=============================================================================== 02006f20 <_API_extensions_Run_postdriver>: * * _API_extensions_Run_postdriver */ void _API_extensions_Run_postdriver( void ) { 2006f20: 9d e3 bf a0 save %sp, -96, %sp the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); } } 2006f24: 23 00 80 58 sethi %hi(0x2016000), %l1 2006f28: e0 04 60 64 ld [ %l1 + 0x64 ], %l0 ! 2016064 <_API_extensions_List> 2006f2c: a2 14 60 64 or %l1, 0x64, %l1 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006f30: a2 04 60 04 add %l1, 4, %l1 2006f34: 80 a4 00 11 cmp %l0, %l1 2006f38: 02 80 00 09 be 2006f5c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 2006f3c: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 2006f40: c2 04 20 08 ld [ %l0 + 8 ], %g1 2006f44: 9f c0 40 00 call %g1 2006f48: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2006f4c: e0 04 00 00 ld [ %l0 ], %l0 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006f50: 80 a4 00 11 cmp %l0, %l1 2006f54: 32 bf ff fc bne,a 2006f44 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2006f58: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED 2006f5c: 81 c7 e0 08 ret 2006f60: 81 e8 00 00 restore =============================================================================== 02006f64 <_API_extensions_Run_postswitch>: * * _API_extensions_Run_postswitch */ void _API_extensions_Run_postswitch( void ) { 2006f64: 9d e3 bf a0 save %sp, -96, %sp the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); } } 2006f68: 23 00 80 58 sethi %hi(0x2016000), %l1 2006f6c: e0 04 60 64 ld [ %l1 + 0x64 ], %l0 ! 2016064 <_API_extensions_List> 2006f70: a2 14 60 64 or %l1, 0x64, %l1 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006f74: a2 04 60 04 add %l1, 4, %l1 2006f78: 80 a4 00 11 cmp %l0, %l1 2006f7c: 02 80 00 0a be 2006fa4 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN 2006f80: 25 00 80 58 sethi %hi(0x2016000), %l2 2006f84: a4 14 a0 9c or %l2, 0x9c, %l2 ! 201609c <_Per_CPU_Information> !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); 2006f88: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2006f8c: 9f c0 40 00 call %g1 2006f90: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2006f94: e0 04 00 00 ld [ %l0 ], %l0 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _Chain_First( &_API_extensions_List ); 2006f98: 80 a4 00 11 cmp %l0, %l1 2006f9c: 32 bf ff fc bne,a 2006f8c <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN 2006fa0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED 2006fa4: 81 c7 e0 08 ret 2006fa8: 81 e8 00 00 restore =============================================================================== 020175cc <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 20175cc: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 20175d0: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 20175d4: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 20175d8: 80 a0 40 1a cmp %g1, %i2 20175dc: 0a 80 00 17 bcs 2017638 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN 20175e0: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 20175e4: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 20175e8: 80 a0 60 00 cmp %g1, 0 20175ec: 02 80 00 0a be 2017614 <_CORE_message_queue_Broadcast+0x48> 20175f0: a4 10 20 00 clr %l2 *count = 0; 20175f4: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 20175f8: 81 c7 e0 08 ret 20175fc: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 2017600: d0 04 60 2c ld [ %l1 + 0x2c ], %o0 2017604: 40 00 23 97 call 2020460 2017608: a4 04 a0 01 inc %l2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 201760c: c2 04 60 28 ld [ %l1 + 0x28 ], %g1 2017610: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 2017614: 40 00 0b a9 call 201a4b8 <_Thread_queue_Dequeue> 2017618: 90 10 00 10 mov %l0, %o0 201761c: 92 10 00 19 mov %i1, %o1 2017620: a2 10 00 08 mov %o0, %l1 2017624: 80 a2 20 00 cmp %o0, 0 2017628: 12 bf ff f6 bne 2017600 <_CORE_message_queue_Broadcast+0x34> 201762c: 94 10 00 1a mov %i2, %o2 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 2017630: e4 27 40 00 st %l2, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 2017634: b0 10 20 00 clr %i0 } 2017638: 81 c7 e0 08 ret 201763c: 81 e8 00 00 restore =============================================================================== 02010e74 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010e74: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2010e78: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010e7c: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; the_message_queue->maximum_message_size = maximum_message_size; 2010e80: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010e84: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2010e88: 80 8e e0 03 btst 3, %i3 2010e8c: 02 80 00 07 be 2010ea8 <_CORE_message_queue_Initialize+0x34> 2010e90: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 2010e94: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 2010e98: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 2010e9c: 80 a6 c0 12 cmp %i3, %l2 2010ea0: 18 80 00 22 bgu 2010f28 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 2010ea4: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 2010ea8: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 2010eac: 92 10 00 1a mov %i2, %o1 2010eb0: 90 10 00 11 mov %l1, %o0 2010eb4: 40 00 3f bd call 2020da8 <.umul> 2010eb8: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 2010ebc: 80 a2 00 12 cmp %o0, %l2 2010ec0: 0a 80 00 1a bcs 2010f28 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 2010ec4: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010ec8: 40 00 0c b3 call 2014194 <_Workspace_Allocate> 2010ecc: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010ed0: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010ed4: 80 a2 20 00 cmp %o0, 0 2010ed8: 02 80 00 14 be 2010f28 <_CORE_message_queue_Initialize+0xb4> 2010edc: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010ee0: 90 04 20 60 add %l0, 0x60, %o0 2010ee4: 94 10 00 1a mov %i2, %o2 2010ee8: 40 00 15 98 call 2016548 <_Chain_Initialize> 2010eec: 96 10 00 11 mov %l1, %o3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 2010ef0: 82 04 20 50 add %l0, 0x50, %g1 Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; 2010ef4: c0 24 20 54 clr [ %l0 + 0x54 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2010ef8: 84 04 20 54 add %l0, 0x54, %g2 head->next = tail; head->previous = NULL; tail->previous = head; 2010efc: c2 24 20 58 st %g1, [ %l0 + 0x58 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2010f00: c4 24 20 50 st %g2, [ %l0 + 0x50 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010f04: c2 06 40 00 ld [ %i1 ], %g1 THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO, STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; 2010f08: b0 10 20 01 mov 1, %i0 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010f0c: 82 18 60 01 xor %g1, 1, %g1 2010f10: 80 a0 00 01 cmp %g0, %g1 2010f14: 90 10 00 10 mov %l0, %o0 2010f18: 94 10 20 80 mov 0x80, %o2 2010f1c: 92 60 3f ff subx %g0, -1, %o1 2010f20: 40 00 09 cc call 2013650 <_Thread_queue_Initialize> 2010f24: 96 10 20 06 mov 6, %o3 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010f28: 81 c7 e0 08 ret 2010f2c: 81 e8 00 00 restore =============================================================================== 020072b0 <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 20072b0: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 20072b4: 21 00 80 57 sethi %hi(0x2015c00), %l0 20072b8: c2 04 22 40 ld [ %l0 + 0x240 ], %g1 ! 2015e40 <_Thread_Dispatch_disable_level> 20072bc: 80 a0 60 00 cmp %g1, 0 20072c0: 02 80 00 05 be 20072d4 <_CORE_mutex_Seize+0x24> 20072c4: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 20072c8: 80 8e a0 ff btst 0xff, %i2 20072cc: 12 80 00 1a bne 2007334 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN 20072d0: 03 00 80 57 sethi %hi(0x2015c00), %g1 20072d4: 90 10 00 18 mov %i0, %o0 20072d8: 40 00 14 b8 call 200c5b8 <_CORE_mutex_Seize_interrupt_trylock> 20072dc: 92 07 a0 54 add %fp, 0x54, %o1 20072e0: 80 a2 20 00 cmp %o0, 0 20072e4: 02 80 00 12 be 200732c <_CORE_mutex_Seize+0x7c> 20072e8: 80 8e a0 ff btst 0xff, %i2 20072ec: 02 80 00 1a be 2007354 <_CORE_mutex_Seize+0xa4> 20072f0: 01 00 00 00 nop 20072f4: c4 04 22 40 ld [ %l0 + 0x240 ], %g2 20072f8: 03 00 80 58 sethi %hi(0x2016000), %g1 20072fc: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc> RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 2007300: 86 10 20 01 mov 1, %g3 2007304: c6 26 20 30 st %g3, [ %i0 + 0x30 ] 2007308: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 200730c: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 2007310: 82 00 a0 01 add %g2, 1, %g1 2007314: c2 24 22 40 st %g1, [ %l0 + 0x240 ] 2007318: 7f ff eb e3 call 20022a4 200731c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2007320: 90 10 00 18 mov %i0, %o0 2007324: 7f ff ff c0 call 2007224 <_CORE_mutex_Seize_interrupt_blocking> 2007328: 92 10 00 1b mov %i3, %o1 200732c: 81 c7 e0 08 ret 2007330: 81 e8 00 00 restore 2007334: c2 00 63 bc ld [ %g1 + 0x3bc ], %g1 2007338: 80 a0 60 01 cmp %g1, 1 200733c: 28 bf ff e7 bleu,a 20072d8 <_CORE_mutex_Seize+0x28> 2007340: 90 10 00 18 mov %i0, %o0 2007344: 90 10 20 00 clr %o0 2007348: 92 10 20 00 clr %o1 200734c: 40 00 01 dc call 2007abc <_Internal_error_Occurred> 2007350: 94 10 20 12 mov 0x12, %o2 2007354: 7f ff eb d4 call 20022a4 2007358: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 200735c: 03 00 80 58 sethi %hi(0x2016000), %g1 2007360: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc> 2007364: 84 10 20 01 mov 1, %g2 2007368: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 200736c: 81 c7 e0 08 ret 2007370: 81 e8 00 00 restore =============================================================================== 0200c5b8 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 200c5b8: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 200c5bc: 03 00 80 58 sethi %hi(0x2016000), %g1 200c5c0: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200c5c4: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 200c5c8: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200c5cc: 80 a0 a0 00 cmp %g2, 0 200c5d0: 02 80 00 13 be 200c61c <_CORE_mutex_Seize_interrupt_trylock+0x64> 200c5d4: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200c5d8: c8 00 60 08 ld [ %g1 + 8 ], %g4 return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 200c5dc: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 the_mutex->nest_count = 1; 200c5e0: 86 10 20 01 mov 1, %g3 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 200c5e4: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; 200c5e8: c2 26 20 5c st %g1, [ %i0 + 0x5c ] the_mutex->holder_id = executing->Object.id; 200c5ec: c8 26 20 60 st %g4, [ %i0 + 0x60 ] the_mutex->nest_count = 1; if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 200c5f0: 80 a0 a0 02 cmp %g2, 2 200c5f4: 02 80 00 10 be 200c634 <_CORE_mutex_Seize_interrupt_trylock+0x7c> 200c5f8: c6 26 20 54 st %g3, [ %i0 + 0x54 ] 200c5fc: 80 a0 a0 03 cmp %g2, 3 200c600: 22 80 00 21 be,a 200c684 <_CORE_mutex_Seize_interrupt_trylock+0xcc> 200c604: da 00 60 1c ld [ %g1 + 0x1c ], %o5 executing->resource_count++; } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); 200c608: d0 06 40 00 ld [ %i1 ], %o0 200c60c: 7f ff d7 26 call 20022a4 200c610: b0 10 20 00 clr %i0 200c614: 81 c7 e0 08 ret 200c618: 81 e8 00 00 restore /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 200c61c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200c620: 80 a0 40 02 cmp %g1, %g2 200c624: 02 80 00 0c be 200c654 <_CORE_mutex_Seize_interrupt_trylock+0x9c> 200c628: b0 10 20 01 mov 1, %i0 200c62c: 81 c7 e0 08 ret 200c630: 81 e8 00 00 restore _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200c634: c4 00 60 1c ld [ %g1 + 0x1c ], %g2 200c638: 84 00 a0 01 inc %g2 200c63c: c4 20 60 1c st %g2, [ %g1 + 0x1c ] } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); 200c640: d0 06 40 00 ld [ %i1 ], %o0 200c644: 7f ff d7 18 call 20022a4 200c648: b0 10 20 00 clr %i0 200c64c: 81 c7 e0 08 ret 200c650: 81 e8 00 00 restore * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200c654: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 200c658: 80 a0 a0 00 cmp %g2, 0 200c65c: 12 80 00 2b bne 200c708 <_CORE_mutex_Seize_interrupt_trylock+0x150> 200c660: 80 a0 a0 01 cmp %g2, 1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 200c664: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200c668: 82 00 60 01 inc %g1 200c66c: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 200c670: d0 06 40 00 ld [ %i1 ], %o0 200c674: 7f ff d7 0c call 20022a4 200c678: b0 10 20 00 clr %i0 200c67c: 81 c7 e0 08 ret 200c680: 81 e8 00 00 restore */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 200c684: c8 06 20 4c ld [ %i0 + 0x4c ], %g4 current = executing->current_priority; 200c688: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200c68c: 98 03 60 01 add %o5, 1, %o4 Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { 200c690: 80 a1 00 02 cmp %g4, %g2 200c694: 02 80 00 25 be 200c728 <_CORE_mutex_Seize_interrupt_trylock+0x170> 200c698: d8 20 60 1c st %o4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); return 0; } if ( current > ceiling ) { 200c69c: 80 a1 00 02 cmp %g4, %g2 200c6a0: 1a 80 00 11 bcc 200c6e4 <_CORE_mutex_Seize_interrupt_trylock+0x12c> 200c6a4: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 200c6a8: 03 00 80 57 sethi %hi(0x2015c00), %g1 200c6ac: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level> 200c6b0: 84 00 a0 01 inc %g2 200c6b4: c4 20 62 40 st %g2, [ %g1 + 0x240 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 200c6b8: 7f ff d6 fb call 20022a4 200c6bc: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 200c6c0: d0 06 20 5c ld [ %i0 + 0x5c ], %o0 200c6c4: d2 06 20 4c ld [ %i0 + 0x4c ], %o1 200c6c8: 94 10 20 00 clr %o2 200c6cc: 7f ff f0 6d call 2008880 <_Thread_Change_priority> 200c6d0: b0 10 20 00 clr %i0 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 200c6d4: 7f ff f1 c1 call 2008dd8 <_Thread_Enable_dispatch> 200c6d8: 01 00 00 00 nop 200c6dc: 81 c7 e0 08 ret 200c6e0: 81 e8 00 00 restore return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 200c6e4: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; 200c6e8: c6 26 20 50 st %g3, [ %i0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ 200c6ec: c0 26 20 54 clr [ %i0 + 0x54 ] executing->resource_count--; /* undo locking above */ 200c6f0: da 20 60 1c st %o5, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200c6f4: d0 06 40 00 ld [ %i1 ], %o0 200c6f8: 7f ff d6 eb call 20022a4 200c6fc: b0 10 20 00 clr %i0 200c700: 81 c7 e0 08 ret 200c704: 81 e8 00 00 restore * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200c708: 12 bf ff c3 bne 200c614 <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN 200c70c: 84 10 20 02 mov 2, %g2 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 200c710: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED _ISR_Enable( *level_p ); 200c714: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200c718: 7f ff d6 e3 call 20022a4 <== NOT EXECUTED 200c71c: b0 10 20 00 clr %i0 <== NOT EXECUTED 200c720: 81 c7 e0 08 ret <== NOT EXECUTED 200c724: 81 e8 00 00 restore <== NOT EXECUTED Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { _ISR_Enable( *level_p ); 200c728: d0 06 40 00 ld [ %i1 ], %o0 200c72c: 7f ff d6 de call 20022a4 200c730: b0 10 20 00 clr %i0 200c734: 81 c7 e0 08 ret 200c738: 81 e8 00 00 restore =============================================================================== 020074f0 <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 20074f0: 9d e3 bf a0 save %sp, -96, %sp 20074f4: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20074f8: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 20074fc: 40 00 07 2d call 20091b0 <_Thread_queue_Dequeue> 2007500: 90 10 00 10 mov %l0, %o0 2007504: 80 a2 20 00 cmp %o0, 0 2007508: 02 80 00 04 be 2007518 <_CORE_semaphore_Surrender+0x28> 200750c: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 2007510: 81 c7 e0 08 ret 2007514: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2007518: 7f ff eb 5f call 2002294 200751c: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 2007520: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2007524: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2007528: 80 a0 40 02 cmp %g1, %g2 200752c: 1a 80 00 05 bcc 2007540 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 2007530: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2007534: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007538: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 200753c: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 2007540: 7f ff eb 59 call 20022a4 2007544: 01 00 00 00 nop } return status; } 2007548: 81 c7 e0 08 ret 200754c: 81 e8 00 00 restore =============================================================================== 0200c550 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 200c550: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; 200c554: c0 26 20 04 clr [ %i0 + 4 ] size_t node_size ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200c558: a0 06 20 04 add %i0, 4, %l0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c55c: 80 a6 a0 00 cmp %i2, 0 200c560: 02 80 00 12 be 200c5a8 <_Chain_Initialize+0x58> <== NEVER TAKEN 200c564: 90 10 00 18 mov %i0, %o0 200c568: b4 06 bf ff add %i2, -1, %i2 { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; Chain_Node *next = starting_address; 200c56c: 82 10 00 19 mov %i1, %g1 head->previous = NULL; while ( count-- ) { 200c570: 92 10 00 1a mov %i2, %o1 ) { size_t count = number_nodes; Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *current = head; 200c574: 10 80 00 05 b 200c588 <_Chain_Initialize+0x38> 200c578: 84 10 00 18 mov %i0, %g2 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c57c: 84 10 00 01 mov %g1, %g2 200c580: b4 06 bf ff add %i2, -1, %i2 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 200c584: 82 10 00 03 mov %g3, %g1 Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { current->next = next; 200c588: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 200c58c: c4 20 60 04 st %g2, [ %g1 + 4 ] Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c590: 80 a6 a0 00 cmp %i2, 0 200c594: 12 bf ff fa bne 200c57c <_Chain_Initialize+0x2c> 200c598: 86 00 40 1b add %g1, %i3, %g3 * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 200c59c: 40 00 16 e2 call 2012124 <.umul> 200c5a0: 90 10 00 1b mov %i3, %o0 Chain_Node *current = head; Chain_Node *next = starting_address; head->previous = NULL; while ( count-- ) { 200c5a4: 90 06 40 08 add %i1, %o0, %o0 current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = tail; 200c5a8: e0 22 00 00 st %l0, [ %o0 ] tail->previous = current; 200c5ac: d0 26 20 08 st %o0, [ %i0 + 8 ] } 200c5b0: 81 c7 e0 08 ret 200c5b4: 81 e8 00 00 restore =============================================================================== 020061ac <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 20061ac: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20061b0: e0 06 21 58 ld [ %i0 + 0x158 ], %l0 option_set = (rtems_option) the_thread->Wait.option; _ISR_Disable( level ); 20061b4: 7f ff f0 38 call 2002294 20061b8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 20061bc: a2 10 00 08 mov %o0, %l1 pending_events = api->pending_events; 20061c0: c4 04 00 00 ld [ %l0 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 20061c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 20061c8: 86 88 40 02 andcc %g1, %g2, %g3 20061cc: 02 80 00 3e be 20062c4 <_Event_Surrender+0x118> 20061d0: 09 00 80 58 sethi %hi(0x2016000), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20061d4: 88 11 20 9c or %g4, 0x9c, %g4 ! 201609c <_Per_CPU_Information> 20061d8: da 01 20 08 ld [ %g4 + 8 ], %o5 20061dc: 80 a3 60 00 cmp %o5, 0 20061e0: 32 80 00 1d bne,a 2006254 <_Event_Surrender+0xa8> 20061e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_EVENT); 20061e8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20061ec: 80 89 21 00 btst 0x100, %g4 20061f0: 02 80 00 33 be 20062bc <_Event_Surrender+0x110> 20061f4: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20061f8: 02 80 00 04 be 2006208 <_Event_Surrender+0x5c> 20061fc: 80 8c a0 02 btst 2, %l2 2006200: 02 80 00 2f be 20062bc <_Event_Surrender+0x110> <== NEVER TAKEN 2006204: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006208: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 200620c: 84 28 80 03 andn %g2, %g3, %g2 /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2006210: c4 24 00 00 st %g2, [ %l0 ] the_thread->Wait.count = 0; 2006214: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006218: c6 20 40 00 st %g3, [ %g1 ] _ISR_Flash( level ); 200621c: 7f ff f0 22 call 20022a4 2006220: 90 10 00 11 mov %l1, %o0 2006224: 7f ff f0 1c call 2002294 2006228: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200622c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 2006230: 80 a0 60 02 cmp %g1, 2 2006234: 02 80 00 26 be 20062cc <_Event_Surrender+0x120> 2006238: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200623c: 90 10 00 11 mov %l1, %o0 2006240: 7f ff f0 19 call 20022a4 2006244: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006248: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 200624c: 40 00 09 f4 call 2008a1c <_Thread_Clear_state> 2006250: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006254: 80 a6 00 04 cmp %i0, %g4 2006258: 32 bf ff e5 bne,a 20061ec <_Event_Surrender+0x40> 200625c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006260: 09 00 80 58 sethi %hi(0x2016000), %g4 2006264: da 01 20 f0 ld [ %g4 + 0xf0 ], %o5 ! 20160f0 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006268: 80 a3 60 02 cmp %o5, 2 200626c: 02 80 00 07 be 2006288 <_Event_Surrender+0xdc> <== NEVER TAKEN 2006270: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006274: da 01 20 f0 ld [ %g4 + 0xf0 ], %o5 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006278: 80 a3 60 01 cmp %o5, 1 200627c: 32 bf ff dc bne,a 20061ec <_Event_Surrender+0x40> 2006280: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006284: 80 a0 40 03 cmp %g1, %g3 2006288: 02 80 00 04 be 2006298 <_Event_Surrender+0xec> 200628c: 80 8c a0 02 btst 2, %l2 2006290: 02 80 00 09 be 20062b4 <_Event_Surrender+0x108> <== NEVER TAKEN 2006294: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006298: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 200629c: 84 28 80 03 andn %g2, %g3, %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20062a0: c4 24 00 00 st %g2, [ %l0 ] the_thread->Wait.count = 0; 20062a4: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20062a8: c6 20 40 00 st %g3, [ %g1 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20062ac: 82 10 20 03 mov 3, %g1 20062b0: c2 21 20 f0 st %g1, [ %g4 + 0xf0 ] } _ISR_Enable( level ); 20062b4: 7f ff ef fc call 20022a4 20062b8: 91 e8 00 11 restore %g0, %l1, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 20062bc: 7f ff ef fa call 20022a4 20062c0: 91 e8 00 11 restore %g0, %l1, %o0 /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { _ISR_Enable( level ); 20062c4: 7f ff ef f8 call 20022a4 20062c8: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 20062cc: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 20062d0: 7f ff ef f5 call 20022a4 20062d4: 90 10 00 11 mov %l1, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 20062d8: 40 00 0f 3b call 2009fc4 <_Watchdog_Remove> 20062dc: 90 06 20 48 add %i0, 0x48, %o0 20062e0: 33 04 00 ff sethi %hi(0x1003fc00), %i1 20062e4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 20062e8: 40 00 09 cd call 2008a1c <_Thread_Clear_state> 20062ec: 81 e8 00 00 restore =============================================================================== 020062f4 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 20062f4: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 20062f8: 90 10 00 18 mov %i0, %o0 20062fc: 40 00 0a c5 call 2008e10 <_Thread_Get> 2006300: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006304: c2 07 bf fc ld [ %fp + -4 ], %g1 2006308: 80 a0 60 00 cmp %g1, 0 200630c: 12 80 00 15 bne 2006360 <_Event_Timeout+0x6c> <== NEVER TAKEN 2006310: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006314: 7f ff ef e0 call 2002294 2006318: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 200631c: 03 00 80 58 sethi %hi(0x2016000), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2006320: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc> 2006324: 80 a4 00 01 cmp %l0, %g1 2006328: 02 80 00 10 be 2006368 <_Event_Timeout+0x74> 200632c: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006330: 82 10 20 06 mov 6, %g1 2006334: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2006338: 7f ff ef db call 20022a4 200633c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006340: 90 10 00 10 mov %l0, %o0 2006344: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2006348: 40 00 09 b5 call 2008a1c <_Thread_Clear_state> 200634c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2006350: 03 00 80 57 sethi %hi(0x2015c00), %g1 2006354: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level> 2006358: 84 00 bf ff add %g2, -1, %g2 200635c: c4 20 62 40 st %g2, [ %g1 + 0x240 ] 2006360: 81 c7 e0 08 ret 2006364: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2006368: 03 00 80 58 sethi %hi(0x2016000), %g1 200636c: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 20160f0 <_Event_Sync_state> 2006370: 80 a0 a0 01 cmp %g2, 1 2006374: 32 bf ff f0 bne,a 2006334 <_Event_Timeout+0x40> 2006378: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 200637c: 84 10 20 02 mov 2, %g2 2006380: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006384: 10 bf ff ec b 2006334 <_Event_Timeout+0x40> 2006388: 82 10 20 06 mov 6, %g1 =============================================================================== 0200c7b8 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200c7b8: 9d e3 bf 98 save %sp, -104, %sp 200c7bc: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200c7c0: a4 06 60 04 add %i1, 4, %l2 - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 200c7c4: fa 06 20 10 ld [ %i0 + 0x10 ], %i5 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200c7c8: 80 a6 40 12 cmp %i1, %l2 200c7cc: 18 80 00 6e bgu 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c7d0: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200c7d4: 80 a6 e0 00 cmp %i3, 0 200c7d8: 12 80 00 75 bne 200c9ac <_Heap_Allocate_aligned_with_boundary+0x1f4> 200c7dc: 80 a6 40 1b cmp %i1, %i3 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c7e0: e8 04 20 08 ld [ %l0 + 8 ], %l4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c7e4: 80 a4 00 14 cmp %l0, %l4 200c7e8: 02 80 00 67 be 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c7ec: b0 10 20 00 clr %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c7f0: 82 07 60 07 add %i5, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200c7f4: b8 10 20 04 mov 4, %i4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c7f8: a2 10 20 01 mov 1, %l1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c7fc: c2 27 bf fc st %g1, [ %fp + -4 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200c800: b8 27 00 19 sub %i4, %i1, %i4 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200c804: e6 05 20 04 ld [ %l4 + 4 ], %l3 200c808: 80 a4 80 13 cmp %l2, %l3 200c80c: 3a 80 00 4b bcc,a 200c938 <_Heap_Allocate_aligned_with_boundary+0x180> 200c810: e8 05 20 08 ld [ %l4 + 8 ], %l4 if ( alignment == 0 ) { 200c814: 80 a6 a0 00 cmp %i2, 0 200c818: 02 80 00 44 be 200c928 <_Heap_Allocate_aligned_with_boundary+0x170> 200c81c: b0 05 20 08 add %l4, 8, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200c820: c4 07 bf fc ld [ %fp + -4 ], %g2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c824: ee 04 20 14 ld [ %l0 + 0x14 ], %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c828: a6 0c ff fe and %l3, -2, %l3 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200c82c: 82 20 80 17 sub %g2, %l7, %g1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200c830: a6 05 00 13 add %l4, %l3, %l3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c834: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200c838: b0 07 00 13 add %i4, %l3, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c83c: a6 00 40 13 add %g1, %l3, %l3 200c840: 40 00 17 1f call 20124bc <.urem> 200c844: 90 10 00 18 mov %i0, %o0 200c848: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200c84c: 80 a4 c0 18 cmp %l3, %i0 200c850: 1a 80 00 06 bcc 200c868 <_Heap_Allocate_aligned_with_boundary+0xb0> 200c854: ac 05 20 08 add %l4, 8, %l6 200c858: 90 10 00 13 mov %l3, %o0 200c85c: 40 00 17 18 call 20124bc <.urem> 200c860: 92 10 00 1a mov %i2, %o1 200c864: b0 24 c0 08 sub %l3, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200c868: 80 a6 e0 00 cmp %i3, 0 200c86c: 02 80 00 24 be 200c8fc <_Heap_Allocate_aligned_with_boundary+0x144> 200c870: 80 a5 80 18 cmp %l6, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200c874: a6 06 00 19 add %i0, %i1, %l3 200c878: 92 10 00 1b mov %i3, %o1 200c87c: 40 00 17 10 call 20124bc <.urem> 200c880: 90 10 00 13 mov %l3, %o0 200c884: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c888: 80 a2 00 13 cmp %o0, %l3 200c88c: 1a 80 00 1b bcc 200c8f8 <_Heap_Allocate_aligned_with_boundary+0x140> 200c890: 80 a6 00 08 cmp %i0, %o0 200c894: 1a 80 00 1a bcc 200c8fc <_Heap_Allocate_aligned_with_boundary+0x144> 200c898: 80 a5 80 18 cmp %l6, %i0 alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200c89c: aa 05 80 19 add %l6, %i1, %l5 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200c8a0: 80 a5 40 08 cmp %l5, %o0 200c8a4: 28 80 00 09 bleu,a 200c8c8 <_Heap_Allocate_aligned_with_boundary+0x110> 200c8a8: b0 22 00 19 sub %o0, %i1, %i0 if ( alloc_begin != 0 ) { break; } block = block->next; 200c8ac: 10 80 00 23 b 200c938 <_Heap_Allocate_aligned_with_boundary+0x180> 200c8b0: e8 05 20 08 ld [ %l4 + 8 ], %l4 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c8b4: 1a 80 00 11 bcc 200c8f8 <_Heap_Allocate_aligned_with_boundary+0x140> 200c8b8: 80 a5 40 08 cmp %l5, %o0 if ( boundary_line < boundary_floor ) { 200c8bc: 38 80 00 1f bgu,a 200c938 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN 200c8c0: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED return 0; } alloc_begin = boundary_line - alloc_size; 200c8c4: b0 22 00 19 sub %o0, %i1, %i0 200c8c8: 92 10 00 1a mov %i2, %o1 200c8cc: 40 00 16 fc call 20124bc <.urem> 200c8d0: 90 10 00 18 mov %i0, %o0 200c8d4: 92 10 00 1b mov %i3, %o1 200c8d8: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200c8dc: a6 06 00 19 add %i0, %i1, %l3 200c8e0: 40 00 16 f7 call 20124bc <.urem> 200c8e4: 90 10 00 13 mov %l3, %o0 200c8e8: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c8ec: 80 a2 00 13 cmp %o0, %l3 200c8f0: 0a bf ff f1 bcs 200c8b4 <_Heap_Allocate_aligned_with_boundary+0xfc> 200c8f4: 80 a6 00 08 cmp %i0, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200c8f8: 80 a5 80 18 cmp %l6, %i0 200c8fc: 38 80 00 0f bgu,a 200c938 <_Heap_Allocate_aligned_with_boundary+0x180> 200c900: e8 05 20 08 ld [ %l4 + 8 ], %l4 200c904: 82 10 3f f8 mov -8, %g1 200c908: 90 10 00 18 mov %i0, %o0 200c90c: a6 20 40 14 sub %g1, %l4, %l3 200c910: 92 10 00 1d mov %i5, %o1 200c914: 40 00 16 ea call 20124bc <.urem> 200c918: a6 04 c0 18 add %l3, %i0, %l3 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200c91c: 90 a4 c0 08 subcc %l3, %o0, %o0 200c920: 12 80 00 1b bne 200c98c <_Heap_Allocate_aligned_with_boundary+0x1d4> 200c924: 80 a2 00 17 cmp %o0, %l7 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200c928: 80 a6 20 00 cmp %i0, 0 200c92c: 32 80 00 08 bne,a 200c94c <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN 200c930: c4 04 20 48 ld [ %l0 + 0x48 ], %g2 break; } block = block->next; 200c934: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c938: 80 a4 00 14 cmp %l0, %l4 200c93c: 02 80 00 1a be 200c9a4 <_Heap_Allocate_aligned_with_boundary+0x1ec> 200c940: 82 04 60 01 add %l1, 1, %g1 200c944: 10 bf ff b0 b 200c804 <_Heap_Allocate_aligned_with_boundary+0x4c> 200c948: a2 10 00 01 mov %g1, %l1 } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; stats->searches += search_count; 200c94c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200c950: 84 00 a0 01 inc %g2 stats->searches += search_count; 200c954: 82 00 40 11 add %g1, %l1, %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200c958: c4 24 20 48 st %g2, [ %l0 + 0x48 ] stats->searches += search_count; 200c95c: c2 24 20 4c st %g1, [ %l0 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200c960: 90 10 00 10 mov %l0, %o0 200c964: 92 10 00 14 mov %l4, %o1 200c968: 94 10 00 18 mov %i0, %o2 200c96c: 7f ff ec 08 call 200798c <_Heap_Block_allocate> 200c970: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200c974: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 200c978: 80 a0 40 11 cmp %g1, %l1 200c97c: 2a 80 00 02 bcs,a 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c980: e2 24 20 44 st %l1, [ %l0 + 0x44 ] stats->max_search = search_count; } return (void *) alloc_begin; } 200c984: 81 c7 e0 08 ret 200c988: 81 e8 00 00 restore if ( alloc_begin >= alloc_begin_floor ) { uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200c98c: 1a