restart>: #include void _User_extensions_Thread_restart ( Thread_Control *the_thread ) { 200a904: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a908: 39 00 80 73 sethi %hi(0x201cc00), %i4 200a90c: fa 07 23 c8 ld [ %i4 + 0x3c8 ], %i5 ! 201cfc8 <_User_extensions_List> 200a910: b8 17 23 c8 or %i4, 0x3c8, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a914: b8 07 20 04 add %i4, 4, %i4 200a918: 80 a7 40 1c cmp %i5, %i4 200a91c: 02 80 00 0d be 200a950 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN 200a920: 37 00 80 74 sethi %hi(0x201d000), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_restart != NULL ) 200a924: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200a928: 80 a0 60 00 cmp %g1, 0 200a92c: 02 80 00 05 be 200a940 <_User_extensions_Thread_restart+0x3c> 200a930: 84 16 e0 0c or %i3, 0xc, %g2 (*the_extension->Callouts.thread_restart)( 200a934: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a938: 9f c0 40 00 call %g1 200a93c: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a940: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a944: 80 a7 40 1c cmp %i5, %i4 200a948: 32 bf ff f8 bne,a 200a928 <_User_extensions_Thread_restart+0x24> 200a94c: c2 07 60 1c ld [ %i5 + 0x1c ], %g1 200a950: 81 c7 e0 08 ret 200a954: 81 e8 00 00 restore =============================================================================== 0200a0c4 <_User_extensions_Thread_start>: #include void _User_extensions_Thread_start ( Thread_Control *the_thread ) { 200a0c4: 9d e3 bf a0 save %sp, -96, %sp */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_First( Chain_Control *the_chain ) { return _Chain_Head( the_chain )->next; 200a0c8: 39 00 80 71 sethi %hi(0x201c400), %i4 200a0cc: fa 07 20 a8 ld [ %i4 + 0xa8 ], %i5 ! 201c4a8 <_User_extensions_List> 200a0d0: b8 17 20 a8 or %i4, 0xa8, %i4 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a0d4: b8 07 20 04 add %i4, 4, %i4 200a0d8: 80 a7 40 1c cmp %i5, %i4 200a0dc: 02 80 00 0d be 200a110 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN 200a0e0: 37 00 80 71 sethi %hi(0x201c400), %i3 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_start != NULL ) 200a0e4: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200a0e8: 80 a0 60 00 cmp %g1, 0 200a0ec: 02 80 00 05 be 200a100 <_User_extensions_Thread_start+0x3c> 200a0f0: 84 16 e0 ec or %i3, 0xec, %g2 (*the_extension->Callouts.thread_start)( 200a0f4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a0f8: 9f c0 40 00 call %g1 200a0fc: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200a100: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a104: 80 a7 40 1c cmp %i5, %i4 200a108: 32 bf ff f8 bne,a 200a0e8 <_User_extensions_Thread_start+0x24> 200a10c: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 200a110: 81 c7 e0 08 ret 200a114: 81 e8 00 00 restore =============================================================================== 0200a118 <_User_extensions_Thread_switch>: void _User_extensions_Thread_switch ( Thread_Control *executing, Thread_Control *heir ) { 200a118: 9d e3 bf a0 save %sp, -96, %sp 200a11c: 39 00 80 70 sethi %hi(0x201c000), %i4 200a120: fa 07 22 c4 ld [ %i4 + 0x2c4 ], %i5 ! 201c2c4 <_User_extensions_Switches_list> 200a124: b8 17 22 c4 or %i4, 0x2c4, %i4 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 200a128: b8 07 20 04 add %i4, 4, %i4 200a12c: 80 a7 40 1c cmp %i5, %i4 200a130: 02 80 00 0a be 200a158 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN 200a134: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); 200a138: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a13c: 90 10 00 18 mov %i0, %o0 200a140: 9f c0 40 00 call %g1 200a144: 92 10 00 19 mov %i1, %o1 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { 200a148: fa 07 40 00 ld [ %i5 ], %i5 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 200a14c: 80 a7 40 1c cmp %i5, %i4 200a150: 32 bf ff fb bne,a 200a13c <_User_extensions_Thread_switch+0x24> 200a154: c2 07 60 08 ld [ %i5 + 8 ], %g1 200a158: 81 c7 e0 08 ret 200a15c: 81 e8 00 00 restore =============================================================================== 0200bbd4 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200bbd4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200bbd8: 7f ff dc dc call 2002f48 200bbdc: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bbe0: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200bbe4: b6 06 20 04 add %i0, 4, %i3 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200bbe8: 80 a0 40 1b cmp %g1, %i3 200bbec: 02 80 00 1e be 200bc64 <_Watchdog_Adjust+0x90> 200bbf0: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200bbf4: 12 80 00 1e bne 200bc6c <_Watchdog_Adjust+0x98> 200bbf8: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bbfc: 80 a6 a0 00 cmp %i2, 0 200bc00: 02 80 00 19 be 200bc64 <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc04: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bc08: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 200bc0c: 80 a6 80 1c cmp %i2, %i4 200bc10: 1a 80 00 0a bcc 200bc38 <_Watchdog_Adjust+0x64> <== ALWAYS TAKEN 200bc14: b2 10 20 01 mov 1, %i1 _Watchdog_First( header )->delta_interval -= units; 200bc18: 10 80 00 1c b 200bc88 <_Watchdog_Adjust+0xb4> <== NOT EXECUTED 200bc1c: b8 27 00 1a sub %i4, %i2, %i4 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bc20: 02 80 00 11 be 200bc64 <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc24: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bc28: f8 00 60 10 ld [ %g1 + 0x10 ], %i4 200bc2c: 80 a7 00 1a cmp %i4, %i2 200bc30: 38 80 00 16 bgu,a 200bc88 <_Watchdog_Adjust+0xb4> 200bc34: b8 27 00 1a sub %i4, %i2, %i4 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200bc38: f2 20 60 10 st %i1, [ %g1 + 0x10 ] _ISR_Enable( level ); 200bc3c: 7f ff dc c7 call 2002f58 200bc40: 01 00 00 00 nop _Watchdog_Tickle( header ); 200bc44: 40 00 00 ab call 200bef0 <_Watchdog_Tickle> 200bc48: 90 10 00 1d mov %i5, %o0 _ISR_Disable( level ); 200bc4c: 7f ff dc bf call 2002f48 200bc50: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200bc54: c2 07 40 00 ld [ %i5 ], %g1 if ( _Chain_Is_empty( header ) ) 200bc58: 80 a6 c0 01 cmp %i3, %g1 200bc5c: 32 bf ff f1 bne,a 200bc20 <_Watchdog_Adjust+0x4c> 200bc60: b4 a6 80 1c subcc %i2, %i4, %i2 } break; } } _ISR_Enable( level ); 200bc64: 7f ff dc bd call 2002f58 200bc68: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200bc6c: 12 bf ff fe bne 200bc64 <_Watchdog_Adjust+0x90> <== NEVER TAKEN 200bc70: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200bc74: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200bc78: b4 00 80 1a add %g2, %i2, %i2 200bc7c: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200bc80: 7f ff dc b6 call 2002f58 200bc84: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200bc88: 10 bf ff f7 b 200bc64 <_Watchdog_Adjust+0x90> 200bc8c: f8 20 60 10 st %i4, [ %g1 + 0x10 ] =============================================================================== 0200a2e8 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 200a2e8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 200a2ec: 7f ff df c4 call 20021fc 200a2f0: 01 00 00 00 nop previous_state = the_watchdog->state; 200a2f4: fa 06 20 08 ld [ %i0 + 8 ], %i5 switch ( previous_state ) { 200a2f8: 80 a7 60 01 cmp %i5, 1 200a2fc: 02 80 00 2a be 200a3a4 <_Watchdog_Remove+0xbc> 200a300: 03 00 80 70 sethi %hi(0x201c000), %g1 200a304: 1a 80 00 09 bcc 200a328 <_Watchdog_Remove+0x40> 200a308: 80 a7 60 03 cmp %i5, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a30c: 03 00 80 70 sethi %hi(0x201c000), %g1 200a310: c2 00 63 cc ld [ %g1 + 0x3cc ], %g1 ! 