RTEMS 4.11Annotated Report
Fri Mar 18 19:16:10 2011
02006d68 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
2006d68: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
2006d6c: 23 00 80 57 sethi %hi(0x2015c00), %l1
2006d70: e0 04 61 c4 ld [ %l1 + 0x1c4 ], %l0 ! 2015dc4 <_API_extensions_List>
2006d74: a2 14 61 c4 or %l1, 0x1c4, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006d78: a2 04 60 04 add %l1, 4, %l1
2006d7c: 80 a4 00 11 cmp %l0, %l1
2006d80: 02 80 00 09 be 2006da4 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
2006d84: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
2006d88: c2 04 20 08 ld [ %l0 + 8 ], %g1
2006d8c: 9f c0 40 00 call %g1
2006d90: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2006d94: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006d98: 80 a4 00 11 cmp %l0, %l1
2006d9c: 32 bf ff fc bne,a 2006d8c <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2006da0: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
2006da4: 81 c7 e0 08 ret
2006da8: 81 e8 00 00 restore
02006dac <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
2006dac: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
2006db0: 23 00 80 57 sethi %hi(0x2015c00), %l1
2006db4: e0 04 61 c4 ld [ %l1 + 0x1c4 ], %l0 ! 2015dc4 <_API_extensions_List>
2006db8: a2 14 61 c4 or %l1, 0x1c4, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006dbc: a2 04 60 04 add %l1, 4, %l1
2006dc0: 80 a4 00 11 cmp %l0, %l1
2006dc4: 02 80 00 0a be 2006dec <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
2006dc8: 25 00 80 57 sethi %hi(0x2015c00), %l2
2006dcc: a4 14 a1 fc or %l2, 0x1fc, %l2 ! 2015dfc <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
2006dd0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2006dd4: 9f c0 40 00 call %g1
2006dd8: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2006ddc: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006de0: 80 a4 00 11 cmp %l0, %l1
2006de4: 32 bf ff fc bne,a 2006dd4 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
2006de8: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
2006dec: 81 c7 e0 08 ret
2006df0: 81 e8 00 00 restore
02010cd8 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010cd8: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2010cdc: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010ce0: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
2010ce4: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010ce8: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2010cec: 80 8e e0 03 btst 3, %i3
2010cf0: 02 80 00 07 be 2010d0c <_CORE_message_queue_Initialize+0x34>
2010cf4: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
2010cf8: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2010cfc: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
2010d00: 80 a6 c0 12 cmp %i3, %l2
2010d04: 18 80 00 22 bgu 2010d8c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
2010d08: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
2010d0c: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
2010d10: 92 10 00 1a mov %i2, %o1
2010d14: 90 10 00 11 mov %l1, %o0
2010d18: 40 00 40 6a call 2020ec0 <.umul>
2010d1c: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
2010d20: 80 a2 00 12 cmp %o0, %l2
2010d24: 0a 80 00 1a bcs 2010d8c <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
2010d28: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010d2c: 40 00 0c e2 call 20140b4 <_Workspace_Allocate>
2010d30: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010d34: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010d38: 80 a2 20 00 cmp %o0, 0
2010d3c: 02 80 00 14 be 2010d8c <_CORE_message_queue_Initialize+0xb4>
2010d40: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010d44: 90 04 20 60 add %l0, 0x60, %o0
2010d48: 94 10 00 1a mov %i2, %o2
2010d4c: 40 00 15 16 call 20161a4 <_Chain_Initialize>
2010d50: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
2010d54: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
2010d58: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010d5c: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
2010d60: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2010d64: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010d68: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
2010d6c: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010d70: 82 18 60 01 xor %g1, 1, %g1
2010d74: 80 a0 00 01 cmp %g0, %g1
2010d78: 90 10 00 10 mov %l0, %o0
2010d7c: 94 10 20 80 mov 0x80, %o2
2010d80: 92 60 3f ff subx %g0, -1, %o1
2010d84: 40 00 0a 13 call 20135d0 <_Thread_queue_Initialize>
2010d88: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010d8c: 81 c7 e0 08 ret
2010d90: 81 e8 00 00 restore
020070f8 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
20070f8: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
20070fc: 21 00 80 56 sethi %hi(0x2015800), %l0
2007100: c2 04 23 d0 ld [ %l0 + 0x3d0 ], %g1 ! 2015bd0 <_Thread_Dispatch_disable_level>
2007104: 80 a0 60 00 cmp %g1, 0
2007108: 02 80 00 05 be 200711c <_CORE_mutex_Seize+0x24>
200710c: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2007110: 80 8e a0 ff btst 0xff, %i2
2007114: 12 80 00 1a bne 200717c <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
2007118: 03 00 80 57 sethi %hi(0x2015c00), %g1
200711c: 90 10 00 18 mov %i0, %o0
2007120: 40 00 14 36 call 200c1f8 <_CORE_mutex_Seize_interrupt_trylock>
2007124: 92 07 a0 54 add %fp, 0x54, %o1
2007128: 80 a2 20 00 cmp %o0, 0
200712c: 02 80 00 12 be 2007174 <_CORE_mutex_Seize+0x7c>
2007130: 80 8e a0 ff btst 0xff, %i2
2007134: 02 80 00 1a be 200719c <_CORE_mutex_Seize+0xa4>
2007138: 01 00 00 00 nop
200713c: c4 04 23 d0 ld [ %l0 + 0x3d0 ], %g2
2007140: 03 00 80 57 sethi %hi(0x2015c00), %g1
2007144: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 2015e08 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2007148: 86 10 20 01 mov 1, %g3
200714c: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
2007150: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
2007154: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2007158: 82 00 a0 01 add %g2, 1, %g1
200715c: c2 24 23 d0 st %g1, [ %l0 + 0x3d0 ]
2007160: 7f ff eb 8b call 2001f8c <sparc_enable_interrupts>
2007164: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2007168: 90 10 00 18 mov %i0, %o0
200716c: 7f ff ff c0 call 200706c <_CORE_mutex_Seize_interrupt_blocking>
2007170: 92 10 00 1b mov %i3, %o1
2007174: 81 c7 e0 08 ret
2007178: 81 e8 00 00 restore
200717c: c2 00 61 2c ld [ %g1 + 0x12c ], %g1
2007180: 80 a0 60 01 cmp %g1, 1
2007184: 28 bf ff e7 bleu,a 2007120 <_CORE_mutex_Seize+0x28>
2007188: 90 10 00 18 mov %i0, %o0
200718c: 90 10 20 00 clr %o0
2007190: 92 10 20 00 clr %o1
2007194: 40 00 01 d8 call 20078f4 <_Internal_error_Occurred>
2007198: 94 10 20 12 mov 0x12, %o2
200719c: 7f ff eb 7c call 2001f8c <sparc_enable_interrupts>
20071a0: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
20071a4: 03 00 80 57 sethi %hi(0x2015c00), %g1
20071a8: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 2015e08 <_Per_CPU_Information+0xc>
20071ac: 84 10 20 01 mov 1, %g2
20071b0: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
20071b4: 81 c7 e0 08 ret
20071b8: 81 e8 00 00 restore
02007338 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2007338: 9d e3 bf a0 save %sp, -96, %sp
200733c: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2007340: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
2007344: 40 00 07 79 call 2009128 <_Thread_queue_Dequeue>
2007348: 90 10 00 10 mov %l0, %o0
200734c: 80 a2 20 00 cmp %o0, 0
2007350: 02 80 00 04 be 2007360 <_CORE_semaphore_Surrender+0x28>
2007354: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
2007358: 81 c7 e0 08 ret
200735c: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2007360: 7f ff eb 07 call 2001f7c <sparc_disable_interrupts>
2007364: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2007368: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
200736c: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2007370: 80 a0 40 02 cmp %g1, %g2
2007374: 1a 80 00 05 bcc 2007388 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
2007378: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
200737c: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2007380: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
2007384: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2007388: 7f ff eb 01 call 2001f8c <sparc_enable_interrupts>
200738c: 01 00 00 00 nop
}
return status;
}
2007390: 81 c7 e0 08 ret
2007394: 81 e8 00 00 restore
0200c190 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
200c190: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
200c194: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200c198: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c19c: 80 a6 a0 00 cmp %i2, 0
200c1a0: 02 80 00 12 be 200c1e8 <_Chain_Initialize+0x58> <== NEVER TAKEN
200c1a4: 90 10 00 18 mov %i0, %o0
200c1a8: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
200c1ac: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
200c1b0: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
200c1b4: 10 80 00 05 b 200c1c8 <_Chain_Initialize+0x38>
200c1b8: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c1bc: 84 10 00 01 mov %g1, %g2
200c1c0: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
200c1c4: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
200c1c8: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
200c1cc: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c1d0: 80 a6 a0 00 cmp %i2, 0
200c1d4: 12 bf ff fa bne 200c1bc <_Chain_Initialize+0x2c>
200c1d8: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
200c1dc: 40 00 16 c3 call 2011ce8 <.umul>
200c1e0: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c1e4: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
200c1e8: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
200c1ec: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
200c1f0: 81 c7 e0 08 ret
200c1f4: 81 e8 00 00 restore
02005ff8 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2005ff8: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2005ffc: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
2006000: 7f ff ef df call 2001f7c <sparc_disable_interrupts>
2006004: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
2006008: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
200600c: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2006010: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
2006014: 86 88 40 02 andcc %g1, %g2, %g3
2006018: 02 80 00 3e be 2006110 <_Event_Surrender+0x118>
200601c: 09 00 80 57 sethi %hi(0x2015c00), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006020: 88 11 21 fc or %g4, 0x1fc, %g4 ! 2015dfc <_Per_CPU_Information>
2006024: da 01 20 08 ld [ %g4 + 8 ], %o5
2006028: 80 a3 60 00 cmp %o5, 0
200602c: 32 80 00 1d bne,a 20060a0 <_Event_Surrender+0xa8>
2006030: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
2006034: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2006038: 80 89 21 00 btst 0x100, %g4
200603c: 02 80 00 33 be 2006108 <_Event_Surrender+0x110>
2006040: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
2006044: 02 80 00 04 be 2006054 <_Event_Surrender+0x5c>
2006048: 80 8c a0 02 btst 2, %l2
200604c: 02 80 00 2f be 2006108 <_Event_Surrender+0x110> <== NEVER TAKEN
2006050: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006054: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2006058: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
200605c: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
2006060: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006064: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
2006068: 7f ff ef c9 call 2001f8c <sparc_enable_interrupts>
200606c: 90 10 00 11 mov %l1, %o0
2006070: 7f ff ef c3 call 2001f7c <sparc_disable_interrupts>
2006074: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
2006078: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
200607c: 80 a0 60 02 cmp %g1, 2
2006080: 02 80 00 26 be 2006118 <_Event_Surrender+0x120>
2006084: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
2006088: 90 10 00 11 mov %l1, %o0
200608c: 7f ff ef c0 call 2001f8c <sparc_enable_interrupts>
2006090: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006094: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2006098: 40 00 0a 50 call 20089d8 <_Thread_Clear_state>
200609c: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20060a0: 80 a6 00 04 cmp %i0, %g4
20060a4: 32 bf ff e5 bne,a 2006038 <_Event_Surrender+0x40>
20060a8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20060ac: 09 00 80 57 sethi %hi(0x2015c00), %g4
20060b0: da 01 22 50 ld [ %g4 + 0x250 ], %o5 ! 2015e50 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
20060b4: 80 a3 60 02 cmp %o5, 2
20060b8: 02 80 00 07 be 20060d4 <_Event_Surrender+0xdc> <== NEVER TAKEN
20060bc: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
20060c0: da 01 22 50 ld [ %g4 + 0x250 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20060c4: 80 a3 60 01 cmp %o5, 1
20060c8: 32 bf ff dc bne,a 2006038 <_Event_Surrender+0x40>
20060cc: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
20060d0: 80 a0 40 03 cmp %g1, %g3
20060d4: 02 80 00 04 be 20060e4 <_Event_Surrender+0xec>
20060d8: 80 8c a0 02 btst 2, %l2
20060dc: 02 80 00 09 be 2006100 <_Event_Surrender+0x108> <== NEVER TAKEN
20060e0: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060e4: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
20060e8: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
20060ec: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
20060f0: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20060f4: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20060f8: 82 10 20 03 mov 3, %g1
20060fc: c2 21 22 50 st %g1, [ %g4 + 0x250 ]
}
_ISR_Enable( level );
2006100: 7f ff ef a3 call 2001f8c <sparc_enable_interrupts>
2006104: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2006108: 7f ff ef a1 call 2001f8c <sparc_enable_interrupts>
200610c: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
2006110: 7f ff ef 9f call 2001f8c <sparc_enable_interrupts>
2006114: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2006118: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
200611c: 7f ff ef 9c call 2001f8c <sparc_enable_interrupts>
2006120: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
2006124: 40 00 0f 69 call 2009ec8 <_Watchdog_Remove>
2006128: 90 06 20 48 add %i0, 0x48, %o0
200612c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2006130: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
2006134: 40 00 0a 29 call 20089d8 <_Thread_Clear_state>
2006138: 81 e8 00 00 restore
02006140 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2006140: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
2006144: 90 10 00 18 mov %i0, %o0
2006148: 40 00 0b 25 call 2008ddc <_Thread_Get>
200614c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2006150: c2 07 bf fc ld [ %fp + -4 ], %g1
2006154: 80 a0 60 00 cmp %g1, 0
2006158: 12 80 00 15 bne 20061ac <_Event_Timeout+0x6c> <== NEVER TAKEN
200615c: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2006160: 7f ff ef 87 call 2001f7c <sparc_disable_interrupts>
2006164: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2006168: 03 00 80 57 sethi %hi(0x2015c00), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
200616c: c2 00 62 08 ld [ %g1 + 0x208 ], %g1 ! 2015e08 <_Per_CPU_Information+0xc>
2006170: 80 a4 00 01 cmp %l0, %g1
2006174: 02 80 00 10 be 20061b4 <_Event_Timeout+0x74>
2006178: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
200617c: 82 10 20 06 mov 6, %g1
2006180: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2006184: 7f ff ef 82 call 2001f8c <sparc_enable_interrupts>
2006188: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
200618c: 90 10 00 10 mov %l0, %o0
2006190: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2006194: 40 00 0a 11 call 20089d8 <_Thread_Clear_state>
2006198: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
200619c: 03 00 80 56 sethi %hi(0x2015800), %g1
20061a0: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 2015bd0 <_Thread_Dispatch_disable_level>
20061a4: 84 00 bf ff add %g2, -1, %g2
20061a8: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
20061ac: 81 c7 e0 08 ret
20061b0: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
20061b4: 03 00 80 57 sethi %hi(0x2015c00), %g1
20061b8: c4 00 62 50 ld [ %g1 + 0x250 ], %g2 ! 2015e50 <_Event_Sync_state>
20061bc: 80 a0 a0 01 cmp %g2, 1
20061c0: 32 bf ff f0 bne,a 2006180 <_Event_Timeout+0x40>
20061c4: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
20061c8: 84 10 20 02 mov 2, %g2
20061cc: c4 20 62 50 st %g2, [ %g1 + 0x250 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
20061d0: 10 bf ff ec b 2006180 <_Event_Timeout+0x40>
20061d4: 82 10 20 06 mov 6, %g1
0200c3c8 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200c3c8: 9d e3 bf 98 save %sp, -104, %sp
200c3cc: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200c3d0: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
200c3d4: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
200c3d8: 80 a6 40 12 cmp %i1, %l2
200c3dc: 18 80 00 6e bgu 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c3e0: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200c3e4: 80 a6 e0 00 cmp %i3, 0
200c3e8: 12 80 00 75 bne 200c5bc <_Heap_Allocate_aligned_with_boundary+0x1f4>
200c3ec: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c3f0: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c3f4: 80 a4 00 14 cmp %l0, %l4
200c3f8: 02 80 00 67 be 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c3fc: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c400: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200c404: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c408: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c40c: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200c410: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200c414: e6 05 20 04 ld [ %l4 + 4 ], %l3
200c418: 80 a4 80 13 cmp %l2, %l3
200c41c: 3a 80 00 4b bcc,a 200c548 <_Heap_Allocate_aligned_with_boundary+0x180>
200c420: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
200c424: 80 a6 a0 00 cmp %i2, 0
200c428: 02 80 00 44 be 200c538 <_Heap_Allocate_aligned_with_boundary+0x170>
200c42c: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200c430: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c434: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c438: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200c43c: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200c440: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c444: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200c448: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c44c: a6 00 40 13 add %g1, %l3, %l3
200c450: 40 00 17 0c call 2012080 <.urem>
200c454: 90 10 00 18 mov %i0, %o0
200c458: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200c45c: 80 a4 c0 18 cmp %l3, %i0
200c460: 1a 80 00 06 bcc 200c478 <_Heap_Allocate_aligned_with_boundary+0xb0>
200c464: ac 05 20 08 add %l4, 8, %l6
200c468: 90 10 00 13 mov %l3, %o0
200c46c: 40 00 17 05 call 2012080 <.urem>
200c470: 92 10 00 1a mov %i2, %o1
200c474: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200c478: 80 a6 e0 00 cmp %i3, 0
200c47c: 02 80 00 24 be 200c50c <_Heap_Allocate_aligned_with_boundary+0x144>
200c480: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200c484: a6 06 00 19 add %i0, %i1, %l3
200c488: 92 10 00 1b mov %i3, %o1
200c48c: 40 00 16 fd call 2012080 <.urem>
200c490: 90 10 00 13 mov %l3, %o0
200c494: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200c498: 80 a2 00 13 cmp %o0, %l3
200c49c: 1a 80 00 1b bcc 200c508 <_Heap_Allocate_aligned_with_boundary+0x140>
200c4a0: 80 a6 00 08 cmp %i0, %o0
200c4a4: 1a 80 00 1a bcc 200c50c <_Heap_Allocate_aligned_with_boundary+0x144>
200c4a8: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200c4ac: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
200c4b0: 80 a5 40 08 cmp %l5, %o0
200c4b4: 28 80 00 09 bleu,a 200c4d8 <_Heap_Allocate_aligned_with_boundary+0x110>
200c4b8: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200c4bc: 10 80 00 23 b 200c548 <_Heap_Allocate_aligned_with_boundary+0x180>
200c4c0: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200c4c4: 1a 80 00 11 bcc 200c508 <_Heap_Allocate_aligned_with_boundary+0x140>
200c4c8: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
200c4cc: 38 80 00 1f bgu,a 200c548 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
200c4d0: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
200c4d4: b0 22 00 19 sub %o0, %i1, %i0
200c4d8: 92 10 00 1a mov %i2, %o1
200c4dc: 40 00 16 e9 call 2012080 <.urem>
200c4e0: 90 10 00 18 mov %i0, %o0
200c4e4: 92 10 00 1b mov %i3, %o1
200c4e8: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200c4ec: a6 06 00 19 add %i0, %i1, %l3
200c4f0: 40 00 16 e4 call 2012080 <.urem>
200c4f4: 90 10 00 13 mov %l3, %o0
200c4f8: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200c4fc: 80 a2 00 13 cmp %o0, %l3
200c500: 0a bf ff f1 bcs 200c4c4 <_Heap_Allocate_aligned_with_boundary+0xfc>
200c504: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200c508: 80 a5 80 18 cmp %l6, %i0
200c50c: 38 80 00 0f bgu,a 200c548 <_Heap_Allocate_aligned_with_boundary+0x180>
200c510: e8 05 20 08 ld [ %l4 + 8 ], %l4
200c514: 82 10 3f f8 mov -8, %g1
200c518: 90 10 00 18 mov %i0, %o0
200c51c: a6 20 40 14 sub %g1, %l4, %l3
200c520: 92 10 00 1d mov %i5, %o1
200c524: 40 00 16 d7 call 2012080 <.urem>
200c528: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200c52c: 90 a4 c0 08 subcc %l3, %o0, %o0
200c530: 12 80 00 1b bne 200c59c <_Heap_Allocate_aligned_with_boundary+0x1d4>
200c534: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200c538: 80 a6 20 00 cmp %i0, 0
200c53c: 32 80 00 08 bne,a 200c55c <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
200c540: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
200c544: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c548: 80 a4 00 14 cmp %l0, %l4
200c54c: 02 80 00 1a be 200c5b4 <_Heap_Allocate_aligned_with_boundary+0x1ec>
200c550: 82 04 60 01 add %l1, 1, %g1
200c554: 10 bf ff b0 b 200c414 <_Heap_Allocate_aligned_with_boundary+0x4c>
200c558: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
200c55c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200c560: 84 00 a0 01 inc %g2
stats->searches += search_count;
200c564: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200c568: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
200c56c: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200c570: 90 10 00 10 mov %l0, %o0
200c574: 92 10 00 14 mov %l4, %o1
200c578: 94 10 00 18 mov %i0, %o2
200c57c: 7f ff ec 92 call 20077c4 <_Heap_Block_allocate>
200c580: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200c584: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200c588: 80 a0 40 11 cmp %g1, %l1
200c58c: 2a 80 00 02 bcs,a 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c590: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c594: 81 c7 e0 08 ret
200c598: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200c59c: 1a bf ff e8 bcc 200c53c <_Heap_Allocate_aligned_with_boundary+0x174>
200c5a0: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200c5a4: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c5a8: 80 a4 00 14 cmp %l0, %l4
200c5ac: 12 bf ff ea bne 200c554 <_Heap_Allocate_aligned_with_boundary+0x18c>
200c5b0: 82 04 60 01 add %l1, 1, %g1
200c5b4: 10 bf ff f4 b 200c584 <_Heap_Allocate_aligned_with_boundary+0x1bc>
200c5b8: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200c5bc: 18 bf ff f6 bgu 200c594 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c5c0: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200c5c4: 22 bf ff 8b be,a 200c3f0 <_Heap_Allocate_aligned_with_boundary+0x28>
200c5c8: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c5cc: 10 bf ff 8a b 200c3f4 <_Heap_Allocate_aligned_with_boundary+0x2c>
200c5d0: e8 04 20 08 ld [ %l0 + 8 ], %l4
0200c8dc <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c8dc: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200c8e0: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200c8e4: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200c8e8: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200c8ec: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200c8f0: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200c8f4: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200c8f8: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200c8fc: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200c900: 80 a6 40 11 cmp %i1, %l1
200c904: 18 80 00 86 bgu 200cb1c <_Heap_Extend+0x240>
200c908: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200c90c: 90 10 00 19 mov %i1, %o0
200c910: 92 10 00 1a mov %i2, %o1
200c914: 94 10 00 13 mov %l3, %o2
200c918: 98 07 bf fc add %fp, -4, %o4
200c91c: 7f ff ec 0b call 2007948 <_Heap_Get_first_and_last_block>
200c920: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200c924: 80 8a 20 ff btst 0xff, %o0
200c928: 02 80 00 7d be 200cb1c <_Heap_Extend+0x240>
200c92c: ba 10 20 00 clr %i5
200c930: b0 10 00 12 mov %l2, %i0
200c934: b8 10 20 00 clr %i4
200c938: ac 10 20 00 clr %l6
200c93c: 10 80 00 14 b 200c98c <_Heap_Extend+0xb0>
200c940: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200c944: 2a 80 00 02 bcs,a 200c94c <_Heap_Extend+0x70>
200c948: b8 10 00 18 mov %i0, %i4
200c94c: 90 10 00 15 mov %l5, %o0
200c950: 40 00 17 1f call 20125cc <.urem>
200c954: 92 10 00 13 mov %l3, %o1
200c958: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c95c: 80 a5 40 19 cmp %l5, %i1
200c960: 02 80 00 1c be 200c9d0 <_Heap_Extend+0xf4>
200c964: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200c968: 80 a6 40 15 cmp %i1, %l5
200c96c: 38 80 00 02 bgu,a 200c974 <_Heap_Extend+0x98>
200c970: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c974: f0 00 60 04 ld [ %g1 + 4 ], %i0
200c978: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c97c: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c980: 80 a4 80 18 cmp %l2, %i0
200c984: 22 80 00 1b be,a 200c9f0 <_Heap_Extend+0x114>
200c988: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200c98c: 80 a6 00 12 cmp %i0, %l2
200c990: 02 80 00 65 be 200cb24 <_Heap_Extend+0x248>
200c994: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200c998: 80 a0 40 11 cmp %g1, %l1
200c99c: 0a 80 00 6f bcs 200cb58 <_Heap_Extend+0x27c>
200c9a0: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200c9a4: 80 a0 40 11 cmp %g1, %l1
200c9a8: 12 bf ff e7 bne 200c944 <_Heap_Extend+0x68>
200c9ac: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c9b0: 90 10 00 15 mov %l5, %o0
200c9b4: 40 00 17 06 call 20125cc <.urem>
200c9b8: 92 10 00 13 mov %l3, %o1
200c9bc: 82 05 7f f8 add %l5, -8, %g1
200c9c0: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200c9c4: 80 a5 40 19 cmp %l5, %i1
200c9c8: 12 bf ff e8 bne 200c968 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
200c9cc: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
200c9d0: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c9d4: f0 00 60 04 ld [ %g1 + 4 ], %i0
200c9d8: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c9dc: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200c9e0: 80 a4 80 18 cmp %l2, %i0
200c9e4: 12 bf ff ea bne 200c98c <_Heap_Extend+0xb0> <== NEVER TAKEN
200c9e8: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
200c9ec: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200c9f0: 80 a6 40 01 cmp %i1, %g1
200c9f4: 3a 80 00 54 bcc,a 200cb44 <_Heap_Extend+0x268>
200c9f8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200c9fc: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200ca00: c2 07 bf fc ld [ %fp + -4 ], %g1
200ca04: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200ca08: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200ca0c: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200ca10: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200ca14: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200ca18: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200ca1c: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200ca20: 80 a1 00 01 cmp %g4, %g1
200ca24: 08 80 00 42 bleu 200cb2c <_Heap_Extend+0x250>
200ca28: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200ca2c: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200ca30: 80 a5 e0 00 cmp %l7, 0
200ca34: 02 80 00 62 be 200cbbc <_Heap_Extend+0x2e0>
200ca38: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200ca3c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200ca40: 92 10 00 12 mov %l2, %o1
200ca44: 40 00 16 e2 call 20125cc <.urem>
200ca48: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200ca4c: 80 a2 20 00 cmp %o0, 0
200ca50: 02 80 00 04 be 200ca60 <_Heap_Extend+0x184>
200ca54: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
200ca58: b2 06 40 12 add %i1, %l2, %i1
200ca5c: b2 26 40 08 sub %i1, %o0, %i1