bf ff e8 bcc 200c92c <_Heap_Allocate_aligned_with_boundary+0x174> 200c990: 80 a6 20 00 cmp %i0, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200c994: e8 05 20 08 ld [ %l4 + 8 ], %l4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c998: 80 a4 00 14 cmp %l0, %l4 200c99c: 12 bf ff ea bne 200c944 <_Heap_Allocate_aligned_with_boundary+0x18c> 200c9a0: 82 04 60 01 add %l1, 1, %g1 200c9a4: 10 bf ff f4 b 200c974 <_Heap_Allocate_aligned_with_boundary+0x1bc> 200c9a8: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200c9ac: 18 bf ff f6 bgu 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c9b0: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200c9b4: 22 bf ff 8b be,a 200c7e0 <_Heap_Allocate_aligned_with_boundary+0x28> 200c9b8: b4 10 00 1d mov %i5, %i2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c9bc: 10 bf ff 8a b 200c7e4 <_Heap_Allocate_aligned_with_boundary+0x2c> 200c9c0: e8 04 20 08 ld [ %l0 + 8 ], %l4 =============================================================================== 0200cccc <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200cccc: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200ccd0: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200ccd4: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200ccd8: a0 10 00 18 mov %i0, %l0 Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200ccdc: a2 06 40 1a add %i1, %i2, %l1 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200cce0: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200cce4: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200cce8: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200ccec: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200ccf0: 80 a6 40 11 cmp %i1, %l1 200ccf4: 18 80 00 86 bgu 200cf0c <_Heap_Extend+0x240> 200ccf8: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200ccfc: 90 10 00 19 mov %i1, %o0 200cd00: 92 10 00 1a mov %i2, %o1 200cd04: 94 10 00 13 mov %l3, %o2 200cd08: 98 07 bf fc add %fp, -4, %o4 200cd0c: 7f ff eb 81 call 2007b10 <_Heap_Get_first_and_last_block> 200cd10: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200cd14: 80 8a 20 ff btst 0xff, %o0 200cd18: 02 80 00 7d be 200cf0c <_Heap_Extend+0x240> 200cd1c: ba 10 20 00 clr %i5 200cd20: b0 10 00 12 mov %l2, %i0 200cd24: b8 10 20 00 clr %i4 200cd28: ac 10 20 00 clr %l6 200cd2c: 10 80 00 14 b 200cd7c <_Heap_Extend+0xb0> 200cd30: ae 10 20 00 clr %l7 return false; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200cd34: 2a 80 00 02 bcs,a 200cd3c <_Heap_Extend+0x70> 200cd38: b8 10 00 18 mov %i0, %i4 200cd3c: 90 10 00 15 mov %l5, %o0 200cd40: 40 00 17 32 call 2012a08 <.urem> 200cd44: 92 10 00 13 mov %l3, %o1 200cd48: 82 05 7f f8 add %l5, -8, %g1 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200cd4c: 80 a5 40 19 cmp %l5, %i1 200cd50: 02 80 00 1c be 200cdc0 <_Heap_Extend+0xf4> 200cd54: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200cd58: 80 a6 40 15 cmp %i1, %l5 200cd5c: 38 80 00 02 bgu,a 200cd64 <_Heap_Extend+0x98> 200cd60: ba 10 00 01 mov %g1, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cd64: f0 00 60 04 ld [ %g1 + 4 ], %i0 200cd68: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd6c: b0 00 40 18 add %g1, %i0, %i0 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200cd70: 80 a4 80 18 cmp %l2, %i0 200cd74: 22 80 00 1b be,a 200cde0 <_Heap_Extend+0x114> 200cd78: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200cd7c: 80 a6 00 12 cmp %i0, %l2 200cd80: 02 80 00 65 be 200cf14 <_Heap_Extend+0x248> 200cd84: 82 10 00 18 mov %i0, %g1 uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cd88: 80 a0 40 11 cmp %g1, %l1 200cd8c: 0a 80 00 6f bcs 200cf48 <_Heap_Extend+0x27c> 200cd90: ea 06 00 00 ld [ %i0 ], %l5 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200cd94: 80 a0 40 11 cmp %g1, %l1 200cd98: 12 bf ff e7 bne 200cd34 <_Heap_Extend+0x68> 200cd9c: 80 a4 40 15 cmp %l1, %l5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cda0: 90 10 00 15 mov %l5, %o0 200cda4: 40 00 17 19 call 2012a08 <.urem> 200cda8: 92 10 00 13 mov %l3, %o1 200cdac: 82 05 7f f8 add %l5, -8, %g1 200cdb0: ae 10 00 18 mov %i0, %l7 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200cdb4: 80 a5 40 19 cmp %l5, %i1 200cdb8: 12 bf ff e8 bne 200cd58 <_Heap_Extend+0x8c> <== ALWAYS TAKEN 200cdbc: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; 200cdc0: e2 26 00 00 st %l1, [ %i0 ] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cdc4: f0 00 60 04 ld [ %g1 + 4 ], %i0 200cdc8: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cdcc: b0 00 40 18 add %g1, %i0, %i0 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200cdd0: 80 a4 80 18 cmp %l2, %i0 200cdd4: 12 bf ff ea bne 200cd7c <_Heap_Extend+0xb0> <== NEVER TAKEN 200cdd8: ac 10 00 01 mov %g1, %l6 if ( extend_area_begin < heap->area_begin ) { 200cddc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200cde0: 80 a6 40 01 cmp %i1, %g1 200cde4: 3a 80 00 54 bcc,a 200cf34 <_Heap_Extend+0x268> 200cde8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200cdec: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cdf0: c2 07 bf fc ld [ %fp + -4 ], %g1 200cdf4: c4 07 bf f8 ld [ %fp + -8 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200cdf8: c8 04 20 20 ld [ %l0 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200cdfc: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200ce00: e2 20 40 00 st %l1, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200ce04: 9a 10 e0 01 or %g3, 1, %o5 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200ce08: da 20 60 04 st %o5, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200ce0c: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200ce10: 80 a1 00 01 cmp %g4, %g1 200ce14: 08 80 00 42 bleu 200cf1c <_Heap_Extend+0x250> 200ce18: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200ce1c: c2 24 20 20 st %g1, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200ce20: 80 a5 e0 00 cmp %l7, 0 200ce24: 02 80 00 62 be 200cfac <_Heap_Extend+0x2e0> 200ce28: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200ce2c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200ce30: 92 10 00 12 mov %l2, %o1 200ce34: 40 00 16 f5 call 2012a08 <.urem> 200ce38: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200ce3c: 80 a2 20 00 cmp %o0, 0 200ce40: 02 80 00 04 be 200ce50 <_Heap_Extend+0x184> <== ALWAYS TAKEN 200ce44: c4 05 c0 00 ld [ %l7 ], %g2 return value - remainder + alignment; 200ce48: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200ce4c: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200ce50: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200ce54: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200ce58: 84 25 c0 01 sub %l7, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200ce5c: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200ce60: 90 10 00 10 mov %l0, %o0 200ce64: 92 10 00 01 mov %g1, %o1 200ce68: 7f ff ff 8e call 200cca0 <_Heap_Free_block> 200ce6c: c4 20 60 04 st %g2, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200ce70: 80 a5 a0 00 cmp %l6, 0 200ce74: 02 80 00 3a be 200cf5c <_Heap_Extend+0x290> 200ce78: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200ce7c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200ce80: a2 24 40 16 sub %l1, %l6, %l1 200ce84: 40 00 16 e1 call 2012a08 <.urem> 200ce88: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200ce8c: c2 05 a0 04 ld [ %l6 + 4 ], %g1 200ce90: a2 24 40 08 sub %l1, %o0, %l1 200ce94: 82 20 40 11 sub %g1, %l1, %g1 | HEAP_PREV_BLOCK_USED; 200ce98: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200ce9c: 84 04 40 16 add %l1, %l6, %g2 200cea0: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cea4: c2 05 a0 04 ld [ %l6 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200cea8: 90 10 00 10 mov %l0, %o0 200ceac: 82 08 60 01 and %g1, 1, %g1 200ceb0: 92 10 00 16 mov %l6, %o1 block->size_and_flag = size | flag; 200ceb4: a2 14 40 01 or %l1, %g1, %l1 200ceb8: 7f ff ff 7a call 200cca0 <_Heap_Free_block> 200cebc: e2 25 a0 04 st %l1, [ %l6 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cec0: 80 a5 a0 00 cmp %l6, 0 200cec4: 02 80 00 33 be 200cf90 <_Heap_Extend+0x2c4> 200cec8: 80 a5 e0 00 cmp %l7, 0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cecc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200ced0: da 04 20 20 ld [ %l0 + 0x20 ], %o5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ced4: c8 00 60 04 ld [ %g1 + 4 ], %g4 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200ced8: c4 04 20 2c ld [ %l0 + 0x2c ], %g2 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200cedc: c6 04 20 30 ld [ %l0 + 0x30 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200cee0: 9a 23 40 01 sub %o5, %g1, %o5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cee4: 88 09 20 01 and %g4, 1, %g4 block->size_and_flag = size | flag; 200cee8: 88 13 40 04 or %o5, %g4, %g4 200ceec: c8 20 60 04 st %g4, [ %g1 + 4 ] 200cef0: a8 20 c0 14 sub %g3, %l4, %l4 /* Statistics */ stats->size += extended_size; 200cef4: 82 00 80 14 add %g2, %l4, %g1 200cef8: c2 24 20 2c st %g1, [ %l0 + 0x2c ] if ( extended_size_ptr != NULL ) 200cefc: 80 a6 e0 00 cmp %i3, 0 200cf00: 02 80 00 03 be 200cf0c <_Heap_Extend+0x240> <== NEVER TAKEN 200cf04: b0 10 20 01 mov 1, %i0 *extended_size_ptr = extended_size; 200cf08: e8 26 c0 00 st %l4, [ %i3 ] 200cf0c: 81 c7 e0 08 ret 200cf10: 81 e8 00 00 restore return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200cf14: 10 bf ff 9d b 200cd88 <_Heap_Extend+0xbc> 200cf18: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200cf1c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200cf20: 80 a0 40 02 cmp %g1, %g2 200cf24: 2a bf ff bf bcs,a 200ce20 <_Heap_Extend+0x154> 200cf28: c4 24 20 24 st %g2, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200cf2c: 10 bf ff be b 200ce24 <_Heap_Extend+0x158> 200cf30: 80 a5 e0 00 cmp %l7, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200cf34: 80 a4 40 01 cmp %l1, %g1 200cf38: 38 bf ff ae bgu,a 200cdf0 <_Heap_Extend+0x124> 200cf3c: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cf40: 10 bf ff ad b 200cdf4 <_Heap_Extend+0x128> 200cf44: c2 07 bf fc ld [ %fp + -4 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200cf48: 80 a6 40 15 cmp %i1, %l5 200cf4c: 1a bf ff 93 bcc 200cd98 <_Heap_Extend+0xcc> 200cf50: 80 a0 40 11 cmp %g1, %l1 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cf54: 81 c7 e0 08 ret 200cf58: 91 e8 20 00 restore %g0, 0, %o0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200cf5c: 80 a7 60 00 cmp %i5, 0 200cf60: 02 bf ff d8 be 200cec0 <_Heap_Extend+0x1f4> 200cf64: c4 07 bf fc ld [ %fp + -4 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cf68: c6 07 60 04 ld [ %i5 + 4 ], %g3 _Heap_Link_above( 200cf6c: c2 07 bf f8 ld [ %fp + -8 ], %g1 200cf70: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200cf74: 84 20 80 1d sub %g2, %i5, %g2 block->size_and_flag = size | flag; 200cf78: 84 10 80 03 or %g2, %g3, %g2 200cf7c: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200cf80: c4 00 60 04 ld [ %g1 + 4 ], %g2 200cf84: 84 10 a0 01 or %g2, 1, %g2 200cf88: 10 bf ff ce b 200cec0 <_Heap_Extend+0x1f4> 200cf8c: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200cf90: 32 bf ff d0 bne,a 200ced0 <_Heap_Extend+0x204> 200cf94: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200cf98: d2 07 bf fc ld [ %fp + -4 ], %o1 200cf9c: 7f ff ff 41 call 200cca0 <_Heap_Free_block> 200cfa0: 90 10 00 10 mov %l0, %o0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cfa4: 10 bf ff cb b 200ced0 <_Heap_Extend+0x204> 200cfa8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200cfac: 80 a7 20 00 cmp %i4, 0 200cfb0: 02 bf ff b1 be 200ce74 <_Heap_Extend+0x1a8> 200cfb4: 80 a5 a0 00 cmp %l6, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200cfb8: b8 27 00 02 sub %i4, %g2, %i4 200cfbc: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200cfc0: 10 bf ff ad b 200ce74 <_Heap_Extend+0x1a8> 200cfc4: f8 20 a0 04 st %i4, [ %g2 + 4 ] =============================================================================== 0200c9c4 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c9c4: 9d e3 bf a0 save %sp, -96, %sp 200c9c8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200c9cc: 40 00 16 bc call 20124bc <.urem> 200c9d0: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c9d4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 200c9d8: a0 10 00 18 mov %i0, %l0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c9dc: a2 06 7f f8 add %i1, -8, %l1 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c9e0: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c9e4: 80 a2 00 01 cmp %o0, %g1 200c9e8: 0a 80 00 4d bcs 200cb1c <_Heap_Free+0x158> 200c9ec: b0 10 20 00 clr %i0 200c9f0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200c9f4: 80 a2 00 03 cmp %o0, %g3 200c9f8: 18 80 00 49 bgu 200cb1c <_Heap_Free+0x158> 200c9fc: 01 00 00 00 nop --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ca00: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200ca04: 88 0b 7f fe and %o5, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200ca08: 84 02 00 04 add %o0, %g4, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200ca0c: 80 a0 40 02 cmp %g1, %g2 200ca10: 18 80 00 43 bgu 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN 200ca14: 80 a0 c0 02 cmp %g3, %g2 200ca18: 0a 80 00 41 bcs 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN 200ca1c: 01 00 00 00 nop 200ca20: d8 00 a0 04 ld [ %g2 + 4 ], %o4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200ca24: 80 8b 20 01 btst 1, %o4 200ca28: 02 80 00 3d be 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN 200ca2c: 96 0b 3f fe and %o4, -2, %o3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200ca30: 80 a0 c0 02 cmp %g3, %g2 200ca34: 02 80 00 06 be 200ca4c <_Heap_Free+0x88> 200ca38: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ca3c: 98 00 80 0b add %g2, %o3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ca40: d8 03 20 04 ld [ %o4 + 4 ], %o4 200ca44: 98 0b 20 01 and %o4, 1, %o4 return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 200ca48: 98 1b 20 01 xor %o4, 1, %o4 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200ca4c: 80 8b 60 01 btst 1, %o5 200ca50: 12 80 00 1d bne 200cac4 <_Heap_Free+0x100> 200ca54: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200ca58: d4 02 00 00 ld [ %o0 ], %o2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200ca5c: 9a 22 00 0a sub %o0, %o2, %o5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200ca60: 80 a0 40 0d cmp %g1, %o5 200ca64: 18 80 00 2e bgu 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN 200ca68: b0 10 20 00 clr %i0 200ca6c: 80 a0 c0 0d cmp %g3, %o5 200ca70: 0a 80 00 2b bcs 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN 200ca74: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ca78: c2 03 60 04 ld [ %o5 + 4 ], %g1 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200ca7c: 80 88 60 01 btst 1, %g1 200ca80: 02 80 00 27 be 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN 200ca84: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200ca88: 22 80 00 39 be,a 200cb6c <_Heap_Free+0x1a8> 200ca8c: 94 01 00 0a add %g4, %o2, %o2 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ca90: c2 00 a0 08 ld [ %g2 + 8 ], %g1 200ca94: c4 00 a0 0c ld [ %g2 + 0xc ], %g2 } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200ca98: c6 04 20 38 ld [ %l0 + 0x38 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 200ca9c: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200caa0: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200caa4: 82 00 ff ff add %g3, -1, %g1 200caa8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200caac: 96 01 00 0b add %g4, %o3, %o3 200cab0: 94 02 c0 0a add %o3, %o2, %o2 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cab4: 82 12 a0 01 or %o2, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200cab8: d4 23 40 0a st %o2, [ %o5 + %o2 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cabc: 10 80 00 0e b 200caf4 <_Heap_Free+0x130> 200cac0: c2 23 60 04 st %g1, [ %o5 + 4 ] uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200cac4: 22 80 00 18 be,a 200cb24 <_Heap_Free+0x160> 200cac8: c6 04 20 08 ld [ %l0 + 8 ], %g3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200cacc: c6 00 a0 08 ld [ %g2 + 8 ], %g3 200cad0: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 200cad4: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = prev; 200cad8: c2 22 20 0c st %g1, [ %o0 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200cadc: 96 02 c0 04 add %o3, %g4, %o3 next->prev = new_block; 200cae0: d0 20 e0 0c st %o0, [ %g3 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cae4: 84 12 e0 01 or %o3, 1, %g2 prev->next = new_block; 200cae8: d0 20 60 08 st %o0, [ %g1 + 8 ] 200caec: c4 22 20 04 st %g2, [ %o0 + 4 ] next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200caf0: d6 22 00 0b st %o3, [ %o0 + %o3 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200caf4: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 ++stats->frees; 200caf8: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 stats->free_size += block_size; 200cafc: c6 04 20 30 ld [ %l0 + 0x30 ], %g3 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cb00: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; 200cb04: 82 00 60 01 inc %g1 stats->free_size += block_size; 200cb08: 88 00 c0 04 add %g3, %g4, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200cb0c: c4 24 20 40 st %g2, [ %l0 + 0x40 ] ++stats->frees; 200cb10: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200cb14: c8 24 20 30 st %g4, [ %l0 + 0x30 ] return( true ); 200cb18: b0 10 20 01 mov 1, %i0 } 200cb1c: 81 c7 e0 08 ret 200cb20: 81 e8 00 00 restore next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200cb24: 82 11 20 01 or %g4, 1, %g1 200cb28: c2 22 20 04 st %g1, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cb2c: da 00 a0 04 ld [ %g2 + 4 ], %o5 next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200cb30: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200cb34: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200cb38: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200cb3c: d0 20 e0 0c st %o0, [ %g3 + 0xc ] /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; 200cb40: c8 22 00 04 st %g4, [ %o0 + %g4 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cb44: 86 0b 7f fe and %o5, -2, %g3 200cb48: c6 20 a0 04 st %g3, [ %g2 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200cb4c: c4 04 20 3c ld [ %l0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200cb50: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200cb54: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200cb58: 80 a0 40 02 cmp %g1, %g2 200cb5c: 08 bf ff e6 bleu 200caf4 <_Heap_Free+0x130> 200cb60: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200cb64: 10 bf ff e4 b 200caf4 <_Heap_Free+0x130> 200cb68: c2 24 20 3c st %g1, [ %l0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200cb6c: 82 12 a0 01 or %o2, 1, %g1 200cb70: c2 23 60 04 st %g1, [ %o5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cb74: c2 00 a0 04 ld [ %g2 + 4 ], %g1 next_block->prev_size = size; 200cb78: d4 22 00 04 st %o2, [ %o0 + %g4 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cb7c: 82 08 7f fe and %g1, -2, %g1 200cb80: 10 bf ff dd b 200caf4 <_Heap_Free+0x130> 200cb84: c2 20 a0 04 st %g1, [ %g2 + 4 ] =============================================================================== 0200d6e8 <_Heap_Get_information>: void _Heap_Get_information( Heap_Control *the_heap, Heap_Information_block *the_info ) { 200d6e8: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *the_block = the_heap->first_block; 200d6ec: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 Heap_Block *const end = the_heap->last_block; 200d6f0: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 memset(the_info, 0, sizeof(*the_info)); 200d6f4: c0 26 40 00 clr [ %i1 ] 200d6f8: c0 26 60 04 clr [ %i1 + 4 ] 200d6fc: c0 26 60 08 clr [ %i1 + 8 ] 200d700: c0 26 60 0c clr [ %i1 + 0xc ] 200d704: c0 26 60 10 clr [ %i1 + 0x10 ] while ( the_block != end ) { 200d708: 80 a0 40 02 cmp %g1, %g2 200d70c: 02 80 00 17 be 200d768 <_Heap_Get_information+0x80> <== NEVER TAKEN 200d710: c0 26 60 14 clr [ %i1 + 0x14 ] 200d714: da 00 60 04 ld [ %g1 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d718: 88 0b 7f fe and %o5, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d71c: 82 00 40 04 add %g1, %g4, %g1 if ( info->largest < the_size ) info->largest = the_size; the_block = next_block; } } 200d720: da 00 60 04 ld [ %g1 + 4 ], %o5 while ( the_block != end ) { uintptr_t const the_size = _Heap_Block_size(the_block); Heap_Block *const next_block = _Heap_Block_at(the_block, the_size); Heap_Information *info; if ( _Heap_Is_prev_used(next_block) ) 200d724: 80 8b 60 01 btst 1, %o5 200d728: 02 80 00 03 be 200d734 <_Heap_Get_information+0x4c> 200d72c: 86 10 00 19 mov %i1, %g3 info = &the_info->Used; 200d730: 86 06 60 0c add %i1, 0xc, %g3 else info = &the_info->Free; info->number++; 200d734: d4 00 c0 00 ld [ %g3 ], %o2 info->total += the_size; 200d738: d6 00 e0 08 ld [ %g3 + 8 ], %o3 if ( info->largest < the_size ) 200d73c: d8 00 e0 04 ld [ %g3 + 4 ], %o4 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d740: 94 02 a0 01 inc %o2 info->total += the_size; 200d744: 96 02 c0 04 add %o3, %g4, %o3 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d748: d4 20 c0 00 st %o2, [ %g3 ] info->total += the_size; if ( info->largest < the_size ) 200d74c: 80 a3 00 04 cmp %o4, %g4 200d750: 1a 80 00 03 bcc 200d75c <_Heap_Get_information+0x74> 200d754: d6 20 e0 08 st %o3, [ %g3 + 8 ] info->largest = the_size; 200d758: c8 20 e0 04 st %g4, [ %g3 + 4 ] Heap_Block *the_block = the_heap->first_block; Heap_Block *const end = the_heap->last_block; memset(the_info, 0, sizeof(*the_info)); while ( the_block != end ) { 200d75c: 80 a0 80 01 cmp %g2, %g1 200d760: 12 bf ff ef bne 200d71c <_Heap_Get_information+0x34> 200d764: 88 0b 7f fe and %o5, -2, %g4 200d768: 81 c7 e0 08 ret 200d76c: 81 e8 00 00 restore =============================================================================== 02013f5c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2013f5c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013f60: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2013f64: 7f ff f9 56 call 20124bc <.urem> 2013f68: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2013f6c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 2013f70: a0 10 00 18 mov %i0, %l0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013f74: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2013f78: 84 20 80 08 sub %g2, %o0, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2013f7c: 80 a0 80 01 cmp %g2, %g1 2013f80: 0a 80 00 15 bcs 2013fd4 <_Heap_Size_of_alloc_area+0x78> 2013f84: b0 10 20 00 clr %i0 2013f88: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 2013f8c: 80 a0 80 03 cmp %g2, %g3 2013f90: 18 80 00 11 bgu 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013f94: 01 00 00 00 nop - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2013f98: c8 00 a0 04 ld [ %g2 + 4 ], %g4 2013f9c: 88 09 3f fe and %g4, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2013fa0: 84 00 80 04 add %g2, %g4, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2013fa4: 80 a0 40 02 cmp %g1, %g2 2013fa8: 18 80 00 0b bgu 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013fac: 80 a0 c0 02 cmp %g3, %g2 2013fb0: 0a 80 00 09 bcs 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013fb4: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2013fb8: c2 00 a0 04 ld [ %g2 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2013fbc: 80 88 60 01 btst 1, %g1 2013fc0: 02 80 00 05 be 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013fc4: 84 20 80 19 sub %g2, %i1, %g2 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2013fc8: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2013fcc: 84 00 a0 04 add %g2, 4, %g2 2013fd0: c4 26 80 00 st %g2, [ %i2 ] return true; } 2013fd4: 81 c7 e0 08 ret 2013fd8: 81 e8 00 00 restore =============================================================================== 02008950 <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008950: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008954: 23 00 80 22 sethi %hi(0x2008800), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008958: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 200895c: e8 06 20 10 ld [ %i0 + 0x10 ], %l4 uintptr_t const min_block_size = heap->min_block_size; 2008960: e6 06 20 14 ld [ %i0 + 0x14 ], %l3 Heap_Block *const first_block = heap->first_block; 2008964: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *const last_block = heap->last_block; 2008968: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 200896c: 80 8e a0 ff btst 0xff, %i2 2008970: 02 80 00 04 be 2008980 <_Heap_Walk+0x30> 2008974: a2 14 60 e4 or %l1, 0xe4, %l1 2008978: 23 00 80 22 sethi %hi(0x2008800), %l1 200897c: a2 14 60 ec or %l1, 0xec, %l1 ! 20088ec <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 2008980: 03 00 80 61 sethi %hi(0x2018400), %g1 2008984: c2 00 63 7c ld [ %g1 + 0x37c ], %g1 ! 201877c <_System_state_Current> 2008988: 80 a0 60 03 cmp %g1, 3 200898c: 12 80 00 33 bne 2008a58 <_Heap_Walk+0x108> 2008990: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008994: da 04 20 18 ld [ %l0 + 0x18 ], %o5 2008998: c6 04 20 1c ld [ %l0 + 0x1c ], %g3 200899c: c4 04 20 08 ld [ %l0 + 8 ], %g2 20089a0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20089a4: 90 10 00 19 mov %i1, %o0 20089a8: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 20089ac: e4 23 a0 60 st %l2, [ %sp + 0x60 ] 20089b0: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 20089b4: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 20089b8: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 20089bc: 92 10 20 00 clr %o1 20089c0: 96 10 00 14 mov %l4, %o3 20089c4: 15 00 80 57 sethi %hi(0x2015c00), %o2 20089c8: 98 10 00 13 mov %l3, %o4 20089cc: 9f c4 40 00 call %l1 20089d0: 94 12 a1 30 or %o2, 0x130, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 20089d4: 80 a5 20 00 cmp %l4, 0 20089d8: 02 80 00 2a be 2008a80 <_Heap_Walk+0x130> 20089dc: 80 8d 20 07 btst 7, %l4 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 20089e0: 12 80 00 30 bne 2008aa0 <_Heap_Walk+0x150> 20089e4: 90 10 00 13 mov %l3, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20089e8: 7f ff e4 32 call 2001ab0 <.urem> 20089ec: 92 10 00 14 mov %l4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 20089f0: 80 a2 20 00 cmp %o0, 0 20089f4: 12 80 00 34 bne 2008ac4 <_Heap_Walk+0x174> 20089f8: 90 04 a0 08 add %l2, 8, %o0 20089fc: 7f ff e4 2d call 2001ab0 <.urem> 2008a00: 92 10 00 14 mov %l4, %o1 ); return false; } if ( 2008a04: 80 a2 20 00 cmp %o0, 0 2008a08: 32 80 00 38 bne,a 2008ae8 <_Heap_Walk+0x198> 2008a0c: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 2008a10: f8 04 a0 04 ld [ %l2 + 4 ], %i4 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 2008a14: 80 8f 20 01 btst 1, %i4 2008a18: 22 80 00 4d be,a 2008b4c <_Heap_Walk+0x1fc> 2008a1c: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008a20: c2 05 60 04 ld [ %l5 + 4 ], %g1 2008a24: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008a28: 82 05 40 01 add %l5, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008a2c: c4 00 60 04 ld [ %g1 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 2008a30: 80 88 a0 01 btst 1, %g2 2008a34: 02 80 00 0b be 2008a60 <_Heap_Walk+0x110> 2008a38: 80 a4 80 01 cmp %l2, %g1 ); return false; } if ( 2008a3c: 02 80 00 33 be 2008b08 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN 2008a40: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008a44: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 2008a48: 15 00 80 57 sethi %hi(0x2015c00), %o2 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a4c: b0 10 20 00 clr %i0 <== NOT EXECUTED } if ( _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008a50: 9f c4 40 00 call %l1 <== NOT EXECUTED 2008a54: 94 12 a2 a8 or %o2, 0x2a8, %o2 <== NOT EXECUTED 2008a58: 81 c7 e0 08 ret 2008a5c: 81 e8 00 00 restore return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 2008a60: 90 10 00 19 mov %i1, %o0 2008a64: 92 10 20 01 mov 1, %o1 2008a68: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a6c: b0 10 20 00 clr %i0 return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 2008a70: 9f c4 40 00 call %l1 2008a74: 94 12 a2 90 or %o2, 0x290, %o2 2008a78: 81 c7 e0 08 ret 2008a7c: 81 e8 00 00 restore first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008a80: 90 10 00 19 mov %i1, %o0 2008a84: 92 10 20 01 mov 1, %o1 2008a88: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a8c: b0 10 20 00 clr %i0 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008a90: 9f c4 40 00 call %l1 2008a94: 94 12 a1 c8 or %o2, 0x1c8, %o2 2008a98: 81 c7 e0 08 ret 2008a9c: 81 e8 00 00 restore return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008aa0: 90 10 00 19 mov %i1, %o0 2008aa4: 92 10 20 01 mov 1, %o1 2008aa8: 96 10 00 14 mov %l4, %o3 2008aac: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008ab0: b0 10 20 00 clr %i0 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008ab4: 9f c4 40 00 call %l1 2008ab8: 94 12 a1 e0 or %o2, 0x1e0, %o2 2008abc: 81 c7 e0 08 ret 2008ac0: 81 e8 00 00 restore return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008ac4: 90 10 00 19 mov %i1, %o0 2008ac8: 92 10 20 01 mov 1, %o1 2008acc: 96 10 00 13 mov %l3, %o3 2008ad0: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008ad4: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008ad8: 9f c4 40 00 call %l1 2008adc: 94 12 a2 00 or %o2, 0x200, %o2 2008ae0: 81 c7 e0 08 ret 2008ae4: 81 e8 00 00 restore } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008ae8: 92 10 20 01 mov 1, %o1 2008aec: 96 10 00 12 mov %l2, %o3 2008af0: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008af4: b0 10 20 00 clr %i0 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008af8: 9f c4 40 00 call %l1 2008afc: 94 12 a2 28 or %o2, 0x228, %o2 2008b00: 81 c7 e0 08 ret 2008b04: 81 e8 00 00 restore block = next_block; } while ( block != first_block ); return true; } 2008b08: ec 04 20 08 ld [ %l0 + 8 ], %l6 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008b0c: 80 a4 00 16 cmp %l0, %l6 2008b10: 02 80 01 18 be 2008f70 <_Heap_Walk+0x620> 2008b14: f6 04 20 10 ld [ %l0 + 0x10 ], %i3 block = next_block; } while ( block != first_block ); return true; } 2008b18: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008b1c: 80 a0 40 16 cmp %g1, %l6 2008b20: 28 80 00 12 bleu,a 2008b68 <_Heap_Walk+0x218> <== ALWAYS TAKEN 2008b24: fa 04 20 24 ld [ %l0 + 0x24 ], %i5 const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 2008b28: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008b2c: 92 10 20 01 mov 1, %o1 2008b30: 96 10 00 16 mov %l6, %o3 2008b34: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008b38: b0 10 20 00 clr %i0 const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 2008b3c: 9f c4 40 00 call %l1 2008b40: 94 12 a2 d8 or %o2, 0x2d8, %o2 2008b44: 81 c7 e0 08 ret 2008b48: 81 e8 00 00 restore return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 2008b4c: 92 10 20 01 mov 1, %o1 2008b50: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008b54: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 2008b58: 9f c4 40 00 call %l1 2008b5c: 94 12 a2 60 or %o2, 0x260, %o2 2008b60: 81 c7 e0 08 ret 2008b64: 81 e8 00 00 restore 2008b68: 80 a7 40 16 cmp %i5, %l6 2008b6c: 0a bf ff f0 bcs 2008b2c <_Heap_Walk+0x1dc> <== NEVER TAKEN 2008b70: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008b74: c2 27 bf fc st %g1, [ %fp + -4 ] 2008b78: 90 05 a0 08 add %l6, 8, %o0 2008b7c: 7f ff e3 cd call 2001ab0 <.urem> 2008b80: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2008b84: 80 a2 20 00 cmp %o0, 0 2008b88: 12 80 00 2e bne 2008c40 <_Heap_Walk+0x2f0> <== NEVER TAKEN 2008b8c: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008b90: c4 05 a0 04 ld [ %l6 + 4 ], %g2 2008b94: 84 08 bf fe and %g2, -2, %g2 block = next_block; } while ( block != first_block ); return true; } 2008b98: 84 05 80 02 add %l6, %g2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008b9c: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008ba0: 80 88 a0 01 btst 1, %g2 2008ba4: 12 80 00 30 bne 2008c64 <_Heap_Walk+0x314> <== NEVER TAKEN 2008ba8: 84 10 00 10 mov %l0, %g2 2008bac: ae 10 00 16 mov %l6, %l7 2008bb0: 10 80 00 17 b 2008c0c <_Heap_Walk+0x2bc> 2008bb4: b4 10 00 01 mov %g1, %i2 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008bb8: 80 a4 00 16 cmp %l0, %l6 2008bbc: 02 80 00 33 be 2008c88 <_Heap_Walk+0x338> 2008bc0: 80 a6 80 16 cmp %i2, %l6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008bc4: 18 bf ff da bgu 2008b2c <_Heap_Walk+0x1dc> 2008bc8: 90 10 00 19 mov %i1, %o0 2008bcc: 80 a5 80 1d cmp %l6, %i5 2008bd0: 18 bf ff d8 bgu 2008b30 <_Heap_Walk+0x1e0> <== NEVER TAKEN 2008bd4: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008bd8: 90 05 a0 08 add %l6, 8, %o0 2008bdc: 7f ff e3 b5 call 2001ab0 <.urem> 2008be0: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2008be4: 80 a2 20 00 cmp %o0, 0 2008be8: 12 80 00 16 bne 2008c40 <_Heap_Walk+0x2f0> 2008bec: 84 10 00 17 mov %l7, %g2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008bf0: c2 05 a0 04 ld [ %l6 + 4 ], %g1 2008bf4: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 