201c3cc <_Watchdog_Ticks_since_boot> 200a314: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a318: 7f ff df bd call 200220c 200a31c: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a320: 81 c7 e0 08 ret 200a324: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 200a328: 18 bf ff fa bgu 200a310 <_Watchdog_Remove+0x28> <== NEVER TAKEN 200a32c: 03 00 80 70 sethi %hi(0x201c000), %g1 } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; _ISR_Enable( level ); return( previous_state ); } 200a330: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200a334: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200a338: c4 00 40 00 ld [ %g1 ], %g2 200a33c: 80 a0 a0 00 cmp %g2, 0 200a340: 02 80 00 07 be 200a35c <_Watchdog_Remove+0x74> 200a344: 05 00 80 70 sethi %hi(0x201c000), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200a348: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200a34c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 200a350: 84 00 c0 02 add %g3, %g2, %g2 200a354: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200a358: 05 00 80 70 sethi %hi(0x201c000), %g2 200a35c: c4 00 a3 c8 ld [ %g2 + 0x3c8 ], %g2 ! 201c3c8 <_Watchdog_Sync_count> 200a360: 80 a0 a0 00 cmp %g2, 0 200a364: 22 80 00 07 be,a 200a380 <_Watchdog_Remove+0x98> 200a368: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200a36c: 05 00 80 71 sethi %hi(0x201c400), %g2 200a370: c6 00 a0 f4 ld [ %g2 + 0xf4 ], %g3 ! 201c4f4 <_Per_CPU_Information+0x8> 200a374: 05 00 80 70 sethi %hi(0x201c000), %g2 200a378: c6 20 a3 68 st %g3, [ %g2 + 0x368 ] ! 201c368 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200a37c: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 200a380: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200a384: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a388: 03 00 80 70 sethi %hi(0x201c000), %g1 200a38c: c2 00 63 cc ld [ %g1 + 0x3cc ], %g1 ! 201c3cc <_Watchdog_Ticks_since_boot> 200a390: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a394: 7f ff df 9e call 200220c 200a398: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a39c: 81 c7 e0 08 ret 200a3a0: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3a4: c2 00 63 cc ld [ %g1 + 0x3cc ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 200a3a8: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a3ac: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a3b0: 7f ff df 97 call 200220c 200a3b4: b0 10 00 1d mov %i5, %i0 return( previous_state ); } 200a3b8: 81 c7 e0 08 ret 200a3bc: 81 e8 00 00 restore =============================================================================== 0200b404 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200b404: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200b408: 7f ff dd b1 call 2002acc 200b40c: 01 00 00 00 nop 200b410: ba 10 00 08 mov %o0, %i5 printk( "Watchdog Chain: %s %p\n", name, header ); 200b414: 11 00 80 70 sethi %hi(0x201c000), %o0 200b418: 94 10 00 19 mov %i1, %o2 200b41c: 92 10 00 18 mov %i0, %o1 200b420: 7f ff e4 c5 call 2004734 200b424: 90 12 22 f0 or %o0, 0x2f0, %o0 */ RTEMS_INLINE_ROUTINE const Chain_Node *_Chain_Immutable_first( const Chain_Control *the_chain ) { return _Chain_Immutable_head( the_chain )->next; 200b428: f8 06 40 00 ld [ %i1 ], %i4 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b42c: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200b430: 80 a7 00 19 cmp %i4, %i1 200b434: 02 80 00 0f be 200b470 <_Watchdog_Report_chain+0x6c> 200b438: 11 00 80 70 sethi %hi(0x201c000), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200b43c: 92 10 00 1c mov %i4, %o1 200b440: 40 00 00 0f call 200b47c <_Watchdog_Report> 200b444: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200b448: f8 07 00 00 ld [ %i4 ], %i4 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200b44c: 80 a7 00 19 cmp %i4, %i1 200b450: 12 bf ff fc bne 200b440 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200b454: 92 10 00 1c mov %i4, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200b458: 11 00 80 70 sethi %hi(0x201c000), %o0 200b45c: 92 10 00 18 mov %i0, %o1 200b460: 7f ff e4 b5 call 2004734 200b464: 90 12 23 08 or %o0, 0x308, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200b468: 7f ff dd 9d call 2002adc 200b46c: 91 e8 00 1d restore %g0, %i5, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200b470: 7f ff e4 b1 call 2004734 200b474: 90 12 23 18 or %o0, 0x318, %o0 200b478: 30 bf ff fc b,a 200b468 <_Watchdog_Report_chain+0x64> =============================================================================== 0200718c : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 200718c: 9d e3 bf 98 save %sp, -104, %sp 2007190: ba 10 00 18 mov %i0, %i5 */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2007194: 40 00 01 80 call 2007794 <_Chain_Get> 2007198: 90 10 00 1d mov %i5, %o0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 200719c: 92 10 20 00 clr %o1 20071a0: b8 10 00 08 mov %o0, %i4 20071a4: 94 10 00 1a mov %i2, %o2 20071a8: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20071ac: 80 a7 20 00 cmp %i4, 0 20071b0: 12 80 00 0a bne 20071d8 20071b4: 96 07 bf fc add %fp, -4, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 20071b8: 7f ff fc f4 call 2006588 20071bc: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 20071c0: 80 a2 20 00 cmp %o0, 0 20071c4: 02 bf ff f4 be 2007194 <== NEVER TAKEN 20071c8: b0 10 00 08 mov %o0, %i0 timeout, &out ); } *node_ptr = node; 20071cc: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 20071d0: 81 c7 e0 08 ret 20071d4: 81 e8 00 00 restore rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20071d8: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 20071dc: f8 26 c0 00 st %i4, [ %i3 ] return sc; } 20071e0: 81 c7 e0 08 ret 20071e4: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02007e00 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007e00: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007e04: 03 00 80 67 sethi %hi(0x2019c00), %g1 2007e08: c4 00 62 74 ld [ %g1 + 0x274 ], %g2 ! 2019e74 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007e0c: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 2007e10: 03 00 80 67 sethi %hi(0x2019c00), %g1 if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 2007e14: 88 10 20 12 mov 0x12, %g4 rtems_device_major_number *registered_major ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007e18: 80 a0 a0 00 cmp %g2, 0 2007e1c: 02 80 00 04 be 2007e2c 2007e20: de 00 63 04 ld [ %g1 + 0x304 ], %o7 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 2007e24: 81 c7 e0 08 ret 2007e28: 91 e8 00 04 restore %g0, %g4, %o0 rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 2007e2c: 80 a6 a0 00 cmp %i2, 0 2007e30: 02 80 00 40 be 2007f30 2007e34: 80 a6 60 00 cmp %i1, 0 return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 2007e38: 02 80 00 3e be 2007f30 2007e3c: de 26 80 00 st %o7, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007e40: c4 06 40 00 ld [ %i1 ], %g2 2007e44: 80 a0 a0 00 cmp %g2, 0 2007e48: 22 80 00 37 be,a 2007f24 2007e4c: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 2007e50: 80 a3 c0 18 cmp %o7, %i0 2007e54: 08 bf ff f4 bleu 2007e24 2007e58: 88 10 20 0a mov 0xa, %g4 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2007e5c: 05 00 80 67 sethi %hi(0x2019c00), %g2 2007e60: c8 00 a0 40 ld [ %g2 + 0x40 ], %g4 ! 