=============================================================================== 02006d68 <_API_extensions_Run_postdriver>: * * _API_extensions_Run_postdriver */ void _API_extensions_Run_postdriver( void ) { 2006d68: 9d e3 bf a0 save %sp, -96, %sp the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); } } 2006d6c: 23 00 80 57 sethi %hi(0x2015c00), %l1 2006d70: e0 04 61 c4 ld [ %l1 + 0x1c4 ], %l0 ! 2015dc4 <_API_extensions_List> 2006d74: a2 14 61 c4 or %l1, 0x1c4, %l1 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006d78: a2 04 60 04 add %l1, 4, %l1 2006d7c: 80 a4 00 11 cmp %l0, %l1 2006d80: 02 80 00 09 be 2006da4 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 2006d84: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 2006d88: c2 04 20 08 ld [ %l0 + 8 ], %g1 2006d8c: 9f c0 40 00 call %g1 2006d90: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2006d94: e0 04 00 00 ld [ %l0 ], %l0 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006d98: 80 a4 00 11 cmp %l0, %l1 2006d9c: 32 bf ff fc bne,a 2006d8c <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2006da0: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED 2006da4: 81 c7 e0 08 ret 2006da8: 81 e8 00 00 restore =============================================================================== 02006dac <_API_extensions_Run_postswitch>: * * _API_extensions_Run_postswitch */ void _API_extensions_Run_postswitch( void ) { 2006dac: 9d e3 bf a0 save %sp, -96, %sp the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); } } 2006db0: 23 00 80 57 sethi %hi(0x2015c00), %l1 2006db4: e0 04 61 c4 ld [ %l1 + 0x1c4 ], %l0 ! 2015dc4 <_API_extensions_List> 2006db8: a2 14 61 c4 or %l1, 0x1c4, %l1 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006dbc: a2 04 60 04 add %l1, 4, %l1 2006dc0: 80 a4 00 11 cmp %l0, %l1 2006dc4: 02 80 00 0a be 2006dec <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN 2006dc8: 25 00 80 57 sethi %hi(0x2015c00), %l2 2006dcc: a4 14 a1 fc or %l2, 0x1fc, %l2 ! 2015dfc <_Per_CPU_Information> !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); 2006dd0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2006dd4: 9f c0 40 00 call %g1 2006dd8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2006ddc: e0 04 00 00 ld [ %l0 ], %l0 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006de0: 80 a4 00 11 cmp %l0, %l1 2006de4: 32 bf ff fc bne,a 2006dd4 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN 2006de8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED 2006dec: 81 c7 e0 08 ret 2006df0: 81 e8 00 00 restore =============================================================================== 02010cd8 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010cd8: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2010cdc: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010ce0: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; the_message_queue->maximum_message_size = maximum_message_size; 2010ce4: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010ce8: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2010cec: 80 8e e0 03 btst 3, %i3 2010cf0: 02 80 00 07 be 2010d0c <_CORE_message_queue_Initialize+0x34> 2010cf4: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 2010cf8: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 2010cfc: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 2010d00: 80 a6 c0 12 cmp %i3, %l2 2010d04: 18 80 00 22 bgu 2010d8c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 2010d08: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 2010d0c: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 2010d10: 92 10 00 1a mov %i2, %o1 2010d14: 90 10 00 11 mov %l1, %o0 2010d18: 40 00 40 6a call 2020ec0 <.umul> 2010d1c: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 2010d20: 80 a2 00 12 cmp %o0, %l2 2010d24: 0a 80 00 1a bcs 2010d8c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 2010d28: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010d2c: 40 00 0c e2 call 20140b4 <_Workspace_Allocate> 2010d30: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010d34: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010d38: 80 a2 20 00 cmp %o0, 0 2010d3c: 02 80 00 14 be 2010d8c <_CORE_message_queue_Initialize+0xb4> 2010d40: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010d44: 90 04 20 60 add %l0, 0x60, %o0 2010d48: 94 10 00 1a mov %i2, %o2 2010d4c: 40 00 15 16 call 20161a4 <_Chain_Initialize> 2010d50: 96 10 00 11 mov %l1, %o3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 2010d54: 82 04 20 50 add %l0, 0x50, %g1 Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 2010d58: c0 24 20 54 clr [ %l0 + 0x54 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010d5c: 84 04 20 54 add %l0, 0x54, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 2010d60: c2 24 20 58 st %g1, [ %l0 + 0x58 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2010d64: c4 24 20 50 st %g2, [ %l0 + 0x50 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010d68: c2 06 40 00 ld [ %i1 ], %g1 THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO, STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; 2010d6c: b0 10 20 01 mov 1, %i0 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010d70: 82 18 60 01 xor %g1, 1, %g1 2010d74: 80 a0 00 01 cmp %g0, %g1 2010d78: 90 10 00 10 mov %l0, %o0 2010d7c: 94 10 20 80 mov 0x80, %o2 2010d80: 92 60 3f ff subx %g0, -1, %o1 2010d84: 40 00 0a 13 call 20135d0 <_Thread_queue_Initialize> 2010d88: 96 10 20 06 mov 6, %o3 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010d8c: 81 c7 e0 08 ret 2010d90: 81 e8 00 00 restore =============================================================================== 020070f8 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 20070f8: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 20070fc: 21 00 80 56 sethi %hi(0x2015800), %l0 2007100: c2 04 23 d0 ld [ %l0 + 0x3d0 ], %g1 ! 2015bd0 <_Thread_Dispatch_disable_level> 2007104: 80 a0 60 00 cmp %g1, 0 2007108: 02 80 00 05 be 200711c <_CORE_mutex_Seize+0x24> 200710c: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 2007110: 80 8e a0 ff btst 0xff, %i2 2007114: 12 80 00 1a bne 200717c <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN 2007118: 03 00 80 57 sethi %hi(0x2015c00), %g1 200711c: 90 10 00 18 mov %i0, %o0 2007120: 40 00 14 36 call 200c1f8 <_CORE_mutex_Seize_interrupt_trylock> 2007124: 92 07 a0 54 add %fp, 0x54, %o1 2007128: 80 a2 20 00 cmp %o0, 0 200712c: 02 80 00 12 be 2007174 <_CORE_mutex_Seize+0x7c> 2007130: 80 8e a0 ff btst 0xff, %i2 2007134: 02 80 00 1a be 200719c <_CORE_mutex_Seize+0xa4> 2007138: 01 00 00 00 nop 200713c: c4 04 23 d0 ld [ %l0 + 0x3d0 ], %g2 2007140: 03 00 80 57 sethi %hi(0x2015c00), %g1 2007144: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 2015e08 <_Per_CPU_Information+0xc> RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2007148: 86 10 20 01 mov 1, %g3 200714c: c6 26 20 30 st %g3, [ %i0 + 0x30 ] 2007150: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 2007154: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2007158: 82 00 a0 01 add %g2, 1, %g1 200715c: c2 24 23 d0 st %g1, [ %l0 + 0x3d0 ] 2007160: 7f ff eb 8b call 2001f8c 2007164: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2007168: 90 10 00 18 mov %i0, %o0 200716c: 7f ff ff c0 call 200706c <_CORE_mutex_Seize_interrupt_blocking> 2007170: 92 10 00 1b mov %i3, %o1 2007174: 81 c7 e0 08 ret 2007178: 81 e8 00 00 restore 200717c: c2 00 61 2c ld [ %g1 + 0x12c ], %g1 2007180: 80 a0 60 01 cmp %g1, 1 2007184: 28 bf ff e7 bleu,a 2007120 <_CORE_mutex_Seize+0x28> 2007188: 90 10 00 18 mov %i0, %o0 200718c: 90 10 20 00 clr %o0 2007190: 92 10 20 00 clr %o1 2007194: 40 00 01 d8 call 20078f4 <_Internal_error_Occurred> 2007198: 94 10 20 12 mov 0x12, %o2 200719c: 7f ff eb 7c call 2001f8c 20071a0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 20071a4: 03 00 80 57 sethi %hi(0x2015c00), %g1 20071a8: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 2015e08 <_Per_CPU_Information+0xc> 20071ac: 84 10 20 01 mov 1, %g2 20071b0: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 20071b4: 81 c7 e0 08 ret 20071b8: 81 e8 00 00 restore =============================================================================== 02007338 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 2007338: 9d e3 bf a0 save %sp, -96, %sp 200733c: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007340: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 2007344: 40 00 07 79 call 2009128 <_Thread_queue_Dequeue> 2007348: 90 10 00 10 mov %l0, %o0 200734c: 80 a2 20 00 cmp %o0, 0 2007350: 02 80 00 04 be 2007360 <_CORE_semaphore_Surrender+0x28> 2007354: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 2007358: 81 c7 e0 08 ret 200735c: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2007360: 7f ff eb 07 call 2001f7c 2007364: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2007368: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 200736c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2007370: 80 a0 40 02 cmp %g1, %g2 2007374: 1a 80 00 05 bcc 2007388 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 2007378: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 200737c: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007380: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2007384: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2007388: 7f ff eb 01 call 2001f8c 200738c: 01 00 00 00 nop } return status; } 2007390: 81 c7 e0 08 ret 2007394: 81 e8 00 00 restore =============================================================================== 0200c190 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 200c190: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; 200c194: c0 26 20 04 clr [ %i0 + 4 ] size_t node_size ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200c198: a0 06 20 04 add %i0, 4, %l0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c19c: 80 a6 a0 00 cmp %i2, 0 200c1a0: 02 80 00 12 be 200c1e8 <_Chain_Initialize+0x58> <== NEVER TAKEN 200c1a4: 90 10 00 18 mov %i0, %o0 200c1a8: b4 06 bf ff add %i2, -1, %i2 { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; 200c1ac: 82 10 00 19 mov %i1, %g1 head->previous = NULL; while ( count-- ) { 200c1b0: 92 10 00 1a mov %i2, %o1 ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; 200c1b4: 10 80 00 05 b 200c1c8 <_Chain_Initialize+0x38> 200c1b8: 84 10 00 18 mov %i0, %g2 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c1bc: 84 10 00 01 mov %g1, %g2 200c1c0: b4 06 bf ff add %i2, -1, %i2 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 200c1c4: 82 10 00 03 mov %g3, %g1 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { current->next = next; 200c1c8: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 200c1cc: c4 20 60 04 st %g2, [ %g1 + 4 ] Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c1d0: 80 a6 a0 00 cmp %i2, 0 200c1d4: 12 bf ff fa bne 200c1bc <_Chain_Initialize+0x2c> 200c1d8: 86 00 40 1b add %g1, %i3, %g3 * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 200c1dc: 40 00 16 c3 call 2011ce8 <.umul> 200c1e0: 90 10 00 1b mov %i3, %o0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c1e4: 90 06 40 08 add %i1, %o0, %o0 current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = tail; 200c1e8: e0 22 00 00 st %l0, [ %o0 ] tail->previous = current; 200c1ec: d0 26 20 08 st %o0, [ %i0 + 8 ] } 200c1f0: 81 c7 e0 08 ret 200c1f4: 81 e8 00 00 restore =============================================================================== 02005ff8 <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 2005ff8: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 2005ffc: e0 06 21 58 ld [ %i0 + 0x158 ], %l0 option_set = (rtems_option) the_thread->Wait.option; _ISR_Disable( level ); 2006000: 7f ff ef df call 2001f7c 2006004: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 2006008: a2 10 00 08 mov %o0, %l1 pending_events = api->pending_events; 200600c: c4 04 00 00 ld [ %l0 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 2006010: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 2006014: 86 88 40 02 andcc %g1, %g2, %g3 2006018: 02 80 00 3e be 2006110 <_Event_Surrender+0x118> 200601c: 09 00 80 57 sethi %hi(0x2015c00), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006020: 88 11 21 fc or %g4, 0x1fc, %g4 ! 2015dfc <_Per_CPU_Information> 2006024: da 01 20 08 ld [ %g4 + 8 ], %o5 2006028: 80 a3 60 00 cmp %o5, 0 200602c: 32 80 00 1d bne,a 20060a0 <_Event_Surrender+0xa8> 2006030: c8 01 20 0c ld [ %g4 + 0xc ], %g4 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_EVENT); 2006034: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 2006038: 80 89 21 00 btst 0x100, %g4 200603c: 02 80 00 33 be 2006108 <_Event_Surrender+0x110> 2006040: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 2006044: 02 80 00 04 be 2006054 <_Event_Surrender+0x5c> 2006048: 80 8c a0 02 btst 2, %l2 200604c: 02 80 00 2f be 2006108 <_Event_Surrender+0x110> <== NEVER TAKEN 2006050: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006054: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 2006058: 84 28 80 03 andn %g2, %g3, %g2 /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 200605c: c4 24 00 00 st %g2, [ %l0 ] the_thread->Wait.count = 0; 2006060: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006064: c6 20 40 00 st %g3, [ %g1 ] _ISR_Flash( level ); 2006068: 7f ff ef c9 call 2001f8c 200606c: 90 10 00 11 mov %l1, %o0 2006070: 7f ff ef c3 call 2001f7c 2006074: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 2006078: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 200607c: 80 a0 60 02 cmp %g1, 2 2006080: 02 80 00 26 be 2006118 <_Event_Surrender+0x120> 2006084: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 2006088: 90 10 00 11 mov %l1, %o0 200608c: 7f ff ef c0 call 2001f8c 2006090: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006094: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2006098: 40 00 0a 50 call 20089d8 <_Thread_Clear_state> 200609c: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20060a0: 80 a6 00 04 cmp %i0, %g4 20060a4: 32 bf ff e5 bne,a 2006038 <_Event_Surrender+0x40> 20060a8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 20060ac: 09 00 80 57 sethi %hi(0x2015c00), %g4 20060b0: da 01 22 50 ld [ %g4 + 0x250 ], %o5 ! 2015e50 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 20060b4: 80 a3 60 02 cmp %o5, 2 20060b8: 02 80 00 07 be 20060d4 <_Event_Surrender+0xdc> <== NEVER TAKEN 20060bc: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 20060c0: da 01 22 50 ld [ %g4 + 0x250 ], %o5 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 20060c4: 80 a3 60 01 cmp %o5, 1 20060c8: 32 bf ff dc bne,a 2006038 <_Event_Surrender+0x40> 20060cc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 20060d0: 80 a0 40 03 cmp %g1, %g3 20060d4: 02 80 00 04 be 20060e4 <_Event_Surrender+0xec> 20060d8: 80 8c a0 02 btst 2, %l2 20060dc: 02 80 00 09 be 2006100 <_Event_Surrender+0x108> <== NEVER TAKEN 20060e0: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060e4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 20060e8: 84 28 80 03 andn %g2, %g3, %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20060ec: c4 24 00 00 st %g2, [ %l0 ] the_thread->Wait.count = 0; 20060f0: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20060f4: c6 20 40 00 st %g3, [ %g1 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20060f8: 82 10 20 03 mov 3, %g1 20060fc: c2 21 22 50 st %g1, [ %g4 + 0x250 ] } _ISR_Enable( level ); 2006100: 7f ff ef a3 call 2001f8c 2006104: 91 e8 00 11 restore %g0, %l1, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 2006108: 7f ff ef a1 call 2001f8c 200610c: 91 e8 00 11 restore %g0, %l1, %o0 /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { _ISR_Enable( level ); 2006110: 7f ff ef 9f call 2001f8c 2006114: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 2006118: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 200611c: 7f ff ef 9c call 2001f8c 2006120: 90 10 00 11 mov %l1, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 2006124: 40 00 0f 69 call 2009ec8 <_Watchdog_Remove> 2006128: 90 06 20 48 add %i0, 0x48, %o0 200612c: 33 04 00 ff sethi %hi(0x1003fc00), %i1 2006130: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 2006134: 40 00 0a 29 call 20089d8 <_Thread_Clear_state> 2006138: 81 e8 00 00 restore =============================================================================== 02006140 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 2006140: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 2006144: 90 10 00 18 mov %i0, %o0 2006148: 40 00 0b 25 call 2008ddc <_Thread_Get> 200614c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006150: c2 07 bf fc ld [ %fp + -4 ], %g1 2006154: 80 a0 60 00 cmp %g1, 0 2006158: 12 80 00 15 bne 20061ac <_Event_Timeout+0x6c> <== NEVER TAKEN 200615c: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006160: 7f ff ef 87 call 2001f7c 2006164: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2006168: 03 00 80 57 sethi %hi(0x2015c00), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 200616c: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 2015e08 <_Per_CPU_Information+0xc> 2006170: 80 a4 00 01 cmp %l0, %g1 2006174: 02 80 00 10 be 20061b4 <_Event_Timeout+0x74> 2006178: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 200617c: 82 10 20 06 mov 6, %g1 2006180: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2006184: 7f ff ef 82 call 2001f8c 2006188: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 200618c: 90 10 00 10 mov %l0, %o0 2006190: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2006194: 40 00 0a 11 call 20089d8 <_Thread_Clear_state> 2006198: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 200619c: 03 00 80 56 sethi %hi(0x2015800), %g1 20061a0: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 2015bd0 <_Thread_Dispatch_disable_level> 20061a4: 84 00 bf ff add %g2, -1, %g2 20061a8: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ] 20061ac: 81 c7 e0 08 ret 20061b0: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 20061b4: 03 00 80 57 sethi %hi(0x2015c00), %g1 20061b8: c4 00 62 50 ld [ %g1 + 0x250 ], %g2 ! 2015e50 <_Event_Sync_state> 20061bc: 80 a0 a0 01 cmp %g2, 1 20061c0: 32 bf ff f0 bne,a 2006180 <_Event_Timeout+0x40> 20061c4: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 20061c8: 84 10 20 02 mov 2, %g2 20061cc: c4 20 62 50 st %g2, [ %g1 + 0x250 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 20061d0: 10 bf ff ec b 2006180 <_Event_Timeout+0x40> 20061d4: 82 10 20 06 mov 6, %g1 =============================================================================== 0200c3c8 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200c3c8: 9d e3 bf 98 save %sp, -104, %sp 200c3cc: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200c3d0: a4 06 60 04 add %i1, 4, %l2 - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 200c3d4: fa 06 20 10 ld [ %i0 + 0x10 ], %i5 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200c3d8: 80 a6 40 12 cmp %i1, %l2 200c3dc: 18 80 00 6e bgu 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c3e0: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200c3e4: 80 a6 e0 00 cmp %i3, 0 200c3e8: 12 80 00 75 bne 200c5bc <_Heap_Allocate_aligned_with_boundary+0x1f4> 200c3ec: 80 a6 40 1b cmp %i1, %i3 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c3f0: e8 04 20 08 ld [ %l0 + 8 ], %l4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c3f4: 80 a4 00 14 cmp %l0, %l4 200c3f8: 02 80 00 67 be 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c3fc: b0 10 20 00 clr %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c400: 82 07 60 07 add %i5, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200c404: b8 10 20 04 mov 4, %i4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c408: a2 10 20 01 mov 1, %l1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c40c: c2 27 bf fc st %g1, [ %fp + -4 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200c410: b8 27 00 19 sub %i4, %i1, %i4 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200c414: e6 05 20 04 ld [ %l4 + 4 ], %l3 200c418: 80 a4 80 13 cmp %l2, %l3 200c41c: 3a 80 00 4b bcc,a 200c548 <_Heap_Allocate_aligned_with_boundary+0x180> 200c420: e8 05 20 08 ld [ %l4 + 8 ], %l4 if ( alignment == 0 ) { 200c424: 80 a6 a0 00 cmp %i2, 0 200c428: 02 80 00 44 be 200c538 <_Heap_Allocate_aligned_with_boundary+0x170> 200c42c: b0 05 20 08 add %l4, 8, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200c430: c4 07 bf fc ld [ %fp + -4 ], %g2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c434: ee 04 20 14 ld [ %l0 + 0x14 ], %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c438: a6 0c ff fe and %l3, -2, %l3 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200c43c: 82 20 80 17 sub %g2, %l7, %g1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200c440: a6 05 00 13 add %l4, %l3, %l3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c444: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200c448: b0 07 00 13 add %i4, %l3, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c44c: a6 00 40 13 add %g1, %l3, %l3 200c450: 40 00 17 0c call 2012080 <.urem> 200c454: 90 10 00 18 mov %i0, %o0 200c458: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200c45c: 80 a4 c0 18 cmp %l3, %i0 200c460: 1a 80 00 06 bcc 200c478 <_Heap_Allocate_aligned_with_boundary+0xb0> 200c464: ac 05 20 08 add %l4, 8, %l6 200c468: 90 10 00 13 mov %l3, %o0 200c46c: 40 00 17 05 call 2012080 <.urem> 200c470: 92 10 00 1a mov %i2, %o1 200c474: b0 24 c0 08 sub %l3, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200c478: 80 a6 e0 00 cmp %i3, 0 200c47c: 02 80 00 24 be 200c50c <_Heap_Allocate_aligned_with_boundary+0x144> 200c480: 80 a5 80 18 cmp %l6, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200c484: a6 06 00 19 add %i0, %i1, %l3 200c488: 92 10 00 1b mov %i3, %o1 200c48c: 40 00 16 fd call 2012080 <.urem> 200c490: 90 10 00 13 mov %l3, %o0 200c494: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c498: 80 a2 00 13 cmp %o0, %l3 200c49c: 1a 80 00 1b bcc 200c508 <_Heap_Allocate_aligned_with_boundary+0x140> 200c4a0: 80 a6 00 08 cmp %i0, %o0 200c4a4: 1a 80 00 1a bcc 200c50c <_Heap_Allocate_aligned_with_boundary+0x144> 200c4a8: 80 a5 80 18 cmp %l6, %i0 alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200c4ac: aa 05 80 19 add %l6, %i1, %l5 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200c4b0: 80 a5 40 08 cmp %l5, %o0 200c4b4: 28 80 00 09 bleu,a 200c4d8 <_Heap_Allocate_aligned_with_boundary+0x110> 200c4b8: b0 22 00 19 sub %o0, %i1, %i0 if ( alloc_begin != 0 ) { break; } block = block->next; 200c4bc: 10 80 00 23 b 200c548 <_Heap_Allocate_aligned_with_boundary+0x180> 200c4c0: e8 05 20 08 ld [ %l4 + 8 ], %l4 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c4c4: 1a 80 00 11 bcc 200c508 <_Heap_Allocate_aligned_with_boundary+0x140> 200c4c8: 80 a5 40 08 cmp %l5, %o0 if ( boundary_line < boundary_floor ) { 200c4cc: 38 80 00 1f bgu,a 200c548 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN 200c4d0: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED return 0; } alloc_begin = boundary_line - alloc_size; 200c4d4: b0 22 00 19 sub %o0, %i1, %i0 200c4d8: 92 10 00 1a mov %i2, %o1 200c4dc: 40 00 16 e9 call 2012080 <.urem> 200c4e0: 90 10 00 18 mov %i0, %o0 200c4e4: 92 10 00 1b mov %i3, %o1 200c4e8: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200c4ec: a6 06 00 19 add %i0, %i1, %l3 200c4f0: 40 00 16 e4 call 2012080 <.urem> 200c4f4: 90 10 00 13 mov %l3, %o0 200c4f8: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c4fc: 80 a2 00 13 cmp %o0, %l3 200c500: 0a bf ff f1 bcs 200c4c4 <_Heap_Allocate_aligned_with_boundary+0xfc> 200c504: 80 a6 00 08 cmp %i0, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200c508: 80 a5 80 18 cmp %l6, %i0 200c50c: 38 80 00 0f bgu,a 200c548 <_Heap_Allocate_aligned_with_boundary+0x180> 200c510: e8 05 20 08 ld [ %l4 + 8 ], %l4 200c514: 82 10 3f f8 mov -8, %g1 200c518: 90 10 00 18 mov %i0, %o0 200c51c: a6 20 40 14 sub %g1, %l4, %l3 200c520: 92 10 00 1d mov %i5, %o1 200c524: 40 00 16 d7 call 2012080 <.urem> 200c528: a6 04 c0 18 add %l3, %i0, %l3 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200c52c: 90 a4 c0 08 subcc %l3, %o0, %o0 200c530: 12 80 00 1b bne 200c59c <_Heap_Allocate_aligned_with_boundary+0x1d4> 200c534: 80 a2 00 17 cmp %o0, %l7 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200c538: 80 a6 20 00 cmp %i0, 0 200c53c: 32 80 00 08 bne,a 200c55c <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN 200c540: c4 04 20 48 ld [ %l0 + 0x48 ], %g2 break; } block = block->next; 200c544: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c548: 80 a4 00 14 cmp %l0, %l4 200c54c: 02 80 00 1a be 200c5b4 <_Heap_Allocate_aligned_with_boundary+0x1ec> 200c550: 82 04 60 01 add %l1, 1, %g1 200c554: 10 bf ff b0 b 200c414 <_Heap_Allocate_aligned_with_boundary+0x4c> 200c558: a2 10 00 01 mov %g1, %l1 } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; stats->searches += search_count; 200c55c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200c560: 84 00 a0 01 inc %g2 stats->searches += search_count; 200c564: 82 00 40 11 add %g1, %l1, %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200c568: c4 24 20 48 st %g2, [ %l0 + 0x48 ] stats->searches += search_count; 200c56c: c2 24 20 4c st %g1, [ %l0 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200c570: 90 10 00 10 mov %l0, %o0 200c574: 92 10 00 14 mov %l4, %o1 200c578: 94 10 00 18 mov %i0, %o2 200c57c: 7f ff ec 92 call 20077c4 <_Heap_Block_allocate> 200c580: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200c584: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 200c588: 80 a0 40 11 cmp %g1, %l1 200c58c: 2a 80 00 02 bcs,a 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c590: e2 24 20 44 st %l1, [ %l0 + 0x44 ] stats->max_search = search_count; } return (void *) alloc_begin; } 200c594: 81 c7 e0 08 ret 200c598: 81 e8 00 00 restore if ( alloc_begin >= alloc_begin_floor ) { uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200c59c: 1a bf ff e8 bcc 200c53c <_Heap_Allocate_aligned_with_boundary+0x174> 200c5a0: 80 a6 20 00 cmp %i0, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200c5a4: e8 05 20 08 ld [ %l4 + 8 ], %l4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c5a8: 80 a4 00 14 cmp %l0, %l4 200c5ac: 12 bf ff ea bne 200c554 <_Heap_Allocate_aligned_with_boundary+0x18c> 200c5b0: 82 04 60 01 add %l1, 1, %g1 200c5b4: 10 bf ff f4 b 200c584 <_Heap_Allocate_aligned_with_boundary+0x1bc> 200c5b8: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200c5bc: 18 bf ff f6 bgu 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c5c0: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200c5c4: 22 bf ff 8b be,a 200c3f0 <_Heap_Allocate_aligned_with_boundary+0x28> 200c5c8: b4 10 00 1d mov %i5, %i2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c5cc: 10 bf ff 8a b 200c3f4 <_Heap_Allocate_aligned_with_boundary+0x2c> 200c5d0: e8 04 20 08 ld [ %l0 + 8 ], %l4 =============================================================================== 0200c8dc <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c8dc: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200c8e0: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200c8e4: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200c8e8: a0 10 00 18 mov %i0, %l0 Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200c8ec: a2 06 40 1a add %i1, %i2, %l1 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200c8f0: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200c8f4: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200c8f8: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200c8fc: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200c900: 80 a6 40 11 cmp %i1, %l1 200c904: 18 80 00 86 bgu 200cb1c <_Heap_Extend+0x240> 200c908: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200c90c: 90 10 00 19 mov %i1, %o0 200c910: 92 10 00 1a mov %i2, %o1 200c914: 94 10 00 13 mov %l3, %o2 200c918: 98 07 bf fc add %fp, -4, %o4 200c91c: 7f ff ec 0b call 2007948 <_Heap_Get_first_and_last_block> 200c920: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200c924: 80 8a 20 ff btst 0xff, %o0 200c928: 02 80 00 7d be 200cb1c <_Heap_Extend+0x240> 200c92c: ba 10 20 00 clr %i5 200c930: b0 10 00 12 mov %l2, %i0 200c934: b8 10 20 00 clr %i4 200c938: ac 10 20 00 clr %l6 200c93c: 10 80 00 14 b 200c98c <_Heap_Extend+0xb0> 200c940: ae 10 20 00 clr %l7 return false; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200c944: 2a 80 00 02 bcs,a 200c94c <_Heap_Extend+0x70> 200c948: b8 10 00 18 mov %i0, %i4 200c94c: 90 10 00 15 mov %l5, %o0 200c950: 40 00 17 1f call 20125cc <.urem> 200c954: 92 10 00 13 mov %l3, %o1 200c958: 82 05 7f f8 add %l5, -8, %g1 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c95c: 80 a5 40 19 cmp %l5, %i1 200c960: 02 80 00 1c be 200c9d0 <_Heap_Extend+0xf4> 200c964: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200c968: 80 a6 40 15 cmp %i1, %l5 200c96c: 38 80 00 02 bgu,a 200c974 <_Heap_Extend+0x98> 200c970: ba 10 00 01 mov %g1, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c974: f0 00 60 04 ld [ %g1 + 4 ], %i0 200c978: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c97c: b0 00 40 18 add %g1, %i0, %i0 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c980: 80 a4 80 18 cmp %l2, %i0 200c984: 22 80 00 1b be,a 200c9f0 <_Heap_Extend+0x114> 200c988: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200c98c: 80 a6 00 12 cmp %i0, %l2 200c990: 02 80 00 65 be 200cb24 <_Heap_Extend+0x248> 200c994: 82 10 00 18 mov %i0, %g1 uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200c998: 80 a0 40 11 cmp %g1, %l1 200c99c: 0a 80 00 6f bcs 200cb58 <_Heap_Extend+0x27c> 200c9a0: ea 06 00 00 ld [ %i0 ], %l5 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200c9a4: 80 a0 40 11 cmp %g1, %l1 200c9a8: 12 bf ff e7 bne 200c944 <_Heap_Extend+0x68> 200c9ac: 80 a4 40 15 cmp %l1, %l5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c9b0: 90 10 00 15 mov %l5, %o0 200c9b4: 40 00 17 06 call 20125cc <.urem> 200c9b8: 92 10 00 13 mov %l3, %o1 200c9bc: 82 05 7f f8 add %l5, -8, %g1 200c9c0: ae 10 00 18 mov %i0, %l7 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200c9c4: 80 a5 40 19 cmp %l5, %i1 200c9c8: 12 bf ff e8 bne 200c968 <_Heap_Extend+0x8c> <== ALWAYS TAKEN 200c9cc: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; 200c9d0: e2 26 00 00 st %l1, [ %i0 ] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c9d4: f0 00 60 04 ld [ %g1 + 4 ], %i0 200c9d8: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c9dc: b0 00 40 18 add %g1, %i0, %i0 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200c9e0: 80 a4 80 18 cmp %l2, %i0 200c9e4: 12 bf ff ea bne 200c98c <_Heap_Extend+0xb0> <== NEVER TAKEN 200c9e8: ac 10 00 01 mov %g1, %l6 if ( extend_area_begin < heap->area_begin ) { 200c9ec: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200c9f0: 80 a6 40 01 cmp %i1, %g1 200c9f4: 3a 80 00 54 bcc,a 200cb44 <_Heap_Extend+0x268> 200c9f8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200c9fc: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200ca00: c2 07 bf fc ld [ %fp + -4 ], %g1 200ca04: c4 07 bf f8 ld [ %fp + -8 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200ca08: c8 04 20 20 ld [ %l0 