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200ca60: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200ca64: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200ca68: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200ca6c: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200ca70: 90 10 00 10 mov %l0, %o0
200ca74: 92 10 00 01 mov %g1, %o1
200ca78: 7f ff ff 8e call 200c8b0 <_Heap_Free_block>
200ca7c: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200ca80: 80 a5 a0 00 cmp %l6, 0
200ca84: 02 80 00 3a be 200cb6c <_Heap_Extend+0x290>
200ca88: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ca8c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200ca90: a2 24 40 16 sub %l1, %l6, %l1
200ca94: 40 00 16 ce call 20125cc <.urem>
200ca98: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200ca9c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
200caa0: a2 24 40 08 sub %l1, %o0, %l1
200caa4: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
200caa8: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200caac: 84 04 40 16 add %l1, %l6, %g2
200cab0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cab4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200cab8: 90 10 00 10 mov %l0, %o0
200cabc: 82 08 60 01 and %g1, 1, %g1
200cac0: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
200cac4: a2 14 40 01 or %l1, %g1, %l1
200cac8: 7f ff ff 7a call 200c8b0 <_Heap_Free_block>
200cacc: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200cad0: 80 a5 a0 00 cmp %l6, 0
200cad4: 02 80 00 33 be 200cba0 <_Heap_Extend+0x2c4>
200cad8: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cadc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200cae0: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cae4: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200cae8: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200caec: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200caf0: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200caf4: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
200caf8: 88 13 40 04 or %o5, %g4, %g4
200cafc: c8 20 60 04 st %g4, [ %g1 + 4 ]
200cb00: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
200cb04: 82 00 80 14 add %g2, %l4, %g1
200cb08: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
200cb0c: 80 a6 e0 00 cmp %i3, 0
200cb10: 02 80 00 03 be 200cb1c <_Heap_Extend+0x240> <== NEVER TAKEN
200cb14: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
200cb18: e8 26 c0 00 st %l4, [ %i3 ]
200cb1c: 81 c7 e0 08 ret
200cb20: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200cb24: 10 bf ff 9d b 200c998 <_Heap_Extend+0xbc>
200cb28: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200cb2c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200cb30: 80 a0 40 02 cmp %g1, %g2
200cb34: 2a bf ff bf bcs,a 200ca30 <_Heap_Extend+0x154>
200cb38: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200cb3c: 10 bf ff be b 200ca34 <_Heap_Extend+0x158>
200cb40: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200cb44: 80 a4 40 01 cmp %l1, %g1
200cb48: 38 bf ff ae bgu,a 200ca00 <_Heap_Extend+0x124>
200cb4c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cb50: 10 bf ff ad b 200ca04 <_Heap_Extend+0x128>
200cb54: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cb58: 80 a6 40 15 cmp %i1, %l5
200cb5c: 1a bf ff 93 bcc 200c9a8 <_Heap_Extend+0xcc>
200cb60: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cb64: 81 c7 e0 08 ret
200cb68: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200cb6c: 80 a7 60 00 cmp %i5, 0
200cb70: 02 bf ff d8 be 200cad0 <_Heap_Extend+0x1f4>
200cb74: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cb78: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
200cb7c: c2 07 bf f8 ld [ %fp + -8 ], %g1
200cb80: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200cb84: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
200cb88: 84 10 80 03 or %g2, %g3, %g2
200cb8c: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200cb90: c4 00 60 04 ld [ %g1 + 4 ], %g2
200cb94: 84 10 a0 01 or %g2, 1, %g2
200cb98: 10 bf ff ce b 200cad0 <_Heap_Extend+0x1f4>
200cb9c: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200cba0: 32 bf ff d0 bne,a 200cae0 <_Heap_Extend+0x204>
200cba4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200cba8: d2 07 bf fc ld [ %fp + -4 ], %o1
200cbac: 7f ff ff 41 call 200c8b0 <_Heap_Free_block>
200cbb0: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cbb4: 10 bf ff cb b 200cae0 <_Heap_Extend+0x204>
200cbb8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200cbbc: 80 a7 20 00 cmp %i4, 0
200cbc0: 02 bf ff b1 be 200ca84 <_Heap_Extend+0x1a8>
200cbc4: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200cbc8: b8 27 00 02 sub %i4, %g2, %i4
200cbcc: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200cbd0: 10 bf ff ad b 200ca84 <_Heap_Extend+0x1a8>
200cbd4: f8 20 a0 04 st %i4, [ %g2 + 4 ]
0200c5d4 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200c5d4: 9d e3 bf a0 save %sp, -96, %sp
200c5d8: a0 10 00 18 mov %i0, %l0
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
200c5dc: 80 a6 60 00 cmp %i1, 0
200c5e0: 02 80 00 56 be 200c738 <_Heap_Free+0x164>
200c5e4: b0 10 20 01 mov 1, %i0
200c5e8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
200c5ec: 40 00 16 a5 call 2012080 <.urem>
200c5f0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200c5f4: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c5f8: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200c5fc: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c600: 80 a2 00 01 cmp %o0, %g1
200c604: 0a 80 00 4d bcs 200c738 <_Heap_Free+0x164>
200c608: b0 10 20 00 clr %i0
200c60c: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200c610: 80 a2 00 03 cmp %o0, %g3
200c614: 18 80 00 49 bgu 200c738 <_Heap_Free+0x164>
200c618: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c61c: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c620: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c624: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c628: 80 a0 40 02 cmp %g1, %g2
200c62c: 18 80 00 43 bgu 200c738 <_Heap_Free+0x164> <== NEVER TAKEN
200c630: 80 a0 c0 02 cmp %g3, %g2
200c634: 0a 80 00 41 bcs 200c738 <_Heap_Free+0x164> <== NEVER TAKEN
200c638: 01 00 00 00 nop
200c63c: d8 00 a0 04 ld [ %g2 + 4 ], %o4
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
200c640: 80 8b 20 01 btst 1, %o4
200c644: 02 80 00 3d be 200c738 <_Heap_Free+0x164> <== NEVER TAKEN
200c648: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200c64c: 80 a0 c0 02 cmp %g3, %g2
200c650: 02 80 00 06 be 200c668 <_Heap_Free+0x94>
200c654: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c658: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c65c: d8 03 20 04 ld [ %o4 + 4 ], %o4
200c660: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
200c664: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200c668: 80 8b 60 01 btst 1, %o5
200c66c: 12 80 00 1d bne 200c6e0 <_Heap_Free+0x10c>
200c670: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
200c674: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200c678: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c67c: 80 a0 40 0d cmp %g1, %o5
200c680: 18 80 00 2e bgu 200c738 <_Heap_Free+0x164> <== NEVER TAKEN
200c684: b0 10 20 00 clr %i0
200c688: 80 a0 c0 0d cmp %g3, %o5
200c68c: 0a 80 00 2b bcs 200c738 <_Heap_Free+0x164> <== NEVER TAKEN
200c690: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200c694: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200c698: 80 88 60 01 btst 1, %g1
200c69c: 02 80 00 27 be 200c738 <_Heap_Free+0x164> <== NEVER TAKEN
200c6a0: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200c6a4: 22 80 00 39 be,a 200c788 <_Heap_Free+0x1b4>
200c6a8: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c6ac: c2 00 a0 08 ld [ %g2 + 8 ], %g1
200c6b0: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200c6b4: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
200c6b8: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200c6bc: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200c6c0: 82 00 ff ff add %g3, -1, %g1
200c6c4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200c6c8: 96 01 00 0b add %g4, %o3, %o3
200c6cc: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c6d0: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200c6d4: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c6d8: 10 80 00 0e b 200c710 <_Heap_Free+0x13c>
200c6dc: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200c6e0: 22 80 00 18 be,a 200c740 <_Heap_Free+0x16c>
200c6e4: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200c6e8: c6 00 a0 08 ld [ %g2 + 8 ], %g3
200c6ec: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
200c6f0: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
200c6f4: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200c6f8: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
200c6fc: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c700: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
200c704: d0 20 60 08 st %o0, [ %g1 + 8 ]
200c708: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200c70c: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200c710: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
200c714: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
200c718: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200c71c: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
200c720: 82 00 60 01 inc %g1
stats->free_size += block_size;
200c724: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200c728: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
200c72c: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200c730: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
200c734: b0 10 20 01 mov 1, %i0
}
200c738: 81 c7 e0 08 ret
200c73c: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200c740: 82 11 20 01 or %g4, 1, %g1
200c744: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c748: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c74c: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200c750: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200c754: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200c758: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
200c75c: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c760: 86 0b 7f fe and %o5, -2, %g3
200c764: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200c768: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200c76c: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200c770: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200c774: 80 a0 40 02 cmp %g1, %g2
200c778: 08 bf ff e6 bleu 200c710 <_Heap_Free+0x13c>
200c77c: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200c780: 10 bf ff e4 b 200c710 <_Heap_Free+0x13c>
200c784: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200c788: 82 12 a0 01 or %o2, 1, %g1
200c78c: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c790: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
200c794: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200c798: 82 08 7f fe and %g1, -2, %g1
200c79c: 10 bf ff dd b 200c710 <_Heap_Free+0x13c>
200c7a0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
0200d304 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
200d304: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
200d308: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
200d30c: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
200d310: c0 26 40 00 clr [ %i1 ]
200d314: c0 26 60 04 clr [ %i1 + 4 ]
200d318: c0 26 60 08 clr [ %i1 + 8 ]
200d31c: c0 26 60 0c clr [ %i1 + 0xc ]
200d320: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
200d324: 80 a0 40 02 cmp %g1, %g2
200d328: 02 80 00 17 be 200d384 <_Heap_Get_information+0x80> <== NEVER TAKEN
200d32c: c0 26 60 14 clr [ %i1 + 0x14 ]
200d330: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d334: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d338: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
200d33c: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
200d340: 80 8b 60 01 btst 1, %o5
200d344: 02 80 00 03 be 200d350 <_Heap_Get_information+0x4c>
200d348: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
200d34c: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
200d350: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
200d354: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
200d358: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d35c: 94 02 a0 01 inc %o2
info->total += the_size;
200d360: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d364: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
200d368: 80 a3 00 04 cmp %o4, %g4
200d36c: 1a 80 00 03 bcc 200d378 <_Heap_Get_information+0x74>
200d370: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
200d374: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
200d378: 80 a0 80 01 cmp %g2, %g1
200d37c: 12 bf ff ef bne 200d338 <_Heap_Get_information+0x34>
200d380: 88 0b 7f fe and %o5, -2, %g4
200d384: 81 c7 e0 08 ret
200d388: 81 e8 00 00 restore
02013cd0 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
2013cd0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2013cd4: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
2013cd8: 7f ff f8 ea call 2012080 <.urem>
2013cdc: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
2013ce0: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
2013ce4: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2013ce8: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
2013cec: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2013cf0: 80 a0 80 01 cmp %g2, %g1
2013cf4: 0a 80 00 15 bcs 2013d48 <_Heap_Size_of_alloc_area+0x78>
2013cf8: b0 10 20 00 clr %i0
2013cfc: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
2013d00: 80 a0 80 03 cmp %g2, %g3
2013d04: 18 80 00 11 bgu 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013d08: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2013d0c: c8 00 a0 04 ld [ %g2 + 4 ], %g4
2013d10: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2013d14: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2013d18: 80 a0 40 02 cmp %g1, %g2
2013d1c: 18 80 00 0b bgu 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013d20: 80 a0 c0 02 cmp %g3, %g2
2013d24: 0a 80 00 09 bcs 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013d28: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2013d2c: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2013d30: 80 88 60 01 btst 1, %g1
2013d34: 02 80 00 05 be 2013d48 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013d38: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2013d3c: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2013d40: 84 00 a0 04 add %g2, 4, %g2
2013d44: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
2013d48: 81 c7 e0 08 ret
2013d4c: 81 e8 00 00 restore
020087c8 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20087c8: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20087cc: 23 00 80 21 sethi %hi(0x2008400), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20087d0: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
20087d4: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
20087d8: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
20087dc: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
20087e0: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20087e4: 80 8e a0 ff btst 0xff, %i2
20087e8: 02 80 00 04 be 20087f8 <_Heap_Walk+0x30>
20087ec: a2 14 63 5c or %l1, 0x35c, %l1
20087f0: 23 00 80 21 sethi %hi(0x2008400), %l1
20087f4: a2 14 63 64 or %l1, 0x364, %l1 ! 2008764 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20087f8: 03 00 80 61 sethi %hi(0x2018400), %g1
20087fc: c2 00 61 4c ld [ %g1 + 0x14c ], %g1 ! 201854c <_System_state_Current>
2008800: 80 a0 60 03 cmp %g1, 3
2008804: 12 80 00 33 bne 20088d0 <_Heap_Walk+0x108>
2008808: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
200880c: da 04 20 18 ld [ %l0 + 0x18 ], %o5
2008810: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
2008814: c4 04 20 08 ld [ %l0 + 8 ], %g2
2008818: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200881c: 90 10 00 19 mov %i1, %o0
2008820: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008824: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
2008828: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
200882c: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2008830: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2008834: 92 10 20 00 clr %o1
2008838: 96 10 00 14 mov %l4, %o3
200883c: 15 00 80 56 sethi %hi(0x2015800), %o2
2008840: 98 10 00 13 mov %l3, %o4
2008844: 9f c4 40 00 call %l1
2008848: 94 12 a3 00 or %o2, 0x300, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
200884c: 80 a5 20 00 cmp %l4, 0
2008850: 02 80 00 2a be 20088f8 <_Heap_Walk+0x130>
2008854: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2008858: 12 80 00 30 bne 2008918 <_Heap_Walk+0x150>
200885c: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008860: 7f ff e4 a1 call 2001ae4 <.urem>
2008864: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008868: 80 a2 20 00 cmp %o0, 0
200886c: 12 80 00 34 bne 200893c <_Heap_Walk+0x174>
2008870: 90 04 a0 08 add %l2, 8, %o0
2008874: 7f ff e4 9c call 2001ae4 <.urem>
2008878: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
200887c: 80 a2 20 00 cmp %o0, 0
2008880: 32 80 00 38 bne,a 2008960 <_Heap_Walk+0x198>
2008884: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
2008888: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
200888c: 80 8f 20 01 btst 1, %i4
2008890: 22 80 00 4d be,a 20089c4 <_Heap_Walk+0x1fc>
2008894: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008898: c2 05 60 04 ld [ %l5 + 4 ], %g1
200889c: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20088a0: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
20088a4: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
20088a8: 80 88 a0 01 btst 1, %g2
20088ac: 02 80 00 0b be 20088d8 <_Heap_Walk+0x110>
20088b0: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
20088b4: 02 80 00 33 be 2008980 <_Heap_Walk+0x1b8>
20088b8: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20088bc: 92 10 20 01 mov 1, %o1
20088c0: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20088c4: b0 10 20 00 clr %i0
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
20088c8: 9f c4 40 00 call %l1
20088cc: 94 12 a0 78 or %o2, 0x78, %o2
20088d0: 81 c7 e0 08 ret
20088d4: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
20088d8: 90 10 00 19 mov %i1, %o0
20088dc: 92 10 20 01 mov 1, %o1
20088e0: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20088e4: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
20088e8: 9f c4 40 00 call %l1
20088ec: 94 12 a0 60 or %o2, 0x60, %o2
20088f0: 81 c7 e0 08 ret
20088f4: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
20088f8: 90 10 00 19 mov %i1, %o0
20088fc: 92 10 20 01 mov 1, %o1
2008900: 15 00 80 56 sethi %hi(0x2015800), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008904: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008908: 9f c4 40 00 call %l1
200890c: 94 12 a3 98 or %o2, 0x398, %o2
2008910: 81 c7 e0 08 ret
2008914: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008918: 90 10 00 19 mov %i1, %o0
200891c: 92 10 20 01 mov 1, %o1
2008920: 96 10 00 14 mov %l4, %o3
2008924: 15 00 80 56 sethi %hi(0x2015800), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008928: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
200892c: 9f c4 40 00 call %l1
2008930: 94 12 a3 b0 or %o2, 0x3b0, %o2
2008934: 81 c7 e0 08 ret
2008938: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
200893c: 90 10 00 19 mov %i1, %o0
2008940: 92 10 20 01 mov 1, %o1
2008944: 96 10 00 13 mov %l3, %o3
2008948: 15 00 80 56 sethi %hi(0x2015800), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200894c: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008950: 9f c4 40 00 call %l1
2008954: 94 12 a3 d0 or %o2, 0x3d0, %o2
2008958: 81 c7 e0 08 ret
200895c: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008960: 92 10 20 01 mov 1, %o1
2008964: 96 10 00 12 mov %l2, %o3
2008968: 15 00 80 56 sethi %hi(0x2015800), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
200896c: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008970: 9f c4 40 00 call %l1
2008974: 94 12 a3 f8 or %o2, 0x3f8, %o2
2008978: 81 c7 e0 08 ret
200897c: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
2008980: ee 04 20 08 ld [ %l0 + 8 ], %l7
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008984: 80 a4 00 17 cmp %l0, %l7
2008988: 02 80 01 18 be 2008de8 <_Heap_Walk+0x620>
200898c: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
2008990: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008994: 80 a0 40 17 cmp %g1, %l7
2008998: 08 80 00 12 bleu 20089e0 <_Heap_Walk+0x218> <== ALWAYS TAKEN
200899c: ac 10 00 17 mov %l7, %l6
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
20089a0: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
20089a4: 92 10 20 01 mov 1, %o1
20089a8: 96 10 00 16 mov %l6, %o3
20089ac: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20089b0: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
20089b4: 9f c4 40 00 call %l1
20089b8: 94 12 a0 a8 or %o2, 0xa8, %o2
20089bc: 81 c7 e0 08 ret
20089c0: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
20089c4: 92 10 20 01 mov 1, %o1
20089c8: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
20089cc: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
20089d0: 9f c4 40 00 call %l1
20089d4: 94 12 a0 30 or %o2, 0x30, %o2
20089d8: 81 c7 e0 08 ret
20089dc: 81 e8 00 00 restore
20089e0: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
20089e4: 80 a7 40 17 cmp %i5, %l7
20089e8: 0a bf ff ef bcs 20089a4 <_Heap_Walk+0x1dc> <== NEVER TAKEN
20089ec: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20089f0: c2 27 bf fc st %g1, [ %fp + -4 ]
20089f4: 90 05 e0 08 add %l7, 8, %o0
20089f8: 7f ff e4 3b call 2001ae4 <.urem>
20089fc: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2008a00: 80 a2 20 00 cmp %o0, 0
2008a04: 12 80 00 2d bne 2008ab8 <_Heap_Walk+0x2f0> <== NEVER TAKEN
2008a08: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008a0c: c4 05 e0 04 ld [ %l7 + 4 ], %g2
2008a10: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008a14: 84 05 c0 02 add %l7, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008a18: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008a1c: 80 88 a0 01 btst 1, %g2
2008a20: 12 80 00 2f bne 2008adc <_Heap_Walk+0x314> <== NEVER TAKEN
2008a24: 84 10 00 10 mov %l0, %g2
2008a28: 10 80 00 17 b 2008a84 <_Heap_Walk+0x2bc>
2008a2c: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008a30: 80 a4 00 16 cmp %l0, %l6
2008a34: 02 80 00 33 be 2008b00 <_Heap_Walk+0x338>
2008a38: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008a3c: 18 bf ff da bgu 20089a4 <_Heap_Walk+0x1dc>
2008a40: 90 10 00 19 mov %i1, %o0
2008a44: 80 a5 80 1d cmp %l6, %i5
2008a48: 18 bf ff d8 bgu 20089a8 <_Heap_Walk+0x1e0> <== NEVER TAKEN
2008a4c: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008a50: 90 05 a0 08 add %l6, 8, %o0
2008a54: 7f ff e4 24 call 2001ae4 <.urem>
2008a58: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2008a5c: 80 a2 20 00 cmp %o0, 0
2008a60: 12 80 00 16 bne 2008ab8 <_Heap_Walk+0x2f0>
2008a64: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008a68: c2 05 a0 04 ld [ %l6 + 4 ], %g1
2008a6c: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
2008a70: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008a74: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008a78: 80 88 60 01 btst 1, %g1
2008a7c: 12 80 00 18 bne 2008adc <_Heap_Walk+0x314>
2008a80: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
2008a84: d8 05 e0 0c ld [ %l7 + 0xc ], %o4
2008a88: 80 a3 00 02 cmp %o4, %g2
2008a8c: 22 bf ff e9 be,a 2008a30 <_Heap_Walk+0x268>
2008a90: ec 05 e0 08 ld [ %l7 + 8 ], %l6
(*printer)(
2008a94: 90 10 00 19 mov %i1, %o0
2008a98: 92 10 20 01 mov 1, %o1
2008a9c: 96 10 00 17 mov %l7, %o3
2008aa0: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008aa4: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
2008aa8: 9f c4 40 00 call %l1
2008aac: 94 12 a1 18 or %o2, 0x118, %o2
2008ab0: 81 c7 e0 08 ret
2008ab4: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008ab8: 90 10 00 19 mov %i1, %o0
2008abc: 92 10 20 01 mov 1, %o1
2008ac0: 96 10 00 16 mov %l6, %o3
2008ac4: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008ac8: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008acc: 9f c4 40 00 call %l1
2008ad0: 94 12 a0 c8 or %o2, 0xc8, %o2
2008ad4: 81 c7 e0 08 ret
2008ad8: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008adc: 90 10 00 19 mov %i1, %o0
2008ae0: 92 10 20 01 mov 1, %o1
2008ae4: 96 10 00 16 mov %l6, %o3
2008ae8: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008aec: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008af0: 9f c4 40 00 call %l1
2008af4: 94 12 a0 f8 or %o2, 0xf8, %o2
2008af8: 81 c7 e0 08 ret
2008afc: 81 e8 00 00 restore
2008b00: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008b04: 35 00 80 57 sethi %hi(0x2015c00), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008b08: 31 00 80 57 sethi %hi(0x2015c00), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008b0c: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008b10: b4 16 a2 d8 or %i2, 0x2d8, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008b14: b0 16 22 c0 or %i0, 0x2c0, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008b18: 37 00 80 57 sethi %hi(0x2015c00), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008b1c: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008b20: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008b24: 80 a0 40 16 cmp %g1, %l6
2008b28: 28 80 00 0c bleu,a 2008b58 <_Heap_Walk+0x390> <== ALWAYS TAKEN
2008b2c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
2008b30: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008b34: 92 10 20 01 mov 1, %o1
2008b38: 96 10 00 17 mov %l7, %o3
2008b3c: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008b40: 98 10 00 16 mov %l6, %o4
2008b44: 94 12 a1 50 or %o2, 0x150, %o2
2008b48: 9f c4 40 00 call %l1
2008b4c: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
2008b50: 81 c7 e0 08 ret
2008b54: 81 e8 00 00 restore
2008b58: 80 a0 40 16 cmp %g1, %l6
2008b5c: 0a bf ff f6 bcs 2008b34 <_Heap_Walk+0x36c>
2008b60: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2008b64: 82 1d c0 15 xor %l7, %l5, %g1
2008b68: 80 a0 00 01 cmp %g0, %g1
2008b6c: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008b70: 90 10 00 1d mov %i5, %o0
2008b74: c2 27 bf fc st %g1, [ %fp + -4 ]
2008b78: 7f ff e3 db call 2001ae4 <.urem>
2008b7c: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008b80: 80 a2 20 00 cmp %o0, 0
2008b84: 02 80 00 05 be 2008b98 <_Heap_Walk+0x3d0>
2008b88: c2 07 bf fc ld [ %fp + -4 ], %g1
2008b8c: 80 88 60 ff btst 0xff, %g1
2008b90: 12 80 00 79 bne 2008d74 <_Heap_Walk+0x5ac>
2008b94: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008b98: 80 a4 c0 1d cmp %l3, %i5
2008b9c: 08 80 00 05 bleu 2008bb0 <_Heap_Walk+0x3e8>
2008ba0: 80 a5 c0 16 cmp %l7, %l6
2008ba4: 80 88 60 ff btst 0xff, %g1
2008ba8: 12 80 00 7c bne 2008d98 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
2008bac: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2008bb0: 2a 80 00 06 bcs,a 2008bc8 <_Heap_Walk+0x400>
2008bb4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
2008bb8: 80 88 60 ff btst 0xff, %g1
2008bbc: 12 80 00 82 bne 2008dc4 <_Heap_Walk+0x5fc>
2008bc0: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008bc4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2008bc8: 80 88 60 01 btst 1, %g1
2008bcc: 02 80 00 19 be 2008c30 <_Heap_Walk+0x468>
2008bd0: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2008bd4: 80 a7 20 00 cmp %i4, 0
2008bd8: 22 80 00 0e be,a 2008c10 <_Heap_Walk+0x448>
2008bdc: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
2008be0: 90 10 00 19 mov %i1, %o0
2008be4: 92 10 20 00 clr %o1
2008be8: 94 10 00 18 mov %i0, %o2
2008bec: 96 10 00 17 mov %l7, %o3
2008bf0: 9f c4 40 00 call %l1
2008bf4: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008bf8: 80 a4 80 16 cmp %l2, %l6
2008bfc: 02 80 00 43 be 2008d08 <_Heap_Walk+0x540>
2008c00: ae 10 00 16 mov %l6, %l7
2008c04: f8 05 a0 04 ld [ %l6 + 4 ], %i4
2008c08: 10 bf ff c5 b 2008b1c <_Heap_Walk+0x354>
2008c0c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008c10: 96 10 00 17 mov %l7, %o3
2008c14: 90 10 00 19 mov %i1, %o0
2008c18: 92 10 20 00 clr %o1
2008c1c: 94 10 00 1a mov %i2, %o2
2008c20: 9f c4 40 00 call %l1
2008c24: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008c28: 10 bf ff f5 b 2008bfc <_Heap_Walk+0x434>
2008c2c: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008c30: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008c34: c2 04 20 08 ld [ %l0 + 8 ], %g1
2008c38: 05 00 80 56 sethi %hi(0x2015800), %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008c3c: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008c40: 80 a0 40 0d cmp %g1, %o5
2008c44: 02 80 00 05 be 2008c58 <_Heap_Walk+0x490>
2008c48: 86 10 a2 c0 or %g2, 0x2c0, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008c4c: 80 a4 00 0d cmp %l0, %o5
2008c50: 02 80 00 3e be 2008d48 <_Heap_Walk+0x580>
2008c54: 86 16 e2 88 or %i3, 0x288, %g3
block->next,
block->next == last_free_block ?