2019c40 <_Thread_Dispatch_disable_level> 2007e64: 88 01 20 01 inc %g4 2007e68: c8 20 a0 40 st %g4, [ %g2 + 0x40 ] return _Thread_Dispatch_disable_level; 2007e6c: c4 00 a0 40 ld [ %g2 + 0x40 ], %g2 return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 2007e70: 80 a6 20 00 cmp %i0, 0 2007e74: 12 80 00 32 bne 2007f3c 2007e78: 1f 00 80 67 sethi %hi(0x2019c00), %o7 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2007e7c: c8 00 63 04 ld [ %g1 + 0x304 ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007e80: 80 a1 20 00 cmp %g4, 0 2007e84: 02 80 00 45 be 2007f98 <== NEVER TAKEN 2007e88: c2 03 e3 08 ld [ %o7 + 0x308 ], %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007e8c: 10 80 00 06 b 2007ea4 2007e90: c4 00 40 00 ld [ %g1 ], %g2 rtems_device_major_number n = _IO_Number_of_drivers; rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007e94: 80 a6 00 04 cmp %i0, %g4 2007e98: 02 80 00 35 be 2007f6c 2007e9c: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007ea0: c4 00 40 00 ld [ %g1 ], %g2 2007ea4: 80 a0 a0 00 cmp %g2, 0 2007ea8: 32 bf ff fb bne,a 2007e94 2007eac: b0 06 20 01 inc %i0 2007eb0: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007eb4: 80 a0 a0 00 cmp %g2, 0 2007eb8: 32 bf ff f7 bne,a 2007e94 2007ebc: b0 06 20 01 inc %i0 if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007ec0: f0 26 80 00 st %i0, [ %i2 ] 2007ec4: 83 2e 20 03 sll %i0, 3, %g1 if ( m != n ) 2007ec8: 80 a1 00 18 cmp %g4, %i0 2007ecc: 02 80 00 29 be 2007f70 <== NEVER TAKEN 2007ed0: 9b 2e 20 05 sll %i0, 5, %o5 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007ed4: c8 00 c0 00 ld [ %g3 ], %g4 2007ed8: c4 03 e3 08 ld [ %o7 + 0x308 ], %g2 2007edc: 82 23 40 01 sub %o5, %g1, %g1 2007ee0: c8 20 80 01 st %g4, [ %g2 + %g1 ] 2007ee4: c8 00 e0 04 ld [ %g3 + 4 ], %g4 2007ee8: 82 00 80 01 add %g2, %g1, %g1 2007eec: c8 20 60 04 st %g4, [ %g1 + 4 ] 2007ef0: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007ef4: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007ef8: c4 20 60 08 st %g2, [ %g1 + 8 ] 2007efc: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007f00: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f04: c4 20 60 0c st %g2, [ %g1 + 0xc ] 2007f08: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 2007f0c: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 2007f10: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 2007f14: 40 00 08 04 call 2009f24 <_Thread_Enable_dispatch> 2007f18: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 2007f1c: 40 00 21 25 call 20103b0 2007f20: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f24: 80 a0 a0 00 cmp %g2, 0 2007f28: 12 bf ff cb bne 2007e54 2007f2c: 80 a3 c0 18 cmp %o7, %i0 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 2007f30: 88 10 20 09 mov 9, %g4 _IO_Driver_address_table [major] = *driver_table; _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); } 2007f34: 81 c7 e0 08 ret 2007f38: 91 e8 00 04 restore %g0, %g4, %o0 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 2007f3c: c8 03 e3 08 ld [ %o7 + 0x308 ], %g4 2007f40: 83 2e 20 03 sll %i0, 3, %g1 2007f44: 9b 2e 20 05 sll %i0, 5, %o5 2007f48: 84 23 40 01 sub %o5, %g1, %g2 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f4c: d8 01 00 02 ld [ %g4 + %g2 ], %o4 2007f50: 80 a3 20 00 cmp %o4, 0 2007f54: 02 80 00 0b be 2007f80 2007f58: 84 01 00 02 add %g4, %g2, %g2 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 2007f5c: 40 00 07 f2 call 2009f24 <_Thread_Enable_dispatch> 2007f60: 01 00 00 00 nop return RTEMS_RESOURCE_IN_USE; 2007f64: 10 bf ff b0 b 2007e24 2007f68: 88 10 20 0c mov 0xc, %g4 ! c if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007f6c: f0 26 80 00 st %i0, [ %i2 ] if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 2007f70: 40 00 07 ed call 2009f24 <_Thread_Enable_dispatch> 2007f74: 01 00 00 00 nop return sc; 2007f78: 10 bf ff ab b 2007e24 2007f7c: 88 10 20 05 mov 5, %g4 ! 5 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f80: c4 00 a0 04 ld [ %g2 + 4 ], %g2 2007f84: 80 a0 a0 00 cmp %g2, 0 2007f88: 12 bf ff f5 bne 2007f5c 2007f8c: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 2007f90: 10 bf ff d1 b 2007ed4 2007f94: f0 26 80 00 st %i0, [ %i2 ] if ( rtems_io_is_empty_table( table ) ) break; } /* Assigns invalid value in case of failure */ *major = m; 2007f98: 10 bf ff f6 b 2007f70 <== NOT EXECUTED 2007f9c: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED =============================================================================== 02009510 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009510: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009514: 80 a6 20 00 cmp %i0, 0 2009518: 02 80 00 23 be 20095a4 <== NEVER TAKEN 200951c: 37 00 80 7b sethi %hi(0x201ec00), %i3 2009520: b6 16 e0 fc or %i3, 0xfc, %i3 ! 201ecfc <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009524: b4 06 e0 0c add %i3, 0xc, %i2 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2009528: c2 06 c0 00 ld [ %i3 ], %g1 200952c: 80 a0 60 00 cmp %g1, 0 2009530: 22 80 00 1a be,a 2009598 2009534: b6 06 e0 04 add %i3, 4, %i3 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009538: f8 00 60 04 ld [ %g1 + 4 ], %i4 if ( !information ) 200953c: 80 a7 20 00 cmp %i4, 0 2009540: 22 80 00 16 be,a 2009598 2009544: b6 06 e0 04 add %i3, 4, %i3 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009548: c2 17 20 10 lduh [ %i4 + 0x10 ], %g1 200954c: 84 90 60 00 orcc %g1, 0, %g2 2009550: 22 80 00 12 be,a 2009598 <== NEVER TAKEN 2009554: b6 06 e0 04 add %i3, 4, %i3 <== NOT EXECUTED 2009558: ba 10 20 01 mov 1, %i5 the_thread = (Thread_Control *)information->local_table[ i ]; 200955c: c6 07 20 1c ld [ %i4 + 0x1c ], %g3 2009560: 83 2f 60 02 sll %i5, 2, %g1 2009564: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 if ( !the_thread ) 2009568: 90 90 60 00 orcc %g1, 0, %o0 200956c: 02 80 00 05 be 2009580 2009570: ba 07 60 01 inc %i5 continue; (*routine)(the_thread); 2009574: 9f c6 00 00 call %i0 2009578: 01 00 00 00 nop 200957c: c4 17 20 10 lduh [ %i4 + 0x10 ], %g2 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009580: 83 28 a0 10 sll %g2, 0x10, %g1 2009584: 83 30 60 10 srl %g1, 0x10, %g1 2009588: 80 a0 40 1d cmp %g1, %i5 200958c: 3a bf ff f5 bcc,a 2009560 2009590: c6 07 20 1c ld [ %i4 + 0x1c ], %g3 2009594: b6 06 e0 04 add %i3, 4, %i3 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009598: 80 a6 c0 1a cmp %i3, %i2 200959c: 32 bf ff e4 bne,a 200952c 20095a0: c2 06 c0 00 ld [ %i3 ], %g1 20095a4: 81 c7 e0 08 ret 20095a8: 81 e8 00 00 restore =============================================================================== 020081bc : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 20081bc: 9d e3 bf a0 save %sp, -96, %sp 20081c0: 90 10 00 18 mov %i0, %o0 int i; /* * Validate parameters and look up information structure. */ if ( !info ) 20081c4: 80 a6 a0 00 cmp %i2, 0 20081c8: 02 80 00 21 be 200824c 20081cc: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 20081d0: 93 2e 60 10 sll %i1, 0x10, %o1 if ( !obj_info ) return RTEMS_INVALID_NUMBER; 20081d4: b0 10 20 0a mov 0xa, %i0 * Validate parameters and look up information structure. */ if ( !info ) return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 20081d8: 40 00 07 5a call 2009f40 <_Objects_Get_information> 20081dc: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 20081e0: 80 a2 20 00 cmp %o0, 0 20081e4: 02 80 00 1a be 200824c 20081e8: 01 00 00 00 nop /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20081ec: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 20081f0: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20081f4: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20081f8: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20081fc: c4 26 a0 04 st %g2, [ %i2 + 4 ] return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2008200: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 2008204: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; 2008208: c8 26 a0 08 st %g4, [ %i2 + 8 ] for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 200820c: 80 a1 20 00 cmp %g4, 0 2008210: 02 80 00 0d be 2008244 <== NEVER TAKEN 2008214: 84 10 20 00 clr %g2 2008218: de 02 20 1c ld [ %o0 + 0x1c ], %o7 200821c: 86 10 20 01 mov 1, %g3 2008220: 82 10 20 01 mov 1, %g1 if ( !obj_info->local_table[i] ) 2008224: 87 28 e0 02 sll %g3, 2, %g3 2008228: c6 03 c0 03 ld [ %o7 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 200822c: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 2008230: 80 a0 00 03 cmp %g0, %g3 2008234: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008238: 80 a1 00 01 cmp %g4, %g1 200823c: 1a bf ff fa bcc 2008224 2008240: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 2008244: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 2008248: b0 10 20 00 clr %i0 } 200824c: 81 c7 e0 08 ret 2008250: 81 e8 00 00 restore =============================================================================== 02013cf8 : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2013cf8: 9d e3 bf a0 save %sp, -96, %sp register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2013cfc: 80 a6 20 00 cmp %i0, 0 2013d00: 12 80 00 04 bne 2013d10 2013d04: 82 10 20 03 mov 3, %g1 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2013d08: 81 c7 e0 08 ret 2013d0c: 91 e8 00 01 restore %g0, %g1, %o0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) return RTEMS_INVALID_NAME; if ( !starting_address ) 2013d10: 80 a6 60 00 cmp %i1, 0 2013d14: 02 bf ff fd be 2013d08 2013d18: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; if ( !id ) 2013d1c: 80 a7 60 00 cmp %i5, 0 2013d20: 02 bf ff fa be 2013d08 <== NEVER TAKEN 2013d24: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2013d28: 02 bf ff f8 be 2013d08 2013d2c: 82 10 20 08 mov 8, %g1 2013d30: 80 a6 a0 00 cmp %i2, 0 2013d34: 02 bf ff f5 be 2013d08 2013d38: 80 a6 80 1b cmp %i2, %i3 2013d3c: 0a bf ff f3 bcs 2013d08 2013d40: 80 8e e0 07 btst 7, %i3 2013d44: 12 bf ff f1 bne 2013d08 2013d48: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 2013d4c: 12 bf ff ef bne 2013d08 2013d50: 82 10 20 09 mov 9, %g1 * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 2013d54: 03 00 80 f0 sethi %hi(0x203c000), %g1 2013d58: c4 00 62 a0 ld [ %g1 + 0x2a0 ], %g2 ! 203c2a0 <_Thread_Dispatch_disable_level> 2013d5c: 84 00 a0 01 inc %g2 2013d60: c4 20 62 a0 st %g2, [ %g1 + 0x2a0 ] return _Thread_Dispatch_disable_level; 2013d64: c2 00 62 a0 ld [ %g1 + 0x2a0 ], %g1 * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 2013d68: 23 00 80 f0 sethi %hi(0x203c000), %l1 2013d6c: 40 00 13 04 call 201897c <_Objects_Allocate> 2013d70: 90 14 60 b4 or %l1, 0xb4, %o0 ! 203c0b4 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 2013d74: a0 92 20 00 orcc %o0, 0, %l0 2013d78: 02 80 00 1a be 2013de0 2013d7c: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 2013d80: f8 24 20 1c st %i4, [ %l0 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2013d84: f2 24 20 10 st %i1, [ %l0 + 0x10 ] the_partition->length = length; 2013d88: f4 24 20 14 st %i2, [ %l0 + 0x14 ] the_partition->buffer_size = buffer_size; 2013d8c: f6 24 20 18 st %i3, [ %l0 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 2013d90: c0 24 20 20 clr [ %l0 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2013d94: 40 00 61 7f call 202c390 <.udiv> 2013d98: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2013d9c: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 2013da0: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2013da4: 96 10 00 1b mov %i3, %o3 2013da8: b8 04 20 24 add %l0, 0x24, %i4 2013dac: 40 00 0c bd call 20170a0 <_Chain_Initialize> 2013db0: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2013db4: c4 14 20 0a lduh [ %l0 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2013db8: a2 14 60 b4 or %l1, 0xb4, %l1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2013dbc: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2013dc0: c2 04 20 08 ld [ %l0 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2013dc4: 85 28 a0 02 sll %g2, 2, %g2 2013dc8: e0 20 c0 02 st %l0, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2013dcc: f0 24 20 0c st %i0, [ %l0 + 0xc ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2013dd0: 40 00 18 19 call 2019e34 <_Thread_Enable_dispatch> 2013dd4: c2 27 40 00 st %g1, [ %i5 ] return RTEMS_SUCCESSFUL; 2013dd8: 10 bf ff cc b 2013d08 2013ddc: 82 10 20 00 clr %g1 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2013de0: 40 00 18 15 call 2019e34 <_Thread_Enable_dispatch> 2013de4: 01 00 00 00 nop return RTEMS_TOO_MANY; 2013de8: 10 bf ff c8 b 2013d08 2013dec: 82 10 20 05 mov 5, %g1 ! 5 =============================================================================== 02007608 : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 2007608: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Rate_monotonic_Control *_Rate_monotonic_Get ( Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) 200760c: 11 00 80 77 sethi %hi(0x201dc00), %o0 2007610: 92 10 00 18 mov %i0, %o1 2007614: 90 12 23 94 or %o0, 0x394, %o0 2007618: 40 00 09 4a call 2009b40 <_Objects_Get> 200761c: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007620: c2 07 bf fc ld [ %fp + -4 ], %g1 2007624: 80 a0 60 00 cmp %g1, 0 2007628: 12 80 00 0d bne 200765c 200762c: ba 10 00 08 mov %o0, %i5 case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 2007630: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007634: 39 00 80 78 sethi %hi(0x201e000), %i4 2007638: b8 17 23 2c or %i4, 0x32c, %i4 ! 201e32c <_Per_CPU_Information> 200763c: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007640: 80 a0 80 01 cmp %g2, %g1 2007644: 02 80 00 08 be 2007664 2007648: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 200764c: 40 00 0d 10 call 200aa8c <_Thread_Enable_dispatch> 2007650: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 2007654: 81 c7 e0 08 ret 2007658: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 200765c: 81 c7 e0 08 ret 2007660: 91 e8 20 04 restore %g0, 4, %o0 if ( !_Thread_Is_executing( the_period->owner ) ) { _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { 2007664: 12 80 00 0e bne 200769c 2007668: 01 00 00 00 nop switch ( the_period->state ) { 200766c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007670: 80 a0 60 04 cmp %g1, 4 2007674: 18 80 00 06 bgu 200768c <== NEVER TAKEN 2007678: b0 10 20 00 clr %i0 200767c: 83 28 60 02 sll %g1, 2, %g1 2007680: 05 00 80 6f sethi %hi(0x201bc00), %g2 2007684: 84 10 a3 d4 or %g2, 0x3d4, %g2 ! 201bfd4 2007688: f0 00 80 01 ld [ %g2 + %g1 ], %i0 the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 200768c: 40 00 0d 00 call 200aa8c <_Thread_Enable_dispatch> 2007690: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007694: 81 c7 e0 08 ret 2007698: 81 e8 00 00 restore } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 200769c: 7f ff ed e8 call 2002e3c 20076a0: 01 00 00 00 nop 20076a4: b4 10 00 08 mov %o0, %i2 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 20076a8: f6 07 60 38 ld [ %i5 + 0x38 ], %i3 20076ac: 80 a6 e0 00 cmp %i3, 0 20076b0: 02 80 00 14 be 2007700 20076b4: 80 a6 e0 02 cmp %i3, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20076b8: 02 80 00 29 be 200775c 20076bc: 80 a6 e0 04 cmp %i3, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20076c0: 12 bf ff e5 bne 2007654 <== NEVER TAKEN 20076c4: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20076c8: 7f ff ff 92 call 2007510 <_Rate_monotonic_Update_statistics> 20076cc: 90 10 00 1d mov %i5, %o0 _ISR_Enable( level ); 20076d0: 7f ff ed df call 2002e4c 20076d4: 90 10 00 1a mov %i2, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20076d8: 82 10 20 02 mov 2, %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20076dc: 92 07 60 10 add %i5, 0x10, %o1 20076e0: 11 00 80 78 sethi %hi(0x201e000), %o0 the_period->next_length = length; 20076e4: f2 27 60 3c st %i1, [ %i5 + 0x3c ] 20076e8: 90 12 21 bc or %o0, 0x1bc, %o0 */ _Rate_monotonic_Update_statistics( the_period ); _ISR_Enable( level ); the_period->state = RATE_MONOTONIC_ACTIVE; 20076ec: c2 27 60 38 st %g1, [ %i5 + 0x38 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20076f0: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20076f4: 40 00 10 fa call 200badc <_Watchdog_Insert> 20076f8: b0 10 20 06 mov 6, %i0 20076fc: 30 bf ff e4 b,a 200768c return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 2007700: 7f ff ed d3 call 2002e4c 2007704: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 2007708: 7f ff ff 68 call 20074a8 <_Rate_monotonic_Initiate_statistics> 200770c: 90 10 00 1d mov %i5, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007710: 82 10 20 02 mov 2, %g1 2007714: 92 07 60 10 add %i5, 0x10, %o1 2007718: c2 27 60 38 st %g1, [ %i5 + 0x38 ] 200771c: 11 00 80 78 sethi %hi(0x201e000), %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007720: 03 