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200ca0c: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200ca10: e2 20 40 00 st %l1, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200ca14: 9a 10 e0 01 or %g3, 1, %o5 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200ca18: da 20 60 04 st %o5, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200ca1c: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200ca20: 80 a1 00 01 cmp %g4, %g1 200ca24: 08 80 00 42 bleu 200cb2c <_Heap_Extend+0x250> 200ca28: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200ca2c: c2 24 20 20 st %g1, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200ca30: 80 a5 e0 00 cmp %l7, 0 200ca34: 02 80 00 62 be 200cbbc <_Heap_Extend+0x2e0> 200ca38: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200ca3c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200ca40: 92 10 00 12 mov %l2, %o1 200ca44: 40 00 16 e2 call 20125cc <.urem> 200ca48: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200ca4c: 80 a2 20 00 cmp %o0, 0 200ca50: 02 80 00 04 be 200ca60 <_Heap_Extend+0x184> 200ca54: c4 05 c0 00 ld [ %l7 ], %g2 return value - remainder + alignment; 200ca58: b2 06 40 12 add %i1, %l2, %i1 200ca5c: b2 26 40 08 sub %i1, %o0, %i1 uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200ca60: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200ca64: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200ca68: 84 25 c0 01 sub %l7, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200ca6c: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200ca70: 90 10 00 10 mov %l0, %o0 200ca74: 92 10 00 01 mov %g1, %o1 200ca78: 7f ff ff 8e call 200c8b0 <_Heap_Free_block> 200ca7c: c4 20 60 04 st %g2, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200ca80: 80 a5 a0 00 cmp %l6, 0 200ca84: 02 80 00 3a be 200cb6c <_Heap_Extend+0x290> 200ca88: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ca8c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200ca90: a2 24 40 16 sub %l1, %l6, %l1 200ca94: 40 00 16 ce call 20125cc <.urem> 200ca98: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200ca9c: c2 05 a0 04 ld [ %l6 + 4 ], %g1 200caa0: a2 24 40 08 sub %l1, %o0, %l1 200caa4: 82 20 40 11 sub %g1, %l1, %g1 | HEAP_PREV_BLOCK_USED; 200caa8: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200caac: 84 04 40 16 add %l1, %l6, %g2 200cab0: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cab4: c2 05 a0 04 ld [ %l6 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200cab8: 90 10 00 10 mov %l0, %o0 200cabc: 82 08 60 01 and %g1, 1, %g1 200cac0: 92 10 00 16 mov %l6, %o1 block->size_and_flag = size | flag; 200cac4: a2 14 40 01 or %l1, %g1, %l1 200cac8: 7f ff ff 7a call 200c8b0 <_Heap_Free_block> 200cacc: e2 25 a0 04 st %l1, [ %l6 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cad0: 80 a5 a0 00 cmp %l6, 0 200cad4: 02 80 00 33 be 200cba0 <_Heap_Extend+0x2c4> 200cad8: 80 a5 e0 00 cmp %l7, 0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cadc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200cae0: da 04 20 20 ld [ %l0 + 0x20 ], %o5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cae4: c8 00 60 04 ld [ %g1 + 4 ], %g4 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200cae8: c4 04 20 2c ld [ %l0 + 0x2c ], %g2 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200caec: c6 04 20 30 ld [ %l0 + 0x30 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200caf0: 9a 23 40 01 sub %o5, %g1, %o5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200caf4: 88 09 20 01 and %g4, 1, %g4 block->size_and_flag = size | flag; 200caf8: 88 13 40 04 or %o5, %g4, %g4 200cafc: c8 20 60 04 st %g4, [ %g1 + 4 ] 200cb00: a8 20 c0 14 sub %g3, %l4, %l4 /* Statistics */ stats->size += extended_size; 200cb04: 82 00 80 14 add %g2, %l4, %g1 200cb08: c2 24 20 2c st %g1, [ %l0 + 0x2c ] if ( extended_size_ptr != NULL ) 200cb0c: 80 a6 e0 00 cmp %i3, 0 200cb10: 02 80 00 03 be 200cb1c <_Heap_Extend+0x240> <== NEVER TAKEN 200cb14: b0 10 20 01 mov 1, %i0 *extended_size_ptr = extended_size; 200cb18: e8 26 c0 00 st %l4, [ %i3 ] 200cb1c: 81 c7 e0 08 ret 200cb20: 81 e8 00 00 restore return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200cb24: 10 bf ff 9d b 200c998 <_Heap_Extend+0xbc> 200cb28: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200cb2c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200cb30: 80 a0 40 02 cmp %g1, %g2 200cb34: 2a bf ff bf bcs,a 200ca30 <_Heap_Extend+0x154> 200cb38: c4 24 20 24 st %g2, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200cb3c: 10 bf ff be b 200ca34 <_Heap_Extend+0x158> 200cb40: 80 a5 e0 00 cmp %l7, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200cb44: 80 a4 40 01 cmp %l1, %g1 200cb48: 38 bf ff ae bgu,a 200ca00 <_Heap_Extend+0x124> 200cb4c: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cb50: 10 bf ff ad b 200ca04 <_Heap_Extend+0x128> 200cb54: c2 07 bf fc ld [ %fp + -4 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cb58: 80 a6 40 15 cmp %i1, %l5 200cb5c: 1a bf ff 93 bcc 200c9a8 <_Heap_Extend+0xcc> 200cb60: 80 a0 40 11 cmp %g1, %l1 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cb64: 81 c7 e0 08 ret 200cb68: 91 e8 20 00 restore %g0, 0, %o0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200cb6c: 80 a7 60 00 cmp %i5, 0 200cb70: 02 bf ff d8 be 200cad0 <_Heap_Extend+0x1f4> 200cb74: c4 07 bf fc ld [ %fp + -4 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cb78: c6 07 60 04 ld [ %i5 + 4 ], %g3 _Heap_Link_above( 200cb7c: c2 07 bf f8 ld [ %fp + -8 ], %g1 200cb80: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200cb84: 84 20 80 1d sub %g2, %i5, %g2 block->size_and_flag = size | flag; 200cb88: 84 10 80 03 or %g2, %g3, %g2 200cb8c: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200cb90: c4 00 60 04 ld [ %g1 + 4 ], %g2 200cb94: 84 10 a0 01 or %g2, 1, %g2 200cb98: 10 bf ff ce b 200cad0 <_Heap_Extend+0x1f4> 200cb9c: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cba0: 32 bf ff d0 bne,a 200cae0 <_Heap_Extend+0x204> 200cba4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200cba8: d2 07 bf fc ld [ %fp + -4 ], %o1 200cbac: 7f ff ff 41 call 200c8b0 <_Heap_Free_block> 200cbb0: 90 10 00 10 mov %l0, %o0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cbb4: 10 bf ff cb b 200cae0 <_Heap_Extend+0x204> 200cbb8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200cbbc: 80 a7 20 00 cmp %i4, 0 200cbc0: 02 bf ff b1 be 200ca84 <_Heap_Extend+0x1a8> 200cbc4: 80 a5 a0 00 cmp %l6, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200cbc8: b8 27 00 02 sub %i4, %g2, %i4 200cbcc: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200cbd0: 10 bf ff ad b 200ca84 <_Heap_Extend+0x1a8> 200cbd4: f8 20 a0 04 st %i4, [ %g2 + 4 ] =============================================================================== 0200c5d4 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c5d4: 9d e3 bf a0 save %sp, -96, %sp 200c5d8: a0 10 00 18 mov %i0, %l0 /* * If NULL return true so a free on NULL is considered a valid release. This * is a special case that could be handled by the in heap check how-ever that * would result in false being returned which is wrong. */ if ( alloc_begin_ptr == NULL ) { 200c5dc: 80 a6 60 00 cmp %i1, 0 200c5e0: 02 80 00 56 be 200c738 <_Heap_Free+0x164> 200c5e4: b0 10 20 01 mov 1, %i0 200c5e8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 200c5ec: 40 00 16 a5 call 2012080 <.urem> 200c5f0: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c5f4: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c5f8: a2 06 7f f8 add %i1, -8, %l1 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c5fc: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c600: 80 a2 00 01 cmp %o0, %g1 200c604: 0a 80 00 4d bcs 200c738 <_Heap_Free+0x164> 200c608: b0 10 20 00 clr %i0 200c60c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200c610: 80 a2 00 03 cmp %o0, %g3 200c614: 18 80 00 49 bgu 200c738 <_Heap_Free+0x164> 200c618: 01 00 00 00 nop --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c61c: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c620: 88 0b 7f fe and %o5, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c624: 84 02 00 04 add %o0, %g4, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c628: 80 a0 40 02 cmp %g1, %g2 200c62c: 18 80 00 43 bgu 200c738 <_Heap_Free+0x164> <== NEVER TAKEN 200c630: 80 a0 c0 02 cmp %g3, %g2 200c634: 0a 80 00 41 bcs 200c738 <_Heap_Free+0x164> <== NEVER TAKEN 200c638: 01 00 00 00 nop 200c63c: d8 00 a0 04 ld [ %g2 + 4 ], %o4 return false; } _Heap_Protection_block_check( heap, next_block ); if ( !_Heap_Is_prev_used( next_block ) ) { 200c640: 80 8b 20 01 btst 1, %o4 200c644: 02 80 00 3d be 200c738 <_Heap_Free+0x164> <== NEVER TAKEN 200c648: 96 0b 3f fe and %o4, -2, %o3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c64c: 80 a0 c0 02 cmp %g3, %g2 200c650: 02 80 00 06 be 200c668 <_Heap_Free+0x94> 200c654: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c658: 98 00 80 0b add %g2, %o3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c65c: d8 03 20 04 ld [ %o4 + 4 ], %o4 200c660: 98 0b 20 01 and %o4, 1, %o4 return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 200c664: 98 1b 20 01 xor %o4, 1, %o4 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200c668: 80 8b 60 01 btst 1, %o5 200c66c: 12 80 00 1d bne 200c6e0 <_Heap_Free+0x10c> 200c670: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200c674: d4 02 00 00 ld [ %o0 ], %o2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c678: 9a 22 00 0a sub %o0, %o2, %o5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c67c: 80 a0 40 0d cmp %g1, %o5 200c680: 18 80 00 2e bgu 200c738 <_Heap_Free+0x164> <== NEVER TAKEN 200c684: b0 10 20 00 clr %i0 200c688: 80 a0 c0 0d cmp %g3, %o5 200c68c: 0a 80 00 2b bcs 200c738 <_Heap_Free+0x164> <== NEVER TAKEN 200c690: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c694: c2 03 60 04 ld [ %o5 + 4 ], %g1 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200c698: 80 88 60 01 btst 1, %g1 200c69c: 02 80 00 27 be 200c738 <_Heap_Free+0x164> <== NEVER TAKEN 200c6a0: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200c6a4: 22 80 00 39 be,a 200c788 <_Heap_Free+0x1b4> 200c6a8: 94 01 00 0a add %g4, %o2, %o2 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c6ac: c2 00 a0 08 ld [ %g2 + 8 ], %g1 200c6b0: c4 00 a0 0c ld [ %g2 + 0xc ], %g2 } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c6b4: c6 04 20 38 ld [ %l0 + 0x38 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 200c6b8: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200c6bc: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200c6c0: 82 00 ff ff add %g3, -1, %g1 200c6c4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200c6c8: 96 01 00 0b add %g4, %o3, %o3 200c6cc: 94 02 c0 0a add %o3, %o2, %o2 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c6d0: 82 12 a0 01 or %o2, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c6d4: d4 23 40 0a st %o2, [ %o5 + %o2 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c6d8: 10 80 00 0e b 200c710 <_Heap_Free+0x13c> 200c6dc: c2 23 60 04 st %g1, [ %o5 + 4 ] uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200c6e0: 22 80 00 18 be,a 200c740 <_Heap_Free+0x16c> 200c6e4: c6 04 20 08 ld [ %l0 + 8 ], %g3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c6e8: c6 00 a0 08 ld [ %g2 + 8 ], %g3 200c6ec: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 200c6f0: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = prev; 200c6f4: c2 22 20 0c st %g1, [ %o0 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200c6f8: 96 02 c0 04 add %o3, %g4, %o3 next->prev = new_block; 200c6fc: d0 20 e0 0c st %o0, [ %g3 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c700: 84 12 e0 01 or %o3, 1, %g2 prev->next = new_block; 200c704: d0 20 60 08 st %o0, [ %g1 + 8 ] 200c708: c4 22 20 04 st %g2, [ %o0 + 4 ] next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200c70c: d6 22 00 0b st %o3, [ %o0 + %o3 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c710: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 ++stats->frees; 200c714: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 stats->free_size += block_size; 200c718: c6 04 20 30 ld [ %l0 + 0x30 ], %g3 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c71c: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; 200c720: 82 00 60 01 inc %g1 stats->free_size += block_size; 200c724: 88 00 c0 04 add %g3, %g4, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200c728: c4 24 20 40 st %g2, [ %l0 + 0x40 ] ++stats->frees; 200c72c: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200c730: c8 24 20 30 st %g4, [ %l0 + 0x30 ] return( true ); 200c734: b0 10 20 01 mov 1, %i0 } 200c738: 81 c7 e0 08 ret 200c73c: 81 e8 00 00 restore next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200c740: 82 11 20 01 or %g4, 1, %g1 200c744: c2 22 20 04 st %g1, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c748: da 00 a0 04 ld [ %g2 + 4 ], %o5 next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c74c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200c750: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200c754: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200c758: d0 20 e0 0c st %o0, [ %g3 + 0xc ] /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; 200c75c: c8 22 00 04 st %g4, [ %o0 + %g4 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c760: 86 0b 7f fe and %o5, -2, %g3 200c764: c6 20 a0 04 st %g3, [ %g2 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200c768: c4 04 20 3c ld [ %l0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200c76c: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200c770: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200c774: 80 a0 40 02 cmp %g1, %g2 200c778: 08 bf ff e6 bleu 200c710 <_Heap_Free+0x13c> 200c77c: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200c780: 10 bf ff e4 b 200c710 <_Heap_Free+0x13c> 200c784: c2 24 20 3c st %g1, [ %l0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c788: 82 12 a0 01 or %o2, 1, %g1 200c78c: c2 23 60 04 st %g1, [ %o5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c790: c2 00 a0 04 ld [ %g2 + 4 ], %g1 next_block->prev_size = size; 200c794: d4 22 00 04 st %o2, [ %o0 + %g4 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200c798: 82 08 7f fe and %g1, -2, %g1 200c79c: 10 bf ff dd b 200c710 <_Heap_Free+0x13c> 200c7a0: c2 20 a0 04 st %g1, [ %g2 + 4 ] =============================================================================== 0200d304 <_Heap_Get_information>: void _Heap_Get_information( Heap_Control *the_heap, Heap_Information_block *the_info ) { 200d304: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *the_block = the_heap->first_block; 200d308: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 Heap_Block *const end = the_heap->last_block; 200d30c: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 memset(the_info, 0, sizeof(*the_info)); 200d310: c0 26 40 00 clr [ %i1 ] 200d314: c0 26 60 04 clr [ %i1 + 4 ] 200d318: c0 26 60 08 clr [ %i1 + 8 ] 200d31c: c0 26 60 0c clr [ %i1 + 0xc ] 200d320: c0 26 60 10 clr [ %i1 + 0x10 ] while ( the_block != end ) { 200d324: 80 a0 40 02 cmp %g1, %g2 200d328: 02 80 00 17 be 200d384 <_Heap_Get_information+0x80> <== NEVER TAKEN 200d32c: c0 26 60 14 clr [ %i1 + 0x14 ] 200d330: da 00 60 04 ld [ %g1 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d334: 88 0b 7f fe and %o5, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d338: 82 00 40 04 add %g1, %g4, %g1 if ( info->largest < the_size ) info->largest = the_size; the_block = next_block; } } 200d33c: da 00 60 04 ld [ %g1 + 4 ], %o5 while ( the_block != end ) { uintptr_t const the_size = _Heap_Block_size(the_block); Heap_Block *const next_block = _Heap_Block_at(the_block, the_size); Heap_Information *info; if ( _Heap_Is_prev_used(next_block) ) 200d340: 80 8b 60 01 btst 1, %o5 200d344: 02 80 00 03 be 200d350 <_Heap_Get_information+0x4c> 200d348: 86 10 00 19 mov %i1, %g3 info = &the_info->Used; 200d34c: 86 06 60 0c add %i1, 0xc, %g3 else info = &the_info->Free; info->number++; 200d350: d4 00 c0 00 ld [ %g3 ], %o2 info->total += the_size; 200d354: d6 00 e0 08 ld [ %g3 + 8 ], %o3 if ( info->largest < the_size ) 200d358: d8 00 e0 04 ld [ %g3 + 4 ], %o4 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d35c: 94 02 a0 01 inc %o2 info->total += the_size; 200d360: 96 02 c0 04 add %o3, %g4, %o3 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d364: d4 20 c0 00 st %o2, [ %g3 ] info->total += the_size; if ( info->largest < the_size ) 200d368: 80 a3 00 04 cmp %o4, %g4 200d36c: 1a 80 00 03 bcc 200d378 <_Heap_Get_information+0x74> 200d370: d6 20 e0 08 st %o3, [ %g3 + 8 ] info->largest = the_size; 200d374: c8 20 e0 04 st %g4, [ %g3 + 4 ] Heap_Block *the_block = the_heap->first_block; Heap_Block *const end = the_heap->last_block; memset(the_info, 0, sizeof(*the_info)); while ( the_block != end ) { 200d378: 80 a0 80 01 cmp %g2, %g1 200d37c: 12 bf ff ef bne 200d338 <_Heap_Get_information+0x34> 200d380: 88 0b 7f fe and %o5, -2, %g4 200d384: 81 c7 e0 08 ret 200d388: 81 e8 00 00 restore =============================================================================== 02013cd0 <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2013cd0: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013cd4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2013cd8: 7f ff f8 ea call 2012080 <.urem> 2013cdc: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2013ce0: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 2013ce4: a0 10 00 18 mov %i0, %l0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013ce8: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2013cec: 84 20 80 08 sub %g2, %o0, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2013cf0: 80 a0 80 01 cmp %g2, %g1 2013cf4: 0a 80 00 15 bcs 2013d48 <_Heap_Size_of_alloc_area+0x78> 2013cf8: b0 10 20 00 clr %i0 2013cfc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 2013d00: 80 a0 80 03 cmp %g2, %g3 2013d04: 18 80 00 11 bgu 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013d08: 01 00 00 00 nop - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2013d0c: c8 00 a0 04 ld [ %g2 + 4 ], %g4 2013d10: 88 09 3f fe and %g4, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2013d14: 84 00 80 04 add %g2, %g4, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2013d18: 80 a0 40 02 cmp %g1, %g2 2013d1c: 18 80 00 0b bgu 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013d20: 80 a0 c0 02 cmp %g3, %g2 2013d24: 0a 80 00 09 bcs 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013d28: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2013d2c: c2 00 a0 04 ld [ %g2 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2013d30: 80 88 60 01 btst 1, %g1 2013d34: 02 80 00 05 be 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013d38: 84 20 80 19 sub %g2, %i1, %g2 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2013d3c: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2013d40: 84 00 a0 04 add %g2, 4, %g2 2013d44: c4 26 80 00 st %g2, [ %i2 ] return true; } 2013d48: 81 c7 e0 08 ret 2013d4c: 81 e8 00 00 restore =============================================================================== 020087c8 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20087c8: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20087cc: 23 00 80 21 sethi %hi(0x2008400), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 20087d0: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 20087d4: e8 06 20 10 ld [ %i0 + 0x10 ], %l4 uintptr_t const min_block_size = heap->min_block_size; 20087d8: e6 06 20 14 ld [ %i0 + 0x14 ], %l3 Heap_Block *const first_block = heap->first_block; 20087dc: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *const last_block = heap->last_block; 20087e0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 20087e4: 80 8e a0 ff btst 0xff, %i2 20087e8: 02 80 00 04 be 20087f8 <_Heap_Walk+0x30> 20087ec: a2 14 63 5c or %l1, 0x35c, %l1 20087f0: 23 00 80 21 sethi %hi(0x2008400), %l1 20087f4: a2 14 63 64 or %l1, 0x364, %l1 ! 2008764 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 20087f8: 03 00 80 61 sethi %hi(0x2018400), %g1 20087fc: c2 00 61 4c ld [ %g1 + 0x14c ], %g1 ! 201854c <_System_state_Current> 2008800: 80 a0 60 03 cmp %g1, 3 2008804: 12 80 00 33 bne 20088d0 <_Heap_Walk+0x108> 2008808: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 200880c: da 04 20 18 ld [ %l0 + 0x18 ], %o5 2008810: c6 04 20 1c ld [ %l0 + 0x1c ], %g3 2008814: c4 04 20 08 ld [ %l0 + 8 ], %g2 2008818: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200881c: 90 10 00 19 mov %i1, %o0 2008820: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008824: e4 23 a0 60 st %l2, [ %sp + 0x60 ] 2008828: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 200882c: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 2008830: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 2008834: 92 10 20 00 clr %o1 2008838: 96 10 00 14 mov %l4, %o3 200883c: 15 00 80 56 sethi %hi(0x2015800), %o2 2008840: 98 10 00 13 mov %l3, %o4 2008844: 9f c4 40 00 call %l1 2008848: 94 12 a3 00 or %o2, 0x300, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 200884c: 80 a5 20 00 cmp %l4, 0 2008850: 02 80 00 2a be 20088f8 <_Heap_Walk+0x130> 2008854: 80 8d 20 07 btst 7, %l4 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 2008858: 12 80 00 30 bne 2008918 <_Heap_Walk+0x150> 200885c: 90 10 00 13 mov %l3, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008860: 7f ff e4 a1 call 2001ae4 <.urem> 2008864: 92 10 00 14 mov %l4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 2008868: 80 a2 20 00 cmp %o0, 0 200886c: 12 80 00 34 bne 200893c <_Heap_Walk+0x174> 2008870: 90 04 a0 08 add %l2, 8, %o0 2008874: 7f ff e4 9c call 2001ae4 <.urem> 2008878: 92 10 00 14 mov %l4, %o1 ); return false; } if ( 200887c: 80 a2 20 00 cmp %o0, 0 2008880: 32 80 00 38 bne,a 2008960 <_Heap_Walk+0x198> 2008884: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 2008888: f8 04 a0 04 ld [ %l2 + 4 ], %i4 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 200888c: 80 8f 20 01 btst 1, %i4 2008890: 22 80 00 4d be,a 20089c4 <_Heap_Walk+0x1fc> 2008894: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008898: c2 05 60 04 ld [ %l5 + 4 ], %g1 200889c: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 20088a0: 82 05 40 01 add %l5, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 20088a4: c4 00 60 04 ld [ %g1 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 20088a8: 80 88 a0 01 btst 1, %g2 20088ac: 02 80 00 0b be 20088d8 <_Heap_Walk+0x110> 20088b0: 80 a4 80 01 cmp %l2, %g1 ); return false; } if ( 20088b4: 02 80 00 33 be 2008980 <_Heap_Walk+0x1b8> 20088b8: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20088bc: 92 10 20 01 mov 1, %o1 20088c0: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20088c4: b0 10 20 00 clr %i0 } if ( _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 20088c8: 9f c4 40 00 call %l1 20088cc: 94 12 a0 78 or %o2, 0x78, %o2 20088d0: 81 c7 e0 08 ret 20088d4: 81 e8 00 00 restore return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 20088d8: 90 10 00 19 mov %i1, %o0 20088dc: 92 10 20 01 mov 1, %o1 20088e0: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20088e4: b0 10 20 00 clr %i0 return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 20088e8: 9f c4 40 00 call %l1 20088ec: 94 12 a0 60 or %o2, 0x60, %o2 20088f0: 81 c7 e0 08 ret 20088f4: 81 e8 00 00 restore first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 20088f8: 90 10 00 19 mov %i1, %o0 20088fc: 92 10 20 01 mov 1, %o1 2008900: 15 00 80 56 sethi %hi(0x2015800), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008904: b0 10 20 00 clr %i0 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008908: 9f c4 40 00 call %l1 200890c: 94 12 a3 98 or %o2, 0x398, %o2 2008910: 81 c7 e0 08 ret 2008914: 81 e8 00 00 restore return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008918: 90 10 00 19 mov %i1, %o0 200891c: 92 10 20 01 mov 1, %o1 2008920: 96 10 00 14 mov %l4, %o3 2008924: 15 00 80 56 sethi %hi(0x2015800), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008928: b0 10 20 00 clr %i0 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 200892c: 9f c4 40 00 call %l1 2008930: 94 12 a3 b0 or %o2, 0x3b0, %o2 2008934: 81 c7 e0 08 ret 2008938: 81 e8 00 00 restore return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 200893c: 90 10 00 19 mov %i1, %o0 2008940: 92 10 20 01 mov 1, %o1 2008944: 96 10 00 13 mov %l3, %o3 2008948: 15 00 80 56 sethi %hi(0x2015800), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200894c: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008950: 9f c4 40 00 call %l1 2008954: 94 12 a3 d0 or %o2, 0x3d0, %o2 2008958: 81 c7 e0 08 ret 200895c: 81 e8 00 00 restore } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008960: 92 10 20 01 mov 1, %o1 2008964: 96 10 00 12 mov %l2, %o3 2008968: 15 00 80 56 sethi %hi(0x2015800), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 200896c: b0 10 20 00 clr %i0 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008970: 9f c4 40 00 call %l1 2008974: 94 12 a3 f8 or %o2, 0x3f8, %o2 2008978: 81 c7 e0 08 ret 200897c: 81 e8 00 00 restore block = next_block; } while ( block != first_block ); return true; } 2008980: ee 04 20 08 ld [ %l0 + 8 ], %l7 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008984: 80 a4 00 17 cmp %l0, %l7 2008988: 02 80 01 18 be 2008de8 <_Heap_Walk+0x620> 200898c: f6 04 20 10 ld [ %l0 + 0x10 ], %i3 block = next_block; } while ( block != first_block ); return true; } 2008990: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008994: 80 a0 40 17 cmp %g1, %l7 2008998: 08 80 00 12 bleu 20089e0 <_Heap_Walk+0x218> <== ALWAYS TAKEN 200899c: ac 10 00 17 mov %l7, %l6 const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 20089a0: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 20089a4: 92 10 20 01 mov 1, %o1 20089a8: 96 10 00 16 mov %l6, %o3 20089ac: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20089b0: b0 10 20 00 clr %i0 const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 20089b4: 9f c4 40 00 call %l1 20089b8: 94 12 a0 a8 or %o2, 0xa8, %o2 20089bc: 81 c7 e0 08 ret 20089c0: 81 e8 00 00 restore return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 20089c4: 92 10 20 01 mov 1, %o1 20089c8: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 20089cc: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 20089d0: 9f c4 40 00 call %l1 20089d4: 94 12 a0 30 or %o2, 0x30, %o2 20089d8: 81 c7 e0 08 ret 20089dc: 81 e8 00 00 restore 20089e0: fa 04 20 24 ld [ %l0 + 0x24 ], %i5 20089e4: 80 a7 40 17 cmp %i5, %l7 20089e8: 0a bf ff ef bcs 20089a4 <_Heap_Walk+0x1dc> <== NEVER TAKEN 20089ec: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20089f0: c2 27 bf fc st %g1, [ %fp + -4 ] 20089f4: 90 05 e0 08 add %l7, 8, %o0 20089f8: 7f ff e4 3b call 2001ae4 <.urem> 20089fc: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2008a00: 80 a2 20 00 cmp %o0, 0 2008a04: 12 80 00 2d bne 2008ab8 <_Heap_Walk+0x2f0> <== NEVER TAKEN 2008a08: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008a0c: c4 05 e0 04 ld [ %l7 + 4 ], %g2 2008a10: 84 08 bf fe and %g2, -2, %g2 block = next_block; } while ( block != first_block ); return true; } 2008a14: 84 05 c0 02 add %l7, %g2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008a18: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008a1c: 80 88 a0 01 btst 1, %g2 2008a20: 12 80 00 2f bne 2008adc <_Heap_Walk+0x314> <== NEVER TAKEN 2008a24: 84 10 00 10 mov %l0, %g2 2008a28: 10 80 00 17 b 2008a84 <_Heap_Walk+0x2bc> 2008a2c: b4 10 00 01 mov %g1, %i2 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008a30: 80 a4 00 16 cmp %l0, %l6 2008a34: 02 80 00 33 be 2008b00 <_Heap_Walk+0x338> 2008a38: 80 a6 80 16 cmp %i2, %l6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008a3c: 18 bf ff da bgu 20089a4 <_Heap_Walk+0x1dc> 2008a40: 90 10 00 19 mov %i1, %o0 2008a44: 80 a5 80 1d cmp %l6, %i5 2008a48: 18 bf ff d8 bgu 20089a8 <_Heap_Walk+0x1e0> <== NEVER TAKEN 2008a4c: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008a50: 90 05 a0 08 add %l6, 8, %o0 2008a54: 7f ff e4 24 call 2001ae4 <.urem> 2008a58: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2008a5c: 80 a2 20 00 cmp %o0, 0 2008a60: 12 80 00 16 bne 2008ab8 <_Heap_Walk+0x2f0> 2008a64: 84 10 00 17 mov %l7, %g2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008a68: c2 05 a0 04 ld [ %l6 + 4 ], %g1 2008a6c: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 2008a70: 82 00 40 16 add %g1, %l6, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008a74: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008a78: 80 88 60 01 btst 1, %g1 2008a7c: 12 80 00 18 bne 2008adc <_Heap_Walk+0x314> 2008a80: ae 10 00 16 mov %l6, %l7 ); return false; } if ( free_block->prev != prev_block ) { 2008a84: d8 05 e0 0c ld [ %l7 + 0xc ], %o4 2008a88: 80 a3 00 02 cmp %o4, %g2 2008a8c: 22 bf ff e9 be,a 2008a30 <_Heap_Walk+0x268> 2008a90: ec 05 e0 08 ld [ %l7 + 8 ], %l6 (*printer)( 2008a94: 90 10 00 19 mov %i1, %o0 2008a98: 92 10 20 01 mov 1, %o1 2008a9c: 96 10 00 17 mov %l7, %o3 2008aa0: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008aa4: b0 10 20 00 clr %i0 return false; } if ( free_block->prev != prev_block ) { (*printer)( 2008aa8: 9f c4 40 00 call %l1 2008aac: 94 12 a1 18 or %o2, 0x118, %o2 2008ab0: 81 c7 e0 08 ret 2008ab4: 81 e8 00 00 restore } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008ab8: 90 10 00 19 mov %i1, %o0 2008abc: 92 10 20 01 mov 1, %o1 2008ac0: 96 10 00 16 mov %l6, %o3 2008ac4: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008ac8: b0 10 20 00 clr %i0 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008acc: 9f c4 40 00 call %l1 2008ad0: 94 12 a0 c8 or %o2, 0xc8, %o2 2008ad4: 81 c7 e0 08 ret 2008ad8: 81 e8 00 00 restore return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008adc: 90 10 00 19 mov %i1, %o0 2008ae0: 92 10 20 01 mov 1, %o1 2008ae4: 96 10 00 16 mov %l6, %o3 2008ae8: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008aec: b0 10 20 00 clr %i0 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008af0: 9f c4 40 00 call %l1 2008af4: 94 12 a0 f8 or %o2, 0xf8, %o2 2008af8: 81 c7 e0 08 ret 2008afc: 81 e8 00 00 restore 2008b00: 82 10 00 1a mov %i2, %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008b04: 35 00 80 57 sethi %hi(0x2015c00), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008b08: 31 00 80 57 sethi %hi(0x2015c00), %i0 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008b0c: ae 10 00 12 mov %l2, %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008b10: b4 16 a2 d8 or %i2, 0x2d8, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008b14: b0 16 22 c0 or %i0, 0x2c0, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008b18: 37 00 80 57 sethi %hi(0x2015c00), %i3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008b1c: ba 0f 3f fe and %i4, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008b20: ac 07 40 17 add %i5, %l7, %l6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008b24: 80 a0 40 16 cmp %g1, %l6 2008b28: 28 80 00 0c bleu,a 2008b58 <_Heap_Walk+0x390> <== ALWAYS TAKEN 2008b2c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2008b30: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008b34: 92 10 20 01 mov 1, %o1 2008b38: 96 10 00 17 mov %l7, %o3 2008b3c: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008b40: 98 10 00 16 mov %l6, %o4 2008b44: 94 12 a1 50 or %o2, 0x150, %o2 2008b48: 9f c4 40 00 call %l1 2008b4c: b0 10 20 00 clr %i0 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 2008b50: 81 c7 e0 08 ret 2008b54: 81 e8 00 00 restore 2008b58: 80 a0 40 16 cmp %g1, %l6 2008b5c: 0a bf ff f6 bcs 2008b34 <_Heap_Walk+0x36c> 2008b60: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008b64: 82 1d c0 15 xor %l7, %l5, %g1 2008b68: 80 a0 00 01 cmp %g0, %g1 2008b6c: 82 40 20 00 addx %g0, 0, %g1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008b70: 90 10 00 1d mov %i5, %o0 2008b74: c2 27 bf fc st %g1, [ %fp + -4 ] 2008b78: 7f ff e3 db call 2001ae4 <.urem> 2008b7c: 92 10 00 14 mov %l4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008b80: 80 a2 20 00 cmp %o0, 0 2008b84: 02 80 00 05 be 2008b98 <_Heap_Walk+0x3d0> 2008b88: c2 07 bf fc ld [ %fp + -4 ], %g1 2008b8c: 80 88 60 ff btst 0xff, %g1 2008b90: 12 80 00 79 bne 2008d74 <_Heap_Walk+0x5ac> 2008b94: 90 10 00 19 mov %i1, %o0 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008b98: 80 a4 c0 1d cmp %l3, %i5 2008b9c: 08 80 00 05 bleu 2008bb0 <_Heap_Walk+0x3e8> 2008ba0: 80 a5 c0 16 cmp %l7, %l6 2008ba4: 80 88 60 ff btst 0xff, %g1 2008ba8: 12 80 00 7c bne 2008d98 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN 2008bac: 80 a5 c0 16 cmp %l7, %l6 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008bb0: 2a 80 00 06 bcs,a 2008bc8 <_Heap_Walk+0x400> 2008bb4: c2 05 a0 04 ld [ %l6 + 4 ], %g1 2008bb8: 80 88 60 ff btst 0xff, %g1 2008bbc: 12 80 00 82 bne 2008dc4 <_Heap_Walk+0x5fc> 2008bc0: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008bc4: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008bc8: 80 88 60 01 btst 1, %g1 2008bcc: 02 80 00 19 be 2008c30 <_Heap_Walk+0x468> 2008bd0: b8 0f 20 01 and %i4, 1, %i4 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008bd4: 80 a7 20 00 cmp %i4, 0 2008bd8: 22 80 00 0e be,a 2008c10 <_Heap_Walk+0x448> 2008bdc: da 05 c0 00 ld [ %l7 ], %o5 (*printer)( 2008be0: 90 10 00 19 mov %i1, %o0 2008be4: 92 10 20 00 clr %o1 2008be8: 94 10 00 18 mov %i0, %o2 2008bec: 96 10 00 17 mov %l7, %o3 2008bf0: 9f c4 40 00 call %l1 2008bf4: 98 10 00 1d mov %i5, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008bf8: 80 a4 80 16 cmp %l2, %l6 2008bfc: 02 80 00 43 be 2008d08 <_Heap_Walk+0x540> 2008c00: ae 10 00 16 mov %l6, %l7 2008c04: f8 05 a0 04 ld [ %l6 + 4 ], %i4 2008c08: 10 bf ff c5 b 2008b1c <_Heap_Walk+0x354> 2008c0c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008c10: 96 10 00 17 mov %l7, %o3 2008c14: 90 10 00 19 mov %i1, %o0 2008c18: 92 10 20 00 clr %o1 2008c1c: 94 10 00 1a mov %i2, %o2 2008c20: 9f c4 40 00 call %l1 2008c24: 98 10 00 1d mov %i5, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008c28: 10 bf ff f5 b 2008bfc <_Heap_Walk+0x434> 2008c2c: 80 a4 80 16 cmp %l2, %l6 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008c30: da 05 e0 0c ld [ %l7 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008c34: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008c38: 05 00 80 56 sethi %hi(0x2015800), %g2 block = next_block; } while ( block != first_block ); return true; } 2008c3c: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008c40: 80 a0 40 0d cmp %g1, %o5 2008c44: 02 80 00 05 be 2008c58 <_Heap_Walk+0x490> 2008c48: 86 10 a2 c0 or %g2, 0x2c0, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008c4c: 80 a4 00 0d cmp %l0, %o5 2008c50: 02 80 00 3e be 2008d48 <_Heap_Walk+0x580> 2008c54: 86 16 e2 88 or %i3, 0x288, %g3 block->next, block->next == last_free_block ? 