2008c58: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008c5c: 19 00 80 56 sethi %hi(0x2015800), %o4
2008c60: 80 a1 00 01 cmp %g4, %g1
2008c64: 02 80 00 05 be 2008c78 <_Heap_Walk+0x4b0>
2008c68: 84 13 22 e0 or %o4, 0x2e0, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008c6c: 80 a4 00 01 cmp %l0, %g1
2008c70: 02 80 00 33 be 2008d3c <_Heap_Walk+0x574>
2008c74: 84 16 e2 88 or %i3, 0x288, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008c78: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008c7c: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
2008c80: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
2008c84: 90 10 00 19 mov %i1, %o0
2008c88: 92 10 20 00 clr %o1
2008c8c: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008c90: 96 10 00 17 mov %l7, %o3
2008c94: 94 12 a2 18 or %o2, 0x218, %o2
2008c98: 9f c4 40 00 call %l1
2008c9c: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008ca0: da 05 80 00 ld [ %l6 ], %o5
2008ca4: 80 a7 40 0d cmp %i5, %o5
2008ca8: 12 80 00 1a bne 2008d10 <_Heap_Walk+0x548>
2008cac: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
2008cb0: 02 80 00 29 be 2008d54 <_Heap_Walk+0x58c>
2008cb4: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
2008cb8: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008cbc: 80 a4 00 01 cmp %l0, %g1
2008cc0: 02 80 00 0b be 2008cec <_Heap_Walk+0x524> <== NEVER TAKEN
2008cc4: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
2008cc8: 80 a5 c0 01 cmp %l7, %g1
2008ccc: 02 bf ff cc be 2008bfc <_Heap_Walk+0x434>
2008cd0: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
2008cd4: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008cd8: 80 a4 00 01 cmp %l0, %g1
2008cdc: 12 bf ff fc bne 2008ccc <_Heap_Walk+0x504>
2008ce0: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008ce4: 90 10 00 19 mov %i1, %o0
2008ce8: 92 10 20 01 mov 1, %o1
2008cec: 96 10 00 17 mov %l7, %o3
2008cf0: 15 00 80 57 sethi %hi(0x2015c00), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008cf4: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008cf8: 9f c4 40 00 call %l1
2008cfc: 94 12 a3 00 or %o2, 0x300, %o2
2008d00: 81 c7 e0 08 ret
2008d04: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
2008d08: 81 c7 e0 08 ret
2008d0c: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
2008d10: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
2008d14: 90 10 00 19 mov %i1, %o0
2008d18: 92 10 20 01 mov 1, %o1
2008d1c: 96 10 00 17 mov %l7, %o3
2008d20: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008d24: 98 10 00 1d mov %i5, %o4
2008d28: 94 12 a2 50 or %o2, 0x250, %o2
2008d2c: 9f c4 40 00 call %l1
2008d30: b0 10 20 00 clr %i0
2008d34: 81 c7 e0 08 ret
2008d38: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008d3c: 09 00 80 56 sethi %hi(0x2015800), %g4
2008d40: 10 bf ff ce b 2008c78 <_Heap_Walk+0x4b0>
2008d44: 84 11 22 f0 or %g4, 0x2f0, %g2 ! 2015af0 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008d48: 19 00 80 56 sethi %hi(0x2015800), %o4
2008d4c: 10 bf ff c3 b 2008c58 <_Heap_Walk+0x490>
2008d50: 86 13 22 d0 or %o4, 0x2d0, %g3 ! 2015ad0 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
2008d54: 92 10 20 01 mov 1, %o1
2008d58: 96 10 00 17 mov %l7, %o3
2008d5c: 15 00 80 57 sethi %hi(0x2015c00), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008d60: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
2008d64: 9f c4 40 00 call %l1
2008d68: 94 12 a2 90 or %o2, 0x290, %o2
2008d6c: 81 c7 e0 08 ret
2008d70: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
2008d74: 92 10 20 01 mov 1, %o1
2008d78: 96 10 00 17 mov %l7, %o3
2008d7c: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008d80: 98 10 00 1d mov %i5, %o4
2008d84: 94 12 a1 80 or %o2, 0x180, %o2
2008d88: 9f c4 40 00 call %l1
2008d8c: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
2008d90: 81 c7 e0 08 ret
2008d94: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
2008d98: 90 10 00 19 mov %i1, %o0
2008d9c: 92 10 20 01 mov 1, %o1
2008da0: 96 10 00 17 mov %l7, %o3
2008da4: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008da8: 98 10 00 1d mov %i5, %o4
2008dac: 94 12 a1 b0 or %o2, 0x1b0, %o2
2008db0: 9a 10 00 13 mov %l3, %o5
2008db4: 9f c4 40 00 call %l1
2008db8: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
2008dbc: 81 c7 e0 08 ret
2008dc0: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
2008dc4: 92 10 20 01 mov 1, %o1
2008dc8: 96 10 00 17 mov %l7, %o3
2008dcc: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008dd0: 98 10 00 16 mov %l6, %o4
2008dd4: 94 12 a1 e0 or %o2, 0x1e0, %o2
2008dd8: 9f c4 40 00 call %l1
2008ddc: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2008de0: 81 c7 e0 08 ret
2008de4: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008de8: 10 bf ff 47 b 2008b04 <_Heap_Walk+0x33c>
2008dec: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
02006c7c <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
2006c7c: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2006c80: 23 00 80 57 sethi %hi(0x2015c00), %l1
2006c84: c2 04 62 94 ld [ %l1 + 0x294 ], %g1 ! 2015e94 <_IO_Number_of_drivers>
2006c88: 80 a0 60 00 cmp %g1, 0
2006c8c: 02 80 00 0c be 2006cbc <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
2006c90: a0 10 20 00 clr %l0
2006c94: a2 14 62 94 or %l1, 0x294, %l1
(void) rtems_io_initialize( major, 0, NULL );
2006c98: 90 10 00 10 mov %l0, %o0
2006c9c: 92 10 20 00 clr %o1
2006ca0: 40 00 15 25 call 200c134 <rtems_io_initialize>
2006ca4: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2006ca8: c2 04 40 00 ld [ %l1 ], %g1
2006cac: a0 04 20 01 inc %l0
2006cb0: 80 a0 40 10 cmp %g1, %l0
2006cb4: 18 bf ff fa bgu 2006c9c <_IO_Initialize_all_drivers+0x20>
2006cb8: 90 10 00 10 mov %l0, %o0
2006cbc: 81 c7 e0 08 ret
2006cc0: 81 e8 00 00 restore
02006bb0 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
2006bb0: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
2006bb4: 03 00 80 54 sethi %hi(0x2015000), %g1
2006bb8: 82 10 60 08 or %g1, 8, %g1 ! 2015008 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
2006bbc: e2 00 60 30 ld [ %g1 + 0x30 ], %l1
number_of_drivers = Configuration.maximum_drivers;
2006bc0: e8 00 60 2c ld [ %g1 + 0x2c ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2006bc4: 80 a4 40 14 cmp %l1, %l4
2006bc8: 0a 80 00 08 bcs 2006be8 <_IO_Manager_initialization+0x38>
2006bcc: e0 00 60 34 ld [ %g1 + 0x34 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
2006bd0: 03 00 80 57 sethi %hi(0x2015c00), %g1
2006bd4: e0 20 62 98 st %l0, [ %g1 + 0x298 ] ! 2015e98 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
2006bd8: 03 00 80 57 sethi %hi(0x2015c00), %g1
2006bdc: e2 20 62 94 st %l1, [ %g1 + 0x294 ] ! 2015e94 <_IO_Number_of_drivers>
return;
2006be0: 81 c7 e0 08 ret
2006be4: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
2006be8: 83 2d 20 03 sll %l4, 3, %g1
2006bec: a7 2d 20 05 sll %l4, 5, %l3
2006bf0: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
2006bf4: 40 00 0d 41 call 200a0f8 <_Workspace_Allocate_or_fatal_error>
2006bf8: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2006bfc: 03 00 80 57 sethi %hi(0x2015c00), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2006c00: 25 00 80 57 sethi %hi(0x2015c00), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2006c04: e8 20 62 94 st %l4, [ %g1 + 0x294 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2006c08: d0 24 a2 98 st %o0, [ %l2 + 0x298 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
2006c0c: 92 10 20 00 clr %o1
2006c10: 40 00 20 b7 call 200eeec <memset>
2006c14: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006c18: 80 a4 60 00 cmp %l1, 0
2006c1c: 02 bf ff f1 be 2006be0 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
2006c20: da 04 a2 98 ld [ %l2 + 0x298 ], %o5
2006c24: 82 10 20 00 clr %g1
2006c28: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
2006c2c: c4 04 00 01 ld [ %l0 + %g1 ], %g2
2006c30: 86 04 00 01 add %l0, %g1, %g3
2006c34: c4 23 40 01 st %g2, [ %o5 + %g1 ]
2006c38: d8 00 e0 04 ld [ %g3 + 4 ], %o4
2006c3c: 84 03 40 01 add %o5, %g1, %g2
2006c40: d8 20 a0 04 st %o4, [ %g2 + 4 ]
2006c44: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006c48: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
2006c4c: d8 20 a0 08 st %o4, [ %g2 + 8 ]
2006c50: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006c54: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
2006c58: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
2006c5c: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006c60: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
2006c64: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
2006c68: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006c6c: 18 bf ff f0 bgu 2006c2c <_IO_Manager_initialization+0x7c>
2006c70: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
2006c74: 81 c7 e0 08 ret
2006c78: 81 e8 00 00 restore
020079a8 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
20079a8: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
20079ac: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
20079b0: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
20079b4: 80 a0 60 00 cmp %g1, 0
20079b8: 02 80 00 19 be 2007a1c <_Objects_Allocate+0x74> <== NEVER TAKEN
20079bc: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
20079c0: a2 04 20 20 add %l0, 0x20, %l1
20079c4: 7f ff fd 5c call 2006f34 <_Chain_Get>
20079c8: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
20079cc: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
20079d0: 80 a0 60 00 cmp %g1, 0
20079d4: 02 80 00 12 be 2007a1c <_Objects_Allocate+0x74>
20079d8: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
20079dc: 80 a2 20 00 cmp %o0, 0
20079e0: 02 80 00 11 be 2007a24 <_Objects_Allocate+0x7c>
20079e4: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
20079e8: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
20079ec: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
20079f0: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
20079f4: 40 00 28 f7 call 2011dd0 <.udiv>
20079f8: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
20079fc: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2007a00: 91 2a 20 02 sll %o0, 2, %o0
2007a04: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
2007a08: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
2007a0c: 86 00 ff ff add %g3, -1, %g3
2007a10: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
2007a14: 82 00 bf ff add %g2, -1, %g1
2007a18: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
2007a1c: 81 c7 e0 08 ret
2007a20: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
2007a24: 40 00 00 11 call 2007a68 <_Objects_Extend_information>
2007a28: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007a2c: 7f ff fd 42 call 2006f34 <_Chain_Get>
2007a30: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
2007a34: b0 92 20 00 orcc %o0, 0, %i0
2007a38: 32 bf ff ed bne,a 20079ec <_Objects_Allocate+0x44>
2007a3c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
2007a40: 81 c7 e0 08 ret
2007a44: 81 e8 00 00 restore
02007a68 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
2007a68: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007a6c: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
2007a70: 80 a5 20 00 cmp %l4, 0
2007a74: 02 80 00 a6 be 2007d0c <_Objects_Extend_information+0x2a4>
2007a78: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2007a7c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
2007a80: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
2007a84: ab 2d 60 10 sll %l5, 0x10, %l5
2007a88: 92 10 00 13 mov %l3, %o1
2007a8c: 40 00 28 d1 call 2011dd0 <.udiv>
2007a90: 91 35 60 10 srl %l5, 0x10, %o0
2007a94: bb 2a 20 10 sll %o0, 0x10, %i5
2007a98: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
2007a9c: 80 a7 60 00 cmp %i5, 0
2007aa0: 02 80 00 a3 be 2007d2c <_Objects_Extend_information+0x2c4><== NEVER TAKEN
2007aa4: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
2007aa8: c2 05 00 00 ld [ %l4 ], %g1
2007aac: 80 a0 60 00 cmp %g1, 0
2007ab0: 02 80 00 a3 be 2007d3c <_Objects_Extend_information+0x2d4><== NEVER TAKEN
2007ab4: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007ab8: 10 80 00 06 b 2007ad0 <_Objects_Extend_information+0x68>
2007abc: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007ac0: c2 05 00 01 ld [ %l4 + %g1 ], %g1
2007ac4: 80 a0 60 00 cmp %g1, 0
2007ac8: 22 80 00 08 be,a 2007ae8 <_Objects_Extend_information+0x80>
2007acc: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007ad0: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
2007ad4: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007ad8: 80 a7 40 10 cmp %i5, %l0
2007adc: 18 bf ff f9 bgu 2007ac0 <_Objects_Extend_information+0x58>
2007ae0: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007ae4: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007ae8: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007aec: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007af0: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007af4: 82 10 63 ff or %g1, 0x3ff, %g1
2007af8: 80 a5 40 01 cmp %l5, %g1
2007afc: 18 80 00 95 bgu 2007d50 <_Objects_Extend_information+0x2e8>
2007b00: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
2007b04: 40 00 28 79 call 2011ce8 <.umul>
2007b08: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
2007b0c: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
2007b10: 80 a0 60 00 cmp %g1, 0
2007b14: 02 80 00 6a be 2007cbc <_Objects_Extend_information+0x254>
2007b18: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
2007b1c: 40 00 09 67 call 200a0b8 <_Workspace_Allocate>
2007b20: 01 00 00 00 nop
if ( !new_object_block )
2007b24: a6 92 20 00 orcc %o0, 0, %l3
2007b28: 02 80 00 8a be 2007d50 <_Objects_Extend_information+0x2e8>
2007b2c: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
2007b30: 80 8d 20 ff btst 0xff, %l4
2007b34: 22 80 00 3f be,a 2007c30 <_Objects_Extend_information+0x1c8>
2007b38: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
2007b3c: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007b40: 91 2d 20 01 sll %l4, 1, %o0
2007b44: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
2007b48: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007b4c: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
2007b50: 40 00 09 5a call 200a0b8 <_Workspace_Allocate>
2007b54: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
2007b58: ac 92 20 00 orcc %o0, 0, %l6
2007b5c: 02 80 00 7b be 2007d48 <_Objects_Extend_information+0x2e0>
2007b60: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
2007b64: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2007b68: 80 a4 80 01 cmp %l2, %g1
2007b6c: ae 05 80 14 add %l6, %l4, %l7
2007b70: 0a 80 00 57 bcs 2007ccc <_Objects_Extend_information+0x264>
2007b74: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2007b78: 80 a4 a0 00 cmp %l2, 0
2007b7c: 02 80 00 07 be 2007b98 <_Objects_Extend_information+0x130><== NEVER TAKEN
2007b80: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2007b84: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2007b88: 82 00 60 01 inc %g1
2007b8c: 80 a4 80 01 cmp %l2, %g1
2007b90: 18 bf ff fd bgu 2007b84 <_Objects_Extend_information+0x11c><== NEVER TAKEN
2007b94: c0 20 80 14 clr [ %g2 + %l4 ]
2007b98: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007b9c: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
2007ba0: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007ba4: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007ba8: 80 a4 40 03 cmp %l1, %g3
2007bac: 1a 80 00 0a bcc 2007bd4 <_Objects_Extend_information+0x16c><== NEVER TAKEN
2007bb0: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2007bb4: 83 2c 60 02 sll %l1, 2, %g1
2007bb8: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007bbc: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
2007bc0: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
2007bc4: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007bc8: 80 a0 80 03 cmp %g2, %g3
2007bcc: 0a bf ff fd bcs 2007bc0 <_Objects_Extend_information+0x158>
2007bd0: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
2007bd4: 7f ff e8 ea call 2001f7c <sparc_disable_interrupts>
2007bd8: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007bdc: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2007be0: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
2007be4: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2007be8: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
2007bec: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007bf0: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
2007bf4: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
2007bf8: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
2007bfc: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2007c00: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007c04: 03 00 00 40 sethi %hi(0x10000), %g1
2007c08: ab 35 60 10 srl %l5, 0x10, %l5
2007c0c: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007c10: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007c14: 82 10 40 15 or %g1, %l5, %g1
2007c18: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
2007c1c: 7f ff e8 dc call 2001f8c <sparc_enable_interrupts>
2007c20: 01 00 00 00 nop
_Workspace_Free( old_tables );
2007c24: 40 00 09 2e call 200a0dc <_Workspace_Free>
2007c28: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007c2c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007c30: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
2007c34: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
2007c38: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007c3c: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007c40: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007c44: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007c48: 90 10 00 12 mov %l2, %o0
2007c4c: 40 00 11 51 call 200c190 <_Chain_Initialize>
2007c50: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2007c54: 10 80 00 0d b 2007c88 <_Objects_Extend_information+0x220>
2007c58: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
2007c5c: c6 16 20 04 lduh [ %i0 + 4 ], %g3
2007c60: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007c64: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007c68: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007c6c: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007c70: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2007c74: 90 10 00 13 mov %l3, %o0
2007c78: 92 10 00 01 mov %g1, %o1
index++;
2007c7c: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2007c80: 7f ff fc 97 call 2006edc <_Chain_Append>
2007c84: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2007c88: 7f ff fc ab call 2006f34 <_Chain_Get>
2007c8c: 90 10 00 12 mov %l2, %o0
2007c90: 82 92 20 00 orcc %o0, 0, %g1
2007c94: 32 bf ff f2 bne,a 2007c5c <_Objects_Extend_information+0x1f4>
2007c98: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2007c9c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
2007ca0: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2007ca4: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2007ca8: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2007cac: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
2007cb0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2007cb4: 81 c7 e0 08 ret
2007cb8: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
2007cbc: 40 00 09 0f call 200a0f8 <_Workspace_Allocate_or_fatal_error>
2007cc0: 01 00 00 00 nop
2007cc4: 10 bf ff 9b b 2007b30 <_Objects_Extend_information+0xc8>
2007cc8: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2007ccc: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
2007cd0: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2007cd4: 40 00 1c 4d call 200ee08 <memcpy>
2007cd8: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
2007cdc: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
2007ce0: 94 10 00 1d mov %i5, %o2
2007ce4: 40 00 1c 49 call 200ee08 <memcpy>
2007ce8: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2007cec: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2007cf0: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2007cf4: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2007cf8: 90 10 00 14 mov %l4, %o0
2007cfc: 40 00 1c 43 call 200ee08 <memcpy>
2007d00: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007d04: 10 bf ff a7 b 2007ba0 <_Objects_Extend_information+0x138>
2007d08: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007d0c: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
2007d10: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007d14: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007d18: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007d1c: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
2007d20: ba 10 20 00 clr %i5
2007d24: 10 bf ff 71 b 2007ae8 <_Objects_Extend_information+0x80>
2007d28: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007d2c: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007d30: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007d34: 10 bf ff 6d b 2007ae8 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2007d38: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
2007d3c: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007d40: 10 bf ff 6a b 2007ae8 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2007d44: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
2007d48: 40 00 08 e5 call 200a0dc <_Workspace_Free>
2007d4c: 90 10 00 13 mov %l3, %o0
return;
2007d50: 81 c7 e0 08 ret
2007d54: 81 e8 00 00 restore
02007e04 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007e04: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007e08: b3 2e 60 10 sll %i1, 0x10, %i1
2007e0c: b3 36 60 10 srl %i1, 0x10, %i1
2007e10: 80 a6 60 00 cmp %i1, 0
2007e14: 12 80 00 04 bne 2007e24 <_Objects_Get_information+0x20>
2007e18: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
2007e1c: 81 c7 e0 08 ret
2007e20: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2007e24: 40 00 12 60 call 200c7a4 <_Objects_API_maximum_class>
2007e28: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2007e2c: 80 a2 20 00 cmp %o0, 0
2007e30: 02 bf ff fb be 2007e1c <_Objects_Get_information+0x18>
2007e34: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2007e38: 0a bf ff f9 bcs 2007e1c <_Objects_Get_information+0x18>
2007e3c: 03 00 80 56 sethi %hi(0x2015800), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2007e40: b1 2e 20 02 sll %i0, 2, %i0
2007e44: 82 10 63 38 or %g1, 0x338, %g1
2007e48: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2007e4c: 80 a0 60 00 cmp %g1, 0
2007e50: 02 bf ff f3 be 2007e1c <_Objects_Get_information+0x18> <== NEVER TAKEN
2007e54: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2007e58: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
2007e5c: 80 a4 20 00 cmp %l0, 0
2007e60: 02 bf ff ef be 2007e1c <_Objects_Get_information+0x18> <== NEVER TAKEN
2007e64: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
2007e68: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
2007e6c: 80 a0 00 01 cmp %g0, %g1
2007e70: 82 60 20 00 subx %g0, 0, %g1
2007e74: 10 bf ff ea b 2007e1c <_Objects_Get_information+0x18>
2007e78: a0 0c 00 01 and %l0, %g1, %l0
02009bf4 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
2009bf4: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
2009bf8: 80 a6 60 00 cmp %i1, 0
2009bfc: 12 80 00 05 bne 2009c10 <_Objects_Get_name_as_string+0x1c>
2009c00: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
2009c04: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
2009c08: 81 c7 e0 08 ret
2009c0c: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
2009c10: 02 bf ff fe be 2009c08 <_Objects_Get_name_as_string+0x14>
2009c14: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009c18: 12 80 00 04 bne 2009c28 <_Objects_Get_name_as_string+0x34>
2009c1c: 03 00 80 7d sethi %hi(0x201f400), %g1
2009c20: c2 00 60 78 ld [ %g1 + 0x78 ], %g1 ! 201f478 <_Per_CPU_Information+0xc>
2009c24: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
2009c28: 7f ff ff b1 call 2009aec <_Objects_Get_information_id>
2009c2c: 90 10 00 18 mov %i0, %o0
if ( !information )
2009c30: 80 a2 20 00 cmp %o0, 0
2009c34: 22 bf ff f5 be,a 2009c08 <_Objects_Get_name_as_string+0x14>
2009c38: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
2009c3c: 92 10 00 18 mov %i0, %o1
2009c40: 40 00 00 2c call 2009cf0 <_Objects_Get>
2009c44: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
2009c48: c2 07 bf fc ld [ %fp + -4 ], %g1
2009c4c: 80 a0 60 00 cmp %g1, 0
2009c50: 32 bf ff ee bne,a 2009c08 <_Objects_Get_name_as_string+0x14>
2009c54: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
2009c58: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
2009c5c: c0 2f bf f4 clrb [ %fp + -12 ]
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009c60: 85 30 60 08 srl %g1, 8, %g2
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009c64: 87 30 60 18 srl %g1, 0x18, %g3
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009c68: 89 30 60 10 srl %g1, 0x10, %g4
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009c6c: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009c70: c6 2f bf f0 stb %g3, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009c74: c8 2f bf f1 stb %g4, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
2009c78: c2 2f bf f3 stb %g1, [ %fp + -13 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009c7c: b2 86 7f ff addcc %i1, -1, %i1
2009c80: 02 80 00 19 be 2009ce4 <_Objects_Get_name_as_string+0xf0> <== NEVER TAKEN
2009c84: 84 10 00 1a mov %i2, %g2
2009c88: 80 a0 e0 00 cmp %g3, 0
2009c8c: 02 80 00 16 be 2009ce4 <_Objects_Get_name_as_string+0xf0>
2009c90: 19 00 80 79 sethi %hi(0x201e400), %o4
2009c94: 82 10 20 00 clr %g1
2009c98: 10 80 00 06 b 2009cb0 <_Objects_Get_name_as_string+0xbc>
2009c9c: 98 13 20 dc or %o4, 0xdc, %o4
2009ca0: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
2009ca4: 80 a3 60 00 cmp %o5, 0
2009ca8: 02 80 00 0f be 2009ce4 <_Objects_Get_name_as_string+0xf0>
2009cac: c6 09 00 01 ldub [ %g4 + %g1 ], %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
2009cb0: da 03 00 00 ld [ %o4 ], %o5
2009cb4: 88 08 e0 ff and %g3, 0xff, %g4
2009cb8: 88 03 40 04 add %o5, %g4, %g4
2009cbc: da 49 20 01 ldsb [ %g4 + 1 ], %o5
2009cc0: 80 8b 60 97 btst 0x97, %o5
2009cc4: 12 80 00 03 bne 2009cd0 <_Objects_Get_name_as_string+0xdc>
2009cc8: 88 07 bf f0 add %fp, -16, %g4
2009ccc: 86 10 20 2a mov 0x2a, %g3
2009cd0: c6 28 80 00 stb %g3, [ %g2 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009cd4: 82 00 60 01 inc %g1
2009cd8: 80 a0 40 19 cmp %g1, %i1
2009cdc: 0a bf ff f1 bcs 2009ca0 <_Objects_Get_name_as_string+0xac>
2009ce0: 84 00 a0 01 inc %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
2009ce4: 40 00 03 84 call 200aaf4 <_Thread_Enable_dispatch>
2009ce8: c0 28 80 00 clrb [ %g2 ]
return name;