2008bf8: 82 00 40 16 add %g1, %l6, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008bfc: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c00: 80 88 60 01 btst 1, %g1 2008c04: 12 80 00 18 bne 2008c64 <_Heap_Walk+0x314> 2008c08: ae 10 00 16 mov %l6, %l7 ); return false; } if ( free_block->prev != prev_block ) { 2008c0c: d8 05 a0 0c ld [ %l6 + 0xc ], %o4 2008c10: 80 a3 00 02 cmp %o4, %g2 2008c14: 22 bf ff e9 be,a 2008bb8 <_Heap_Walk+0x268> 2008c18: ec 05 a0 08 ld [ %l6 + 8 ], %l6 (*printer)( 2008c1c: 90 10 00 19 mov %i1, %o0 2008c20: 92 10 20 01 mov 1, %o1 2008c24: 96 10 00 16 mov %l6, %o3 2008c28: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c2c: b0 10 20 00 clr %i0 return false; } if ( free_block->prev != prev_block ) { (*printer)( 2008c30: 9f c4 40 00 call %l1 2008c34: 94 12 a3 48 or %o2, 0x348, %o2 2008c38: 81 c7 e0 08 ret 2008c3c: 81 e8 00 00 restore } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008c40: 90 10 00 19 mov %i1, %o0 2008c44: 92 10 20 01 mov 1, %o1 2008c48: 96 10 00 16 mov %l6, %o3 2008c4c: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c50: b0 10 20 00 clr %i0 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008c54: 9f c4 40 00 call %l1 2008c58: 94 12 a2 f8 or %o2, 0x2f8, %o2 2008c5c: 81 c7 e0 08 ret 2008c60: 81 e8 00 00 restore return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c64: 90 10 00 19 mov %i1, %o0 2008c68: 92 10 20 01 mov 1, %o1 2008c6c: 96 10 00 16 mov %l6, %o3 2008c70: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c74: b0 10 20 00 clr %i0 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c78: 9f c4 40 00 call %l1 2008c7c: 94 12 a3 28 or %o2, 0x328, %o2 2008c80: 81 c7 e0 08 ret 2008c84: 81 e8 00 00 restore 2008c88: 82 10 00 1a mov %i2, %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008c8c: 35 00 80 58 sethi %hi(0x2016000), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008c90: 31 00 80 58 sethi %hi(0x2016000), %i0 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c94: ae 10 00 12 mov %l2, %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008c98: b4 16 a1 08 or %i2, 0x108, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008c9c: b0 16 20 f0 or %i0, 0xf0, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008ca0: 37 00 80 58 sethi %hi(0x2016000), %i3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008ca4: ba 0f 3f fe and %i4, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008ca8: ac 07 40 17 add %i5, %l7, %l6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008cac: 80 a0 40 16 cmp %g1, %l6 2008cb0: 28 80 00 0c bleu,a 2008ce0 <_Heap_Walk+0x390> <== ALWAYS TAKEN 2008cb4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2008cb8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008cbc: 92 10 20 01 mov 1, %o1 2008cc0: 96 10 00 17 mov %l7, %o3 2008cc4: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008cc8: 98 10 00 16 mov %l6, %o4 2008ccc: 94 12 a3 80 or %o2, 0x380, %o2 2008cd0: 9f c4 40 00 call %l1 2008cd4: b0 10 20 00 clr %i0 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 2008cd8: 81 c7 e0 08 ret 2008cdc: 81 e8 00 00 restore 2008ce0: 80 a0 40 16 cmp %g1, %l6 2008ce4: 0a bf ff f6 bcs 2008cbc <_Heap_Walk+0x36c> 2008ce8: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008cec: 82 1d c0 15 xor %l7, %l5, %g1 2008cf0: 80 a0 00 01 cmp %g0, %g1 2008cf4: 82 40 20 00 addx %g0, 0, %g1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008cf8: 90 10 00 1d mov %i5, %o0 2008cfc: c2 27 bf fc st %g1, [ %fp + -4 ] 2008d00: 7f ff e3 6c call 2001ab0 <.urem> 2008d04: 92 10 00 14 mov %l4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008d08: 80 a2 20 00 cmp %o0, 0 2008d0c: 02 80 00 05 be 2008d20 <_Heap_Walk+0x3d0> 2008d10: c2 07 bf fc ld [ %fp + -4 ], %g1 2008d14: 80 88 60 ff btst 0xff, %g1 2008d18: 12 80 00 79 bne 2008efc <_Heap_Walk+0x5ac> 2008d1c: 90 10 00 19 mov %i1, %o0 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008d20: 80 a4 c0 1d cmp %l3, %i5 2008d24: 08 80 00 05 bleu 2008d38 <_Heap_Walk+0x3e8> 2008d28: 80 a5 c0 16 cmp %l7, %l6 2008d2c: 80 88 60 ff btst 0xff, %g1 2008d30: 12 80 00 7c bne 2008f20 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN 2008d34: 80 a5 c0 16 cmp %l7, %l6 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008d38: 2a 80 00 06 bcs,a 2008d50 <_Heap_Walk+0x400> 2008d3c: c2 05 a0 04 ld [ %l6 + 4 ], %g1 2008d40: 80 88 60 ff btst 0xff, %g1 2008d44: 12 80 00 82 bne 2008f4c <_Heap_Walk+0x5fc> 2008d48: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008d4c: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008d50: 80 88 60 01 btst 1, %g1 2008d54: 02 80 00 19 be 2008db8 <_Heap_Walk+0x468> 2008d58: b8 0f 20 01 and %i4, 1, %i4 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008d5c: 80 a7 20 00 cmp %i4, 0 2008d60: 22 80 00 0e be,a 2008d98 <_Heap_Walk+0x448> 2008d64: da 05 c0 00 ld [ %l7 ], %o5 (*printer)( 2008d68: 90 10 00 19 mov %i1, %o0 2008d6c: 92 10 20 00 clr %o1 2008d70: 94 10 00 18 mov %i0, %o2 2008d74: 96 10 00 17 mov %l7, %o3 2008d78: 9f c4 40 00 call %l1 2008d7c: 98 10 00 1d mov %i5, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008d80: 80 a4 80 16 cmp %l2, %l6 2008d84: 02 80 00 43 be 2008e90 <_Heap_Walk+0x540> 2008d88: ae 10 00 16 mov %l6, %l7 2008d8c: f8 05 a0 04 ld [ %l6 + 4 ], %i4 2008d90: 10 bf ff c5 b 2008ca4 <_Heap_Walk+0x354> 2008d94: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008d98: 96 10 00 17 mov %l7, %o3 2008d9c: 90 10 00 19 mov %i1, %o0 2008da0: 92 10 20 00 clr %o1 2008da4: 94 10 00 1a mov %i2, %o2 2008da8: 9f c4 40 00 call %l1 2008dac: 98 10 00 1d mov %i5, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008db0: 10 bf ff f5 b 2008d84 <_Heap_Walk+0x434> 2008db4: 80 a4 80 16 cmp %l2, %l6 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008db8: da 05 e0 0c ld [ %l7 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008dbc: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008dc0: 05 00 80 57 sethi %hi(0x2015c00), %g2 block = next_block; } while ( block != first_block ); return true; } 2008dc4: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008dc8: 80 a0 40 0d cmp %g1, %o5 2008dcc: 02 80 00 05 be 2008de0 <_Heap_Walk+0x490> 2008dd0: 86 10 a0 f0 or %g2, 0xf0, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008dd4: 80 a4 00 0d cmp %l0, %o5 2008dd8: 02 80 00 3e be 2008ed0 <_Heap_Walk+0x580> 2008ddc: 86 16 e0 b8 or %i3, 0xb8, %g3 block->next, block->next == last_free_block ? 2008de0: c2 05 e0 08 ld [ %l7 + 8 ], %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008de4: 19 00 80 57 sethi %hi(0x2015c00), %o4 2008de8: 80 a1 00 01 cmp %g4, %g1 2008dec: 02 80 00 05 be 2008e00 <_Heap_Walk+0x4b0> 2008df0: 84 13 21 10 or %o4, 0x110, %g2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008df4: 80 a4 00 01 cmp %l0, %g1 2008df8: 02 80 00 33 be 2008ec4 <_Heap_Walk+0x574> 2008dfc: 84 16 e0 b8 or %i3, 0xb8, %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008e00: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008e04: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2008e08: c4 23 a0 64 st %g2, [ %sp + 0x64 ] 2008e0c: 90 10 00 19 mov %i1, %o0 2008e10: 92 10 20 00 clr %o1 2008e14: 15 00 80 58 sethi %hi(0x2016000), %o2 2008e18: 96 10 00 17 mov %l7, %o3 2008e1c: 94 12 a0 48 or %o2, 0x48, %o2 2008e20: 9f c4 40 00 call %l1 2008e24: 98 10 00 1d mov %i5, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008e28: da 05 80 00 ld [ %l6 ], %o5 2008e2c: 80 a7 40 0d cmp %i5, %o5 2008e30: 12 80 00 1a bne 2008e98 <_Heap_Walk+0x548> 2008e34: 80 a7 20 00 cmp %i4, 0 ); return false; } if ( !prev_used ) { 2008e38: 02 80 00 29 be 2008edc <_Heap_Walk+0x58c> 2008e3c: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 2008e40: c2 04 20 08 ld [ %l0 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008e44: 80 a4 00 01 cmp %l0, %g1 2008e48: 02 80 00 0b be 2008e74 <_Heap_Walk+0x524> <== NEVER TAKEN 2008e4c: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 2008e50: 80 a5 c0 01 cmp %l7, %g1 2008e54: 02 bf ff cc be 2008d84 <_Heap_Walk+0x434> 2008e58: 80 a4 80 16 cmp %l2, %l6 return true; } free_block = free_block->next; 2008e5c: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008e60: 80 a4 00 01 cmp %l0, %g1 2008e64: 12 bf ff fc bne 2008e54 <_Heap_Walk+0x504> 2008e68: 80 a5 c0 01 cmp %l7, %g1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008e6c: 90 10 00 19 mov %i1, %o0 2008e70: 92 10 20 01 mov 1, %o1 2008e74: 96 10 00 17 mov %l7, %o3 2008e78: 15 00 80 58 sethi %hi(0x2016000), %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008e7c: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008e80: 9f c4 40 00 call %l1 2008e84: 94 12 a1 30 or %o2, 0x130, %o2 2008e88: 81 c7 e0 08 ret 2008e8c: 81 e8 00 00 restore block = next_block; } while ( block != first_block ); return true; } 2008e90: 81 c7 e0 08 ret 2008e94: 91 e8 20 01 restore %g0, 1, %o0 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 2008e98: ec 23 a0 5c st %l6, [ %sp + 0x5c ] 2008e9c: 90 10 00 19 mov %i1, %o0 2008ea0: 92 10 20 01 mov 1, %o1 2008ea4: 96 10 00 17 mov %l7, %o3 2008ea8: 15 00 80 58 sethi %hi(0x2016000), %o2 2008eac: 98 10 00 1d mov %i5, %o4 2008eb0: 94 12 a0 80 or %o2, 0x80, %o2 2008eb4: 9f c4 40 00 call %l1 2008eb8: b0 10 20 00 clr %i0 2008ebc: 81 c7 e0 08 ret 2008ec0: 81 e8 00 00 restore " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008ec4: 09 00 80 57 sethi %hi(0x2015c00), %g4 2008ec8: 10 bf ff ce b 2008e00 <_Heap_Walk+0x4b0> 2008ecc: 84 11 21 20 or %g4, 0x120, %g2 ! 2015d20 <_Status_Object_name_errors_to_status+0x68> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008ed0: 19 00 80 57 sethi %hi(0x2015c00), %o4 2008ed4: 10 bf ff c3 b 2008de0 <_Heap_Walk+0x490> 2008ed8: 86 13 21 00 or %o4, 0x100, %g3 ! 2015d00 <_Status_Object_name_errors_to_status+0x48> return false; } if ( !prev_used ) { (*printer)( 2008edc: 92 10 20 01 mov 1, %o1 2008ee0: 96 10 00 17 mov %l7, %o3 2008ee4: 15 00 80 58 sethi %hi(0x2016000), %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008ee8: b0 10 20 00 clr %i0 return false; } if ( !prev_used ) { (*printer)( 2008eec: 9f c4 40 00 call %l1 2008ef0: 94 12 a0 c0 or %o2, 0xc0, %o2 2008ef4: 81 c7 e0 08 ret 2008ef8: 81 e8 00 00 restore return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 2008efc: 92 10 20 01 mov 1, %o1 2008f00: 96 10 00 17 mov %l7, %o3 2008f04: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008f08: 98 10 00 1d mov %i5, %o4 2008f0c: 94 12 a3 b0 or %o2, 0x3b0, %o2 2008f10: 9f c4 40 00 call %l1 2008f14: b0 10 20 00 clr %i0 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 2008f18: 81 c7 e0 08 ret 2008f1c: 81 e8 00 00 restore } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 2008f20: 90 10 00 19 mov %i1, %o0 2008f24: 92 10 20 01 mov 1, %o1 2008f28: 96 10 00 17 mov %l7, %o3 2008f2c: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008f30: 98 10 00 1d mov %i5, %o4 2008f34: 94 12 a3 e0 or %o2, 0x3e0, %o2 2008f38: 9a 10 00 13 mov %l3, %o5 2008f3c: 9f c4 40 00 call %l1 2008f40: b0 10 20 00 clr %i0 block, block_size, min_block_size ); return false; 2008f44: 81 c7 e0 08 ret 2008f48: 81 e8 00 00 restore } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 2008f4c: 92 10 20 01 mov 1, %o1 2008f50: 96 10 00 17 mov %l7, %o3 2008f54: 15 00 80 58 sethi %hi(0x2016000), %o2 2008f58: 98 10 00 16 mov %l6, %o4 2008f5c: 94 12 a0 10 or %o2, 0x10, %o2 2008f60: 9f c4 40 00 call %l1 2008f64: b0 10 20 00 clr %i0 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2008f68: 81 c7 e0 08 ret 2008f6c: 81 e8 00 00 restore const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008f70: 10 bf ff 47 b 2008c8c <_Heap_Walk+0x33c> 2008f74: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 =============================================================================== 02006e34 <_IO_Initialize_all_drivers>: * * Output Parameters: NONE */ void _IO_Initialize_all_drivers( void ) { 2006e34: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2006e38: 23 00 80 58 sethi %hi(0x2016000), %l1 2006e3c: c2 04 61 34 ld [ %l1 + 0x134 ], %g1 ! 2016134 <_IO_Number_of_drivers> 2006e40: 80 a0 60 00 cmp %g1, 0 2006e44: 02 80 00 0c be 2006e74 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 2006e48: a0 10 20 00 clr %l0 2006e4c: a2 14 61 34 or %l1, 0x134, %l1 (void) rtems_io_initialize( major, 0, NULL ); 2006e50: 90 10 00 10 mov %l0, %o0 2006e54: 92 10 20 00 clr %o1 2006e58: 40 00 15 a7 call 200c4f4 2006e5c: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2006e60: c2 04 40 00 ld [ %l1 ], %g1 2006e64: a0 04 20 01 inc %l0 2006e68: 80 a0 40 10 cmp %g1, %l0 2006e6c: 18 bf ff fa bgu 2006e54 <_IO_Initialize_all_drivers+0x20> 2006e70: 90 10 00 10 mov %l0, %o0 2006e74: 81 c7 e0 08 ret 2006e78: 81 e8 00 00 restore =============================================================================== 02006d68 <_IO_Manager_initialization>: * workspace. * */ void _IO_Manager_initialization(void) { 2006d68: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = Configuration.Device_driver_table; 2006d6c: 03 00 80 54 sethi %hi(0x2015000), %g1 2006d70: 82 10 62 a8 or %g1, 0x2a8, %g1 ! 20152a8 drivers_in_table = Configuration.number_of_device_drivers; 2006d74: e2 00 60 34 ld [ %g1 + 0x34 ], %l1 number_of_drivers = Configuration.maximum_drivers; 2006d78: e8 00 60 30 ld [ %g1 + 0x30 ], %l4 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 2006d7c: 80 a4 40 14 cmp %l1, %l4 2006d80: 0a 80 00 08 bcs 2006da0 <_IO_Manager_initialization+0x38> 2006d84: e0 00 60 38 ld [ %g1 + 0x38 ], %l0 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 2006d88: 03 00 80 58 sethi %hi(0x2016000), %g1 2006d8c: e0 20 61 38 st %l0, [ %g1 + 0x138 ] ! 2016138 <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 2006d90: 03 00 80 58 sethi %hi(0x2016000), %g1 2006d94: e2 20 61 34 st %l1, [ %g1 + 0x134 ] ! 2016134 <_IO_Number_of_drivers> return; 2006d98: 81 c7 e0 08 ret 2006d9c: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 2006da0: 83 2d 20 03 sll %l4, 3, %g1 2006da4: a7 2d 20 05 sll %l4, 5, %l3 2006da8: a6 24 c0 01 sub %l3, %g1, %l3 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 2006dac: 40 00 0d 12 call 200a1f4 <_Workspace_Allocate_or_fatal_error> 2006db0: 90 10 00 13 mov %l3, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2006db4: 03 00 80 58 sethi %hi(0x2016000), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2006db8: 25 00 80 58 sethi %hi(0x2016000), %l2 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2006dbc: e8 20 61 34 st %l4, [ %g1 + 0x134 ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2006dc0: d0 24 a1 38 st %o0, [ %l2 + 0x138 ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 2006dc4: 92 10 20 00 clr %o1 2006dc8: 40 00 21 95 call 200f41c 2006dcc: 94 10 00 13 mov %l3, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006dd0: 80 a4 60 00 cmp %l1, 0 2006dd4: 02 bf ff f1 be 2006d98 <_IO_Manager_initialization+0x30> <== NEVER TAKEN 2006dd8: da 04 a1 38 ld [ %l2 + 0x138 ], %o5 2006ddc: 82 10 20 00 clr %g1 2006de0: 88 10 20 00 clr %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006de4: c4 04 00 01 ld [ %l0 + %g1 ], %g2 2006de8: 86 04 00 01 add %l0, %g1, %g3 2006dec: c4 23 40 01 st %g2, [ %o5 + %g1 ] 2006df0: d8 00 e0 04 ld [ %g3 + 4 ], %o4 2006df4: 84 03 40 01 add %o5, %g1, %g2 2006df8: d8 20 a0 04 st %o4, [ %g2 + 4 ] 2006dfc: d8 00 e0 08 ld [ %g3 + 8 ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006e00: 88 01 20 01 inc %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006e04: d8 20 a0 08 st %o4, [ %g2 + 8 ] 2006e08: d8 00 e0 0c ld [ %g3 + 0xc ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006e0c: 82 00 60 18 add %g1, 0x18, %g1 _IO_Driver_address_table[index] = driver_table[index]; 2006e10: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 2006e14: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006e18: 80 a4 40 04 cmp %l1, %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006e1c: d8 20 a0 10 st %o4, [ %g2 + 0x10 ] 2006e20: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006e24: 18 bf ff f0 bgu 2006de4 <_IO_Manager_initialization+0x7c> 2006e28: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 2006e2c: 81 c7 e0 08 ret 2006e30: 81 e8 00 00 restore =============================================================================== 02007b70 <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007b70: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007b74: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007b78: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007b7c: 80 a0 60 00 cmp %g1, 0 2007b80: 02 80 00 19 be 2007be4 <_Objects_Allocate+0x74> <== NEVER TAKEN 2007b84: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007b88: a2 04 20 20 add %l0, 0x20, %l1 2007b8c: 7f ff fd 58 call 20070ec <_Chain_Get> 2007b90: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 2007b94: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007b98: 80 a0 60 00 cmp %g1, 0 2007b9c: 02 80 00 12 be 2007be4 <_Objects_Allocate+0x74> 2007ba0: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007ba4: 80 a2 20 00 cmp %o0, 0 2007ba8: 02 80 00 11 be 2007bec <_Objects_Allocate+0x7c> 2007bac: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007bb0: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 2007bb4: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007bb8: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 2007bbc: 40 00 29 94 call 201220c <.udiv> 2007bc0: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007bc4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2007bc8: 91 2a 20 02 sll %o0, 2, %o0 2007bcc: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2007bd0: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2007bd4: 86 00 ff ff add %g3, -1, %g3 2007bd8: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 2007bdc: 82 00 bf ff add %g2, -1, %g1 2007be0: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 2007be4: 81 c7 e0 08 ret 2007be8: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 2007bec: 40 00 00 11 call 2007c30 <_Objects_Extend_information> 2007bf0: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007bf4: 7f ff fd 3e call 20070ec <_Chain_Get> 2007bf8: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 2007bfc: b0 92 20 00 orcc %o0, 0, %i0 2007c00: 32 bf ff ed bne,a 2007bb4 <_Objects_Allocate+0x44> 2007c04: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 ); } #endif return the_object; } 2007c08: 81 c7 e0 08 ret 2007c0c: 81 e8 00 00 restore =============================================================================== 02007c30 <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 2007c30: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007c34: e8 06 20 34 ld [ %i0 + 0x34 ], %l4 2007c38: 80 a5 20 00 cmp %l4, 0 2007c3c: 02 80 00 a9 be 2007ee0 <_Objects_Extend_information+0x2b0> 2007c40: e4 16 20 0a lduh [ %i0 + 0xa ], %l2 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2007c44: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5 2007c48: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3 2007c4c: ab 2d 60 10 sll %l5, 0x10, %l5 2007c50: 92 10 00 13 mov %l3, %o1 2007c54: 40 00 29 6e call 201220c <.udiv> 2007c58: 91 35 60 10 srl %l5, 0x10, %o0 2007c5c: bb 2a 20 10 sll %o0, 0x10, %i5 2007c60: bb 37 60 10 srl %i5, 0x10, %i5 for ( ; block < block_count; block++ ) { 2007c64: 80 a7 60 00 cmp %i5, 0 2007c68: 02 80 00 a6 be 2007f00 <_Objects_Extend_information+0x2d0><== NEVER TAKEN 2007c6c: 90 10 00 13 mov %l3, %o0 if ( information->object_blocks[ block ] == NULL ) { 2007c70: c2 05 00 00 ld [ %l4 ], %g1 2007c74: 80 a0 60 00 cmp %g1, 0 2007c78: 02 80 00 a6 be 2007f10 <_Objects_Extend_information+0x2e0><== NEVER TAKEN 2007c7c: a2 10 00 12 mov %l2, %l1 * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007c80: 10 80 00 06 b 2007c98 <_Objects_Extend_information+0x68> 2007c84: a0 10 20 00 clr %l0 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007c88: c2 05 00 01 ld [ %l4 + %g1 ], %g1 2007c8c: 80 a0 60 00 cmp %g1, 0 2007c90: 22 80 00 08 be,a 2007cb0 <_Objects_Extend_information+0x80> 2007c94: a8 10 20 00 clr %l4 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007c98: a0 04 20 01 inc %l0 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 2007c9c: a2 04 40 13 add %l1, %l3, %l1 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007ca0: 80 a7 40 10 cmp %i5, %l0 2007ca4: 18 bf ff f9 bgu 2007c88 <_Objects_Extend_information+0x58> 2007ca8: 83 2c 20 02 sll %l0, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007cac: a8 10 20 01 mov 1, %l4 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007cb0: ab 35 60 10 srl %l5, 0x10, %l5 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007cb4: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007cb8: aa 05 40 08 add %l5, %o0, %l5 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007cbc: 82 10 63 ff or %g1, 0x3ff, %g1 2007cc0: 80 a5 40 01 cmp %l5, %g1 2007cc4: 18 80 00 98 bgu 2007f24 <_Objects_Extend_information+0x2f4> 2007cc8: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 2007ccc: 40 00 29 16 call 2012124 <.umul> 2007cd0: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2007cd4: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2007cd8: 80 a0 60 00 cmp %g1, 0 2007cdc: 02 80 00 6d be 2007e90 <_Objects_Extend_information+0x260> 2007ce0: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 2007ce4: 40 00 09 34 call 200a1b4 <_Workspace_Allocate> 2007ce8: 01 00 00 00 nop if ( !new_object_block ) 2007cec: a6 92 20 00 orcc %o0, 0, %l3 2007cf0: 02 80 00 8d be 2007f24 <_Objects_Extend_information+0x2f4> 2007cf4: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 2007cf8: 80 8d 20 ff btst 0xff, %l4 2007cfc: 22 80 00 42 be,a 2007e04 <_Objects_Extend_information+0x1d4> 2007d00: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 */ /* * Up the block count and maximum */ block_count++; 2007d04: a8 07 60 01 add %i5, 1, %l4 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007d08: 91 2d 20 01 sll %l4, 1, %o0 2007d0c: 90 02 00 14 add %o0, %l4, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 2007d10: 90 05 40 08 add %l5, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007d14: 90 02 00 12 add %o0, %l2, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 2007d18: 40 00 09 27 call 200a1b4 <_Workspace_Allocate> 2007d1c: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { 2007d20: ac 92 20 00 orcc %o0, 0, %l6 2007d24: 02 80 00 7e be 2007f1c <_Objects_Extend_information+0x2ec> 2007d28: a9 2d 20 02 sll %l4, 2, %l4 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 2007d2c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2007d30: 80 a4 80 01 cmp %l2, %g1 2007d34: ae 05 80 14 add %l6, %l4, %l7 2007d38: 0a 80 00 5a bcs 2007ea0 <_Objects_Extend_information+0x270> 2007d3c: a8 05 c0 14 add %l7, %l4, %l4 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2007d40: 80 a4 a0 00 cmp %l2, 0 2007d44: 02 80 00 07 be 2007d60 <_Objects_Extend_information+0x130><== NEVER TAKEN 2007d48: 82 10 20 00 clr %g1 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2007d4c: 85 28 60 02 sll %g1, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2007d50: 82 00 60 01 inc %g1 2007d54: 80 a4 80 01 cmp %l2, %g1 2007d58: 18 bf ff fd bgu 2007d4c <_Objects_Extend_information+0x11c><== NEVER TAKEN 2007d5c: c0 20 80 14 clr [ %g2 + %l4 ] 2007d60: bb 2f 60 02 sll %i5, 2, %i5 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007d64: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 2007d68: c0 25 80 1d clr [ %l6 + %i5 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007d6c: 86 04 40 03 add %l1, %g3, %g3 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007d70: 80 a4 40 03 cmp %l1, %g3 2007d74: 1a 80 00 0a bcc 2007d9c <_Objects_Extend_information+0x16c><== NEVER TAKEN 2007d78: c0 25 c0 1d clr [ %l7 + %i5 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2007d7c: 83 2c 60 02 sll %l1, 2, %g1 2007d80: 84 10 00 11 mov %l1, %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007d84: 82 05 00 01 add %l4, %g1, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 2007d88: c0 20 40 00 clr [ %g1 ] object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 2007d8c: 84 00 a0 01 inc %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007d90: 80 a0 80 03 cmp %g2, %g3 2007d94: 0a bf ff fd bcs 2007d88 <_Objects_Extend_information+0x158> 2007d98: 82 00 60 04 add %g1, 4, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 2007d9c: 7f ff e9 3e call 2002294 2007da0: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007da4: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2007da8: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 2007dac: e4 06 20 34 ld [ %i0 + 0x34 ], %l2 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2007db0: ea 36 20 10 sth %l5, [ %i0 + 0x10 ] 2007db4: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007db8: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 2007dbc: ec 26 20 34 st %l6, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 2007dc0: ee 26 20 30 st %l7, [ %i0 + 0x30 ] information->local_table = local_table; 2007dc4: e8 26 20 1c st %l4, [ %i0 + 0x1c ] information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2007dc8: ab 2d 60 10 sll %l5, 0x10, %l5 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007dcc: 03 00 00 40 sethi %hi(0x10000), %g1 2007dd0: ab 35 60 10 srl %l5, 0x10, %l5 2007dd4: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007dd8: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007ddc: 82 10 40 15 or %g1, %l5, %g1 2007de0: c2 26 20 0c st %g1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 2007de4: 7f ff e9 30 call 20022a4 2007de8: 01 00 00 00 nop if ( old_tables ) 2007dec: 80 a4 a0 00 cmp %l2, 0 2007df0: 22 80 00 05 be,a 2007e04 <_Objects_Extend_information+0x1d4> 2007df4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 _Workspace_Free( old_tables ); 2007df8: 40 00 08 f8 call 200a1d8 <_Workspace_Free> 2007dfc: 90 10 00 12 mov %l2, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007e00: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007e04: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 2007e08: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 2007e0c: 92 10 00 13 mov %l3, %o1 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007e10: a1 2c 20 02 sll %l0, 2, %l0 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007e14: a4 07 bf f4 add %fp, -12, %l2 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007e18: e6 20 40 10 st %l3, [ %g1 + %l0 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007e1c: 90 10 00 12 mov %l2, %o0 2007e20: 40 00 11 cc call 200c550 <_Chain_Initialize> 2007e24: 29 00 00 40 sethi %hi(0x10000), %l4 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2007e28: 10 80 00 0d b 2007e5c <_Objects_Extend_information+0x22c> 2007e2c: a6 06 20 20 add %i0, 0x20, %l3 the_object->id = _Objects_Build_id( 2007e30: c6 16 20 04 lduh [ %i0 + 4 ], %g3 2007e34: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007e38: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007e3c: 84 10 80 14 or %g2, %l4, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007e40: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007e44: 84 10 80 11 or %g2, %l1, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2007e48: 90 10 00 13 mov %l3, %o0 2007e4c: 92 10 00 01 mov %g1, %o1 index++; 2007e50: a2 04 60 01 inc %l1 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2007e54: 7f ff fc 90 call 2007094 <_Chain_Append> 2007e58: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2007e5c: 7f ff fc a4 call 20070ec <_Chain_Get> 2007e60: 90 10 00 12 mov %l2, %o0 2007e64: 82 92 20 00 orcc %o0, 0, %g1 2007e68: 32 bf ff f2 bne,a 2007e30 <_Objects_Extend_information+0x200> 2007e6c: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2007e70: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 2007e74: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2007e78: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2007e7c: c8 20 c0 10 st %g4, [ %g3 + %l0 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2007e80: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 2007e84: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 2007e88: 81 c7 e0 08 ret 2007e8c: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 2007e90: 40 00 08 d9 call 200a1f4 <_Workspace_Allocate_or_fatal_error> 2007e94: 01 00 00 00 nop 2007e98: 10 bf ff 98 b 2007cf8 <_Objects_Extend_information+0xc8> 2007e9c: a6 10 00 08 mov %o0, %l3 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2007ea0: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 2007ea4: bb 2f 60 02 sll %i5, 2, %i5 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2007ea8: 40 00 1d 24 call 200f338 2007eac: 94 10 00 1d mov %i5, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 2007eb0: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 2007eb4: 94 10 00 1d mov %i5, %o2 2007eb8: 40 00 1d 20 call 200f338 2007ebc: 90 10 00 17 mov %l7, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2007ec0: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2007ec4: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2007ec8: 94 04 80 0a add %l2, %o2, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2007ecc: 90 10 00 14 mov %l4, %o0 2007ed0: 40 00 1d 1a call 200f338 2007ed4: 95 2a a0 02 sll %o2, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007ed8: 10 bf ff a4 b 2007d68 <_Objects_Extend_information+0x138> 2007edc: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007ee0: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5 2007ee4: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007ee8: a2 10 00 12 mov %l2, %l1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007eec: a8 10 20 01 mov 1, %l4 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007ef0: a0 10 20 00 clr %l0 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 2007ef4: ba 10 20 00 clr %i5 2007ef8: 10 bf ff 6e b 2007cb0 <_Objects_Extend_information+0x80> 2007efc: ab 2d 60 10 sll %l5, 0x10, %l5 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007f00: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007f04: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007f08: 10 bf ff 6a b 2007cb0 <_Objects_Extend_information+0x80> <== NOT EXECUTED 2007f0c: a0 10 20 00 clr %l0 <== NOT EXECUTED else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { do_extend = false; 2007f10: a8 10 20 00 clr %l4 <== NOT EXECUTED * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007f14: 10 bf ff 67 b 2007cb0 <_Objects_Extend_information+0x80> <== NOT EXECUTED 2007f18: a0 10 20 00 clr %l0 <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 2007f1c: 40 00 08 af call 200a1d8 <_Workspace_Free> 2007f20: 90 10 00 13 mov %l3, %o0 return; 2007f24: 81 c7 e0 08 ret 2007f28: 81 e8 00 00 restore =============================================================================== 02007fd8 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007fd8: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007fdc: b3 2e 60 10 sll %i1, 0x10, %i1 2007fe0: b3 36 60 10 srl %i1, 0x10, %i1 2007fe4: 80 a6 60 00 cmp %i1, 0 2007fe8: 12 80 00 04 bne 2007ff8 <_Objects_Get_information+0x20> 2007fec: a0 10 20 00 clr %l0 if ( info->maximum == 0 ) return NULL; #endif return info; } 2007ff0: 81 c7 e0 08 ret 2007ff4: 91 e8 00 10 restore %g0, %l0, %o0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007ff8: 40 00 12 e4 call 200cb88 <_Objects_API_maximum_class> 2007ffc: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2008000: 80 a2 20 00 cmp %o0, 0 2008004: 02 bf ff fb be 2007ff0 <_Objects_Get_information+0x18> 2008008: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 200800c: 0a bf ff f9 bcs 2007ff0 <_Objects_Get_information+0x18> 2008010: 03 00 80 57 sethi %hi(0x2015c00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2008014: b1 2e 20 02 sll %i0, 2, %i0 2008018: 82 10 61 a8 or %g1, 0x1a8, %g1 200801c: c2 00 40 18 ld [ %g1 + %i0 ], %g1 2008020: 80 a0 60 00 cmp %g1, 0 2008024: 02 bf ff f3 be 2007ff0 <_Objects_Get_information+0x18> <== NEVER TAKEN 2008028: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 200802c: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 2008030: 80 a4 20 00 cmp %l0, 0 2008034: 02 bf ff ef be 2007ff0 <_Objects_Get_information+0x18> <== NEVER TAKEN 2008038: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 200803c: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 2008040: 80 a0 00 01 cmp %g0, %g1 2008044: 82 60 20 00 subx %g0, 0, %g1 2008048: 10 bf ff ea b 2007ff0 <_Objects_Get_information+0x18> 200804c: a0 0c 00 01 and %l0, %g1, %l0 =============================================================================== 02009d84 <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 2009d84: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2009d88: 80 a6 60 00 cmp %i1, 0 2009d8c: 12 80 00 05 bne 2009da0 <_Objects_Get_name_as_string+0x1c> 2009d90: 80 a6 a0 00 cmp %i2, 0 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2009d94: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 2009d98: 81 c7 e0 08 ret 2009d9c: 91 e8 00 1a restore %g0, %i2, %o0 Objects_Id tmpId; if ( length == 0 ) return NULL; if ( name == NULL ) 2009da0: 02 bf ff fe be 2009d98 <_Objects_Get_name_as_string+0x14> 2009da4: 80 a6 20 00 cmp %i0, 0 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009da8: 12 80 00 04 bne 2009db8 <_Objects_Get_name_as_string+0x34> 2009dac: 03 00 80 9b sethi %hi(0x2026c00), %g1 2009db0: c2 00 60 08 ld [ %g1 + 8 ], %g1 ! 