2008c58: c2 05 e0 08 ld [ %l7 + 8 ], %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008c5c: 19 00 80 56 sethi %hi(0x2015800), %o4 2008c60: 80 a1 00 01 cmp %g4, %g1 2008c64: 02 80 00 05 be 2008c78 <_Heap_Walk+0x4b0> 2008c68: 84 13 22 e0 or %o4, 0x2e0, %g2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008c6c: 80 a4 00 01 cmp %l0, %g1 2008c70: 02 80 00 33 be 2008d3c <_Heap_Walk+0x574> 2008c74: 84 16 e2 88 or %i3, 0x288, %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008c78: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008c7c: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2008c80: c4 23 a0 64 st %g2, [ %sp + 0x64 ] 2008c84: 90 10 00 19 mov %i1, %o0 2008c88: 92 10 20 00 clr %o1 2008c8c: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008c90: 96 10 00 17 mov %l7, %o3 2008c94: 94 12 a2 18 or %o2, 0x218, %o2 2008c98: 9f c4 40 00 call %l1 2008c9c: 98 10 00 1d mov %i5, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008ca0: da 05 80 00 ld [ %l6 ], %o5 2008ca4: 80 a7 40 0d cmp %i5, %o5 2008ca8: 12 80 00 1a bne 2008d10 <_Heap_Walk+0x548> 2008cac: 80 a7 20 00 cmp %i4, 0 ); return false; } if ( !prev_used ) { 2008cb0: 02 80 00 29 be 2008d54 <_Heap_Walk+0x58c> 2008cb4: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 2008cb8: c2 04 20 08 ld [ %l0 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008cbc: 80 a4 00 01 cmp %l0, %g1 2008cc0: 02 80 00 0b be 2008cec <_Heap_Walk+0x524> <== NEVER TAKEN 2008cc4: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 2008cc8: 80 a5 c0 01 cmp %l7, %g1 2008ccc: 02 bf ff cc be 2008bfc <_Heap_Walk+0x434> 2008cd0: 80 a4 80 16 cmp %l2, %l6 return true; } free_block = free_block->next; 2008cd4: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008cd8: 80 a4 00 01 cmp %l0, %g1 2008cdc: 12 bf ff fc bne 2008ccc <_Heap_Walk+0x504> 2008ce0: 80 a5 c0 01 cmp %l7, %g1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008ce4: 90 10 00 19 mov %i1, %o0 2008ce8: 92 10 20 01 mov 1, %o1 2008cec: 96 10 00 17 mov %l7, %o3 2008cf0: 15 00 80 57 sethi %hi(0x2015c00), %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008cf4: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008cf8: 9f c4 40 00 call %l1 2008cfc: 94 12 a3 00 or %o2, 0x300, %o2 2008d00: 81 c7 e0 08 ret 2008d04: 81 e8 00 00 restore block = next_block; } while ( block != first_block ); return true; } 2008d08: 81 c7 e0 08 ret 2008d0c: 91 e8 20 01 restore %g0, 1, %o0 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 2008d10: ec 23 a0 5c st %l6, [ %sp + 0x5c ] 2008d14: 90 10 00 19 mov %i1, %o0 2008d18: 92 10 20 01 mov 1, %o1 2008d1c: 96 10 00 17 mov %l7, %o3 2008d20: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008d24: 98 10 00 1d mov %i5, %o4 2008d28: 94 12 a2 50 or %o2, 0x250, %o2 2008d2c: 9f c4 40 00 call %l1 2008d30: b0 10 20 00 clr %i0 2008d34: 81 c7 e0 08 ret 2008d38: 81 e8 00 00 restore " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008d3c: 09 00 80 56 sethi %hi(0x2015800), %g4 2008d40: 10 bf ff ce b 2008c78 <_Heap_Walk+0x4b0> 2008d44: 84 11 22 f0 or %g4, 0x2f0, %g2 ! 2015af0 <_Status_Object_name_errors_to_status+0x68> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008d48: 19 00 80 56 sethi %hi(0x2015800), %o4 2008d4c: 10 bf ff c3 b 2008c58 <_Heap_Walk+0x490> 2008d50: 86 13 22 d0 or %o4, 0x2d0, %g3 ! 2015ad0 <_Status_Object_name_errors_to_status+0x48> return false; } if ( !prev_used ) { (*printer)( 2008d54: 92 10 20 01 mov 1, %o1 2008d58: 96 10 00 17 mov %l7, %o3 2008d5c: 15 00 80 57 sethi %hi(0x2015c00), %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008d60: b0 10 20 00 clr %i0 return false; } if ( !prev_used ) { (*printer)( 2008d64: 9f c4 40 00 call %l1 2008d68: 94 12 a2 90 or %o2, 0x290, %o2 2008d6c: 81 c7 e0 08 ret 2008d70: 81 e8 00 00 restore return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 2008d74: 92 10 20 01 mov 1, %o1 2008d78: 96 10 00 17 mov %l7, %o3 2008d7c: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008d80: 98 10 00 1d mov %i5, %o4 2008d84: 94 12 a1 80 or %o2, 0x180, %o2 2008d88: 9f c4 40 00 call %l1 2008d8c: b0 10 20 00 clr %i0 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 2008d90: 81 c7 e0 08 ret 2008d94: 81 e8 00 00 restore } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 2008d98: 90 10 00 19 mov %i1, %o0 2008d9c: 92 10 20 01 mov 1, %o1 2008da0: 96 10 00 17 mov %l7, %o3 2008da4: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008da8: 98 10 00 1d mov %i5, %o4 2008dac: 94 12 a1 b0 or %o2, 0x1b0, %o2 2008db0: 9a 10 00 13 mov %l3, %o5 2008db4: 9f c4 40 00 call %l1 2008db8: b0 10 20 00 clr %i0 block, block_size, min_block_size ); return false; 2008dbc: 81 c7 e0 08 ret 2008dc0: 81 e8 00 00 restore } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 2008dc4: 92 10 20 01 mov 1, %o1 2008dc8: 96 10 00 17 mov %l7, %o3 2008dcc: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008dd0: 98 10 00 16 mov %l6, %o4 2008dd4: 94 12 a1 e0 or %o2, 0x1e0, %o2 2008dd8: 9f c4 40 00 call %l1 2008ddc: b0 10 20 00 clr %i0 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2008de0: 81 c7 e0 08 ret 2008de4: 81 e8 00 00 restore const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008de8: 10 bf ff 47 b 2008b04 <_Heap_Walk+0x33c> 2008dec: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 =============================================================================== 02006c7c <_IO_Initialize_all_drivers>: * * Output Parameters: NONE */ void _IO_Initialize_all_drivers( void ) { 2006c7c: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2006c80: 23 00 80 57 sethi %hi(0x2015c00), %l1 2006c84: c2 04 62 94 ld [ %l1 + 0x294 ], %g1 ! 2015e94 <_IO_Number_of_drivers> 2006c88: 80 a0 60 00 cmp %g1, 0 2006c8c: 02 80 00 0c be 2006cbc <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 2006c90: a0 10 20 00 clr %l0 2006c94: a2 14 62 94 or %l1, 0x294, %l1 (void) rtems_io_initialize( major, 0, NULL ); 2006c98: 90 10 00 10 mov %l0, %o0 2006c9c: 92 10 20 00 clr %o1 2006ca0: 40 00 15 25 call 200c134 2006ca4: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2006ca8: c2 04 40 00 ld [ %l1 ], %g1 2006cac: a0 04 20 01 inc %l0 2006cb0: 80 a0 40 10 cmp %g1, %l0 2006cb4: 18 bf ff fa bgu 2006c9c <_IO_Initialize_all_drivers+0x20> 2006cb8: 90 10 00 10 mov %l0, %o0 2006cbc: 81 c7 e0 08 ret 2006cc0: 81 e8 00 00 restore =============================================================================== 02006bb0 <_IO_Manager_initialization>: * workspace. * */ void _IO_Manager_initialization(void) { 2006bb0: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = Configuration.Device_driver_table; 2006bb4: 03 00 80 54 sethi %hi(0x2015000), %g1 2006bb8: 82 10 60 08 or %g1, 8, %g1 ! 2015008 drivers_in_table = Configuration.number_of_device_drivers; 2006bbc: e2 00 60 30 ld [ %g1 + 0x30 ], %l1 number_of_drivers = Configuration.maximum_drivers; 2006bc0: e8 00 60 2c ld [ %g1 + 0x2c ], %l4 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 2006bc4: 80 a4 40 14 cmp %l1, %l4 2006bc8: 0a 80 00 08 bcs 2006be8 <_IO_Manager_initialization+0x38> 2006bcc: e0 00 60 34 ld [ %g1 + 0x34 ], %l0 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 2006bd0: 03 00 80 57 sethi %hi(0x2015c00), %g1 2006bd4: e0 20 62 98 st %l0, [ %g1 + 0x298 ] ! 2015e98 <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 2006bd8: 03 00 80 57 sethi %hi(0x2015c00), %g1 2006bdc: e2 20 62 94 st %l1, [ %g1 + 0x294 ] ! 2015e94 <_IO_Number_of_drivers> return; 2006be0: 81 c7 e0 08 ret 2006be4: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 2006be8: 83 2d 20 03 sll %l4, 3, %g1 2006bec: a7 2d 20 05 sll %l4, 5, %l3 2006bf0: a6 24 c0 01 sub %l3, %g1, %l3 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 2006bf4: 40 00 0d 41 call 200a0f8 <_Workspace_Allocate_or_fatal_error> 2006bf8: 90 10 00 13 mov %l3, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2006bfc: 03 00 80 57 sethi %hi(0x2015c00), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2006c00: 25 00 80 57 sethi %hi(0x2015c00), %l2 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2006c04: e8 20 62 94 st %l4, [ %g1 + 0x294 ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2006c08: d0 24 a2 98 st %o0, [ %l2 + 0x298 ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 2006c0c: 92 10 20 00 clr %o1 2006c10: 40 00 20 b7 call 200eeec 2006c14: 94 10 00 13 mov %l3, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006c18: 80 a4 60 00 cmp %l1, 0 2006c1c: 02 bf ff f1 be 2006be0 <_IO_Manager_initialization+0x30> <== NEVER TAKEN 2006c20: da 04 a2 98 ld [ %l2 + 0x298 ], %o5 2006c24: 82 10 20 00 clr %g1 2006c28: 88 10 20 00 clr %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006c2c: c4 04 00 01 ld [ %l0 + %g1 ], %g2 2006c30: 86 04 00 01 add %l0, %g1, %g3 2006c34: c4 23 40 01 st %g2, [ %o5 + %g1 ] 2006c38: d8 00 e0 04 ld [ %g3 + 4 ], %o4 2006c3c: 84 03 40 01 add %o5, %g1, %g2 2006c40: d8 20 a0 04 st %o4, [ %g2 + 4 ] 2006c44: d8 00 e0 08 ld [ %g3 + 8 ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006c48: 88 01 20 01 inc %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006c4c: d8 20 a0 08 st %o4, [ %g2 + 8 ] 2006c50: d8 00 e0 0c ld [ %g3 + 0xc ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006c54: 82 00 60 18 add %g1, 0x18, %g1 _IO_Driver_address_table[index] = driver_table[index]; 2006c58: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 2006c5c: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006c60: 80 a4 40 04 cmp %l1, %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006c64: d8 20 a0 10 st %o4, [ %g2 + 0x10 ] 2006c68: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006c6c: 18 bf ff f0 bgu 2006c2c <_IO_Manager_initialization+0x7c> 2006c70: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 2006c74: 81 c7 e0 08 ret 2006c78: 81 e8 00 00 restore =============================================================================== 020079a8 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20079a8: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20079ac: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 20079b0: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 20079b4: 80 a0 60 00 cmp %g1, 0 20079b8: 02 80 00 19 be 2007a1c <_Objects_Allocate+0x74> <== NEVER TAKEN 20079bc: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 20079c0: a2 04 20 20 add %l0, 0x20, %l1 20079c4: 7f ff fd 5c call 2006f34 <_Chain_Get> 20079c8: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 20079cc: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 20079d0: 80 a0 60 00 cmp %g1, 0 20079d4: 02 80 00 12 be 2007a1c <_Objects_Allocate+0x74> 20079d8: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 20079dc: 80 a2 20 00 cmp %o0, 0 20079e0: 02 80 00 11 be 2007a24 <_Objects_Allocate+0x7c> 20079e4: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 20079e8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 20079ec: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 20079f0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 20079f4: 40 00 28 f7 call 2011dd0 <.udiv> 20079f8: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 20079fc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2007a00: 91 2a 20 02 sll %o0, 2, %o0 2007a04: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2007a08: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2007a0c: 86 00 ff ff add %g3, -1, %g3 2007a10: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 2007a14: 82 00 bf ff add %g2, -1, %g1 2007a18: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 2007a1c: 81 c7 e0 08 ret 2007a20: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 2007a24: 40 00 00 11 call 2007a68 <_Objects_Extend_information> 2007a28: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007a2c: 7f ff fd 42 call 2006f34 <_Chain_Get> 2007a30: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 2007a34: b0 92 20 00 orcc %o0, 0, %i0 2007a38: 32 bf ff ed bne,a 20079ec <_Objects_Allocate+0x44> 2007a3c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 ); } #endif return the_object; } 2007a40: 81 c7 e0 08 ret 2007a44: 81 e8 00 00 restore =============================================================================== 02007a68 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 2007a68: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007a6c: e8 06 20 34 ld [ %i0 + 0x34 ], %l4 2007a70: 80 a5 20 00 cmp %l4, 0 2007a74: 02 80 00 a6 be 2007d0c <_Objects_Extend_information+0x2a4> 2007a78: e4 16 20 0a lduh [ %i0 + 0xa ], %l2 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2007a7c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5 2007a80: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3 2007a84: ab 2d 60 10 sll %l5, 0x10, %l5 2007a88: 92 10 00 13 mov %l3, %o1 2007a8c: 40 00 28 d1 call 2011dd0 <.udiv> 2007a90: 91 35 60 10 srl %l5, 0x10, %o0 2007a94: bb 2a 20 10 sll %o0, 0x10, %i5 2007a98: bb 37 60 10 srl %i5, 0x10, %i5 for ( ; block < block_count; block++ ) { 2007a9c: 80 a7 60 00 cmp %i5, 0 2007aa0: 02 80 00 a3 be 2007d2c <_Objects_Extend_information+0x2c4><== NEVER TAKEN 2007aa4: 90 10 00 13 mov %l3, %o0 if ( information->object_blocks[ block ] == NULL ) { 2007aa8: c2 05 00 00 ld [ %l4 ], %g1 2007aac: 80 a0 60 00 cmp %g1, 0 2007ab0: 02 80 00 a3 be 2007d3c <_Objects_Extend_information+0x2d4><== NEVER TAKEN 2007ab4: a2 10 00 12 mov %l2, %l1 * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007ab8: 10 80 00 06 b 2007ad0 <_Objects_Extend_information+0x68> 2007abc: a0 10 20 00 clr %l0 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007ac0: c2 05 00 01 ld [ %l4 + %g1 ], %g1 2007ac4: 80 a0 60 00 cmp %g1, 0 2007ac8: 22 80 00 08 be,a 2007ae8 <_Objects_Extend_information+0x80> 2007acc: a8 10 20 00 clr %l4 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007ad0: a0 04 20 01 inc %l0 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 2007ad4: a2 04 40 13 add %l1, %l3, %l1 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007ad8: 80 a7 40 10 cmp %i5, %l0 2007adc: 18 bf ff f9 bgu 2007ac0 <_Objects_Extend_information+0x58> 2007ae0: 83 2c 20 02 sll %l0, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007ae4: a8 10 20 01 mov 1, %l4 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007ae8: ab 35 60 10 srl %l5, 0x10, %l5 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007aec: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007af0: aa 05 40 08 add %l5, %o0, %l5 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007af4: 82 10 63 ff or %g1, 0x3ff, %g1 2007af8: 80 a5 40 01 cmp %l5, %g1 2007afc: 18 80 00 95 bgu 2007d50 <_Objects_Extend_information+0x2e8> 2007b00: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 2007b04: 40 00 28 79 call 2011ce8 <.umul> 2007b08: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2007b0c: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2007b10: 80 a0 60 00 cmp %g1, 0 2007b14: 02 80 00 6a be 2007cbc <_Objects_Extend_information+0x254> 2007b18: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 2007b1c: 40 00 09 67 call 200a0b8 <_Workspace_Allocate> 2007b20: 01 00 00 00 nop if ( !new_object_block ) 2007b24: a6 92 20 00 orcc %o0, 0, %l3 2007b28: 02 80 00 8a be 2007d50 <_Objects_Extend_information+0x2e8> 2007b2c: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 2007b30: 80 8d 20 ff btst 0xff, %l4 2007b34: 22 80 00 3f be,a 2007c30 <_Objects_Extend_information+0x1c8> 2007b38: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 */ /* * Up the block count and maximum */ block_count++; 2007b3c: a8 07 60 01 add %i5, 1, %l4 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007b40: 91 2d 20 01 sll %l4, 1, %o0 2007b44: 90 02 00 14 add %o0, %l4, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 2007b48: 90 05 40 08 add %l5, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007b4c: 90 02 00 12 add %o0, %l2, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 2007b50: 40 00 09 5a call 200a0b8 <_Workspace_Allocate> 2007b54: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { 2007b58: ac 92 20 00 orcc %o0, 0, %l6 2007b5c: 02 80 00 7b be 2007d48 <_Objects_Extend_information+0x2e0> 2007b60: a9 2d 20 02 sll %l4, 2, %l4 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 2007b64: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2007b68: 80 a4 80 01 cmp %l2, %g1 2007b6c: ae 05 80 14 add %l6, %l4, %l7 2007b70: 0a 80 00 57 bcs 2007ccc <_Objects_Extend_information+0x264> 2007b74: a8 05 c0 14 add %l7, %l4, %l4 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2007b78: 80 a4 a0 00 cmp %l2, 0 2007b7c: 02 80 00 07 be 2007b98 <_Objects_Extend_information+0x130><== NEVER TAKEN 2007b80: 82 10 20 00 clr %g1 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2007b84: 85 28 60 02 sll %g1, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2007b88: 82 00 60 01 inc %g1 2007b8c: 80 a4 80 01 cmp %l2, %g1 2007b90: 18 bf ff fd bgu 2007b84 <_Objects_Extend_information+0x11c><== NEVER TAKEN 2007b94: c0 20 80 14 clr [ %g2 + %l4 ] 2007b98: bb 2f 60 02 sll %i5, 2, %i5 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007b9c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 2007ba0: c0 25 80 1d clr [ %l6 + %i5 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007ba4: 86 04 40 03 add %l1, %g3, %g3 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007ba8: 80 a4 40 03 cmp %l1, %g3 2007bac: 1a 80 00 0a bcc 2007bd4 <_Objects_Extend_information+0x16c><== NEVER TAKEN 2007bb0: c0 25 c0 1d clr [ %l7 + %i5 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2007bb4: 83 2c 60 02 sll %l1, 2, %g1 2007bb8: 84 10 00 11 mov %l1, %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007bbc: 82 05 00 01 add %l4, %g1, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 2007bc0: c0 20 40 00 clr [ %g1 ] object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 2007bc4: 84 00 a0 01 inc %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007bc8: 80 a0 80 03 cmp %g2, %g3 2007bcc: 0a bf ff fd bcs 2007bc0 <_Objects_Extend_information+0x158> 2007bd0: 82 00 60 04 add %g1, 4, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 2007bd4: 7f ff e8 ea call 2001f7c 2007bd8: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007bdc: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2007be0: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 2007be4: e4 06 20 34 ld [ %i0 + 0x34 ], %l2 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2007be8: ea 36 20 10 sth %l5, [ %i0 + 0x10 ] 2007bec: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007bf0: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 2007bf4: ec 26 20 34 st %l6, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 2007bf8: ee 26 20 30 st %l7, [ %i0 + 0x30 ] information->local_table = local_table; 2007bfc: e8 26 20 1c st %l4, [ %i0 + 0x1c ] information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2007c00: ab 2d 60 10 sll %l5, 0x10, %l5 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007c04: 03 00 00 40 sethi %hi(0x10000), %g1 2007c08: ab 35 60 10 srl %l5, 0x10, %l5 2007c0c: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007c10: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007c14: 82 10 40 15 or %g1, %l5, %g1 2007c18: c2 26 20 0c st %g1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 2007c1c: 7f ff e8 dc call 2001f8c 2007c20: 01 00 00 00 nop _Workspace_Free( old_tables ); 2007c24: 40 00 09 2e call 200a0dc <_Workspace_Free> 2007c28: 90 10 00 12 mov %l2, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007c2c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007c30: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 2007c34: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 2007c38: 92 10 00 13 mov %l3, %o1 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007c3c: a1 2c 20 02 sll %l0, 2, %l0 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007c40: a4 07 bf f4 add %fp, -12, %l2 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007c44: e6 20 40 10 st %l3, [ %g1 + %l0 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007c48: 90 10 00 12 mov %l2, %o0 2007c4c: 40 00 11 51 call 200c190 <_Chain_Initialize> 2007c50: 29 00 00 40 sethi %hi(0x10000), %l4 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2007c54: 10 80 00 0d b 2007c88 <_Objects_Extend_information+0x220> 2007c58: a6 06 20 20 add %i0, 0x20, %l3 the_object->id = _Objects_Build_id( 2007c5c: c6 16 20 04 lduh [ %i0 + 4 ], %g3 2007c60: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007c64: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007c68: 84 10 80 14 or %g2, %l4, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007c6c: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007c70: 84 10 80 11 or %g2, %l1, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2007c74: 90 10 00 13 mov %l3, %o0 2007c78: 92 10 00 01 mov %g1, %o1 index++; 2007c7c: a2 04 60 01 inc %l1 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2007c80: 7f ff fc 97 call 2006edc <_Chain_Append> 2007c84: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2007c88: 7f ff fc ab call 2006f34 <_Chain_Get> 2007c8c: 90 10 00 12 mov %l2, %o0 2007c90: 82 92 20 00 orcc %o0, 0, %g1 2007c94: 32 bf ff f2 bne,a 2007c5c <_Objects_Extend_information+0x1f4> 2007c98: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2007c9c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 2007ca0: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2007ca4: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2007ca8: c8 20 c0 10 st %g4, [ %g3 + %l0 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2007cac: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 2007cb0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 2007cb4: 81 c7 e0 08 ret 2007cb8: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 2007cbc: 40 00 09 0f call 200a0f8 <_Workspace_Allocate_or_fatal_error> 2007cc0: 01 00 00 00 nop 2007cc4: 10 bf ff 9b b 2007b30 <_Objects_Extend_information+0xc8> 2007cc8: a6 10 00 08 mov %o0, %l3 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2007ccc: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 2007cd0: bb 2f 60 02 sll %i5, 2, %i5 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2007cd4: 40 00 1c 4d call 200ee08 2007cd8: 94 10 00 1d mov %i5, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 2007cdc: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 2007ce0: 94 10 00 1d mov %i5, %o2 2007ce4: 40 00 1c 49 call 200ee08 2007ce8: 90 10 00 17 mov %l7, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2007cec: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2007cf0: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2007cf4: 94 04 80 0a add %l2, %o2, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2007cf8: 90 10 00 14 mov %l4, %o0 2007cfc: 40 00 1c 43 call 200ee08 2007d00: 95 2a a0 02 sll %o2, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007d04: 10 bf ff a7 b 2007ba0 <_Objects_Extend_information+0x138> 2007d08: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007d0c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5 2007d10: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007d14: a2 10 00 12 mov %l2, %l1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007d18: a8 10 20 01 mov 1, %l4 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007d1c: a0 10 20 00 clr %l0 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 2007d20: ba 10 20 00 clr %i5 2007d24: 10 bf ff 71 b 2007ae8 <_Objects_Extend_information+0x80> 2007d28: ab 2d 60 10 sll %l5, 0x10, %l5 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007d2c: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007d30: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007d34: 10 bf ff 6d b 2007ae8 <_Objects_Extend_information+0x80> <== NOT EXECUTED 2007d38: a0 10 20 00 clr %l0 <== NOT EXECUTED else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { do_extend = false; 2007d3c: a8 10 20 00 clr %l4 <== NOT EXECUTED * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007d40: 10 bf ff 6a b 2007ae8 <_Objects_Extend_information+0x80> <== NOT EXECUTED 2007d44: a0 10 20 00 clr %l0 <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 2007d48: 40 00 08 e5 call 200a0dc <_Workspace_Free> 2007d4c: 90 10 00 13 mov %l3, %o0 return; 2007d50: 81 c7 e0 08 ret 2007d54: 81 e8 00 00 restore =============================================================================== 02007e04 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007e04: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007e08: b3 2e 60 10 sll %i1, 0x10, %i1 2007e0c: b3 36 60 10 srl %i1, 0x10, %i1 2007e10: 80 a6 60 00 cmp %i1, 0 2007e14: 12 80 00 04 bne 2007e24 <_Objects_Get_information+0x20> 2007e18: a0 10 20 00 clr %l0 if ( info->maximum == 0 ) return NULL; #endif return info; } 2007e1c: 81 c7 e0 08 ret 2007e20: 91 e8 00 10 restore %g0, %l0, %o0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007e24: 40 00 12 60 call 200c7a4 <_Objects_API_maximum_class> 2007e28: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007e2c: 80 a2 20 00 cmp %o0, 0 2007e30: 02 bf ff fb be 2007e1c <_Objects_Get_information+0x18> 2007e34: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007e38: 0a bf ff f9 bcs 2007e1c <_Objects_Get_information+0x18> 2007e3c: 03 00 80 56 sethi %hi(0x2015800), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2007e40: b1 2e 20 02 sll %i0, 2, %i0 2007e44: 82 10 63 38 or %g1, 0x338, %g1 2007e48: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2007e4c: 80 a0 60 00 cmp %g1, 0 2007e50: 02 bf ff f3 be 2007e1c <_Objects_Get_information+0x18> <== NEVER TAKEN 2007e54: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2007e58: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 2007e5c: 80 a4 20 00 cmp %l0, 0 2007e60: 02 bf ff ef be 2007e1c <_Objects_Get_information+0x18> <== NEVER TAKEN 2007e64: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2007e68: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 2007e6c: 80 a0 00 01 cmp %g0, %g1 2007e70: 82 60 20 00 subx %g0, 0, %g1 2007e74: 10 bf ff ea b 2007e1c <_Objects_Get_information+0x18> 2007e78: a0 0c 00 01 and %l0, %g1, %l0 =============================================================================== 02009bf4 <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 2009bf4: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2009bf8: 80 a6 60 00 cmp %i1, 0 2009bfc: 12 80 00 05 bne 2009c10 <_Objects_Get_name_as_string+0x1c> 2009c00: 80 a6 a0 00 cmp %i2, 0 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2009c04: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 2009c08: 81 c7 e0 08 ret 2009c0c: 91 e8 00 1a restore %g0, %i2, %o0 Objects_Id tmpId; if ( length == 0 ) return NULL; if ( name == NULL ) 2009c10: 02 bf ff fe be 2009c08 <_Objects_Get_name_as_string+0x14> 2009c14: 80 a6 20 00 cmp %i0, 0 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009c18: 12 80 00 04 bne 2009c28 <_Objects_Get_name_as_string+0x34> 2009c1c: 03 00 80 7d sethi %hi(0x201f400), %g1 2009c20: c2 00 60 78 ld [ %g1 + 0x78 ], %g1 ! 