2009cec: 30 bf ff c7 b,a 2009c08 <_Objects_Get_name_as_string+0x14>
02019268 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019268: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
201926c: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019270: 84 22 40 02 sub %o1, %g2, %g2
2019274: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
2019278: 80 a0 80 01 cmp %g2, %g1
201927c: 18 80 00 09 bgu 20192a0 <_Objects_Get_no_protection+0x38>
2019280: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
2019284: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
2019288: d0 00 40 02 ld [ %g1 + %g2 ], %o0
201928c: 80 a2 20 00 cmp %o0, 0
2019290: 02 80 00 05 be 20192a4 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
2019294: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
2019298: 81 c3 e0 08 retl
201929c: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
20192a0: 82 10 20 01 mov 1, %g1
return NULL;
20192a4: 90 10 20 00 clr %o0
}
20192a8: 81 c3 e0 08 retl
20192ac: c2 22 80 00 st %g1, [ %o2 ]
020096a8 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
20096a8: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20096ac: 80 a6 20 00 cmp %i0, 0
20096b0: 12 80 00 06 bne 20096c8 <_Objects_Id_to_name+0x20>
20096b4: 83 36 20 18 srl %i0, 0x18, %g1
20096b8: 03 00 80 78 sethi %hi(0x201e000), %g1
20096bc: c2 00 61 58 ld [ %g1 + 0x158 ], %g1 ! 201e158 <_Per_CPU_Information+0xc>
20096c0: f0 00 60 08 ld [ %g1 + 8 ], %i0
20096c4: 83 36 20 18 srl %i0, 0x18, %g1
20096c8: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
20096cc: 84 00 7f ff add %g1, -1, %g2
20096d0: 80 a0 a0 02 cmp %g2, 2
20096d4: 18 80 00 17 bgu 2009730 <_Objects_Id_to_name+0x88>
20096d8: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
20096dc: 83 28 60 02 sll %g1, 2, %g1
20096e0: 05 00 80 77 sethi %hi(0x201dc00), %g2
20096e4: 84 10 a2 88 or %g2, 0x288, %g2 ! 201de88 <_Objects_Information_table>
20096e8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
20096ec: 80 a0 60 00 cmp %g1, 0
20096f0: 02 80 00 10 be 2009730 <_Objects_Id_to_name+0x88>
20096f4: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
20096f8: 85 28 a0 02 sll %g2, 2, %g2
20096fc: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2009700: 80 a2 20 00 cmp %o0, 0
2009704: 02 80 00 0b be 2009730 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
2009708: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
200970c: 7f ff ff ca call 2009634 <_Objects_Get>
2009710: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2009714: 80 a2 20 00 cmp %o0, 0
2009718: 02 80 00 06 be 2009730 <_Objects_Id_to_name+0x88>
200971c: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2009720: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2009724: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
2009728: 40 00 03 94 call 200a578 <_Thread_Enable_dispatch>
200972c: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2009730: 81 c7 e0 08 ret
2009734: 91 e8 00 10 restore %g0, %l0, %o0
02008104 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
2008104: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
2008108: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
200810c: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
2008110: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
2008114: 92 10 00 11 mov %l1, %o1
2008118: 40 00 27 2e call 2011dd0 <.udiv>
200811c: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2008120: 80 a2 20 00 cmp %o0, 0
2008124: 02 80 00 34 be 20081f4 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN
2008128: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
200812c: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
2008130: c2 01 00 00 ld [ %g4 ], %g1
2008134: 80 a4 40 01 cmp %l1, %g1
2008138: 02 80 00 0f be 2008174 <_Objects_Shrink_information+0x70> <== NEVER TAKEN
200813c: 82 10 20 00 clr %g1
2008140: 10 80 00 07 b 200815c <_Objects_Shrink_information+0x58>
2008144: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
2008148: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
200814c: 80 a4 40 02 cmp %l1, %g2
2008150: 02 80 00 0a be 2008178 <_Objects_Shrink_information+0x74>
2008154: a0 04 00 11 add %l0, %l1, %l0
2008158: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
200815c: 82 00 60 01 inc %g1
2008160: 80 a2 00 01 cmp %o0, %g1
2008164: 38 bf ff f9 bgu,a 2008148 <_Objects_Shrink_information+0x44>
2008168: c4 01 00 12 ld [ %g4 + %l2 ], %g2
200816c: 81 c7 e0 08 ret
2008170: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
2008174: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
2008178: 10 80 00 06 b 2008190 <_Objects_Shrink_information+0x8c>
200817c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
2008180: 80 a4 60 00 cmp %l1, 0
2008184: 22 80 00 12 be,a 20081cc <_Objects_Shrink_information+0xc8>
2008188: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
200818c: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2008190: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2008194: 80 a0 40 10 cmp %g1, %l0
2008198: 0a bf ff fa bcs 2008180 <_Objects_Shrink_information+0x7c>
200819c: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
20081a0: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
20081a4: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
20081a8: 80 a0 40 02 cmp %g1, %g2
20081ac: 1a bf ff f6 bcc 2008184 <_Objects_Shrink_information+0x80>
20081b0: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
20081b4: 7f ff fb 56 call 2006f0c <_Chain_Extract>
20081b8: 01 00 00 00 nop
}
}
while ( the_object );
20081bc: 80 a4 60 00 cmp %l1, 0
20081c0: 12 bf ff f4 bne 2008190 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
20081c4: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
20081c8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
20081cc: 40 00 07 c4 call 200a0dc <_Workspace_Free>
20081d0: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
20081d4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
20081d8: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
20081dc: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
20081e0: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
20081e4: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
20081e8: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
20081ec: 82 20 80 01 sub %g2, %g1, %g1
20081f0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
20081f4: 81 c7 e0 08 ret
20081f8: 81 e8 00 00 restore
020068a8 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
20068a8: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
20068ac: 03 00 80 53 sethi %hi(0x2014c00), %g1
20068b0: 82 10 63 d0 or %g1, 0x3d0, %g1 ! 2014fd0 <Configuration_RTEMS_API>
20068b4: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
20068b8: 80 a4 20 00 cmp %l0, 0
20068bc: 02 80 00 19 be 2006920 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
20068c0: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
20068c4: 80 a4 a0 00 cmp %l2, 0
20068c8: 02 80 00 16 be 2006920 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
20068cc: a2 10 20 00 clr %l1
20068d0: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
20068d4: d4 04 20 04 ld [ %l0 + 4 ], %o2
20068d8: d0 04 00 00 ld [ %l0 ], %o0
20068dc: d2 04 20 08 ld [ %l0 + 8 ], %o1
20068e0: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
20068e4: d8 04 20 0c ld [ %l0 + 0xc ], %o4
20068e8: 7f ff ff 6d call 200669c <rtems_task_create>
20068ec: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
20068f0: 94 92 20 00 orcc %o0, 0, %o2
20068f4: 12 80 00 0d bne 2006928 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
20068f8: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
20068fc: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
2006900: 40 00 00 0e call 2006938 <rtems_task_start>
2006904: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2006908: 94 92 20 00 orcc %o0, 0, %o2
200690c: 12 80 00 07 bne 2006928 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
2006910: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006914: 80 a4 80 11 cmp %l2, %l1
2006918: 18 bf ff ef bgu 20068d4 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
200691c: a0 04 20 1c add %l0, 0x1c, %l0
2006920: 81 c7 e0 08 ret
2006924: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
2006928: 90 10 20 01 mov 1, %o0
200692c: 40 00 03 f2 call 20078f4 <_Internal_error_Occurred>
2006930: 92 10 20 01 mov 1, %o1
0200bef0 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200bef0: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200bef4: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
if ( !api )
200bef8: 80 a4 20 00 cmp %l0, 0
200befc: 02 80 00 1f be 200bf78 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
200bf00: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200bf04: 7f ff d8 1e call 2001f7c <sparc_disable_interrupts>
200bf08: 01 00 00 00 nop
signal_set = asr->signals_posted;
200bf0c: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
200bf10: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200bf14: 7f ff d8 1e call 2001f8c <sparc_enable_interrupts>
200bf18: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200bf1c: 80 a4 60 00 cmp %l1, 0
200bf20: 32 80 00 04 bne,a 200bf30 <_RTEMS_tasks_Post_switch_extension+0x40>
200bf24: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200bf28: 81 c7 e0 08 ret
200bf2c: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bf30: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200bf34: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bf38: a4 07 bf fc add %fp, -4, %l2
200bf3c: 27 00 00 3f sethi %hi(0xfc00), %l3
200bf40: 94 10 00 12 mov %l2, %o2
200bf44: 92 14 e3 ff or %l3, 0x3ff, %o1
200bf48: 40 00 07 db call 200deb4 <rtems_task_mode>
200bf4c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
200bf50: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200bf54: 9f c0 40 00 call %g1
200bf58: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
200bf5c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bf60: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200bf64: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200bf68: 92 14 e3 ff or %l3, 0x3ff, %o1
200bf6c: 94 10 00 12 mov %l2, %o2
200bf70: 40 00 07 d1 call 200deb4 <rtems_task_mode>
200bf74: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
200bf78: 81 c7 e0 08 ret
200bf7c: 81 e8 00 00 restore
0200be60 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200be60: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
200be64: 80 a0 60 00 cmp %g1, 0
200be68: 22 80 00 0b be,a 200be94 <_RTEMS_tasks_Switch_extension+0x34>
200be6c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
tvp->tval = *tvp->ptr;
200be70: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200be74: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200be78: c8 00 80 00 ld [ %g2 ], %g4
200be7c: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
200be80: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200be84: 80 a0 60 00 cmp %g1, 0
200be88: 12 bf ff fa bne 200be70 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
200be8c: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200be90: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
while (tvp) {
200be94: 80 a0 60 00 cmp %g1, 0
200be98: 02 80 00 0a be 200bec0 <_RTEMS_tasks_Switch_extension+0x60>
200be9c: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200bea0: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200bea4: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200bea8: c8 00 80 00 ld [ %g2 ], %g4
200beac: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
200beb0: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200beb4: 80 a0 60 00 cmp %g1, 0
200beb8: 12 bf ff fa bne 200bea0 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
200bebc: c6 20 80 00 st %g3, [ %g2 ]
200bec0: 81 c3 e0 08 retl
02007bc0 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007bc0: 9d e3 bf 98 save %sp, -104, %sp
2007bc4: 11 00 80 79 sethi %hi(0x201e400), %o0
2007bc8: 92 10 00 18 mov %i0, %o1
2007bcc: 90 12 20 84 or %o0, 0x84, %o0
2007bd0: 40 00 08 39 call 2009cb4 <_Objects_Get>
2007bd4: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007bd8: c2 07 bf fc ld [ %fp + -4 ], %g1
2007bdc: 80 a0 60 00 cmp %g1, 0
2007be0: 12 80 00 16 bne 2007c38 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
2007be4: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007be8: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007bec: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007bf0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007bf4: 80 88 80 01 btst %g2, %g1
2007bf8: 22 80 00 08 be,a 2007c18 <_Rate_monotonic_Timeout+0x58>
2007bfc: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007c00: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007c04: c2 04 20 08 ld [ %l0 + 8 ], %g1
2007c08: 80 a0 80 01 cmp %g2, %g1
2007c0c: 02 80 00 19 be 2007c70 <_Rate_monotonic_Timeout+0xb0>
2007c10: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007c14: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007c18: 80 a0 60 01 cmp %g1, 1
2007c1c: 02 80 00 09 be 2007c40 <_Rate_monotonic_Timeout+0x80>
2007c20: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007c24: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2007c28: 03 00 80 79 sethi %hi(0x201e400), %g1
2007c2c: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e5f0 <_Thread_Dispatch_disable_level>
2007c30: 84 00 bf ff add %g2, -1, %g2
2007c34: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ]
2007c38: 81 c7 e0 08 ret
2007c3c: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007c40: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
2007c44: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007c48: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007c4c: 7f ff fe 4c call 200757c <_Rate_monotonic_Initiate_statistics>
2007c50: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007c54: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007c58: 11 00 80 79 sethi %hi(0x201e400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007c5c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007c60: 90 12 22 b4 or %o0, 0x2b4, %o0
2007c64: 40 00 10 05 call 200bc78 <_Watchdog_Insert>
2007c68: 92 04 20 10 add %l0, 0x10, %o1
2007c6c: 30 bf ff ef b,a 2007c28 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007c70: 40 00 0a cb call 200a79c <_Thread_Clear_state>
2007c74: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
2007c78: 10 bf ff f5 b 2007c4c <_Rate_monotonic_Timeout+0x8c>
2007c7c: 90 10 00 10 mov %l0, %o0
020082a0 <_Scheduler_priority_Block>:
#include <rtems/score/thread.h>
void _Scheduler_priority_Block(
Thread_Control *the_thread
)
{
20082a0: 9d e3 bf a0 save %sp, -96, %sp
)
{
Scheduler_priority_Per_thread *sched_info;
Chain_Control *ready;
sched_info = (Scheduler_priority_Per_thread *) the_thread->scheduler_info;
20082a4: c4 06 20 8c ld [ %i0 + 0x8c ], %g2
ready = sched_info->ready_chain;
20082a8: c2 00 80 00 ld [ %g2 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
20082ac: c8 00 40 00 ld [ %g1 ], %g4
20082b0: c6 00 60 08 ld [ %g1 + 8 ], %g3
20082b4: 80 a1 00 03 cmp %g4, %g3
20082b8: 22 80 00 3a be,a 20083a0 <_Scheduler_priority_Block+0x100>
20082bc: c6 00 a0 04 ld [ %g2 + 4 ], %g3
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
20082c0: c4 06 00 00 ld [ %i0 ], %g2
previous = the_node->previous;
20082c4: c2 06 20 04 ld [ %i0 + 4 ], %g1
next->previous = previous;
20082c8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
20082cc: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
20082d0: 03 00 80 57 sethi %hi(0x2015c00), %g1
20082d4: 82 10 61 fc or %g1, 0x1fc, %g1 ! 2015dfc <_Per_CPU_Information>
_Scheduler_priority_Ready_queue_extract( the_thread );
/* TODO: flash critical section? */
if ( _Thread_Is_heir( the_thread ) )
20082d8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
20082dc: 80 a6 00 02 cmp %i0, %g2
20082e0: 02 80 00 09 be 2008304 <_Scheduler_priority_Block+0x64>
20082e4: 05 00 80 57 sethi %hi(0x2015c00), %g2
_Scheduler_priority_Schedule_body();
if ( _Thread_Is_executing( the_thread ) )
20082e8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
20082ec: 80 a6 00 02 cmp %i0, %g2
20082f0: 12 80 00 03 bne 20082fc <_Scheduler_priority_Block+0x5c>
20082f4: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
20082f8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
20082fc: 81 c7 e0 08 ret
2008300: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2008304: c4 10 a2 20 lduh [ %g2 + 0x220 ], %g2
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2008308: 07 00 80 53 sethi %hi(0x2014c00), %g3
200830c: 85 28 a0 10 sll %g2, 0x10, %g2
2008310: 89 30 a0 10 srl %g2, 0x10, %g4
2008314: 80 a1 20 ff cmp %g4, 0xff
2008318: 18 80 00 37 bgu 20083f4 <_Scheduler_priority_Block+0x154>
200831c: c6 00 e3 30 ld [ %g3 + 0x330 ], %g3
2008320: 1b 00 80 51 sethi %hi(0x2014400), %o5
2008324: 9a 13 62 28 or %o5, 0x228, %o5 ! 2014628 <__log2table>
2008328: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
200832c: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2008330: 85 28 a0 10 sll %g2, 0x10, %g2
2008334: 19 00 80 57 sethi %hi(0x2015c00), %o4
2008338: 89 30 a0 0f srl %g2, 0xf, %g4
200833c: 98 13 22 30 or %o4, 0x230, %o4
2008340: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
2008344: 89 29 20 10 sll %g4, 0x10, %g4
2008348: 99 31 20 10 srl %g4, 0x10, %o4
200834c: 80 a3 20 ff cmp %o4, 0xff
2008350: 38 80 00 27 bgu,a 20083ec <_Scheduler_priority_Block+0x14c>
2008354: 89 31 20 18 srl %g4, 0x18, %g4
2008358: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
200835c: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
2008360: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
2008364: 89 29 20 10 sll %g4, 0x10, %g4
2008368: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
200836c: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
2008370: 9b 29 20 02 sll %g4, 2, %o5
2008374: 85 29 20 04 sll %g4, 4, %g2
2008378: 84 20 80 0d sub %g2, %o5, %g2
}
200837c: da 00 c0 02 ld [ %g3 + %g2 ], %o5
2008380: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2008384: 84 00 a0 04 add %g2, 4, %g2
2008388: 80 a3 40 02 cmp %o5, %g2
200838c: 02 80 00 03 be 2008398 <_Scheduler_priority_Block+0xf8> <== NEVER TAKEN
2008390: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2008394: 88 10 00 0d mov %o5, %g4
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2008398: 10 bf ff d4 b 20082e8 <_Scheduler_priority_Block+0x48>
200839c: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
20083a0: c8 10 a0 0e lduh [ %g2 + 0xe ], %g4
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
20083a4: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
20083a8: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
20083ac: 9a 00 60 04 add %g1, 4, %o5
head->next = tail;
20083b0: da 20 40 00 st %o5, [ %g1 ]
20083b4: c2 10 c0 00 lduh [ %g3 ], %g1
20083b8: 82 08 40 04 and %g1, %g4, %g1
20083bc: c2 30 c0 00 sth %g1, [ %g3 ]
if ( *the_priority_map->minor == 0 )
20083c0: 83 28 60 10 sll %g1, 0x10, %g1
20083c4: 80 a0 60 00 cmp %g1, 0
20083c8: 32 bf ff c3 bne,a 20082d4 <_Scheduler_priority_Block+0x34>
20083cc: 03 00 80 57 sethi %hi(0x2015c00), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
20083d0: 03 00 80 57 sethi %hi(0x2015c00), %g1
20083d4: c4 10 a0 0c lduh [ %g2 + 0xc ], %g2
20083d8: c6 10 62 20 lduh [ %g1 + 0x220 ], %g3
20083dc: 84 08 c0 02 and %g3, %g2, %g2
20083e0: c4 30 62 20 sth %g2, [ %g1 + 0x220 ]
20083e4: 10 bf ff bc b 20082d4 <_Scheduler_priority_Block+0x34>
20083e8: 03 00 80 57 sethi %hi(0x2015c00), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
20083ec: 10 bf ff dd b 2008360 <_Scheduler_priority_Block+0xc0>
20083f0: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
20083f4: 1b 00 80 51 sethi %hi(0x2014400), %o5
20083f8: 85 30 a0 18 srl %g2, 0x18, %g2
20083fc: 9a 13 62 28 or %o5, 0x228, %o5
2008400: 10 bf ff cc b 2008330 <_Scheduler_priority_Block+0x90>
2008404: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
020085c8 <_Scheduler_priority_Schedule>:
#include <rtems/system.h>
#include <rtems/score/scheduler.h>
#include <rtems/score/schedulerpriority.h>
void _Scheduler_priority_Schedule(void)
{
20085c8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
20085cc: 03 00 80 57 sethi %hi(0x2015c00), %g1
20085d0: c2 10 62 20 lduh [ %g1 + 0x220 ], %g1 ! 2015e20 <_Priority_Major_bit_map>
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
20085d4: 05 00 80 53 sethi %hi(0x2014c00), %g2
20085d8: 83 28 60 10 sll %g1, 0x10, %g1
20085dc: 87 30 60 10 srl %g1, 0x10, %g3
20085e0: 80 a0 e0 ff cmp %g3, 0xff
20085e4: 18 80 00 26 bgu 200867c <_Scheduler_priority_Schedule+0xb4>
20085e8: c4 00 a3 30 ld [ %g2 + 0x330 ], %g2
20085ec: 09 00 80 51 sethi %hi(0x2014400), %g4
20085f0: 88 11 22 28 or %g4, 0x228, %g4 ! 2014628 <__log2table>
20085f4: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
20085f8: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
20085fc: 83 28 60 10 sll %g1, 0x10, %g1
2008600: 1b 00 80 57 sethi %hi(0x2015c00), %o5
2008604: 87 30 60 0f srl %g1, 0xf, %g3
2008608: 9a 13 62 30 or %o5, 0x230, %o5
200860c: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
2008610: 87 28 e0 10 sll %g3, 0x10, %g3
2008614: 9b 30 e0 10 srl %g3, 0x10, %o5
2008618: 80 a3 60 ff cmp %o5, 0xff
200861c: 38 80 00 16 bgu,a 2008674 <_Scheduler_priority_Schedule+0xac>
2008620: 87 30 e0 18 srl %g3, 0x18, %g3
2008624: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
2008628: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
200862c: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
2008630: 87 28 e0 10 sll %g3, 0x10, %g3
2008634: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
2008638: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
200863c: 89 28 e0 02 sll %g3, 2, %g4
2008640: 83 28 e0 04 sll %g3, 4, %g1
2008644: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body();
}
2008648: c8 00 80 01 ld [ %g2 + %g1 ], %g4
200864c: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2008650: 82 00 60 04 add %g1, 4, %g1
2008654: 80 a1 00 01 cmp %g4, %g1
2008658: 02 80 00 03 be 2008664 <_Scheduler_priority_Schedule+0x9c><== NEVER TAKEN
200865c: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2008660: 86 10 00 04 mov %g4, %g3
*
* @param[in] the_thread - pointer to thread
*/
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(void)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
2008664: 03 00 80 57 sethi %hi(0x2015c00), %g1
2008668: c6 20 62 0c st %g3, [ %g1 + 0x20c ] ! 2015e0c <_Per_CPU_Information+0x10>
200866c: 81 c7 e0 08 ret
2008670: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
2008674: 10 bf ff ee b 200862c <_Scheduler_priority_Schedule+0x64>
2008678: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
200867c: 09 00 80 51 sethi %hi(0x2014400), %g4
2008680: 83 30 60 18 srl %g1, 0x18, %g1
2008684: 88 11 22 28 or %g4, 0x228, %g4
2008688: 10 bf ff dd b 20085fc <_Scheduler_priority_Schedule+0x34>
200868c: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
020087a4 <_Scheduler_priority_Yield>:
* ready chain
* select heir
*/
void _Scheduler_priority_Yield(void)
{
20087a4: 9d e3 bf a0 save %sp, -96, %sp
Scheduler_priority_Per_thread *sched_info;
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
20087a8: 25 00 80 57 sethi %hi(0x2015c00), %l2
20087ac: a4 14 a1 fc or %l2, 0x1fc, %l2 ! 2015dfc <_Per_CPU_Information>
20087b0: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
sched_info = (Scheduler_priority_Per_thread *) executing->scheduler_info;
ready = sched_info->ready_chain;
20087b4: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
20087b8: 7f ff e5 f1 call 2001f7c <sparc_disable_interrupts>
20087bc: e2 00 40 00 ld [ %g1 ], %l1
20087c0: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
20087c4: c4 04 40 00 ld [ %l1 ], %g2
20087c8: c2 04 60 08 ld [ %l1 + 8 ], %g1
20087cc: 80 a0 80 01 cmp %g2, %g1
20087d0: 02 80 00 16 be 2008828 <_Scheduler_priority_Yield+0x84>
20087d4: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
20087d8: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
20087dc: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
20087e0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
20087e4: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
20087e8: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
20087ec: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
20087f0: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
20087f4: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
20087f8: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
20087fc: 7f ff e5 e4 call 2001f8c <sparc_enable_interrupts>
2008800: 01 00 00 00 nop
2008804: 7f ff e5 de call 2001f7c <sparc_disable_interrupts>
2008808: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
200880c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
2008810: 80 a4 00 01 cmp %l0, %g1
2008814: 02 80 00 0b be 2008840 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
2008818: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
200881c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
2008820: 7f ff e5 db call 2001f8c <sparc_enable_interrupts>
2008824: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
2008828: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
200882c: 80 a4 00 01 cmp %l0, %g1
2008830: 02 bf ff fc be 2008820 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
2008834: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
2008838: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
200883c: 30 bf ff f9 b,a 2008820 <_Scheduler_priority_Yield+0x7c> <== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
2008840: c2 04 40 00 ld [ %l1 ], %g1
2008844: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
2008848: 82 10 20 01 mov 1, %g1
200884c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
2008850: 30 bf ff f4 b,a 2008820 <_Scheduler_priority_Yield+0x7c>
02008a5c <_Scheduler_simple_Ready_queue_Enqueue_first>:
{
Chain_Control *ready;
Chain_Node *the_node;
Thread_Control *current;
ready = (Chain_Control *)_Scheduler.information;
2008a5c: 03 00 80 56 sethi %hi(0x2015800), %g1
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
2008a60: c2 00 62 40 ld [ %g1 + 0x240 ], %g1 ! 2015a40 <_Scheduler>
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
2008a64: c6 02 20 14 ld [ %o0 + 0x14 ], %g3
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
2008a68: c2 00 40 00 ld [ %g1 ], %g1
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
2008a6c: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
2008a70: 80 a0 c0 02 cmp %g3, %g2
2008a74: 28 80 00 08 bleu,a 2008a94 <_Scheduler_simple_Ready_queue_Enqueue_first+0x38>
2008a78: c2 00 60 04 ld [ %g1 + 4 ], %g1
* Do NOT need to check for end of chain because there is always
* at least one task on the ready chain -- the IDLE task. It can
* never block, should never attempt to obtain a semaphore or mutex,
* and thus will always be there.