00 80 1e sethi %hi(0x2007800), %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007724: 90 12 21 bc or %o0, 0x1bc, %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007728: 82 10 62 b0 or %g1, 0x2b0, %g1 the_watchdog->id = id; 200772c: f0 27 60 30 st %i0, [ %i5 + 0x30 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007730: c2 27 60 2c st %g1, [ %i5 + 0x2c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2007734: c0 27 60 18 clr [ %i5 + 0x18 ] the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 2007738: c0 27 60 34 clr [ %i5 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 200773c: f2 27 60 3c st %i1, [ %i5 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007740: f2 27 60 1c st %i1, [ %i5 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007744: 40 00 10 e6 call 200badc <_Watchdog_Insert> 2007748: b0 10 20 00 clr %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 200774c: 40 00 0c d0 call 200aa8c <_Thread_Enable_dispatch> 2007750: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2007754: 81 c7 e0 08 ret 2007758: 81 e8 00 00 restore if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 200775c: 7f ff ff 6d call 2007510 <_Rate_monotonic_Update_statistics> 2007760: 90 10 00 1d mov %i5, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007764: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007768: f2 27 60 3c st %i1, [ %i5 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 200776c: c2 27 60 38 st %g1, [ %i5 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007770: 7f ff ed b7 call 2002e4c 2007774: 90 10 00 1a mov %i2, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007778: c2 07 20 0c ld [ %i4 + 0xc ], %g1 200777c: c4 07 60 08 ld [ %i5 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007780: 90 10 00 01 mov %g1, %o0 2007784: 13 00 00 10 sethi %hi(0x4000), %o1 2007788: 40 00 0f 12 call 200b3d0 <_Thread_Set_state> 200778c: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007790: 7f ff ed ab call 2002e3c 2007794: 01 00 00 00 nop local_state = the_period->state; 2007798: f4 07 60 38 ld [ %i5 + 0x38 ], %i2 the_period->state = RATE_MONOTONIC_ACTIVE; 200779c: f6 27 60 38 st %i3, [ %i5 + 0x38 ] _ISR_Enable( level ); 20077a0: 7f ff ed ab call 2002e4c 20077a4: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 20077a8: 80 a6 a0 03 cmp %i2, 3 20077ac: 22 80 00 06 be,a 20077c4 20077b0: d0 07 20 0c ld [ %i4 + 0xc ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 20077b4: 40 00 0c b6 call 200aa8c <_Thread_Enable_dispatch> 20077b8: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20077bc: 81 c7 e0 08 ret 20077c0: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20077c4: 40 00 0b c0 call 200a6c4 <_Thread_Clear_state> 20077c8: 13 00 00 10 sethi %hi(0x4000), %o1 20077cc: 30 bf ff fa b,a 20077b4 =============================================================================== 020077d0 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 20077d0: 9d e3 bf 38 save %sp, -200, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 20077d4: 80 a6 60 00 cmp %i1, 0 20077d8: 02 80 00 48 be 20078f8 <== NEVER TAKEN 20077dc: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 20077e0: 13 00 80 6f sethi %hi(0x201bc00), %o1 20077e4: 9f c6 40 00 call %i1 20077e8: 92 12 63 e8 or %o1, 0x3e8, %o1 ! 201bfe8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 20077ec: 90 10 00 18 mov %i0, %o0 20077f0: 13 00 80 70 sethi %hi(0x201c000), %o1 20077f4: 9f c6 40 00 call %i1 20077f8: 92 12 60 08 or %o1, 8, %o1 ! 201c008 (*print)( context, "--- Wall times are in seconds ---\n" ); 20077fc: 90 10 00 18 mov %i0, %o0 2007800: 13 00 80 70 sethi %hi(0x201c000), %o1 2007804: 9f c6 40 00 call %i1 2007808: 92 12 60 30 or %o1, 0x30, %o1 ! 201c030 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 200780c: 90 10 00 18 mov %i0, %o0 2007810: 13 00 80 70 sethi %hi(0x201c000), %o1 2007814: 9f c6 40 00 call %i1 2007818: 92 12 60 58 or %o1, 0x58, %o1 ! 201c058 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 200781c: 90 10 00 18 mov %i0, %o0 2007820: 13 00 80 70 sethi %hi(0x201c000), %o1 2007824: 9f c6 40 00 call %i1 2007828: 92 12 60 a8 or %o1, 0xa8, %o1 ! 201c0a8 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 200782c: 39 00 80 77 sethi %hi(0x201dc00), %i4 2007830: b8 17 23 94 or %i4, 0x394, %i4 ! 201df94 <_Rate_monotonic_Information> 2007834: fa 07 20 08 ld [ %i4 + 8 ], %i5 2007838: c2 07 20 0c ld [ %i4 + 0xc ], %g1 200783c: 80 a7 40 01 cmp %i5, %g1 2007840: 18 80 00 2e bgu 20078f8 <== NEVER TAKEN 2007844: 35 00 80 70 sethi %hi(0x201c000), %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007848: 23 00 80 70 sethi %hi(0x201c000), %l1 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 200784c: 21 00 80 70 sethi %hi(0x201c000), %l0 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007850: 37 00 80 6c sethi %hi(0x201b000), %i3 rtems_object_get_name( the_status.owner, sizeof(name), name ); /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007854: b4 16 a0 f8 or %i2, 0xf8, %i2 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007858: a2 14 61 10 or %l1, 0x110, %l1 struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); (*print)( context, 200785c: a0 14 21 30 or %l0, 0x130, %l0 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007860: 10 80 00 06 b 2007878 2007864: b6 16 e2 68 or %i3, 0x268, %i3 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007868: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 200786c: 80 a0 40 1d cmp %g1, %i5 2007870: 0a 80 00 22 bcs 20078f8 2007874: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007878: 90 10 00 1d mov %i5, %o0 200787c: 40 00 19 49 call 200dda0 2007880: 92 07 bf a0 add %fp, -96, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007884: 80 a2 20 00 cmp %o0, 0 2007888: 32 bf ff f8 bne,a 2007868 200788c: c2 07 20 0c ld [ %i4 + 0xc ], %g1 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007890: 92 07 bf d8 add %fp, -40, %o1 2007894: 40 00 19 72 call 200de5c 2007898: 90 10 00 1d mov %i5, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 200789c: d0 07 bf d8 ld [ %fp + -40 ], %o0 20078a0: 92 10 20 05 mov 5, %o1 20078a4: 40 00 00 b4 call 2007b74 20078a8: 94 07 bf f8 add %fp, -8, %o2 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20078ac: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20078b0: 92 10 00 1a mov %i2, %o1 20078b4: 94 10 00 1d mov %i5, %o2 20078b8: 90 10 00 18 mov %i0, %o0 20078bc: 9f c6 40 00 call %i1 20078c0: 96 07 bf f8 add %fp, -8, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20078c4: c2 07 bf a0 ld [ %fp + -96 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20078c8: 94 07 bf f0 add %fp, -16, %o2 20078cc: 90 07 bf b8 add %fp, -72, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20078d0: 80 a0 60 00 cmp %g1, 0 20078d4: 12 80 00 0b bne 2007900 20078d8: 92 10 00 1b mov %i3, %o1 (*print)( context, "\n" ); 20078dc: 9f c6 40 00 call %i1 20078e0: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20078e4: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20078e8: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20078ec: 80 a0 40 1d cmp %g1, %i5 20078f0: 1a bf ff e3 bcc 200787c <== ALWAYS TAKEN 20078f4: 90 10 00 1d mov %i5, %o0 20078f8: 81 c7 e0 08 ret 20078fc: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007900: 40 00 0f 3b call 200b5ec <_Timespec_Divide_by_integer> 2007904: 92 10 00 01 mov %g1, %o1 (*print)( context, 2007908: d0 07 bf ac ld [ %fp + -84 ], %o0 200790c: 40 00 46 1c call 201917c <.div> 2007910: 92 10 23 e8 mov 0x3e8, %o1 2007914: aa 10 00 08 mov %o0, %l5 2007918: d0 07 bf b4 ld [ %fp + -76 ], %o0 200791c: 40 00 46 18 call 201917c <.div> 2007920: 92 10 23 e8 mov 0x3e8, %o1 2007924: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007928: a6 10 00 08 mov %o0, %l3 200792c: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007930: e4 07 bf a8 ld [ %fp + -88 ], %l2 2007934: e8 07 bf b0 ld [ %fp + -80 ], %l4 