201f478 <_Per_CPU_Information+0xc> 2009c24: f0 00 60 08 ld [ %g1 + 8 ], %i0 information = _Objects_Get_information_id( tmpId ); 2009c28: 7f ff ff b1 call 2009aec <_Objects_Get_information_id> 2009c2c: 90 10 00 18 mov %i0, %o0 if ( !information ) 2009c30: 80 a2 20 00 cmp %o0, 0 2009c34: 22 bf ff f5 be,a 2009c08 <_Objects_Get_name_as_string+0x14> 2009c38: b4 10 20 00 clr %i2 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 2009c3c: 92 10 00 18 mov %i0, %o1 2009c40: 40 00 00 2c call 2009cf0 <_Objects_Get> 2009c44: 94 07 bf fc add %fp, -4, %o2 switch ( location ) { 2009c48: c2 07 bf fc ld [ %fp + -4 ], %g1 2009c4c: 80 a0 60 00 cmp %g1, 0 2009c50: 32 bf ff ee bne,a 2009c08 <_Objects_Get_name_as_string+0x14> 2009c54: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 2009c58: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 2009c5c: c0 2f bf f4 clrb [ %fp + -12 ] { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; 2009c60: 85 30 60 08 srl %g1, 8, %g2 } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009c64: 87 30 60 18 srl %g1, 0x18, %g3 lname[ 1 ] = (u32_name >> 16) & 0xff; 2009c68: 89 30 60 10 srl %g1, 0x10, %g4 lname[ 2 ] = (u32_name >> 8) & 0xff; 2009c6c: c4 2f bf f2 stb %g2, [ %fp + -14 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009c70: c6 2f bf f0 stb %g3, [ %fp + -16 ] lname[ 1 ] = (u32_name >> 16) & 0xff; 2009c74: c8 2f bf f1 stb %g4, [ %fp + -15 ] lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; 2009c78: c2 2f bf f3 stb %g1, [ %fp + -13 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009c7c: b2 86 7f ff addcc %i1, -1, %i1 2009c80: 02 80 00 19 be 2009ce4 <_Objects_Get_name_as_string+0xf0> <== NEVER TAKEN 2009c84: 84 10 00 1a mov %i2, %g2 2009c88: 80 a0 e0 00 cmp %g3, 0 2009c8c: 02 80 00 16 be 2009ce4 <_Objects_Get_name_as_string+0xf0> 2009c90: 19 00 80 79 sethi %hi(0x201e400), %o4 2009c94: 82 10 20 00 clr %g1 2009c98: 10 80 00 06 b 2009cb0 <_Objects_Get_name_as_string+0xbc> 2009c9c: 98 13 20 dc or %o4, 0xdc, %o4 2009ca0: da 49 00 01 ldsb [ %g4 + %g1 ], %o5 2009ca4: 80 a3 60 00 cmp %o5, 0 2009ca8: 02 80 00 0f be 2009ce4 <_Objects_Get_name_as_string+0xf0> 2009cac: c6 09 00 01 ldub [ %g4 + %g1 ], %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2009cb0: da 03 00 00 ld [ %o4 ], %o5 2009cb4: 88 08 e0 ff and %g3, 0xff, %g4 2009cb8: 88 03 40 04 add %o5, %g4, %g4 2009cbc: da 49 20 01 ldsb [ %g4 + 1 ], %o5 2009cc0: 80 8b 60 97 btst 0x97, %o5 2009cc4: 12 80 00 03 bne 2009cd0 <_Objects_Get_name_as_string+0xdc> 2009cc8: 88 07 bf f0 add %fp, -16, %g4 2009ccc: 86 10 20 2a mov 0x2a, %g3 2009cd0: c6 28 80 00 stb %g3, [ %g2 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009cd4: 82 00 60 01 inc %g1 2009cd8: 80 a0 40 19 cmp %g1, %i1 2009cdc: 0a bf ff f1 bcs 2009ca0 <_Objects_Get_name_as_string+0xac> 2009ce0: 84 00 a0 01 inc %g2 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; _Thread_Enable_dispatch(); 2009ce4: 40 00 03 84 call 200aaf4 <_Thread_Enable_dispatch> 2009ce8: c0 28 80 00 clrb [ %g2 ] return name; 2009cec: 30 bf ff c7 b,a 2009c08 <_Objects_Get_name_as_string+0x14> =============================================================================== 02019268 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019268: c4 02 20 08 ld [ %o0 + 8 ], %g2 if ( information->maximum >= index ) { 201926c: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019270: 84 22 40 02 sub %o1, %g2, %g2 2019274: 84 00 a0 01 inc %g2 if ( information->maximum >= index ) { 2019278: 80 a0 80 01 cmp %g2, %g1 201927c: 18 80 00 09 bgu 20192a0 <_Objects_Get_no_protection+0x38> 2019280: 85 28 a0 02 sll %g2, 2, %g2 if ( (the_object = information->local_table[ index ]) != NULL ) { 2019284: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 2019288: d0 00 40 02 ld [ %g1 + %g2 ], %o0 201928c: 80 a2 20 00 cmp %o0, 0 2019290: 02 80 00 05 be 20192a4 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 2019294: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 2019298: 81 c3 e0 08 retl 201929c: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 20192a0: 82 10 20 01 mov 1, %g1 return NULL; 20192a4: 90 10 20 00 clr %o0 } 20192a8: 81 c3 e0 08 retl 20192ac: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 020096a8 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 20096a8: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 20096ac: 80 a6 20 00 cmp %i0, 0 20096b0: 12 80 00 06 bne 20096c8 <_Objects_Id_to_name+0x20> 20096b4: 83 36 20 18 srl %i0, 0x18, %g1 20096b8: 03 00 80 78 sethi %hi(0x201e000), %g1 20096bc: c2 00 61 58 ld [ %g1 + 0x158 ], %g1 ! 201e158 <_Per_CPU_Information+0xc> 20096c0: f0 00 60 08 ld [ %g1 + 8 ], %i0 20096c4: 83 36 20 18 srl %i0, 0x18, %g1 20096c8: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 20096cc: 84 00 7f ff add %g1, -1, %g2 20096d0: 80 a0 a0 02 cmp %g2, 2 20096d4: 18 80 00 17 bgu 2009730 <_Objects_Id_to_name+0x88> 20096d8: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20096dc: 83 28 60 02 sll %g1, 2, %g1 20096e0: 05 00 80 77 sethi %hi(0x201dc00), %g2 20096e4: 84 10 a2 88 or %g2, 0x288, %g2 ! 201de88 <_Objects_Information_table> 20096e8: c2 00 80 01 ld [ %g2 + %g1 ], %g1 20096ec: 80 a0 60 00 cmp %g1, 0 20096f0: 02 80 00 10 be 2009730 <_Objects_Id_to_name+0x88> 20096f4: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 20096f8: 85 28 a0 02 sll %g2, 2, %g2 20096fc: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 2009700: 80 a2 20 00 cmp %o0, 0 2009704: 02 80 00 0b be 2009730 <_Objects_Id_to_name+0x88> <== NEVER TAKEN 2009708: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 200970c: 7f ff ff ca call 2009634 <_Objects_Get> 2009710: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 2009714: 80 a2 20 00 cmp %o0, 0 2009718: 02 80 00 06 be 2009730 <_Objects_Id_to_name+0x88> 200971c: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 2009720: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 2009724: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 2009728: 40 00 03 94 call 200a578 <_Thread_Enable_dispatch> 200972c: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2009730: 81 c7 e0 08 ret 2009734: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02008104 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 2008104: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 2008108: e0 16 20 0a lduh [ %i0 + 0xa ], %l0 block_count = (information->maximum - index_base) / 200810c: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1 2008110: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 2008114: 92 10 00 11 mov %l1, %o1 2008118: 40 00 27 2e call 2011dd0 <.udiv> 200811c: 90 22 00 10 sub %o0, %l0, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 2008120: 80 a2 20 00 cmp %o0, 0 2008124: 02 80 00 34 be 20081f4 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN 2008128: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 200812c: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 2008130: c2 01 00 00 ld [ %g4 ], %g1 2008134: 80 a4 40 01 cmp %l1, %g1 2008138: 02 80 00 0f be 2008174 <_Objects_Shrink_information+0x70> <== NEVER TAKEN 200813c: 82 10 20 00 clr %g1 2008140: 10 80 00 07 b 200815c <_Objects_Shrink_information+0x58> 2008144: a4 10 20 04 mov 4, %l2 information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; 2008148: 86 04 a0 04 add %l2, 4, %g3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 200814c: 80 a4 40 02 cmp %l1, %g2 2008150: 02 80 00 0a be 2008178 <_Objects_Shrink_information+0x74> 2008154: a0 04 00 11 add %l0, %l1, %l0 2008158: a4 10 00 03 mov %g3, %l2 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 200815c: 82 00 60 01 inc %g1 2008160: 80 a2 00 01 cmp %o0, %g1 2008164: 38 bf ff f9 bgu,a 2008148 <_Objects_Shrink_information+0x44> 2008168: c4 01 00 12 ld [ %g4 + %l2 ], %g2 200816c: 81 c7 e0 08 ret 2008170: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 2008174: a4 10 20 00 clr %l2 <== NOT EXECUTED information->allocation_size ) { /* * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); 2008178: 10 80 00 06 b 2008190 <_Objects_Shrink_information+0x8c> 200817c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 2008180: 80 a4 60 00 cmp %l1, 0 2008184: 22 80 00 12 be,a 20081cc <_Objects_Shrink_information+0xc8> 2008188: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 200818c: 90 10 00 11 mov %l1, %o0 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 2008190: c2 12 20 0a lduh [ %o0 + 0xa ], %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008194: 80 a0 40 10 cmp %g1, %l0 2008198: 0a bf ff fa bcs 2008180 <_Objects_Shrink_information+0x7c> 200819c: e2 02 00 00 ld [ %o0 ], %l1 (index < (index_base + information->allocation_size))) { 20081a0: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 20081a4: 84 04 00 02 add %l0, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 20081a8: 80 a0 40 02 cmp %g1, %g2 20081ac: 1a bf ff f6 bcc 2008184 <_Objects_Shrink_information+0x80> 20081b0: 80 a4 60 00 cmp %l1, 0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 20081b4: 7f ff fb 56 call 2006f0c <_Chain_Extract> 20081b8: 01 00 00 00 nop } } while ( the_object ); 20081bc: 80 a4 60 00 cmp %l1, 0 20081c0: 12 bf ff f4 bne 2008190 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN 20081c4: 90 10 00 11 mov %l1, %o0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 20081c8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 20081cc: 40 00 07 c4 call 200a0dc <_Workspace_Free> 20081d0: d0 00 40 12 ld [ %g1 + %l2 ], %o0 information->object_blocks[ block ] = NULL; 20081d4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; 20081d8: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 20081dc: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 20081e0: c0 20 40 12 clr [ %g1 + %l2 ] information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 20081e4: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 20081e8: c0 20 c0 12 clr [ %g3 + %l2 ] information->inactive -= information->allocation_size; 20081ec: 82 20 80 01 sub %g2, %g1, %g1 20081f0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 20081f4: 81 c7 e0 08 ret 20081f8: 81 e8 00 00 restore =============================================================================== 020068a8 <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 20068a8: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 20068ac: 03 00 80 53 sethi %hi(0x2014c00), %g1 20068b0: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 2014fd0 20068b4: e0 00 60 2c ld [ %g1 + 0x2c ], %l0 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 20068b8: 80 a4 20 00 cmp %l0, 0 20068bc: 02 80 00 19 be 2006920 <_RTEMS_tasks_Initialize_user_tasks_body+0x78> 20068c0: e4 00 60 28 ld [ %g1 + 0x28 ], %l2 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 20068c4: 80 a4 a0 00 cmp %l2, 0 20068c8: 02 80 00 16 be 2006920 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN 20068cc: a2 10 20 00 clr %l1 20068d0: a6 07 bf fc add %fp, -4, %l3 return_value = rtems_task_create( 20068d4: d4 04 20 04 ld [ %l0 + 4 ], %o2 20068d8: d0 04 00 00 ld [ %l0 ], %o0 20068dc: d2 04 20 08 ld [ %l0 + 8 ], %o1 20068e0: d6 04 20 14 ld [ %l0 + 0x14 ], %o3 20068e4: d8 04 20 0c ld [ %l0 + 0xc ], %o4 20068e8: 7f ff ff 6d call 200669c 20068ec: 9a 10 00 13 mov %l3, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 20068f0: 94 92 20 00 orcc %o0, 0, %o2 20068f4: 12 80 00 0d bne 2006928 <_RTEMS_tasks_Initialize_user_tasks_body+0x80> 20068f8: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 20068fc: d4 04 20 18 ld [ %l0 + 0x18 ], %o2 2006900: 40 00 00 0e call 2006938 2006904: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2006908: 94 92 20 00 orcc %o0, 0, %o2 200690c: 12 80 00 07 bne 2006928 <_RTEMS_tasks_Initialize_user_tasks_body+0x80> 2006910: a2 04 60 01 inc %l1 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006914: 80 a4 80 11 cmp %l2, %l1 2006918: 18 bf ff ef bgu 20068d4 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN 200691c: a0 04 20 1c add %l0, 0x1c, %l0 2006920: 81 c7 e0 08 ret 2006924: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 2006928: 90 10 20 01 mov 1, %o0 200692c: 40 00 03 f2 call 20078f4 <_Internal_error_Occurred> 2006930: 92 10 20 01 mov 1, %o1 =============================================================================== 0200bef0 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200bef0: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200bef4: e0 06 21 58 ld [ %i0 + 0x158 ], %l0 if ( !api ) 200bef8: 80 a4 20 00 cmp %l0, 0 200befc: 02 80 00 1f be 200bf78 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN 200bf00: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200bf04: 7f ff d8 1e call 2001f7c 200bf08: 01 00 00 00 nop signal_set = asr->signals_posted; 200bf0c: e2 04 20 14 ld [ %l0 + 0x14 ], %l1 asr->signals_posted = 0; 200bf10: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200bf14: 7f ff d8 1e call 2001f8c 200bf18: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200bf1c: 80 a4 60 00 cmp %l1, 0 200bf20: 32 80 00 04 bne,a 200bf30 <_RTEMS_tasks_Post_switch_extension+0x40> 200bf24: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200bf28: 81 c7 e0 08 ret 200bf2c: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bf30: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200bf34: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bf38: a4 07 bf fc add %fp, -4, %l2 200bf3c: 27 00 00 3f sethi %hi(0xfc00), %l3 200bf40: 94 10 00 12 mov %l2, %o2 200bf44: 92 14 e3 ff or %l3, 0x3ff, %o1 200bf48: 40 00 07 db call 200deb4 200bf4c: c2 24 20 1c st %g1, [ %l0 + 0x1c ] (*asr->handler)( signal_set ); 200bf50: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200bf54: 9f c0 40 00 call %g1 200bf58: 90 10 00 11 mov %l1, %o0 asr->nest_level -= 1; 200bf5c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bf60: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200bf64: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200bf68: 92 14 e3 ff or %l3, 0x3ff, %o1 200bf6c: 94 10 00 12 mov %l2, %o2 200bf70: 40 00 07 d1 call 200deb4 200bf74: c2 24 20 1c st %g1, [ %l0 + 0x1c ] 200bf78: 81 c7 e0 08 ret 200bf7c: 81 e8 00 00 restore =============================================================================== 0200be60 <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200be60: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 200be64: 80 a0 60 00 cmp %g1, 0 200be68: 22 80 00 0b be,a 200be94 <_RTEMS_tasks_Switch_extension+0x34> 200be6c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 tvp->tval = *tvp->ptr; 200be70: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200be74: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200be78: c8 00 80 00 ld [ %g2 ], %g4 200be7c: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; 200be80: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200be84: 80 a0 60 00 cmp %g1, 0 200be88: 12 bf ff fa bne 200be70 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN 200be8c: c6 20 80 00 st %g3, [ %g2 ] tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200be90: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 while (tvp) { 200be94: 80 a0 60 00 cmp %g1, 0 200be98: 02 80 00 0a be 200bec0 <_RTEMS_tasks_Switch_extension+0x60> 200be9c: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200bea0: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200bea4: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200bea8: c8 00 80 00 ld [ %g2 ], %g4 200beac: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; tvp = (rtems_task_variable_t *)tvp->next; 200beb0: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200beb4: 80 a0 60 00 cmp %g1, 0 200beb8: 12 bf ff fa bne 200bea0 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN 200bebc: c6 20 80 00 st %g3, [ %g2 ] 200bec0: 81 c3 e0 08 retl =============================================================================== 02007bc0 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007bc0: 9d e3 bf 98 save %sp, -104, %sp 2007bc4: 11 00 80 79 sethi %hi(0x201e400), %o0 2007bc8: 92 10 00 18 mov %i0, %o1 2007bcc: 90 12 20 84 or %o0, 0x84, %o0 2007bd0: 40 00 08 39 call 2009cb4 <_Objects_Get> 2007bd4: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007bd8: c2 07 bf fc ld [ %fp + -4 ], %g1 2007bdc: 80 a0 60 00 cmp %g1, 0 2007be0: 12 80 00 16 bne 2007c38 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN 2007be4: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007be8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007bec: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007bf0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007bf4: 80 88 80 01 btst %g2, %g1 2007bf8: 22 80 00 08 be,a 2007c18 <_Rate_monotonic_Timeout+0x58> 2007bfc: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007c00: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007c04: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007c08: 80 a0 80 01 cmp %g2, %g1 2007c0c: 02 80 00 19 be 2007c70 <_Rate_monotonic_Timeout+0xb0> 2007c10: 13 04 00 ff sethi %hi(0x1003fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007c14: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007c18: 80 a0 60 01 cmp %g1, 1 2007c1c: 02 80 00 09 be 2007c40 <_Rate_monotonic_Timeout+0x80> 2007c20: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007c24: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2007c28: 03 00 80 79 sethi %hi(0x201e400), %g1 2007c2c: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e5f0 <_Thread_Dispatch_disable_level> 2007c30: 84 00 bf ff add %g2, -1, %g2 2007c34: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ] 2007c38: 81 c7 e0 08 ret 2007c3c: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007c40: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 2007c44: 90 10 00 10 mov %l0, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007c48: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007c4c: 7f ff fe 4c call 200757c <_Rate_monotonic_Initiate_statistics> 2007c50: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007c54: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007c58: 11 00 80 79 sethi %hi(0x201e400), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007c5c: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007c60: 90 12 22 b4 or %o0, 0x2b4, %o0 2007c64: 40 00 10 05 call 200bc78 <_Watchdog_Insert> 2007c68: 92 04 20 10 add %l0, 0x10, %o1 2007c6c: 30 bf ff ef b,a 2007c28 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007c70: 40 00 0a cb call 200a79c <_Thread_Clear_state> 2007c74: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 2007c78: 10 bf ff f5 b 2007c4c <_Rate_monotonic_Timeout+0x8c> 2007c7c: 90 10 00 10 mov %l0, %o0 =============================================================================== 020082a0 <_Scheduler_priority_Block>: #include void _Scheduler_priority_Block( Thread_Control *the_thread ) { 20082a0: 9d e3 bf a0 save %sp, -96, %sp ) { Scheduler_priority_Per_thread *sched_info; Chain_Control *ready; sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info; 20082a4: c4 06 20 8c ld [ %i0 + 0x8c ], %g2 ready = sched_info->ready_chain; 20082a8: c2 00 80 00 ld [ %g2 ], %g1 if ( _Chain_Has_only_one_node( ready ) ) { 20082ac: c8 00 40 00 ld [ %g1 ], %g4 20082b0: c6 00 60 08 ld [ %g1 + 8 ], %g3 20082b4: 80 a1 00 03 cmp %g4, %g3 20082b8: 22 80 00 3a be,a 20083a0 <_Scheduler_priority_Block+0x100> 20082bc: c6 00 a0 04 ld [ %g2 + 4 ], %g3 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 20082c0: c4 06 00 00 ld [ %i0 ], %g2 previous = the_node->previous; 20082c4: c2 06 20 04 ld [ %i0 + 4 ], %g1 next->previous = previous; 20082c8: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 20082cc: c4 20 40 00 st %g2, [ %g1 ] RTEMS_INLINE_ROUTINE bool _Thread_Is_heir ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Heir ); 20082d0: 03 00 80 57 sethi %hi(0x2015c00), %g1 20082d4: 82 10 61 fc or %g1, 0x1fc, %g1 ! 2015dfc <_Per_CPU_Information> _Scheduler_priority_Ready_queue_extract( the_thread ); /* TODO: flash critical section? */ if ( _Thread_Is_heir( the_thread ) ) 20082d8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 20082dc: 80 a6 00 02 cmp %i0, %g2 20082e0: 02 80 00 09 be 2008304 <_Scheduler_priority_Block+0x64> 20082e4: 05 00 80 57 sethi %hi(0x2015c00), %g2 _Scheduler_priority_Schedule_body(); if ( _Thread_Is_executing( the_thread ) ) 20082e8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 20082ec: 80 a6 00 02 cmp %i0, %g2 20082f0: 12 80 00 03 bne 20082fc <_Scheduler_priority_Block+0x5c> 20082f4: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 20082f8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 20082fc: 81 c7 e0 08 ret 2008300: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2008304: c4 10 a2 20 lduh [ %g2 + 0x220 ], %g2 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2008308: 07 00 80 53 sethi %hi(0x2014c00), %g3 200830c: 85 28 a0 10 sll %g2, 0x10, %g2 2008310: 89 30 a0 10 srl %g2, 0x10, %g4 2008314: 80 a1 20 ff cmp %g4, 0xff 2008318: 18 80 00 37 bgu 20083f4 <_Scheduler_priority_Block+0x154> 200831c: c6 00 e3 30 ld [ %g3 + 0x330 ], %g3 2008320: 1b 00 80 51 sethi %hi(0x2014400), %o5 2008324: 9a 13 62 28 or %o5, 0x228, %o5 ! 2014628 <__log2table> 2008328: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2 200832c: 84 00 a0 08 add %g2, 8, %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2008330: 85 28 a0 10 sll %g2, 0x10, %g2 2008334: 19 00 80 57 sethi %hi(0x2015c00), %o4 2008338: 89 30 a0 0f srl %g2, 0xf, %g4 200833c: 98 13 22 30 or %o4, 0x230, %o4 2008340: c8 13 00 04 lduh [ %o4 + %g4 ], %g4 2008344: 89 29 20 10 sll %g4, 0x10, %g4 2008348: 99 31 20 10 srl %g4, 0x10, %o4 200834c: 80 a3 20 ff cmp %o4, 0xff 2008350: 38 80 00 27 bgu,a 20083ec <_Scheduler_priority_Block+0x14c> 2008354: 89 31 20 18 srl %g4, 0x18, %g4 2008358: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4 200835c: 88 01 20 08 add %g4, 8, %g4 return (_Priority_Bits_index( major ) << 4) + 2008360: 85 30 a0 0c srl %g2, 0xc, %g2 _Priority_Bits_index( minor ); 2008364: 89 29 20 10 sll %g4, 0x10, %g4 2008368: 89 31 20 10 srl %g4, 0x10, %g4 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 200836c: 88 01 00 02 add %g4, %g2, %g4 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 2008370: 9b 29 20 02 sll %g4, 2, %o5 2008374: 85 29 20 04 sll %g4, 4, %g2 2008378: 84 20 80 0d sub %g2, %o5, %g2 } 200837c: da 00 c0 02 ld [ %g3 + %g2 ], %o5 2008380: 84 00 c0 02 add %g3, %g2, %g2 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2008384: 84 00 a0 04 add %g2, 4, %g2 2008388: 80 a3 40 02 cmp %o5, %g2 200838c: 02 80 00 03 be 2008398 <_Scheduler_priority_Block+0xf8> <== NEVER TAKEN 2008390: 88 10 20 00 clr %g4 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 2008394: 88 10 00 0d mov %o5, %g4 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2008398: 10 bf ff d4 b 20082e8 <_Scheduler_priority_Block+0x48> 200839c: c8 20 60 10 st %g4, [ %g1 + 0x10 ] RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor &= the_priority_map->block_minor; 20083a0: c8 10 a0 0e lduh [ %g2 + 0xe ], %g4 { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 20083a4: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 20083a8: c2 20 60 08 st %g1, [ %g1 + 8 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 20083ac: 9a 00 60 04 add %g1, 4, %o5 head->next = tail; 20083b0: da 20 40 00 st %o5, [ %g1 ] 20083b4: c2 10 c0 00 lduh [ %g3 ], %g1 20083b8: 82 08 40 04 and %g1, %g4, %g1 20083bc: c2 30 c0 00 sth %g1, [ %g3 ] if ( *the_priority_map->minor == 0 ) 20083c0: 83 28 60 10 sll %g1, 0x10, %g1 20083c4: 80 a0 60 00 cmp %g1, 0 20083c8: 32 bf ff c3 bne,a 20082d4 <_Scheduler_priority_Block+0x34> 20083cc: 03 00 80 57 sethi %hi(0x2015c00), %g1 _Priority_Major_bit_map &= the_priority_map->block_major; 20083d0: 03 00 80 57 sethi %hi(0x2015c00), %g1 20083d4: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2 20083d8: c6 10 62 20 lduh [ %g1 + 0x220 ], %g3 20083dc: 84 08 c0 02 and %g3, %g2, %g2 20083e0: c4 30 62 20 sth %g2, [ %g1 + 0x220 ] 20083e4: 10 bf ff bc b 20082d4 <_Scheduler_priority_Block+0x34> 20083e8: 03 00 80 57 sethi %hi(0x2015c00), %g1 { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 20083ec: 10 bf ff dd b 2008360 <_Scheduler_priority_Block+0xc0> 20083f0: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4 RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 20083f4: 1b 00 80 51 sethi %hi(0x2014400), %o5 20083f8: 85 30 a0 18 srl %g2, 0x18, %g2 20083fc: 9a 13 62 28 or %o5, 0x228, %o5 2008400: 10 bf ff cc b 2008330 <_Scheduler_priority_Block+0x90> 2008404: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2 =============================================================================== 020085c8 <_Scheduler_priority_Schedule>: #include #include #include void _Scheduler_priority_Schedule(void) { 20085c8: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 20085cc: 03 00 80 57 sethi %hi(0x2015c00), %g1 20085d0: c2 10 62 20 lduh [ %g1 + 0x220 ], %g1 ! 2015e20 <_Priority_Major_bit_map> * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 20085d4: 05 00 80 53 sethi %hi(0x2014c00), %g2 20085d8: 83 28 60 10 sll %g1, 0x10, %g1 20085dc: 87 30 60 10 srl %g1, 0x10, %g3 20085e0: 80 a0 e0 ff cmp %g3, 0xff 20085e4: 18 80 00 26 bgu 200867c <_Scheduler_priority_Schedule+0xb4> 20085e8: c4 00 a3 30 ld [ %g2 + 0x330 ], %g2 20085ec: 09 00 80 51 sethi %hi(0x2014400), %g4 20085f0: 88 11 22 28 or %g4, 0x228, %g4 ! 2014628 <__log2table> 20085f4: c2 09 00 03 ldub [ %g4 + %g3 ], %g1 20085f8: 82 00 60 08 add %g1, 8, %g1 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 20085fc: 83 28 60 10 sll %g1, 0x10, %g1 2008600: 1b 00 80 57 sethi %hi(0x2015c00), %o5 2008604: 87 30 60 0f srl %g1, 0xf, %g3 2008608: 9a 13 62 30 or %o5, 0x230, %o5 200860c: c6 13 40 03 lduh [ %o5 + %g3 ], %g3 2008610: 87 28 e0 10 sll %g3, 0x10, %g3 2008614: 9b 30 e0 10 srl %g3, 0x10, %o5 2008618: 80 a3 60 ff cmp %o5, 0xff 200861c: 38 80 00 16 bgu,a 2008674 <_Scheduler_priority_Schedule+0xac> 2008620: 87 30 e0 18 srl %g3, 0x18, %g3 2008624: c6 09 00 0d ldub [ %g4 + %o5 ], %g3 2008628: 86 00 e0 08 add %g3, 8, %g3 return (_Priority_Bits_index( major ) << 4) + 200862c: 83 30 60 0c srl %g1, 0xc, %g1 _Priority_Bits_index( minor ); 2008630: 87 28 e0 10 sll %g3, 0x10, %g3 2008634: 87 30 e0 10 srl %g3, 0x10, %g3 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 2008638: 86 00 c0 01 add %g3, %g1, %g3 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 200863c: 89 28 e0 02 sll %g3, 2, %g4 2008640: 83 28 e0 04 sll %g3, 4, %g1 2008644: 82 20 40 04 sub %g1, %g4, %g1 _Scheduler_priority_Schedule_body(); } 2008648: c8 00 80 01 ld [ %g2 + %g1 ], %g4 200864c: 82 00 80 01 add %g2, %g1, %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2008650: 82 00 60 04 add %g1, 4, %g1 2008654: 80 a1 00 01 cmp %g4, %g1 2008658: 02 80 00 03 be 2008664 <_Scheduler_priority_Schedule+0x9c><== NEVER TAKEN 200865c: 86 10 20 00 clr %g3 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 2008660: 86 10 00 04 mov %g4, %g3 * * @param[in] the_thread - pointer to thread */ RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 2008664: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008668: c6 20 62 0c st %g3, [ %g1 + 0x20c ] ! 2015e0c <_Per_CPU_Information+0x10> 200866c: 81 c7 e0 08 ret 2008670: 81 e8 00 00 restore { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2008674: 10 bf ff ee b 200862c <_Scheduler_priority_Schedule+0x64> 2008678: c6 09 00 03 ldub [ %g4 + %g3 ], %g3 RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 200867c: 09 00 80 51 sethi %hi(0x2014400), %g4 2008680: 83 30 60 18 srl %g1, 0x18, %g1 2008684: 88 11 22 28 or %g4, 0x228, %g4 2008688: 10 bf ff dd b 20085fc <_Scheduler_priority_Schedule+0x34> 200868c: c2 09 00 01 ldub [ %g4 + %g1 ], %g1 =============================================================================== 020087a4 <_Scheduler_priority_Yield>: * ready chain * select heir */ void _Scheduler_priority_Yield(void) { 20087a4: 9d e3 bf a0 save %sp, -96, %sp Scheduler_priority_Per_thread *sched_info; ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 20087a8: 25 00 80 57 sethi %hi(0x2015c00), %l2 20087ac: a4 14 a1 fc or %l2, 0x1fc, %l2 ! 2015dfc <_Per_CPU_Information> 20087b0: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info; ready = sched_info->ready_chain; 20087b4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 _ISR_Disable( level ); 20087b8: 7f ff e5 f1 call 2001f7c 20087bc: e2 00 40 00 ld [ %g1 ], %l1 20087c0: b0 10 00 08 mov %o0, %i0 if ( !_Chain_Has_only_one_node( ready ) ) { 20087c4: c4 04 40 00 ld [ %l1 ], %g2 20087c8: c2 04 60 08 ld [ %l1 + 8 ], %g1 20087cc: 80 a0 80 01 cmp %g2, %g1 20087d0: 02 80 00 16 be 2008828 <_Scheduler_priority_Yield+0x84> 20087d4: 86 04 60 04 add %l1, 4, %g3 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 20087d8: c2 04 20 04 ld [ %l0 + 4 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 20087dc: c4 04 00 00 ld [ %l0 ], %g2 previous = the_node->previous; next->previous = previous; 20087e0: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 20087e4: c4 20 40 00 st %g2, [ %g1 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 20087e8: c2 04 60 08 ld [ %l1 + 8 ], %g1 the_node->next = tail; 20087ec: c6 24 00 00 st %g3, [ %l0 ] tail->previous = the_node; 20087f0: e0 24 60 08 st %l0, [ %l1 + 8 ] old_last->next = the_node; 20087f4: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last; 20087f8: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 20087fc: 7f ff e5 e4 call 2001f8c 2008800: 01 00 00 00 nop 2008804: 7f ff e5 de call 2001f7c 2008808: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 200880c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 2008810: 80 a4 00 01 cmp %l0, %g1 2008814: 02 80 00 0b be 2008840 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN 2008818: 82 10 20 01 mov 1, %g1 _Thread_Heir = (Thread_Control *) _Chain_First( ready ); _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 200881c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 2008820: 7f ff e5 db call 2001f8c 2008824: 81 e8 00 00 restore if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) _Chain_First( ready ); _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) 2008828: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 200882c: 80 a4 00 01 cmp %l0, %g1 2008830: 02 bf ff fc be 2008820 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN 2008834: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 2008838: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED 200883c: 30 bf ff f9 b,a 2008820 <_Scheduler_priority_Yield+0x7c> <== NOT EXECUTED _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) _Chain_First( ready ); 2008840: c2 04 40 00 ld [ %l1 ], %g1 2008844: c2 24 a0 10 st %g1, [ %l2 + 0x10 ] _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 2008848: 82 10 20 01 mov 1, %g1 200884c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] 2008850: 30 bf ff f4 b,a 2008820 <_Scheduler_priority_Yield+0x7c> =============================================================================== 02008a5c <_Scheduler_simple_Ready_queue_Enqueue_first>: { Chain_Control *ready; Chain_Node *the_node; Thread_Control *current; ready = (Chain_Control *)_Scheduler.information; 2008a5c: 03 00 80 56 sethi %hi(0x2015800), %g1 } } /* enqueue */ _Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node ); } 2008a60: c2 00 62 40 ld [ %g1 + 0x240 ], %g1 ! 