*/
for ( the_node = _Chain_First(ready) ; ; the_node = the_node->next ) {
2008a7c: c2 00 40 00 ld [ %g1 ], %g1
current = (Thread_Control *) the_node;
/* break when AT HEAD OF (or PAST) our priority */
if ( the_thread->current_priority <= current->current_priority ) {
2008a80: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
2008a84: 80 a0 80 03 cmp %g2, %g3
2008a88: 2a bf ff fe bcs,a 2008a80 <_Scheduler_simple_Ready_queue_Enqueue_first+0x24><== NEVER TAKEN
2008a8c: c2 00 40 00 ld [ %g1 ], %g1 <== NOT EXECUTED
current = (Thread_Control *)current->Object.Node.previous;
2008a90: c2 00 60 04 ld [ %g1 + 4 ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008a94: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008a98: c2 22 20 04 st %g1, [ %o0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008a9c: d0 20 40 00 st %o0, [ %g1 ]
the_node->next = before_node;
2008aa0: c4 22 00 00 st %g2, [ %o0 ]
}
}
/* enqueue */
_Chain_Insert_unprotected( (Chain_Node *)current, &the_thread->Object.Node );
}
2008aa4: 81 c3 e0 08 retl
2008aa8: d0 20 a0 04 st %o0, [ %g2 + 4 ]
02007440 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
2007440: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007444: 05 00 80 57 sethi %hi(0x2015c00), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007448: 03 00 80 54 sethi %hi(0x2015000), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
200744c: c6 00 a0 e4 ld [ %g2 + 0xe4 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007450: c2 00 60 14 ld [ %g1 + 0x14 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007454: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007458: 9b 28 60 07 sll %g1, 7, %o5
200745c: 89 28 60 02 sll %g1, 2, %g4
2007460: 88 23 40 04 sub %o5, %g4, %g4
2007464: 82 01 00 01 add %g4, %g1, %g1
2007468: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
200746c: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007470: c6 20 a0 e4 st %g3, [ %g2 + 0xe4 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
2007474: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007478: c2 27 bf fc st %g1, [ %fp + -4 ]
200747c: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
2007480: 11 00 80 57 sethi %hi(0x2015c00), %o0
2007484: 40 00 09 37 call 2009960 <_Timespec_Add_to>
2007488: 90 12 20 4c or %o0, 0x4c, %o0 ! 2015c4c <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
200748c: 92 10 00 10 mov %l0, %o1
2007490: 11 00 80 57 sethi %hi(0x2015c00), %o0
2007494: 40 00 09 33 call 2009960 <_Timespec_Add_to>
2007498: 90 12 20 5c or %o0, 0x5c, %o0 ! 2015c5c <_TOD_Now>
while ( seconds ) {
200749c: a0 92 20 00 orcc %o0, 0, %l0
20074a0: 02 80 00 08 be 20074c0 <_TOD_Tickle_ticks+0x80>
20074a4: 23 00 80 57 sethi %hi(0x2015c00), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
20074a8: a2 14 60 88 or %l1, 0x88, %l1 ! 2015c88 <_Watchdog_Seconds_chain>
20074ac: 40 00 0a bd call 2009fa0 <_Watchdog_Tickle>
20074b0: 90 10 00 11 mov %l1, %o0
20074b4: a0 84 3f ff addcc %l0, -1, %l0
20074b8: 12 bf ff fd bne 20074ac <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
20074bc: 01 00 00 00 nop
20074c0: 81 c7 e0 08 ret
20074c4: 81 e8 00 00 restore
02007594 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007594: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007598: 03 00 80 78 sethi %hi(0x201e000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
200759c: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
20075a0: d2 00 62 34 ld [ %g1 + 0x234 ], %o1
if ((!the_tod) ||
20075a4: 80 a4 20 00 cmp %l0, 0
20075a8: 02 80 00 2c be 2007658 <_TOD_Validate+0xc4> <== NEVER TAKEN
20075ac: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
20075b0: 11 00 03 d0 sethi %hi(0xf4000), %o0
20075b4: 40 00 49 cb call 2019ce0 <.udiv>
20075b8: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
20075bc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
20075c0: 80 a2 00 01 cmp %o0, %g1
20075c4: 08 80 00 25 bleu 2007658 <_TOD_Validate+0xc4>
20075c8: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
20075cc: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
20075d0: 80 a0 60 3b cmp %g1, 0x3b
20075d4: 18 80 00 21 bgu 2007658 <_TOD_Validate+0xc4>
20075d8: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20075dc: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
20075e0: 80 a0 60 3b cmp %g1, 0x3b
20075e4: 18 80 00 1d bgu 2007658 <_TOD_Validate+0xc4>
20075e8: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20075ec: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20075f0: 80 a0 60 17 cmp %g1, 0x17
20075f4: 18 80 00 19 bgu 2007658 <_TOD_Validate+0xc4>
20075f8: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
20075fc: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2007600: 80 a0 60 00 cmp %g1, 0
2007604: 02 80 00 15 be 2007658 <_TOD_Validate+0xc4> <== NEVER TAKEN
2007608: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
200760c: 18 80 00 13 bgu 2007658 <_TOD_Validate+0xc4>
2007610: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007614: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2007618: 80 a0 a7 c3 cmp %g2, 0x7c3
200761c: 08 80 00 0f bleu 2007658 <_TOD_Validate+0xc4>
2007620: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007624: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007628: 80 a0 e0 00 cmp %g3, 0
200762c: 02 80 00 0b be 2007658 <_TOD_Validate+0xc4> <== NEVER TAKEN
2007630: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007634: 32 80 00 0b bne,a 2007660 <_TOD_Validate+0xcc>
2007638: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
200763c: 82 00 60 0d add %g1, 0xd, %g1
2007640: 05 00 80 73 sethi %hi(0x201cc00), %g2
2007644: 83 28 60 02 sll %g1, 2, %g1
2007648: 84 10 a2 80 or %g2, 0x280, %g2
200764c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2007650: 80 a0 40 03 cmp %g1, %g3
2007654: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
2007658: 81 c7 e0 08 ret
200765c: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2007660: 05 00 80 73 sethi %hi(0x201cc00), %g2
2007664: 84 10 a2 80 or %g2, 0x280, %g2 ! 201ce80 <_TOD_Days_per_month>
2007668: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
200766c: 80 a0 40 03 cmp %g1, %g3
2007670: b0 60 3f ff subx %g0, -1, %i0
2007674: 81 c7 e0 08 ret
2007678: 81 e8 00 00 restore
020088b0 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
20088b0: 9d e3 bf a0 save %sp, -96, %sp
States_Control state, original_state;
/*
* Save original state
*/
original_state = the_thread->current_state;
20088b4: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
20088b8: 40 00 03 ad call 200976c <_Thread_Set_transient>
20088bc: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
20088c0: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
20088c4: 80 a0 40 19 cmp %g1, %i1
20088c8: 02 80 00 05 be 20088dc <_Thread_Change_priority+0x2c>
20088cc: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
20088d0: 90 10 00 18 mov %i0, %o0
20088d4: 40 00 03 8b call 2009700 <_Thread_Set_priority>
20088d8: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
20088dc: 7f ff e5 a8 call 2001f7c <sparc_disable_interrupts>
20088e0: 01 00 00 00 nop
20088e4: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
20088e8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
20088ec: 80 a4 a0 04 cmp %l2, 4
20088f0: 02 80 00 18 be 2008950 <_Thread_Change_priority+0xa0>
20088f4: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
20088f8: 02 80 00 0b be 2008924 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
20088fc: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
2008900: 7f ff e5 a3 call 2001f8c <sparc_enable_interrupts> <== NOT EXECUTED
2008904: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
2008908: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
200890c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008910: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
2008914: 32 80 00 0d bne,a 2008948 <_Thread_Change_priority+0x98> <== NOT EXECUTED
2008918: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
200891c: 81 c7 e0 08 ret
2008920: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
2008924: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
2008928: 7f ff e5 99 call 2001f8c <sparc_enable_interrupts>
200892c: 90 10 00 18 mov %i0, %o0
2008930: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008934: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008938: 80 8c 80 01 btst %l2, %g1
200893c: 02 bf ff f8 be 200891c <_Thread_Change_priority+0x6c>
2008940: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2008944: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
2008948: 40 00 03 3e call 2009640 <_Thread_queue_Requeue>
200894c: 93 e8 00 10 restore %g0, %l0, %o1
2008950: 23 00 80 53 sethi %hi(0x2014c00), %l1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008954: 12 80 00 08 bne 2008974 <_Thread_Change_priority+0xc4> <== NEVER TAKEN
2008958: a2 14 63 30 or %l1, 0x330, %l1 ! 2014f30 <_Scheduler>
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
200895c: 80 8e a0 ff btst 0xff, %i2
2008960: 02 80 00 1a be 20089c8 <_Thread_Change_priority+0x118>
2008964: c0 24 20 10 clr [ %l0 + 0x10 ]
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue_first(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue_first( the_thread );
2008968: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
200896c: 9f c0 40 00 call %g1
2008970: 90 10 00 10 mov %l0, %o0
_Scheduler_Enqueue_first( the_thread );
else
_Scheduler_Enqueue( the_thread );
}
_ISR_Flash( level );
2008974: 7f ff e5 86 call 2001f8c <sparc_enable_interrupts>
2008978: 90 10 00 18 mov %i0, %o0
200897c: 7f ff e5 80 call 2001f7c <sparc_disable_interrupts>
2008980: 01 00 00 00 nop
* This kernel routine implements the scheduling decision logic for
* the scheduler. It does NOT dispatch.
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( void )
{
_Scheduler.Operations.schedule();
2008984: c2 04 60 08 ld [ %l1 + 8 ], %g1
2008988: 9f c0 40 00 call %g1
200898c: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2008990: 03 00 80 57 sethi %hi(0x2015c00), %g1
2008994: 82 10 61 fc or %g1, 0x1fc, %g1 ! 2015dfc <_Per_CPU_Information>
2008998: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule();
if ( !_Thread_Is_executing_also_the_heir() &&
200899c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20089a0: 80 a0 80 03 cmp %g2, %g3
20089a4: 02 80 00 07 be 20089c0 <_Thread_Change_priority+0x110>
20089a8: 01 00 00 00 nop
20089ac: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
20089b0: 80 a0 a0 00 cmp %g2, 0
20089b4: 02 80 00 03 be 20089c0 <_Thread_Change_priority+0x110>
20089b8: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
20089bc: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20089c0: 7f ff e5 73 call 2001f8c <sparc_enable_interrupts>
20089c4: 81 e8 00 00 restore
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Enqueue(
Thread_Control *the_thread
)
{
_Scheduler.Operations.enqueue( the_thread );
20089c8: c2 04 60 24 ld [ %l1 + 0x24 ], %g1
20089cc: 9f c0 40 00 call %g1
20089d0: 90 10 00 10 mov %l0, %o0
20089d4: 30 bf ff e8 b,a 2008974 <_Thread_Change_priority+0xc4>
02008bec <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008bec: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008bf0: 90 10 00 18 mov %i0, %o0
2008bf4: 40 00 00 7a call 2008ddc <_Thread_Get>
2008bf8: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008bfc: c2 07 bf fc ld [ %fp + -4 ], %g1
2008c00: 80 a0 60 00 cmp %g1, 0
2008c04: 12 80 00 08 bne 2008c24 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
2008c08: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2008c0c: 7f ff ff 73 call 20089d8 <_Thread_Clear_state>
2008c10: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
2008c14: 03 00 80 56 sethi %hi(0x2015800), %g1
2008c18: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 2015bd0 <_Thread_Dispatch_disable_level>
2008c1c: 84 00 bf ff add %g2, -1, %g2
2008c20: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
2008c24: 81 c7 e0 08 ret
2008c28: 81 e8 00 00 restore
02008c2c <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2008c2c: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
2008c30: 25 00 80 57 sethi %hi(0x2015c00), %l2
2008c34: a4 14 a1 fc or %l2, 0x1fc, %l2 ! 2015dfc <_Per_CPU_Information>
_ISR_Disable( level );
2008c38: 7f ff e4 d1 call 2001f7c <sparc_disable_interrupts>
2008c3c: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
while ( _Thread_Dispatch_necessary == true ) {
2008c40: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
2008c44: 80 a0 60 00 cmp %g1, 0
2008c48: 02 80 00 50 be 2008d88 <_Thread_Dispatch+0x15c>
2008c4c: 2f 00 80 56 sethi %hi(0x2015800), %l7
heir = _Thread_Heir;
2008c50: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1
_Thread_Dispatch_disable_level = 1;
2008c54: 82 10 20 01 mov 1, %g1
2008c58: c2 25 e3 d0 st %g1, [ %l7 + 0x3d0 ]
_Thread_Dispatch_necessary = false;
2008c5c: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008c60: 80 a4 00 11 cmp %l0, %l1
2008c64: 02 80 00 49 be 2008d88 <_Thread_Dispatch+0x15c>
2008c68: e2 24 a0 0c st %l1, [ %l2 + 0xc ]
2008c6c: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008c70: 39 00 80 57 sethi %hi(0x2015c00), %i4
2008c74: a6 14 e0 80 or %l3, 0x80, %l3
2008c78: aa 07 bf f8 add %fp, -8, %l5
2008c7c: a8 07 bf f0 add %fp, -16, %l4
2008c80: b8 17 20 58 or %i4, 0x58, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008c84: 35 00 80 56 sethi %hi(0x2015800), %i2
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008c88: ba 10 00 13 mov %l3, %i5
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
2008c8c: 2d 00 80 57 sethi %hi(0x2015c00), %l6
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008c90: 10 80 00 38 b 2008d70 <_Thread_Dispatch+0x144>
2008c94: b6 10 20 01 mov 1, %i3
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
2008c98: 7f ff e4 bd call 2001f8c <sparc_enable_interrupts>
2008c9c: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008ca0: 40 00 0d af call 200c35c <_TOD_Get_uptime>
2008ca4: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
2008ca8: 90 10 00 1d mov %i5, %o0
2008cac: 92 10 00 15 mov %l5, %o1
2008cb0: 40 00 03 45 call 20099c4 <_Timespec_Subtract>
2008cb4: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008cb8: 90 04 20 84 add %l0, 0x84, %o0
2008cbc: 40 00 03 29 call 2009960 <_Timespec_Add_to>
2008cc0: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
2008cc4: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008cc8: c2 07 00 00 ld [ %i4 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
2008ccc: c4 24 c0 00 st %g2, [ %l3 ]
2008cd0: c4 07 bf fc ld [ %fp + -4 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008cd4: 80 a0 60 00 cmp %g1, 0
2008cd8: 02 80 00 06 be 2008cf0 <_Thread_Dispatch+0xc4> <== NEVER TAKEN
2008cdc: c4 24 e0 04 st %g2, [ %l3 + 4 ]
executing->libc_reent = *_Thread_libc_reent;
2008ce0: c4 00 40 00 ld [ %g1 ], %g2
2008ce4: c4 24 21 54 st %g2, [ %l0 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
2008ce8: c4 04 61 54 ld [ %l1 + 0x154 ], %g2
2008cec: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2008cf0: 90 10 00 10 mov %l0, %o0
2008cf4: 40 00 03 f8 call 2009cd4 <_User_extensions_Thread_switch>
2008cf8: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008cfc: 90 04 20 c8 add %l0, 0xc8, %o0
2008d00: 40 00 05 47 call 200a21c <_CPU_Context_switch>
2008d04: 92 04 60 c8 add %l1, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008d08: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
2008d0c: 80 a0 60 00 cmp %g1, 0
2008d10: 02 80 00 0c be 2008d40 <_Thread_Dispatch+0x114>
2008d14: d0 05 a0 54 ld [ %l6 + 0x54 ], %o0
2008d18: 80 a4 00 08 cmp %l0, %o0
2008d1c: 02 80 00 09 be 2008d40 <_Thread_Dispatch+0x114>
2008d20: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008d24: 02 80 00 04 be 2008d34 <_Thread_Dispatch+0x108>
2008d28: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008d2c: 40 00 05 02 call 200a134 <_CPU_Context_save_fp>
2008d30: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2008d34: 40 00 05 1d call 200a1a8 <_CPU_Context_restore_fp>
2008d38: 90 04 21 50 add %l0, 0x150, %o0
_Thread_Allocated_fp = executing;
2008d3c: e0 25 a0 54 st %l0, [ %l6 + 0x54 ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
2008d40: 7f ff e4 8f call 2001f7c <sparc_disable_interrupts>
2008d44: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008d48: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
2008d4c: 80 a0 60 00 cmp %g1, 0
2008d50: 02 80 00 0e be 2008d88 <_Thread_Dispatch+0x15c>
2008d54: 01 00 00 00 nop
heir = _Thread_Heir;
2008d58: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1
_Thread_Dispatch_disable_level = 1;
2008d5c: f6 25 e3 d0 st %i3, [ %l7 + 0x3d0 ]
_Thread_Dispatch_necessary = false;
2008d60: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008d64: 80 a4 40 10 cmp %l1, %l0
2008d68: 02 80 00 08 be 2008d88 <_Thread_Dispatch+0x15c> <== NEVER TAKEN
2008d6c: e2 24 a0 0c st %l1, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008d70: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008d74: 80 a0 60 01 cmp %g1, 1
2008d78: 12 bf ff c8 bne 2008c98 <_Thread_Dispatch+0x6c>
2008d7c: c2 06 a3 34 ld [ %i2 + 0x334 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008d80: 10 bf ff c6 b 2008c98 <_Thread_Dispatch+0x6c>
2008d84: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
2008d88: c0 25 e3 d0 clr [ %l7 + 0x3d0 ]
_ISR_Enable( level );
2008d8c: 7f ff e4 80 call 2001f8c <sparc_enable_interrupts>
2008d90: 01 00 00 00 nop
_API_extensions_Run_postswitch();
2008d94: 7f ff f8 06 call 2006dac <_API_extensions_Run_postswitch>
2008d98: 01 00 00 00 nop
}
2008d9c: 81 c7 e0 08 ret
2008da0: 81 e8 00 00 restore
0200e240 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200e240: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200e244: 03 00 80 57 sethi %hi(0x2015c00), %g1
200e248: e0 00 62 08 ld [ %g1 + 0x208 ], %l0 ! 2015e08 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e24c: 3f 00 80 38 sethi %hi(0x200e000), %i7
200e250: be 17 e2 40 or %i7, 0x240, %i7 ! 200e240 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e254: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
200e258: 7f ff cf 4d call 2001f8c <sparc_enable_interrupts>
200e25c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e260: 03 00 80 56 sethi %hi(0x2015800), %g1
doneConstructors = 1;
200e264: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e268: e4 08 60 90 ldub [ %g1 + 0x90 ], %l2
doneConstructors = 1;
200e26c: c4 28 60 90 stb %g2, [ %g1 + 0x90 ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e270: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
200e274: 80 a0 60 00 cmp %g1, 0
200e278: 02 80 00 0b be 200e2a4 <_Thread_Handler+0x64>
200e27c: 23 00 80 57 sethi %hi(0x2015c00), %l1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e280: d0 04 60 54 ld [ %l1 + 0x54 ], %o0 ! 2015c54 <_Thread_Allocated_fp>
200e284: 80 a4 00 08 cmp %l0, %o0
200e288: 02 80 00 07 be 200e2a4 <_Thread_Handler+0x64>
200e28c: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e290: 22 80 00 05 be,a 200e2a4 <_Thread_Handler+0x64>
200e294: e0 24 60 54 st %l0, [ %l1 + 0x54 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e298: 7f ff ef a7 call 200a134 <_CPU_Context_save_fp>
200e29c: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200e2a0: e0 24 60 54 st %l0, [ %l1 + 0x54 ]
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200e2a4: 7f ff ee 0c call 2009ad4 <_User_extensions_Thread_begin>
200e2a8: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e2ac: 7f ff ea be call 2008da4 <_Thread_Enable_dispatch>
200e2b0: a5 2c a0 18 sll %l2, 0x18, %l2
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200e2b4: 80 a4 a0 00 cmp %l2, 0
200e2b8: 02 80 00 0c be 200e2e8 <_Thread_Handler+0xa8>
200e2bc: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e2c0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
200e2c4: 80 a0 60 00 cmp %g1, 0
200e2c8: 22 80 00 0f be,a 200e304 <_Thread_Handler+0xc4> <== ALWAYS TAKEN
200e2cc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200e2d0: 7f ff ee 15 call 2009b24 <_User_extensions_Thread_exitted>
200e2d4: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200e2d8: 90 10 20 00 clr %o0
200e2dc: 92 10 20 01 mov 1, %o1
200e2e0: 7f ff e5 85 call 20078f4 <_Internal_error_Occurred>
200e2e4: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200e2e8: 40 00 1a fe call 2014ee0 <_init>
200e2ec: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e2f0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
200e2f4: 80 a0 60 00 cmp %g1, 0
200e2f8: 12 bf ff f6 bne 200e2d0 <_Thread_Handler+0x90> <== NEVER TAKEN
200e2fc: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e300: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
200e304: 9f c0 40 00 call %g1
200e308: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200e30c: 10 bf ff f1 b 200e2d0 <_Thread_Handler+0x90>
200e310: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
02008e88 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2008e88: 9d e3 bf a0 save %sp, -96, %sp
2008e8c: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008e90: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
2008e94: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008e98: c0 26 61 58 clr [ %i1 + 0x158 ]
2008e9c: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008ea0: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008ea4: 90 10 00 19 mov %i1, %o0
2008ea8: 40 00 02 41 call 20097ac <_Thread_Stack_Allocate>
2008eac: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008eb0: 80 a2 00 1b cmp %o0, %i3
2008eb4: 0a 80 00 4b bcs 2008fe0 <_Thread_Initialize+0x158>
2008eb8: 80 a2 20 00 cmp %o0, 0
2008ebc: 02 80 00 49 be 2008fe0 <_Thread_Initialize+0x158> <== NEVER TAKEN
2008ec0: a4 10 20 00 clr %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008ec4: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008ec8: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008ecc: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008ed0: 80 8f 20 ff btst 0xff, %i4
2008ed4: 12 80 00 45 bne 2008fe8 <_Thread_Initialize+0x160>
2008ed8: 82 10 20 00 clr %g1
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008edc: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008ee0: c4 04 e0 64 ld [ %l3 + 0x64 ], %g2 ! 2015c64 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008ee4: c2 26 61 50 st %g1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
2008ee8: c2 26 60 bc st %g1, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2008eec: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008ef0: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008ef4: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008ef8: 80 a0 a0 00 cmp %g2, 0
2008efc: 12 80 00 4a bne 2009024 <_Thread_Initialize+0x19c>
2008f00: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2008f04: c0 26 61 60 clr [ %i1 + 0x160 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
2008f08: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008f0c: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
*/
RTEMS_INLINE_ROUTINE void* _Scheduler_Allocate(
Thread_Control *the_thread
)
{
return _Scheduler.Operations.allocate( the_thread );
2008f10: 03 00 80 53 sethi %hi(0x2014c00), %g1
2008f14: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
2008f18: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
2008f1c: c2 00 63 48 ld [ %g1 + 0x348 ], %g1
2008f20: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008f24: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008f28: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008f2c: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2008f30: 84 10 20 01 mov 1, %g2
the_thread->Wait.queue = NULL;
2008f34: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
2008f38: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008f3c: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008f40: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2008f44: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008f48: 9f c0 40 00 call %g1
2008f4c: 90 10 00 19 mov %i1, %o0
sched =_Scheduler_Allocate( the_thread );
if ( !sched )
2008f50: a0 92 20 00 orcc %o0, 0, %l0
2008f54: 22 80 00 13 be,a 2008fa0 <_Thread_Initialize+0x118>
2008f58: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008f5c: 90 10 00 19 mov %i1, %o0
2008f60: 40 00 01 e8 call 2009700 <_Thread_Set_priority>
2008f64: 92 10 00 1d mov %i5, %o1
_Workspace_Free( sched );
_Thread_Stack_Free( the_thread );
return false;
}
2008f68: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008f6c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008f70: c0 26 60 84 clr [ %i1 + 0x84 ]
2008f74: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008f78: 83 28 60 02 sll %g1, 2, %g1
2008f7c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008f80: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008f84: 90 10 00 19 mov %i1, %o0
2008f88: 40 00 03 0e call 2009bc0 <_User_extensions_Thread_create>
2008f8c: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008f90: 80 8a 20 ff btst 0xff, %o0
2008f94: 12 80 00 35 bne 2009068 <_Thread_Initialize+0x1e0>
2008f98: 01 00 00 00 nop
return true;
failed:
_Workspace_Free( the_thread->libc_reent );
2008f9c: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
2008fa0: 40 00 04 4f call 200a0dc <_Workspace_Free>
2008fa4: b0 10 20 00 clr %i0
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
_Workspace_Free( the_thread->API_Extensions[i] );
2008fa8: 40 00 04 4d call 200a0dc <_Workspace_Free>
2008fac: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
2008fb0: 40 00 04 4b call 200a0dc <_Workspace_Free>
2008fb4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( extensions_area );
2008fb8: 40 00 04 49 call 200a0dc <_Workspace_Free>
2008fbc: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
_Workspace_Free( fp_area );
2008fc0: 40 00 04 47 call 200a0dc <_Workspace_Free>
2008fc4: 90 10 00 12 mov %l2, %o0
#endif
_Workspace_Free( sched );
2008fc8: 40 00 04 45 call 200a0dc <_Workspace_Free>
2008fcc: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
2008fd0: 40 00 02 12 call 2009818 <_Thread_Stack_Free>
2008fd4: 90 10 00 19 mov %i1, %o0
return false;
2008fd8: 81 c7 e0 08 ret
2008fdc: 81 e8 00 00 restore
}
2008fe0: 81 c7 e0 08 ret
2008fe4: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008fe8: 40 00 04 34 call 200a0b8 <_Workspace_Allocate>
2008fec: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008ff0: a4 92 20 00 orcc %o0, 0, %l2
2008ff4: 02 80 00 1f be 2009070 <_Thread_Initialize+0x1e8>
2008ff8: 82 10 00 12 mov %l2, %g1
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008ffc: 27 00 80 57 sethi %hi(0x2015c00), %l3
2009000: c4 04 e0 64 ld [ %l3 + 0x64 ], %g2 ! 2015c64 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2009004: c0 26 60 50 clr [ %i1 + 0x50 ]
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2009008: c2 26 61 50 st %g1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
200900c: c2 26 60 bc st %g1, [ %i1 + 0xbc ]
the_watchdog->routine = routine;
2009010: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2009014: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2009018: 80 a0 a0 00 cmp %g2, 0
200901c: 02 bf ff ba be 2008f04 <_Thread_Initialize+0x7c>
2009020: c0 26 60 6c clr [ %i1 + 0x6c ]
extensions_area = _Workspace_Allocate(
2009024: 84 00 a0 01 inc %g2
2009028: 40 00 04 24 call 200a0b8 <_Workspace_Allocate>
200902c: 91 28 a0 02 sll %g2, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2009030: b6 92 20 00 orcc %o0, 0, %i3
2009034: 02 80 00 12 be 200907c <_Thread_Initialize+0x1f4>
2009038: c6 04 e0 64 ld [ %l3 + 0x64 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
200903c: f6 26 61 60 st %i3, [ %i1 + 0x160 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2009040: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2009044: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
2009048: 85 28 a0 02 sll %g2, 2, %g2
200904c: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2009050: 82 00 60 01 inc %g1
2009054: 80 a0 c0 01 cmp %g3, %g1
2009058: 1a bf ff fc bcc 2009048 <_Thread_Initialize+0x1c0>
200905c: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2009060: 10 bf ff ac b 2008f10 <_Thread_Initialize+0x88>
2009064: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
2009068: 81 c7 e0 08 ret
200906c: 81 e8 00 00 restore
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
2009070: b6 10 20 00 clr %i3
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
2009074: 10 bf ff ca b 2008f9c <_Thread_Initialize+0x114>
2009078: a0 10 20 00 clr %l0
200907c: 10 bf ff c8 b 2008f9c <_Thread_Initialize+0x114>
2009080: a0 10 20 00 clr %l0
02009640 <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
2009640: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2009644: 80 a6 20 00 cmp %i0, 0
2009648: 02 80 00 13 be 2009694 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
200964c: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
2009650: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
2009654: 80 a4 60 01 cmp %l1, 1
2009658: 02 80 00 04 be 2009668 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
200965c: 01 00 00 00 nop
2009660: 81 c7 e0 08 ret <== NOT EXECUTED
2009664: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2009668: 7f ff e2 45 call 2001f7c <sparc_disable_interrupts>
200966c: 01 00 00 00 nop
2009670: a0 10 00 08 mov %o0, %l0
2009674: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
2009678: 03 00 00 ef sethi %hi(0x3bc00), %g1
200967c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
2009680: 80 88 80 01 btst %g2, %g1
2009684: 12 80 00 06 bne 200969c <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
2009688: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