2007938: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 200793c: 40 00 46 10 call 201917c <.div> 2007940: 92 10 23 e8 mov 0x3e8, %o1 2007944: 96 10 00 15 mov %l5, %o3 2007948: 98 10 00 14 mov %l4, %o4 200794c: 9a 10 00 13 mov %l3, %o5 2007950: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007954: 92 10 00 11 mov %l1, %o1 2007958: 94 10 00 12 mov %l2, %o2 200795c: 9f c6 40 00 call %i1 2007960: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007964: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007968: 94 07 bf f0 add %fp, -16, %o2 200796c: 40 00 0f 20 call 200b5ec <_Timespec_Divide_by_integer> 2007970: 90 07 bf d0 add %fp, -48, %o0 (*print)( context, 2007974: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007978: 40 00 46 01 call 201917c <.div> 200797c: 92 10 23 e8 mov 0x3e8, %o1 2007980: a8 10 00 08 mov %o0, %l4 2007984: d0 07 bf cc ld [ %fp + -52 ], %o0 2007988: 40 00 45 fd call 201917c <.div> 200798c: 92 10 23 e8 mov 0x3e8, %o1 2007990: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007994: a4 10 00 08 mov %o0, %l2 2007998: d0 07 bf f4 ld [ %fp + -12 ], %o0 200799c: ea 07 bf c0 ld [ %fp + -64 ], %l5 20079a0: e6 07 bf c8 ld [ %fp + -56 ], %l3 20079a4: 92 10 23 e8 mov 0x3e8, %o1 20079a8: 40 00 45 f5 call 201917c <.div> 20079ac: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 20079b0: 92 10 00 10 mov %l0, %o1 20079b4: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 20079b8: 94 10 00 15 mov %l5, %o2 20079bc: 90 10 00 18 mov %i0, %o0 20079c0: 96 10 00 14 mov %l4, %o3 20079c4: 98 10 00 13 mov %l3, %o4 20079c8: 9f c6 40 00 call %i1 20079cc: 9a 10 00 12 mov %l2, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20079d0: 10 bf ff a6 b 2007868 20079d4: c2 07 20 0c ld [ %i4 + 0xc ], %g1 =============================================================================== 020079f0 : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 20079f0: 9d e3 bf a0 save %sp, -96, %sp * * This rountine increments the thread dispatch level */ RTEMS_INLINE_ROUTINE uint32_t _Thread_Dispatch_increment_disable_level(void) { _Thread_Dispatch_disable_level++; 20079f4: 03 00 80 78 sethi %hi(0x201e000), %g1 20079f8: c4 00 61 00 ld [ %g1 + 0x100 ], %g2 ! 201e100 <_Thread_Dispatch_disable_level> 20079fc: 84 00 a0 01 inc %g2 2007a00: c4 20 61 00 st %g2, [ %g1 + 0x100 ] return _Thread_Dispatch_disable_level; 2007a04: c2 00 61 00 ld [ %g1 + 0x100 ], %g1 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a08: 39 00 80 77 sethi %hi(0x201dc00), %i4 2007a0c: b8 17 23 94 or %i4, 0x394, %i4 ! 201df94 <_Rate_monotonic_Information> 2007a10: fa 07 20 08 ld [ %i4 + 8 ], %i5 2007a14: c2 07 20 0c ld [ %i4 + 0xc ], %g1 2007a18: 80 a7 40 01 cmp %i5, %g1 2007a1c: 18 80 00 09 bgu 2007a40 <== NEVER TAKEN 2007a20: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { (void) rtems_rate_monotonic_reset_statistics( id ); 2007a24: 40 00 00 09 call 2007a48 2007a28: 90 10 00 1d mov %i5, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a2c: c2 07 20 0c ld [ %i4 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007a30: ba 07 60 01 inc %i5 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007a34: 80 a0 40 1d cmp %g1, %i5 2007a38: 1a bf ff fb bcc 2007a24 2007a3c: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2007a40: 40 00 0c 13 call 200aa8c <_Thread_Enable_dispatch> 2007a44: 81 e8 00 00 restore =============================================================================== 020152b4 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 20152b4: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20152b8: 80 a6 60 00 cmp %i1, 0 20152bc: 12 80 00 04 bne 20152cc 20152c0: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20152c4: 81 c7 e0 08 ret 20152c8: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20152cc: 90 10 00 18 mov %i0, %o0 20152d0: 40 00 12 e5 call 2019e64 <_Thread_Get> 20152d4: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20152d8: c2 07 bf fc ld [ %fp + -4 ], %g1 20152dc: 80 a0 60 00 cmp %g1, 0 20152e0: 12 80 00 20 bne 2015360 20152e4: b8 10 00 08 mov %o0, %i4 case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20152e8: fa 02 21 58 ld [ %o0 + 0x158 ], %i5 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20152ec: c2 07 60 0c ld [ %i5 + 0xc ], %g1 20152f0: 80 a0 60 00 cmp %g1, 0 20152f4: 02 80 00 1e be 201536c 20152f8: 01 00 00 00 nop if ( asr->is_enabled ) { 20152fc: c2 0f 60 08 ldub [ %i5 + 8 ], %g1 2015300: 80 a0 60 00 cmp %g1, 0 2015304: 02 80 00 1e be 201537c 2015308: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201530c: 7f ff e6 bf call 200ee08 2015310: 01 00 00 00 nop *signal_set |= signals; 2015314: c2 07 60 14 ld [ %i5 + 0x14 ], %g1 2015318: b2 10 40 19 or %g1, %i1, %i1 201531c: f2 27 60 14 st %i1, [ %i5 + 0x14 ] _ISR_Enable( _level ); 2015320: 7f ff e6 be call 200ee18 2015324: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 2015328: 03 00 80 f1 sethi %hi(0x203c400), %g1 201532c: 82 10 60 d4 or %g1, 0xd4, %g1 ! 203c4d4 <_Per_CPU_Information> 2015330: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015334: 80 a0 a0 00 cmp %g2, 0 2015338: 02 80 00 06 be 2015350 201533c: 01 00 00 00 nop 2015340: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015344: 80 a7 00 02 cmp %i4, %g2 2015348: 02 80 00 15 be 201539c <== ALWAYS TAKEN 201534c: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015350: 40 00 12 b9 call 2019e34 <_Thread_Enable_dispatch> 2015354: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2015358: 10 bf ff db b 20152c4 201535c: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 2015360: 82 10 20 04 mov 4, %g1 } 2015364: 81 c7 e0 08 ret 2015368: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 201536c: 40 00 12 b2 call 2019e34 <_Thread_Enable_dispatch> 2015370: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2015374: 10 bf ff d4 b 20152c4 2015378: 82 10 20 0b mov 0xb, %g1 ! b rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201537c: 7f ff e6 a3 call 200ee08 2015380: 01 00 00 00 nop *signal_set |= signals; 2015384: c2 07 60 18 ld [ %i5 + 0x18 ], %g1 2015388: b2 10 40 19 or %g1, %i1, %i1 201538c: f2 27 60 18 st %i1, [ %i5 + 0x18 ] _ISR_Enable( _level ); 2015390: 7f ff e6 a2 call 200ee18 2015394: 01 00 00 00 nop 2015398: 30 bf ff ee b,a 2015350 if ( ! _ASR_Is_null_handler( asr->handler ) ) { if ( asr->is_enabled ) { _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) _Thread_Dispatch_necessary = true; 201539c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20153a0: 30 bf ff ec b,a 2015350 =============================================================================== 0200e534 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200e534: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200e538: 80 a6 a0 00 cmp %i2, 0 200e53c: 02 80 00 3b be 200e628 200e540: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200e544: 21 00 80 71 sethi %hi(0x201c400), %l0 200e548: a0 14 20 ec or %l0, 0xec, %l0 ! 