2015a40 <_Scheduler> */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2008a64: c6 02 20 14 ld [ %o0 + 0x14 ], %g3 } } /* enqueue */ _Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node ); } 2008a68: c2 00 40 00 ld [ %g1 ], %g1 */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2008a6c: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2008a70: 80 a0 c0 02 cmp %g3, %g2 2008a74: 28 80 00 08 bleu,a 2008a94 <_Scheduler_simple_Ready_queue_Enqueue_first+0x38> 2008a78: c2 00 60 04 ld [ %g1 + 4 ], %g1 * Do NOT need to check for end of chain because there is always * at least one task on the ready chain -- the IDLE task. It can * never block, should never attempt to obtain a semaphore or mutex, * and thus will always be there. */ for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) { 2008a7c: c2 00 40 00 ld [ %g1 ], %g1 current = (Thread_Control *) the_node; /* break when AT HEAD OF (or PAST) our priority */ if ( the_thread->current_priority <= current->current_priority ) { 2008a80: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 2008a84: 80 a0 80 03 cmp %g2, %g3 2008a88: 2a bf ff fe bcs,a 2008a80 <_Scheduler_simple_Ready_queue_Enqueue_first+0x24><== NEVER TAKEN 2008a8c: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED current = (Thread_Control *)current->Object.Node.previous; 2008a90: c2 00 60 04 ld [ %g1 + 4 ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008a94: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008a98: c2 22 20 04 st %g1, [ %o0 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008a9c: d0 20 40 00 st %o0, [ %g1 ] the_node->next = before_node; 2008aa0: c4 22 00 00 st %g2, [ %o0 ] } } /* enqueue */ _Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node ); } 2008aa4: 81 c3 e0 08 retl 2008aa8: d0 20 a0 04 st %o0, [ %g2 + 4 ] =============================================================================== 02007440 <_TOD_Tickle_ticks>: * * Output parameters: NONE */ void _TOD_Tickle_ticks( void ) { 2007440: 9d e3 bf 98 save %sp, -104, %sp /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007444: 05 00 80 57 sethi %hi(0x2015c00), %g2 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007448: 03 00 80 54 sethi %hi(0x2015000), %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 200744c: c6 00 a0 e4 ld [ %g2 + 0xe4 ], %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007450: c2 00 60 14 ld [ %g1 + 0x14 ], %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007454: 86 00 e0 01 inc %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007458: 9b 28 60 07 sll %g1, 7, %o5 200745c: 89 28 60 02 sll %g1, 2, %g4 2007460: 88 23 40 04 sub %o5, %g4, %g4 2007464: 82 01 00 01 add %g4, %g1, %g1 2007468: 83 28 60 03 sll %g1, 3, %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 200746c: a0 07 bf f8 add %fp, -8, %l0 /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007470: c6 20 a0 e4 st %g3, [ %g2 + 0xe4 ] /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007474: 92 10 00 10 mov %l0, %o1 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007478: c2 27 bf fc st %g1, [ %fp + -4 ] 200747c: c0 27 bf f8 clr [ %fp + -8 ] /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007480: 11 00 80 57 sethi %hi(0x2015c00), %o0 2007484: 40 00 09 37 call 2009960 <_Timespec_Add_to> 2007488: 90 12 20 4c or %o0, 0x4c, %o0 ! 2015c4c <_TOD_Uptime> /* we do not care how much the uptime changed */ /* Update the timespec format TOD */ seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick ); 200748c: 92 10 00 10 mov %l0, %o1 2007490: 11 00 80 57 sethi %hi(0x2015c00), %o0 2007494: 40 00 09 33 call 2009960 <_Timespec_Add_to> 2007498: 90 12 20 5c or %o0, 0x5c, %o0 ! 2015c5c <_TOD_Now> while ( seconds ) { 200749c: a0 92 20 00 orcc %o0, 0, %l0 20074a0: 02 80 00 08 be 20074c0 <_TOD_Tickle_ticks+0x80> 20074a4: 23 00 80 57 sethi %hi(0x2015c00), %l1 */ RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void ) { _Watchdog_Tickle( &_Watchdog_Seconds_chain ); 20074a8: a2 14 60 88 or %l1, 0x88, %l1 ! 2015c88 <_Watchdog_Seconds_chain> 20074ac: 40 00 0a bd call 2009fa0 <_Watchdog_Tickle> 20074b0: 90 10 00 11 mov %l1, %o0 20074b4: a0 84 3f ff addcc %l0, -1, %l0 20074b8: 12 bf ff fd bne 20074ac <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN 20074bc: 01 00 00 00 nop 20074c0: 81 c7 e0 08 ret 20074c4: 81 e8 00 00 restore =============================================================================== 02007594 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 2007594: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007598: 03 00 80 78 sethi %hi(0x201e000), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 200759c: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20075a0: d2 00 62 34 ld [ %g1 + 0x234 ], %o1 if ((!the_tod) || 20075a4: 80 a4 20 00 cmp %l0, 0 20075a8: 02 80 00 2c be 2007658 <_TOD_Validate+0xc4> <== NEVER TAKEN 20075ac: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 20075b0: 11 00 03 d0 sethi %hi(0xf4000), %o0 20075b4: 40 00 49 cb call 2019ce0 <.udiv> 20075b8: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 20075bc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 20075c0: 80 a2 00 01 cmp %o0, %g1 20075c4: 08 80 00 25 bleu 2007658 <_TOD_Validate+0xc4> 20075c8: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 20075cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 20075d0: 80 a0 60 3b cmp %g1, 0x3b 20075d4: 18 80 00 21 bgu 2007658 <_TOD_Validate+0xc4> 20075d8: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 20075dc: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 20075e0: 80 a0 60 3b cmp %g1, 0x3b 20075e4: 18 80 00 1d bgu 2007658 <_TOD_Validate+0xc4> 20075e8: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 20075ec: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20075f0: 80 a0 60 17 cmp %g1, 0x17 20075f4: 18 80 00 19 bgu 2007658 <_TOD_Validate+0xc4> 20075f8: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 20075fc: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007600: 80 a0 60 00 cmp %g1, 0 2007604: 02 80 00 15 be 2007658 <_TOD_Validate+0xc4> <== NEVER TAKEN 2007608: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 200760c: 18 80 00 13 bgu 2007658 <_TOD_Validate+0xc4> 2007610: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007614: c4 04 00 00 ld [ %l0 ], %g2 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007618: 80 a0 a7 c3 cmp %g2, 0x7c3 200761c: 08 80 00 0f bleu 2007658 <_TOD_Validate+0xc4> 2007620: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007624: c6 04 20 08 ld [ %l0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007628: 80 a0 e0 00 cmp %g3, 0 200762c: 02 80 00 0b be 2007658 <_TOD_Validate+0xc4> <== NEVER TAKEN 2007630: 80 88 a0 03 btst 3, %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007634: 32 80 00 0b bne,a 2007660 <_TOD_Validate+0xcc> 2007638: 83 28 60 02 sll %g1, 2, %g1 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 200763c: 82 00 60 0d add %g1, 0xd, %g1 2007640: 05 00 80 73 sethi %hi(0x201cc00), %g2 2007644: 83 28 60 02 sll %g1, 2, %g1 2007648: 84 10 a2 80 or %g2, 0x280, %g2 200764c: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 2007650: 80 a0 40 03 cmp %g1, %g3 2007654: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 2007658: 81 c7 e0 08 ret 200765c: 81 e8 00 00 restore return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 2007660: 05 00 80 73 sethi %hi(0x201cc00), %g2 2007664: 84 10 a2 80 or %g2, 0x280, %g2 ! 201ce80 <_TOD_Days_per_month> 2007668: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 200766c: 80 a0 40 03 cmp %g1, %g3 2007670: b0 60 3f ff subx %g0, -1, %i0 2007674: 81 c7 e0 08 ret 2007678: 81 e8 00 00 restore =============================================================================== 020088b0 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 20088b0: 9d e3 bf a0 save %sp, -96, %sp States_Control state, original_state; /* * Save original state */ original_state = the_thread->current_state; 20088b4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 20088b8: 40 00 03 ad call 200976c <_Thread_Set_transient> 20088bc: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 20088c0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 20088c4: 80 a0 40 19 cmp %g1, %i1 20088c8: 02 80 00 05 be 20088dc <_Thread_Change_priority+0x2c> 20088cc: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 20088d0: 90 10 00 18 mov %i0, %o0 20088d4: 40 00 03 8b call 2009700 <_Thread_Set_priority> 20088d8: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 20088dc: 7f ff e5 a8 call 2001f7c 20088e0: 01 00 00 00 nop 20088e4: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 20088e8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 if ( state != STATES_TRANSIENT ) { 20088ec: 80 a4 a0 04 cmp %l2, 4 20088f0: 02 80 00 18 be 2008950 <_Thread_Change_priority+0xa0> 20088f4: 80 8c 60 04 btst 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 20088f8: 02 80 00 0b be 2008924 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 20088fc: 82 0c bf fb and %l2, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 2008900: 7f ff e5 a3 call 2001f8c <== NOT EXECUTED 2008904: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 2008908: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 200890c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008910: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED 2008914: 32 80 00 0d bne,a 2008948 <_Thread_Change_priority+0x98> <== NOT EXECUTED 2008918: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED 200891c: 81 c7 e0 08 ret 2008920: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 2008924: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 2008928: 7f ff e5 99 call 2001f8c 200892c: 90 10 00 18 mov %i0, %o0 2008930: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008934: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008938: 80 8c 80 01 btst %l2, %g1 200893c: 02 bf ff f8 be 200891c <_Thread_Change_priority+0x6c> 2008940: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008944: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2008948: 40 00 03 3e call 2009640 <_Thread_queue_Requeue> 200894c: 93 e8 00 10 restore %g0, %l0, %o1 2008950: 23 00 80 53 sethi %hi(0x2014c00), %l1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008954: 12 80 00 08 bne 2008974 <_Thread_Change_priority+0xc4> <== NEVER TAKEN 2008958: a2 14 63 30 or %l1, 0x330, %l1 ! 2014f30 <_Scheduler> * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); if ( prepend_it ) 200895c: 80 8e a0 ff btst 0xff, %i2 2008960: 02 80 00 1a be 20089c8 <_Thread_Change_priority+0x118> 2008964: c0 24 20 10 clr [ %l0 + 0x10 ] */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue_first( the_thread ); 2008968: c2 04 60 28 ld [ %l1 + 0x28 ], %g1 200896c: 9f c0 40 00 call %g1 2008970: 90 10 00 10 mov %l0, %o0 _Scheduler_Enqueue_first( the_thread ); else _Scheduler_Enqueue( the_thread ); } _ISR_Flash( level ); 2008974: 7f ff e5 86 call 2001f8c 2008978: 90 10 00 18 mov %i0, %o0 200897c: 7f ff e5 80 call 2001f7c 2008980: 01 00 00 00 nop * This kernel routine implements the scheduling decision logic for * the scheduler. It does NOT dispatch. */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void ) { _Scheduler.Operations.schedule(); 2008984: c2 04 60 08 ld [ %l1 + 8 ], %g1 2008988: 9f c0 40 00 call %g1 200898c: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008990: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008994: 82 10 61 fc or %g1, 0x1fc, %g1 ! 2015dfc <_Per_CPU_Information> 2008998: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(); if ( !_Thread_Is_executing_also_the_heir() && 200899c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 20089a0: 80 a0 80 03 cmp %g2, %g3 20089a4: 02 80 00 07 be 20089c0 <_Thread_Change_priority+0x110> 20089a8: 01 00 00 00 nop 20089ac: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 20089b0: 80 a0 a0 00 cmp %g2, 0 20089b4: 02 80 00 03 be 20089c0 <_Thread_Change_priority+0x110> 20089b8: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 20089bc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 20089c0: 7f ff e5 73 call 2001f8c 20089c4: 81 e8 00 00 restore */ RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue( Thread_Control *the_thread ) { _Scheduler.Operations.enqueue( the_thread ); 20089c8: c2 04 60 24 ld [ %l1 + 0x24 ], %g1 20089cc: 9f c0 40 00 call %g1 20089d0: 90 10 00 10 mov %l0, %o0 20089d4: 30 bf ff e8 b,a 2008974 <_Thread_Change_priority+0xc4> =============================================================================== 02008bec <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008bec: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008bf0: 90 10 00 18 mov %i0, %o0 2008bf4: 40 00 00 7a call 2008ddc <_Thread_Get> 2008bf8: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008bfc: c2 07 bf fc ld [ %fp + -4 ], %g1 2008c00: 80 a0 60 00 cmp %g1, 0 2008c04: 12 80 00 08 bne 2008c24 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 2008c08: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008c0c: 7f ff ff 73 call 20089d8 <_Thread_Clear_state> 2008c10: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 2008c14: 03 00 80 56 sethi %hi(0x2015800), %g1 2008c18: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 2015bd0 <_Thread_Dispatch_disable_level> 2008c1c: 84 00 bf ff add %g2, -1, %g2 2008c20: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ] 2008c24: 81 c7 e0 08 ret 2008c28: 81 e8 00 00 restore =============================================================================== 02008c2c <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008c2c: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 2008c30: 25 00 80 57 sethi %hi(0x2015c00), %l2 2008c34: a4 14 a1 fc or %l2, 0x1fc, %l2 ! 2015dfc <_Per_CPU_Information> _ISR_Disable( level ); 2008c38: 7f ff e4 d1 call 2001f7c 2008c3c: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 while ( _Thread_Dispatch_necessary == true ) { 2008c40: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1 2008c44: 80 a0 60 00 cmp %g1, 0 2008c48: 02 80 00 50 be 2008d88 <_Thread_Dispatch+0x15c> 2008c4c: 2f 00 80 56 sethi %hi(0x2015800), %l7 heir = _Thread_Heir; 2008c50: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1 _Thread_Dispatch_disable_level = 1; 2008c54: 82 10 20 01 mov 1, %g1 2008c58: c2 25 e3 d0 st %g1, [ %l7 + 0x3d0 ] _Thread_Dispatch_necessary = false; 2008c5c: c0 2c a0 18 clrb [ %l2 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008c60: 80 a4 00 11 cmp %l0, %l1 2008c64: 02 80 00 49 be 2008d88 <_Thread_Dispatch+0x15c> 2008c68: e2 24 a0 0c st %l1, [ %l2 + 0xc ] 2008c6c: 27 00 80 57 sethi %hi(0x2015c00), %l3 2008c70: 39 00 80 57 sethi %hi(0x2015c00), %i4 2008c74: a6 14 e0 80 or %l3, 0x80, %l3 2008c78: aa 07 bf f8 add %fp, -8, %l5 2008c7c: a8 07 bf f0 add %fp, -16, %l4 2008c80: b8 17 20 58 or %i4, 0x58, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008c84: 35 00 80 56 sethi %hi(0x2015800), %i2 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008c88: ba 10 00 13 mov %l3, %i5 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 2008c8c: 2d 00 80 57 sethi %hi(0x2015c00), %l6 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 2008c90: 10 80 00 38 b 2008d70 <_Thread_Dispatch+0x144> 2008c94: b6 10 20 01 mov 1, %i3 rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 2008c98: 7f ff e4 bd call 2001f8c 2008c9c: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008ca0: 40 00 0d af call 200c35c <_TOD_Get_uptime> 2008ca4: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 2008ca8: 90 10 00 1d mov %i5, %o0 2008cac: 92 10 00 15 mov %l5, %o1 2008cb0: 40 00 03 45 call 20099c4 <_Timespec_Subtract> 2008cb4: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008cb8: 90 04 20 84 add %l0, 0x84, %o0 2008cbc: 40 00 03 29 call 2009960 <_Timespec_Add_to> 2008cc0: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 2008cc4: c4 07 bf f8 ld [ %fp + -8 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008cc8: c2 07 00 00 ld [ %i4 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008ccc: c4 24 c0 00 st %g2, [ %l3 ] 2008cd0: c4 07 bf fc ld [ %fp + -4 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008cd4: 80 a0 60 00 cmp %g1, 0 2008cd8: 02 80 00 06 be 2008cf0 <_Thread_Dispatch+0xc4> <== NEVER TAKEN 2008cdc: c4 24 e0 04 st %g2, [ %l3 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008ce0: c4 00 40 00 ld [ %g1 ], %g2 2008ce4: c4 24 21 54 st %g2, [ %l0 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2008ce8: c4 04 61 54 ld [ %l1 + 0x154 ], %g2 2008cec: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008cf0: 90 10 00 10 mov %l0, %o0 2008cf4: 40 00 03 f8 call 2009cd4 <_User_extensions_Thread_switch> 2008cf8: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008cfc: 90 04 20 c8 add %l0, 0xc8, %o0 2008d00: 40 00 05 47 call 200a21c <_CPU_Context_switch> 2008d04: 92 04 60 c8 add %l1, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008d08: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 2008d0c: 80 a0 60 00 cmp %g1, 0 2008d10: 02 80 00 0c be 2008d40 <_Thread_Dispatch+0x114> 2008d14: d0 05 a0 54 ld [ %l6 + 0x54 ], %o0 2008d18: 80 a4 00 08 cmp %l0, %o0 2008d1c: 02 80 00 09 be 2008d40 <_Thread_Dispatch+0x114> 2008d20: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008d24: 02 80 00 04 be 2008d34 <_Thread_Dispatch+0x108> 2008d28: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008d2c: 40 00 05 02 call 200a134 <_CPU_Context_save_fp> 2008d30: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008d34: 40 00 05 1d call 200a1a8 <_CPU_Context_restore_fp> 2008d38: 90 04 21 50 add %l0, 0x150, %o0 _Thread_Allocated_fp = executing; 2008d3c: e0 25 a0 54 st %l0, [ %l6 + 0x54 ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 2008d40: 7f ff e4 8f call 2001f7c 2008d44: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008d48: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1 2008d4c: 80 a0 60 00 cmp %g1, 0 2008d50: 02 80 00 0e be 2008d88 <_Thread_Dispatch+0x15c> 2008d54: 01 00 00 00 nop heir = _Thread_Heir; 2008d58: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1 _Thread_Dispatch_disable_level = 1; 2008d5c: f6 25 e3 d0 st %i3, [ %l7 + 0x3d0 ] _Thread_Dispatch_necessary = false; 2008d60: c0 2c a0 18 clrb [ %l2 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008d64: 80 a4 40 10 cmp %l1, %l0 2008d68: 02 80 00 08 be 2008d88 <_Thread_Dispatch+0x15c> <== NEVER TAKEN 2008d6c: e2 24 a0 0c st %l1, [ %l2 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008d70: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008d74: 80 a0 60 01 cmp %g1, 1 2008d78: 12 bf ff c8 bne 2008c98 <_Thread_Dispatch+0x6c> 2008d7c: c2 06 a3 34 ld [ %i2 + 0x334 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008d80: 10 bf ff c6 b 2008c98 <_Thread_Dispatch+0x6c> 2008d84: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 2008d88: c0 25 e3 d0 clr [ %l7 + 0x3d0 ] _ISR_Enable( level ); 2008d8c: 7f ff e4 80 call 2001f8c 2008d90: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008d94: 7f ff f8 06 call 2006dac <_API_extensions_Run_postswitch> 2008d98: 01 00 00 00 nop } 2008d9c: 81 c7 e0 08 ret 2008da0: 81 e8 00 00 restore =============================================================================== 0200e240 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200e240: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200e244: 03 00 80 57 sethi %hi(0x2015c00), %g1 200e248: e0 00 62 08 ld [ %g1 + 0x208 ], %l0 ! 2015e08 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e24c: 3f 00 80 38 sethi %hi(0x200e000), %i7 200e250: be 17 e2 40 or %i7, 0x240, %i7 ! 200e240 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e254: d0 04 20 ac ld [ %l0 + 0xac ], %o0 _ISR_Set_level(level); 200e258: 7f ff cf 4d call 2001f8c 200e25c: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e260: 03 00 80 56 sethi %hi(0x2015800), %g1 doneConstructors = 1; 200e264: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e268: e4 08 60 90 ldub [ %g1 + 0x90 ], %l2 doneConstructors = 1; 200e26c: c4 28 60 90 stb %g2, [ %g1 + 0x90 ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e270: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 200e274: 80 a0 60 00 cmp %g1, 0 200e278: 02 80 00 0b be 200e2a4 <_Thread_Handler+0x64> 200e27c: 23 00 80 57 sethi %hi(0x2015c00), %l1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e280: d0 04 60 54 ld [ %l1 + 0x54 ], %o0 ! 2015c54 <_Thread_Allocated_fp> 200e284: 80 a4 00 08 cmp %l0, %o0 200e288: 02 80 00 07 be 200e2a4 <_Thread_Handler+0x64> 200e28c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e290: 22 80 00 05 be,a 200e2a4 <_Thread_Handler+0x64> 200e294: e0 24 60 54 st %l0, [ %l1 + 0x54 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e298: 7f ff ef a7 call 200a134 <_CPU_Context_save_fp> 200e29c: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200e2a0: e0 24 60 54 st %l0, [ %l1 + 0x54 ] /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200e2a4: 7f ff ee 0c call 2009ad4 <_User_extensions_Thread_begin> 200e2a8: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e2ac: 7f ff ea be call 2008da4 <_Thread_Enable_dispatch> 200e2b0: a5 2c a0 18 sll %l2, 0x18, %l2 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200e2b4: 80 a4 a0 00 cmp %l2, 0 200e2b8: 02 80 00 0c be 200e2e8 <_Thread_Handler+0xa8> 200e2bc: 01 00 00 00 nop INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e2c0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200e2c4: 80 a0 60 00 cmp %g1, 0 200e2c8: 22 80 00 0f be,a 200e304 <_Thread_Handler+0xc4> <== ALWAYS TAKEN 200e2cc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200e2d0: 7f ff ee 15 call 2009b24 <_User_extensions_Thread_exitted> 200e2d4: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200e2d8: 90 10 20 00 clr %o0 200e2dc: 92 10 20 01 mov 1, %o1 200e2e0: 7f ff e5 85 call 20078f4 <_Internal_error_Occurred> 200e2e4: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200e2e8: 40 00 1a fe call 2014ee0 <_init> 200e2ec: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e2f0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200e2f4: 80 a0 60 00 cmp %g1, 0 200e2f8: 12 bf ff f6 bne 200e2d0 <_Thread_Handler+0x90> <== NEVER TAKEN 200e2fc: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e300: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200e304: 9f c0 40 00 call %g1 200e308: d0 04 20 9c ld [ %l0 + 0x9c ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200e30c: 10 bf ff f1 b 200e2d0 <_Thread_Handler+0x90> 200e310: d0 24 20 28 st %o0, [ %l0 + 0x28 ] =============================================================================== 02008e88 <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008e88: 9d e3 bf a0 save %sp, -96, %sp 2008e8c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008e90: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0 2008e94: e2 00 40 00 ld [ %g1 ], %l1 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008e98: c0 26 61 58 clr [ %i1 + 0x158 ] 2008e9c: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008ea0: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008ea4: 90 10 00 19 mov %i1, %o0 2008ea8: 40 00 02 41 call 20097ac <_Thread_Stack_Allocate> 2008eac: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008eb0: 80 a2 00 1b cmp %o0, %i3 2008eb4: 0a 80 00 4b bcs 2008fe0 <_Thread_Initialize+0x158> 2008eb8: 80 a2 20 00 cmp %o0, 0 2008ebc: 02 80 00 49 be 2008fe0 <_Thread_Initialize+0x158> <== NEVER TAKEN 2008ec0: a4 10 20 00 clr %l2 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008ec4: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008ec8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008ecc: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008ed0: 80 8f 20 ff btst 0xff, %i4 2008ed4: 12 80 00 45 bne 2008fe8 <_Thread_Initialize+0x160> 2008ed8: 82 10 20 00 clr %g1 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008edc: 27 00 80 57 sethi %hi(0x2015c00), %l3 2008ee0: c4 04 e0 64 ld [ %l3 + 0x64 ], %g2 ! 2015c64 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008ee4: c2 26 61 50 st %g1, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2008ee8: c2 26 60 bc st %g1, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008eec: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008ef0: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008ef4: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008ef8: 80 a0 a0 00 cmp %g2, 0 2008efc: 12 80 00 4a bne 2009024 <_Thread_Initialize+0x19c> 2008f00: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2008f04: c0 26 61 60 clr [ %i1 + 0x160 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2008f08: b6 10 20 00 clr %i3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008f0c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 */ RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate( Thread_Control *the_thread ) { return _Scheduler.Operations.allocate( the_thread ); 2008f10: 03 00 80 53 sethi %hi(0x2014c00), %g1 2008f14: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008f18: c4 07 a0 64 ld [ %fp + 0x64 ], %g2 2008f1c: c2 00 63 48 ld [ %g1 + 0x348 ], %g1 2008f20: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008f24: c4 07 a0 68 ld [ %fp + 0x68 ], %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008f28: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008f2c: c4 26 60 ac st %g2, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008f30: 84 10 20 01 mov 1, %g2 the_thread->Wait.queue = NULL; 2008f34: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 2008f38: c4 26 60 10 st %g2, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008f3c: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2008f40: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008f44: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008f48: 9f c0 40 00 call %g1 2008f4c: 90 10 00 19 mov %i1, %o0 sched =_Scheduler_Allocate( the_thread ); if ( !sched ) 2008f50: a0 92 20 00 orcc %o0, 0, %l0 2008f54: 22 80 00 13 be,a 2008fa0 <_Thread_Initialize+0x118> 2008f58: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008f5c: 90 10 00 19 mov %i1, %o0 2008f60: 40 00 01 e8 call 2009700 <_Thread_Set_priority> 2008f64: 92 10 00 1d mov %i5, %o1 _Workspace_Free( sched ); _Thread_Stack_Free( the_thread ); return false; } 2008f68: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008f6c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008f70: c0 26 60 84 clr [ %i1 + 0x84 ] 2008f74: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008f78: 83 28 60 02 sll %g1, 2, %g1 2008f7c: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008f80: e2 26 60 0c st %l1, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008f84: 90 10 00 19 mov %i1, %o0 2008f88: 40 00 03 0e call 2009bc0 <_User_extensions_Thread_create> 2008f8c: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008f90: 80 8a 20 ff btst 0xff, %o0 2008f94: 12 80 00 35 bne 2009068 <_Thread_Initialize+0x1e0> 2008f98: 01 00 00 00 nop return true; failed: _Workspace_Free( the_thread->libc_reent ); 2008f9c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 2008fa0: 40 00 04 4f call 200a0dc <_Workspace_Free> 2008fa4: b0 10 20 00 clr %i0 for ( i=0 ; i <= THREAD_API_LAST ; i++ ) _Workspace_Free( the_thread->API_Extensions[i] ); 2008fa8: 40 00 04 4d call 200a0dc <_Workspace_Free> 2008fac: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 2008fb0: 40 00 04 4b call 200a0dc <_Workspace_Free> 2008fb4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( extensions_area ); 2008fb8: 40 00 04 49 call 200a0dc <_Workspace_Free> 2008fbc: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) _Workspace_Free( fp_area ); 2008fc0: 40 00 04 47 call 200a0dc <_Workspace_Free> 2008fc4: 90 10 00 12 mov %l2, %o0 #endif _Workspace_Free( sched ); 2008fc8: 40 00 04 45 call 200a0dc <_Workspace_Free> 2008fcc: 90 10 00 10 mov %l0, %o0 _Thread_Stack_Free( the_thread ); 2008fd0: 40 00 02 12 call 2009818 <_Thread_Stack_Free> 2008fd4: 90 10 00 19 mov %i1, %o0 return false; 2008fd8: 81 c7 e0 08 ret 2008fdc: 81 e8 00 00 restore } 2008fe0: 81 c7 e0 08 ret 2008fe4: 91 e8 20 00 restore %g0, 0, %o0 /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008fe8: 40 00 04 34 call 200a0b8 <_Workspace_Allocate> 2008fec: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008ff0: a4 92 20 00 orcc %o0, 0, %l2 2008ff4: 02 80 00 1f be 2009070 <_Thread_Initialize+0x1e8> 2008ff8: 82 10 00 12 mov %l2, %g1 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008ffc: 27 00 80 57 sethi %hi(0x2015c00), %l3 2009000: c4 04 e0 64 ld [ %l3 + 0x64 ], %g2 ! 