200968c: 7f ff e2 40 call 2001f8c <sparc_enable_interrupts>
2009690: 90 10 00 10 mov %l0, %o0
2009694: 81 c7 e0 08 ret
2009698: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
200969c: 92 10 00 19 mov %i1, %o1
20096a0: 94 10 20 01 mov 1, %o2
20096a4: 40 00 0c ac call 200c954 <_Thread_queue_Extract_priority_helper>
20096a8: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
20096ac: 90 10 00 18 mov %i0, %o0
20096b0: 92 10 00 19 mov %i1, %o1
20096b4: 7f ff ff 31 call 2009378 <_Thread_queue_Enqueue_priority>
20096b8: 94 07 bf fc add %fp, -4, %o2
20096bc: 30 bf ff f4 b,a 200968c <_Thread_queue_Requeue+0x4c>
020096c0 <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
20096c0: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
20096c4: 90 10 00 18 mov %i0, %o0
20096c8: 7f ff fd c5 call 2008ddc <_Thread_Get>
20096cc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20096d0: c2 07 bf fc ld [ %fp + -4 ], %g1
20096d4: 80 a0 60 00 cmp %g1, 0
20096d8: 12 80 00 08 bne 20096f8 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
20096dc: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
20096e0: 40 00 0c d8 call 200ca40 <_Thread_queue_Process_timeout>
20096e4: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
20096e8: 03 00 80 56 sethi %hi(0x2015800), %g1
20096ec: c4 00 63 d0 ld [ %g1 + 0x3d0 ], %g2 ! 2015bd0 <_Thread_Dispatch_disable_level>
20096f0: 84 00 bf ff add %g2, -1, %g2
20096f4: c4 20 63 d0 st %g2, [ %g1 + 0x3d0 ]
20096f8: 81 c7 e0 08 ret
20096fc: 81 e8 00 00 restore
02016788 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
2016788: 9d e3 bf 88 save %sp, -120, %sp
201678c: 2d 00 80 f4 sethi %hi(0x203d000), %l6
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2016790: ba 07 bf f4 add %fp, -12, %i5
2016794: a8 07 bf f8 add %fp, -8, %l4
2016798: a4 07 bf e8 add %fp, -24, %l2
201679c: ae 07 bf ec add %fp, -20, %l7
20167a0: 2b 00 80 f3 sethi %hi(0x203cc00), %l5
20167a4: 39 00 80 f3 sethi %hi(0x203cc00), %i4
20167a8: e8 27 bf f4 st %l4, [ %fp + -12 ]
head->previous = NULL;
20167ac: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
20167b0: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20167b4: ee 27 bf e8 st %l7, [ %fp + -24 ]
head->previous = NULL;
20167b8: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
20167bc: e4 27 bf f0 st %l2, [ %fp + -16 ]
20167c0: ac 15 a0 84 or %l6, 0x84, %l6
20167c4: a2 06 20 30 add %i0, 0x30, %l1
20167c8: aa 15 63 fc or %l5, 0x3fc, %l5
20167cc: a6 06 20 68 add %i0, 0x68, %l3
20167d0: b8 17 23 70 or %i4, 0x370, %i4
20167d4: b2 06 20 08 add %i0, 8, %i1
20167d8: b4 06 20 40 add %i0, 0x40, %i2
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
20167dc: b6 10 20 01 mov 1, %i3
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
20167e0: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
20167e4: c2 05 80 00 ld [ %l6 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
20167e8: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20167ec: 94 10 00 12 mov %l2, %o2
20167f0: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20167f4: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20167f8: 40 00 12 c5 call 201b30c <_Watchdog_Adjust_to_chain>
20167fc: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016800: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016804: e0 05 40 00 ld [ %l5 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2016808: 80 a4 00 0a cmp %l0, %o2
201680c: 18 80 00 2e bgu 20168c4 <_Timer_server_Body+0x13c>
2016810: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
2016814: 80 a4 00 0a cmp %l0, %o2
2016818: 0a 80 00 2f bcs 20168d4 <_Timer_server_Body+0x14c>
201681c: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
2016820: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016824: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016828: 40 00 02 fc call 2017418 <_Chain_Get>
201682c: 01 00 00 00 nop
if ( timer == NULL ) {
2016830: 92 92 20 00 orcc %o0, 0, %o1
2016834: 02 80 00 10 be 2016874 <_Timer_server_Body+0xec>
2016838: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201683c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2016840: 80 a0 60 01 cmp %g1, 1
2016844: 02 80 00 28 be 20168e4 <_Timer_server_Body+0x15c>
2016848: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
201684c: 12 bf ff f6 bne 2016824 <_Timer_server_Body+0x9c> <== NEVER TAKEN
2016850: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016854: 40 00 12 e1 call 201b3d8 <_Watchdog_Insert>
2016858: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
201685c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016860: 40 00 02 ee call 2017418 <_Chain_Get>
2016864: 01 00 00 00 nop
if ( timer == NULL ) {
2016868: 92 92 20 00 orcc %o0, 0, %o1
201686c: 32 bf ff f5 bne,a 2016840 <_Timer_server_Body+0xb8> <== NEVER TAKEN
2016870: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016874: 7f ff e1 db call 200efe0 <sparc_disable_interrupts>
2016878: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
201687c: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016880: 80 a0 40 14 cmp %g1, %l4
2016884: 02 80 00 1c be 20168f4 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
2016888: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
201688c: 7f ff e1 d9 call 200eff0 <sparc_enable_interrupts> <== NOT EXECUTED
2016890: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016894: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2016898: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201689c: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED
20168a0: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
20168a4: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20168a8: 40 00 12 99 call 201b30c <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
20168ac: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
20168b0: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
20168b4: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
20168b8: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED
20168bc: 08 bf ff d7 bleu 2016818 <_Timer_server_Body+0x90> <== NOT EXECUTED
20168c0: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
20168c4: 90 10 00 13 mov %l3, %o0
20168c8: 40 00 12 91 call 201b30c <_Watchdog_Adjust_to_chain>
20168cc: 94 10 00 12 mov %l2, %o2
20168d0: 30 bf ff d4 b,a 2016820 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
20168d4: 92 10 20 01 mov 1, %o1
20168d8: 40 00 12 5d call 201b24c <_Watchdog_Adjust>
20168dc: 94 22 80 10 sub %o2, %l0, %o2
20168e0: 30 bf ff d0 b,a 2016820 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
20168e4: 90 10 00 11 mov %l1, %o0
20168e8: 40 00 12 bc call 201b3d8 <_Watchdog_Insert>
20168ec: 92 02 60 10 add %o1, 0x10, %o1
20168f0: 30 bf ff cd b,a 2016824 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
20168f4: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
20168f8: 7f ff e1 be call 200eff0 <sparc_enable_interrupts>
20168fc: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016900: c2 07 bf e8 ld [ %fp + -24 ], %g1
2016904: 80 a0 40 17 cmp %g1, %l7
2016908: 12 80 00 0c bne 2016938 <_Timer_server_Body+0x1b0>
201690c: 01 00 00 00 nop
2016910: 30 80 00 13 b,a 201695c <_Timer_server_Body+0x1d4>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
2016914: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
2016918: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
201691c: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016920: 7f ff e1 b4 call 200eff0 <sparc_enable_interrupts>
2016924: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2016928: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
201692c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
2016930: 9f c0 40 00 call %g1
2016934: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2016938: 7f ff e1 aa call 200efe0 <sparc_disable_interrupts>
201693c: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
2016940: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016944: 80 a4 00 17 cmp %l0, %l7
2016948: 32 bf ff f3 bne,a 2016914 <_Timer_server_Body+0x18c>
201694c: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016950: 7f ff e1 a8 call 200eff0 <sparc_enable_interrupts>
2016954: 01 00 00 00 nop
2016958: 30 bf ff a2 b,a 20167e0 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
201695c: c0 2e 20 7c clrb [ %i0 + 0x7c ]
2016960: c2 07 00 00 ld [ %i4 ], %g1
2016964: 82 00 60 01 inc %g1
2016968: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
201696c: d0 06 00 00 ld [ %i0 ], %o0
2016970: 40 00 10 7f call 201ab6c <_Thread_Set_state>
2016974: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016978: 7f ff ff 5a call 20166e0 <_Timer_server_Reset_interval_system_watchdog>
201697c: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016980: 7f ff ff 6d call 2016734 <_Timer_server_Reset_tod_system_watchdog>
2016984: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016988: 40 00 0d f7 call 201a164 <_Thread_Enable_dispatch>
201698c: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016990: 90 10 00 19 mov %i1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016994: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016998: 40 00 12 fb call 201b584 <_Watchdog_Remove>
201699c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
20169a0: 40 00 12 f9 call 201b584 <_Watchdog_Remove>
20169a4: 90 10 00 1a mov %i2, %o0
20169a8: 30 bf ff 8e b,a 20167e0 <_Timer_server_Body+0x58>
020169ac <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
20169ac: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
20169b0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
20169b4: 80 a0 60 00 cmp %g1, 0
20169b8: 02 80 00 05 be 20169cc <_Timer_server_Schedule_operation_method+0x20>
20169bc: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
20169c0: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
20169c4: 40 00 02 7f call 20173c0 <_Chain_Append>
20169c8: 81 e8 00 00 restore
20169cc: 03 00 80 f3 sethi %hi(0x203cc00), %g1
20169d0: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 203cf70 <_Thread_Dispatch_disable_level>
20169d4: 84 00 a0 01 inc %g2
20169d8: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
20169dc: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
20169e0: 80 a0 60 01 cmp %g1, 1
20169e4: 02 80 00 28 be 2016a84 <_Timer_server_Schedule_operation_method+0xd8>
20169e8: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
20169ec: 02 80 00 04 be 20169fc <_Timer_server_Schedule_operation_method+0x50>
20169f0: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
20169f4: 40 00 0d dc call 201a164 <_Thread_Enable_dispatch>
20169f8: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
20169fc: 7f ff e1 79 call 200efe0 <sparc_disable_interrupts>
2016a00: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
2016a04: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016a08: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016a0c: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016a10: 03 00 80 f3 sethi %hi(0x203cc00), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016a14: 80 a0 80 04 cmp %g2, %g4
2016a18: 02 80 00 0d be 2016a4c <_Timer_server_Schedule_operation_method+0xa0>
2016a1c: c2 00 63 fc ld [ %g1 + 0x3fc ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016a20: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
2016a24: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016a28: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016a2c: 08 80 00 07 bleu 2016a48 <_Timer_server_Schedule_operation_method+0x9c>
2016a30: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016a34: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
2016a38: 80 a3 40 03 cmp %o5, %g3
2016a3c: 08 80 00 03 bleu 2016a48 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
2016a40: 88 10 20 00 clr %g4
delta_interval -= delta;
2016a44: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016a48: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016a4c: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016a50: 7f ff e1 68 call 200eff0 <sparc_enable_interrupts>
2016a54: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016a58: 90 06 20 68 add %i0, 0x68, %o0
2016a5c: 40 00 12 5f call 201b3d8 <_Watchdog_Insert>
2016a60: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016a64: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016a68: 80 a0 60 00 cmp %g1, 0
2016a6c: 12 bf ff e2 bne 20169f4 <_Timer_server_Schedule_operation_method+0x48>
2016a70: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016a74: 7f ff ff 30 call 2016734 <_Timer_server_Reset_tod_system_watchdog>
2016a78: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016a7c: 40 00 0d ba call 201a164 <_Thread_Enable_dispatch>
2016a80: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016a84: 7f ff e1 57 call 200efe0 <sparc_disable_interrupts>
2016a88: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016a8c: 05 00 80 f4 sethi %hi(0x203d000), %g2
initialized = false;
}
#endif
return status;
}
2016a90: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
2016a94: c4 00 a0 84 ld [ %g2 + 0x84 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016a98: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
2016a9c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016aa0: 80 a0 40 03 cmp %g1, %g3
2016aa4: 02 80 00 08 be 2016ac4 <_Timer_server_Schedule_operation_method+0x118>
2016aa8: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016aac: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016ab0: 80 a1 00 0d cmp %g4, %o5
2016ab4: 1a 80 00 03 bcc 2016ac0 <_Timer_server_Schedule_operation_method+0x114>
2016ab8: 86 10 20 00 clr %g3
delta_interval -= delta;
2016abc: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016ac0: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016ac4: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016ac8: 7f ff e1 4a call 200eff0 <sparc_enable_interrupts>
2016acc: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016ad0: 90 06 20 30 add %i0, 0x30, %o0
2016ad4: 40 00 12 41 call 201b3d8 <_Watchdog_Insert>
2016ad8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016adc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016ae0: 80 a0 60 00 cmp %g1, 0
2016ae4: 12 bf ff c4 bne 20169f4 <_Timer_server_Schedule_operation_method+0x48>
2016ae8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016aec: 7f ff fe fd call 20166e0 <_Timer_server_Reset_interval_system_watchdog>
2016af0: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016af4: 40 00 0d 9c call 201a164 <_Thread_Enable_dispatch>
2016af8: 81 e8 00 00 restore
02009960 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
2009960: 9d e3 bf a0 save %sp, -96, %sp
2009964: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009968: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
200996c: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
2009970: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
2009974: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009978: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
200997c: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009980: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009984: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
2009988: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_END+0x395ac9ff>
200998c: 80 a0 80 04 cmp %g2, %g4
2009990: 08 80 00 0b bleu 20099bc <_Timespec_Add_to+0x5c>
2009994: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
2009998: 1b 31 19 4d sethi %hi(0xc4653400), %o5
200999c: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <RAM_END+0xc2253600>
20099a0: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
20099a4: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
20099a8: 80 a0 80 04 cmp %g2, %g4
20099ac: 18 bf ff fd bgu 20099a0 <_Timespec_Add_to+0x40> <== NEVER TAKEN
20099b0: b0 06 20 01 inc %i0
20099b4: c4 20 60 04 st %g2, [ %g1 + 4 ]
20099b8: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
20099bc: 81 c7 e0 08 ret
20099c0: 81 e8 00 00 restore
02009b70 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2009b70: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
2009b74: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009b78: a2 14 61 b8 or %l1, 0x1b8, %l1 ! 2015db8 <_User_extensions_List>
2009b7c: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009b80: 80 a4 00 11 cmp %l0, %l1
2009b84: 02 80 00 0d be 2009bb8 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
2009b88: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
2009b8c: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2009b90: 80 a0 60 00 cmp %g1, 0
2009b94: 02 80 00 05 be 2009ba8 <_User_extensions_Fatal+0x38>
2009b98: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
2009b9c: 92 10 00 19 mov %i1, %o1
2009ba0: 9f c0 40 00 call %g1
2009ba4: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009ba8: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009bac: 80 a4 00 11 cmp %l0, %l1
2009bb0: 32 bf ff f8 bne,a 2009b90 <_User_extensions_Fatal+0x20>
2009bb4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2009bb8: 81 c7 e0 08 ret
2009bbc: 81 e8 00 00 restore
02009a1c <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009a1c: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009a20: 07 00 80 54 sethi %hi(0x2015000), %g3
2009a24: 86 10 e0 08 or %g3, 8, %g3 ! 2015008 <Configuration>
initial_extensions = Configuration.User_extension_table;
2009a28: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3
2009a2c: 1b 00 80 57 sethi %hi(0x2015c00), %o5
2009a30: 09 00 80 56 sethi %hi(0x2015800), %g4
2009a34: 84 13 61 b8 or %o5, 0x1b8, %g2
2009a38: 82 11 23 d4 or %g4, 0x3d4, %g1
2009a3c: 96 00 a0 04 add %g2, 4, %o3
2009a40: 98 00 60 04 add %g1, 4, %o4
2009a44: d6 23 61 b8 st %o3, [ %o5 + 0x1b8 ]
head->previous = NULL;
2009a48: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
2009a4c: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009a50: d8 21 23 d4 st %o4, [ %g4 + 0x3d4 ]
head->previous = NULL;
2009a54: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009a58: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009a5c: 80 a4 e0 00 cmp %l3, 0
2009a60: 02 80 00 1b be 2009acc <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009a64: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009a68: 83 2c a0 02 sll %l2, 2, %g1
2009a6c: a3 2c a0 04 sll %l2, 4, %l1
2009a70: a2 24 40 01 sub %l1, %g1, %l1
2009a74: a2 04 40 12 add %l1, %l2, %l1
2009a78: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009a7c: 40 00 01 9f call 200a0f8 <_Workspace_Allocate_or_fatal_error>
2009a80: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009a84: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009a88: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009a8c: 40 00 15 18 call 200eeec <memset>
2009a90: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009a94: 80 a4 a0 00 cmp %l2, 0
2009a98: 02 80 00 0d be 2009acc <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009a9c: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
2009aa0: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009aa4: 94 10 20 20 mov 0x20, %o2
2009aa8: 92 04 c0 09 add %l3, %o1, %o1
2009aac: 40 00 14 d7 call 200ee08 <memcpy>
2009ab0: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
2009ab4: 40 00 0c 07 call 200cad0 <_User_extensions_Add_set>
2009ab8: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009abc: a2 04 60 01 inc %l1
2009ac0: 80 a4 80 11 cmp %l2, %l1
2009ac4: 18 bf ff f7 bgu 2009aa0 <_User_extensions_Handler_initialization+0x84>
2009ac8: a0 04 20 34 add %l0, 0x34, %l0
2009acc: 81 c7 e0 08 ret
2009ad0: 81 e8 00 00 restore
02009ad4 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
2009ad4: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
2009ad8: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009adc: e0 04 61 b8 ld [ %l1 + 0x1b8 ], %l0 ! 2015db8 <_User_extensions_List>
2009ae0: a2 14 61 b8 or %l1, 0x1b8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009ae4: a2 04 60 04 add %l1, 4, %l1
2009ae8: 80 a4 00 11 cmp %l0, %l1
2009aec: 02 80 00 0c be 2009b1c <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
2009af0: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
2009af4: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
2009af8: 80 a0 60 00 cmp %g1, 0
2009afc: 02 80 00 04 be 2009b0c <_User_extensions_Thread_begin+0x38>
2009b00: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
2009b04: 9f c0 40 00 call %g1
2009b08: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009b0c: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009b10: 80 a4 00 11 cmp %l0, %l1
2009b14: 32 bf ff f9 bne,a 2009af8 <_User_extensions_Thread_begin+0x24>
2009b18: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
2009b1c: 81 c7 e0 08 ret
2009b20: 81 e8 00 00 restore
02009bc0 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
2009bc0: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
2009bc4: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009bc8: e0 04 61 b8 ld [ %l1 + 0x1b8 ], %l0 ! 2015db8 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
2009bcc: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
2009bd0: a2 14 61 b8 or %l1, 0x1b8, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
2009bd4: a2 04 60 04 add %l1, 4, %l1
2009bd8: 80 a4 00 11 cmp %l0, %l1
2009bdc: 02 80 00 13 be 2009c28 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
2009be0: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
2009be4: 25 00 80 57 sethi %hi(0x2015c00), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
2009be8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2009bec: 80 a0 60 00 cmp %g1, 0
2009bf0: 02 80 00 08 be 2009c10 <_User_extensions_Thread_create+0x50>
2009bf4: 84 14 a1 fc or %l2, 0x1fc, %g2
status = (*the_extension->Callouts.thread_create)(
2009bf8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009bfc: 9f c0 40 00 call %g1
2009c00: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
2009c04: 80 8a 20 ff btst 0xff, %o0
2009c08: 22 80 00 08 be,a 2009c28 <_User_extensions_Thread_create+0x68>
2009c0c: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009c10: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
2009c14: 80 a4 00 11 cmp %l0, %l1
2009c18: 32 bf ff f5 bne,a 2009bec <_User_extensions_Thread_create+0x2c>
2009c1c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
2009c20: 81 c7 e0 08 ret
2009c24: 91 e8 20 01 restore %g0, 1, %o0
}
2009c28: 81 c7 e0 08 ret
2009c2c: 81 e8 00 00 restore
02009c30 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
2009c30: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
2009c34: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009c38: a2 14 61 b8 or %l1, 0x1b8, %l1 ! 2015db8 <_User_extensions_List>
2009c3c: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009c40: 80 a4 00 11 cmp %l0, %l1
2009c44: 02 80 00 0d be 2009c78 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
2009c48: 25 00 80 57 sethi %hi(0x2015c00), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
2009c4c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
2009c50: 80 a0 60 00 cmp %g1, 0
2009c54: 02 80 00 05 be 2009c68 <_User_extensions_Thread_delete+0x38>
2009c58: 84 14 a1 fc or %l2, 0x1fc, %g2
(*the_extension->Callouts.thread_delete)(
2009c5c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009c60: 9f c0 40 00 call %g1
2009c64: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009c68: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009c6c: 80 a4 00 11 cmp %l0, %l1
2009c70: 32 bf ff f8 bne,a 2009c50 <_User_extensions_Thread_delete+0x20>
2009c74: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
2009c78: 81 c7 e0 08 ret
2009c7c: 81 e8 00 00 restore
02009b24 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
2009b24: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
2009b28: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009b2c: a2 14 61 b8 or %l1, 0x1b8, %l1 ! 2015db8 <_User_extensions_List>
2009b30: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009b34: 80 a4 00 11 cmp %l0, %l1
2009b38: 02 80 00 0c be 2009b68 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
2009b3c: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
2009b40: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
2009b44: 80 a0 60 00 cmp %g1, 0
2009b48: 02 80 00 04 be 2009b58 <_User_extensions_Thread_exitted+0x34>
2009b4c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
2009b50: 9f c0 40 00 call %g1
2009b54: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009b58: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009b5c: 80 a4 00 11 cmp %l0, %l1
2009b60: 32 bf ff f9 bne,a 2009b44 <_User_extensions_Thread_exitted+0x20>
2009b64: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
2009b68: 81 c7 e0 08 ret
2009b6c: 81 e8 00 00 restore
0200a9c8 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
200a9c8: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
200a9cc: 23 00 80 74 sethi %hi(0x201d000), %l1
200a9d0: e0 04 63 f8 ld [ %l1 + 0x3f8 ], %l0 ! 201d3f8 <_User_extensions_List>
200a9d4: a2 14 63 f8 or %l1, 0x3f8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200a9d8: a2 04 60 04 add %l1, 4, %l1
200a9dc: 80 a4 00 11 cmp %l0, %l1
200a9e0: 02 80 00 0d be 200aa14 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
200a9e4: 25 00 80 75 sethi %hi(0x201d400), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
200a9e8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200a9ec: 80 a0 60 00 cmp %g1, 0
200a9f0: 02 80 00 05 be 200aa04 <_User_extensions_Thread_restart+0x3c>
200a9f4: 84 14 a0 3c or %l2, 0x3c, %g2
(*the_extension->Callouts.thread_restart)(
200a9f8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200a9fc: 9f c0 40 00 call %g1
200aa00: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200aa04: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200aa08: 80 a4 00 11 cmp %l0, %l1
200aa0c: 32 bf ff f8 bne,a 200a9ec <_User_extensions_Thread_restart+0x24>
200aa10: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200aa14: 81 c7 e0 08 ret
200aa18: 81 e8 00 00 restore
02009c80 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
2009c80: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
2009c84: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009c88: e0 04 61 b8 ld [ %l1 + 0x1b8 ], %l0 ! 2015db8 <_User_extensions_List>
2009c8c: a2 14 61 b8 or %l1, 0x1b8, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009c90: a2 04 60 04 add %l1, 4, %l1
2009c94: 80 a4 00 11 cmp %l0, %l1
2009c98: 02 80 00 0d be 2009ccc <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
2009c9c: 25 00 80 57 sethi %hi(0x2015c00), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
2009ca0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2009ca4: 80 a0 60 00 cmp %g1, 0
2009ca8: 02 80 00 05 be 2009cbc <_User_extensions_Thread_start+0x3c>
2009cac: 84 14 a1 fc or %l2, 0x1fc, %g2
(*the_extension->Callouts.thread_start)(
2009cb0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009cb4: 9f c0 40 00 call %g1
2009cb8: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009cbc: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009cc0: 80 a4 00 11 cmp %l0, %l1
2009cc4: 32 bf ff f8 bne,a 2009ca4 <_User_extensions_Thread_start+0x24>
2009cc8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2009ccc: 81 c7 e0 08 ret
2009cd0: 81 e8 00 00 restore
02009cd4 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
2009cd4: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
2009cd8: 23 00 80 56 sethi %hi(0x2015800), %l1
2009cdc: e0 04 63 d4 ld [ %l1 + 0x3d4 ], %l0 ! 2015bd4 <_User_extensions_Switches_list>
2009ce0: a2 14 63 d4 or %l1, 0x3d4, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
2009ce4: a2 04 60 04 add %l1, 4, %l1
2009ce8: 80 a4 00 11 cmp %l0, %l1
2009cec: 02 80 00 0a be 2009d14 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
2009cf0: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
2009cf4: c2 04 20 08 ld [ %l0 + 8 ], %g1
2009cf8: 90 10 00 18 mov %i0, %o0
2009cfc: 9f c0 40 00 call %g1
2009d00: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
2009d04: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
2009d08: 80 a4 00 11 cmp %l0, %l1
2009d0c: 32 bf ff fb bne,a 2009cf8 <_User_extensions_Thread_switch+0x24>
2009d10: c2 04 20 08 ld [ %l0 + 8 ], %g1
2009d14: 81 c7 e0 08 ret
2009d18: 81 e8 00 00 restore
0200bd0c <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200bd0c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200bd10: 7f ff dc 7a call 2002ef8 <sparc_disable_interrupts>
200bd14: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
200bd18: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200bd1c: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200bd20: 80 a0 40 12 cmp %g1, %l2
200bd24: 02 80 00 1f be 200bda0 <_Watchdog_Adjust+0x94>
200bd28: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200bd2c: 12 80 00 1f bne 200bda8 <_Watchdog_Adjust+0x9c>
200bd30: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bd34: 80 a6 a0 00 cmp %i2, 0
200bd38: 02 80 00 1a be 200bda0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200bd3c: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bd40: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
200bd44: 80 a6 80 11 cmp %i2, %l1
200bd48: 1a 80 00 0b bcc 200bd74 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
200bd4c: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
200bd50: 10 80 00 1d b 200bdc4 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
200bd54: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bd58: b4 a6 80 11 subcc %i2, %l1, %i2
200bd5c: 02 80 00 11 be 200bda0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200bd60: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bd64: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
200bd68: 80 a4 40 1a cmp %l1, %i2