2026c08 <_Per_CPU_Information+0xc> 2009db4: f0 00 60 08 ld [ %g1 + 8 ], %i0 information = _Objects_Get_information_id( tmpId ); 2009db8: 7f ff ff b1 call 2009c7c <_Objects_Get_information_id> 2009dbc: 90 10 00 18 mov %i0, %o0 if ( !information ) 2009dc0: 80 a2 20 00 cmp %o0, 0 2009dc4: 22 bf ff f5 be,a 2009d98 <_Objects_Get_name_as_string+0x14> 2009dc8: b4 10 20 00 clr %i2 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 2009dcc: 92 10 00 18 mov %i0, %o1 2009dd0: 40 00 00 2d call 2009e84 <_Objects_Get> 2009dd4: 94 07 bf fc add %fp, -4, %o2 switch ( location ) { 2009dd8: c2 07 bf fc ld [ %fp + -4 ], %g1 2009ddc: 80 a0 60 00 cmp %g1, 0 2009de0: 32 bf ff ee bne,a 2009d98 <_Objects_Get_name_as_string+0x14> 2009de4: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 2009de8: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 2009dec: c0 2f bf f4 clrb [ %fp + -12 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009df0: 89 30 60 18 srl %g1, 0x18, %g4 lname[ 1 ] = (u32_name >> 16) & 0xff; 2009df4: 87 30 60 10 srl %g1, 0x10, %g3 lname[ 2 ] = (u32_name >> 8) & 0xff; 2009df8: 85 30 60 08 srl %g1, 8, %g2 #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; 2009dfc: c6 2f bf f1 stb %g3, [ %fp + -15 ] lname[ 2 ] = (u32_name >> 8) & 0xff; 2009e00: c4 2f bf f2 stb %g2, [ %fp + -14 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009e04: c8 2f bf f0 stb %g4, [ %fp + -16 ] lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; 2009e08: c2 2f bf f3 stb %g1, [ %fp + -13 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009e0c: 84 10 00 04 mov %g4, %g2 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009e10: b2 86 7f ff addcc %i1, -1, %i1 2009e14: 02 80 00 19 be 2009e78 <_Objects_Get_name_as_string+0xf4> <== NEVER TAKEN 2009e18: 86 10 00 1a mov %i2, %g3 2009e1c: 80 a1 20 00 cmp %g4, 0 2009e20: 02 80 00 16 be 2009e78 <_Objects_Get_name_as_string+0xf4> 2009e24: 19 00 80 78 sethi %hi(0x201e000), %o4 2009e28: 82 10 20 00 clr %g1 2009e2c: 10 80 00 06 b 2009e44 <_Objects_Get_name_as_string+0xc0> 2009e30: 98 13 22 8c or %o4, 0x28c, %o4 2009e34: da 49 00 01 ldsb [ %g4 + %g1 ], %o5 2009e38: 80 a3 60 00 cmp %o5, 0 2009e3c: 02 80 00 0f be 2009e78 <_Objects_Get_name_as_string+0xf4> 2009e40: c4 09 00 01 ldub [ %g4 + %g1 ], %g2 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2009e44: da 03 00 00 ld [ %o4 ], %o5 2009e48: 88 08 a0 ff and %g2, 0xff, %g4 2009e4c: 88 03 40 04 add %o5, %g4, %g4 2009e50: da 49 20 01 ldsb [ %g4 + 1 ], %o5 2009e54: 80 8b 60 97 btst 0x97, %o5 2009e58: 12 80 00 03 bne 2009e64 <_Objects_Get_name_as_string+0xe0> 2009e5c: 88 07 bf f0 add %fp, -16, %g4 2009e60: 84 10 20 2a mov 0x2a, %g2 2009e64: c4 28 c0 00 stb %g2, [ %g3 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009e68: 82 00 60 01 inc %g1 2009e6c: 80 a0 40 19 cmp %g1, %i1 2009e70: 0a bf ff f1 bcs 2009e34 <_Objects_Get_name_as_string+0xb0> 2009e74: 86 00 e0 01 inc %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; _Thread_Enable_dispatch(); 2009e78: 40 00 03 1c call 200aae8 <_Thread_Enable_dispatch> 2009e7c: c0 28 c0 00 clrb [ %g3 ] return name; 2009e80: 30 bf ff c6 b,a 2009d98 <_Objects_Get_name_as_string+0x14> =============================================================================== 02019384 <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019384: c4 02 20 08 ld [ %o0 + 8 ], %g2 if ( information->maximum >= index ) { 2019388: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201938c: 84 22 40 02 sub %o1, %g2, %g2 2019390: 84 00 a0 01 inc %g2 if ( information->maximum >= index ) { 2019394: 80 a0 80 01 cmp %g2, %g1 2019398: 18 80 00 09 bgu 20193bc <_Objects_Get_no_protection+0x38> 201939c: 85 28 a0 02 sll %g2, 2, %g2 if ( (the_object = information->local_table[ index ]) != NULL ) { 20193a0: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 20193a4: d0 00 40 02 ld [ %g1 + %g2 ], %o0 20193a8: 80 a2 20 00 cmp %o0, 0 20193ac: 02 80 00 05 be 20193c0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 20193b0: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 20193b4: 81 c3 e0 08 retl 20193b8: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 20193bc: 82 10 20 01 mov 1, %g1 return NULL; 20193c0: 90 10 20 00 clr %o0 } 20193c4: 81 c3 e0 08 retl 20193c8: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 02009878 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2009878: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 200987c: 80 a6 20 00 cmp %i0, 0 2009880: 12 80 00 06 bne 2009898 <_Objects_Id_to_name+0x20> 2009884: 83 36 20 18 srl %i0, 0x18, %g1 2009888: 03 00 80 77 sethi %hi(0x201dc00), %g1 200988c: c2 00 63 08 ld [ %g1 + 0x308 ], %g1 ! 201df08 <_Per_CPU_Information+0xc> 2009890: f0 00 60 08 ld [ %g1 + 8 ], %i0 2009894: 83 36 20 18 srl %i0, 0x18, %g1 2009898: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 200989c: 84 00 7f ff add %g1, -1, %g2 20098a0: 80 a0 a0 02 cmp %g2, 2 20098a4: 18 80 00 17 bgu 2009900 <_Objects_Id_to_name+0x88> 20098a8: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 20098ac: 83 28 60 02 sll %g1, 2, %g1 20098b0: 05 00 80 77 sethi %hi(0x201dc00), %g2 20098b4: 84 10 a0 08 or %g2, 8, %g2 ! 201dc08 <_Objects_Information_table> 20098b8: c2 00 80 01 ld [ %g2 + %g1 ], %g1 20098bc: 80 a0 60 00 cmp %g1, 0 20098c0: 02 80 00 10 be 2009900 <_Objects_Id_to_name+0x88> 20098c4: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 20098c8: 85 28 a0 02 sll %g2, 2, %g2 20098cc: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 20098d0: 80 a2 20 00 cmp %o0, 0 20098d4: 02 80 00 0b be 2009900 <_Objects_Id_to_name+0x88> <== NEVER TAKEN 20098d8: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 20098dc: 7f ff ff ca call 2009804 <_Objects_Get> 20098e0: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 20098e4: 80 a2 20 00 cmp %o0, 0 20098e8: 02 80 00 06 be 2009900 <_Objects_Id_to_name+0x88> 20098ec: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 20098f0: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 20098f4: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 20098f8: 40 00 03 2c call 200a5a8 <_Thread_Enable_dispatch> 20098fc: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 2009900: 81 c7 e0 08 ret 2009904: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02008138 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2008138: 9d e3 bf a0 save %sp, -96, %sp information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 200813c: 05 00 80 57 sethi %hi(0x2015c00), %g2 2008140: 83 2e 60 02 sll %i1, 2, %g1 2008144: 84 10 a1 a8 or %g2, 0x1a8, %g2 2008148: c2 00 80 01 ld [ %g2 + %g1 ], %g1 #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; 200814c: f4 36 20 04 sth %i2, [ %i0 + 4 ] uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 2008150: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; information->size = size; 2008154: 85 2f 20 10 sll %i4, 0x10, %g2 information->local_table = 0; 2008158: c0 26 20 1c clr [ %i0 + 0x1c ] uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 200815c: 85 30 a0 10 srl %g2, 0x10, %g2 information->local_table = 0; information->inactive_per_block = 0; 2008160: c0 26 20 30 clr [ %i0 + 0x30 ] uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2008164: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->local_table = 0; information->inactive_per_block = 0; information->object_blocks = 0; 2008168: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 200816c: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 2008170: c0 36 20 10 clrh [ %i0 + 0x10 ] , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2008174: c6 07 a0 5c ld [ %fp + 0x5c ], %g3 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2008178: b5 2e a0 10 sll %i2, 0x10, %i2 200817c: b5 36 a0 10 srl %i2, 0x10, %i2 2008180: 85 2e a0 02 sll %i2, 2, %g2 2008184: f0 20 40 02 st %i0, [ %g1 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 2008188: 83 36 e0 1f srl %i3, 0x1f, %g1 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 200818c: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ] maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 2008190: 80 a0 60 00 cmp %g1, 0 /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 2008194: 03 20 00 00 sethi %hi(0x80000000), %g1 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 2008198: 02 80 00 05 be 20081ac <_Objects_Initialize_information+0x74> 200819c: b6 2e c0 01 andn %i3, %g1, %i3 20081a0: 80 a6 e0 00 cmp %i3, 0 20081a4: 02 80 00 27 be 2008240 <_Objects_Initialize_information+0x108> 20081a8: 90 10 20 00 clr %o0 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20081ac: 05 00 00 40 sethi %hi(0x10000), %g2 information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 20081b0: 80 a0 00 1b cmp %g0, %i3 20081b4: b3 2e 60 18 sll %i1, 0x18, %i1 20081b8: 82 40 20 00 addx %g0, 0, %g1 20081bc: b2 16 40 02 or %i1, %g2, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20081c0: b5 2e a0 1b sll %i2, 0x1b, %i2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 20081c4: 05 00 80 56 sethi %hi(0x2015800), %g2 20081c8: b4 16 40 1a or %i1, %i2, %i2 20081cc: 84 10 a2 f4 or %g2, 0x2f4, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20081d0: b4 16 80 01 or %i2, %g1, %i2 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 20081d4: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 20081d8: c4 26 20 1c st %g2, [ %i0 + 0x1c ] /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 20081dc: 80 88 e0 03 btst 3, %g3 20081e0: 12 80 00 0c bne 2008210 <_Objects_Initialize_information+0xd8><== NEVER TAKEN 20081e4: f4 26 20 08 st %i2, [ %i0 + 8 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 20081e8: 84 06 20 24 add %i0, 0x24, %g2 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 20081ec: 82 06 20 20 add %i0, 0x20, %g1 name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 20081f0: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20081f4: c4 26 20 20 st %g2, [ %i0 + 0x20 ] head->previous = NULL; 20081f8: c0 26 20 24 clr [ %i0 + 0x24 ] _Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 20081fc: 80 a6 e0 00 cmp %i3, 0 2008200: 12 80 00 0e bne 2008238 <_Objects_Initialize_information+0x100> 2008204: c2 26 20 28 st %g1, [ %i0 + 0x28 ] 2008208: 81 c7 e0 08 ret 200820c: 81 e8 00 00 restore * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 2008210: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 2008214: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED 2008218: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); 200821c: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 2008220: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2008224: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED head->previous = NULL; 2008228: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED _Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 200822c: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 2008230: 02 bf ff f6 be 2008208 <_Objects_Initialize_information+0xd0><== NOT EXECUTED 2008234: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 2008238: 7f ff fe 7e call 2007c30 <_Objects_Extend_information> 200823c: 81 e8 00 00 restore /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { _Internal_error_Occurred( 2008240: 92 10 20 01 mov 1, %o1 2008244: 7f ff fe 1e call 2007abc <_Internal_error_Occurred> 2008248: 94 10 20 13 mov 0x13, %o2 =============================================================================== 02008308 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 2008308: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 200830c: e0 16 20 0a lduh [ %i0 + 0xa ], %l0 block_count = (information->maximum - index_base) / 2008310: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1 2008314: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 2008318: 92 10 00 11 mov %l1, %o1 200831c: 40 00 27 bc call 201220c <.udiv> 2008320: 90 22 00 10 sub %o0, %l0, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 2008324: 80 a2 20 00 cmp %o0, 0 2008328: 02 80 00 34 be 20083f8 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN 200832c: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 2008330: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 2008334: c2 01 00 00 ld [ %g4 ], %g1 2008338: 80 a4 40 01 cmp %l1, %g1 200833c: 02 80 00 0f be 2008378 <_Objects_Shrink_information+0x70> <== NEVER TAKEN 2008340: 82 10 20 00 clr %g1 2008344: 10 80 00 07 b 2008360 <_Objects_Shrink_information+0x58> 2008348: a4 10 20 04 mov 4, %l2 information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; 200834c: 86 04 a0 04 add %l2, 4, %g3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 2008350: 80 a4 40 02 cmp %l1, %g2 2008354: 02 80 00 0a be 200837c <_Objects_Shrink_information+0x74> 2008358: a0 04 00 11 add %l0, %l1, %l0 200835c: a4 10 00 03 mov %g3, %l2 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 2008360: 82 00 60 01 inc %g1 2008364: 80 a2 00 01 cmp %o0, %g1 2008368: 38 bf ff f9 bgu,a 200834c <_Objects_Shrink_information+0x44> 200836c: c4 01 00 12 ld [ %g4 + %l2 ], %g2 2008370: 81 c7 e0 08 ret 2008374: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 2008378: a4 10 20 00 clr %l2 <== NOT EXECUTED information->allocation_size ) { /* * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); 200837c: 10 80 00 06 b 2008394 <_Objects_Shrink_information+0x8c> 2008380: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 2008384: 80 a4 60 00 cmp %l1, 0 2008388: 22 80 00 12 be,a 20083d0 <_Objects_Shrink_information+0xc8> 200838c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 2008390: 90 10 00 11 mov %l1, %o0 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) _Chain_First( &information->Inactive ); do { index = _Objects_Get_index( the_object->id ); 2008394: c2 12 20 0a lduh [ %o0 + 0xa ], %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008398: 80 a0 40 10 cmp %g1, %l0 200839c: 0a bf ff fa bcs 2008384 <_Objects_Shrink_information+0x7c> 20083a0: e2 02 00 00 ld [ %o0 ], %l1 (index < (index_base + information->allocation_size))) { 20083a4: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 20083a8: 84 04 00 02 add %l0, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 20083ac: 80 a0 40 02 cmp %g1, %g2 20083b0: 1a bf ff f6 bcc 2008388 <_Objects_Shrink_information+0x80> 20083b4: 80 a4 60 00 cmp %l1, 0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 20083b8: 7f ff fb 43 call 20070c4 <_Chain_Extract> 20083bc: 01 00 00 00 nop } } while ( the_object ); 20083c0: 80 a4 60 00 cmp %l1, 0 20083c4: 12 bf ff f4 bne 2008394 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN 20083c8: 90 10 00 11 mov %l1, %o0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 20083cc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 20083d0: 40 00 07 82 call 200a1d8 <_Workspace_Free> 20083d4: d0 00 40 12 ld [ %g1 + %l2 ], %o0 information->object_blocks[ block ] = NULL; 20083d8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; 20083dc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 20083e0: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 20083e4: c0 20 40 12 clr [ %g1 + %l2 ] information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 20083e8: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 20083ec: c0 20 c0 12 clr [ %g3 + %l2 ] information->inactive -= information->allocation_size; 20083f0: 82 20 80 01 sub %g2, %g1, %g1 20083f4: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 20083f8: 81 c7 e0 08 ret 20083fc: 81 e8 00 00 restore =============================================================================== 02006a5c <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 2006a5c: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 2006a60: 03 00 80 54 sethi %hi(0x2015000), %g1 2006a64: 82 10 62 70 or %g1, 0x270, %g1 ! 2015270 2006a68: e0 00 60 2c ld [ %g1 + 0x2c ], %l0 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 2006a6c: 80 a4 20 00 cmp %l0, 0 2006a70: 02 80 00 19 be 2006ad4 <_RTEMS_tasks_Initialize_user_tasks_body+0x78> 2006a74: e4 00 60 28 ld [ %g1 + 0x28 ], %l2 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006a78: 80 a4 a0 00 cmp %l2, 0 2006a7c: 02 80 00 16 be 2006ad4 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN 2006a80: a2 10 20 00 clr %l1 2006a84: a6 07 bf fc add %fp, -4, %l3 return_value = rtems_task_create( 2006a88: d4 04 20 04 ld [ %l0 + 4 ], %o2 2006a8c: d0 04 00 00 ld [ %l0 ], %o0 2006a90: d2 04 20 08 ld [ %l0 + 8 ], %o1 2006a94: d6 04 20 14 ld [ %l0 + 0x14 ], %o3 2006a98: d8 04 20 0c ld [ %l0 + 0xc ], %o4 2006a9c: 7f ff ff 6d call 2006850 2006aa0: 9a 10 00 13 mov %l3, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 2006aa4: 94 92 20 00 orcc %o0, 0, %o2 2006aa8: 12 80 00 0d bne 2006adc <_RTEMS_tasks_Initialize_user_tasks_body+0x80> 2006aac: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 2006ab0: d4 04 20 18 ld [ %l0 + 0x18 ], %o2 2006ab4: 40 00 00 0e call 2006aec 2006ab8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2006abc: 94 92 20 00 orcc %o0, 0, %o2 2006ac0: 12 80 00 07 bne 2006adc <_RTEMS_tasks_Initialize_user_tasks_body+0x80> 2006ac4: a2 04 60 01 inc %l1 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006ac8: 80 a4 80 11 cmp %l2, %l1 2006acc: 18 bf ff ef bgu 2006a88 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN 2006ad0: a0 04 20 1c add %l0, 0x1c, %l0 2006ad4: 81 c7 e0 08 ret 2006ad8: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 2006adc: 90 10 20 01 mov 1, %o0 2006ae0: 40 00 03 f7 call 2007abc <_Internal_error_Occurred> 2006ae4: 92 10 20 01 mov 1, %o1 =============================================================================== 0200c2b0 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200c2b0: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200c2b4: e0 06 21 58 ld [ %i0 + 0x158 ], %l0 if ( !api ) 200c2b8: 80 a4 20 00 cmp %l0, 0 200c2bc: 02 80 00 1f be 200c338 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN 200c2c0: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200c2c4: 7f ff d7 f4 call 2002294 200c2c8: 01 00 00 00 nop signal_set = asr->signals_posted; 200c2cc: e2 04 20 14 ld [ %l0 + 0x14 ], %l1 asr->signals_posted = 0; 200c2d0: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200c2d4: 7f ff d7 f4 call 20022a4 200c2d8: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200c2dc: 80 a4 60 00 cmp %l1, 0 200c2e0: 32 80 00 04 bne,a 200c2f0 <_RTEMS_tasks_Post_switch_extension+0x40> 200c2e4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200c2e8: 81 c7 e0 08 ret 200c2ec: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c2f0: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c2f4: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c2f8: a4 07 bf fc add %fp, -4, %l2 200c2fc: 27 00 00 3f sethi %hi(0xfc00), %l3 200c300: 94 10 00 12 mov %l2, %o2 200c304: 92 14 e3 ff or %l3, 0x3ff, %o1 200c308: 40 00 08 37 call 200e3e4 200c30c: c2 24 20 1c st %g1, [ %l0 + 0x1c ] (*asr->handler)( signal_set ); 200c310: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200c314: 9f c0 40 00 call %g1 200c318: 90 10 00 11 mov %l1, %o0 asr->nest_level -= 1; 200c31c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c320: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200c324: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c328: 92 14 e3 ff or %l3, 0x3ff, %o1 200c32c: 94 10 00 12 mov %l2, %o2 200c330: 40 00 08 2d call 200e3e4 200c334: c2 24 20 1c st %g1, [ %l0 + 0x1c ] 200c338: 81 c7 e0 08 ret 200c33c: 81 e8 00 00 restore =============================================================================== 0200c220 <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200c220: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 200c224: 80 a0 60 00 cmp %g1, 0 200c228: 22 80 00 0b be,a 200c254 <_RTEMS_tasks_Switch_extension+0x34> 200c22c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 tvp->tval = *tvp->ptr; 200c230: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200c234: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200c238: c8 00 80 00 ld [ %g2 ], %g4 200c23c: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; 200c240: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200c244: 80 a0 60 00 cmp %g1, 0 200c248: 12 bf ff fa bne 200c230 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN 200c24c: c6 20 80 00 st %g3, [ %g2 ] tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200c250: c2 02 61 64 ld [ %o1 + 0x164 ], %g1 while (tvp) { 200c254: 80 a0 60 00 cmp %g1, 0 200c258: 02 80 00 0a be 200c280 <_RTEMS_tasks_Switch_extension+0x60> 200c25c: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200c260: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200c264: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200c268: c8 00 80 00 ld [ %g2 ], %g4 200c26c: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; tvp = (rtems_task_variable_t *)tvp->next; 200c270: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200c274: 80 a0 60 00 cmp %g1, 0 200c278: 12 bf ff fa bne 200c260 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN 200c27c: c6 20 80 00 st %g3, [ %g2 ] 200c280: 81 c3 e0 08 retl =============================================================================== 02007d70 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007d70: 9d e3 bf 98 save %sp, -104, %sp 2007d74: 11 00 80 78 sethi %hi(0x201e000), %o0 2007d78: 92 10 00 18 mov %i0, %o1 2007d7c: 90 12 22 04 or %o0, 0x204, %o0 2007d80: 40 00 08 46 call 2009e98 <_Objects_Get> 2007d84: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007d88: c2 07 bf fc ld [ %fp + -4 ], %g1 2007d8c: 80 a0 60 00 cmp %g1, 0 2007d90: 12 80 00 16 bne 2007de8 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN 2007d94: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007d98: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007d9c: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007da0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007da4: 80 88 80 01 btst %g2, %g1 2007da8: 22 80 00 08 be,a 2007dc8 <_Rate_monotonic_Timeout+0x58> 2007dac: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007db0: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007db4: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007db8: 80 a0 80 01 cmp %g2, %g1 2007dbc: 02 80 00 19 be 2007e20 <_Rate_monotonic_Timeout+0xb0> 2007dc0: 13 04 00 ff sethi %hi(0x1003fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007dc4: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007dc8: 80 a0 60 01 cmp %g1, 1 2007dcc: 02 80 00 09 be 2007df0 <_Rate_monotonic_Timeout+0x80> 2007dd0: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007dd4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2007dd8: 03 00 80 78 sethi %hi(0x201e000), %g1 2007ddc: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201e370 <_Thread_Dispatch_disable_level> 2007de0: 84 00 bf ff add %g2, -1, %g2 2007de4: c4 20 63 70 st %g2, [ %g1 + 0x370 ] 2007de8: 81 c7 e0 08 ret 2007dec: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007df0: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 2007df4: 90 10 00 10 mov %l0, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007df8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007dfc: 7f ff fe 4c call 200772c <_Rate_monotonic_Initiate_statistics> 2007e00: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007e04: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007e08: 11 00 80 79 sethi %hi(0x201e400), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007e0c: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007e10: 90 12 20 54 or %o0, 0x54, %o0 2007e14: 40 00 0f f3 call 200bde0 <_Watchdog_Insert> 2007e18: 92 04 20 10 add %l0, 0x10, %o1 2007e1c: 30 bf ff ef b,a 2007dd8 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007e20: 40 00 0a 74 call 200a7f0 <_Thread_Clear_state> 2007e24: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 2007e28: 10 bf ff f5 b 2007dfc <_Rate_monotonic_Timeout+0x8c> 2007e2c: 90 10 00 10 mov %l0, %o0 =============================================================================== 0200cbb0 <_Scheduler_priority_Block>: void _Scheduler_priority_Block( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { 200cbb0: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract( Thread_Control *the_thread ) { Chain_Control *ready = the_thread->scheduler.priority->ready_chain; 200cbb4: c2 06 60 8c ld [ %i1 + 0x8c ], %g1 200cbb8: c2 00 40 00 ld [ %g1 ], %g1 if ( _Chain_Has_only_one_node( ready ) ) { 200cbbc: c6 00 40 00 ld [ %g1 ], %g3 200cbc0: c4 00 60 08 ld [ %g1 + 8 ], %g2 200cbc4: 80 a0 c0 02 cmp %g3, %g2 200cbc8: 22 80 00 39 be,a 200ccac <_Scheduler_priority_Block+0xfc> 200cbcc: c0 20 60 04 clr [ %g1 + 4 ] ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 200cbd0: c4 06 40 00 ld [ %i1 ], %g2 previous = the_node->previous; 200cbd4: c2 06 60 04 ld [ %i1 + 4 ], %g1 next->previous = previous; 200cbd8: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 200cbdc: c4 20 40 00 st %g2, [ %g1 ] RTEMS_INLINE_ROUTINE bool _Thread_Is_heir ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Heir ); 200cbe0: 03 00 80 58 sethi %hi(0x2016000), %g1 200cbe4: 82 10 60 9c or %g1, 0x9c, %g1 ! 201609c <_Per_CPU_Information> { _Scheduler_priority_Ready_queue_extract(the_thread); /* TODO: flash critical section */ if ( _Thread_Is_heir( the_thread ) ) 200cbe8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200cbec: 80 a6 40 02 cmp %i1, %g2 200cbf0: 02 80 00 09 be 200cc14 <_Scheduler_priority_Block+0x64> 200cbf4: 05 00 80 58 sethi %hi(0x2016000), %g2 _Scheduler_priority_Schedule_body(the_scheduler); if ( _Thread_Is_executing( the_thread ) ) 200cbf8: c4 00 60 0c ld [ %g1 + 0xc ], %g2 200cbfc: 80 a6 40 02 cmp %i1, %g2 200cc00: 12 80 00 03 bne 200cc0c <_Scheduler_priority_Block+0x5c> 200cc04: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 200cc08: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 200cc0c: 81 c7 e0 08 ret 200cc10: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 200cc14: c4 10 a0 c0 lduh [ %g2 + 0xc0 ], %g2 200cc18: 85 28 a0 10 sll %g2, 0x10, %g2 200cc1c: 89 30 a0 10 srl %g2, 0x10, %g4 200cc20: 80 a1 20 ff cmp %g4, 0xff 200cc24: 18 80 00 38 bgu 200cd04 <_Scheduler_priority_Block+0x154> 200cc28: c6 06 00 00 ld [ %i0 ], %g3 200cc2c: 1b 00 80 52 sethi %hi(0x2014800), %o5 200cc30: 9a 13 60 b8 or %o5, 0xb8, %o5 ! 20148b8 <__log2table> 200cc34: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2 200cc38: 84 00 a0 08 add %g2, 8, %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 200cc3c: 85 28 a0 10 sll %g2, 0x10, %g2 200cc40: 19 00 80 58 sethi %hi(0x2016000), %o4 200cc44: 89 30 a0 0f srl %g2, 0xf, %g4 200cc48: 98 13 20 d0 or %o4, 0xd0, %o4 200cc4c: c8 13 00 04 lduh [ %o4 + %g4 ], %g4 200cc50: 89 29 20 10 sll %g4, 0x10, %g4 200cc54: 99 31 20 10 srl %g4, 0x10, %o4 200cc58: 80 a3 20 ff cmp %o4, 0xff 200cc5c: 38 80 00 28 bgu,a 200ccfc <_Scheduler_priority_Block+0x14c> 200cc60: 89 31 20 18 srl %g4, 0x18, %g4 200cc64: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4 200cc68: 88 01 20 08 add %g4, 8, %g4 return (_Priority_Bits_index( major ) << 4) + 200cc6c: 85 30 a0 0c srl %g2, 0xc, %g2 _Priority_Bits_index( minor ); 200cc70: 89 29 20 10 sll %g4, 0x10, %g4 200cc74: 89 31 20 10 srl %g4, 0x10, %g4 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 200cc78: 88 01 00 02 add %g4, %g2, %g4 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 200cc7c: 9b 29 20 02 sll %g4, 2, %o5 200cc80: 85 29 20 04 sll %g4, 4, %g2 200cc84: 84 20 80 0d sub %g2, %o5, %g2 _Scheduler_priority_Block_body(the_scheduler, the_thread); } 200cc88: da 00 c0 02 ld [ %g3 + %g2 ], %o5 200cc8c: 84 00 c0 02 add %g3, %g2, %g2 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200cc90: 84 00 a0 04 add %g2, 4, %g2 200cc94: 80 a3 40 02 cmp %o5, %g2 200cc98: 02 80 00 03 be 200cca4 <_Scheduler_priority_Block+0xf4> <== NEVER TAKEN 200cc9c: 88 10 20 00 clr %g4 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 200cca0: 88 10 00 0d mov %o5, %g4 RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body( Scheduler_Control *the_scheduler ) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 200cca4: 10 bf ff d5 b 200cbf8 <_Scheduler_priority_Block+0x48> 200cca8: c8 20 60 10 st %g4, [ %g1 + 0x10 ] Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; head->previous = NULL; tail->previous = head; 200ccac: c2 20 60 08 st %g1, [ %g1 + 8 ] RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); 200ccb0: 84 00 60 04 add %g1, 4, %g2 head->next = tail; 200ccb4: c4 20 40 00 st %g2, [ %g1 ] { Chain_Control *ready = the_thread->scheduler.priority->ready_chain; if ( _Chain_Has_only_one_node( ready ) ) { _Chain_Initialize_empty( ready ); _Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map ); 200ccb8: c2 06 60 8c ld [ %i1 + 0x8c ], %g1 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor &= the_priority_map->block_minor; 200ccbc: c6 00 60 04 ld [ %g1 + 4 ], %g3 200ccc0: c4 10 60 0e lduh [ %g1 + 0xe ], %g2 200ccc4: c8 10 c0 00 lduh [ %g3 ], %g4 200ccc8: 84 09 00 02 and %g4, %g2, %g2 200cccc: c4 30 c0 00 sth %g2, [ %g3 ] if ( *the_priority_map->minor == 0 ) 200ccd0: 85 28 a0 10 sll %g2, 0x10, %g2 200ccd4: 80 a0 a0 00 cmp %g2, 0 200ccd8: 32 bf ff c3 bne,a 200cbe4 <_Scheduler_priority_Block+0x34> 200ccdc: 03 00 80 58 sethi %hi(0x2016000), %g1 _Priority_Major_bit_map &= the_priority_map->block_major; 200cce0: 05 00 80 58 sethi %hi(0x2016000), %g2 200cce4: c2 10 60 0c lduh [ %g1 + 0xc ], %g1 200cce8: c6 10 a0 c0 lduh [ %g2 + 0xc0 ], %g3 200ccec: 82 08 c0 01 and %g3, %g1, %g1 200ccf0: c2 30 a0 c0 sth %g1, [ %g2 + 0xc0 ] 200ccf4: 10 bf ff bc b 200cbe4 <_Scheduler_priority_Block+0x34> 200ccf8: 03 00 80 58 sethi %hi(0x2016000), %g1 { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 200ccfc: 10 bf ff dc b 200cc6c <_Scheduler_priority_Block+0xbc> 200cd00: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4 RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 200cd04: 1b 00 80 52 sethi %hi(0x2014800), %o5 200cd08: 85 30 a0 18 srl %g2, 0x18, %g2 200cd0c: 9a 13 60 b8 or %o5, 0xb8, %o5 200cd10: 10 bf ff cb b 200cc3c <_Scheduler_priority_Block+0x8c> 200cd14: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2 =============================================================================== 02008574 <_Scheduler_priority_Schedule>: */ void _Scheduler_priority_Schedule( Scheduler_Control *the_scheduler ) { 2008574: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2008578: 03 00 80 58 sethi %hi(0x2016000), %g1 200857c: c2 10 60 c0 lduh [ %g1 + 0xc0 ], %g1 ! 20160c0 <_Priority_Major_bit_map> 2008580: 83 28 60 10 sll %g1, 0x10, %g1 2008584: 87 30 60 10 srl %g1, 0x10, %g3 2008588: 80 a0 e0 ff cmp %g3, 0xff 200858c: 18 80 00 26 bgu 2008624 <_Scheduler_priority_Schedule+0xb0> 2008590: c4 06 00 00 ld [ %i0 ], %g2 2008594: 09 00 80 52 sethi %hi(0x2014800), %g4 2008598: 88 11 20 b8 or %g4, 0xb8, %g4 ! 20148b8 <__log2table> 200859c: c2 09 00 03 ldub [ %g4 + %g3 ], %g1 20085a0: 82 00 60 08 add %g1, 8, %g1 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 20085a4: 83 28 60 10 sll %g1, 0x10, %g1 20085a8: 1b 00 80 58 sethi %hi(0x2016000), %o5 20085ac: 87 30 60 0f srl %g1, 0xf, %g3 20085b0: 9a 13 60 d0 or %o5, 0xd0, %o5 20085b4: c6 13 40 03 lduh [ %o5 + %g3 ], %g3 20085b8: 87 28 e0 10 sll %g3, 0x10, %g3 20085bc: 9b 30 e0 10 srl %g3, 0x10, %o5 20085c0: 80 a3 60 ff cmp %o5, 0xff 20085c4: 38 80 00 16 bgu,a 200861c <_Scheduler_priority_Schedule+0xa8> 20085c8: 87 30 e0 18 srl %g3, 0x18, %g3 20085cc: c6 09 00 0d ldub [ %g4 + %o5 ], %g3 20085d0: 86 00 e0 08 add %g3, 8, %g3 return (_Priority_Bits_index( major ) << 4) + 20085d4: 83 30 60 0c srl %g1, 0xc, %g1 _Priority_Bits_index( minor ); 20085d8: 87 28 e0 10 sll %g3, 0x10, %g3 20085dc: 87 30 e0 10 srl %g3, 0x10, %g3 Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); return (_Priority_Bits_index( major ) << 4) + 20085e0: 86 00 c0 01 add %g3, %g1, %g3 Chain_Control *the_ready_queue ) { Priority_Control index = _Priority_bit_map_Get_highest(); if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) ) 20085e4: 89 28 e0 02 sll %g3, 2, %g4 20085e8: 83 28 e0 04 sll %g3, 4, %g1 20085ec: 82 20 40 04 sub %g1, %g4, %g1 _Scheduler_priority_Schedule_body( the_scheduler ); } 20085f0: c8 00 80 01 ld [ %g2 + %g1 ], %g4 20085f4: 82 00 80 01 add %g2, %g1, %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 20085f8: 82 00 60 04 add %g1, 4, %g1 20085fc: 80 a1 00 01 cmp %g4, %g1 2008600: 02 80 00 03 be 200860c <_Scheduler_priority_Schedule+0x98><== NEVER TAKEN 2008604: 86 10 20 00 clr %g3 return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] ); 2008608: 86 10 00 04 mov %g4, %g3 RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body( Scheduler_Control *the_scheduler ) { _Thread_Heir = _Scheduler_priority_Ready_queue_first( 200860c: 03 00 80 58 sethi %hi(0x2016000), %g1 2008610: c6 20 60 ac st %g3, [ %g1 + 0xac ] ! 20160ac <_Per_CPU_Information+0x10> 2008614: 81 c7 e0 08 ret 2008618: 81 e8 00 00 restore { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 200861c: 10 bf ff ee b 20085d4 <_Scheduler_priority_Schedule+0x60> 2008620: c6 09 00 03 ldub [ %g4 + %g3 ], %g3 RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2008624: 09 00 80 52 sethi %hi(0x2014800), %g4 2008628: 83 30 60 18 srl %g1, 0x18, %g1 200862c: 88 11 20 b8 or %g4, 0xb8, %g4 2008630: 10 bf ff dd b 20085a4 <_Scheduler_priority_Schedule+0x30> 2008634: c2 09 00 01 ldub [ %g4 + %g1 ], %g1 =============================================================================== 02008774 <_Scheduler_priority_Yield>: */ void _Scheduler_priority_Yield( Scheduler_Control *the_scheduler __attribute__((unused)) ) { 2008774: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 2008778: 25 00 80 58 sethi %hi(0x2016000), %l2 200877c: a4 14 a0 9c or %l2, 0x9c, %l2 ! 