2015c64 <_Thread_Maximum_extensions> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2009004: c0 26 60 50 clr [ %i1 + 0x50 ] fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2009008: c2 26 61 50 st %g1, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 200900c: c2 26 60 bc st %g1, [ %i1 + 0xbc ] the_watchdog->routine = routine; 2009010: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2009014: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2009018: 80 a0 a0 00 cmp %g2, 0 200901c: 02 bf ff ba be 2008f04 <_Thread_Initialize+0x7c> 2009020: c0 26 60 6c clr [ %i1 + 0x6c ] extensions_area = _Workspace_Allocate( 2009024: 84 00 a0 01 inc %g2 2009028: 40 00 04 24 call 200a0b8 <_Workspace_Allocate> 200902c: 91 28 a0 02 sll %g2, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2009030: b6 92 20 00 orcc %o0, 0, %i3 2009034: 02 80 00 12 be 200907c <_Thread_Initialize+0x1f4> 2009038: c6 04 e0 64 ld [ %l3 + 0x64 ], %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 200903c: f6 26 61 60 st %i3, [ %i1 + 0x160 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009040: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2009044: 82 10 20 00 clr %g1 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 2009048: 85 28 a0 02 sll %g2, 2, %g2 200904c: c0 26 c0 02 clr [ %i3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2009050: 82 00 60 01 inc %g1 2009054: 80 a0 c0 01 cmp %g3, %g1 2009058: 1a bf ff fc bcc 2009048 <_Thread_Initialize+0x1c0> 200905c: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2009060: 10 bf ff ac b 2008f10 <_Thread_Initialize+0x88> 2009064: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 2009068: 81 c7 e0 08 ret 200906c: 81 e8 00 00 restore * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2009070: b6 10 20 00 clr %i3 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 2009074: 10 bf ff ca b 2008f9c <_Thread_Initialize+0x114> 2009078: a0 10 20 00 clr %l0 200907c: 10 bf ff c8 b 2008f9c <_Thread_Initialize+0x114> 2009080: a0 10 20 00 clr %l0 =============================================================================== 02009640 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009640: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2009644: 80 a6 20 00 cmp %i0, 0 2009648: 02 80 00 13 be 2009694 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 200964c: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009650: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2009654: 80 a4 60 01 cmp %l1, 1 2009658: 02 80 00 04 be 2009668 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 200965c: 01 00 00 00 nop 2009660: 81 c7 e0 08 ret <== NOT EXECUTED 2009664: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2009668: 7f ff e2 45 call 2001f7c 200966c: 01 00 00 00 nop 2009670: a0 10 00 08 mov %o0, %l0 2009674: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 2009678: 03 00 00 ef sethi %hi(0x3bc00), %g1 200967c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009680: 80 88 80 01 btst %g2, %g1 2009684: 12 80 00 06 bne 200969c <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 2009688: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 200968c: 7f ff e2 40 call 2001f8c 2009690: 90 10 00 10 mov %l0, %o0 2009694: 81 c7 e0 08 ret 2009698: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 200969c: 92 10 00 19 mov %i1, %o1 20096a0: 94 10 20 01 mov 1, %o2 20096a4: 40 00 0c ac call 200c954 <_Thread_queue_Extract_priority_helper> 20096a8: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 20096ac: 90 10 00 18 mov %i0, %o0 20096b0: 92 10 00 19 mov %i1, %o1 20096b4: 7f ff ff 31 call 2009378 <_Thread_queue_Enqueue_priority> 20096b8: 94 07 bf fc add %fp, -4, %o2 20096bc: 30 bf ff f4 b,a 200968c <_Thread_queue_Requeue+0x4c> =============================================================================== 020096c0 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 20096c0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 20096c4: 90 10 00 18 mov %i0, %o0 20096c8: 7f ff fd c5 call 2008ddc <_Thread_Get> 20096cc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20096d0: c2 07 bf fc ld [ %fp + -4 ], %g1 20096d4: 80 a0 60 00 cmp %g1, 0 20096d8: 12 80 00 08 bne 20096f8 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 20096dc: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 20096e0: 40 00 0c d8 call 200ca40 <_Thread_queue_Process_timeout> 20096e4: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 20096e8: 03 00 80 56 sethi %hi(0x2015800), %g1 20096ec: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 2015bd0 <_Thread_Dispatch_disable_level> 20096f0: 84 00 bf ff add %g2, -1, %g2 20096f4: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ] 20096f8: 81 c7 e0 08 ret 20096fc: 81 e8 00 00 restore =============================================================================== 02016788 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 2016788: 9d e3 bf 88 save %sp, -120, %sp 201678c: 2d 00 80 f4 sethi %hi(0x203d000), %l6 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2016790: ba 07 bf f4 add %fp, -12, %i5 2016794: a8 07 bf f8 add %fp, -8, %l4 2016798: a4 07 bf e8 add %fp, -24, %l2 201679c: ae 07 bf ec add %fp, -20, %l7 20167a0: 2b 00 80 f3 sethi %hi(0x203cc00), %l5 20167a4: 39 00 80 f3 sethi %hi(0x203cc00), %i4 20167a8: e8 27 bf f4 st %l4, [ %fp + -12 ] head->previous = NULL; 20167ac: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20167b0: fa 27 bf fc st %i5, [ %fp + -4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20167b4: ee 27 bf e8 st %l7, [ %fp + -24 ] head->previous = NULL; 20167b8: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20167bc: e4 27 bf f0 st %l2, [ %fp + -16 ] 20167c0: ac 15 a0 84 or %l6, 0x84, %l6 20167c4: a2 06 20 30 add %i0, 0x30, %l1 20167c8: aa 15 63 fc or %l5, 0x3fc, %l5 20167cc: a6 06 20 68 add %i0, 0x68, %l3 20167d0: b8 17 23 70 or %i4, 0x370, %i4 20167d4: b2 06 20 08 add %i0, 8, %i1 20167d8: b4 06 20 40 add %i0, 0x40, %i2 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 20167dc: b6 10 20 01 mov 1, %i3 { /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 20167e0: fa 26 20 78 st %i5, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20167e4: c2 05 80 00 ld [ %l6 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 20167e8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20167ec: 94 10 00 12 mov %l2, %o2 20167f0: 90 10 00 11 mov %l1, %o0 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20167f4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20167f8: 40 00 12 c5 call 201b30c <_Watchdog_Adjust_to_chain> 20167fc: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016800: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016804: e0 05 40 00 ld [ %l5 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2016808: 80 a4 00 0a cmp %l0, %o2 201680c: 18 80 00 2e bgu 20168c4 <_Timer_server_Body+0x13c> 2016810: 92 24 00 0a sub %l0, %o2, %o1 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 2016814: 80 a4 00 0a cmp %l0, %o2 2016818: 0a 80 00 2f bcs 20168d4 <_Timer_server_Body+0x14c> 201681c: 90 10 00 13 mov %l3, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 2016820: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016824: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016828: 40 00 02 fc call 2017418 <_Chain_Get> 201682c: 01 00 00 00 nop if ( timer == NULL ) { 2016830: 92 92 20 00 orcc %o0, 0, %o1 2016834: 02 80 00 10 be 2016874 <_Timer_server_Body+0xec> 2016838: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201683c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2016840: 80 a0 60 01 cmp %g1, 1 2016844: 02 80 00 28 be 20168e4 <_Timer_server_Body+0x15c> 2016848: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 201684c: 12 bf ff f6 bne 2016824 <_Timer_server_Body+0x9c> <== NEVER TAKEN 2016850: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016854: 40 00 12 e1 call 201b3d8 <_Watchdog_Insert> 2016858: 90 10 00 13 mov %l3, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 201685c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016860: 40 00 02 ee call 2017418 <_Chain_Get> 2016864: 01 00 00 00 nop if ( timer == NULL ) { 2016868: 92 92 20 00 orcc %o0, 0, %o1 201686c: 32 bf ff f5 bne,a 2016840 <_Timer_server_Body+0xb8> <== NEVER TAKEN 2016870: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2016874: 7f ff e1 db call 200efe0 2016878: 01 00 00 00 nop if ( _Chain_Is_empty( insert_chain ) ) { 201687c: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016880: 80 a0 40 14 cmp %g1, %l4 2016884: 02 80 00 1c be 20168f4 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN 2016888: 01 00 00 00 nop ts->insert_chain = NULL; _ISR_Enable( level ); break; } else { _ISR_Enable( level ); 201688c: 7f ff e1 d9 call 200eff0 <== NOT EXECUTED 2016890: 01 00 00 00 nop <== NOT EXECUTED static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016894: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2016898: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201689c: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED 20168a0: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 20168a4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20168a8: 40 00 12 99 call 201b30c <_Watchdog_Adjust_to_chain> <== NOT EXECUTED 20168ac: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 20168b0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 20168b4: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 20168b8: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED 20168bc: 08 bf ff d7 bleu 2016818 <_Timer_server_Body+0x90> <== NOT EXECUTED 20168c0: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 20168c4: 90 10 00 13 mov %l3, %o0 20168c8: 40 00 12 91 call 201b30c <_Watchdog_Adjust_to_chain> 20168cc: 94 10 00 12 mov %l2, %o2 20168d0: 30 bf ff d4 b,a 2016820 <_Timer_server_Body+0x98> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 20168d4: 92 10 20 01 mov 1, %o1 20168d8: 40 00 12 5d call 201b24c <_Watchdog_Adjust> 20168dc: 94 22 80 10 sub %o2, %l0, %o2 20168e0: 30 bf ff d0 b,a 2016820 <_Timer_server_Body+0x98> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 20168e4: 90 10 00 11 mov %l1, %o0 20168e8: 40 00 12 bc call 201b3d8 <_Watchdog_Insert> 20168ec: 92 02 60 10 add %o1, 0x10, %o1 20168f0: 30 bf ff cd b,a 2016824 <_Timer_server_Body+0x9c> */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 20168f4: c0 26 20 78 clr [ %i0 + 0x78 ] _ISR_Enable( level ); 20168f8: 7f ff e1 be call 200eff0 20168fc: 01 00 00 00 nop _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 2016900: c2 07 bf e8 ld [ %fp + -24 ], %g1 2016904: 80 a0 40 17 cmp %g1, %l7 2016908: 12 80 00 0c bne 2016938 <_Timer_server_Body+0x1b0> 201690c: 01 00 00 00 nop 2016910: 30 80 00 13 b,a 201695c <_Timer_server_Body+0x1d4> Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; new_first->previous = head; 2016914: e4 20 60 04 st %l2, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 2016918: c2 27 bf e8 st %g1, [ %fp + -24 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 201691c: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 2016920: 7f ff e1 b4 call 200eff0 2016924: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 2016928: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 201692c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 2016930: 9f c0 40 00 call %g1 2016934: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 2016938: 7f ff e1 aa call 200efe0 201693c: 01 00 00 00 nop initialized = false; } #endif return status; } 2016940: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016944: 80 a4 00 17 cmp %l0, %l7 2016948: 32 bf ff f3 bne,a 2016914 <_Timer_server_Body+0x18c> 201694c: c2 04 00 00 ld [ %l0 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016950: 7f ff e1 a8 call 200eff0 2016954: 01 00 00 00 nop 2016958: 30 bf ff a2 b,a 20167e0 <_Timer_server_Body+0x58> * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 201695c: c0 2e 20 7c clrb [ %i0 + 0x7c ] 2016960: c2 07 00 00 ld [ %i4 ], %g1 2016964: 82 00 60 01 inc %g1 2016968: c2 27 00 00 st %g1, [ %i4 ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 201696c: d0 06 00 00 ld [ %i0 ], %o0 2016970: 40 00 10 7f call 201ab6c <_Thread_Set_state> 2016974: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016978: 7f ff ff 5a call 20166e0 <_Timer_server_Reset_interval_system_watchdog> 201697c: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016980: 7f ff ff 6d call 2016734 <_Timer_server_Reset_tod_system_watchdog> 2016984: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016988: 40 00 0d f7 call 201a164 <_Thread_Enable_dispatch> 201698c: 01 00 00 00 nop static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016990: 90 10 00 19 mov %i1, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016994: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016998: 40 00 12 fb call 201b584 <_Watchdog_Remove> 201699c: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 20169a0: 40 00 12 f9 call 201b584 <_Watchdog_Remove> 20169a4: 90 10 00 1a mov %i2, %o0 20169a8: 30 bf ff 8e b,a 20167e0 <_Timer_server_Body+0x58> =============================================================================== 020169ac <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 20169ac: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 20169b0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 20169b4: 80 a0 60 00 cmp %g1, 0 20169b8: 02 80 00 05 be 20169cc <_Timer_server_Schedule_operation_method+0x20> 20169bc: a0 10 00 19 mov %i1, %l0 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 20169c0: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 20169c4: 40 00 02 7f call 20173c0 <_Chain_Append> 20169c8: 81 e8 00 00 restore 20169cc: 03 00 80 f3 sethi %hi(0x203cc00), %g1 20169d0: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 203cf70 <_Thread_Dispatch_disable_level> 20169d4: 84 00 a0 01 inc %g2 20169d8: c4 20 63 70 st %g2, [ %g1 + 0x370 ] * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 20169dc: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 20169e0: 80 a0 60 01 cmp %g1, 1 20169e4: 02 80 00 28 be 2016a84 <_Timer_server_Schedule_operation_method+0xd8> 20169e8: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 20169ec: 02 80 00 04 be 20169fc <_Timer_server_Schedule_operation_method+0x50> 20169f0: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 20169f4: 40 00 0d dc call 201a164 <_Thread_Enable_dispatch> 20169f8: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 20169fc: 7f ff e1 79 call 200efe0 2016a00: 01 00 00 00 nop initialized = false; } #endif return status; } 2016a04: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016a08: c6 06 20 74 ld [ %i0 + 0x74 ], %g3 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016a0c: 88 06 20 6c add %i0, 0x6c, %g4 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016a10: 03 00 80 f3 sethi %hi(0x203cc00), %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016a14: 80 a0 80 04 cmp %g2, %g4 2016a18: 02 80 00 0d be 2016a4c <_Timer_server_Schedule_operation_method+0xa0> 2016a1c: c2 00 63 fc ld [ %g1 + 0x3fc ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016a20: da 00 a0 10 ld [ %g2 + 0x10 ], %o5 if ( snapshot > last_snapshot ) { 2016a24: 80 a0 40 03 cmp %g1, %g3 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016a28: 88 03 40 03 add %o5, %g3, %g4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016a2c: 08 80 00 07 bleu 2016a48 <_Timer_server_Schedule_operation_method+0x9c> 2016a30: 88 21 00 01 sub %g4, %g1, %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016a34: 86 20 40 03 sub %g1, %g3, %g3 if (delta_interval > delta) { 2016a38: 80 a3 40 03 cmp %o5, %g3 2016a3c: 08 80 00 03 bleu 2016a48 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN 2016a40: 88 10 20 00 clr %g4 delta_interval -= delta; 2016a44: 88 23 40 03 sub %o5, %g3, %g4 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016a48: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016a4c: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016a50: 7f ff e1 68 call 200eff0 2016a54: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016a58: 90 06 20 68 add %i0, 0x68, %o0 2016a5c: 40 00 12 5f call 201b3d8 <_Watchdog_Insert> 2016a60: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016a64: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016a68: 80 a0 60 00 cmp %g1, 0 2016a6c: 12 bf ff e2 bne 20169f4 <_Timer_server_Schedule_operation_method+0x48> 2016a70: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016a74: 7f ff ff 30 call 2016734 <_Timer_server_Reset_tod_system_watchdog> 2016a78: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016a7c: 40 00 0d ba call 201a164 <_Thread_Enable_dispatch> 2016a80: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016a84: 7f ff e1 57 call 200efe0 2016a88: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016a8c: 05 00 80 f4 sethi %hi(0x203d000), %g2 initialized = false; } #endif return status; } 2016a90: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = _Watchdog_Ticks_since_boot; 2016a94: c4 00 a0 84 ld [ %g2 + 0x84 ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016a98: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 2016a9c: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2016aa0: 80 a0 40 03 cmp %g1, %g3 2016aa4: 02 80 00 08 be 2016ac4 <_Timer_server_Schedule_operation_method+0x118> 2016aa8: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016aac: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 2016ab0: 80 a1 00 0d cmp %g4, %o5 2016ab4: 1a 80 00 03 bcc 2016ac0 <_Timer_server_Schedule_operation_method+0x114> 2016ab8: 86 10 20 00 clr %g3 delta_interval -= delta; 2016abc: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016ac0: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016ac4: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016ac8: 7f ff e1 4a call 200eff0 2016acc: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016ad0: 90 06 20 30 add %i0, 0x30, %o0 2016ad4: 40 00 12 41 call 201b3d8 <_Watchdog_Insert> 2016ad8: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016adc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016ae0: 80 a0 60 00 cmp %g1, 0 2016ae4: 12 bf ff c4 bne 20169f4 <_Timer_server_Schedule_operation_method+0x48> 2016ae8: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016aec: 7f ff fe fd call 20166e0 <_Timer_server_Reset_interval_system_watchdog> 2016af0: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016af4: 40 00 0d 9c call 201a164 <_Thread_Enable_dispatch> 2016af8: 81 e8 00 00 restore =============================================================================== 02009960 <_Timespec_Add_to>: uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { 2009960: 9d e3 bf a0 save %sp, -96, %sp 2009964: 82 10 00 18 mov %i0, %g1 uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009968: c6 06 00 00 ld [ %i0 ], %g3 time->tv_nsec += add->tv_nsec; 200996c: c8 06 60 04 ld [ %i1 + 4 ], %g4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 2009970: f0 06 40 00 ld [ %i1 ], %i0 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 2009974: c4 00 60 04 ld [ %g1 + 4 ], %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009978: 86 00 c0 18 add %g3, %i0, %g3 time->tv_nsec += add->tv_nsec; 200997c: 84 01 00 02 add %g4, %g2, %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009980: c6 20 40 00 st %g3, [ %g1 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009984: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 2009988: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 200998c: 80 a0 80 04 cmp %g2, %g4 2009990: 08 80 00 0b bleu 20099bc <_Timespec_Add_to+0x5c> 2009994: c4 20 60 04 st %g2, [ %g1 + 4 ] time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 2009998: 1b 31 19 4d sethi %hi(0xc4653400), %o5 200999c: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 20099a0: 84 00 80 0d add %g2, %o5, %g2 * * This routines adds two timespecs. The second argument is added * to the first. */ uint32_t _Timespec_Add_to( 20099a4: 86 00 e0 01 inc %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 20099a8: 80 a0 80 04 cmp %g2, %g4 20099ac: 18 bf ff fd bgu 20099a0 <_Timespec_Add_to+0x40> <== NEVER TAKEN 20099b0: b0 06 20 01 inc %i0 20099b4: c4 20 60 04 st %g2, [ %g1 + 4 ] 20099b8: c6 20 40 00 st %g3, [ %g1 ] time->tv_sec++; seconds++; } return seconds; } 20099bc: 81 c7 e0 08 ret 20099c0: 81 e8 00 00 restore =============================================================================== 02009b70 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009b70: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 2009b74: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009b78: a2 14 61 b8 or %l1, 0x1b8, %l1 ! 2015db8 <_User_extensions_List> 2009b7c: e0 04 60 08 ld [ %l1 + 8 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009b80: 80 a4 00 11 cmp %l0, %l1 2009b84: 02 80 00 0d be 2009bb8 <_User_extensions_Fatal+0x48> <== NEVER TAKEN 2009b88: b2 0e 60 ff and %i1, 0xff, %i1 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 2009b8c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2009b90: 80 a0 60 00 cmp %g1, 0 2009b94: 02 80 00 05 be 2009ba8 <_User_extensions_Fatal+0x38> 2009b98: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 2009b9c: 92 10 00 19 mov %i1, %o1 2009ba0: 9f c0 40 00 call %g1 2009ba4: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009ba8: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009bac: 80 a4 00 11 cmp %l0, %l1 2009bb0: 32 bf ff f8 bne,a 2009b90 <_User_extensions_Fatal+0x20> 2009bb4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2009bb8: 81 c7 e0 08 ret 2009bbc: 81 e8 00 00 restore =============================================================================== 02009a1c <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009a1c: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009a20: 07 00 80 54 sethi %hi(0x2015000), %g3 2009a24: 86 10 e0 08 or %g3, 8, %g3 ! 2015008 initial_extensions = Configuration.User_extension_table; 2009a28: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3 2009a2c: 1b 00 80 57 sethi %hi(0x2015c00), %o5 2009a30: 09 00 80 56 sethi %hi(0x2015800), %g4 2009a34: 84 13 61 b8 or %o5, 0x1b8, %g2 2009a38: 82 11 23 d4 or %g4, 0x3d4, %g1 2009a3c: 96 00 a0 04 add %g2, 4, %o3 2009a40: 98 00 60 04 add %g1, 4, %o4 2009a44: d6 23 61 b8 st %o3, [ %o5 + 0x1b8 ] head->previous = NULL; 2009a48: c0 20 a0 04 clr [ %g2 + 4 ] tail->previous = head; 2009a4c: c4 20 a0 08 st %g2, [ %g2 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009a50: d8 21 23 d4 st %o4, [ %g4 + 0x3d4 ] head->previous = NULL; 2009a54: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009a58: c2 20 60 08 st %g1, [ %g1 + 8 ] _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009a5c: 80 a4 e0 00 cmp %l3, 0 2009a60: 02 80 00 1b be 2009acc <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009a64: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2 extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009a68: 83 2c a0 02 sll %l2, 2, %g1 2009a6c: a3 2c a0 04 sll %l2, 4, %l1 2009a70: a2 24 40 01 sub %l1, %g1, %l1 2009a74: a2 04 40 12 add %l1, %l2, %l1 2009a78: a3 2c 60 02 sll %l1, 2, %l1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009a7c: 40 00 01 9f call 200a0f8 <_Workspace_Allocate_or_fatal_error> 2009a80: 90 10 00 11 mov %l1, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009a84: 92 10 20 00 clr %o1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009a88: a0 10 00 08 mov %o0, %l0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009a8c: 40 00 15 18 call 200eeec 2009a90: 94 10 00 11 mov %l1, %o2 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009a94: 80 a4 a0 00 cmp %l2, 0 2009a98: 02 80 00 0d be 2009acc <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009a9c: a2 10 20 00 clr %l1 #include #include #include #include void _User_extensions_Handler_initialization(void) 2009aa0: 93 2c 60 05 sll %l1, 5, %o1 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009aa4: 94 10 20 20 mov 0x20, %o2 2009aa8: 92 04 c0 09 add %l3, %o1, %o1 2009aac: 40 00 14 d7 call 200ee08 2009ab0: 90 04 20 14 add %l0, 0x14, %o0 _User_extensions_Add_set( extension ); 2009ab4: 40 00 0c 07 call 200cad0 <_User_extensions_Add_set> 2009ab8: 90 10 00 10 mov %l0, %o0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009abc: a2 04 60 01 inc %l1 2009ac0: 80 a4 80 11 cmp %l2, %l1 2009ac4: 18 bf ff f7 bgu 2009aa0 <_User_extensions_Handler_initialization+0x84> 2009ac8: a0 04 20 34 add %l0, 0x34, %l0 2009acc: 81 c7 e0 08 ret 2009ad0: 81 e8 00 00 restore =============================================================================== 02009ad4 <_User_extensions_Thread_begin>: #include void _User_extensions_Thread_begin ( Thread_Control *executing ) { 2009ad4: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 2009ad8: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009adc: e0 04 61 b8 ld [ %l1 + 0x1b8 ], %l0 ! 2015db8 <_User_extensions_List> 2009ae0: a2 14 61 b8 or %l1, 0x1b8, %l1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009ae4: a2 04 60 04 add %l1, 4, %l1 2009ae8: 80 a4 00 11 cmp %l0, %l1 2009aec: 02 80 00 0c be 2009b1c <_User_extensions_Thread_begin+0x48><== NEVER TAKEN 2009af0: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_begin != NULL ) 2009af4: c2 04 20 28 ld [ %l0 + 0x28 ], %g1 2009af8: 80 a0 60 00 cmp %g1, 0 2009afc: 02 80 00 04 be 2009b0c <_User_extensions_Thread_begin+0x38> 2009b00: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_begin)( executing ); 2009b04: 9f c0 40 00 call %g1 2009b08: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009b0c: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009b10: 80 a4 00 11 cmp %l0, %l1 2009b14: 32 bf ff f9 bne,a 2009af8 <_User_extensions_Thread_begin+0x24> 2009b18: c2 04 20 28 ld [ %l0 + 0x28 ], %g1 2009b1c: 81 c7 e0 08 ret 2009b20: 81 e8 00 00 restore =============================================================================== 02009bc0 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009bc0: 9d e3 bf a0 save %sp, -96, %sp return false; } } return true; } 2009bc4: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009bc8: e0 04 61 b8 ld [ %l1 + 0x1b8 ], %l0 ! 2015db8 <_User_extensions_List> #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009bcc: a6 10 00 18 mov %i0, %l3 return false; } } return true; } 2009bd0: a2 14 61 b8 or %l1, 0x1b8, %l1 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 2009bd4: a2 04 60 04 add %l1, 4, %l1 2009bd8: 80 a4 00 11 cmp %l0, %l1 2009bdc: 02 80 00 13 be 2009c28 <_User_extensions_Thread_create+0x68><== NEVER TAKEN 2009be0: b0 10 20 01 mov 1, %i0 the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 2009be4: 25 00 80 57 sethi %hi(0x2015c00), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 2009be8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2009bec: 80 a0 60 00 cmp %g1, 0 2009bf0: 02 80 00 08 be 2009c10 <_User_extensions_Thread_create+0x50> 2009bf4: 84 14 a1 fc or %l2, 0x1fc, %g2 status = (*the_extension->Callouts.thread_create)( 2009bf8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009bfc: 9f c0 40 00 call %g1 2009c00: 92 10 00 13 mov %l3, %o1 _Thread_Executing, the_thread ); if ( !status ) 2009c04: 80 8a 20 ff btst 0xff, %o0 2009c08: 22 80 00 08 be,a 2009c28 <_User_extensions_Thread_create+0x68> 2009c0c: b0 10 20 00 clr %i0 User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009c10: e0 04 00 00 ld [ %l0 ], %l0 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 2009c14: 80 a4 00 11 cmp %l0, %l1 2009c18: 32 bf ff f5 bne,a 2009bec <_User_extensions_Thread_create+0x2c> 2009c1c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 if ( !status ) return false; } } return true; 2009c20: 81 c7 e0 08 ret 2009c24: 91 e8 20 01 restore %g0, 1, %o0 } 2009c28: 81 c7 e0 08 ret 2009c2c: 81 e8 00 00 restore =============================================================================== 02009c30 <_User_extensions_Thread_delete>: #include void _User_extensions_Thread_delete ( Thread_Control *the_thread ) { 2009c30: 9d e3 bf a0 save %sp, -96, %sp (*the_extension->Callouts.thread_delete)( _Thread_Executing, the_thread ); } } 2009c34: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009c38: a2 14 61 b8 or %l1, 0x1b8, %l1 ! 2015db8 <_User_extensions_List> 2009c3c: e0 04 60 08 ld [ %l1 + 8 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009c40: 80 a4 00 11 cmp %l0, %l1 2009c44: 02 80 00 0d be 2009c78 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN 2009c48: 25 00 80 57 sethi %hi(0x2015c00), %l2 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_delete != NULL ) 2009c4c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 2009c50: 80 a0 60 00 cmp %g1, 0 2009c54: 02 80 00 05 be 2009c68 <_User_extensions_Thread_delete+0x38> 2009c58: 84 14 a1 fc or %l2, 0x1fc, %g2 (*the_extension->Callouts.thread_delete)( 2009c5c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009c60: 9f c0 40 00 call %g1 2009c64: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009c68: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009c6c: 80 a4 00 11 cmp %l0, %l1 2009c70: 32 bf ff f8 bne,a 2009c50 <_User_extensions_Thread_delete+0x20> 2009c74: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 2009c78: 81 c7 e0 08 ret 2009c7c: 81 e8 00 00 restore =============================================================================== 02009b24 <_User_extensions_Thread_exitted>: } void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009b24: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 2009b28: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009b2c: a2 14 61 b8 or %l1, 0x1b8, %l1 ! 2015db8 <_User_extensions_List> 2009b30: e0 04 60 08 ld [ %l1 + 8 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009b34: 80 a4 00 11 cmp %l0, %l1 2009b38: 02 80 00 0c be 2009b68 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN 2009b3c: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009b40: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 2009b44: 80 a0 60 00 cmp %g1, 0 2009b48: 02 80 00 04 be 2009b58 <_User_extensions_Thread_exitted+0x34> 2009b4c: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_exitted)( executing ); 2009b50: 9f c0 40 00 call %g1 2009b54: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009b58: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009b5c: 80 a4 00 11 cmp %l0, %l1 2009b60: 32 bf ff f9 bne,a 2009b44 <_User_extensions_Thread_exitted+0x20> 2009b64: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 2009b68: 81 c7 e0 08 ret 2009b6c: 81 e8 00 00 restore =============================================================================== 0200a9c8 <_User_extensions_Thread_restart>: #include void _User_extensions_Thread_restart ( Thread_Control *the_thread ) { 200a9c8: 9d e3 bf a0 save %sp, -96, %sp (*the_extension->Callouts.thread_restart)( _Thread_Executing, the_thread ); } } 200a9cc: 23 00 80 74 sethi %hi(0x201d000), %l1 200a9d0: e0 04 63 f8 ld [ %l1 + 0x3f8 ], %l0 ! 201d3f8 <_User_extensions_List> 200a9d4: a2 14 63 f8 or %l1, 0x3f8, %l1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200a9d8: a2 04 60 04 add %l1, 4, %l1 200a9dc: 80 a4 00 11 cmp %l0, %l1 200a9e0: 02 80 00 0d be 200aa14 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN 200a9e4: 25 00 80 75 sethi %hi(0x201d400), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_restart != NULL ) 200a9e8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200a9ec: 80 a0 60 00 cmp %g1, 0 200a9f0: 02 80 00 05 be 200aa04 <_User_extensions_Thread_restart+0x3c> 200a9f4: 84 14 a0 3c or %l2, 0x3c, %g2 (*the_extension->Callouts.thread_restart)( 200a9f8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200a9fc: 9f c0 40 00 call %g1 200aa00: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200aa04: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200aa08: 80 a4 00 11 cmp %l0, %l1 200aa0c: 32 bf ff f8 bne,a 200a9ec <_User_extensions_Thread_restart+0x24> 200aa10: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200aa14: 81 c7 e0 08 ret 200aa18: 81 e8 00 00 restore =============================================================================== 02009c80 <_User_extensions_Thread_start>: #include void _User_extensions_Thread_start ( Thread_Control *the_thread ) { 2009c80: 9d e3 bf a0 save %sp, -96, %sp (*the_extension->Callouts.thread_start)( _Thread_Executing, the_thread ); } } 2009c84: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009c88: e0 04 61 b8 ld [ %l1 + 0x1b8 ], %l0 ! 2015db8 <_User_extensions_List> 2009c8c: a2 14 61 b8 or %l1, 0x1b8, %l1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009c90: a2 04 60 04 add %l1, 4, %l1 2009c94: 80 a4 00 11 cmp %l0, %l1 2009c98: 02 80 00 0d be 2009ccc <_User_extensions_Thread_start+0x4c><== NEVER TAKEN 2009c9c: 25 00 80 57 sethi %hi(0x2015c00), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_start != NULL ) 2009ca0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2009ca4: 80 a0 60 00 cmp %g1, 0 2009ca8: 02 80 00 05 be 2009cbc <_User_extensions_Thread_start+0x3c> 2009cac: 84 14 a1 fc or %l2, 0x1fc, %g2 (*the_extension->Callouts.thread_start)( 2009cb0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009cb4: 9f c0 40 00 call %g1 2009cb8: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009cbc: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009cc0: 80 a4 00 11 cmp %l0, %l1 2009cc4: 32 bf ff f8 bne,a 2009ca4 <_User_extensions_Thread_start+0x24> 2009cc8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2009ccc: 81 c7 e0 08 ret 2009cd0: 81 e8 00 00 restore =============================================================================== 02009cd4 <_User_extensions_Thread_switch>: void _User_extensions_Thread_switch ( Thread_Control *executing, Thread_Control *heir ) { 2009cd4: 9d e3 bf a0 save %sp, -96, %sp the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); } } 2009cd8: 23 00 80 56 sethi %hi(0x2015800), %l1 2009cdc: e0 04 63 d4 ld [ %l1 + 0x3d4 ], %l0 ! 