200bd6c: 38 80 00 16 bgu,a 200bdc4 <_Watchdog_Adjust+0xb8>
200bd70: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200bd74: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
200bd78: 7f ff dc 64 call 2002f08 <sparc_enable_interrupts>
200bd7c: 01 00 00 00 nop
_Watchdog_Tickle( header );
200bd80: 40 00 00 b4 call 200c050 <_Watchdog_Tickle>
200bd84: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200bd88: 7f ff dc 5c call 2002ef8 <sparc_disable_interrupts>
200bd8c: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
200bd90: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
200bd94: 80 a4 80 02 cmp %l2, %g2
200bd98: 12 bf ff f0 bne 200bd58 <_Watchdog_Adjust+0x4c>
200bd9c: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
200bda0: 7f ff dc 5a call 2002f08 <sparc_enable_interrupts>
200bda4: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200bda8: 12 bf ff fe bne 200bda0 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200bdac: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200bdb0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200bdb4: b4 00 80 1a add %g2, %i2, %i2
200bdb8: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200bdbc: 7f ff dc 53 call 2002f08 <sparc_enable_interrupts>
200bdc0: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200bdc4: 10 bf ff f7 b 200bda0 <_Watchdog_Adjust+0x94>
200bdc8: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
02009ec8 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009ec8: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009ecc: 7f ff e0 2c call 2001f7c <sparc_disable_interrupts>
2009ed0: 01 00 00 00 nop
previous_state = the_watchdog->state;
2009ed4: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
2009ed8: 80 a4 20 01 cmp %l0, 1
2009edc: 02 80 00 2a be 2009f84 <_Watchdog_Remove+0xbc>
2009ee0: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009ee4: 1a 80 00 09 bcc 2009f08 <_Watchdog_Remove+0x40>
2009ee8: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009eec: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009ef0: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 ! 2015ce4 <_Watchdog_Ticks_since_boot>
2009ef4: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
2009ef8: 7f ff e0 25 call 2001f8c <sparc_enable_interrupts>
2009efc: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
2009f00: 81 c7 e0 08 ret
2009f04: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
2009f08: 18 bf ff fa bgu 2009ef0 <_Watchdog_Remove+0x28> <== NEVER TAKEN
2009f0c: 03 00 80 57 sethi %hi(0x2015c00), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
2009f10: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
2009f14: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009f18: c4 00 40 00 ld [ %g1 ], %g2
2009f1c: 80 a0 a0 00 cmp %g2, 0
2009f20: 02 80 00 07 be 2009f3c <_Watchdog_Remove+0x74>
2009f24: 05 00 80 57 sethi %hi(0x2015c00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009f28: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009f2c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
2009f30: 84 00 c0 02 add %g3, %g2, %g2
2009f34: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009f38: 05 00 80 57 sethi %hi(0x2015c00), %g2
2009f3c: c4 00 a0 e0 ld [ %g2 + 0xe0 ], %g2 ! 2015ce0 <_Watchdog_Sync_count>
2009f40: 80 a0 a0 00 cmp %g2, 0
2009f44: 22 80 00 07 be,a 2009f60 <_Watchdog_Remove+0x98>
2009f48: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
2009f4c: 05 00 80 57 sethi %hi(0x2015c00), %g2
2009f50: c6 00 a2 04 ld [ %g2 + 0x204 ], %g3 ! 2015e04 <_Per_CPU_Information+0x8>
2009f54: 05 00 80 57 sethi %hi(0x2015c00), %g2
2009f58: c6 20 a0 78 st %g3, [ %g2 + 0x78 ] ! 2015c78 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
2009f5c: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
2009f60: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
2009f64: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009f68: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009f6c: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1 ! 2015ce4 <_Watchdog_Ticks_since_boot>
2009f70: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
2009f74: 7f ff e0 06 call 2001f8c <sparc_enable_interrupts>
2009f78: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
2009f7c: 81 c7 e0 08 ret
2009f80: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009f84: c2 00 60 e4 ld [ %g1 + 0xe4 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
2009f88: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009f8c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
2009f90: 7f ff df ff call 2001f8c <sparc_enable_interrupts>
2009f94: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
2009f98: 81 c7 e0 08 ret
2009f9c: 81 e8 00 00 restore
0200b514 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200b514: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200b518: 7f ff dd 4a call 2002a40 <sparc_disable_interrupts>
200b51c: 01 00 00 00 nop
200b520: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
200b524: 11 00 80 71 sethi %hi(0x201c400), %o0
200b528: 94 10 00 19 mov %i1, %o2
200b52c: 92 10 00 18 mov %i0, %o1
200b530: 7f ff e4 69 call 20046d4 <printk>
200b534: 90 12 23 18 or %o0, 0x318, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
200b538: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b53c: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
200b540: 80 a4 40 19 cmp %l1, %i1
200b544: 02 80 00 0f be 200b580 <_Watchdog_Report_chain+0x6c>
200b548: 11 00 80 71 sethi %hi(0x201c400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200b54c: 92 10 00 11 mov %l1, %o1
200b550: 40 00 00 0f call 200b58c <_Watchdog_Report>
200b554: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200b558: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200b55c: 80 a4 40 19 cmp %l1, %i1
200b560: 12 bf ff fc bne 200b550 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200b564: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200b568: 11 00 80 71 sethi %hi(0x201c400), %o0
200b56c: 92 10 00 18 mov %i0, %o1
200b570: 7f ff e4 59 call 20046d4 <printk>
200b574: 90 12 23 30 or %o0, 0x330, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200b578: 7f ff dd 36 call 2002a50 <sparc_enable_interrupts>
200b57c: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200b580: 7f ff e4 55 call 20046d4 <printk>
200b584: 90 12 23 40 or %o0, 0x340, %o0
200b588: 30 bf ff fc b,a 200b578 <_Watchdog_Report_chain+0x64>
0200ea88 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
200ea88: 9d e3 bf 98 save %sp, -104, %sp
200ea8c: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
200ea90: 80 a4 20 00 cmp %l0, 0
200ea94: 02 80 00 23 be 200eb20 <rtems_barrier_create+0x98>
200ea98: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
200ea9c: 80 a6 e0 00 cmp %i3, 0
200eaa0: 02 80 00 20 be 200eb20 <rtems_barrier_create+0x98>
200eaa4: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
200eaa8: 80 8e 60 10 btst 0x10, %i1
200eaac: 02 80 00 1f be 200eb28 <rtems_barrier_create+0xa0>
200eab0: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
200eab4: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
200eab8: 02 80 00 1a be 200eb20 <rtems_barrier_create+0x98>
200eabc: b0 10 20 0a mov 0xa, %i0
200eac0: 03 00 80 85 sethi %hi(0x2021400), %g1
200eac4: c4 00 63 20 ld [ %g1 + 0x320 ], %g2 ! 2021720 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
200eac8: f4 27 bf fc st %i2, [ %fp + -4 ]
200eacc: 84 00 a0 01 inc %g2
200ead0: c4 20 63 20 st %g2, [ %g1 + 0x320 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
200ead4: 25 00 80 86 sethi %hi(0x2021800), %l2
200ead8: 7f ff ec 37 call 2009bb4 <_Objects_Allocate>
200eadc: 90 14 a1 a0 or %l2, 0x1a0, %o0 ! 20219a0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
200eae0: a2 92 20 00 orcc %o0, 0, %l1
200eae4: 02 80 00 1e be 200eb5c <rtems_barrier_create+0xd4> <== NEVER TAKEN
200eae8: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
200eaec: 92 07 bf f8 add %fp, -8, %o1
200eaf0: 40 00 02 43 call 200f3fc <_CORE_barrier_Initialize>
200eaf4: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
200eaf8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
200eafc: a4 14 a1 a0 or %l2, 0x1a0, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200eb00: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200eb04: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200eb08: 85 28 a0 02 sll %g2, 2, %g2
200eb0c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200eb10: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
200eb14: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
200eb18: 7f ff f1 06 call 200af30 <_Thread_Enable_dispatch>
200eb1c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
200eb20: 81 c7 e0 08 ret
200eb24: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
200eb28: 82 10 20 01 mov 1, %g1
200eb2c: c2 27 bf f8 st %g1, [ %fp + -8 ]
200eb30: 03 00 80 85 sethi %hi(0x2021400), %g1
200eb34: c4 00 63 20 ld [ %g1 + 0x320 ], %g2 ! 2021720 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
200eb38: f4 27 bf fc st %i2, [ %fp + -4 ]
200eb3c: 84 00 a0 01 inc %g2
200eb40: c4 20 63 20 st %g2, [ %g1 + 0x320 ]
200eb44: 25 00 80 86 sethi %hi(0x2021800), %l2
200eb48: 7f ff ec 1b call 2009bb4 <_Objects_Allocate>
200eb4c: 90 14 a1 a0 or %l2, 0x1a0, %o0 ! 20219a0 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
200eb50: a2 92 20 00 orcc %o0, 0, %l1
200eb54: 12 bf ff e6 bne 200eaec <rtems_barrier_create+0x64>
200eb58: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
200eb5c: 7f ff f0 f5 call 200af30 <_Thread_Enable_dispatch>
200eb60: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
200eb64: 81 c7 e0 08 ret
200eb68: 81 e8 00 00 restore
020072a4 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
20072a4: 9d e3 bf 98 save %sp, -104, %sp
20072a8: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
20072ac: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
20072b0: 40 00 01 89 call 20078d4 <_Chain_Get>
20072b4: 90 10 00 10 mov %l0, %o0
20072b8: 92 10 20 00 clr %o1
20072bc: a2 10 00 08 mov %o0, %l1
20072c0: 94 10 00 1a mov %i2, %o2
20072c4: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20072c8: 80 a4 60 00 cmp %l1, 0
20072cc: 12 80 00 0a bne 20072f4 <rtems_chain_get_with_wait+0x50>
20072d0: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
20072d4: 7f ff fc e3 call 2006660 <rtems_event_receive>
20072d8: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
20072dc: 80 a2 20 00 cmp %o0, 0
20072e0: 02 bf ff f4 be 20072b0 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
20072e4: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
20072e8: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
20072ec: 81 c7 e0 08 ret
20072f0: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20072f4: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
20072f8: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
20072fc: 81 c7 e0 08 ret
2007300: 91 e8 00 08 restore %g0, %o0, %o0
02007ea8 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2007ea8: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2007eac: 03 00 80 68 sethi %hi(0x201a000), %g1
2007eb0: c4 00 60 34 ld [ %g1 + 0x34 ], %g2 ! 201a034 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2007eb4: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
2007eb8: 03 00 80 68 sethi %hi(0x201a000), %g1
if ( rtems_interrupt_is_in_progress() )
2007ebc: 80 a0 a0 00 cmp %g2, 0
2007ec0: 12 80 00 42 bne 2007fc8 <rtems_io_register_driver+0x120>
2007ec4: c8 00 60 c4 ld [ %g1 + 0xc4 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
2007ec8: 80 a6 a0 00 cmp %i2, 0
2007ecc: 02 80 00 50 be 200800c <rtems_io_register_driver+0x164>
2007ed0: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
2007ed4: 80 a6 60 00 cmp %i1, 0
2007ed8: 02 80 00 4d be 200800c <rtems_io_register_driver+0x164>
2007edc: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007ee0: c4 06 40 00 ld [ %i1 ], %g2
2007ee4: 80 a0 a0 00 cmp %g2, 0
2007ee8: 22 80 00 46 be,a 2008000 <rtems_io_register_driver+0x158>
2007eec: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
2007ef0: 80 a1 00 18 cmp %g4, %i0
2007ef4: 08 80 00 33 bleu 2007fc0 <rtems_io_register_driver+0x118>
2007ef8: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2007efc: 05 00 80 67 sethi %hi(0x2019c00), %g2
2007f00: c8 00 a2 00 ld [ %g2 + 0x200 ], %g4 ! 2019e00 <_Thread_Dispatch_disable_level>
2007f04: 88 01 20 01 inc %g4
2007f08: c8 20 a2 00 st %g4, [ %g2 + 0x200 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
2007f0c: 80 a6 20 00 cmp %i0, 0
2007f10: 12 80 00 30 bne 2007fd0 <rtems_io_register_driver+0x128>
2007f14: 1b 00 80 68 sethi %hi(0x201a000), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
2007f18: c8 00 60 c4 ld [ %g1 + 0xc4 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2007f1c: 80 a1 20 00 cmp %g4, 0
2007f20: 22 80 00 3d be,a 2008014 <rtems_io_register_driver+0x16c><== NEVER TAKEN
2007f24: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
2007f28: 10 80 00 05 b 2007f3c <rtems_io_register_driver+0x94>
2007f2c: c2 03 60 c8 ld [ %o5 + 0xc8 ], %g1
2007f30: 80 a1 00 18 cmp %g4, %i0
2007f34: 08 80 00 0a bleu 2007f5c <rtems_io_register_driver+0xb4>
2007f38: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007f3c: c4 00 40 00 ld [ %g1 ], %g2
2007f40: 80 a0 a0 00 cmp %g2, 0
2007f44: 32 bf ff fb bne,a 2007f30 <rtems_io_register_driver+0x88>
2007f48: b0 06 20 01 inc %i0
2007f4c: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007f50: 80 a0 a0 00 cmp %g2, 0
2007f54: 32 bf ff f7 bne,a 2007f30 <rtems_io_register_driver+0x88>
2007f58: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
2007f5c: 80 a1 00 18 cmp %g4, %i0
2007f60: 02 80 00 2d be 2008014 <rtems_io_register_driver+0x16c>
2007f64: f0 26 80 00 st %i0, [ %i2 ]
2007f68: 83 2e 20 03 sll %i0, 3, %g1
2007f6c: 85 2e 20 05 sll %i0, 5, %g2
2007f70: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007f74: c8 03 60 c8 ld [ %o5 + 0xc8 ], %g4
2007f78: da 00 c0 00 ld [ %g3 ], %o5
2007f7c: 82 01 00 02 add %g4, %g2, %g1
2007f80: da 21 00 02 st %o5, [ %g4 + %g2 ]
2007f84: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2007f88: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007f8c: c4 20 60 04 st %g2, [ %g1 + 4 ]
2007f90: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2007f94: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2007f98: c4 20 60 08 st %g2, [ %g1 + 8 ]
2007f9c: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
2007fa0: c4 20 60 0c st %g2, [ %g1 + 0xc ]
2007fa4: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
2007fa8: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
2007fac: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
2007fb0: 40 00 08 4a call 200a0d8 <_Thread_Enable_dispatch>
2007fb4: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
2007fb8: 40 00 21 77 call 2010594 <rtems_io_initialize>
2007fbc: 81 e8 00 00 restore
}
2007fc0: 81 c7 e0 08 ret
2007fc4: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
2007fc8: 81 c7 e0 08 ret
2007fcc: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
2007fd0: c2 03 60 c8 ld [ %o5 + 0xc8 ], %g1
2007fd4: 89 2e 20 05 sll %i0, 5, %g4
2007fd8: 85 2e 20 03 sll %i0, 3, %g2
2007fdc: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2007fe0: c8 00 40 02 ld [ %g1 + %g2 ], %g4
2007fe4: 80 a1 20 00 cmp %g4, 0
2007fe8: 02 80 00 0f be 2008024 <rtems_io_register_driver+0x17c>
2007fec: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
2007ff0: 40 00 08 3a call 200a0d8 <_Thread_Enable_dispatch>
2007ff4: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
2007ff8: 81 c7 e0 08 ret
2007ffc: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008000: 80 a0 a0 00 cmp %g2, 0
2008004: 32 bf ff bc bne,a 2007ef4 <rtems_io_register_driver+0x4c>
2008008: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
200800c: 81 c7 e0 08 ret
2008010: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2008014: 40 00 08 31 call 200a0d8 <_Thread_Enable_dispatch>
2008018: b0 10 20 05 mov 5, %i0
return sc;
200801c: 81 c7 e0 08 ret
2008020: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008024: c2 00 60 04 ld [ %g1 + 4 ], %g1
2008028: 80 a0 60 00 cmp %g1, 0
200802c: 12 bf ff f1 bne 2007ff0 <rtems_io_register_driver+0x148>
2008030: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2008034: 10 bf ff d0 b 2007f74 <rtems_io_register_driver+0xcc>
2008038: f0 26 80 00 st %i0, [ %i2 ]
02009610 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2009610: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009614: 80 a6 20 00 cmp %i0, 0
2009618: 02 80 00 23 be 20096a4 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
200961c: 25 00 80 7c sethi %hi(0x201f000), %l2
2009620: a4 14 a1 6c or %l2, 0x16c, %l2 ! 201f16c <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009624: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
2009628: c2 04 80 00 ld [ %l2 ], %g1
200962c: 80 a0 60 00 cmp %g1, 0
2009630: 22 80 00 1a be,a 2009698 <rtems_iterate_over_all_threads+0x88>
2009634: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
2009638: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
200963c: 80 a4 60 00 cmp %l1, 0
2009640: 22 80 00 16 be,a 2009698 <rtems_iterate_over_all_threads+0x88>
2009644: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009648: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
200964c: 84 90 60 00 orcc %g1, 0, %g2
2009650: 22 80 00 12 be,a 2009698 <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
2009654: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
2009658: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
200965c: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
2009660: 83 2c 20 02 sll %l0, 2, %g1
2009664: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
2009668: 90 90 60 00 orcc %g1, 0, %o0
200966c: 02 80 00 05 be 2009680 <rtems_iterate_over_all_threads+0x70>
2009670: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
2009674: 9f c6 00 00 call %i0
2009678: 01 00 00 00 nop
200967c: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009680: 83 28 a0 10 sll %g2, 0x10, %g1
2009684: 83 30 60 10 srl %g1, 0x10, %g1
2009688: 80 a0 40 10 cmp %g1, %l0
200968c: 3a bf ff f5 bcc,a 2009660 <rtems_iterate_over_all_threads+0x50>
2009690: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
2009694: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
2009698: 80 a4 80 13 cmp %l2, %l3
200969c: 32 bf ff e4 bne,a 200962c <rtems_iterate_over_all_threads+0x1c>
20096a0: c2 04 80 00 ld [ %l2 ], %g1
20096a4: 81 c7 e0 08 ret
20096a8: 81 e8 00 00 restore
0200827c <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
200827c: 9d e3 bf a0 save %sp, -96, %sp
2008280: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
2008284: 80 a6 a0 00 cmp %i2, 0
2008288: 02 80 00 21 be 200830c <rtems_object_get_class_information+0x90>
200828c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
2008290: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
2008294: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
2008298: 40 00 07 75 call 200a06c <_Objects_Get_information>
200829c: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
20082a0: 80 a2 20 00 cmp %o0, 0
20082a4: 02 80 00 1a be 200830c <rtems_object_get_class_information+0x90>
20082a8: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20082ac: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
20082b0: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20082b4: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
20082b8: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20082bc: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
20082c0: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
20082c4: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
20082c8: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20082cc: 80 a1 20 00 cmp %g4, 0
20082d0: 02 80 00 0d be 2008304 <rtems_object_get_class_information+0x88><== NEVER TAKEN
20082d4: 84 10 20 00 clr %g2
20082d8: da 02 20 1c ld [ %o0 + 0x1c ], %o5
20082dc: 86 10 20 01 mov 1, %g3
20082e0: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
20082e4: 87 28 e0 02 sll %g3, 2, %g3
20082e8: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20082ec: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
20082f0: 80 a0 00 03 cmp %g0, %g3
20082f4: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
20082f8: 80 a1 00 01 cmp %g4, %g1
20082fc: 1a bf ff fa bcc 20082e4 <rtems_object_get_class_information+0x68>
2008300: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
2008304: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
2008308: b0 10 20 00 clr %i0
}
200830c: 81 c7 e0 08 ret
2008310: 81 e8 00 00 restore
02014058 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
2014058: 9d e3 bf a0 save %sp, -96, %sp
201405c: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2014060: 80 a4 20 00 cmp %l0, 0
2014064: 02 80 00 34 be 2014134 <rtems_partition_create+0xdc>
2014068: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
201406c: 80 a6 60 00 cmp %i1, 0
2014070: 02 80 00 31 be 2014134 <rtems_partition_create+0xdc>
2014074: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
2014078: 80 a7 60 00 cmp %i5, 0
201407c: 02 80 00 2e be 2014134 <rtems_partition_create+0xdc> <== NEVER TAKEN
2014080: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
2014084: 02 80 00 2e be 201413c <rtems_partition_create+0xe4>
2014088: 80 a6 a0 00 cmp %i2, 0
201408c: 02 80 00 2c be 201413c <rtems_partition_create+0xe4>
2014090: 80 a6 80 1b cmp %i2, %i3
2014094: 0a 80 00 28 bcs 2014134 <rtems_partition_create+0xdc>
2014098: b0 10 20 08 mov 8, %i0
201409c: 80 8e e0 07 btst 7, %i3
20140a0: 12 80 00 25 bne 2014134 <rtems_partition_create+0xdc>
20140a4: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
20140a8: 12 80 00 23 bne 2014134 <rtems_partition_create+0xdc>
20140ac: b0 10 20 09 mov 9, %i0
20140b0: 03 00 80 f3 sethi %hi(0x203cc00), %g1
20140b4: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 203cf70 <_Thread_Dispatch_disable_level>
20140b8: 84 00 a0 01 inc %g2
20140bc: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
20140c0: 25 00 80 f3 sethi %hi(0x203cc00), %l2
20140c4: 40 00 13 17 call 2018d20 <_Objects_Allocate>
20140c8: 90 14 a1 84 or %l2, 0x184, %o0 ! 203cd84 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
20140cc: a2 92 20 00 orcc %o0, 0, %l1
20140d0: 02 80 00 1d be 2014144 <rtems_partition_create+0xec>
20140d4: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
20140d8: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
20140dc: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
20140e0: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
20140e4: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
20140e8: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
20140ec: 40 00 63 8a call 202cf14 <.udiv>
20140f0: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20140f4: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
20140f8: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
20140fc: 96 10 00 1b mov %i3, %o3
2014100: b8 04 60 24 add %l1, 0x24, %i4
2014104: 40 00 0c d8 call 2017464 <_Chain_Initialize>
2014108: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
201410c: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014110: a4 14 a1 84 or %l2, 0x184, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014114: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014118: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
201411c: 85 28 a0 02 sll %g2, 2, %g2
2014120: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014124: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
2014128: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
201412c: 40 00 18 0e call 201a164 <_Thread_Enable_dispatch>
2014130: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2014134: 81 c7 e0 08 ret
2014138: 81 e8 00 00 restore
}
201413c: 81 c7 e0 08 ret
2014140: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
2014144: 40 00 18 08 call 201a164 <_Thread_Enable_dispatch>
2014148: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
201414c: 81 c7 e0 08 ret
2014150: 81 e8 00 00 restore
020076ec <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
20076ec: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
20076f0: 11 00 80 79 sethi %hi(0x201e400), %o0
20076f4: 92 10 00 18 mov %i0, %o1
20076f8: 90 12 20 84 or %o0, 0x84, %o0
20076fc: 40 00 09 6e call 2009cb4 <_Objects_Get>
2007700: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007704: c2 07 bf fc ld [ %fp + -4 ], %g1
2007708: 80 a0 60 00 cmp %g1, 0
200770c: 02 80 00 04 be 200771c <rtems_rate_monotonic_period+0x30>
2007710: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007714: 81 c7 e0 08 ret
2007718: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
200771c: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007720: 23 00 80 7a sethi %hi(0x201e800), %l1
2007724: a2 14 60 1c or %l1, 0x1c, %l1 ! 201e81c <_Per_CPU_Information>
2007728: c2 04 60 0c ld [ %l1 + 0xc ], %g1
200772c: 80 a0 80 01 cmp %g2, %g1
2007730: 02 80 00 06 be 2007748 <rtems_rate_monotonic_period+0x5c>
2007734: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
2007738: 40 00 0d 0c call 200ab68 <_Thread_Enable_dispatch>
200773c: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007740: 81 c7 e0 08 ret
2007744: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
2007748: 12 80 00 0f bne 2007784 <rtems_rate_monotonic_period+0x98>
200774c: 01 00 00 00 nop
switch ( the_period->state ) {
2007750: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007754: 80 a0 60 04 cmp %g1, 4
2007758: 08 80 00 06 bleu 2007770 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
200775c: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007760: 40 00 0d 02 call 200ab68 <_Thread_Enable_dispatch>
2007764: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007768: 81 c7 e0 08 ret
200776c: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
2007770: 83 28 60 02 sll %g1, 2, %g1
2007774: 05 00 80 71 sethi %hi(0x201c400), %g2
2007778: 84 10 a0 cc or %g2, 0xcc, %g2 ! 201c4cc <CSWTCH.2>
200777c: 10 bf ff f9 b 2007760 <rtems_rate_monotonic_period+0x74>
2007780: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
2007784: 7f ff ed a6 call 2002e1c <sparc_disable_interrupts>
2007788: 01 00 00 00 nop
200778c: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007790: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
2007794: 80 a4 a0 00 cmp %l2, 0
2007798: 02 80 00 14 be 20077e8 <rtems_rate_monotonic_period+0xfc>
200779c: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
20077a0: 02 80 00 29 be 2007844 <rtems_rate_monotonic_period+0x158>
20077a4: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
20077a8: 12 bf ff e6 bne 2007740 <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
20077ac: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
20077b0: 7f ff ff 8f call 20075ec <_Rate_monotonic_Update_statistics>
20077b4: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
20077b8: 7f ff ed 9d call 2002e2c <sparc_enable_interrupts>
20077bc: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20077c0: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20077c4: 92 04 20 10 add %l0, 0x10, %o1
20077c8: 11 00 80 79 sethi %hi(0x201e400), %o0
the_period->next_length = length;
20077cc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
20077d0: 90 12 22 b4 or %o0, 0x2b4, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
20077d4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20077d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20077dc: 40 00 11 27 call 200bc78 <_Watchdog_Insert>
20077e0: b0 10 20 06 mov 6, %i0
20077e4: 30 bf ff df b,a 2007760 <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
20077e8: 7f ff ed 91 call 2002e2c <sparc_enable_interrupts>
20077ec: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20077f0: 7f ff ff 63 call 200757c <_Rate_monotonic_Initiate_statistics>
20077f4: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20077f8: 82 10 20 02 mov 2, %g1
20077fc: 92 04 20 10 add %l0, 0x10, %o1
2007800: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
2007804: 11 00 80 79 sethi %hi(0x201e400), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007808: 03 00 80 1e sethi %hi(0x2007800), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200780c: 90 12 22 b4 or %o0, 0x2b4, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007810: 82 10 63 c0 or %g1, 0x3c0, %g1
the_watchdog->id = id;
2007814: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007818: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200781c: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
2007820: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
2007824: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007828: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200782c: 40 00 11 13 call 200bc78 <_Watchdog_Insert>
2007830: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007834: 40 00 0c cd call 200ab68 <_Thread_Enable_dispatch>
2007838: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
200783c: 81 c7 e0 08 ret
2007840: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007844: 7f ff ff 6a call 20075ec <_Rate_monotonic_Update_statistics>
2007848: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
200784c: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007850: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007854: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
2007858: 7f ff ed 75 call 2002e2c <sparc_enable_interrupts>
200785c: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007860: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007864: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007868: 90 10 00 01 mov %g1, %o0
200786c: 13 00 00 10 sethi %hi(0x4000), %o1
2007870: 40 00 0f 1d call 200b4e4 <_Thread_Set_state>