201609c <_Per_CPU_Information> 2008780: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 ready = executing->scheduler.priority->ready_chain; 2008784: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 _ISR_Disable( level ); 2008788: 7f ff e6 c3 call 2002294 200878c: e2 00 40 00 ld [ %g1 ], %l1 2008790: b0 10 00 08 mov %o0, %i0 if ( !_Chain_Has_only_one_node( ready ) ) { 2008794: c4 04 40 00 ld [ %l1 ], %g2 2008798: c2 04 60 08 ld [ %l1 + 8 ], %g1 200879c: 80 a0 80 01 cmp %g2, %g1 20087a0: 02 80 00 16 be 20087f8 <_Scheduler_priority_Yield+0x84> 20087a4: 86 04 60 04 add %l1, 4, %g3 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 20087a8: c2 04 20 04 ld [ %l0 + 4 ], %g1 ) { Chain_Node *next; Chain_Node *previous; next = the_node->next; 20087ac: c4 04 00 00 ld [ %l0 ], %g2 previous = the_node->previous; next->previous = previous; 20087b0: c2 20 a0 04 st %g1, [ %g2 + 4 ] previous->next = next; 20087b4: c4 20 40 00 st %g2, [ %g1 ] Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 20087b8: c2 04 60 08 ld [ %l1 + 8 ], %g1 the_node->next = tail; 20087bc: c6 24 00 00 st %g3, [ %l0 ] tail->previous = the_node; 20087c0: e0 24 60 08 st %l0, [ %l1 + 8 ] old_last->next = the_node; 20087c4: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last; 20087c8: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 20087cc: 7f ff e6 b6 call 20022a4 20087d0: 01 00 00 00 nop 20087d4: 7f ff e6 b0 call 2002294 20087d8: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 20087dc: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 20087e0: 80 a4 00 01 cmp %l0, %g1 20087e4: 02 80 00 0b be 2008810 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN 20087e8: 82 10 20 01 mov 1, %g1 _Thread_Heir = (Thread_Control *) _Chain_First( ready ); _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 20087ec: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 20087f0: 7f ff e6 ad call 20022a4 20087f4: 81 e8 00 00 restore if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) _Chain_First( ready ); _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) 20087f8: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 20087fc: 80 a4 00 01 cmp %l0, %g1 2008800: 02 bf ff fc be 20087f0 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN 2008804: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 2008808: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED 200880c: 30 bf ff f9 b,a 20087f0 <_Scheduler_priority_Yield+0x7c> <== NOT EXECUTED _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) _Chain_First( ready ); 2008810: c2 04 40 00 ld [ %l1 ], %g1 2008814: c2 24 a0 10 st %g1, [ %l2 + 0x10 ] _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 2008818: 82 10 20 01 mov 1, %g1 200881c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] 2008820: 30 bf ff f4 b,a 20087f0 <_Scheduler_priority_Yield+0x7c> =============================================================================== 02007608 <_TOD_Tickle_ticks>: * * Output parameters: NONE */ void _TOD_Tickle_ticks( void ) { 2007608: 9d e3 bf 98 save %sp, -104, %sp /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 200760c: 05 00 80 57 sethi %hi(0x2015c00), %g2 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007610: 03 00 80 54 sethi %hi(0x2015000), %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007614: c6 00 a3 74 ld [ %g2 + 0x374 ], %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007618: c2 00 62 b4 ld [ %g1 + 0x2b4 ], %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 200761c: 86 00 e0 01 inc %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007620: 9b 28 60 07 sll %g1, 7, %o5 2007624: 89 28 60 02 sll %g1, 2, %g4 2007628: 88 23 40 04 sub %o5, %g4, %g4 200762c: 82 01 00 01 add %g4, %g1, %g1 2007630: 83 28 60 03 sll %g1, 3, %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007634: a0 07 bf f8 add %fp, -8, %l0 /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007638: c6 20 a3 74 st %g3, [ %g2 + 0x374 ] /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 200763c: 92 10 00 10 mov %l0, %o1 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007640: c2 27 bf fc st %g1, [ %fp + -4 ] 2007644: c0 27 bf f8 clr [ %fp + -8 ] /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007648: 11 00 80 57 sethi %hi(0x2015c00), %o0 200764c: 40 00 09 06 call 2009a64 <_Timespec_Add_to> 2007650: 90 12 22 bc or %o0, 0x2bc, %o0 ! 2015ebc <_TOD_Uptime> /* we do not care how much the uptime changed */ /* Update the timespec format TOD */ seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick ); 2007654: 92 10 00 10 mov %l0, %o1 2007658: 11 00 80 57 sethi %hi(0x2015c00), %o0 200765c: 40 00 09 02 call 2009a64 <_Timespec_Add_to> 2007660: 90 12 22 ec or %o0, 0x2ec, %o0 ! 2015eec <_TOD_Now> while ( seconds ) { 2007664: a0 92 20 00 orcc %o0, 0, %l0 2007668: 02 80 00 08 be 2007688 <_TOD_Tickle_ticks+0x80> 200766c: 23 00 80 57 sethi %hi(0x2015c00), %l1 */ RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void ) { _Watchdog_Tickle( &_Watchdog_Seconds_chain ); 2007670: a2 14 63 18 or %l1, 0x318, %l1 ! 2015f18 <_Watchdog_Seconds_chain> 2007674: 40 00 0a 8a call 200a09c <_Watchdog_Tickle> 2007678: 90 10 00 11 mov %l1, %o0 200767c: a0 84 3f ff addcc %l0, -1, %l0 2007680: 12 bf ff fd bne 2007674 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN 2007684: 01 00 00 00 nop 2007688: 81 c7 e0 08 ret 200768c: 81 e8 00 00 restore =============================================================================== 020076f4 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20076f4: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20076f8: 03 00 80 77 sethi %hi(0x201dc00), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20076fc: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 2007700: d2 00 63 e4 ld [ %g1 + 0x3e4 ], %o1 if ((!the_tod) || 2007704: 80 a4 20 00 cmp %l0, 0 2007708: 02 80 00 2c be 20077b8 <_TOD_Validate+0xc4> <== NEVER TAKEN 200770c: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007710: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007714: 40 00 49 49 call 2019c38 <.udiv> 2007718: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 200771c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2007720: 80 a2 00 01 cmp %o0, %g1 2007724: 08 80 00 25 bleu 20077b8 <_TOD_Validate+0xc4> 2007728: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 200772c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2007730: 80 a0 60 3b cmp %g1, 0x3b 2007734: 18 80 00 21 bgu 20077b8 <_TOD_Validate+0xc4> 2007738: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 200773c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 2007740: 80 a0 60 3b cmp %g1, 0x3b 2007744: 18 80 00 1d bgu 20077b8 <_TOD_Validate+0xc4> 2007748: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 200774c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2007750: 80 a0 60 17 cmp %g1, 0x17 2007754: 18 80 00 19 bgu 20077b8 <_TOD_Validate+0xc4> 2007758: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 200775c: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007760: 80 a0 60 00 cmp %g1, 0 2007764: 02 80 00 15 be 20077b8 <_TOD_Validate+0xc4> <== NEVER TAKEN 2007768: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 200776c: 18 80 00 13 bgu 20077b8 <_TOD_Validate+0xc4> 2007770: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007774: c4 04 00 00 ld [ %l0 ], %g2 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 2007778: 80 a0 a7 c3 cmp %g2, 0x7c3 200777c: 08 80 00 0f bleu 20077b8 <_TOD_Validate+0xc4> 2007780: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007784: c6 04 20 08 ld [ %l0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007788: 80 a0 e0 00 cmp %g3, 0 200778c: 02 80 00 0b be 20077b8 <_TOD_Validate+0xc4> <== NEVER TAKEN 2007790: 80 88 a0 03 btst 3, %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007794: 32 80 00 0b bne,a 20077c0 <_TOD_Validate+0xcc> 2007798: 83 28 60 02 sll %g1, 2, %g1 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 200779c: 82 00 60 0d add %g1, 0xd, %g1 20077a0: 05 00 80 73 sethi %hi(0x201cc00), %g2 20077a4: 83 28 60 02 sll %g1, 2, %g1 20077a8: 84 10 a0 28 or %g2, 0x28, %g2 20077ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20077b0: 80 a0 40 03 cmp %g1, %g3 20077b4: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 20077b8: 81 c7 e0 08 ret 20077bc: 81 e8 00 00 restore return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20077c0: 05 00 80 73 sethi %hi(0x201cc00), %g2 20077c4: 84 10 a0 28 or %g2, 0x28, %g2 ! 201cc28 <_TOD_Days_per_month> 20077c8: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20077cc: 80 a0 40 03 cmp %g1, %g3 20077d0: b0 60 3f ff subx %g0, -1, %i0 20077d4: 81 c7 e0 08 ret 20077d8: 81 e8 00 00 restore =============================================================================== 02008880 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 2008880: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 2008884: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 2008888: 40 00 03 e2 call 2009810 <_Thread_Set_transient> 200888c: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 2008890: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 2008894: 80 a0 40 19 cmp %g1, %i1 2008898: 02 80 00 05 be 20088ac <_Thread_Change_priority+0x2c> 200889c: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 20088a0: 90 10 00 18 mov %i0, %o0 20088a4: 40 00 03 be call 200979c <_Thread_Set_priority> 20088a8: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 20088ac: 7f ff e6 7a call 2002294 20088b0: 01 00 00 00 nop 20088b4: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 20088b8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 if ( state != STATES_TRANSIENT ) { 20088bc: 80 a4 a0 04 cmp %l2, 4 20088c0: 02 80 00 18 be 2008920 <_Thread_Change_priority+0xa0> 20088c4: 80 8c 60 04 btst 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 20088c8: 02 80 00 0b be 20088f4 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 20088cc: 82 0c bf fb and %l2, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 20088d0: 7f ff e6 75 call 20022a4 <== NOT EXECUTED 20088d4: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 20088d8: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 20088dc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 20088e0: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED 20088e4: 32 80 00 0d bne,a 2008918 <_Thread_Change_priority+0x98> <== NOT EXECUTED 20088e8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED 20088ec: 81 c7 e0 08 ret 20088f0: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 20088f4: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 20088f8: 7f ff e6 6b call 20022a4 20088fc: 90 10 00 18 mov %i0, %o0 2008900: 03 00 00 ef sethi %hi(0x3bc00), %g1 2008904: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008908: 80 8c 80 01 btst %l2, %g1 200890c: 02 bf ff f8 be 20088ec <_Thread_Change_priority+0x6c> 2008910: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 2008914: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2008918: 40 00 03 71 call 20096dc <_Thread_queue_Requeue> 200891c: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008920: 12 80 00 15 bne 2008974 <_Thread_Change_priority+0xf4> <== NEVER TAKEN 2008924: 80 8e a0 ff btst 0xff, %i2 * FIXME: hard-coded for priority scheduling. Might be ok since this * function is specific to priority scheduling? */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); if ( prepend_it ) 2008928: 02 80 00 2a be 20089d0 <_Thread_Change_priority+0x150> 200892c: c0 24 20 10 clr [ %l0 + 0x10 ] RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue_first( Thread_Control *the_thread ) { _Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map ); 2008930: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 2008934: 07 00 80 58 sethi %hi(0x2016000), %g3 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2008938: c8 00 60 04 ld [ %g1 + 4 ], %g4 200893c: da 10 60 0a lduh [ %g1 + 0xa ], %o5 2008940: d8 11 00 00 lduh [ %g4 ], %o4 _Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain, 2008944: c4 00 40 00 ld [ %g1 ], %g2 2008948: 9a 13 00 0d or %o4, %o5, %o5 200894c: da 31 00 00 sth %o5, [ %g4 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2008950: c8 10 60 08 lduh [ %g1 + 8 ], %g4 2008954: da 10 e0 c0 lduh [ %g3 + 0xc0 ], %o5 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008958: c2 00 80 00 ld [ %g2 ], %g1 200895c: 88 13 40 04 or %o5, %g4, %g4 2008960: c8 30 e0 c0 sth %g4, [ %g3 + 0xc0 ] Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008964: c4 24 20 04 st %g2, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 2008968: e0 20 80 00 st %l0, [ %g2 ] the_node->next = before_node; 200896c: c2 24 00 00 st %g1, [ %l0 ] before_node->previous = the_node; 2008970: e0 20 60 04 st %l0, [ %g1 + 4 ] _Scheduler_priority_Ready_queue_enqueue_first( the_thread ); else _Scheduler_priority_Ready_queue_enqueue( the_thread ); } _ISR_Flash( level ); 2008974: 7f ff e6 4c call 20022a4 2008978: 90 10 00 18 mov %i0, %o0 200897c: 7f ff e6 46 call 2002294 2008980: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Scheduler_Schedule( Scheduler_Control *the_scheduler ) { the_scheduler->Operations.schedule( the_scheduler ); 2008984: 11 00 80 57 sethi %hi(0x2015c00), %o0 2008988: 90 12 22 c8 or %o0, 0x2c8, %o0 ! 2015ec8 <_Scheduler> 200898c: c2 02 20 04 ld [ %o0 + 4 ], %g1 2008990: 9f c0 40 00 call %g1 2008994: 01 00 00 00 nop * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 2008998: 03 00 80 58 sethi %hi(0x2016000), %g1 200899c: 82 10 60 9c or %g1, 0x9c, %g1 ! 201609c <_Per_CPU_Information> 20089a0: c4 00 60 0c ld [ %g1 + 0xc ], %g2 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Scheduler_Schedule(&_Scheduler); if ( !_Thread_Is_executing_also_the_heir() && 20089a4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 20089a8: 80 a0 80 03 cmp %g2, %g3 20089ac: 02 80 00 07 be 20089c8 <_Thread_Change_priority+0x148> 20089b0: 01 00 00 00 nop 20089b4: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 20089b8: 80 a0 a0 00 cmp %g2, 0 20089bc: 02 80 00 03 be 20089c8 <_Thread_Change_priority+0x148> 20089c0: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 20089c4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 20089c8: 7f ff e6 37 call 20022a4 20089cc: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue( Thread_Control *the_thread ) { _Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map ); 20089d0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 20089d4: 07 00 80 58 sethi %hi(0x2016000), %g3 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 20089d8: c8 00 60 04 ld [ %g1 + 4 ], %g4 20089dc: da 10 60 0a lduh [ %g1 + 0xa ], %o5 20089e0: d8 11 00 00 lduh [ %g4 ], %o4 _Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain, 20089e4: c4 00 40 00 ld [ %g1 ], %g2 20089e8: 9a 13 00 0d or %o4, %o5, %o5 20089ec: da 31 00 00 sth %o5, [ %g4 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 20089f0: c8 10 60 08 lduh [ %g1 + 8 ], %g4 20089f4: da 10 e0 c0 lduh [ %g3 + 0xc0 ], %o5 Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); Chain_Node *old_last = tail->previous; 20089f8: c2 00 a0 08 ld [ %g2 + 8 ], %g1 20089fc: 88 13 40 04 or %o5, %g4, %g4 2008a00: c8 30 e0 c0 sth %g4, [ %g3 + 0xc0 ] the_node->next = tail; tail->previous = the_node; 2008a04: e0 20 a0 08 st %l0, [ %g2 + 8 ] RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected( Chain_Control *the_chain, Chain_Node *the_node ) { Chain_Node *tail = _Chain_Tail( the_chain ); 2008a08: 86 00 a0 04 add %g2, 4, %g3 Chain_Node *old_last = tail->previous; the_node->next = tail; 2008a0c: c6 24 00 00 st %g3, [ %l0 ] tail->previous = the_node; old_last->next = the_node; 2008a10: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last; 2008a14: 10 bf ff d8 b 2008974 <_Thread_Change_priority+0xf4> 2008a18: c2 24 20 04 st %g1, [ %l0 + 4 ] =============================================================================== 02008c20 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008c20: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008c24: 90 10 00 18 mov %i0, %o0 2008c28: 40 00 00 7a call 2008e10 <_Thread_Get> 2008c2c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008c30: c2 07 bf fc ld [ %fp + -4 ], %g1 2008c34: 80 a0 60 00 cmp %g1, 0 2008c38: 12 80 00 08 bne 2008c58 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 2008c3c: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008c40: 7f ff ff 77 call 2008a1c <_Thread_Clear_state> 2008c44: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 2008c48: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008c4c: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level> 2008c50: 84 00 bf ff add %g2, -1, %g2 2008c54: c4 20 62 40 st %g2, [ %g1 + 0x240 ] 2008c58: 81 c7 e0 08 ret 2008c5c: 81 e8 00 00 restore =============================================================================== 02008c60 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008c60: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 2008c64: 25 00 80 58 sethi %hi(0x2016000), %l2 2008c68: a4 14 a0 9c or %l2, 0x9c, %l2 ! 201609c <_Per_CPU_Information> _ISR_Disable( level ); 2008c6c: 7f ff e5 8a call 2002294 2008c70: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 while ( _Thread_Dispatch_necessary == true ) { 2008c74: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1 2008c78: 80 a0 60 00 cmp %g1, 0 2008c7c: 02 80 00 50 be 2008dbc <_Thread_Dispatch+0x15c> 2008c80: 2f 00 80 57 sethi %hi(0x2015c00), %l7 heir = _Thread_Heir; 2008c84: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1 _Thread_Dispatch_disable_level = 1; 2008c88: 82 10 20 01 mov 1, %g1 2008c8c: c2 25 e2 40 st %g1, [ %l7 + 0x240 ] _Thread_Dispatch_necessary = false; 2008c90: c0 2c a0 18 clrb [ %l2 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008c94: 80 a4 00 11 cmp %l0, %l1 2008c98: 02 80 00 49 be 2008dbc <_Thread_Dispatch+0x15c> 2008c9c: e2 24 a0 0c st %l1, [ %l2 + 0xc ] 2008ca0: 27 00 80 57 sethi %hi(0x2015c00), %l3 2008ca4: 39 00 80 57 sethi %hi(0x2015c00), %i4 2008ca8: a6 14 e3 10 or %l3, 0x310, %l3 2008cac: aa 07 bf f8 add %fp, -8, %l5 2008cb0: a8 07 bf f0 add %fp, -16, %l4 2008cb4: b8 17 22 e8 or %i4, 0x2e8, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008cb8: 35 00 80 57 sethi %hi(0x2015c00), %i2 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 2008cbc: ba 10 00 13 mov %l3, %i5 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 2008cc0: 2d 00 80 57 sethi %hi(0x2015c00), %l6 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 2008cc4: 10 80 00 38 b 2008da4 <_Thread_Dispatch+0x144> 2008cc8: b6 10 20 01 mov 1, %i3 rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 2008ccc: 7f ff e5 76 call 20022a4 2008cd0: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 2008cd4: 40 00 0e 9a call 200c73c <_TOD_Get_uptime> 2008cd8: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 2008cdc: 90 10 00 1d mov %i5, %o0 2008ce0: 92 10 00 15 mov %l5, %o1 2008ce4: 40 00 03 79 call 2009ac8 <_Timespec_Subtract> 2008ce8: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008cec: 90 04 20 84 add %l0, 0x84, %o0 2008cf0: 40 00 03 5d call 2009a64 <_Timespec_Add_to> 2008cf4: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 2008cf8: c4 07 bf f8 ld [ %fp + -8 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008cfc: c2 07 00 00 ld [ %i4 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008d00: c4 24 c0 00 st %g2, [ %l3 ] 2008d04: c4 07 bf fc ld [ %fp + -4 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008d08: 80 a0 60 00 cmp %g1, 0 2008d0c: 02 80 00 06 be 2008d24 <_Thread_Dispatch+0xc4> <== NEVER TAKEN 2008d10: c4 24 e0 04 st %g2, [ %l3 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008d14: c4 00 40 00 ld [ %g1 ], %g2 2008d18: c4 24 21 54 st %g2, [ %l0 + 0x154 ] *_Thread_libc_reent = heir->libc_reent; 2008d1c: c4 04 61 54 ld [ %l1 + 0x154 ], %g2 2008d20: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008d24: 90 10 00 10 mov %l0, %o0 2008d28: 40 00 04 2c call 2009dd8 <_User_extensions_Thread_switch> 2008d2c: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008d30: 90 04 20 c8 add %l0, 0xc8, %o0 2008d34: 40 00 05 79 call 200a318 <_CPU_Context_switch> 2008d38: 92 04 60 c8 add %l1, 0xc8, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008d3c: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 2008d40: 80 a0 60 00 cmp %g1, 0 2008d44: 02 80 00 0c be 2008d74 <_Thread_Dispatch+0x114> 2008d48: d0 05 a2 c4 ld [ %l6 + 0x2c4 ], %o0 2008d4c: 80 a4 00 08 cmp %l0, %o0 2008d50: 02 80 00 09 be 2008d74 <_Thread_Dispatch+0x114> 2008d54: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008d58: 02 80 00 04 be 2008d68 <_Thread_Dispatch+0x108> 2008d5c: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008d60: 40 00 05 34 call 200a230 <_CPU_Context_save_fp> 2008d64: 90 02 21 50 add %o0, 0x150, %o0 _Context_Restore_fp( &executing->fp_context ); 2008d68: 40 00 05 4f call 200a2a4 <_CPU_Context_restore_fp> 2008d6c: 90 04 21 50 add %l0, 0x150, %o0 _Thread_Allocated_fp = executing; 2008d70: e0 25 a2 c4 st %l0, [ %l6 + 0x2c4 ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 2008d74: 7f ff e5 48 call 2002294 2008d78: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008d7c: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1 2008d80: 80 a0 60 00 cmp %g1, 0 2008d84: 02 80 00 0e be 2008dbc <_Thread_Dispatch+0x15c> 2008d88: 01 00 00 00 nop heir = _Thread_Heir; 2008d8c: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1 _Thread_Dispatch_disable_level = 1; 2008d90: f6 25 e2 40 st %i3, [ %l7 + 0x240 ] _Thread_Dispatch_necessary = false; 2008d94: c0 2c a0 18 clrb [ %l2 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008d98: 80 a4 40 10 cmp %l1, %l0 2008d9c: 02 80 00 08 be 2008dbc <_Thread_Dispatch+0x15c> <== NEVER TAKEN 2008da0: e2 24 a0 0c st %l1, [ %l2 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008da4: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008da8: 80 a0 60 01 cmp %g1, 1 2008dac: 12 bf ff c8 bne 2008ccc <_Thread_Dispatch+0x6c> 2008db0: c2 06 a1 a4 ld [ %i2 + 0x1a4 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008db4: 10 bf ff c6 b 2008ccc <_Thread_Dispatch+0x6c> 2008db8: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 2008dbc: c0 25 e2 40 clr [ %l7 + 0x240 ] _ISR_Enable( level ); 2008dc0: 7f ff e5 39 call 20022a4 2008dc4: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008dc8: 7f ff f8 67 call 2006f64 <_API_extensions_Run_postswitch> 2008dcc: 01 00 00 00 nop } 2008dd0: 81 c7 e0 08 ret 2008dd4: 81 e8 00 00 restore =============================================================================== 02008e10 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 2008e10: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 2008e14: 80 a2 20 00 cmp %o0, 0 2008e18: 02 80 00 1d be 2008e8c <_Thread_Get+0x7c> 2008e1c: 94 10 00 09 mov %o1, %o2 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 2008e20: 85 32 20 18 srl %o0, 0x18, %g2 2008e24: 84 08 a0 07 and %g2, 7, %g2 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008e28: 86 00 bf ff add %g2, -1, %g3 2008e2c: 80 a0 e0 02 cmp %g3, 2 2008e30: 38 80 00 14 bgu,a 2008e80 <_Thread_Get+0x70> 2008e34: 82 10 20 01 mov 1, %g1 */ RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class( Objects_Id id ) { return (uint32_t) 2008e38: 89 32 20 1b srl %o0, 0x1b, %g4 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 2008e3c: 80 a1 20 01 cmp %g4, 1 2008e40: 32 80 00 10 bne,a 2008e80 <_Thread_Get+0x70> 2008e44: 82 10 20 01 mov 1, %g1 *location = OBJECTS_ERROR; goto done; } api_information = _Objects_Information_table[ the_api ]; 2008e48: 85 28 a0 02 sll %g2, 2, %g2 2008e4c: 07 00 80 57 sethi %hi(0x2015c00), %g3 2008e50: 86 10 e1 a8 or %g3, 0x1a8, %g3 ! 2015da8 <_Objects_Information_table> 2008e54: c4 00 c0 02 ld [ %g3 + %g2 ], %g2 /* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { 2008e58: 80 a0 a0 00 cmp %g2, 0 2008e5c: 22 80 00 16 be,a 2008eb4 <_Thread_Get+0xa4> <== NEVER TAKEN 2008e60: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED *location = OBJECTS_ERROR; goto done; } #endif information = api_information[ the_class ]; 2008e64: d0 00 a0 04 ld [ %g2 + 4 ], %o0 if ( !information ) { 2008e68: 80 a2 20 00 cmp %o0, 0 2008e6c: 02 80 00 10 be 2008eac <_Thread_Get+0x9c> 2008e70: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; } tp = (Thread_Control *) _Objects_Get( information, id, location ); 2008e74: 82 13 c0 00 mov %o7, %g1 2008e78: 7f ff fc 93 call 20080c4 <_Objects_Get> 2008e7c: 9e 10 40 00 mov %g1, %o7 { uint32_t the_api; uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; 2008e80: 90 10 20 00 clr %o0 } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; goto done; 2008e84: 81 c3 e0 08 retl 2008e88: c2 22 80 00 st %g1, [ %o2 ] rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 2008e8c: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008e90: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level> 2008e94: 84 00 a0 01 inc %g2 2008e98: c4 20 62 40 st %g2, [ %g1 + 0x240 ] Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 2008e9c: 03 00 80 58 sethi %hi(0x2016000), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 2008ea0: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 2008ea4: 81 c3 e0 08 retl 2008ea8: d0 00 60 a8 ld [ %g1 + 0xa8 ], %o0 #endif information = api_information[ the_class ]; if ( !information ) { *location = OBJECTS_ERROR; goto done; 2008eac: 81 c3 e0 08 retl 2008eb0: c8 22 80 00 st %g4, [ %o2 ] * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { *location = OBJECTS_ERROR; goto done; 2008eb4: 81 c3 e0 08 retl <== NOT EXECUTED 2008eb8: 90 10 20 00 clr %o0 <== NOT EXECUTED =============================================================================== 0200e770 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200e770: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200e774: 03 00 80 58 sethi %hi(0x2016000), %g1 200e778: e0 00 60 a8 ld [ %g1 + 0xa8 ], %l0 ! 20160a8 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e77c: 3f 00 80 39 sethi %hi(0x200e400), %i7 200e780: be 17 e3 70 or %i7, 0x370, %i7 ! 200e770 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e784: d0 04 20 ac ld [ %l0 + 0xac ], %o0 _ISR_Set_level(level); 200e788: 7f ff ce c7 call 20022a4 200e78c: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e790: 03 00 80 56 sethi %hi(0x2015800), %g1 doneConstructors = 1; 200e794: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e798: e4 08 62 fc ldub [ %g1 + 0x2fc ], %l2 doneConstructors = 1; 200e79c: c4 28 62 fc stb %g2, [ %g1 + 0x2fc ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e7a0: c2 04 21 50 ld [ %l0 + 0x150 ], %g1 200e7a4: 80 a0 60 00 cmp %g1, 0 200e7a8: 02 80 00 0b be 200e7d4 <_Thread_Handler+0x64> 200e7ac: 23 00 80 57 sethi %hi(0x2015c00), %l1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e7b0: d0 04 62 c4 ld [ %l1 + 0x2c4 ], %o0 ! 2015ec4 <_Thread_Allocated_fp> 200e7b4: 80 a4 00 08 cmp %l0, %o0 200e7b8: 02 80 00 07 be 200e7d4 <_Thread_Handler+0x64> 200e7bc: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e7c0: 22 80 00 05 be,a 200e7d4 <_Thread_Handler+0x64> 200e7c4: e0 24 62 c4 st %l0, [ %l1 + 0x2c4 ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e7c8: 7f ff ee 9a call 200a230 <_CPU_Context_save_fp> 200e7cc: 90 02 21 50 add %o0, 0x150, %o0 _Thread_Allocated_fp = executing; 200e7d0: e0 24 62 c4 st %l0, [ %l1 + 0x2c4 ] /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200e7d4: 7f ff ed 01 call 2009bd8 <_User_extensions_Thread_begin> 200e7d8: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e7dc: 7f ff e9 7f call 2008dd8 <_Thread_Enable_dispatch> 200e7e0: a5 2c a0 18 sll %l2, 0x18, %l2 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200e7e4: 80 a4 a0 00 cmp %l2, 0 200e7e8: 02 80 00 0c be 200e818 <_Thread_Handler+0xa8> 200e7ec: 01 00 00 00 nop INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e7f0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200e7f4: 80 a0 60 00 cmp %g1, 0 200e7f8: 22 80 00 0f be,a 200e834 <_Thread_Handler+0xc4> <== ALWAYS TAKEN 200e7fc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200e800: 7f ff ed 0a call 2009c28 <_User_extensions_Thread_exitted> 200e804: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200e808: 90 10 20 00 clr %o0 200e80c: 92 10 20 01 mov 1, %o1 200e810: 7f ff e4 ab call 2007abc <_Internal_error_Occurred> 200e814: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200e818: 40 00 1a 64 call 20151a8 <_init> 200e81c: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e820: c2 04 20 94 ld [ %l0 + 0x94 ], %g1 200e824: 80 a0 60 00 cmp %g1, 0 200e828: 12 bf ff f6 bne 200e800 <_Thread_Handler+0x90> <== NEVER TAKEN 200e82c: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e830: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 200e834: 9f c0 40 00 call %g1 200e838: d0 04 20 9c ld [ %l0 + 0x9c ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200e83c: 10 bf ff f1 b 200e800 <_Thread_Handler+0x90> 200e840: d0 24 20 28 st %o0, [ %l0 + 0x28 ] =============================================================================== 02008ebc <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008ebc: 9d e3 bf a0 save %sp, -96, %sp 2008ec0: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008ec4: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0 2008ec8: e2 00 40 00 ld [ %g1 ], %l1 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008ecc: c0 26 61 58 clr [ %i1 + 0x158 ] 2008ed0: c0 26 61 5c clr [ %i1 + 0x15c ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008ed4: c0 26 61 54 clr [ %i1 + 0x154 ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008ed8: 90 10 00 19 mov %i1, %o0 2008edc: 40 00 02 74 call 20098ac <_Thread_Stack_Allocate> 2008ee0: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008ee4: 80 a2 00 1b cmp %o0, %i3 2008ee8: 0a 80 00 60 bcs 2009068 <_Thread_Initialize+0x1ac> 2008eec: 80 a2 20 00 cmp %o0, 0 2008ef0: 02 80 00 5e be 2009068 <_Thread_Initialize+0x1ac> <== NEVER TAKEN 2008ef4: a4 10 20 00 clr %l2 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008ef8: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1 the_stack->size = size; 2008efc: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008f00: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008f04: 80 8f 20 ff btst 0xff, %i4 2008f08: 12 80 00 5a bne 2009070 <_Thread_Initialize+0x1b4> 2008f0c: 82 10 20 00 clr %g1 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008f10: 27 00 80 57 sethi %hi(0x2015c00), %l3 2008f14: c4 04 e2 f4 ld [ %l3 + 0x2f4 ], %g2 ! 