201c4ec <_Per_CPU_Information> 200e54c: fa 04 20 0c ld [ %l0 + 0xc ], %i5 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e550: c4 0f 60 74 ldub [ %i5 + 0x74 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e554: c2 07 60 7c ld [ %i5 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e558: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200e55c: f8 07 61 58 ld [ %i5 + 0x158 ], %i4 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e560: b6 60 3f ff subx %g0, -1, %i3 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e564: 80 a0 60 00 cmp %g1, 0 200e568: 12 80 00 40 bne 200e668 200e56c: b7 2e e0 08 sll %i3, 8, %i3 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e570: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 200e574: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e578: 7f ff f0 8a call 200a7a0 <_CPU_ISR_Get_level> 200e57c: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e580: a3 2c 60 0a sll %l1, 0xa, %l1 200e584: a2 14 40 08 or %l1, %o0, %l1 old_mode |= _ISR_Get_level(); 200e588: b6 14 40 1b or %l1, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e58c: 80 8e 61 00 btst 0x100, %i1 200e590: 02 80 00 06 be 200e5a8 200e594: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e598: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200e59c: 80 a0 00 01 cmp %g0, %g1 200e5a0: 82 60 3f ff subx %g0, -1, %g1 200e5a4: c2 2f 60 74 stb %g1, [ %i5 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200e5a8: 80 8e 62 00 btst 0x200, %i1 200e5ac: 12 80 00 21 bne 200e630 200e5b0: 80 8e 22 00 btst 0x200, %i0 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e5b4: 80 8e 60 0f btst 0xf, %i1 200e5b8: 12 80 00 27 bne 200e654 200e5bc: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e5c0: 80 8e 64 00 btst 0x400, %i1 200e5c4: 02 80 00 14 be 200e614 200e5c8: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e5cc: c4 0f 20 08 ldub [ %i4 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200e5d0: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200e5d4: 80 a0 00 18 cmp %g0, %i0 200e5d8: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e5dc: 80 a0 80 01 cmp %g2, %g1 200e5e0: 22 80 00 0e be,a 200e618 200e5e4: 03 00 80 71 sethi %hi(0x201c400), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200e5e8: 7f ff cf 05 call 20021fc 200e5ec: c2 2f 20 08 stb %g1, [ %i4 + 8 ] _signals = information->signals_pending; 200e5f0: c4 07 20 18 ld [ %i4 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 200e5f4: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 information->signals_posted = _signals; 200e5f8: c4 27 20 14 st %g2, [ %i4 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200e5fc: c2 27 20 18 st %g1, [ %i4 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200e600: 7f ff cf 03 call 200220c 200e604: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200e608: c2 07 20 14 ld [ %i4 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200e60c: 80 a0 00 01 cmp %g0, %g1 200e610: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200e614: 03 00 80 71 sethi %hi(0x201c400), %g1 200e618: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 ! 201c414 <_System_state_Current> 200e61c: 80 a0 a0 03 cmp %g2, 3 200e620: 02 80 00 1f be 200e69c 200e624: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 200e628: 81 c7 e0 08 ret 200e62c: 91 e8 00 01 restore %g0, %g1, %o0 */ if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { 200e630: 22 bf ff e1 be,a 200e5b4 200e634: c0 27 60 7c clr [ %i5 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e638: 03 00 80 70 sethi %hi(0x201c000), %g1 200e63c: c2 00 62 24 ld [ %g1 + 0x224 ], %g1 ! 201c224 <_Thread_Ticks_per_timeslice> } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e640: 80 8e 60 0f btst 0xf, %i1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e644: c2 27 60 78 st %g1, [ %i5 + 0x78 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200e648: 82 10 20 01 mov 1, %g1 } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e64c: 02 bf ff dd be 200e5c0 200e650: c2 27 60 7c st %g1, [ %i5 + 0x7c ] */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e654: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e658: 7f ff ce ed call 200220c 200e65c: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e660: 10 bf ff d9 b 200e5c4 200e664: 80 8e 64 00 btst 0x400, %i1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e668: c2 0f 20 08 ldub [ %i4 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200e66c: b6 16 e2 00 or %i3, 0x200, %i3 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e670: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e674: 7f ff f0 4b call 200a7a0 <_CPU_ISR_Get_level> 200e678: a2 60 3f ff subx %g0, -1, %l1 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e67c: a3 2c 60 0a sll %l1, 0xa, %l1 200e680: a2 14 40 08 or %l1, %o0, %l1 old_mode |= _ISR_Get_level(); 200e684: b6 14 40 1b or %l1, %i3, %i3 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e688: 80 8e 61 00 btst 0x100, %i1 200e68c: 02 bf ff c7 be 200e5a8 200e690: f6 26 80 00 st %i3, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e694: 10 bf ff c2 b 200e59c 200e698: 82 0e 21 00 and %i0, 0x100, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 200e69c: 80 88 e0 ff btst 0xff, %g3 200e6a0: 12 80 00 0a bne 200e6c8 200e6a4: c4 04 20 0c ld [ %l0 + 0xc ], %g2 200e6a8: c6 04 20 10 ld [ %l0 + 0x10 ], %g3 200e6ac: 80 a0 80 03 cmp %g2, %g3 200e6b0: 02 bf ff de be 200e628 200e6b4: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e6b8: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200e6bc: 80 a0 a0 00 cmp %g2, 0 200e6c0: 02 bf ff da be 200e628 <== NEVER TAKEN 200e6c4: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e6c8: 82 10 20 01 mov 1, %g1 ! 1 200e6cc: c2 2c 20 18 stb %g1, [ %l0 + 0x18 ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e6d0: 7f ff ea 9b call 200913c <_Thread_Dispatch> 200e6d4: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e6d8: 82 10 20 00 clr %g1 ! 0 } 200e6dc: 81 c7 e0 08 ret 200e6e0: 91 e8 00 01 restore %g0, %g1, %o0 =============================================================================== 0200b1fc : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200b1fc: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200b200: 80 a6 60 00 cmp %i1, 0 200b204: 02 80 00 07 be 200b220 200b208: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200b20c: 03 00 80 65 sethi %hi(0x2019400), %g1 200b210: c2 08 63 dc ldub [ %g1 + 0x3dc ], %g1 ! 20197dc */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200b214: 80 a6 40 01 cmp %i1, %g1 200b218: 18 80 00 1c bgu 200b288 200b21c: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200b220: 80 a6 a0 00 cmp %i2, 0 200b224: 02 80 00 19 be 200b288 200b228: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200b22c: 40 00 09 ce call 200d964 <_Thread_Get> 200b230: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200b234: c2 07 bf fc ld [ %fp + -4 ], %g1 200b238: 80 a0 60 00 cmp %g1, 0 200b23c: 12 80 00 13 bne 200b288 200b240: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200b244: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200b248: 80 a6 60 00 cmp %i1, 0 200b24c: 02 80 00 0d be 200b280 200b250: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200b254: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200b258: 80 a0 60 00 cmp %g1, 0 200b25c: 02 80 00 06 be 200b274 200b260: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200b264: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200b268: 80 a6 40 01 cmp %i1, %g1 200b26c: 1a 80 00 05 bcc 200b280 <== ALWAYS TAKEN 200b270: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200b274: 92 10 00 19 mov %i1, %o1 200b278: 40 00 08 72 call 200d440 <_Thread_Change_priority> 200b27c: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200b280: 40 00 09 ad call 200d934 <_Thread_Enable_dispatch> 200b284: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200b288: 81 c7 e0 08 ret 200b28c: 81 e8 00 00 restore =============================================================================== 0200764c : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 200764c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 2007650: 80 a6 60 00 cmp %i1, 0 2007654: 02 80 00 1e be 20076cc 2007658: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 200765c: 90 10 00 18 mov %i0, %o0 2007660: 40 00 09 51 call 2009ba4 <_Thread_Get> 2007664: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007668: c2 07 bf fc ld [ %fp + -4 ], %g1 200766c: 80 a0 60 00 cmp %g1, 0 2007670: 12 80 00 19 bne 20076d4 2007674: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 2007678: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 200767c: 80 a0 60 00 cmp %g1, 0 2007680: 02 80 00 10 be 20076c0 2007684: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007688: c4 00 60 04 ld [ %g1 + 4 ], %g2 200768c: 80 a0 80 19 cmp %g2, %i1 2007690: 32 80 00 09 bne,a 20076b4 2007694: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2007698: 10 80 00 18 b 20076f8 200769c: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 20076a0: 80 a0 80 19 cmp %g2, %i1 20076a4: 22 80 00 0e be,a 20076dc 20076a8: c4 02 40 00 ld [ %o1 ], %g2 20076ac: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 20076b0: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 20076b4: 80 a2 60 00 cmp %o1, 0 20076b8: 32 bf ff fa bne,a 20076a0 <== ALWAYS TAKEN 20076bc: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 20076c0: 40 00 09 2d call 2009b74 <_Thread_Enable_dispatch> 20076c4: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 20076c8: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20076cc: 81 c7 e0 08 ret 20076d0: 91 e8 00 01 restore %g0, %g1, %o0 20076d4: 81 c7 e0 08 ret 20076d8: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 20076dc: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 20076e0: 40 00 00 2d call 2007794 <_RTEMS_Tasks_Invoke_task_variable_dtor> 20076e4: 01 00 00 00 nop _Thread_Enable_dispatch(); 20076e8: 40 00 09 23 call 2009b74 <_Thread_Enable_dispatch> 20076ec: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20076f0: 10 bf ff f7 b 20076cc 20076f4: 82 10 20 00 clr %g1 ! 