2015bd4 <_User_extensions_Switches_list> 2009ce0: a2 14 63 d4 or %l1, 0x3d4, %l1 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 2009ce4: a2 04 60 04 add %l1, 4, %l1 2009ce8: 80 a4 00 11 cmp %l0, %l1 2009cec: 02 80 00 0a be 2009d14 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN 2009cf0: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); 2009cf4: c2 04 20 08 ld [ %l0 + 8 ], %g1 2009cf8: 90 10 00 18 mov %i0, %o0 2009cfc: 9f c0 40 00 call %g1 2009d00: 92 10 00 19 mov %i1, %o1 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { 2009d04: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 2009d08: 80 a4 00 11 cmp %l0, %l1 2009d0c: 32 bf ff fb bne,a 2009cf8 <_User_extensions_Thread_switch+0x24> 2009d10: c2 04 20 08 ld [ %l0 + 8 ], %g1 2009d14: 81 c7 e0 08 ret 2009d18: 81 e8 00 00 restore =============================================================================== 0200bd0c <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200bd0c: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200bd10: 7f ff dc 7a call 2002ef8 200bd14: a0 10 00 18 mov %i0, %l0 } } _ISR_Enable( level ); } 200bd18: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200bd1c: a4 06 20 04 add %i0, 4, %l2 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200bd20: 80 a0 40 12 cmp %g1, %l2 200bd24: 02 80 00 1f be 200bda0 <_Watchdog_Adjust+0x94> 200bd28: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200bd2c: 12 80 00 1f bne 200bda8 <_Watchdog_Adjust+0x9c> 200bd30: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bd34: 80 a6 a0 00 cmp %i2, 0 200bd38: 02 80 00 1a be 200bda0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bd3c: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bd40: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 200bd44: 80 a6 80 11 cmp %i2, %l1 200bd48: 1a 80 00 0b bcc 200bd74 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN 200bd4c: a6 10 20 01 mov 1, %l3 _Watchdog_First( header )->delta_interval -= units; 200bd50: 10 80 00 1d b 200bdc4 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED 200bd54: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bd58: b4 a6 80 11 subcc %i2, %l1, %i2 200bd5c: 02 80 00 11 be 200bda0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bd60: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bd64: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 200bd68: 80 a4 40 1a cmp %l1, %i2 200bd6c: 38 80 00 16 bgu,a 200bdc4 <_Watchdog_Adjust+0xb8> 200bd70: a2 24 40 1a sub %l1, %i2, %l1 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200bd74: e6 20 60 10 st %l3, [ %g1 + 0x10 ] _ISR_Enable( level ); 200bd78: 7f ff dc 64 call 2002f08 200bd7c: 01 00 00 00 nop _Watchdog_Tickle( header ); 200bd80: 40 00 00 b4 call 200c050 <_Watchdog_Tickle> 200bd84: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200bd88: 7f ff dc 5c call 2002ef8 200bd8c: 01 00 00 00 nop } } _ISR_Enable( level ); } 200bd90: c4 04 00 00 ld [ %l0 ], %g2 _Watchdog_Tickle( header ); _ISR_Disable( level ); if ( _Chain_Is_empty( header ) ) 200bd94: 80 a4 80 02 cmp %l2, %g2 200bd98: 12 bf ff f0 bne 200bd58 <_Watchdog_Adjust+0x4c> 200bd9c: 82 10 00 02 mov %g2, %g1 } break; } } _ISR_Enable( level ); 200bda0: 7f ff dc 5a call 2002f08 200bda4: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200bda8: 12 bf ff fe bne 200bda0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bdac: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200bdb0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200bdb4: b4 00 80 1a add %g2, %i2, %i2 200bdb8: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200bdbc: 7f ff dc 53 call 2002f08 200bdc0: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200bdc4: 10 bf ff f7 b 200bda0 <_Watchdog_Adjust+0x94> 200bdc8: e2 20 60 10 st %l1, [ %g1 + 0x10 ] =============================================================================== 02009ec8 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009ec8: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009ecc: 7f ff e0 2c call 2001f7c 2009ed0: 01 00 00 00 nop previous_state = the_watchdog->state; 2009ed4: e0 06 20 08 ld [ %i0 + 8 ], %l0 switch ( previous_state ) { 2009ed8: 80 a4 20 01 cmp %l0, 1 2009edc: 02 80 00 2a be 2009f84 <_Watchdog_Remove+0xbc> 2009ee0: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009ee4: 1a 80 00 09 bcc 2009f08 <_Watchdog_Remove+0x40> 2009ee8: 80 a4 20 03 cmp %l0, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009eec: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009ef0: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 ! 2015ce4 <_Watchdog_Ticks_since_boot> 2009ef4: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009ef8: 7f ff e0 25 call 2001f8c 2009efc: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009f00: 81 c7 e0 08 ret 2009f04: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 2009f08: 18 bf ff fa bgu 2009ef0 <_Watchdog_Remove+0x28> <== NEVER TAKEN 2009f0c: 03 00 80 57 sethi %hi(0x2015c00), %g1 } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; _ISR_Enable( level ); return( previous_state ); } 2009f10: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009f14: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009f18: c4 00 40 00 ld [ %g1 ], %g2 2009f1c: 80 a0 a0 00 cmp %g2, 0 2009f20: 02 80 00 07 be 2009f3c <_Watchdog_Remove+0x74> 2009f24: 05 00 80 57 sethi %hi(0x2015c00), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009f28: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009f2c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 2009f30: 84 00 c0 02 add %g3, %g2, %g2 2009f34: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009f38: 05 00 80 57 sethi %hi(0x2015c00), %g2 2009f3c: c4 00 a0 e0 ld [ %g2 + 0xe0 ], %g2 ! 2015ce0 <_Watchdog_Sync_count> 2009f40: 80 a0 a0 00 cmp %g2, 0 2009f44: 22 80 00 07 be,a 2009f60 <_Watchdog_Remove+0x98> 2009f48: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009f4c: 05 00 80 57 sethi %hi(0x2015c00), %g2 2009f50: c6 00 a2 04 ld [ %g2 + 0x204 ], %g3 ! 2015e04 <_Per_CPU_Information+0x8> 2009f54: 05 00 80 57 sethi %hi(0x2015c00), %g2 2009f58: c6 20 a0 78 st %g3, [ %g2 + 0x78 ] ! 2015c78 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009f5c: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 2009f60: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009f64: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009f68: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009f6c: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 ! 2015ce4 <_Watchdog_Ticks_since_boot> 2009f70: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009f74: 7f ff e0 06 call 2001f8c 2009f78: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009f7c: 81 c7 e0 08 ret 2009f80: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009f84: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 2009f88: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009f8c: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009f90: 7f ff df ff call 2001f8c 2009f94: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009f98: 81 c7 e0 08 ret 2009f9c: 81 e8 00 00 restore =============================================================================== 0200b514 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200b514: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200b518: 7f ff dd 4a call 2002a40 200b51c: 01 00 00 00 nop 200b520: a0 10 00 08 mov %o0, %l0 printk( "Watchdog Chain: %s %p\n", name, header ); 200b524: 11 00 80 71 sethi %hi(0x201c400), %o0 200b528: 94 10 00 19 mov %i1, %o2 200b52c: 92 10 00 18 mov %i0, %o1 200b530: 7f ff e4 69 call 20046d4 200b534: 90 12 23 18 or %o0, 0x318, %o0 printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); } 200b538: e2 06 40 00 ld [ %i1 ], %l1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b53c: b2 06 60 04 add %i1, 4, %i1 ISR_Level level; Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { 200b540: 80 a4 40 19 cmp %l1, %i1 200b544: 02 80 00 0f be 200b580 <_Watchdog_Report_chain+0x6c> 200b548: 11 00 80 71 sethi %hi(0x201c400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200b54c: 92 10 00 11 mov %l1, %o1 200b550: 40 00 00 0f call 200b58c <_Watchdog_Report> 200b554: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200b558: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200b55c: 80 a4 40 19 cmp %l1, %i1 200b560: 12 bf ff fc bne 200b550 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200b564: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200b568: 11 00 80 71 sethi %hi(0x201c400), %o0 200b56c: 92 10 00 18 mov %i0, %o1 200b570: 7f ff e4 59 call 20046d4 200b574: 90 12 23 30 or %o0, 0x330, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200b578: 7f ff dd 36 call 2002a50 200b57c: 91 e8 00 10 restore %g0, %l0, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200b580: 7f ff e4 55 call 20046d4 200b584: 90 12 23 40 or %o0, 0x340, %o0 200b588: 30 bf ff fc b,a 200b578 <_Watchdog_Report_chain+0x64> =============================================================================== 0200ea88 : rtems_name name, rtems_attribute attribute_set, uint32_t maximum_waiters, rtems_id *id ) { 200ea88: 9d e3 bf 98 save %sp, -104, %sp 200ea8c: a0 10 00 18 mov %i0, %l0 Barrier_Control *the_barrier; CORE_barrier_Attributes the_attributes; if ( !rtems_is_name_valid( name ) ) 200ea90: 80 a4 20 00 cmp %l0, 0 200ea94: 02 80 00 23 be 200eb20 200ea98: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !id ) 200ea9c: 80 a6 e0 00 cmp %i3, 0 200eaa0: 02 80 00 20 be 200eb20 200eaa4: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; /* Initialize core barrier attributes */ if ( _Attributes_Is_barrier_automatic( attribute_set ) ) { 200eaa8: 80 8e 60 10 btst 0x10, %i1 200eaac: 02 80 00 1f be 200eb28 200eab0: 80 a6 a0 00 cmp %i2, 0 the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE; 200eab4: c0 27 bf f8 clr [ %fp + -8 ] if ( maximum_waiters == 0 ) 200eab8: 02 80 00 1a be 200eb20 200eabc: b0 10 20 0a mov 0xa, %i0 200eac0: 03 00 80 85 sethi %hi(0x2021400), %g1 200eac4: c4 00 63 20 ld [ %g1 + 0x320 ], %g2 ! 2021720 <_Thread_Dispatch_disable_level> return RTEMS_INVALID_NUMBER; } else the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE; the_attributes.maximum_count = maximum_waiters; 200eac8: f4 27 bf fc st %i2, [ %fp + -4 ] 200eacc: 84 00 a0 01 inc %g2 200ead0: c4 20 63 20 st %g2, [ %g1 + 0x320 ] * This function allocates a barrier control block from * the inactive chain of free barrier control blocks. */ RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void ) { return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information ); 200ead4: 25 00 80 86 sethi %hi(0x2021800), %l2 200ead8: 7f ff ec 37 call 2009bb4 <_Objects_Allocate> 200eadc: 90 14 a1 a0 or %l2, 0x1a0, %o0 ! 20219a0 <_Barrier_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_barrier = _Barrier_Allocate(); if ( !the_barrier ) { 200eae0: a2 92 20 00 orcc %o0, 0, %l1 200eae4: 02 80 00 1e be 200eb5c <== NEVER TAKEN 200eae8: 90 04 60 14 add %l1, 0x14, %o0 return RTEMS_TOO_MANY; } the_barrier->attribute_set = attribute_set; _CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes ); 200eaec: 92 07 bf f8 add %fp, -8, %o1 200eaf0: 40 00 02 43 call 200f3fc <_CORE_barrier_Initialize> 200eaf4: f2 24 60 10 st %i1, [ %l1 + 0x10 ] 200eaf8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 *id = the_barrier->Object.id; _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 200eafc: a4 14 a1 a0 or %l2, 0x1a0, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200eb00: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 200eb04: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200eb08: 85 28 a0 02 sll %g2, 2, %g2 200eb0c: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200eb10: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Barrier_Information, &the_barrier->Object, (Objects_Name) name ); *id = the_barrier->Object.id; 200eb14: c2 26 c0 00 st %g1, [ %i3 ] _Thread_Enable_dispatch(); 200eb18: 7f ff f1 06 call 200af30 <_Thread_Enable_dispatch> 200eb1c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; } 200eb20: 81 c7 e0 08 ret 200eb24: 81 e8 00 00 restore if ( _Attributes_Is_barrier_automatic( attribute_set ) ) { the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE; if ( maximum_waiters == 0 ) return RTEMS_INVALID_NUMBER; } else the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE; 200eb28: 82 10 20 01 mov 1, %g1 200eb2c: c2 27 bf f8 st %g1, [ %fp + -8 ] 200eb30: 03 00 80 85 sethi %hi(0x2021400), %g1 200eb34: c4 00 63 20 ld [ %g1 + 0x320 ], %g2 ! 2021720 <_Thread_Dispatch_disable_level> the_attributes.maximum_count = maximum_waiters; 200eb38: f4 27 bf fc st %i2, [ %fp + -4 ] 200eb3c: 84 00 a0 01 inc %g2 200eb40: c4 20 63 20 st %g2, [ %g1 + 0x320 ] 200eb44: 25 00 80 86 sethi %hi(0x2021800), %l2 200eb48: 7f ff ec 1b call 2009bb4 <_Objects_Allocate> 200eb4c: 90 14 a1 a0 or %l2, 0x1a0, %o0 ! 20219a0 <_Barrier_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_barrier = _Barrier_Allocate(); if ( !the_barrier ) { 200eb50: a2 92 20 00 orcc %o0, 0, %l1 200eb54: 12 bf ff e6 bne 200eaec 200eb58: 90 04 60 14 add %l1, 0x14, %o0 _Thread_Enable_dispatch(); 200eb5c: 7f ff f0 f5 call 200af30 <_Thread_Enable_dispatch> 200eb60: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 200eb64: 81 c7 e0 08 ret 200eb68: 81 e8 00 00 restore =============================================================================== 020072a4 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 20072a4: 9d e3 bf 98 save %sp, -104, %sp 20072a8: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 20072ac: a4 07 bf fc add %fp, -4, %l2 */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 20072b0: 40 00 01 89 call 20078d4 <_Chain_Get> 20072b4: 90 10 00 10 mov %l0, %o0 20072b8: 92 10 20 00 clr %o1 20072bc: a2 10 00 08 mov %o0, %l1 20072c0: 94 10 00 1a mov %i2, %o2 20072c4: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20072c8: 80 a4 60 00 cmp %l1, 0 20072cc: 12 80 00 0a bne 20072f4 20072d0: 96 10 00 12 mov %l2, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 20072d4: 7f ff fc e3 call 2006660 20072d8: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 20072dc: 80 a2 20 00 cmp %o0, 0 20072e0: 02 bf ff f4 be 20072b0 <== NEVER TAKEN 20072e4: b0 10 00 08 mov %o0, %i0 timeout, &out ); } *node_ptr = node; 20072e8: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 20072ec: 81 c7 e0 08 ret 20072f0: 81 e8 00 00 restore rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20072f4: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 20072f8: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 20072fc: 81 c7 e0 08 ret 2007300: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 02007ea8 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007ea8: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2007eac: 03 00 80 68 sethi %hi(0x201a000), %g1 2007eb0: c4 00 60 34 ld [ %g1 + 0x34 ], %g2 ! 201a034 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2007eb4: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 2007eb8: 03 00 80 68 sethi %hi(0x201a000), %g1 if ( rtems_interrupt_is_in_progress() ) 2007ebc: 80 a0 a0 00 cmp %g2, 0 2007ec0: 12 80 00 42 bne 2007fc8 2007ec4: c8 00 60 c4 ld [ %g1 + 0xc4 ], %g4 return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 2007ec8: 80 a6 a0 00 cmp %i2, 0 2007ecc: 02 80 00 50 be 200800c 2007ed0: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 2007ed4: 80 a6 60 00 cmp %i1, 0 2007ed8: 02 80 00 4d be 200800c 2007edc: c8 26 80 00 st %g4, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007ee0: c4 06 40 00 ld [ %i1 ], %g2 2007ee4: 80 a0 a0 00 cmp %g2, 0 2007ee8: 22 80 00 46 be,a 2008000 2007eec: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 2007ef0: 80 a1 00 18 cmp %g4, %i0 2007ef4: 08 80 00 33 bleu 2007fc0 2007ef8: 01 00 00 00 nop rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 2007efc: 05 00 80 67 sethi %hi(0x2019c00), %g2 2007f00: c8 00 a2 00 ld [ %g2 + 0x200 ], %g4 ! 2019e00 <_Thread_Dispatch_disable_level> 2007f04: 88 01 20 01 inc %g4 2007f08: c8 20 a2 00 st %g4, [ %g2 + 0x200 ] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 2007f0c: 80 a6 20 00 cmp %i0, 0 2007f10: 12 80 00 30 bne 2007fd0 2007f14: 1b 00 80 68 sethi %hi(0x201a000), %o5 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2007f18: c8 00 60 c4 ld [ %g1 + 0xc4 ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2007f1c: 80 a1 20 00 cmp %g4, 0 2007f20: 22 80 00 3d be,a 2008014 <== NEVER TAKEN 2007f24: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED 2007f28: 10 80 00 05 b 2007f3c 2007f2c: c2 03 60 c8 ld [ %o5 + 0xc8 ], %g1 2007f30: 80 a1 00 18 cmp %g4, %i0 2007f34: 08 80 00 0a bleu 2007f5c 2007f38: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007f3c: c4 00 40 00 ld [ %g1 ], %g2 2007f40: 80 a0 a0 00 cmp %g2, 0 2007f44: 32 bf ff fb bne,a 2007f30 2007f48: b0 06 20 01 inc %i0 2007f4c: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007f50: 80 a0 a0 00 cmp %g2, 0 2007f54: 32 bf ff f7 bne,a 2007f30 2007f58: b0 06 20 01 inc %i0 } /* Assigns invalid value in case of failure */ *major = m; if ( m != n ) 2007f5c: 80 a1 00 18 cmp %g4, %i0 2007f60: 02 80 00 2d be 2008014 2007f64: f0 26 80 00 st %i0, [ %i2 ] 2007f68: 83 2e 20 03 sll %i0, 3, %g1 2007f6c: 85 2e 20 05 sll %i0, 5, %g2 2007f70: 84 20 80 01 sub %g2, %g1, %g2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f74: c8 03 60 c8 ld [ %o5 + 0xc8 ], %g4 2007f78: da 00 c0 00 ld [ %g3 ], %o5 2007f7c: 82 01 00 02 add %g4, %g2, %g1 2007f80: da 21 00 02 st %o5, [ %g4 + %g2 ] 2007f84: c4 00 e0 04 ld [ %g3 + 4 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007f88: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f8c: c4 20 60 04 st %g2, [ %g1 + 4 ] 2007f90: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2007f94: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2007f98: c4 20 60 08 st %g2, [ %g1 + 8 ] 2007f9c: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 2007fa0: c4 20 60 0c st %g2, [ %g1 + 0xc ] 2007fa4: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 2007fa8: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 2007fac: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 2007fb0: 40 00 08 4a call 200a0d8 <_Thread_Enable_dispatch> 2007fb4: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 2007fb8: 40 00 21 77 call 2010594 2007fbc: 81 e8 00 00 restore } 2007fc0: 81 c7 e0 08 ret 2007fc4: 91 e8 20 0a restore %g0, 0xa, %o0 ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 2007fc8: 81 c7 e0 08 ret 2007fcc: 91 e8 20 12 restore %g0, 0x12, %o0 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 2007fd0: c2 03 60 c8 ld [ %o5 + 0xc8 ], %g1 2007fd4: 89 2e 20 05 sll %i0, 5, %g4 2007fd8: 85 2e 20 03 sll %i0, 3, %g2 2007fdc: 84 21 00 02 sub %g4, %g2, %g2 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2007fe0: c8 00 40 02 ld [ %g1 + %g2 ], %g4 2007fe4: 80 a1 20 00 cmp %g4, 0 2007fe8: 02 80 00 0f be 2008024 2007fec: 82 00 40 02 add %g1, %g2, %g1 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 2007ff0: 40 00 08 3a call 200a0d8 <_Thread_Enable_dispatch> 2007ff4: b0 10 20 0c mov 0xc, %i0 return RTEMS_RESOURCE_IN_USE; 2007ff8: 81 c7 e0 08 ret 2007ffc: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2008000: 80 a0 a0 00 cmp %g2, 0 2008004: 32 bf ff bc bne,a 2007ef4 2008008: 80 a1 00 18 cmp %g4, %i0 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 200800c: 81 c7 e0 08 ret 2008010: 91 e8 20 09 restore %g0, 9, %o0 if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 2008014: 40 00 08 31 call 200a0d8 <_Thread_Enable_dispatch> 2008018: b0 10 20 05 mov 5, %i0 return sc; 200801c: 81 c7 e0 08 ret 2008020: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2008024: c2 00 60 04 ld [ %g1 + 4 ], %g1 2008028: 80 a0 60 00 cmp %g1, 0 200802c: 12 bf ff f1 bne 2007ff0 2008030: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 2008034: 10 bf ff d0 b 2007f74 2008038: f0 26 80 00 st %i0, [ %i2 ] =============================================================================== 02009610 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009610: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009614: 80 a6 20 00 cmp %i0, 0 2009618: 02 80 00 23 be 20096a4 <== NEVER TAKEN 200961c: 25 00 80 7c sethi %hi(0x201f000), %l2 2009620: a4 14 a1 6c or %l2, 0x16c, %l2 ! 201f16c <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009624: a6 04 a0 0c add %l2, 0xc, %l3 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 2009628: c2 04 80 00 ld [ %l2 ], %g1 200962c: 80 a0 60 00 cmp %g1, 0 2009630: 22 80 00 1a be,a 2009698 2009634: a4 04 a0 04 add %l2, 4, %l2 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 2009638: e2 00 60 04 ld [ %g1 + 4 ], %l1 if ( !information ) 200963c: 80 a4 60 00 cmp %l1, 0 2009640: 22 80 00 16 be,a 2009698 2009644: a4 04 a0 04 add %l2, 4, %l2 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009648: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1 200964c: 84 90 60 00 orcc %g1, 0, %g2 2009650: 22 80 00 12 be,a 2009698 <== NEVER TAKEN 2009654: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED 2009658: a0 10 20 01 mov 1, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 200965c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 2009660: 83 2c 20 02 sll %l0, 2, %g1 2009664: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 if ( !the_thread ) 2009668: 90 90 60 00 orcc %g1, 0, %o0 200966c: 02 80 00 05 be 2009680 2009670: a0 04 20 01 inc %l0 continue; (*routine)(the_thread); 2009674: 9f c6 00 00 call %i0 2009678: 01 00 00 00 nop 200967c: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009680: 83 28 a0 10 sll %g2, 0x10, %g1 2009684: 83 30 60 10 srl %g1, 0x10, %g1 2009688: 80 a0 40 10 cmp %g1, %l0 200968c: 3a bf ff f5 bcc,a 2009660 2009690: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 2009694: a4 04 a0 04 add %l2, 4, %l2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 2009698: 80 a4 80 13 cmp %l2, %l3 200969c: 32 bf ff e4 bne,a 200962c 20096a0: c2 04 80 00 ld [ %l2 ], %g1 20096a4: 81 c7 e0 08 ret 20096a8: 81 e8 00 00 restore =============================================================================== 0200827c : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 200827c: 9d e3 bf a0 save %sp, -96, %sp 2008280: 90 10 00 18 mov %i0, %o0 int i; /* * Validate parameters and look up information structure. */ if ( !info ) 2008284: 80 a6 a0 00 cmp %i2, 0 2008288: 02 80 00 21 be 200830c 200828c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 2008290: 93 2e 60 10 sll %i1, 0x10, %o1 if ( !obj_info ) return RTEMS_INVALID_NUMBER; 2008294: b0 10 20 0a mov 0xa, %i0 * Validate parameters and look up information structure. */ if ( !info ) return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 2008298: 40 00 07 75 call 200a06c <_Objects_Get_information> 200829c: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 20082a0: 80 a2 20 00 cmp %o0, 0 20082a4: 02 80 00 1a be 200830c 20082a8: 01 00 00 00 nop /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20082ac: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 20082b0: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20082b4: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20082b8: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 20082bc: c4 26 a0 04 st %g2, [ %i2 + 4 ] return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 20082c0: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 20082c4: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; 20082c8: c8 26 a0 08 st %g4, [ %i2 + 8 ] for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 20082cc: 80 a1 20 00 cmp %g4, 0 20082d0: 02 80 00 0d be 2008304 <== NEVER TAKEN 20082d4: 84 10 20 00 clr %g2 20082d8: da 02 20 1c ld [ %o0 + 0x1c ], %o5 20082dc: 86 10 20 01 mov 1, %g3 20082e0: 82 10 20 01 mov 1, %g1 if ( !obj_info->local_table[i] ) 20082e4: 87 28 e0 02 sll %g3, 2, %g3 20082e8: c6 03 40 03 ld [ %o5 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 20082ec: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 20082f0: 80 a0 00 03 cmp %g0, %g3 20082f4: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 20082f8: 80 a1 00 01 cmp %g4, %g1 20082fc: 1a bf ff fa bcc 20082e4 2008300: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 2008304: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 2008308: b0 10 20 00 clr %i0 } 200830c: 81 c7 e0 08 ret 2008310: 81 e8 00 00 restore =============================================================================== 02014058 : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 2014058: 9d e3 bf a0 save %sp, -96, %sp 201405c: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014060: 80 a4 20 00 cmp %l0, 0 2014064: 02 80 00 34 be 2014134 2014068: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 201406c: 80 a6 60 00 cmp %i1, 0 2014070: 02 80 00 31 be 2014134 2014074: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 2014078: 80 a7 60 00 cmp %i5, 0 201407c: 02 80 00 2e be 2014134 <== NEVER TAKEN 2014080: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 2014084: 02 80 00 2e be 201413c 2014088: 80 a6 a0 00 cmp %i2, 0 201408c: 02 80 00 2c be 201413c 2014090: 80 a6 80 1b cmp %i2, %i3 2014094: 0a 80 00 28 bcs 2014134 2014098: b0 10 20 08 mov 8, %i0 201409c: 80 8e e0 07 btst 7, %i3 20140a0: 12 80 00 25 bne 2014134 20140a4: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 20140a8: 12 80 00 23 bne 2014134 20140ac: b0 10 20 09 mov 9, %i0 20140b0: 03 00 80 f3 sethi %hi(0x203cc00), %g1 20140b4: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 203cf70 <_Thread_Dispatch_disable_level> 20140b8: 84 00 a0 01 inc %g2 20140bc: c4 20 63 70 st %g2, [ %g1 + 0x370 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 20140c0: 25 00 80 f3 sethi %hi(0x203cc00), %l2 20140c4: 40 00 13 17 call 2018d20 <_Objects_Allocate> 20140c8: 90 14 a1 84 or %l2, 0x184, %o0 ! 203cd84 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 20140cc: a2 92 20 00 orcc %o0, 0, %l1 20140d0: 02 80 00 1d be 2014144 20140d4: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 20140d8: f8 24 60 1c st %i4, [ %l1 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 20140dc: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 20140e0: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 20140e4: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 20140e8: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 20140ec: 40 00 63 8a call 202cf14 <.udiv> 20140f0: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 20140f4: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 20140f8: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 20140fc: 96 10 00 1b mov %i3, %o3 2014100: b8 04 60 24 add %l1, 0x24, %i4 2014104: 40 00 0c d8 call 2017464 <_Chain_Initialize> 2014108: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 201410c: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014110: a4 14 a1 84 or %l2, 0x184, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014114: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014118: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 201411c: 85 28 a0 02 sll %g2, 2, %g2 2014120: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014124: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 2014128: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 201412c: 40 00 18 0e call 201a164 <_Thread_Enable_dispatch> 2014130: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2014134: 81 c7 e0 08 ret 2014138: 81 e8 00 00 restore } 201413c: 81 c7 e0 08 ret 2014140: 91 e8 20 08 restore %g0, 8, %o0 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2014144: 40 00 18 08 call 201a164 <_Thread_Enable_dispatch> 2014148: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 201414c: 81 c7 e0 08 ret 2014150: 81 e8 00 00 restore =============================================================================== 020076ec : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 20076ec: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 20076f0: 11 00 80 79 sethi %hi(0x201e400), %o0 20076f4: 92 10 00 18 mov %i0, %o1 20076f8: 90 12 20 84 or %o0, 0x84, %o0 20076fc: 40 00 09 6e call 2009cb4 <_Objects_Get> 2007700: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007704: c2 07 bf fc ld [ %fp + -4 ], %g1 2007708: 80 a0 60 00 cmp %g1, 0 200770c: 02 80 00 04 be 200771c 2007710: a0 10 00 08 mov %o0, %l0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007714: 81 c7 e0 08 ret 2007718: 91 e8 20 04 restore %g0, 4, %o0 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 200771c: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 2007720: 23 00 80 7a sethi %hi(0x201e800), %l1 2007724: a2 14 60 1c or %l1, 0x1c, %l1 ! 201e81c <_Per_CPU_Information> 2007728: c2 04 60 0c ld [ %l1 + 0xc ], %g1 200772c: 80 a0 80 01 cmp %g2, %g1 2007730: 02 80 00 06 be 2007748 2007734: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 2007738: 40 00 0d 0c call 200ab68 <_Thread_Enable_dispatch> 200773c: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 2007740: 81 c7 e0 08 ret 2007744: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 2007748: 12 80 00 0f bne 2007784 200774c: 01 00 00 00 nop switch ( the_period->state ) { 2007750: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007754: 80 a0 60 04 cmp %g1, 4 2007758: 08 80 00 06 bleu 2007770 <== ALWAYS TAKEN 200775c: b0 10 20 00 clr %i0 the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007760: 40 00 0d 02 call 200ab68 <_Thread_Enable_dispatch> 2007764: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007768: 81 c7 e0 08 ret 200776c: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { switch ( the_period->state ) { 2007770: 83 28 60 02 sll %g1, 2, %g1 2007774: 05 00 80 71 sethi %hi(0x201c400), %g2 2007778: 84 10 a0 cc or %g2, 0xcc, %g2 ! 