2007874: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007878: 7f ff ed 69 call 2002e1c <sparc_disable_interrupts>
200787c: 01 00 00 00 nop
local_state = the_period->state;
2007880: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
2007884: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
2007888: 7f ff ed 69 call 2002e2c <sparc_enable_interrupts>
200788c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007890: 80 a4 e0 03 cmp %l3, 3
2007894: 22 80 00 06 be,a 20078ac <rtems_rate_monotonic_period+0x1c0>
2007898: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
200789c: 40 00 0c b3 call 200ab68 <_Thread_Enable_dispatch>
20078a0: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
20078a4: 81 c7 e0 08 ret
20078a8: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
20078ac: 40 00 0b bc call 200a79c <_Thread_Clear_state>
20078b0: 13 00 00 10 sethi %hi(0x4000), %o1
20078b4: 30 bf ff fa b,a 200789c <rtems_rate_monotonic_period+0x1b0>
020078b8 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
20078b8: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
20078bc: 80 a6 60 00 cmp %i1, 0
20078c0: 02 80 00 4c be 20079f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
20078c4: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
20078c8: 13 00 80 71 sethi %hi(0x201c400), %o1
20078cc: 9f c6 40 00 call %i1
20078d0: 92 12 60 e0 or %o1, 0xe0, %o1 ! 201c4e0 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
20078d4: 90 10 00 18 mov %i0, %o0
20078d8: 13 00 80 71 sethi %hi(0x201c400), %o1
20078dc: 9f c6 40 00 call %i1
20078e0: 92 12 61 00 or %o1, 0x100, %o1 ! 201c500 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
20078e4: 90 10 00 18 mov %i0, %o0
20078e8: 13 00 80 71 sethi %hi(0x201c400), %o1
20078ec: 9f c6 40 00 call %i1
20078f0: 92 12 61 28 or %o1, 0x128, %o1 ! 201c528 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
20078f4: 90 10 00 18 mov %i0, %o0
20078f8: 13 00 80 71 sethi %hi(0x201c400), %o1
20078fc: 9f c6 40 00 call %i1
2007900: 92 12 61 50 or %o1, 0x150, %o1 ! 201c550 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007904: 90 10 00 18 mov %i0, %o0
2007908: 13 00 80 71 sethi %hi(0x201c400), %o1
200790c: 9f c6 40 00 call %i1
2007910: 92 12 61 a0 or %o1, 0x1a0, %o1 ! 201c5a0 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007914: 23 00 80 79 sethi %hi(0x201e400), %l1
2007918: a2 14 60 84 or %l1, 0x84, %l1 ! 201e484 <_Rate_monotonic_Information>
200791c: e0 04 60 08 ld [ %l1 + 8 ], %l0
2007920: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007924: 80 a4 00 01 cmp %l0, %g1
2007928: 18 80 00 32 bgu 20079f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
200792c: 2f 00 80 71 sethi %hi(0x201c400), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007930: 39 00 80 71 sethi %hi(0x201c400), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007934: 2b 00 80 6d sethi %hi(0x201b400), %l5
2007938: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
200793c: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007940: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007944: ae 15 e1 f0 or %l7, 0x1f0, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
2007948: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
200794c: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
2007950: b8 17 22 08 or %i4, 0x208, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
2007954: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007958: 10 80 00 06 b 2007970 <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
200795c: aa 15 63 e8 or %l5, 0x3e8, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007960: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007964: 80 a0 40 10 cmp %g1, %l0
2007968: 0a 80 00 22 bcs 20079f0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
200796c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007970: 90 10 00 10 mov %l0, %o0
2007974: 40 00 19 10 call 200ddb4 <rtems_rate_monotonic_get_statistics>
2007978: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
200797c: 80 a2 20 00 cmp %o0, 0
2007980: 32 bf ff f8 bne,a 2007960 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2007984: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007988: 92 10 00 1d mov %i5, %o1
200798c: 40 00 19 39 call 200de70 <rtems_rate_monotonic_get_status>
2007990: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007994: d0 07 bf d8 ld [ %fp + -40 ], %o0
2007998: 94 10 00 13 mov %l3, %o2
200799c: 40 00 00 b9 call 2007c80 <rtems_object_get_name>
20079a0: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
20079a4: d8 1f bf a0 ldd [ %fp + -96 ], %o4
20079a8: 92 10 00 17 mov %l7, %o1
20079ac: 94 10 00 10 mov %l0, %o2
20079b0: 90 10 00 18 mov %i0, %o0
20079b4: 9f c6 40 00 call %i1
20079b8: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20079bc: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20079c0: 94 10 00 14 mov %l4, %o2
20079c4: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
20079c8: 80 a0 60 00 cmp %g1, 0
20079cc: 12 80 00 0b bne 20079f8 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
20079d0: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
20079d4: 9f c6 40 00 call %i1
20079d8: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20079dc: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
20079e0: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
20079e4: 80 a0 40 10 cmp %g1, %l0
20079e8: 1a bf ff e3 bcc 2007974 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
20079ec: 90 10 00 10 mov %l0, %o0
20079f0: 81 c7 e0 08 ret
20079f4: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
20079f8: 40 00 0f 64 call 200b788 <_Timespec_Divide_by_integer>
20079fc: 92 10 00 01 mov %g1, %o1
(*print)( context,
2007a00: d0 07 bf ac ld [ %fp + -84 ], %o0
2007a04: 40 00 47 10 call 2019644 <.div>
2007a08: 92 10 23 e8 mov 0x3e8, %o1
2007a0c: 96 10 00 08 mov %o0, %o3
2007a10: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007a14: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007a18: 40 00 47 0b call 2019644 <.div>
2007a1c: 92 10 23 e8 mov 0x3e8, %o1
2007a20: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007a24: b6 10 00 08 mov %o0, %i3
2007a28: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007a2c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007a30: 40 00 47 05 call 2019644 <.div>
2007a34: 92 10 23 e8 mov 0x3e8, %o1
2007a38: d8 07 bf b0 ld [ %fp + -80 ], %o4
2007a3c: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007a40: d4 07 bf a8 ld [ %fp + -88 ], %o2
2007a44: 9a 10 00 1b mov %i3, %o5
2007a48: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007a4c: 92 10 00 1c mov %i4, %o1
2007a50: 9f c6 40 00 call %i1
2007a54: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2007a58: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007a5c: 94 10 00 14 mov %l4, %o2
2007a60: 40 00 0f 4a call 200b788 <_Timespec_Divide_by_integer>
2007a64: 90 10 00 1a mov %i2, %o0
(*print)( context,
2007a68: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007a6c: 40 00 46 f6 call 2019644 <.div>
2007a70: 92 10 23 e8 mov 0x3e8, %o1
2007a74: 96 10 00 08 mov %o0, %o3
2007a78: d0 07 bf cc ld [ %fp + -52 ], %o0
2007a7c: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007a80: 40 00 46 f1 call 2019644 <.div>
2007a84: 92 10 23 e8 mov 0x3e8, %o1
2007a88: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007a8c: b6 10 00 08 mov %o0, %i3
2007a90: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007a94: 92 10 23 e8 mov 0x3e8, %o1
2007a98: 40 00 46 eb call 2019644 <.div>
2007a9c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007aa0: d4 07 bf c0 ld [ %fp + -64 ], %o2
2007aa4: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007aa8: d8 07 bf c8 ld [ %fp + -56 ], %o4
2007aac: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007ab0: 13 00 80 71 sethi %hi(0x201c400), %o1
2007ab4: 90 10 00 18 mov %i0, %o0
2007ab8: 92 12 62 28 or %o1, 0x228, %o1
2007abc: 9f c6 40 00 call %i1
2007ac0: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007ac4: 10 bf ff a7 b 2007960 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2007ac8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
02007ae8 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
2007ae8: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2007aec: 03 00 80 79 sethi %hi(0x201e400), %g1
2007af0: c4 00 61 f0 ld [ %g1 + 0x1f0 ], %g2 ! 201e5f0 <_Thread_Dispatch_disable_level>
2007af4: 84 00 a0 01 inc %g2
2007af8: c4 20 61 f0 st %g2, [ %g1 + 0x1f0 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007afc: 23 00 80 79 sethi %hi(0x201e400), %l1
2007b00: a2 14 60 84 or %l1, 0x84, %l1 ! 201e484 <_Rate_monotonic_Information>
2007b04: e0 04 60 08 ld [ %l1 + 8 ], %l0
2007b08: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007b0c: 80 a4 00 01 cmp %l0, %g1
2007b10: 18 80 00 09 bgu 2007b34 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
2007b14: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
2007b18: 40 00 00 0a call 2007b40 <rtems_rate_monotonic_reset_statistics>
2007b1c: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007b20: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007b24: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007b28: 80 a0 40 10 cmp %g1, %l0
2007b2c: 1a bf ff fb bcc 2007b18 <rtems_rate_monotonic_reset_all_statistics+0x30>
2007b30: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2007b34: 40 00 0c 0d call 200ab68 <_Thread_Enable_dispatch>
2007b38: 81 e8 00 00 restore
02015678 <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
2015678: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
201567c: 80 a6 60 00 cmp %i1, 0
2015680: 12 80 00 04 bne 2015690 <rtems_signal_send+0x18>
2015684: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015688: 81 c7 e0 08 ret
201568c: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
2015690: 90 10 00 18 mov %i0, %o0
2015694: 40 00 12 c2 call 201a19c <_Thread_Get>
2015698: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
201569c: c2 07 bf fc ld [ %fp + -4 ], %g1
20156a0: 80 a0 60 00 cmp %g1, 0
20156a4: 02 80 00 05 be 20156b8 <rtems_signal_send+0x40>
20156a8: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20156ac: 82 10 20 04 mov 4, %g1
}
20156b0: 81 c7 e0 08 ret
20156b4: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20156b8: e0 02 21 58 ld [ %o0 + 0x158 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20156bc: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20156c0: 80 a0 60 00 cmp %g1, 0
20156c4: 02 80 00 25 be 2015758 <rtems_signal_send+0xe0>
20156c8: 01 00 00 00 nop
if ( asr->is_enabled ) {
20156cc: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
20156d0: 80 a0 60 00 cmp %g1, 0
20156d4: 02 80 00 15 be 2015728 <rtems_signal_send+0xb0>
20156d8: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
20156dc: 7f ff e6 41 call 200efe0 <sparc_disable_interrupts>
20156e0: 01 00 00 00 nop
*signal_set |= signals;
20156e4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
20156e8: b2 10 40 19 or %g1, %i1, %i1
20156ec: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
20156f0: 7f ff e6 40 call 200eff0 <sparc_enable_interrupts>
20156f4: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
20156f8: 03 00 80 f4 sethi %hi(0x203d000), %g1
20156fc: 82 10 61 a4 or %g1, 0x1a4, %g1 ! 203d1a4 <_Per_CPU_Information>
2015700: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015704: 80 a0 a0 00 cmp %g2, 0
2015708: 02 80 00 0f be 2015744 <rtems_signal_send+0xcc>
201570c: 01 00 00 00 nop
2015710: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015714: 80 a4 40 02 cmp %l1, %g2
2015718: 12 80 00 0b bne 2015744 <rtems_signal_send+0xcc> <== NEVER TAKEN
201571c: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015720: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015724: 30 80 00 08 b,a 2015744 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015728: 7f ff e6 2e call 200efe0 <sparc_disable_interrupts>
201572c: 01 00 00 00 nop
*signal_set |= signals;
2015730: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2015734: b2 10 40 19 or %g1, %i1, %i1
2015738: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
201573c: 7f ff e6 2d call 200eff0 <sparc_enable_interrupts>
2015740: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015744: 40 00 12 88 call 201a164 <_Thread_Enable_dispatch>
2015748: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
201574c: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015750: 81 c7 e0 08 ret
2015754: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
2015758: 40 00 12 83 call 201a164 <_Thread_Enable_dispatch>
201575c: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
2015760: 10 bf ff ca b 2015688 <rtems_signal_send+0x10>
2015764: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
0200deb4 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200deb4: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200deb8: 80 a6 a0 00 cmp %i2, 0
200debc: 02 80 00 43 be 200dfc8 <rtems_task_mode+0x114>
200dec0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200dec4: 27 00 80 57 sethi %hi(0x2015c00), %l3
200dec8: a6 14 e1 fc or %l3, 0x1fc, %l3 ! 2015dfc <_Per_CPU_Information>
200decc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200ded0: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200ded4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200ded8: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200dedc: e2 04 21 58 ld [ %l0 + 0x158 ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200dee0: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200dee4: 80 a0 60 00 cmp %g1, 0
200dee8: 12 80 00 3a bne 200dfd0 <rtems_task_mode+0x11c>
200deec: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200def0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
200def4: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200def8: 7f ff f1 24 call 200a388 <_CPU_ISR_Get_level>
200defc: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200df00: a9 2d 20 0a sll %l4, 0xa, %l4
200df04: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
200df08: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200df0c: 80 8e 61 00 btst 0x100, %i1
200df10: 02 80 00 06 be 200df28 <rtems_task_mode+0x74>
200df14: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200df18: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200df1c: 80 a0 00 01 cmp %g0, %g1
200df20: 82 60 3f ff subx %g0, -1, %g1
200df24: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200df28: 80 8e 62 00 btst 0x200, %i1
200df2c: 02 80 00 0b be 200df58 <rtems_task_mode+0xa4>
200df30: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200df34: 80 8e 22 00 btst 0x200, %i0
200df38: 22 80 00 07 be,a 200df54 <rtems_task_mode+0xa0>
200df3c: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200df40: 03 00 80 56 sethi %hi(0x2015800), %g1
200df44: c2 00 63 34 ld [ %g1 + 0x334 ], %g1 ! 2015b34 <_Thread_Ticks_per_timeslice>
200df48: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200df4c: 82 10 20 01 mov 1, %g1
200df50: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200df54: 80 8e 60 0f btst 0xf, %i1
200df58: 12 80 00 3d bne 200e04c <rtems_task_mode+0x198>
200df5c: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200df60: 80 8e 64 00 btst 0x400, %i1
200df64: 02 80 00 14 be 200dfb4 <rtems_task_mode+0x100>
200df68: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200df6c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200df70: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200df74: 80 a0 00 18 cmp %g0, %i0
200df78: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200df7c: 80 a0 80 01 cmp %g2, %g1
200df80: 22 80 00 0e be,a 200dfb8 <rtems_task_mode+0x104>
200df84: 03 00 80 57 sethi %hi(0x2015c00), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200df88: 7f ff cf fd call 2001f7c <sparc_disable_interrupts>
200df8c: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
200df90: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
200df94: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
200df98: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200df9c: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200dfa0: 7f ff cf fb call 2001f8c <sparc_enable_interrupts>
200dfa4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200dfa8: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200dfac: 80 a0 00 01 cmp %g0, %g1
200dfb0: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200dfb4: 03 00 80 57 sethi %hi(0x2015c00), %g1
200dfb8: c4 00 61 2c ld [ %g1 + 0x12c ], %g2 ! 2015d2c <_System_state_Current>
200dfbc: 80 a0 a0 03 cmp %g2, 3
200dfc0: 02 80 00 11 be 200e004 <rtems_task_mode+0x150>
200dfc4: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
200dfc8: 81 c7 e0 08 ret
200dfcc: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200dfd0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200dfd4: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200dfd8: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200dfdc: 7f ff f0 eb call 200a388 <_CPU_ISR_Get_level>
200dfe0: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200dfe4: a9 2d 20 0a sll %l4, 0xa, %l4
200dfe8: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
200dfec: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200dff0: 80 8e 61 00 btst 0x100, %i1
200dff4: 02 bf ff cd be 200df28 <rtems_task_mode+0x74>
200dff8: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200dffc: 10 bf ff c8 b 200df1c <rtems_task_mode+0x68>
200e000: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
200e004: 80 88 e0 ff btst 0xff, %g3
200e008: 12 80 00 0a bne 200e030 <rtems_task_mode+0x17c>
200e00c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
200e010: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
200e014: 80 a0 80 03 cmp %g2, %g3
200e018: 02 bf ff ec be 200dfc8 <rtems_task_mode+0x114>
200e01c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200e020: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200e024: 80 a0 a0 00 cmp %g2, 0
200e028: 02 bf ff e8 be 200dfc8 <rtems_task_mode+0x114> <== NEVER TAKEN
200e02c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200e030: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
200e034: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200e038: 7f ff ea fd call 2008c2c <_Thread_Dispatch>
200e03c: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200e040: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e044: 81 c7 e0 08 ret
200e048: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e04c: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e050: 7f ff cf cf call 2001f8c <sparc_enable_interrupts>
200e054: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e058: 10 bf ff c3 b 200df64 <rtems_task_mode+0xb0>
200e05c: 80 8e 64 00 btst 0x400, %i1
0200b37c <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200b37c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200b380: 80 a6 60 00 cmp %i1, 0
200b384: 02 80 00 07 be 200b3a0 <rtems_task_set_priority+0x24>
200b388: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200b38c: 03 00 80 66 sethi %hi(0x2019800), %g1
200b390: c2 08 62 f4 ldub [ %g1 + 0x2f4 ], %g1 ! 2019af4 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200b394: 80 a6 40 01 cmp %i1, %g1
200b398: 18 80 00 1c bgu 200b408 <rtems_task_set_priority+0x8c>
200b39c: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200b3a0: 80 a6 a0 00 cmp %i2, 0
200b3a4: 02 80 00 19 be 200b408 <rtems_task_set_priority+0x8c>
200b3a8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200b3ac: 40 00 09 bb call 200da98 <_Thread_Get>
200b3b0: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200b3b4: c2 07 bf fc ld [ %fp + -4 ], %g1
200b3b8: 80 a0 60 00 cmp %g1, 0
200b3bc: 12 80 00 13 bne 200b408 <rtems_task_set_priority+0x8c>
200b3c0: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200b3c4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200b3c8: 80 a6 60 00 cmp %i1, 0
200b3cc: 02 80 00 0d be 200b400 <rtems_task_set_priority+0x84>
200b3d0: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200b3d4: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200b3d8: 80 a0 60 00 cmp %g1, 0
200b3dc: 02 80 00 06 be 200b3f4 <rtems_task_set_priority+0x78>
200b3e0: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200b3e4: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200b3e8: 80 a6 40 01 cmp %i1, %g1
200b3ec: 1a 80 00 05 bcc 200b400 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200b3f0: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200b3f4: 92 10 00 19 mov %i1, %o1
200b3f8: 40 00 08 5d call 200d56c <_Thread_Change_priority>
200b3fc: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200b400: 40 00 09 98 call 200da60 <_Thread_Enable_dispatch>
200b404: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200b408: 81 c7 e0 08 ret
200b40c: 81 e8 00 00 restore
02007730 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
2007730: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
2007734: 80 a6 60 00 cmp %i1, 0
2007738: 02 80 00 1e be 20077b0 <rtems_task_variable_delete+0x80>
200773c: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
2007740: 90 10 00 18 mov %i0, %o0
2007744: 40 00 09 43 call 2009c50 <_Thread_Get>
2007748: 92 07 bf fc add %fp, -4, %o1
switch (location) {
200774c: c2 07 bf fc ld [ %fp + -4 ], %g1
2007750: 80 a0 60 00 cmp %g1, 0
2007754: 12 80 00 19 bne 20077b8 <rtems_task_variable_delete+0x88>
2007758: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
200775c: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007760: 80 a0 60 00 cmp %g1, 0
2007764: 02 80 00 10 be 20077a4 <rtems_task_variable_delete+0x74>
2007768: 01 00 00 00 nop
if (tvp->ptr == ptr) {
200776c: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007770: 80 a0 80 19 cmp %g2, %i1
2007774: 32 80 00 09 bne,a 2007798 <rtems_task_variable_delete+0x68>
2007778: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
200777c: 10 80 00 19 b 20077e0 <rtems_task_variable_delete+0xb0>
2007780: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2007784: 80 a0 80 19 cmp %g2, %i1
2007788: 22 80 00 0e be,a 20077c0 <rtems_task_variable_delete+0x90>
200778c: c4 02 40 00 ld [ %o1 ], %g2
2007790: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
2007794: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
2007798: 80 a2 60 00 cmp %o1, 0
200779c: 32 bf ff fa bne,a 2007784 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
20077a0: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
20077a4: 40 00 09 1d call 2009c18 <_Thread_Enable_dispatch>
20077a8: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
20077ac: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20077b0: 81 c7 e0 08 ret
20077b4: 91 e8 00 01 restore %g0, %g1, %o0
20077b8: 81 c7 e0 08 ret
20077bc: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
20077c0: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
20077c4: 40 00 00 2e call 200787c <_RTEMS_Tasks_Invoke_task_variable_dtor>
20077c8: 01 00 00 00 nop
_Thread_Enable_dispatch();
20077cc: 40 00 09 13 call 2009c18 <_Thread_Enable_dispatch>
20077d0: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20077d4: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20077d8: 81 c7 e0 08 ret
20077dc: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
20077e0: 92 10 00 01 mov %g1, %o1
20077e4: 10 bf ff f8 b 20077c4 <rtems_task_variable_delete+0x94>
20077e8: c4 22 21 64 st %g2, [ %o0 + 0x164 ]
020077ec <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
20077ec: 9d e3 bf 98 save %sp, -104, %sp
20077f0: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
20077f4: 80 a6 60 00 cmp %i1, 0
20077f8: 02 80 00 1b be 2007864 <rtems_task_variable_get+0x78>
20077fc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
2007800: 80 a6 a0 00 cmp %i2, 0
2007804: 02 80 00 1c be 2007874 <rtems_task_variable_get+0x88>
2007808: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
200780c: 40 00 09 11 call 2009c50 <_Thread_Get>
2007810: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007814: c2 07 bf fc ld [ %fp + -4 ], %g1
2007818: 80 a0 60 00 cmp %g1, 0
200781c: 12 80 00 12 bne 2007864 <rtems_task_variable_get+0x78>
2007820: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
2007824: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007828: 80 a0 60 00 cmp %g1, 0
200782c: 32 80 00 07 bne,a 2007848 <rtems_task_variable_get+0x5c>
2007830: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007834: 30 80 00 0e b,a 200786c <rtems_task_variable_get+0x80>
2007838: 80 a0 60 00 cmp %g1, 0
200783c: 02 80 00 0c be 200786c <rtems_task_variable_get+0x80> <== NEVER TAKEN
2007840: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007844: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007848: 80 a0 80 19 cmp %g2, %i1
200784c: 32 bf ff fb bne,a 2007838 <rtems_task_variable_get+0x4c>
2007850: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
2007854: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
2007858: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
200785c: 40 00 08 ef call 2009c18 <_Thread_Enable_dispatch>
2007860: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2007864: 81 c7 e0 08 ret
2007868: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
200786c: 40 00 08 eb call 2009c18 <_Thread_Enable_dispatch>
2007870: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
2007874: 81 c7 e0 08 ret
2007878: 81 e8 00 00 restore
020160d4 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
20160d4: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
20160d8: 11 00 80 f4 sethi %hi(0x203d000), %o0
20160dc: 92 10 00 18 mov %i0, %o1
20160e0: 90 12 22 34 or %o0, 0x234, %o0
20160e4: 40 00 0c 73 call 20192b0 <_Objects_Get>
20160e8: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20160ec: c2 07 bf fc ld [ %fp + -4 ], %g1
20160f0: 80 a0 60 00 cmp %g1, 0
20160f4: 22 80 00 04 be,a 2016104 <rtems_timer_cancel+0x30>
20160f8: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20160fc: 81 c7 e0 08 ret
2016100: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2016104: 80 a0 60 04 cmp %g1, 4
2016108: 02 80 00 04 be 2016118 <rtems_timer_cancel+0x44> <== NEVER TAKEN
201610c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2016110: 40 00 15 1d call 201b584 <_Watchdog_Remove>
2016114: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016118: 40 00 10 13 call 201a164 <_Thread_Enable_dispatch>
201611c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2016120: 81 c7 e0 08 ret
2016124: 81 e8 00 00 restore
020165ec <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20165ec: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
20165f0: 03 00 80 f4 sethi %hi(0x203d000), %g1
20165f4: e0 00 62 74 ld [ %g1 + 0x274 ], %l0 ! 203d274 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
20165f8: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
20165fc: 80 a4 20 00 cmp %l0, 0
2016600: 02 80 00 10 be 2016640 <rtems_timer_server_fire_when+0x54>
2016604: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2016608: 03 00 80 f3 sethi %hi(0x203cc00), %g1
201660c: c2 08 63 80 ldub [ %g1 + 0x380 ], %g1 ! 203cf80 <_TOD_Is_set>
2016610: 80 a0 60 00 cmp %g1, 0
2016614: 02 80 00 0b be 2016640 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
2016618: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
201661c: 80 a6 a0 00 cmp %i2, 0
2016620: 02 80 00 08 be 2016640 <rtems_timer_server_fire_when+0x54>
2016624: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2016628: 90 10 00 19 mov %i1, %o0
201662c: 7f ff f3 b3 call 20134f8 <_TOD_Validate>
2016630: b0 10 20 14 mov 0x14, %i0
2016634: 80 8a 20 ff btst 0xff, %o0
2016638: 12 80 00 04 bne 2016648 <rtems_timer_server_fire_when+0x5c>
201663c: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016640: 81 c7 e0 08 ret
2016644: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2016648: 7f ff f3 76 call 2013420 <_TOD_To_seconds>
201664c: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
2016650: 25 00 80 f3 sethi %hi(0x203cc00), %l2
2016654: c2 04 a3 fc ld [ %l2 + 0x3fc ], %g1 ! 203cffc <_TOD_Now>
2016658: 80 a2 00 01 cmp %o0, %g1
201665c: 08 bf ff f9 bleu 2016640 <rtems_timer_server_fire_when+0x54>
2016660: b2 10 00 08 mov %o0, %i1
2016664: 92 10 00 11 mov %l1, %o1
2016668: 11 00 80 f4 sethi %hi(0x203d000), %o0
201666c: 94 07 bf fc add %fp, -4, %o2
2016670: 40 00 0b 10 call 20192b0 <_Objects_Get>
2016674: 90 12 22 34 or %o0, 0x234, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016678: c2 07 bf fc ld [ %fp + -4 ], %g1
201667c: 80 a0 60 00 cmp %g1, 0
2016680: 12 80 00 16 bne 20166d8 <rtems_timer_server_fire_when+0xec>
2016684: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
2016688: 40 00 13 bf call 201b584 <_Watchdog_Remove>
201668c: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016690: c4 04 a3 fc ld [ %l2 + 0x3fc ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016694: c2 04 20 04 ld [ %l0 + 4 ], %g1
2016698: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201669c: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
20166a0: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20166a4: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20166a8: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
20166ac: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
20166b0: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
20166b4: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20166b8: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20166bc: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
20166c0: 9f c0 40 00 call %g1
20166c4: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
20166c8: 40 00 0e a7 call 201a164 <_Thread_Enable_dispatch>
20166cc: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20166d0: 81 c7 e0 08 ret
20166d4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20166d8: 81 c7 e0 08 ret
20166dc: 91 e8 20 04 restore %g0, 4, %o0