2015ef4 <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008f18: c2 26 61 50 st %g1, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2008f1c: c2 26 60 bc st %g1, [ %i1 + 0xbc ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008f20: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008f24: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008f28: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008f2c: 80 a0 a0 00 cmp %g2, 0 2008f30: 12 80 00 5f bne 20090ac <_Thread_Initialize+0x1f0> 2008f34: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2008f38: c0 26 61 60 clr [ %i1 + 0x160 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2008f3c: b6 10 20 00 clr %i3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008f40: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { return the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread ); 2008f44: 11 00 80 57 sethi %hi(0x2015c00), %o0 2008f48: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ] the_thread->Start.budget_callout = budget_callout; 2008f4c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2 2008f50: 90 12 22 c8 or %o0, 0x2c8, %o0 2008f54: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008f58: c4 07 a0 68 ld [ %fp + 0x68 ], %g2 RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { return 2008f5c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 2008f60: c4 26 60 ac st %g2, [ %i1 + 0xac ] the_thread->current_state = STATES_DORMANT; 2008f64: 84 10 20 01 mov 1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008f68: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ] } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; 2008f6c: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 2008f70: c4 26 60 10 st %g2, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008f74: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2008f78: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; 2008f7c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ] 2008f80: 9f c0 40 00 call %g1 2008f84: 92 10 00 19 mov %i1, %o1 sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread ); if ( !sched ) 2008f88: a0 92 20 00 orcc %o0, 0, %l0 2008f8c: 02 80 00 11 be 2008fd0 <_Thread_Initialize+0x114> 2008f90: 90 10 00 19 mov %i1, %o0 goto failed; _Thread_Set_priority( the_thread, priority ); 2008f94: 40 00 02 02 call 200979c <_Thread_Set_priority> 2008f98: 92 10 00 1d mov %i5, %o1 _Thread_Stack_Free( the_thread ); return false; } 2008f9c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008fa0: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008fa4: c0 26 60 84 clr [ %i1 + 0x84 ] 2008fa8: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008fac: 83 28 60 02 sll %g1, 2, %g1 2008fb0: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008fb4: e2 26 60 0c st %l1, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008fb8: 90 10 00 19 mov %i1, %o0 2008fbc: 40 00 03 42 call 2009cc4 <_User_extensions_Thread_create> 2008fc0: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008fc4: 80 8a 20 ff btst 0xff, %o0 2008fc8: 12 80 00 4a bne 20090f0 <_Thread_Initialize+0x234> 2008fcc: 01 00 00 00 nop return true; failed: if ( the_thread->libc_reent ) 2008fd0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0 2008fd4: 80 a2 20 00 cmp %o0, 0 2008fd8: 22 80 00 05 be,a 2008fec <_Thread_Initialize+0x130> 2008fdc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 _Workspace_Free( the_thread->libc_reent ); 2008fe0: 40 00 04 7e call 200a1d8 <_Workspace_Free> 2008fe4: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 2008fe8: d0 06 61 58 ld [ %i1 + 0x158 ], %o0 2008fec: 80 a2 20 00 cmp %o0, 0 2008ff0: 22 80 00 05 be,a 2009004 <_Thread_Initialize+0x148> 2008ff4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 2008ff8: 40 00 04 78 call 200a1d8 <_Workspace_Free> 2008ffc: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 2009000: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 2009004: 80 a2 20 00 cmp %o0, 0 2009008: 02 80 00 05 be 200901c <_Thread_Initialize+0x160> <== ALWAYS TAKEN 200900c: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 2009010: 40 00 04 72 call 200a1d8 <_Workspace_Free> <== NOT EXECUTED 2009014: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 2009018: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 200901c: 02 80 00 05 be 2009030 <_Thread_Initialize+0x174> 2009020: 80 a4 a0 00 cmp %l2, 0 (void) _Workspace_Free( extensions_area ); 2009024: 40 00 04 6d call 200a1d8 <_Workspace_Free> 2009028: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) 200902c: 80 a4 a0 00 cmp %l2, 0 2009030: 02 80 00 05 be 2009044 <_Thread_Initialize+0x188> 2009034: 80 a4 20 00 cmp %l0, 0 (void) _Workspace_Free( fp_area ); 2009038: 40 00 04 68 call 200a1d8 <_Workspace_Free> 200903c: 90 10 00 12 mov %l2, %o0 #endif if ( sched ) 2009040: 80 a4 20 00 cmp %l0, 0 2009044: 02 80 00 05 be 2009058 <_Thread_Initialize+0x19c> 2009048: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( sched ); 200904c: 40 00 04 63 call 200a1d8 <_Workspace_Free> 2009050: 90 10 00 10 mov %l0, %o0 _Thread_Stack_Free( the_thread ); 2009054: 90 10 00 19 mov %i1, %o0 2009058: 40 00 02 30 call 2009918 <_Thread_Stack_Free> 200905c: b0 10 20 00 clr %i0 return false; 2009060: 81 c7 e0 08 ret 2009064: 81 e8 00 00 restore } 2009068: 81 c7 e0 08 ret 200906c: 91 e8 20 00 restore %g0, 0, %o0 /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2009070: 40 00 04 51 call 200a1b4 <_Workspace_Allocate> 2009074: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2009078: a4 92 20 00 orcc %o0, 0, %l2 200907c: 02 80 00 1f be 20090f8 <_Thread_Initialize+0x23c> 2009080: 82 10 00 12 mov %l2, %g1 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2009084: 27 00 80 57 sethi %hi(0x2015c00), %l3 2009088: c4 04 e2 f4 ld [ %l3 + 0x2f4 ], %g2 ! 2015ef4 <_Thread_Maximum_extensions> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 200908c: c0 26 60 50 clr [ %i1 + 0x50 ] fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2009090: c2 26 61 50 st %g1, [ %i1 + 0x150 ] the_thread->Start.fp_context = fp_area; 2009094: c2 26 60 bc st %g1, [ %i1 + 0xbc ] the_watchdog->routine = routine; 2009098: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 200909c: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 20090a0: 80 a0 a0 00 cmp %g2, 0 20090a4: 02 bf ff a5 be 2008f38 <_Thread_Initialize+0x7c> 20090a8: c0 26 60 6c clr [ %i1 + 0x6c ] extensions_area = _Workspace_Allocate( 20090ac: 84 00 a0 01 inc %g2 20090b0: 40 00 04 41 call 200a1b4 <_Workspace_Allocate> 20090b4: 91 28 a0 02 sll %g2, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 20090b8: b6 92 20 00 orcc %o0, 0, %i3 20090bc: 02 80 00 12 be 2009104 <_Thread_Initialize+0x248> 20090c0: c6 04 e2 f4 ld [ %l3 + 0x2f4 ], %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 20090c4: f6 26 61 60 st %i3, [ %i1 + 0x160 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 20090c8: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 20090cc: 82 10 20 00 clr %g1 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 20090d0: 85 28 a0 02 sll %g2, 2, %g2 20090d4: c0 26 c0 02 clr [ %i3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 20090d8: 82 00 60 01 inc %g1 20090dc: 80 a0 c0 01 cmp %g3, %g1 20090e0: 1a bf ff fc bcc 20090d0 <_Thread_Initialize+0x214> 20090e4: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 20090e8: 10 bf ff 97 b 2008f44 <_Thread_Initialize+0x88> 20090ec: c4 07 a0 60 ld [ %fp + 0x60 ], %g2 20090f0: 81 c7 e0 08 ret 20090f4: 81 e8 00 00 restore * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 20090f8: b6 10 20 00 clr %i3 size_t actual_stack_size = 0; void *stack = NULL; #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) void *fp_area; #endif void *sched = NULL; 20090fc: 10 bf ff b5 b 2008fd0 <_Thread_Initialize+0x114> 2009100: a0 10 20 00 clr %l0 2009104: 10 bf ff b3 b 2008fd0 <_Thread_Initialize+0x114> 2009108: a0 10 20 00 clr %l0 =============================================================================== 0200d110 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 200d110: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 200d114: 7f ff d4 cf call 2002450 200d118: 01 00 00 00 nop 200d11c: a0 10 00 08 mov %o0, %l0 current_state = the_thread->current_state; 200d120: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 200d124: 80 88 60 02 btst 2, %g1 200d128: 02 80 00 05 be 200d13c <_Thread_Resume+0x2c> <== NEVER TAKEN 200d12c: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 200d130: 80 a0 60 00 cmp %g1, 0 200d134: 02 80 00 04 be 200d144 <_Thread_Resume+0x34> 200d138: c2 26 20 10 st %g1, [ %i0 + 0x10 ] _Scheduler_Unblock( &_Scheduler, the_thread ); } } _ISR_Enable( level ); 200d13c: 7f ff d4 c9 call 2002460 200d140: 91 e8 00 10 restore %g0, %l0, %o0 RTEMS_INLINE_ROUTINE void _Scheduler_Unblock( Scheduler_Control *the_scheduler, Thread_Control *the_thread ) { the_scheduler->Operations.unblock( the_scheduler, the_thread ); 200d144: 11 00 80 67 sethi %hi(0x2019c00), %o0 200d148: 90 12 21 78 or %o0, 0x178, %o0 ! 2019d78 <_Scheduler> 200d14c: c2 02 20 10 ld [ %o0 + 0x10 ], %g1 200d150: 9f c0 40 00 call %g1 200d154: 92 10 00 18 mov %i0, %o1 200d158: 7f ff d4 c2 call 2002460 200d15c: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 020096dc <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 20096dc: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 20096e0: 80 a6 20 00 cmp %i0, 0 20096e4: 02 80 00 13 be 2009730 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 20096e8: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 20096ec: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 20096f0: 80 a4 60 01 cmp %l1, 1 20096f4: 02 80 00 04 be 2009704 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 20096f8: 01 00 00 00 nop 20096fc: 81 c7 e0 08 ret 2009700: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 2009704: 7f ff e2 e4 call 2002294 2009708: 01 00 00 00 nop 200970c: a0 10 00 08 mov %o0, %l0 2009710: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 2009714: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009718: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 200971c: 80 88 80 01 btst %g2, %g1 2009720: 12 80 00 06 bne 2009738 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 2009724: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 2009728: 7f ff e2 df call 20022a4 200972c: 90 10 00 10 mov %l0, %o0 2009730: 81 c7 e0 08 ret 2009734: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2009738: 92 10 00 19 mov %i1, %o1 200973c: 94 10 20 01 mov 1, %o2 2009740: 40 00 0d d8 call 200cea0 <_Thread_queue_Extract_priority_helper> 2009744: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2009748: 90 10 00 18 mov %i0, %o0 200974c: 92 10 00 19 mov %i1, %o1 2009750: 7f ff ff 2c call 2009400 <_Thread_queue_Enqueue_priority> 2009754: 94 07 bf fc add %fp, -4, %o2 2009758: 30 bf ff f4 b,a 2009728 <_Thread_queue_Requeue+0x4c> =============================================================================== 0200975c <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 200975c: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009760: 90 10 00 18 mov %i0, %o0 2009764: 7f ff fd ab call 2008e10 <_Thread_Get> 2009768: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200976c: c2 07 bf fc ld [ %fp + -4 ], %g1 2009770: 80 a0 60 00 cmp %g1, 0 2009774: 12 80 00 08 bne 2009794 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 2009778: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 200977c: 40 00 0e 04 call 200cf8c <_Thread_queue_Process_timeout> 2009780: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2009784: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009788: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level> 200978c: 84 00 bf ff add %g2, -1, %g2 2009790: c4 20 62 40 st %g2, [ %g1 + 0x240 ] 2009794: 81 c7 e0 08 ret 2009798: 81 e8 00 00 restore =============================================================================== 020168b0 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20168b0: 9d e3 bf 88 save %sp, -120, %sp 20168b4: 2f 00 80 f1 sethi %hi(0x203c400), %l7 ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20168b8: ba 07 bf f4 add %fp, -12, %i5 20168bc: aa 07 bf f8 add %fp, -8, %l5 20168c0: a4 07 bf e8 add %fp, -24, %l2 20168c4: a8 07 bf ec add %fp, -20, %l4 20168c8: 2d 00 80 f1 sethi %hi(0x203c400), %l6 20168cc: 39 00 80 f1 sethi %hi(0x203c400), %i4 20168d0: ea 27 bf f4 st %l5, [ %fp + -12 ] head->previous = NULL; 20168d4: c0 27 bf f8 clr [ %fp + -8 ] tail->previous = head; 20168d8: fa 27 bf fc st %i5, [ %fp + -4 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 20168dc: e8 27 bf e8 st %l4, [ %fp + -24 ] head->previous = NULL; 20168e0: c0 27 bf ec clr [ %fp + -20 ] tail->previous = head; 20168e4: e4 27 bf f0 st %l2, [ %fp + -16 ] 20168e8: ae 15 e3 04 or %l7, 0x304, %l7 20168ec: a2 06 20 30 add %i0, 0x30, %l1 20168f0: ac 15 a2 7c or %l6, 0x27c, %l6 20168f4: a6 06 20 68 add %i0, 0x68, %l3 20168f8: b8 17 21 d0 or %i4, 0x1d0, %i4 20168fc: b4 06 20 08 add %i0, 8, %i2 2016900: b6 06 20 40 add %i0, 0x40, %i3 Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 2016904: fa 26 20 78 st %i5, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 2016908: c2 05 c0 00 ld [ %l7 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 201690c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016910: 94 10 00 12 mov %l2, %o2 2016914: 90 10 00 11 mov %l1, %o0 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 2016918: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 201691c: 40 00 12 b9 call 201b400 <_Watchdog_Adjust_to_chain> 2016920: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016924: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016928: e0 05 80 00 ld [ %l6 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 201692c: 80 a4 00 0a cmp %l0, %o2 2016930: 18 80 00 43 bgu 2016a3c <_Timer_server_Body+0x18c> 2016934: 92 24 00 0a sub %l0, %o2, %o1 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 2016938: 0a 80 00 39 bcs 2016a1c <_Timer_server_Body+0x16c> 201693c: 90 10 00 13 mov %l3, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 2016940: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016944: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016948: 40 00 02 f4 call 2017518 <_Chain_Get> 201694c: 01 00 00 00 nop if ( timer == NULL ) { 2016950: 92 92 20 00 orcc %o0, 0, %o1 2016954: 02 80 00 10 be 2016994 <_Timer_server_Body+0xe4> 2016958: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 201695c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2016960: 80 a0 60 01 cmp %g1, 1 2016964: 02 80 00 32 be 2016a2c <_Timer_server_Body+0x17c> 2016968: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 201696c: 12 bf ff f6 bne 2016944 <_Timer_server_Body+0x94> <== NEVER TAKEN 2016970: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016974: 40 00 12 d6 call 201b4cc <_Watchdog_Insert> 2016978: 90 10 00 13 mov %l3, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 201697c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016980: 40 00 02 e6 call 2017518 <_Chain_Get> 2016984: 01 00 00 00 nop if ( timer == NULL ) { 2016988: 92 92 20 00 orcc %o0, 0, %o1 201698c: 32 bf ff f5 bne,a 2016960 <_Timer_server_Body+0xb0> <== NEVER TAKEN 2016990: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2016994: 7f ff e2 36 call 200f26c 2016998: 01 00 00 00 nop tmp = ts->insert_chain; 201699c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 if ( _Chain_Is_empty( insert_chain ) ) { 20169a0: c2 07 bf f4 ld [ %fp + -12 ], %g1 20169a4: 80 a0 40 15 cmp %g1, %l5 20169a8: 02 80 00 29 be 2016a4c <_Timer_server_Body+0x19c> <== ALWAYS TAKEN 20169ac: a0 10 20 01 mov 1, %l0 ts->insert_chain = NULL; do_loop = false; } _ISR_Enable( level ); 20169b0: 7f ff e2 33 call 200f27c 20169b4: 01 00 00 00 nop * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) { 20169b8: 80 8c 20 ff btst 0xff, %l0 20169bc: 12 bf ff d3 bne 2016908 <_Timer_server_Body+0x58> <== NEVER TAKEN 20169c0: c2 07 bf e8 ld [ %fp + -24 ], %g1 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 20169c4: 80 a0 40 14 cmp %g1, %l4 20169c8: 12 80 00 0c bne 20169f8 <_Timer_server_Body+0x148> 20169cc: 01 00 00 00 nop 20169d0: 30 80 00 22 b,a 2016a58 <_Timer_server_Body+0x1a8> Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; new_first->previous = head; 20169d4: e4 20 60 04 st %l2, [ %g1 + 4 ] { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *old_first = head->next; Chain_Node *new_first = old_first->next; head->next = new_first; 20169d8: c2 27 bf e8 st %g1, [ %fp + -24 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 20169dc: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 20169e0: 7f ff e2 27 call 200f27c 20169e4: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20169e8: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 20169ec: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 20169f0: 9f c0 40 00 call %g1 20169f4: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 20169f8: 7f ff e2 1d call 200f26c 20169fc: 01 00 00 00 nop initialized = false; } #endif return status; } 2016a00: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 2016a04: 80 a4 00 14 cmp %l0, %l4 2016a08: 32 bf ff f3 bne,a 20169d4 <_Timer_server_Body+0x124> 2016a0c: c2 04 00 00 ld [ %l0 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016a10: 7f ff e2 1b call 200f27c 2016a14: 01 00 00 00 nop 2016a18: 30 bf ff bb b,a 2016904 <_Timer_server_Body+0x54> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016a1c: 92 10 20 01 mov 1, %o1 ! 1 2016a20: 40 00 12 48 call 201b340 <_Watchdog_Adjust> 2016a24: 94 22 80 10 sub %o2, %l0, %o2 2016a28: 30 bf ff c6 b,a 2016940 <_Timer_server_Body+0x90> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016a2c: 90 10 00 11 mov %l1, %o0 2016a30: 40 00 12 a7 call 201b4cc <_Watchdog_Insert> 2016a34: 92 02 60 10 add %o1, 0x10, %o1 2016a38: 30 bf ff c3 b,a 2016944 <_Timer_server_Body+0x94> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016a3c: 90 10 00 13 mov %l3, %o0 2016a40: 40 00 12 70 call 201b400 <_Watchdog_Adjust_to_chain> 2016a44: 94 10 00 12 mov %l2, %o2 2016a48: 30 bf ff be b,a 2016940 <_Timer_server_Body+0x90> _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); tmp = ts->insert_chain; if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 2016a4c: c0 26 20 78 clr [ %i0 + 0x78 ] do_loop = false; 2016a50: 10 bf ff d8 b 20169b0 <_Timer_server_Body+0x100> 2016a54: a0 10 20 00 clr %l0 * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2016a58: c0 2e 20 7c clrb [ %i0 + 0x7c ] 2016a5c: c2 07 00 00 ld [ %i4 ], %g1 2016a60: 82 00 60 01 inc %g1 2016a64: c2 27 00 00 st %g1, [ %i4 ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016a68: d0 06 00 00 ld [ %i0 ], %o0 2016a6c: 40 00 10 4f call 201aba8 <_Thread_Set_state> 2016a70: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016a74: 7f ff ff 65 call 2016808 <_Timer_server_Reset_interval_system_watchdog> 2016a78: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016a7c: 7f ff ff 78 call 201685c <_Timer_server_Reset_tod_system_watchdog> 2016a80: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016a84: 40 00 0d 97 call 201a0e0 <_Thread_Enable_dispatch> 2016a88: 01 00 00 00 nop ts->active = true; 2016a8c: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016a90: 90 10 00 1a mov %i2, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016a94: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016a98: 40 00 12 f6 call 201b670 <_Watchdog_Remove> 2016a9c: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016aa0: 40 00 12 f4 call 201b670 <_Watchdog_Remove> 2016aa4: 90 10 00 1b mov %i3, %o0 2016aa8: 30 bf ff 97 b,a 2016904 <_Timer_server_Body+0x54> =============================================================================== 02016aac <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2016aac: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016ab0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016ab4: 80 a0 60 00 cmp %g1, 0 2016ab8: 02 80 00 05 be 2016acc <_Timer_server_Schedule_operation_method+0x20> 2016abc: a0 10 00 19 mov %i1, %l0 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016ac0: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016ac4: 40 00 02 7f call 20174c0 <_Chain_Append> 2016ac8: 81 e8 00 00 restore 2016acc: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016ad0: c4 00 61 d0 ld [ %g1 + 0x1d0 ], %g2 ! 203c5d0 <_Thread_Dispatch_disable_level> 2016ad4: 84 00 a0 01 inc %g2 2016ad8: c4 20 61 d0 st %g2, [ %g1 + 0x1d0 ] * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016adc: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016ae0: 80 a0 60 01 cmp %g1, 1 2016ae4: 02 80 00 28 be 2016b84 <_Timer_server_Schedule_operation_method+0xd8> 2016ae8: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016aec: 02 80 00 04 be 2016afc <_Timer_server_Schedule_operation_method+0x50> 2016af0: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016af4: 40 00 0d 7b call 201a0e0 <_Thread_Enable_dispatch> 2016af8: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016afc: 7f ff e1 dc call 200f26c 2016b00: 01 00 00 00 nop initialized = false; } #endif return status; } 2016b04: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016b08: c6 06 20 74 ld [ %i0 + 0x74 ], %g3 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 2016b0c: 88 06 20 6c add %i0, 0x6c, %g4 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016b10: 03 00 80 f1 sethi %hi(0x203c400), %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016b14: 80 a0 80 04 cmp %g2, %g4 2016b18: 02 80 00 0d be 2016b4c <_Timer_server_Schedule_operation_method+0xa0> 2016b1c: c2 00 62 7c ld [ %g1 + 0x27c ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016b20: da 00 a0 10 ld [ %g2 + 0x10 ], %o5 if ( snapshot > last_snapshot ) { 2016b24: 80 a0 40 03 cmp %g1, %g3 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016b28: 88 03 40 03 add %o5, %g3, %g4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016b2c: 08 80 00 07 bleu 2016b48 <_Timer_server_Schedule_operation_method+0x9c> 2016b30: 88 21 00 01 sub %g4, %g1, %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016b34: 86 20 40 03 sub %g1, %g3, %g3 if (delta_interval > delta) { 2016b38: 80 a3 40 03 cmp %o5, %g3 2016b3c: 08 80 00 03 bleu 2016b48 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN 2016b40: 88 10 20 00 clr %g4 delta_interval -= delta; 2016b44: 88 23 40 03 sub %o5, %g3, %g4 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016b48: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016b4c: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016b50: 7f ff e1 cb call 200f27c 2016b54: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016b58: 90 06 20 68 add %i0, 0x68, %o0 2016b5c: 40 00 12 5c call 201b4cc <_Watchdog_Insert> 2016b60: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016b64: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016b68: 80 a0 60 00 cmp %g1, 0 2016b6c: 12 bf ff e2 bne 2016af4 <_Timer_server_Schedule_operation_method+0x48> 2016b70: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016b74: 7f ff ff 3a call 201685c <_Timer_server_Reset_tod_system_watchdog> 2016b78: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016b7c: 40 00 0d 59 call 201a0e0 <_Thread_Enable_dispatch> 2016b80: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016b84: 7f ff e1 ba call 200f26c 2016b88: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016b8c: 05 00 80 f1 sethi %hi(0x203c400), %g2 initialized = false; } #endif return status; } 2016b90: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = _Watchdog_Ticks_since_boot; 2016b94: c4 00 a3 04 ld [ %g2 + 0x304 ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016b98: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 2016b9c: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2016ba0: 80 a0 40 03 cmp %g1, %g3 2016ba4: 02 80 00 08 be 2016bc4 <_Timer_server_Schedule_operation_method+0x118> 2016ba8: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016bac: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 2016bb0: 80 a1 00 0d cmp %g4, %o5 2016bb4: 1a 80 00 03 bcc 2016bc0 <_Timer_server_Schedule_operation_method+0x114> 2016bb8: 86 10 20 00 clr %g3 delta_interval -= delta; 2016bbc: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016bc0: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016bc4: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016bc8: 7f ff e1 ad call 200f27c 2016bcc: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016bd0: 90 06 20 30 add %i0, 0x30, %o0 2016bd4: 40 00 12 3e call 201b4cc <_Watchdog_Insert> 2016bd8: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016bdc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016be0: 80 a0 60 00 cmp %g1, 0 2016be4: 12 bf ff c4 bne 2016af4 <_Timer_server_Schedule_operation_method+0x48> 2016be8: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016bec: 7f ff ff 07 call 2016808 <_Timer_server_Reset_interval_system_watchdog> 2016bf0: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016bf4: 40 00 0d 3b call 201a0e0 <_Thread_Enable_dispatch> 2016bf8: 81 e8 00 00 restore =============================================================================== 02009a64 <_Timespec_Add_to>: uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { 2009a64: 9d e3 bf a0 save %sp, -96, %sp 2009a68: 82 10 00 18 mov %i0, %g1 uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009a6c: c6 06 00 00 ld [ %i0 ], %g3 time->tv_nsec += add->tv_nsec; 2009a70: c8 06 60 04 ld [ %i1 + 4 ], %g4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 2009a74: f0 06 40 00 ld [ %i1 ], %i0 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 2009a78: c4 00 60 04 ld [ %g1 + 4 ], %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009a7c: 86 00 c0 18 add %g3, %i0, %g3 time->tv_nsec += add->tv_nsec; 2009a80: 84 01 00 02 add %g4, %g2, %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 2009a84: c6 20 40 00 st %g3, [ %g1 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009a88: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 2009a8c: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 2009a90: 80 a0 80 04 cmp %g2, %g4 2009a94: 08 80 00 0b bleu 2009ac0 <_Timespec_Add_to+0x5c> 2009a98: c4 20 60 04 st %g2, [ %g1 + 4 ] time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 2009a9c: 1b 31 19 4d sethi %hi(0xc4653400), %o5 2009aa0: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 2009aa4: 84 00 80 0d add %g2, %o5, %g2 * * This routines adds two timespecs. The second argument is added * to the first. */ uint32_t _Timespec_Add_to( 2009aa8: 86 00 e0 01 inc %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 2009aac: 80 a0 80 04 cmp %g2, %g4 2009ab0: 18 bf ff fd bgu 2009aa4 <_Timespec_Add_to+0x40> <== NEVER TAKEN 2009ab4: b0 06 20 01 inc %i0 2009ab8: c4 20 60 04 st %g2, [ %g1 + 4 ] 2009abc: c6 20 40 00 st %g3, [ %g1 ] time->tv_sec++; seconds++; } return seconds; } 2009ac0: 81 c7 e0 08 ret 2009ac4: 81 e8 00 00 restore =============================================================================== 0200b9f8 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 200b9f8: c6 02 00 00 ld [ %o0 ], %g3 200b9fc: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 200ba00: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 200ba04: 80 a0 c0 02 cmp %g3, %g2 200ba08: 14 80 00 0a bg 200ba30 <_Timespec_Greater_than+0x38> 200ba0c: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 200ba10: 80 a0 c0 02 cmp %g3, %g2 200ba14: 06 80 00 07 bl 200ba30 <_Timespec_Greater_than+0x38> <== NEVER TAKEN 200ba18: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 200ba1c: c4 00 60 04 ld [ %g1 + 4 ], %g2 200ba20: c2 02 60 04 ld [ %o1 + 4 ], %g1 200ba24: 80 a0 80 01 cmp %g2, %g1 200ba28: 04 80 00 04 ble 200ba38 <_Timespec_Greater_than+0x40> 200ba2c: 90 10 20 01 mov 1, %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 200ba30: 81 c3 e0 08 retl 200ba34: 01 00 00 00 nop 200ba38: 81 c3 e0 08 retl 200ba3c: 90 10 20 00 clr %o0 ! 0 =============================================================================== 02009c74 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009c74: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 2009c78: 23 00 80 58 sethi %hi(0x2016000), %l1 2009c7c: a2 14 60 58 or %l1, 0x58, %l1 ! 2016058 <_User_extensions_List> 2009c80: e0 04 60 08 ld [ %l1 + 8 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009c84: 80 a4 00 11 cmp %l0, %l1 2009c88: 02 80 00 0d be 2009cbc <_User_extensions_Fatal+0x48> <== NEVER TAKEN 2009c8c: b2 0e 60 ff and %i1, 0xff, %i1 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 2009c90: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2009c94: 80 a0 60 00 cmp %g1, 0 2009c98: 02 80 00 05 be 2009cac <_User_extensions_Fatal+0x38> 2009c9c: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 2009ca0: 92 10 00 19 mov %i1, %o1 2009ca4: 9f c0 40 00 call %g1 2009ca8: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009cac: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009cb0: 80 a4 00 11 cmp %l0, %l1 2009cb4: 32 bf ff f8 bne,a 2009c94 <_User_extensions_Fatal+0x20> 2009cb8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2009cbc: 81 c7 e0 08 ret 2009cc0: 81 e8 00 00 restore =============================================================================== 02009b20 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009b20: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009b24: 07 00 80 54 sethi %hi(0x2015000), %g3 2009b28: 86 10 e2 a8 or %g3, 0x2a8, %g3 ! 20152a8 initial_extensions = Configuration.User_extension_table; 2009b2c: e6 00 e0 40 ld [ %g3 + 0x40 ], %l3 2009b30: 1b 00 80 58 sethi %hi(0x2016000), %o5 2009b34: 09 00 80 57 sethi %hi(0x2015c00), %g4 2009b38: 84 13 60 58 or %o5, 0x58, %g2 2009b3c: 82 11 22 44 or %g4, 0x244, %g1 2009b40: 96 00 a0 04 add %g2, 4, %o3 2009b44: 98 00 60 04 add %g1, 4, %o4 2009b48: d6 23 60 58 st %o3, [ %o5 + 0x58 ] head->previous = NULL; 2009b4c: c0 20 a0 04 clr [ %g2 + 4 ] tail->previous = head; 2009b50: c4 20 a0 08 st %g2, [ %g2 + 8 ] ) { Chain_Node *head = _Chain_Head( the_chain ); Chain_Node *tail = _Chain_Tail( the_chain ); head->next = tail; 2009b54: d8 21 22 44 st %o4, [ %g4 + 0x244 ] head->previous = NULL; 2009b58: c0 20 60 04 clr [ %g1 + 4 ] tail->previous = head; 2009b5c: c2 20 60 08 st %g1, [ %g1 + 8 ] _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009b60: 80 a4 e0 00 cmp %l3, 0 2009b64: 02 80 00 1b be 2009bd0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009b68: e4 00 e0 3c ld [ %g3 + 0x3c ], %l2 extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009b6c: 83 2c a0 02 sll %l2, 2, %g1 2009b70: a3 2c a0 04 sll %l2, 4, %l1 2009b74: a2 24 40 01 sub %l1, %g1, %l1 2009b78: a2 04 40 12 add %l1, %l2, %l1 2009b7c: a3 2c 60 02 sll %l1, 2, %l1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009b80: 40 00 01 9d call 200a1f4 <_Workspace_Allocate_or_fatal_error> 2009b84: 90 10 00 11 mov %l1, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009b88: 92 10 20 00 clr %o1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009b8c: a0 10 00 08 mov %o0, %l0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009b90: 40 00 16 23 call 200f41c 2009b94: 94 10 00 11 mov %l1, %o2 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009b98: 80 a4 a0 00 cmp %l2, 0 2009b9c: 02 80 00 0d be 2009bd0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009ba0: a2 10 20 00 clr %l1 #include #include #include #include void _User_extensions_Handler_initialization(void) 2009ba4: 93 2c 60 05 sll %l1, 5, %o1 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009ba8: 94 10 20 20 mov 0x20, %o2 2009bac: 92 04 c0 09 add %l3, %o1, %o1 2009bb0: 40 00 15 e2 call 200f338 2009bb4: 90 04 20 14 add %l0, 0x14, %o0 _User_extensions_Add_set( extension ); 2009bb8: 40 00 0d 1a call 200d020 <_User_extensions_Add_set> 2009bbc: 90 10 00 10 mov %l0, %o0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009bc0: a2 04 60 01 inc %l1 2009bc4: 80 a4 80 11 cmp %l2, %l1 2009bc8: 18 bf ff f7 bgu 2009ba4 <_User_extensions_Handler_initialization+0x84> 2009bcc: a0 04 20 34 add %l0, 0x34, %l0 2009bd0: 81 c7 e0 08 ret 2009bd4: 81 e8 00 00 restore =============================================================================== 02009bd8 <_User_extensions_Thread_begin>: #include void _User_extensions_Thread_begin ( Thread_Control *executing ) { 2009bd8: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 2009bdc: 23 00 80 58 sethi %hi(0x2016000), %l1 2009be0: e0 04 60 58 ld [ %l1 + 0x58 ], %l0 ! 2016058 <_User_extensions_List> 2009be4: a2 14 60 58 or %l1, 0x58, %l1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009be8: a2 04 60 04 add %l1, 4, %l1 2009bec: 80 a4 00 11 cmp %l0, %l1 2009bf0: 02 80 00 0c be 2009c20 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN 2009bf4: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_begin != NULL ) 2009bf8: c2 04 20 28 ld [ %l0 + 0x28 ], %g1 2009bfc: 80 a0 60 00 cmp %g1, 0 2009c00: 02 80 00 04 be 2009c10 <_User_extensions_Thread_begin+0x38> 2009c04: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_begin)( executing ); 2009c08: 9f c0 40 00 call %g1 2009c0c: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009c10: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009c14: 80 a4 00 11 cmp %l0, %l1 2009c18: 32 bf ff f9 bne,a 2009bfc <_User_extensions_Thread_begin+0x24> 2009c1c: c2 04 20 28 ld [ %l0 + 0x28 ], %g1 2009c20: 81 c7 e0 08 ret 2009c24: 81 e8 00 00 restore =============================================================================== 02009cc4 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009cc4: 9d e3 bf a0 save %sp, -96, %sp return false; } } return true; } 2009cc8: 23 00 80 58 sethi %hi(0x2016000), %l1 2009ccc: e0 04 60 58 ld [ %l1 + 0x58 ], %l0 ! 2016058 <_User_extensions_List> #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009cd0: a6 10 00 18 mov %i0, %l3 return false; } } return true; } 2009cd4: a2 14 60 58 or %l1, 0x58, %l1 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 2009cd8: a2 04 60 04 add %l1, 4, %l1 2009cdc: 80 a4 00 11 cmp %l0, %l1 2009ce0: 02 80 00 13 be 2009d2c <_User_extensions_Thread_create+0x68><== NEVER TAKEN 2009ce4: b0 10 20 01 mov 1, %i0 the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 2009ce8: 25 00 80 58 sethi %hi(0x2016000), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 2009cec: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2009cf0: 80 a0 60 00 cmp %g1, 0 2009cf4: 02 80 00 08 be 2009d14 <_User_extensions_Thread_create+0x50> 2009cf8: 84 14 a0 9c or %l2, 0x9c, %g2 status = (*the_extension->Callouts.thread_create)( 2009cfc: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009d00: 9f c0 40 00 call %g1 2009d04: 92 10 00 13 mov %l3, %o1 _Thread_Executing, the_thread ); if ( !status ) 2009d08: 80 8a 20 ff btst 0xff, %o0 2009d0c: 22 80 00 08 be,a 2009d2c <_User_extensions_Thread_create+0x68> 2009d10: b0 10 20 00 clr %i0 User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009d14: e0 04 00 00 ld [ %l0 ], %l0 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _Chain_First( &_User_extensions_List ); 2009d18: 80 a4 00 11 cmp %l0, %l1 2009d1c: 32 bf ff f5 bne,a 2009cf0 <_User_extensions_Thread_create+0x2c> 2009d20: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 if ( !status ) return false; } } return true; 2009d24: 81 c7 e0 08 ret 2009d28: 91 e8 20 01 restore %g0, 1, %o0 } 2009d2c: 81 c7 e0 08 ret 2009d30: 81 e8 00 00 restore =============================================================================== 02009d34 <_User_extensions_Thread_delete>: #include void _User_extensions_Thread_delete ( Thread_Control *the_thread ) { 2009d34: 9d e3 bf a0 save %sp, -96, %sp (*the_extension->Callouts.thread_delete)( _Thread_Executing, the_thread ); } } 2009d38: 23 00 80 58 sethi %hi(0x2016000), %l1 2009d3c: a2 14 60 58 or %l1, 0x58, %l1 ! 