201c4cc 200777c: 10 bf ff f9 b 2007760 2007780: f0 00 80 01 ld [ %g2 + %g1 ], %i0 } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 2007784: 7f ff ed a6 call 2002e1c 2007788: 01 00 00 00 nop 200778c: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 2007790: e4 04 20 38 ld [ %l0 + 0x38 ], %l2 2007794: 80 a4 a0 00 cmp %l2, 0 2007798: 02 80 00 14 be 20077e8 200779c: 80 a4 a0 02 cmp %l2, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 20077a0: 02 80 00 29 be 2007844 20077a4: 80 a4 a0 04 cmp %l2, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 20077a8: 12 bf ff e6 bne 2007740 <== NEVER TAKEN 20077ac: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 20077b0: 7f ff ff 8f call 20075ec <_Rate_monotonic_Update_statistics> 20077b4: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 20077b8: 7f ff ed 9d call 2002e2c 20077bc: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20077c0: 82 10 20 02 mov 2, %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20077c4: 92 04 20 10 add %l0, 0x10, %o1 20077c8: 11 00 80 79 sethi %hi(0x201e400), %o0 the_period->next_length = length; 20077cc: f2 24 20 3c st %i1, [ %l0 + 0x3c ] 20077d0: 90 12 22 b4 or %o0, 0x2b4, %o0 */ _Rate_monotonic_Update_statistics( the_period ); _ISR_Enable( level ); the_period->state = RATE_MONOTONIC_ACTIVE; 20077d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20077d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20077dc: 40 00 11 27 call 200bc78 <_Watchdog_Insert> 20077e0: b0 10 20 06 mov 6, %i0 20077e4: 30 bf ff df b,a 2007760 return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 20077e8: 7f ff ed 91 call 2002e2c 20077ec: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 20077f0: 7f ff ff 63 call 200757c <_Rate_monotonic_Initiate_statistics> 20077f4: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20077f8: 82 10 20 02 mov 2, %g1 20077fc: 92 04 20 10 add %l0, 0x10, %o1 2007800: c2 24 20 38 st %g1, [ %l0 + 0x38 ] 2007804: 11 00 80 79 sethi %hi(0x201e400), %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007808: 03 00 80 1e sethi %hi(0x2007800), %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200780c: 90 12 22 b4 or %o0, 0x2b4, %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007810: 82 10 63 c0 or %g1, 0x3c0, %g1 the_watchdog->id = id; 2007814: f0 24 20 30 st %i0, [ %l0 + 0x30 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 2007818: c2 24 20 2c st %g1, [ %l0 + 0x2c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200781c: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 2007820: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 2007824: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007828: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200782c: 40 00 11 13 call 200bc78 <_Watchdog_Insert> 2007830: b0 10 20 00 clr %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007834: 40 00 0c cd call 200ab68 <_Thread_Enable_dispatch> 2007838: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 200783c: 81 c7 e0 08 ret 2007840: 81 e8 00 00 restore if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 2007844: 7f ff ff 6a call 20075ec <_Rate_monotonic_Update_statistics> 2007848: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 200784c: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007850: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007854: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007858: 7f ff ed 75 call 2002e2c 200785c: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007860: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007864: c4 04 20 08 ld [ %l0 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007868: 90 10 00 01 mov %g1, %o0 200786c: 13 00 00 10 sethi %hi(0x4000), %o1 2007870: 40 00 0f 1d call 200b4e4 <_Thread_Set_state> 2007874: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007878: 7f ff ed 69 call 2002e1c 200787c: 01 00 00 00 nop local_state = the_period->state; 2007880: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 2007884: e4 24 20 38 st %l2, [ %l0 + 0x38 ] _ISR_Enable( level ); 2007888: 7f ff ed 69 call 2002e2c 200788c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007890: 80 a4 e0 03 cmp %l3, 3 2007894: 22 80 00 06 be,a 20078ac 2007898: d0 04 60 0c ld [ %l1 + 0xc ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 200789c: 40 00 0c b3 call 200ab68 <_Thread_Enable_dispatch> 20078a0: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 20078a4: 81 c7 e0 08 ret 20078a8: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 20078ac: 40 00 0b bc call 200a79c <_Thread_Clear_state> 20078b0: 13 00 00 10 sethi %hi(0x4000), %o1 20078b4: 30 bf ff fa b,a 200789c =============================================================================== 020078b8 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 20078b8: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 20078bc: 80 a6 60 00 cmp %i1, 0 20078c0: 02 80 00 4c be 20079f0 <== NEVER TAKEN 20078c4: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 20078c8: 13 00 80 71 sethi %hi(0x201c400), %o1 20078cc: 9f c6 40 00 call %i1 20078d0: 92 12 60 e0 or %o1, 0xe0, %o1 ! 201c4e0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 20078d4: 90 10 00 18 mov %i0, %o0 20078d8: 13 00 80 71 sethi %hi(0x201c400), %o1 20078dc: 9f c6 40 00 call %i1 20078e0: 92 12 61 00 or %o1, 0x100, %o1 ! 201c500 (*print)( context, "--- Wall times are in seconds ---\n" ); 20078e4: 90 10 00 18 mov %i0, %o0 20078e8: 13 00 80 71 sethi %hi(0x201c400), %o1 20078ec: 9f c6 40 00 call %i1 20078f0: 92 12 61 28 or %o1, 0x128, %o1 ! 201c528 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 20078f4: 90 10 00 18 mov %i0, %o0 20078f8: 13 00 80 71 sethi %hi(0x201c400), %o1 20078fc: 9f c6 40 00 call %i1 2007900: 92 12 61 50 or %o1, 0x150, %o1 ! 201c550 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007904: 90 10 00 18 mov %i0, %o0 2007908: 13 00 80 71 sethi %hi(0x201c400), %o1 200790c: 9f c6 40 00 call %i1 2007910: 92 12 61 a0 or %o1, 0x1a0, %o1 ! 201c5a0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007914: 23 00 80 79 sethi %hi(0x201e400), %l1 2007918: a2 14 60 84 or %l1, 0x84, %l1 ! 201e484 <_Rate_monotonic_Information> 200791c: e0 04 60 08 ld [ %l1 + 8 ], %l0 2007920: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007924: 80 a4 00 01 cmp %l0, %g1 2007928: 18 80 00 32 bgu 20079f0 <== NEVER TAKEN 200792c: 2f 00 80 71 sethi %hi(0x201c400), %l7 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007930: 39 00 80 71 sethi %hi(0x201c400), %i4 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007934: 2b 00 80 6d sethi %hi(0x201b400), %l5 2007938: a4 07 bf a0 add %fp, -96, %l2 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 200793c: ba 07 bf d8 add %fp, -40, %i5 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007940: a6 07 bf f8 add %fp, -8, %l3 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007944: ae 15 e1 f0 or %l7, 0x1f0, %l7 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 2007948: ac 07 bf b8 add %fp, -72, %l6 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 200794c: a8 07 bf f0 add %fp, -16, %l4 (*print)( context, 2007950: b8 17 22 08 or %i4, 0x208, %i4 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 2007954: b4 07 bf d0 add %fp, -48, %i2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007958: 10 80 00 06 b 2007970 200795c: aa 15 63 e8 or %l5, 0x3e8, %l5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007960: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007964: 80 a0 40 10 cmp %g1, %l0 2007968: 0a 80 00 22 bcs 20079f0 200796c: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007970: 90 10 00 10 mov %l0, %o0 2007974: 40 00 19 10 call 200ddb4 2007978: 92 10 00 12 mov %l2, %o1 if ( status != RTEMS_SUCCESSFUL ) 200797c: 80 a2 20 00 cmp %o0, 0 2007980: 32 bf ff f8 bne,a 2007960 2007984: c2 04 60 0c ld [ %l1 + 0xc ], %g1 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007988: 92 10 00 1d mov %i5, %o1 200798c: 40 00 19 39 call 200de70 2007990: 90 10 00 10 mov %l0, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007994: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007998: 94 10 00 13 mov %l3, %o2 200799c: 40 00 00 b9 call 2007c80 20079a0: 92 10 20 05 mov 5, %o1 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 20079a4: d8 1f bf a0 ldd [ %fp + -96 ], %o4 20079a8: 92 10 00 17 mov %l7, %o1 20079ac: 94 10 00 10 mov %l0, %o2 20079b0: 90 10 00 18 mov %i0, %o0 20079b4: 9f c6 40 00 call %i1 20079b8: 96 10 00 13 mov %l3, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20079bc: c2 07 bf a0 ld [ %fp + -96 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20079c0: 94 10 00 14 mov %l4, %o2 20079c4: 90 10 00 16 mov %l6, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 20079c8: 80 a0 60 00 cmp %g1, 0 20079cc: 12 80 00 0b bne 20079f8 20079d0: 92 10 00 15 mov %l5, %o1 (*print)( context, "\n" ); 20079d4: 9f c6 40 00 call %i1 20079d8: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20079dc: c2 04 60 0c ld [ %l1 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 20079e0: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 20079e4: 80 a0 40 10 cmp %g1, %l0 20079e8: 1a bf ff e3 bcc 2007974 <== ALWAYS TAKEN 20079ec: 90 10 00 10 mov %l0, %o0 20079f0: 81 c7 e0 08 ret 20079f4: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 20079f8: 40 00 0f 64 call 200b788 <_Timespec_Divide_by_integer> 20079fc: 92 10 00 01 mov %g1, %o1 (*print)( context, 2007a00: d0 07 bf ac ld [ %fp + -84 ], %o0 2007a04: 40 00 47 10 call 2019644 <.div> 2007a08: 92 10 23 e8 mov 0x3e8, %o1 2007a0c: 96 10 00 08 mov %o0, %o3 2007a10: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007a14: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007a18: 40 00 47 0b call 2019644 <.div> 2007a1c: 92 10 23 e8 mov 0x3e8, %o1 2007a20: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007a24: b6 10 00 08 mov %o0, %i3 2007a28: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007a2c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007a30: 40 00 47 05 call 2019644 <.div> 2007a34: 92 10 23 e8 mov 0x3e8, %o1 2007a38: d8 07 bf b0 ld [ %fp + -80 ], %o4 2007a3c: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007a40: d4 07 bf a8 ld [ %fp + -88 ], %o2 2007a44: 9a 10 00 1b mov %i3, %o5 2007a48: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007a4c: 92 10 00 1c mov %i4, %o1 2007a50: 9f c6 40 00 call %i1 2007a54: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007a58: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007a5c: 94 10 00 14 mov %l4, %o2 2007a60: 40 00 0f 4a call 200b788 <_Timespec_Divide_by_integer> 2007a64: 90 10 00 1a mov %i2, %o0 (*print)( context, 2007a68: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007a6c: 40 00 46 f6 call 2019644 <.div> 2007a70: 92 10 23 e8 mov 0x3e8, %o1 2007a74: 96 10 00 08 mov %o0, %o3 2007a78: d0 07 bf cc ld [ %fp + -52 ], %o0 2007a7c: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007a80: 40 00 46 f1 call 2019644 <.div> 2007a84: 92 10 23 e8 mov 0x3e8, %o1 2007a88: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007a8c: b6 10 00 08 mov %o0, %i3 2007a90: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007a94: 92 10 23 e8 mov 0x3e8, %o1 2007a98: 40 00 46 eb call 2019644 <.div> 2007a9c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007aa0: d4 07 bf c0 ld [ %fp + -64 ], %o2 2007aa4: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007aa8: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007aac: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007ab0: 13 00 80 71 sethi %hi(0x201c400), %o1 2007ab4: 90 10 00 18 mov %i0, %o0 2007ab8: 92 12 62 28 or %o1, 0x228, %o1 2007abc: 9f c6 40 00 call %i1 2007ac0: 9a 10 00 1b mov %i3, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007ac4: 10 bf ff a7 b 2007960 2007ac8: c2 04 60 0c ld [ %l1 + 0xc ], %g1 =============================================================================== 02007ae8 : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 2007ae8: 9d e3 bf a0 save %sp, -96, %sp rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 2007aec: 03 00 80 79 sethi %hi(0x201e400), %g1 2007af0: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e5f0 <_Thread_Dispatch_disable_level> 2007af4: 84 00 a0 01 inc %g2 2007af8: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ] /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007afc: 23 00 80 79 sethi %hi(0x201e400), %l1 2007b00: a2 14 60 84 or %l1, 0x84, %l1 ! 201e484 <_Rate_monotonic_Information> 2007b04: e0 04 60 08 ld [ %l1 + 8 ], %l0 2007b08: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007b0c: 80 a4 00 01 cmp %l0, %g1 2007b10: 18 80 00 09 bgu 2007b34 <== NEVER TAKEN 2007b14: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { (void) rtems_rate_monotonic_reset_statistics( id ); 2007b18: 40 00 00 0a call 2007b40 2007b1c: 90 10 00 10 mov %l0, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b20: c2 04 60 0c ld [ %l1 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007b24: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b28: 80 a0 40 10 cmp %g1, %l0 2007b2c: 1a bf ff fb bcc 2007b18 2007b30: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2007b34: 40 00 0c 0d call 200ab68 <_Thread_Enable_dispatch> 2007b38: 81 e8 00 00 restore =============================================================================== 02015678 : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 2015678: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 201567c: 80 a6 60 00 cmp %i1, 0 2015680: 12 80 00 04 bne 2015690 2015684: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015688: 81 c7 e0 08 ret 201568c: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 2015690: 90 10 00 18 mov %i0, %o0 2015694: 40 00 12 c2 call 201a19c <_Thread_Get> 2015698: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 201569c: c2 07 bf fc ld [ %fp + -4 ], %g1 20156a0: 80 a0 60 00 cmp %g1, 0 20156a4: 02 80 00 05 be 20156b8 20156a8: a2 10 00 08 mov %o0, %l1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20156ac: 82 10 20 04 mov 4, %g1 } 20156b0: 81 c7 e0 08 ret 20156b4: 91 e8 00 01 restore %g0, %g1, %o0 the_thread = _Thread_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20156b8: e0 02 21 58 ld [ %o0 + 0x158 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20156bc: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20156c0: 80 a0 60 00 cmp %g1, 0 20156c4: 02 80 00 25 be 2015758 20156c8: 01 00 00 00 nop if ( asr->is_enabled ) { 20156cc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20156d0: 80 a0 60 00 cmp %g1, 0 20156d4: 02 80 00 15 be 2015728 20156d8: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 20156dc: 7f ff e6 41 call 200efe0 20156e0: 01 00 00 00 nop *signal_set |= signals; 20156e4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 20156e8: b2 10 40 19 or %g1, %i1, %i1 20156ec: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 20156f0: 7f ff e6 40 call 200eff0 20156f4: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 20156f8: 03 00 80 f4 sethi %hi(0x203d000), %g1 20156fc: 82 10 61 a4 or %g1, 0x1a4, %g1 ! 203d1a4 <_Per_CPU_Information> 2015700: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015704: 80 a0 a0 00 cmp %g2, 0 2015708: 02 80 00 0f be 2015744 201570c: 01 00 00 00 nop 2015710: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015714: 80 a4 40 02 cmp %l1, %g2 2015718: 12 80 00 0b bne 2015744 <== NEVER TAKEN 201571c: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2015720: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2015724: 30 80 00 08 b,a 2015744 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015728: 7f ff e6 2e call 200efe0 201572c: 01 00 00 00 nop *signal_set |= signals; 2015730: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2015734: b2 10 40 19 or %g1, %i1, %i1 2015738: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 201573c: 7f ff e6 2d call 200eff0 2015740: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015744: 40 00 12 88 call 201a164 <_Thread_Enable_dispatch> 2015748: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 201574c: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015750: 81 c7 e0 08 ret 2015754: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 2015758: 40 00 12 83 call 201a164 <_Thread_Enable_dispatch> 201575c: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2015760: 10 bf ff ca b 2015688 2015764: 82 10 20 0b mov 0xb, %g1 ! b =============================================================================== 0200deb4 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200deb4: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200deb8: 80 a6 a0 00 cmp %i2, 0 200debc: 02 80 00 43 be 200dfc8 200dec0: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200dec4: 27 00 80 57 sethi %hi(0x2015c00), %l3 200dec8: a6 14 e1 fc or %l3, 0x1fc, %l3 ! 2015dfc <_Per_CPU_Information> 200decc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200ded0: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200ded4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200ded8: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200dedc: e2 04 21 58 ld [ %l0 + 0x158 ], %l1 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200dee0: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200dee4: 80 a0 60 00 cmp %g1, 0 200dee8: 12 80 00 3a bne 200dfd0 200deec: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200def0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1 200def4: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200def8: 7f ff f1 24 call 200a388 <_CPU_ISR_Get_level> 200defc: a8 60 3f ff subx %g0, -1, %l4 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200df00: a9 2d 20 0a sll %l4, 0xa, %l4 200df04: a8 15 00 08 or %l4, %o0, %l4 old_mode |= _ISR_Get_level(); 200df08: a4 15 00 12 or %l4, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200df0c: 80 8e 61 00 btst 0x100, %i1 200df10: 02 80 00 06 be 200df28 200df14: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200df18: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200df1c: 80 a0 00 01 cmp %g0, %g1 200df20: 82 60 3f ff subx %g0, -1, %g1 200df24: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200df28: 80 8e 62 00 btst 0x200, %i1 200df2c: 02 80 00 0b be 200df58 200df30: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200df34: 80 8e 22 00 btst 0x200, %i0 200df38: 22 80 00 07 be,a 200df54 200df3c: c0 24 20 7c clr [ %l0 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200df40: 03 00 80 56 sethi %hi(0x2015800), %g1 200df44: c2 00 63 34 ld [ %g1 + 0x334 ], %g1 ! 2015b34 <_Thread_Ticks_per_timeslice> 200df48: c2 24 20 78 st %g1, [ %l0 + 0x78 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200df4c: 82 10 20 01 mov 1, %g1 200df50: c2 24 20 7c st %g1, [ %l0 + 0x7c ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200df54: 80 8e 60 0f btst 0xf, %i1 200df58: 12 80 00 3d bne 200e04c 200df5c: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200df60: 80 8e 64 00 btst 0x400, %i1 200df64: 02 80 00 14 be 200dfb4 200df68: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200df6c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200df70: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200df74: 80 a0 00 18 cmp %g0, %i0 200df78: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200df7c: 80 a0 80 01 cmp %g2, %g1 200df80: 22 80 00 0e be,a 200dfb8 200df84: 03 00 80 57 sethi %hi(0x2015c00), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200df88: 7f ff cf fd call 2001f7c 200df8c: c2 2c 60 08 stb %g1, [ %l1 + 8 ] _signals = information->signals_pending; 200df90: c4 04 60 18 ld [ %l1 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 200df94: c2 04 60 14 ld [ %l1 + 0x14 ], %g1 information->signals_posted = _signals; 200df98: c4 24 60 14 st %g2, [ %l1 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200df9c: c2 24 60 18 st %g1, [ %l1 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200dfa0: 7f ff cf fb call 2001f8c 200dfa4: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200dfa8: c2 04 60 14 ld [ %l1 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200dfac: 80 a0 00 01 cmp %g0, %g1 200dfb0: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200dfb4: 03 00 80 57 sethi %hi(0x2015c00), %g1 200dfb8: c4 00 61 2c ld [ %g1 + 0x12c ], %g2 ! 2015d2c <_System_state_Current> 200dfbc: 80 a0 a0 03 cmp %g2, 3 200dfc0: 02 80 00 11 be 200e004 200dfc4: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 200dfc8: 81 c7 e0 08 ret 200dfcc: 91 e8 00 01 restore %g0, %g1, %o0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200dfd0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200dfd4: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200dfd8: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200dfdc: 7f ff f0 eb call 200a388 <_CPU_ISR_Get_level> 200dfe0: a8 60 3f ff subx %g0, -1, %l4 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200dfe4: a9 2d 20 0a sll %l4, 0xa, %l4 200dfe8: a8 15 00 08 or %l4, %o0, %l4 old_mode |= _ISR_Get_level(); 200dfec: a4 15 00 12 or %l4, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200dff0: 80 8e 61 00 btst 0x100, %i1 200dff4: 02 bf ff cd be 200df28 200dff8: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200dffc: 10 bf ff c8 b 200df1c 200e000: 82 0e 21 00 and %i0, 0x100, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 200e004: 80 88 e0 ff btst 0xff, %g3 200e008: 12 80 00 0a bne 200e030 200e00c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2 200e010: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3 200e014: 80 a0 80 03 cmp %g2, %g3 200e018: 02 bf ff ec be 200dfc8 200e01c: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e020: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200e024: 80 a0 a0 00 cmp %g2, 0 200e028: 02 bf ff e8 be 200dfc8 <== NEVER TAKEN 200e02c: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e030: 82 10 20 01 mov 1, %g1 ! 1 200e034: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e038: 7f ff ea fd call 2008c2c <_Thread_Dispatch> 200e03c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e040: 82 10 20 00 clr %g1 ! 0 } 200e044: 81 c7 e0 08 ret 200e048: 91 e8 00 01 restore %g0, %g1, %o0 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e04c: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e050: 7f ff cf cf call 2001f8c 200e054: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e058: 10 bf ff c3 b 200df64 200e05c: 80 8e 64 00 btst 0x400, %i1 =============================================================================== 0200b37c : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200b37c: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200b380: 80 a6 60 00 cmp %i1, 0 200b384: 02 80 00 07 be 200b3a0 200b388: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200b38c: 03 00 80 66 sethi %hi(0x2019800), %g1 200b390: c2 08 62 f4 ldub [ %g1 + 0x2f4 ], %g1 ! 2019af4 */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200b394: 80 a6 40 01 cmp %i1, %g1 200b398: 18 80 00 1c bgu 200b408 200b39c: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200b3a0: 80 a6 a0 00 cmp %i2, 0 200b3a4: 02 80 00 19 be 200b408 200b3a8: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200b3ac: 40 00 09 bb call 200da98 <_Thread_Get> 200b3b0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200b3b4: c2 07 bf fc ld [ %fp + -4 ], %g1 200b3b8: 80 a0 60 00 cmp %g1, 0 200b3bc: 12 80 00 13 bne 200b408 200b3c0: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200b3c4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200b3c8: 80 a6 60 00 cmp %i1, 0 200b3cc: 02 80 00 0d be 200b400 200b3d0: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200b3d4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200b3d8: 80 a0 60 00 cmp %g1, 0 200b3dc: 02 80 00 06 be 200b3f4 200b3e0: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200b3e4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200b3e8: 80 a6 40 01 cmp %i1, %g1 200b3ec: 1a 80 00 05 bcc 200b400 <== ALWAYS TAKEN 200b3f0: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200b3f4: 92 10 00 19 mov %i1, %o1 200b3f8: 40 00 08 5d call 200d56c <_Thread_Change_priority> 200b3fc: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200b400: 40 00 09 98 call 200da60 <_Thread_Enable_dispatch> 200b404: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200b408: 81 c7 e0 08 ret 200b40c: 81 e8 00 00 restore =============================================================================== 02007730 : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 2007730: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 2007734: 80 a6 60 00 cmp %i1, 0 2007738: 02 80 00 1e be 20077b0 200773c: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 2007740: 90 10 00 18 mov %i0, %o0 2007744: 40 00 09 43 call 2009c50 <_Thread_Get> 2007748: 92 07 bf fc add %fp, -4, %o1 switch (location) { 200774c: c2 07 bf fc ld [ %fp + -4 ], %g1 2007750: 80 a0 60 00 cmp %g1, 0 2007754: 12 80 00 19 bne 20077b8 2007758: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 200775c: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007760: 80 a0 60 00 cmp %g1, 0 2007764: 02 80 00 10 be 20077a4 2007768: 01 00 00 00 nop if (tvp->ptr == ptr) { 200776c: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007770: 80 a0 80 19 cmp %g2, %i1 2007774: 32 80 00 09 bne,a 2007798 2007778: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 200777c: 10 80 00 19 b 20077e0 2007780: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 2007784: 80 a0 80 19 cmp %g2, %i1 2007788: 22 80 00 0e be,a 20077c0 200778c: c4 02 40 00 ld [ %o1 ], %g2 2007790: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 2007794: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 2007798: 80 a2 60 00 cmp %o1, 0 200779c: 32 bf ff fa bne,a 2007784 <== ALWAYS TAKEN 20077a0: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 20077a4: 40 00 09 1d call 2009c18 <_Thread_Enable_dispatch> 20077a8: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 20077ac: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20077b0: 81 c7 e0 08 ret 20077b4: 91 e8 00 01 restore %g0, %g1, %o0 20077b8: 81 c7 e0 08 ret 20077bc: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 20077c0: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 20077c4: 40 00 00 2e call 200787c <_RTEMS_Tasks_Invoke_task_variable_dtor> 20077c8: 01 00 00 00 nop _Thread_Enable_dispatch(); 20077cc: 40 00 09 13 call 2009c18 <_Thread_Enable_dispatch> 20077d0: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20077d4: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20077d8: 81 c7 e0 08 ret 20077dc: 91 e8 00 01 restore %g0, %g1, %o0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 20077e0: 92 10 00 01 mov %g1, %o1 20077e4: 10 bf ff f8 b 20077c4 20077e8: c4 22 21 64 st %g2, [ %o0 + 0x164 ] =============================================================================== 020077ec : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 20077ec: 9d e3 bf 98 save %sp, -104, %sp 20077f0: 90 10 00 18 mov %i0, %o0 Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 20077f4: 80 a6 60 00 cmp %i1, 0 20077f8: 02 80 00 1b be 2007864 20077fc: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !result ) 2007800: 80 a6 a0 00 cmp %i2, 0 2007804: 02 80 00 1c be 2007874 2007808: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 200780c: 40 00 09 11 call 2009c50 <_Thread_Get> 2007810: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007814: c2 07 bf fc ld [ %fp + -4 ], %g1 2007818: 80 a0 60 00 cmp %g1, 0 200781c: 12 80 00 12 bne 2007864 2007820: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 2007824: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007828: 80 a0 60 00 cmp %g1, 0 200782c: 32 80 00 07 bne,a 2007848 2007830: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007834: 30 80 00 0e b,a 200786c 2007838: 80 a0 60 00 cmp %g1, 0 200783c: 02 80 00 0c be 200786c <== NEVER TAKEN 2007840: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007844: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007848: 80 a0 80 19 cmp %g2, %i1 200784c: 32 bf ff fb bne,a 2007838 2007850: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 2007854: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 2007858: b0 10 20 00 clr %i0 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; _Thread_Enable_dispatch(); 200785c: 40 00 08 ef call 2009c18 <_Thread_Enable_dispatch> 2007860: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 2007864: 81 c7 e0 08 ret 2007868: 81 e8 00 00 restore } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 200786c: 40 00 08 eb call 2009c18 <_Thread_Enable_dispatch> 2007870: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; 2007874: 81 c7 e0 08 ret 2007878: 81 e8 00 00 restore =============================================================================== 020160d4 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 20160d4: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 20160d8: 11 00 80 f4 sethi %hi(0x203d000), %o0 20160dc: 92 10 00 18 mov %i0, %o1 20160e0: 90 12 22 34 or %o0, 0x234, %o0 20160e4: 40 00 0c 73 call 20192b0 <_Objects_Get> 20160e8: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20160ec: c2 07 bf fc ld [ %fp + -4 ], %g1 20160f0: 80 a0 60 00 cmp %g1, 0 20160f4: 22 80 00 04 be,a 2016104 20160f8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20160fc: 81 c7 e0 08 ret 2016100: 91 e8 20 04 restore %g0, 4, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2016104: 80 a0 60 04 cmp %g1, 4 2016108: 02 80 00 04 be 2016118 <== NEVER TAKEN 201610c: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2016110: 40 00 15 1d call 201b584 <_Watchdog_Remove> 2016114: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016118: 40 00 10 13 call 201a164 <_Thread_Enable_dispatch> 201611c: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016120: 81 c7 e0 08 ret 2016124: 81 e8 00 00 restore =============================================================================== 020165ec : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 20165ec: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 20165f0: 03 00 80 f4 sethi %hi(0x203d000), %g1 20165f4: e0 00 62 74 ld [ %g1 + 0x274 ], %l0 ! 203d274 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 20165f8: a2 10 00 18 mov %i0, %l1 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 20165fc: 80 a4 20 00 cmp %l0, 0 2016600: 02 80 00 10 be 2016640 2016604: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016608: 03 00 80 f3 sethi %hi(0x203cc00), %g1 201660c: c2 08 63 80 ldub [ %g1 + 0x380 ], %g1 ! 203cf80 <_TOD_Is_set> 2016610: 80 a0 60 00 cmp %g1, 0 2016614: 02 80 00 0b be 2016640 <== NEVER TAKEN 2016618: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 201661c: 80 a6 a0 00 cmp %i2, 0 2016620: 02 80 00 08 be 2016640 2016624: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016628: 90 10 00 19 mov %i1, %o0 201662c: 7f ff f3 b3 call 20134f8 <_TOD_Validate> 2016630: b0 10 20 14 mov 0x14, %i0 2016634: 80 8a 20 ff btst 0xff, %o0 2016638: 12 80 00 04 bne 2016648 201663c: 01 00 00 00 nop case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016640: 81 c7 e0 08 ret 2016644: 81 e8 00 00 restore return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016648: 7f ff f3 76 call 2013420 <_TOD_To_seconds> 201664c: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 2016650: 25 00 80 f3 sethi %hi(0x203cc00), %l2 2016654: c2 04 a3 fc ld [ %l2 + 0x3fc ], %g1 ! 203cffc <_TOD_Now> 2016658: 80 a2 00 01 cmp %o0, %g1 201665c: 08 bf ff f9 bleu 2016640 2016660: b2 10 00 08 mov %o0, %i1 2016664: 92 10 00 11 mov %l1, %o1 2016668: 11 00 80 f4 sethi %hi(0x203d000), %o0 201666c: 94 07 bf fc add %fp, -4, %o2 2016670: 40 00 0b 10 call 20192b0 <_Objects_Get> 2016674: 90 12 22 34 or %o0, 0x234, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016678: c2 07 bf fc ld [ %fp + -4 ], %g1 201667c: 80 a0 60 00 cmp %g1, 0 2016680: 12 80 00 16 bne 20166d8 2016684: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 2016688: 40 00 13 bf call 201b584 <_Watchdog_Remove> 201668c: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 2016690: c4 04 a3 fc ld [ %l2 + 0x3fc ], %g2 (*timer_server->schedule_operation)( timer_server, the_timer ); 2016694: c2 04 20 04 ld [ %l0 + 4 ], %g1 2016698: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 201669c: b2 26 40 02 sub %i1, %g2, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20166a0: 90 10 00 10 mov %l0, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20166a4: 84 10 20 03 mov 3, %g2 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20166a8: f4 26 20 2c st %i2, [ %i0 + 0x2c ] 20166ac: c4 26 20 38 st %g2, [ %i0 + 0x38 ] the_watchdog->id = id; 20166b0: e2 26 20 30 st %l1, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20166b4: f6 26 20 34 st %i3, [ %i0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20166b8: f2 26 20 1c st %i1, [ %i0 + 0x1c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20166bc: c0 26 20 18 clr [ %i0 + 0x18 ] (*timer_server->schedule_operation)( timer_server, the_timer ); 20166c0: 9f c0 40 00 call %g1 20166c4: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 20166c8: 40 00 0e a7 call 201a164 <_Thread_Enable_dispatch> 20166cc: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20166d0: 81 c7 e0 08 ret 20166d4: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20166d8: 81 c7 e0 08 ret 20166dc: 91 e8 20 04 restore %g0, 4, %o0