0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 20076f8: 92 10 00 01 mov %g1, %o1 20076fc: 10 bf ff f9 b 20076e0 2007700: c4 22 21 64 st %g2, [ %o0 + 0x164 ] =============================================================================== 02007704 : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 2007704: 9d e3 bf 98 save %sp, -104, %sp 2007708: 90 10 00 18 mov %i0, %o0 Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 200770c: 80 a6 60 00 cmp %i1, 0 2007710: 02 80 00 1b be 200777c 2007714: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !result ) 2007718: 80 a6 a0 00 cmp %i2, 0 200771c: 02 80 00 1c be 200778c 2007720: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 2007724: 40 00 09 20 call 2009ba4 <_Thread_Get> 2007728: 92 07 bf fc add %fp, -4, %o1 switch (location) { 200772c: c2 07 bf fc ld [ %fp + -4 ], %g1 2007730: 80 a0 60 00 cmp %g1, 0 2007734: 12 80 00 12 bne 200777c 2007738: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 200773c: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007740: 80 a0 60 00 cmp %g1, 0 2007744: 32 80 00 07 bne,a 2007760 2007748: c4 00 60 04 ld [ %g1 + 4 ], %g2 200774c: 30 80 00 0e b,a 2007784 2007750: 80 a0 60 00 cmp %g1, 0 2007754: 02 80 00 0c be 2007784 <== NEVER TAKEN 2007758: 01 00 00 00 nop if (tvp->ptr == ptr) { 200775c: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007760: 80 a0 80 19 cmp %g2, %i1 2007764: 32 bf ff fb bne,a 2007750 2007768: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 200776c: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 2007770: b0 10 20 00 clr %i0 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; _Thread_Enable_dispatch(); 2007774: 40 00 09 00 call 2009b74 <_Thread_Enable_dispatch> 2007778: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 200777c: 81 c7 e0 08 ret 2007780: 81 e8 00 00 restore } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2007784: 40 00 08 fc call 2009b74 <_Thread_Enable_dispatch> 2007788: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; 200778c: 81 c7 e0 08 ret 2007790: 81 e8 00 00 restore =============================================================================== 02015d14 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 2015d14: 9d e3 bf 98 save %sp, -104, %sp RTEMS_INLINE_ROUTINE Timer_Control *_Timer_Get ( Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) 2015d18: 11 00 80 f1 sethi %hi(0x203c400), %o0 2015d1c: 92 10 00 18 mov %i0, %o1 2015d20: 90 12 21 74 or %o0, 0x174, %o0 2015d24: 40 00 0c 71 call 2018ee8 <_Objects_Get> 2015d28: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2015d2c: c2 07 bf fc ld [ %fp + -4 ], %g1 2015d30: 80 a0 60 00 cmp %g1, 0 2015d34: 12 80 00 0c bne 2015d64 2015d38: 01 00 00 00 nop case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2015d3c: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2015d40: 80 a0 60 04 cmp %g1, 4 2015d44: 02 80 00 04 be 2015d54 <== NEVER TAKEN 2015d48: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2015d4c: 40 00 15 07 call 201b168 <_Watchdog_Remove> 2015d50: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2015d54: 40 00 10 38 call 2019e34 <_Thread_Enable_dispatch> 2015d58: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2015d5c: 81 c7 e0 08 ret 2015d60: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015d64: 81 c7 e0 08 ret 2015d68: 91 e8 20 04 restore %g0, 4, %o0 =============================================================================== 0201623c : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 201623c: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016240: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016244: fa 00 61 b4 ld [ %g1 + 0x1b4 ], %i5 ! 203c5b4 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016248: b8 10 00 18 mov %i0, %i4 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 201624c: 80 a7 60 00 cmp %i5, 0 2016250: 02 80 00 32 be 2016318 2016254: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016258: 03 00 80 f0 sethi %hi(0x203c000), %g1 201625c: c2 08 62 b0 ldub [ %g1 + 0x2b0 ], %g1 ! 203c2b0 <_TOD_Is_set> 2016260: 80 a0 60 00 cmp %g1, 0 2016264: 02 80 00 2d be 2016318 <== NEVER TAKEN 2016268: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 201626c: 80 a6 a0 00 cmp %i2, 0 2016270: 02 80 00 2a be 2016318 2016274: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016278: 90 10 00 19 mov %i1, %o0 201627c: 7f ff f3 d5 call 20131d0 <_TOD_Validate> 2016280: b0 10 20 14 mov 0x14, %i0 2016284: 80 8a 20 ff btst 0xff, %o0 2016288: 02 80 00 24 be 2016318 201628c: 01 00 00 00 nop return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016290: 7f ff f3 9c call 2013100 <_TOD_To_seconds> 2016294: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 2016298: 21 00 80 f0 sethi %hi(0x203c000), %l0 201629c: c2 04 23 2c ld [ %l0 + 0x32c ], %g1 ! 203c32c <_TOD_Now> 20162a0: 80 a2 00 01 cmp %o0, %g1 20162a4: 08 80 00 1d bleu 2016318 20162a8: b2 10 00 08 mov %o0, %i1 20162ac: 92 10 00 1c mov %i4, %o1 20162b0: 11 00 80 f1 sethi %hi(0x203c400), %o0 20162b4: 94 07 bf fc add %fp, -4, %o2 20162b8: 40 00 0b 0c call 2018ee8 <_Objects_Get> 20162bc: 90 12 21 74 or %o0, 0x174, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20162c0: c2 07 bf fc ld [ %fp + -4 ], %g1 20162c4: 80 a0 60 00 cmp %g1, 0 20162c8: 12 80 00 16 bne 2016320 20162cc: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20162d0: 40 00 13 a6 call 201b168 <_Watchdog_Remove> 20162d4: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20162d8: c4 04 23 2c ld [ %l0 + 0x32c ], %g2 (*timer_server->schedule_operation)( timer_server, the_timer ); 20162dc: c2 07 60 04 ld [ %i5 + 4 ], %g1 20162e0: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20162e4: b2 26 40 02 sub %i1, %g2, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20162e8: 90 10 00 1d mov %i5, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20162ec: 84 10 20 03 mov 3, %g2 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20162f0: f4 26 20 2c st %i2, [ %i0 + 0x2c ] 20162f4: c4 26 20 38 st %g2, [ %i0 + 0x38 ] the_watchdog->id = id; 20162f8: f8 26 20 30 st %i4, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20162fc: f6 26 20 34 st %i3, [ %i0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016300: f2 26 20 1c st %i1, [ %i0 + 0x1c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2016304: c0 26 20 18 clr [ %i0 + 0x18 ] (*timer_server->schedule_operation)( timer_server, the_timer ); 2016308: 9f c0 40 00 call %g1 201630c: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 2016310: 40 00 0e c9 call 2019e34 <_Thread_Enable_dispatch> 2016314: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2016318: 81 c7 e0 08 ret 201631c: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016320: 81 c7 e0 08 ret 2016324: 91 e8 20 04 restore %g0, 4, %o0