2016058 <_User_extensions_List> 2009d40: e0 04 60 08 ld [ %l1 + 8 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009d44: 80 a4 00 11 cmp %l0, %l1 2009d48: 02 80 00 0d be 2009d7c <_User_extensions_Thread_delete+0x48><== NEVER TAKEN 2009d4c: 25 00 80 58 sethi %hi(0x2016000), %l2 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_delete != NULL ) 2009d50: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 2009d54: 80 a0 60 00 cmp %g1, 0 2009d58: 02 80 00 05 be 2009d6c <_User_extensions_Thread_delete+0x38> 2009d5c: 84 14 a0 9c or %l2, 0x9c, %g2 (*the_extension->Callouts.thread_delete)( 2009d60: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009d64: 9f c0 40 00 call %g1 2009d68: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009d6c: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009d70: 80 a4 00 11 cmp %l0, %l1 2009d74: 32 bf ff f8 bne,a 2009d54 <_User_extensions_Thread_delete+0x20> 2009d78: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 2009d7c: 81 c7 e0 08 ret 2009d80: 81 e8 00 00 restore =============================================================================== 02009c28 <_User_extensions_Thread_exitted>: } void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009c28: 9d e3 bf a0 save %sp, -96, %sp the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); } } 2009c2c: 23 00 80 58 sethi %hi(0x2016000), %l1 2009c30: a2 14 60 58 or %l1, 0x58, %l1 ! 2016058 <_User_extensions_List> 2009c34: e0 04 60 08 ld [ %l1 + 8 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009c38: 80 a4 00 11 cmp %l0, %l1 2009c3c: 02 80 00 0c be 2009c6c <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN 2009c40: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009c44: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 2009c48: 80 a0 60 00 cmp %g1, 0 2009c4c: 02 80 00 04 be 2009c5c <_User_extensions_Thread_exitted+0x34> 2009c50: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_exitted)( executing ); 2009c54: 9f c0 40 00 call %g1 2009c58: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009c5c: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_Last( &_User_extensions_List ); 2009c60: 80 a4 00 11 cmp %l0, %l1 2009c64: 32 bf ff f9 bne,a 2009c48 <_User_extensions_Thread_exitted+0x20> 2009c68: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 2009c6c: 81 c7 e0 08 ret 2009c70: 81 e8 00 00 restore =============================================================================== 0200aac8 <_User_extensions_Thread_restart>: #include void _User_extensions_Thread_restart ( Thread_Control *the_thread ) { 200aac8: 9d e3 bf a0 save %sp, -96, %sp (*the_extension->Callouts.thread_restart)( _Thread_Executing, the_thread ); } } 200aacc: 23 00 80 74 sethi %hi(0x201d000), %l1 200aad0: e0 04 61 48 ld [ %l1 + 0x148 ], %l0 ! 201d148 <_User_extensions_List> 200aad4: a2 14 61 48 or %l1, 0x148, %l1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200aad8: a2 04 60 04 add %l1, 4, %l1 200aadc: 80 a4 00 11 cmp %l0, %l1 200aae0: 02 80 00 0d be 200ab14 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN 200aae4: 25 00 80 74 sethi %hi(0x201d000), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_restart != NULL ) 200aae8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200aaec: 80 a0 60 00 cmp %g1, 0 200aaf0: 02 80 00 05 be 200ab04 <_User_extensions_Thread_restart+0x3c> 200aaf4: 84 14 a1 8c or %l2, 0x18c, %g2 (*the_extension->Callouts.thread_restart)( 200aaf8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200aafc: 9f c0 40 00 call %g1 200ab00: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200ab04: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 200ab08: 80 a4 00 11 cmp %l0, %l1 200ab0c: 32 bf ff f8 bne,a 200aaec <_User_extensions_Thread_restart+0x24> 200ab10: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200ab14: 81 c7 e0 08 ret 200ab18: 81 e8 00 00 restore =============================================================================== 02009d84 <_User_extensions_Thread_start>: #include void _User_extensions_Thread_start ( Thread_Control *the_thread ) { 2009d84: 9d e3 bf a0 save %sp, -96, %sp (*the_extension->Callouts.thread_start)( _Thread_Executing, the_thread ); } } 2009d88: 23 00 80 58 sethi %hi(0x2016000), %l1 2009d8c: e0 04 60 58 ld [ %l1 + 0x58 ], %l0 ! 2016058 <_User_extensions_List> 2009d90: a2 14 60 58 or %l1, 0x58, %l1 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009d94: a2 04 60 04 add %l1, 4, %l1 2009d98: 80 a4 00 11 cmp %l0, %l1 2009d9c: 02 80 00 0d be 2009dd0 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN 2009da0: 25 00 80 58 sethi %hi(0x2016000), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_start != NULL ) 2009da4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2009da8: 80 a0 60 00 cmp %g1, 0 2009dac: 02 80 00 05 be 2009dc0 <_User_extensions_Thread_start+0x3c> 2009db0: 84 14 a0 9c or %l2, 0x9c, %g2 (*the_extension->Callouts.thread_start)( 2009db4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009db8: 9f c0 40 00 call %g1 2009dbc: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009dc0: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _Chain_First( &_User_extensions_List ); 2009dc4: 80 a4 00 11 cmp %l0, %l1 2009dc8: 32 bf ff f8 bne,a 2009da8 <_User_extensions_Thread_start+0x24> 2009dcc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2009dd0: 81 c7 e0 08 ret 2009dd4: 81 e8 00 00 restore =============================================================================== 02009dd8 <_User_extensions_Thread_switch>: void _User_extensions_Thread_switch ( Thread_Control *executing, Thread_Control *heir ) { 2009dd8: 9d e3 bf a0 save %sp, -96, %sp the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); } } 2009ddc: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009de0: e0 04 62 44 ld [ %l1 + 0x244 ], %l0 ! 2015e44 <_User_extensions_Switches_list> 2009de4: a2 14 62 44 or %l1, 0x244, %l1 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 2009de8: a2 04 60 04 add %l1, 4, %l1 2009dec: 80 a4 00 11 cmp %l0, %l1 2009df0: 02 80 00 0a be 2009e18 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN 2009df4: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); 2009df8: c2 04 20 08 ld [ %l0 + 8 ], %g1 2009dfc: 90 10 00 18 mov %i0, %o0 2009e00: 9f c0 40 00 call %g1 2009e04: 92 10 00 19 mov %i1, %o1 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { 2009e08: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _Chain_First( &_User_extensions_Switches_list ); 2009e0c: 80 a4 00 11 cmp %l0, %l1 2009e10: 32 bf ff fb bne,a 2009dfc <_User_extensions_Thread_switch+0x24> 2009e14: c2 04 20 08 ld [ %l0 + 8 ], %g1 2009e18: 81 c7 e0 08 ret 2009e1c: 81 e8 00 00 restore =============================================================================== 0200be74 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200be74: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200be78: 7f ff dc e6 call 2003210 200be7c: a0 10 00 18 mov %i0, %l0 } } _ISR_Enable( level ); } 200be80: c2 06 00 00 ld [ %i0 ], %g1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200be84: a4 06 20 04 add %i0, 4, %l2 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200be88: 80 a0 40 12 cmp %g1, %l2 200be8c: 02 80 00 1f be 200bf08 <_Watchdog_Adjust+0x94> 200be90: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200be94: 12 80 00 1f bne 200bf10 <_Watchdog_Adjust+0x9c> 200be98: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200be9c: 80 a6 a0 00 cmp %i2, 0 200bea0: 02 80 00 1a be 200bf08 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bea4: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bea8: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 200beac: 80 a6 80 11 cmp %i2, %l1 200beb0: 1a 80 00 0b bcc 200bedc <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN 200beb4: a6 10 20 01 mov 1, %l3 _Watchdog_First( header )->delta_interval -= units; 200beb8: 10 80 00 1d b 200bf2c <_Watchdog_Adjust+0xb8> <== NOT EXECUTED 200bebc: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bec0: b4 a6 80 11 subcc %i2, %l1, %i2 200bec4: 02 80 00 11 be 200bf08 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bec8: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200becc: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 200bed0: 80 a4 40 1a cmp %l1, %i2 200bed4: 38 80 00 16 bgu,a 200bf2c <_Watchdog_Adjust+0xb8> 200bed8: a2 24 40 1a sub %l1, %i2, %l1 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200bedc: e6 20 60 10 st %l3, [ %g1 + 0x10 ] _ISR_Enable( level ); 200bee0: 7f ff dc d0 call 2003220 200bee4: 01 00 00 00 nop _Watchdog_Tickle( header ); 200bee8: 40 00 00 b2 call 200c1b0 <_Watchdog_Tickle> 200beec: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200bef0: 7f ff dc c8 call 2003210 200bef4: 01 00 00 00 nop } } _ISR_Enable( level ); } 200bef8: c4 04 00 00 ld [ %l0 ], %g2 _Watchdog_Tickle( header ); _ISR_Disable( level ); if ( _Chain_Is_empty( header ) ) 200befc: 80 a4 80 02 cmp %l2, %g2 200bf00: 12 bf ff f0 bne 200bec0 <_Watchdog_Adjust+0x4c> 200bf04: 82 10 00 02 mov %g2, %g1 } break; } } _ISR_Enable( level ); 200bf08: 7f ff dc c6 call 2003220 200bf0c: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200bf10: 12 bf ff fe bne 200bf08 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bf14: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200bf18: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200bf1c: b4 00 80 1a add %g2, %i2, %i2 200bf20: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200bf24: 7f ff dc bf call 2003220 200bf28: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200bf2c: 10 bf ff f7 b 200bf08 <_Watchdog_Adjust+0x94> 200bf30: e2 20 60 10 st %l1, [ %g1 + 0x10 ] =============================================================================== 02009fc4 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009fc4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009fc8: 7f ff e0 b3 call 2002294 2009fcc: 01 00 00 00 nop previous_state = the_watchdog->state; 2009fd0: e0 06 20 08 ld [ %i0 + 8 ], %l0 switch ( previous_state ) { 2009fd4: 80 a4 20 01 cmp %l0, 1 2009fd8: 02 80 00 2a be 200a080 <_Watchdog_Remove+0xbc> 2009fdc: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009fe0: 1a 80 00 09 bcc 200a004 <_Watchdog_Remove+0x40> 2009fe4: 80 a4 20 03 cmp %l0, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009fe8: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009fec: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 ! 2015f74 <_Watchdog_Ticks_since_boot> 2009ff0: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009ff4: 7f ff e0 ac call 20022a4 2009ff8: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009ffc: 81 c7 e0 08 ret 200a000: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 200a004: 18 bf ff fa bgu 2009fec <_Watchdog_Remove+0x28> <== NEVER TAKEN 200a008: 03 00 80 57 sethi %hi(0x2015c00), %g1 } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; _ISR_Enable( level ); return( previous_state ); } 200a00c: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 200a010: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 200a014: c4 00 40 00 ld [ %g1 ], %g2 200a018: 80 a0 a0 00 cmp %g2, 0 200a01c: 02 80 00 07 be 200a038 <_Watchdog_Remove+0x74> 200a020: 05 00 80 57 sethi %hi(0x2015c00), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 200a024: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200a028: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 200a02c: 84 00 c0 02 add %g3, %g2, %g2 200a030: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 200a034: 05 00 80 57 sethi %hi(0x2015c00), %g2 200a038: c4 00 a3 70 ld [ %g2 + 0x370 ], %g2 ! 2015f70 <_Watchdog_Sync_count> 200a03c: 80 a0 a0 00 cmp %g2, 0 200a040: 22 80 00 07 be,a 200a05c <_Watchdog_Remove+0x98> 200a044: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 200a048: 05 00 80 58 sethi %hi(0x2016000), %g2 200a04c: c6 00 a0 a4 ld [ %g2 + 0xa4 ], %g3 ! 20160a4 <_Per_CPU_Information+0x8> 200a050: 05 00 80 57 sethi %hi(0x2015c00), %g2 200a054: c6 20 a3 08 st %g3, [ %g2 + 0x308 ] ! 2015f08 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 200a058: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 200a05c: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 200a060: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a064: 03 00 80 57 sethi %hi(0x2015c00), %g1 200a068: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 ! 2015f74 <_Watchdog_Ticks_since_boot> 200a06c: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a070: 7f ff e0 8d call 20022a4 200a074: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 200a078: 81 c7 e0 08 ret 200a07c: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a080: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 200a084: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 200a088: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 200a08c: 7f ff e0 86 call 20022a4 200a090: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 200a094: 81 c7 e0 08 ret 200a098: 81 e8 00 00 restore =============================================================================== 0200b6b4 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200b6b4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200b6b8: 7f ff dd a8 call 2002d58 200b6bc: 01 00 00 00 nop 200b6c0: a0 10 00 08 mov %o0, %l0 printk( "Watchdog Chain: %s %p\n", name, header ); 200b6c4: 11 00 80 71 sethi %hi(0x201c400), %o0 200b6c8: 94 10 00 19 mov %i1, %o2 200b6cc: 92 10 00 18 mov %i0, %o1 200b6d0: 7f ff e4 6e call 2004888 200b6d4: 90 12 21 00 or %o0, 0x100, %o0 printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); } 200b6d8: e2 06 40 00 ld [ %i1 ], %l1 RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( const Chain_Control *the_chain ) { return _Chain_Immutable_first( the_chain ) == _Chain_Immutable_tail( the_chain ); 200b6dc: b2 06 60 04 add %i1, 4, %i1 ISR_Level level; Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { 200b6e0: 80 a4 40 19 cmp %l1, %i1 200b6e4: 02 80 00 0f be 200b720 <_Watchdog_Report_chain+0x6c> 200b6e8: 11 00 80 71 sethi %hi(0x201c400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200b6ec: 92 10 00 11 mov %l1, %o1 200b6f0: 40 00 00 0f call 200b72c <_Watchdog_Report> 200b6f4: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; node != _Chain_Tail(header) ; node = node->next ) 200b6f8: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = _Chain_First( header ) ; 200b6fc: 80 a4 40 19 cmp %l1, %i1 200b700: 12 bf ff fc bne 200b6f0 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200b704: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200b708: 11 00 80 71 sethi %hi(0x201c400), %o0 200b70c: 92 10 00 18 mov %i0, %o1 200b710: 7f ff e4 5e call 2004888 200b714: 90 12 21 18 or %o0, 0x118, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200b718: 7f ff dd 94 call 2002d68 200b71c: 91 e8 00 10 restore %g0, %l0, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200b720: 7f ff e4 5a call 2004888 200b724: 90 12 21 28 or %o0, 0x128, %o0 200b728: 30 bf ff fc b,a 200b718 <_Watchdog_Report_chain+0x64> =============================================================================== 0200eef4 : rtems_name name, rtems_attribute attribute_set, uint32_t maximum_waiters, rtems_id *id ) { 200eef4: 9d e3 bf 98 save %sp, -104, %sp 200eef8: a0 10 00 18 mov %i0, %l0 Barrier_Control *the_barrier; CORE_barrier_Attributes the_attributes; if ( !rtems_is_name_valid( name ) ) 200eefc: 80 a4 20 00 cmp %l0, 0 200ef00: 02 80 00 23 be 200ef8c 200ef04: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !id ) 200ef08: 80 a6 e0 00 cmp %i3, 0 200ef0c: 02 80 00 20 be 200ef8c 200ef10: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; /* Initialize core barrier attributes */ if ( _Attributes_Is_barrier_automatic( attribute_set ) ) { 200ef14: 80 8e 60 10 btst 0x10, %i1 200ef18: 02 80 00 1f be 200ef94 200ef1c: 80 a6 a0 00 cmp %i2, 0 the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE; 200ef20: c0 27 bf f8 clr [ %fp + -8 ] if ( maximum_waiters == 0 ) 200ef24: 02 80 00 1a be 200ef8c 200ef28: b0 10 20 0a mov 0xa, %i0 200ef2c: 03 00 80 83 sethi %hi(0x2020c00), %g1 200ef30: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 2020eb0 <_Thread_Dispatch_disable_level> return RTEMS_INVALID_NUMBER; } else the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE; the_attributes.maximum_count = maximum_waiters; 200ef34: f4 27 bf fc st %i2, [ %fp + -4 ] 200ef38: 84 00 a0 01 inc %g2 200ef3c: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ] * This function allocates a barrier control block from * the inactive chain of free barrier control blocks. */ RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void ) { return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information ); 200ef40: 25 00 80 84 sethi %hi(0x2021000), %l2 200ef44: 7f ff eb c2 call 2009e4c <_Objects_Allocate> 200ef48: 90 14 a1 60 or %l2, 0x160, %o0 ! 2021160 <_Barrier_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_barrier = _Barrier_Allocate(); if ( !the_barrier ) { 200ef4c: a2 92 20 00 orcc %o0, 0, %l1 200ef50: 02 80 00 1e be 200efc8 <== NEVER TAKEN 200ef54: 90 04 60 14 add %l1, 0x14, %o0 return RTEMS_TOO_MANY; } the_barrier->attribute_set = attribute_set; _CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes ); 200ef58: 92 07 bf f8 add %fp, -8, %o1 200ef5c: 40 00 02 43 call 200f868 <_CORE_barrier_Initialize> 200ef60: f2 24 60 10 st %i1, [ %l1 + 0x10 ] 200ef64: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 *id = the_barrier->Object.id; _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 200ef68: a4 14 a1 60 or %l2, 0x160, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200ef6c: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 200ef70: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200ef74: 85 28 a0 02 sll %g2, 2, %g2 200ef78: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200ef7c: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Barrier_Information, &the_barrier->Object, (Objects_Name) name ); *id = the_barrier->Object.id; 200ef80: c2 26 c0 00 st %g1, [ %i3 ] _Thread_Enable_dispatch(); 200ef84: 7f ff f0 2c call 200b034 <_Thread_Enable_dispatch> 200ef88: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; } 200ef8c: 81 c7 e0 08 ret 200ef90: 81 e8 00 00 restore if ( _Attributes_Is_barrier_automatic( attribute_set ) ) { the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE; if ( maximum_waiters == 0 ) return RTEMS_INVALID_NUMBER; } else the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE; 200ef94: 82 10 20 01 mov 1, %g1 200ef98: c2 27 bf f8 st %g1, [ %fp + -8 ] 200ef9c: 03 00 80 83 sethi %hi(0x2020c00), %g1 200efa0: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 2020eb0 <_Thread_Dispatch_disable_level> the_attributes.maximum_count = maximum_waiters; 200efa4: f4 27 bf fc st %i2, [ %fp + -4 ] 200efa8: 84 00 a0 01 inc %g2 200efac: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ] 200efb0: 25 00 80 84 sethi %hi(0x2021000), %l2 200efb4: 7f ff eb a6 call 2009e4c <_Objects_Allocate> 200efb8: 90 14 a1 60 or %l2, 0x160, %o0 ! 2021160 <_Barrier_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_barrier = _Barrier_Allocate(); if ( !the_barrier ) { 200efbc: a2 92 20 00 orcc %o0, 0, %l1 200efc0: 12 bf ff e6 bne 200ef58 200efc4: 90 04 60 14 add %l1, 0x14, %o0 _Thread_Enable_dispatch(); 200efc8: 7f ff f0 1b call 200b034 <_Thread_Enable_dispatch> 200efcc: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 200efd0: 81 c7 e0 08 ret 200efd4: 81 e8 00 00 restore =============================================================================== 02007300 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 2007300: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); 2007304: 90 10 00 18 mov %i0, %o0 2007308: 40 00 01 65 call 200789c <_Chain_Append_with_empty_check> 200730c: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { 2007310: 80 8a 20 ff btst 0xff, %o0 2007314: 12 80 00 04 bne 2007324 <== ALWAYS TAKEN 2007318: b0 10 20 00 clr %i0 sc = rtems_event_send( task, events ); } return sc; } 200731c: 81 c7 e0 08 ret 2007320: 81 e8 00 00 restore { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { sc = rtems_event_send( task, events ); 2007324: b0 10 00 1a mov %i2, %i0 2007328: 7f ff fd 61 call 20068ac 200732c: 93 e8 00 1b restore %g0, %i3, %o1 =============================================================================== 02007368 : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 2007368: 9d e3 bf 98 save %sp, -104, %sp 200736c: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2007370: a4 07 bf fc add %fp, -4, %l2 */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2007374: 40 00 01 89 call 2007998 <_Chain_Get> 2007378: 90 10 00 10 mov %l0, %o0 200737c: 92 10 20 00 clr %o1 2007380: a2 10 00 08 mov %o0, %l1 2007384: 94 10 00 1a mov %i2, %o2 2007388: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 200738c: 80 a4 60 00 cmp %l1, 0 2007390: 12 80 00 0a bne 20073b8 2007394: 96 10 00 12 mov %l2, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 2007398: 7f ff fc e2 call 2006720 200739c: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 20073a0: 80 a2 20 00 cmp %o0, 0 20073a4: 02 bf ff f4 be 2007374 <== NEVER TAKEN 20073a8: b0 10 00 08 mov %o0, %i0 timeout, &out ); } *node_ptr = node; 20073ac: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 20073b0: 81 c7 e0 08 ret 20073b4: 81 e8 00 00 restore rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 20073b8: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 20073bc: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 20073c0: 81 c7 e0 08 ret 20073c4: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 020073c8 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 20073c8: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); 20073cc: 90 10 00 18 mov %i0, %o0 20073d0: 40 00 01 90 call 2007a10 <_Chain_Prepend_with_empty_check> 20073d4: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { 20073d8: 80 8a 20 ff btst 0xff, %o0 20073dc: 12 80 00 04 bne 20073ec <== ALWAYS TAKEN 20073e0: b0 10 20 00 clr %i0 sc = rtems_event_send( task, events ); } return sc; } 20073e4: 81 c7 e0 08 ret 20073e8: 81 e8 00 00 restore { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { sc = rtems_event_send( task, events ); 20073ec: b0 10 00 1a mov %i2, %i0 20073f0: 7f ff fd 2f call 20068ac 20073f4: 93 e8 00 1b restore %g0, %i3, %o1 =============================================================================== 020080a4 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 20080a4: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 20080a8: 03 00 80 68 sethi %hi(0x201a000), %g1 20080ac: c4 00 62 f4 ld [ %g1 + 0x2f4 ], %g2 ! 201a2f4 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 20080b0: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 20080b4: 03 00 80 68 sethi %hi(0x201a000), %g1 if ( rtems_interrupt_is_in_progress() ) 20080b8: 80 a0 a0 00 cmp %g2, 0 20080bc: 12 80 00 42 bne 20081c4 20080c0: c8 00 63 84 ld [ %g1 + 0x384 ], %g4 return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 20080c4: 80 a6 a0 00 cmp %i2, 0 20080c8: 02 80 00 50 be 2008208 20080cc: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 20080d0: 80 a6 60 00 cmp %i1, 0 20080d4: 02 80 00 4d be 2008208 20080d8: c8 26 80 00 st %g4, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20080dc: c4 06 40 00 ld [ %i1 ], %g2 20080e0: 80 a0 a0 00 cmp %g2, 0 20080e4: 22 80 00 46 be,a 20081fc 20080e8: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 20080ec: 80 a1 00 18 cmp %g4, %i0 20080f0: 08 80 00 33 bleu 20081bc 20080f4: 01 00 00 00 nop rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 20080f8: 05 00 80 68 sethi %hi(0x201a000), %g2 20080fc: c8 00 a0 90 ld [ %g2 + 0x90 ], %g4 ! 201a090 <_Thread_Dispatch_disable_level> 2008100: 88 01 20 01 inc %g4 2008104: c8 20 a0 90 st %g4, [ %g2 + 0x90 ] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 2008108: 80 a6 20 00 cmp %i0, 0 200810c: 12 80 00 30 bne 20081cc 2008110: 1b 00 80 68 sethi %hi(0x201a000), %o5 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2008114: c8 00 63 84 ld [ %g1 + 0x384 ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2008118: 80 a1 20 00 cmp %g4, 0 200811c: 22 80 00 3d be,a 2008210 <== NEVER TAKEN 2008120: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED 2008124: 10 80 00 05 b 2008138 2008128: c2 03 63 88 ld [ %o5 + 0x388 ], %g1 200812c: 80 a1 00 18 cmp %g4, %i0 2008130: 08 80 00 0a bleu 2008158 2008134: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2008138: c4 00 40 00 ld [ %g1 ], %g2 200813c: 80 a0 a0 00 cmp %g2, 0 2008140: 32 bf ff fb bne,a 200812c 2008144: b0 06 20 01 inc %i0 2008148: c4 00 60 04 ld [ %g1 + 4 ], %g2 200814c: 80 a0 a0 00 cmp %g2, 0 2008150: 32 bf ff f7 bne,a 200812c 2008154: b0 06 20 01 inc %i0 } /* Assigns invalid value in case of failure */ *major = m; if ( m != n ) 2008158: 80 a1 00 18 cmp %g4, %i0 200815c: 02 80 00 2d be 2008210 2008160: f0 26 80 00 st %i0, [ %i2 ] 2008164: 83 2e 20 03 sll %i0, 3, %g1 2008168: 85 2e 20 05 sll %i0, 5, %g2 200816c: 84 20 80 01 sub %g2, %g1, %g2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2008170: c8 03 63 88 ld [ %o5 + 0x388 ], %g4 2008174: da 00 c0 00 ld [ %g3 ], %o5 2008178: 82 01 00 02 add %g4, %g2, %g1 200817c: da 21 00 02 st %o5, [ %g4 + %g2 ] 2008180: c4 00 e0 04 ld [ %g3 + 4 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2008184: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2008188: c4 20 60 04 st %g2, [ %g1 + 4 ] 200818c: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2008190: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2008194: c4 20 60 08 st %g2, [ %g1 + 8 ] 2008198: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 200819c: c4 20 60 0c st %g2, [ %g1 + 0xc ] 20081a0: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 20081a4: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 20081a8: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 20081ac: 40 00 07 e9 call 200a150 <_Thread_Enable_dispatch> 20081b0: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 20081b4: 40 00 21 f2 call 201097c 20081b8: 81 e8 00 00 restore } 20081bc: 81 c7 e0 08 ret 20081c0: 91 e8 20 0a restore %g0, 0xa, %o0 ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 20081c4: 81 c7 e0 08 ret 20081c8: 91 e8 20 12 restore %g0, 0x12, %o0 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 20081cc: c2 03 63 88 ld [ %o5 + 0x388 ], %g1 20081d0: 89 2e 20 05 sll %i0, 5, %g4 20081d4: 85 2e 20 03 sll %i0, 3, %g2 20081d8: 84 21 00 02 sub %g4, %g2, %g2 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20081dc: c8 00 40 02 ld [ %g1 + %g2 ], %g4 20081e0: 80 a1 20 00 cmp %g4, 0 20081e4: 02 80 00 0f be 2008220 20081e8: 82 00 40 02 add %g1, %g2, %g1 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 20081ec: 40 00 07 d9 call 200a150 <_Thread_Enable_dispatch> 20081f0: b0 10 20 0c mov 0xc, %i0 return RTEMS_RESOURCE_IN_USE; 20081f4: 81 c7 e0 08 ret 20081f8: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20081fc: 80 a0 a0 00 cmp %g2, 0 2008200: 32 bf ff bc bne,a 20080f0 2008204: 80 a1 00 18 cmp %g4, %i0 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 2008208: 81 c7 e0 08 ret 200820c: 91 e8 20 09 restore %g0, 9, %o0 if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 2008210: 40 00 07 d0 call 200a150 <_Thread_Enable_dispatch> 2008214: b0 10 20 05 mov 5, %i0 return sc; 2008218: 81 c7 e0 08 ret 200821c: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2008220: c2 00 60 04 ld [ %g1 + 4 ], %g1 2008224: 80 a0 60 00 cmp %g1, 0 2008228: 12 bf ff f1 bne 20081ec 200822c: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 2008230: 10 bf ff d0 b 2008170 2008234: f0 26 80 00 st %i0, [ %i2 ] =============================================================================== 02009794 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009794: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009798: 80 a6 20 00 cmp %i0, 0 200979c: 02 80 00 23 be 2009828 <== NEVER TAKEN 20097a0: 25 00 80 9a sethi %hi(0x2026800), %l2 20097a4: a4 14 a0 cc or %l2, 0xcc, %l2 ! 20268cc <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 20097a8: a6 04 a0 0c add %l2, 0xc, %l3 if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { #if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) 20097ac: c2 04 80 00 ld [ %l2 ], %g1 20097b0: 80 a0 60 00 cmp %g1, 0 20097b4: 22 80 00 1a be,a 200981c 20097b8: a4 04 a0 04 add %l2, 4, %l2 continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 20097bc: e2 00 60 04 ld [ %g1 + 4 ], %l1 if ( !information ) 20097c0: 80 a4 60 00 cmp %l1, 0 20097c4: 22 80 00 16 be,a 200981c 20097c8: a4 04 a0 04 add %l2, 4, %l2 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 20097cc: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1 20097d0: 84 90 60 00 orcc %g1, 0, %g2 20097d4: 22 80 00 12 be,a 200981c <== NEVER TAKEN 20097d8: a4 04 a0 04 add %l2, 4, %l2 20097dc: a0 10 20 01 mov 1, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 20097e0: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 20097e4: 83 2c 20 02 sll %l0, 2, %g1 20097e8: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 if ( !the_thread ) 20097ec: 90 90 60 00 orcc %g1, 0, %o0 20097f0: 02 80 00 05 be 2009804 20097f4: a0 04 20 01 inc %l0 continue; (*routine)(the_thread); 20097f8: 9f c6 00 00 call %i0 20097fc: 01 00 00 00 nop 2009800: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 2009804: 83 28 a0 10 sll %g2, 0x10, %g1 2009808: 83 30 60 10 srl %g1, 0x10, %g1 200980c: 80 a0 40 10 cmp %g1, %l0 2009810: 3a bf ff f5 bcc,a 20097e4 2009814: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 2009818: a4 04 a0 04 add %l2, 4, %l2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 200981c: 80 a4 80 13 cmp %l2, %l3 2009820: 32 bf ff e4 bne,a 20097b0 2009824: c2 04 80 00 ld [ %l2 ], %g1 2009828: 81 c7 e0 08 ret 200982c: 81 e8 00 00 restore =============================================================================== 020082f0 : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 20082f0: 9d e3 bf a0 save %sp, -96, %sp 20082f4: 90 10 00 18 mov %i0, %o0 int i; /* * Validate parameters and look up information structure. */ if ( !info ) 20082f8: 80 a6 a0 00 cmp %i2, 0 20082fc: 02 80 00 21 be 2008380 2008300: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 2008304: 93 2e 60 10 sll %i1, 0x10, %o1 if ( !obj_info ) return RTEMS_INVALID_NUMBER; 2008308: b0 10 20 0a mov 0xa, %i0 * Validate parameters and look up information structure. */ if ( !info ) return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 200830c: 40 00 07 7d call 200a100 <_Objects_Get_information> 2008310: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 2008314: 80 a2 20 00 cmp %o0, 0 2008318: 02 80 00 1a be 2008380 200831c: 01 00 00 00 nop /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 2008320: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 2008324: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2008328: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 200832c: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 2008330: c4 26 a0 04 st %g2, [ %i2 + 4 ] return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2008334: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 2008338: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; 200833c: c8 26 a0 08 st %g4, [ %i2 + 8 ] for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008340: 80 a1 20 00 cmp %g4, 0 2008344: 02 80 00 0d be 2008378 <== NEVER TAKEN 2008348: 84 10 20 00 clr %g2 200834c: da 02 20 1c ld [ %o0 + 0x1c ], %o5 2008350: 86 10 20 01 mov 1, %g3 2008354: 82 10 20 01 mov 1, %g1 if ( !obj_info->local_table[i] ) 2008358: 87 28 e0 02 sll %g3, 2, %g3 200835c: c6 03 40 03 ld [ %o5 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008360: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 2008364: 80 a0 00 03 cmp %g0, %g3 2008368: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 200836c: 80 a1 00 01 cmp %g4, %g1 2008370: 1a bf ff fa bcc 2008358 2008374: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 2008378: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 200837c: b0 10 20 00 clr %i0 } 2008380: 81 c7 e0 08 ret 2008384: 81 e8 00 00 restore =============================================================================== 0201417c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 201417c: 9d e3 bf a0 save %sp, -96, %sp 2014180: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014184: 80 a4 20 00 cmp %l0, 0 2014188: 02 80 00 34 be 2014258 201418c: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014190: 80 a6 60 00 cmp %i1, 0 2014194: 02 80 00 31 be 2014258 2014198: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 201419c: 80 a7 60 00 cmp %i5, 0 20141a0: 02 80 00 2e be 2014258 <== NEVER TAKEN 20141a4: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20141a8: 02 80 00 2e be 2014260 20141ac: 80 a6 a0 00 cmp %i2, 0 20141b0: 02 80 00 2c be 2014260 20141b4: 80 a6 80 1b cmp %i2, %i3 20141b8: 0a 80 00 28 bcs 2014258 20141bc: b0 10 20 08 mov 8, %i0 20141c0: 80 8e e0 07 btst 7, %i3 20141c4: 12 80 00 25 bne 2014258 20141c8: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 20141cc: 12 80 00 23 bne 2014258 20141d0: b0 10 20 09 mov 9, %i0 20141d4: 03 00 80 f1 sethi %hi(0x203c400), %g1 20141d8: c4 00 61 d0 ld [ %g1 + 0x1d0 ], %g2 ! 203c5d0 <_Thread_Dispatch_disable_level> 20141dc: 84 00 a0 01 inc %g2 20141e0: c4 20 61 d0 st %g2, [ %g1 + 0x1d0 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 20141e4: 25 00 80 f0 sethi %hi(0x203c000), %l2 20141e8: 40 00 13 12 call 2018e30 <_Objects_Allocate> 20141ec: 90 14 a3 e4 or %l2, 0x3e4, %o0 ! 203c3e4 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 20141f0: a2 92 20 00 orcc %o0, 0, %l1 20141f4: 02 80 00 1d be 2014268 20141f8: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 20141fc: f8 24 60 1c st %i4, [ %l1 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2014200: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 2014204: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 2014208: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 201420c: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014210: 40 00 61 6c call 202c7c0 <.udiv> 2014214: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014218: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 201421c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014220: 96 10 00 1b mov %i3, %o3 2014224: b8 04 60 24 add %l1, 0x24, %i4 2014228: 40 00 0c cf call 2017564 <_Chain_Initialize> 201422c: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014230: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014234: a4 14 a3 e4 or %l2, 0x3e4, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014238: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 201423c: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014240: 85 28 a0 02 sll %g2, 2, %g2 2014244: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014248: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 201424c: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2014250: 40 00 17 a4 call 201a0e0 <_Thread_Enable_dispatch> 2014254: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2014258: 81 c7 e0 08 ret 201425c: 81 e8 00 00 restore } 2014260: 81 c7 e0 08 ret 2014264: 91 e8 20 08 restore %g0, 8, %o0 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2014268: 40 00 17 9e call 201a0e0 <_Thread_Enable_dispatch> 201426c: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 2014270: 81 c7 e0 08 ret 2014274: 81 e8 00 00 restore =============================================================================== 0200789c : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 200789c: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 20078a0: 11 00 80 78 sethi %hi(0x201e000), %o0 20078a4: 92 10 00 18 mov %i0, %o1 20078a8: 90 12 22 04 or %o0, 0x204, %o0 20078ac: 40 00 09 7b call 2009e98 <_Objects_Get> 20078b0: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20078b4: c2 07 bf fc ld [ %fp + -4 ], %g1 20078b8: 80 a0 60 00 cmp %g1, 0 20078bc: 02 80 00 04 be 20078cc 20078c0: a0 10 00 08 mov %o0, %l0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20078c4: 81 c7 e0 08 ret 20078c8: 91 e8 20 04 restore %g0, 4, %o0 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 20078cc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 20078d0: 23 00 80 79 sethi %hi(0x201e400), %l1 20078d4: a2 14 61 cc or %l1, 0x1cc, %l1 ! 201e5cc <_Per_CPU_Information> 20078d8: c2 04 60 0c ld [ %l1 + 0xc ], %g1 20078dc: 80 a0 80 01 cmp %g2, %g1 20078e0: 02 80 00 06 be 20078f8 20078e4: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 20078e8: 40 00 0c b1 call 200abac <_Thread_Enable_dispatch> 20078ec: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 20078f0: 81 c7 e0 08 ret 20078f4: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 20078f8: 12 80 00 0f bne 2007934 20078fc: 01 00 00 00 nop switch ( the_period->state ) { 2007900: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007904: 80 a0 60 04 cmp %g1, 4 2007908: 08 80 00 06 bleu 2007920 <== ALWAYS TAKEN 200790c: b0 10 20 00 clr %i0 the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007910: 40 00 0c a7 call 200abac <_Thread_Enable_dispatch> 2007914: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007918: 81 c7 e0 08 ret 200791c: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { switch ( the_period->state ) { 2007920: 83 28 60 02 sll %g1, 2, %g1 2007924: 05 00 80 70 sethi %hi(0x201c000), %g2 2007928: 84 10 a2 74 or %g2, 0x274, %g2 ! 201c274 200792c: 10 bf ff f9 b 2007910 2007930: f0 00 80 01 ld [ %g2 + %g1 ], %i0 } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 2007934: 7f ff ee 00 call 2003134 2007938: 01 00 00 00 nop 200793c: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 2007940: e4 04 20 38 ld [ %l0 + 0x38 ], %l2 2007944: 80 a4 a0 00 cmp %l2, 0 2007948: 02 80 00 14 be 2007998 200794c: 80 a4 a0 02 cmp %l2, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007950: 02 80 00 29 be 20079f4 2007954: 80 a4 a0 04 cmp %l2, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 2007958: 12 bf ff e6 bne 20078f0 <== NEVER TAKEN 200795c: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2007960: 7f ff ff 8f call 200779c <_Rate_monotonic_Update_statistics> 2007964: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 2007968: 7f ff ed f7 call 2003144 200796c: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007970: 82 10 20 02 mov 2, %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007974: 92 04 20 10 add %l0, 0x10, %o1 2007978: 11 00 80 79 sethi %hi(0x201e400), %o0 the_period->next_length = length; 200797c: f2 24 20 3c st %i1, [ %l0 + 0x3c ] 2007980: 90 12 20 54 or %o0, 0x54, %o0 */ _Rate_monotonic_Update_statistics( the_period ); _ISR_Enable( level ); the_period->state = RATE_MONOTONIC_ACTIVE; 2007984: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007988: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200798c: 40 00 11 15 call 200bde0 <_Watchdog_Insert> 2007990: b0 10 20 06 mov 6, %i0 2007994: 30 bf ff df b,a 2007910 return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 2007998: 7f ff ed eb call 2003144 200799c: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 20079a0: 7f ff ff 63 call 200772c <_Rate_monotonic_Initiate_statistics> 20079a4: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20079a8: 82 10 20 02 mov 2, %g1 20079ac: 92 04 20 10 add %l0, 0x10, %o1 20079b0: c2 24 20 38 st %g1, [ %l0 + 0x38 ] 20079b4: 11 00 80 79 sethi %hi(0x201e400), %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20079b8: 03 00 80 1f sethi %hi(0x2007c00), %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20079bc: 90 12 20 54 or %o0, 0x54, %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20079c0: 82 10 61 70 or %g1, 0x170, %g1 the_watchdog->id = id; 20079c4: f0 24 20 30 st %i0, [ %l0 + 0x30 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20079c8: c2 24 20 2c st %g1, [ %l0 + 0x2c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20079cc: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 20079d0: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 20079d4: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20079d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20079dc: 40 00 11 01 call 200bde0 <_Watchdog_Insert> 20079e0: b0 10 20 00 clr %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20079e4: 40 00 0c 72 call 200abac <_Thread_Enable_dispatch> 20079e8: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20079ec: 81 c7 e0 08 ret 20079f0: 81 e8 00 00 restore if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 20079f4: 7f ff ff 6a call 200779c <_Rate_monotonic_Update_statistics> 20079f8: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20079fc: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007a00: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007a04: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007a08: 7f ff ed cf call 2003144 2007a0c: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007a10: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007a14: c4 04 20 08 ld [ %l0 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007a18: 90 10 00 01 mov %g1, %o0 2007a1c: 13 00 00 10 sethi %hi(0x4000), %o1 2007a20: 40 00 0e dd call 200b594 <_Thread_Set_state> 2007a24: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007a28: 7f ff ed c3 call 2003134 2007a2c: 01 00 00 00 nop local_state = the_period->state; 2007a30: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 2007a34: e4 24 20 38 st %l2, [ %l0 + 0x38 ] _ISR_Enable( level ); 2007a38: 7f ff ed c3 call 2003144 2007a3c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007a40: 80 a4 e0 03 cmp %l3, 3 2007a44: 22 80 00 06 be,a 2007a5c 2007a48: d0 04 60 0c ld [ %l1 + 0xc ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 2007a4c: 40 00 0c 58 call 200abac <_Thread_Enable_dispatch> 2007a50: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2007a54: 81 c7 e0 08 ret 2007a58: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007a5c: 40 00 0b 65 call 200a7f0 <_Thread_Clear_state> 2007a60: 13 00 00 10 sethi %hi(0x4000), %o1 2007a64: 30 bf ff fa b,a 2007a4c =============================================================================== 02007a68 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007a68: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007a6c: 80 a6 60 00 cmp %i1, 0 2007a70: 02 80 00 4c be 2007ba0 <== NEVER TAKEN 2007a74: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007a78: 13 00 80 70 sethi %hi(0x201c000), %o1 2007a7c: 9f c6 40 00 call %i1 2007a80: 92 12 62 88 or %o1, 0x288, %o1 ! 201c288 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007a84: 90 10 00 18 mov %i0, %o0 2007a88: 13 00 80 70 sethi %hi(0x201c000), %o1 2007a8c: 9f c6 40 00 call %i1 2007a90: 92 12 62 a8 or %o1, 0x2a8, %o1 ! 201c2a8 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007a94: 90 10 00 18 mov %i0, %o0 2007a98: 13 00 80 70 sethi %hi(0x201c000), %o1 2007a9c: 9f c6 40 00 call %i1 2007aa0: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 201c2d0 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007aa4: 90 10 00 18 mov %i0, %o0 2007aa8: 13 00 80 70 sethi %hi(0x201c000), %o1 2007aac: 9f c6 40 00 call %i1 2007ab0: 92 12 62 f8 or %o1, 0x2f8, %o1 ! 201c2f8 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007ab4: 90 10 00 18 mov %i0, %o0 2007ab8: 13 00 80 70 sethi %hi(0x201c000), %o1 2007abc: 9f c6 40 00 call %i1 2007ac0: 92 12 63 48 or %o1, 0x348, %o1 ! 201c348 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007ac4: 23 00 80 78 sethi %hi(0x201e000), %l1 2007ac8: a2 14 62 04 or %l1, 0x204, %l1 ! 201e204 <_Rate_monotonic_Information> 2007acc: e0 04 60 08 ld [ %l1 + 8 ], %l0 2007ad0: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007ad4: 80 a4 00 01 cmp %l0, %g1 2007ad8: 18 80 00 32 bgu 2007ba0 <== NEVER TAKEN 2007adc: 2f 00 80 70 sethi %hi(0x201c000), %l7 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007ae0: 39 00 80 70 sethi %hi(0x201c000), %i4 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007ae4: 2b 00 80 6d sethi %hi(0x201b400), %l5 2007ae8: a4 07 bf a0 add %fp, -96, %l2 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007aec: ba 07 bf d8 add %fp, -40, %i5 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007af0: a6 07 bf f8 add %fp, -8, %l3 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007af4: ae 15 e3 98 or %l7, 0x398, %l7 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 2007af8: ac 07 bf b8 add %fp, -72, %l6 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007afc: a8 07 bf f0 add %fp, -16, %l4 (*print)( context, 2007b00: b8 17 23 b0 or %i4, 0x3b0, %i4 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 2007b04: b4 07 bf d0 add %fp, -48, %i2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007b08: 10 80 00 06 b 2007b20 2007b0c: aa 15 61 98 or %l5, 0x198, %l5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007b10: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b14: 80 a0 40 10 cmp %g1, %l0 2007b18: 0a 80 00 22 bcs 2007ba0 2007b1c: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007b20: 90 10 00 10 mov %l0, %o0 2007b24: 40 00 19 ad call 200e1d8 2007b28: 92 10 00 12 mov %l2, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007b2c: 80 a2 20 00 cmp %o0, 0 2007b30: 32 bf ff f8 bne,a 2007b10 2007b34: c2 04 60 0c ld [ %l1 + 0xc ], %g1 #if defined(RTEMS_DEBUG) status = rtems_rate_monotonic_get_status( id, &the_status ); if ( status != RTEMS_SUCCESSFUL ) continue; #else (void) rtems_rate_monotonic_get_status( id, &the_status ); 2007b38: 92 10 00 1d mov %i5, %o1 2007b3c: 40 00 19 d6 call 200e294 2007b40: 90 10 00 10 mov %l0, %o0 #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007b44: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007b48: 94 10 00 13 mov %l3, %o2 2007b4c: 40 00 00 b9 call 2007e30 2007b50: 92 10 20 05 mov 5, %o1 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007b54: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007b58: 92 10 00 17 mov %l7, %o1 2007b5c: 94 10 00 10 mov %l0, %o2 2007b60: 90 10 00 18 mov %i0, %o0 2007b64: 9f c6 40 00 call %i1 2007b68: 96 10 00 13 mov %l3, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007b6c: c2 07 bf a0 ld [ %fp + -96 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007b70: 94 10 00 14 mov %l4, %o2 2007b74: 90 10 00 16 mov %l6, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007b78: 80 a0 60 00 cmp %g1, 0 2007b7c: 12 80 00 0b bne 2007ba8 2007b80: 92 10 00 15 mov %l5, %o1 (*print)( context, "\n" ); 2007b84: 9f c6 40 00 call %i1 2007b88: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b8c: c2 04 60 0c ld [ %l1 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007b90: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b94: 80 a0 40 10 cmp %g1, %l0 2007b98: 1a bf ff e3 bcc 2007b24 <== ALWAYS TAKEN 2007b9c: 90 10 00 10 mov %l0, %o0 2007ba0: 81 c7 e0 08 ret 2007ba4: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007ba8: 40 00 0f 52 call 200b8f0 <_Timespec_Divide_by_integer> 2007bac: 92 10 00 01 mov %g1, %o1 (*print)( context, 2007bb0: d0 07 bf ac ld [ %fp + -84 ], %o0 2007bb4: 40 00 46 7a call 201959c <.div> 2007bb8: 92 10 23 e8 mov 0x3e8, %o1 2007bbc: 96 10 00 08 mov %o0, %o3 2007bc0: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007bc4: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007bc8: 40 00 46 75 call 201959c <.div> 2007bcc: 92 10 23 e8 mov 0x3e8, %o1 2007bd0: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007bd4: b6 10 00 08 mov %o0, %i3 2007bd8: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007bdc: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007be0: 40 00 46 6f call 201959c <.div> 2007be4: 92 10 23 e8 mov 0x3e8, %o1 2007be8: d8 07 bf b0 ld [ %fp + -80 ], %o4 2007bec: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007bf0: d4 07 bf a8 ld [ %fp + -88 ], %o2 2007bf4: 9a 10 00 1b mov %i3, %o5 2007bf8: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007bfc: 92 10 00 1c mov %i4, %o1 2007c00: 9f c6 40 00 call %i1 2007c04: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007c08: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007c0c: 94 10 00 14 mov %l4, %o2 2007c10: 40 00 0f 38 call 200b8f0 <_Timespec_Divide_by_integer> 2007c14: 90 10 00 1a mov %i2, %o0 (*print)( context, 2007c18: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007c1c: 40 00 46 60 call 201959c <.div> 2007c20: 92 10 23 e8 mov 0x3e8, %o1 2007c24: 96 10 00 08 mov %o0, %o3 2007c28: d0 07 bf cc ld [ %fp + -52 ], %o0 2007c2c: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007c30: 40 00 46 5b call 201959c <.div> 2007c34: 92 10 23 e8 mov 0x3e8, %o1 2007c38: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007c3c: b6 10 00 08 mov %o0, %i3 2007c40: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007c44: 92 10 23 e8 mov 0x3e8, %o1 2007c48: 40 00 46 55 call 201959c <.div> 2007c4c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007c50: d4 07 bf c0 ld [ %fp + -64 ], %o2 2007c54: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007c58: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007c5c: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007c60: 13 00 80 70 sethi %hi(0x201c000), %o1 2007c64: 90 10 00 18 mov %i0, %o0 2007c68: 92 12 63 d0 or %o1, 0x3d0, %o1 2007c6c: 9f c6 40 00 call %i1 2007c70: 9a 10 00 1b mov %i3, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007c74: 10 bf ff a7 b 2007b10 2007c78: c2 04 60 0c ld [ %l1 + 0xc ], %g1 =============================================================================== 02007c98 : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 2007c98: 9d e3 bf a0 save %sp, -96, %sp rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 2007c9c: 03 00 80 78 sethi %hi(0x201e000), %g1 2007ca0: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201e370 <_Thread_Dispatch_disable_level> 2007ca4: 84 00 a0 01 inc %g2 2007ca8: c4 20 63 70 st %g2, [ %g1 + 0x370 ] /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007cac: 23 00 80 78 sethi %hi(0x201e000), %l1 2007cb0: a2 14 62 04 or %l1, 0x204, %l1 ! 201e204 <_Rate_monotonic_Information> 2007cb4: e0 04 60 08 ld [ %l1 + 8 ], %l0 2007cb8: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007cbc: 80 a4 00 01 cmp %l0, %g1 2007cc0: 18 80 00 09 bgu 2007ce4 <== NEVER TAKEN 2007cc4: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { (void) rtems_rate_monotonic_reset_statistics( id ); 2007cc8: 40 00 00 0a call 2007cf0 2007ccc: 90 10 00 10 mov %l0, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007cd0: c2 04 60 0c ld [ %l1 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007cd4: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007cd8: 80 a0 40 10 cmp %g1, %l0 2007cdc: 1a bf ff fb bcc 2007cc8 2007ce0: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2007ce4: 40 00 0b b2 call 200abac <_Thread_Enable_dispatch> 2007ce8: 81 e8 00 00 restore =============================================================================== 0201579c : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 201579c: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20157a0: 80 a6 60 00 cmp %i1, 0 20157a4: 12 80 00 04 bne 20157b4 20157a8: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20157ac: 81 c7 e0 08 ret 20157b0: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20157b4: 90 10 00 18 mov %i0, %o0 20157b8: 40 00 12 58 call 201a118 <_Thread_Get> 20157bc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20157c0: c2 07 bf fc ld [ %fp + -4 ], %g1 20157c4: 80 a0 60 00 cmp %g1, 0 20157c8: 02 80 00 05 be 20157dc 20157cc: a2 10 00 08 mov %o0, %l1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20157d0: 82 10 20 04 mov 4, %g1 } 20157d4: 81 c7 e0 08 ret 20157d8: 91 e8 00 01 restore %g0, %g1, %o0 the_thread = _Thread_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20157dc: e0 02 21 58 ld [ %o0 + 0x158 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20157e0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20157e4: 80 a0 60 00 cmp %g1, 0 20157e8: 02 80 00 25 be 201587c 20157ec: 01 00 00 00 nop if ( asr->is_enabled ) { 20157f0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20157f4: 80 a0 60 00 cmp %g1, 0 20157f8: 02 80 00 15 be 201584c 20157fc: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015800: 7f ff e6 9b call 200f26c 2015804: 01 00 00 00 nop *signal_set |= signals; 2015808: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 201580c: b2 10 40 19 or %g1, %i1, %i1 2015810: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 2015814: 7f ff e6 9a call 200f27c 2015818: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201581c: 03 00 80 f2 sethi %hi(0x203c800), %g1 2015820: 82 10 60 34 or %g1, 0x34, %g1 ! 203c834 <_Per_CPU_Information> 2015824: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015828: 80 a0 a0 00 cmp %g2, 0 201582c: 02 80 00 0f be 2015868 2015830: 01 00 00 00 nop 2015834: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015838: 80 a4 40 02 cmp %l1, %g2 201583c: 12 80 00 0b bne 2015868 <== NEVER TAKEN 2015840: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2015844: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2015848: 30 80 00 08 b,a 2015868 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201584c: 7f ff e6 88 call 200f26c 2015850: 01 00 00 00 nop *signal_set |= signals; 2015854: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2015858: b2 10 40 19 or %g1, %i1, %i1 201585c: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 2015860: 7f ff e6 87 call 200f27c 2015864: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015868: 40 00 12 1e call 201a0e0 <_Thread_Enable_dispatch> 201586c: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2015870: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015874: 81 c7 e0 08 ret 2015878: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 201587c: 40 00 12 19 call 201a0e0 <_Thread_Enable_dispatch> 2015880: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2015884: 10 bf ff ca b 20157ac 2015888: 82 10 20 0b mov 0xb, %g1 ! b =============================================================================== 0200e3e4 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200e3e4: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200e3e8: 80 a6 a0 00 cmp %i2, 0 200e3ec: 02 80 00 43 be 200e4f8 200e3f0: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200e3f4: 27 00 80 58 sethi %hi(0x2016000), %l3 200e3f8: a6 14 e0 9c or %l3, 0x9c, %l3 ! 201609c <_Per_CPU_Information> 200e3fc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e400: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e404: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e408: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200e40c: e2 04 21 58 ld [ %l0 + 0x158 ], %l1 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e410: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e414: 80 a0 60 00 cmp %g1, 0 200e418: 12 80 00 3a bne 200e500 200e41c: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e420: c2 0c 60 08 ldub [ %l1 + 8 ], %g1 200e424: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e428: 7f ff f0 c6 call 200a740 <_CPU_ISR_Get_level> 200e42c: a8 60 3f ff subx %g0, -1, %l4 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e430: a9 2d 20 0a sll %l4, 0xa, %l4 200e434: a8 15 00 08 or %l4, %o0, %l4 old_mode |= _ISR_Get_level(); 200e438: a4 15 00 12 or %l4, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e43c: 80 8e 61 00 btst 0x100, %i1 200e440: 02 80 00 06 be 200e458 200e444: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e448: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200e44c: 80 a0 00 01 cmp %g0, %g1 200e450: 82 60 3f ff subx %g0, -1, %g1 200e454: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200e458: 80 8e 62 00 btst 0x200, %i1 200e45c: 02 80 00 0b be 200e488 200e460: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200e464: 80 8e 22 00 btst 0x200, %i0 200e468: 22 80 00 07 be,a 200e484 200e46c: c0 24 20 7c clr [ %l0 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e470: 03 00 80 57 sethi %hi(0x2015c00), %g1 200e474: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 2015da4 <_Thread_Ticks_per_timeslice> 200e478: c2 24 20 78 st %g1, [ %l0 + 0x78 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200e47c: 82 10 20 01 mov 1, %g1 200e480: c2 24 20 7c st %g1, [ %l0 + 0x7c ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e484: 80 8e 60 0f btst 0xf, %i1 200e488: 12 80 00 3d bne 200e57c 200e48c: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e490: 80 8e 64 00 btst 0x400, %i1 200e494: 02 80 00 14 be 200e4e4 200e498: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e49c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200e4a0: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200e4a4: 80 a0 00 18 cmp %g0, %i0 200e4a8: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e4ac: 80 a0 80 01 cmp %g2, %g1 200e4b0: 22 80 00 0e be,a 200e4e8 200e4b4: 03 00 80 57 sethi %hi(0x2015c00), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200e4b8: 7f ff cf 77 call 2002294 200e4bc: c2 2c 60 08 stb %g1, [ %l1 + 8 ] _signals = information->signals_pending; 200e4c0: c4 04 60 18 ld [ %l1 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 200e4c4: c2 04 60 14 ld [ %l1 + 0x14 ], %g1 information->signals_posted = _signals; 200e4c8: c4 24 60 14 st %g2, [ %l1 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200e4cc: c2 24 60 18 st %g1, [ %l1 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200e4d0: 7f ff cf 75 call 20022a4 200e4d4: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200e4d8: c2 04 60 14 ld [ %l1 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200e4dc: 80 a0 00 01 cmp %g0, %g1 200e4e0: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200e4e4: 03 00 80 57 sethi %hi(0x2015c00), %g1 200e4e8: c4 00 63 bc ld [ %g1 + 0x3bc ], %g2 ! 2015fbc <_System_state_Current> 200e4ec: 80 a0 a0 03 cmp %g2, 3 200e4f0: 02 80 00 11 be 200e534 <== ALWAYS TAKEN 200e4f4: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 200e4f8: 81 c7 e0 08 ret 200e4fc: 91 e8 00 01 restore %g0, %g1, %o0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e500: c2 0c 60 08 ldub [ %l1 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200e504: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e508: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e50c: 7f ff f0 8d call 200a740 <_CPU_ISR_Get_level> 200e510: a8 60 3f ff subx %g0, -1, %l4 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e514: a9 2d 20 0a sll %l4, 0xa, %l4 200e518: a8 15 00 08 or %l4, %o0, %l4 old_mode |= _ISR_Get_level(); 200e51c: a4 15 00 12 or %l4, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e520: 80 8e 61 00 btst 0x100, %i1 200e524: 02 bf ff cd be 200e458 200e528: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e52c: 10 bf ff c8 b 200e44c 200e530: 82 0e 21 00 and %i0, 0x100, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 200e534: 80 88 e0 ff btst 0xff, %g3 200e538: 12 80 00 0a bne 200e560 200e53c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2 200e540: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3 200e544: 80 a0 80 03 cmp %g2, %g3 200e548: 02 bf ff ec be 200e4f8 200e54c: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e550: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200e554: 80 a0 a0 00 cmp %g2, 0 200e558: 02 bf ff e8 be 200e4f8 <== NEVER TAKEN 200e55c: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e560: 82 10 20 01 mov 1, %g1 ! 1 200e564: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e568: 7f ff e9 be call 2008c60 <_Thread_Dispatch> 200e56c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e570: 82 10 20 00 clr %g1 ! 0 } 200e574: 81 c7 e0 08 ret 200e578: 91 e8 00 01 restore %g0, %g1, %o0 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e57c: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e580: 7f ff cf 49 call 20022a4 200e584: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e588: 10 bf ff c3 b 200e494 200e58c: 80 8e 64 00 btst 0x400, %i1 =============================================================================== 0200b520 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200b520: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200b524: 80 a6 60 00 cmp %i1, 0 200b528: 02 80 00 07 be 200b544 200b52c: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200b530: 03 00 80 67 sethi %hi(0x2019c00), %g1 200b534: c2 08 62 24 ldub [ %g1 + 0x224 ], %g1 ! 2019e24 */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200b538: 80 a6 40 01 cmp %i1, %g1 200b53c: 18 80 00 1c bgu 200b5ac 200b540: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200b544: 80 a6 a0 00 cmp %i2, 0 200b548: 02 80 00 19 be 200b5ac 200b54c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200b550: 40 00 09 5b call 200dabc <_Thread_Get> 200b554: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200b558: c2 07 bf fc ld [ %fp + -4 ], %g1 200b55c: 80 a0 60 00 cmp %g1, 0 200b560: 12 80 00 13 bne 200b5ac 200b564: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200b568: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200b56c: 80 a6 60 00 cmp %i1, 0 200b570: 02 80 00 0d be 200b5a4 200b574: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200b578: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200b57c: 80 a0 60 00 cmp %g1, 0 200b580: 02 80 00 06 be 200b598 200b584: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200b588: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200b58c: 80 a6 40 01 cmp %i1, %g1 200b590: 1a 80 00 05 bcc 200b5a4 <== ALWAYS TAKEN 200b594: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200b598: 92 10 00 19 mov %i1, %o1 200b59c: 40 00 07 e4 call 200d52c <_Thread_Change_priority> 200b5a0: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200b5a4: 40 00 09 38 call 200da84 <_Thread_Enable_dispatch> 200b5a8: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200b5ac: 81 c7 e0 08 ret 200b5b0: 81 e8 00 00 restore =============================================================================== 020078e4 : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 20078e4: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 20078e8: 80 a6 60 00 cmp %i1, 0 20078ec: 02 80 00 1e be 2007964 20078f0: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 20078f4: 90 10 00 18 mov %i0, %o0 20078f8: 40 00 08 e3 call 2009c84 <_Thread_Get> 20078fc: 92 07 bf fc add %fp, -4, %o1 switch (location) { 2007900: c2 07 bf fc ld [ %fp + -4 ], %g1 2007904: 80 a0 60 00 cmp %g1, 0 2007908: 12 80 00 19 bne 200796c 200790c: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 2007910: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 2007914: 80 a0 60 00 cmp %g1, 0 2007918: 02 80 00 10 be 2007958 200791c: 01 00 00 00 nop if (tvp->ptr == ptr) { 2007920: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007924: 80 a0 80 19 cmp %g2, %i1 2007928: 32 80 00 09 bne,a 200794c 200792c: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2007930: 10 80 00 19 b 2007994 2007934: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 2007938: 80 a0 80 19 cmp %g2, %i1 200793c: 22 80 00 0e be,a 2007974 2007940: c4 02 40 00 ld [ %o1 ], %g2 2007944: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 2007948: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 200794c: 80 a2 60 00 cmp %o1, 0 2007950: 32 bf ff fa bne,a 2007938 <== ALWAYS TAKEN 2007954: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2007958: 40 00 08 bd call 2009c4c <_Thread_Enable_dispatch> 200795c: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 2007960: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007964: 81 c7 e0 08 ret 2007968: 91 e8 00 01 restore %g0, %g1, %o0 200796c: 81 c7 e0 08 ret 2007970: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 2007974: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 2007978: 40 00 00 2e call 2007a30 <_RTEMS_Tasks_Invoke_task_variable_dtor> 200797c: 01 00 00 00 nop _Thread_Enable_dispatch(); 2007980: 40 00 08 b3 call 2009c4c <_Thread_Enable_dispatch> 2007984: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2007988: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 200798c: 81 c7 e0 08 ret 2007990: 91 e8 00 01 restore %g0, %g1, %o0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2007994: 92 10 00 01 mov %g1, %o1 2007998: 10 bf ff f8 b 2007978 200799c: c4 22 21 64 st %g2, [ %o0 + 0x164 ] =============================================================================== 020079a0 : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 20079a0: 9d e3 bf 98 save %sp, -104, %sp 20079a4: 90 10 00 18 mov %i0, %o0 Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 20079a8: 80 a6 60 00 cmp %i1, 0 20079ac: 02 80 00 1b be 2007a18 20079b0: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !result ) 20079b4: 80 a6 a0 00 cmp %i2, 0 20079b8: 02 80 00 1c be 2007a28 20079bc: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 20079c0: 40 00 08 b1 call 2009c84 <_Thread_Get> 20079c4: 92 07 bf fc add %fp, -4, %o1 switch (location) { 20079c8: c2 07 bf fc ld [ %fp + -4 ], %g1 20079cc: 80 a0 60 00 cmp %g1, 0 20079d0: 12 80 00 12 bne 2007a18 20079d4: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 20079d8: c2 02 21 64 ld [ %o0 + 0x164 ], %g1 while (tvp) { 20079dc: 80 a0 60 00 cmp %g1, 0 20079e0: 32 80 00 07 bne,a 20079fc 20079e4: c4 00 60 04 ld [ %g1 + 4 ], %g2 20079e8: 30 80 00 0e b,a 2007a20 20079ec: 80 a0 60 00 cmp %g1, 0 20079f0: 02 80 00 0c be 2007a20 <== NEVER TAKEN 20079f4: 01 00 00 00 nop if (tvp->ptr == ptr) { 20079f8: c4 00 60 04 ld [ %g1 + 4 ], %g2 20079fc: 80 a0 80 19 cmp %g2, %i1 2007a00: 32 bf ff fb bne,a 20079ec 2007a04: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 2007a08: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 2007a0c: b0 10 20 00 clr %i0 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; _Thread_Enable_dispatch(); 2007a10: 40 00 08 8f call 2009c4c <_Thread_Enable_dispatch> 2007a14: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 2007a18: 81 c7 e0 08 ret 2007a1c: 81 e8 00 00 restore } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2007a20: 40 00 08 8b call 2009c4c <_Thread_Enable_dispatch> 2007a24: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; 2007a28: 81 c7 e0 08 ret 2007a2c: 81 e8 00 00 restore =============================================================================== 020161fc : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 20161fc: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 2016200: 11 00 80 f2 sethi %hi(0x203c800), %o0 2016204: 92 10 00 18 mov %i0, %o1 2016208: 90 12 20 c4 or %o0, 0xc4, %o0 201620c: 40 00 0c 70 call 20193cc <_Objects_Get> 2016210: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016214: c2 07 bf fc ld [ %fp + -4 ], %g1 2016218: 80 a0 60 00 cmp %g1, 0 201621c: 22 80 00 04 be,a 201622c 2016220: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016224: 81 c7 e0 08 ret 2016228: 91 e8 20 04 restore %g0, 4, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 201622c: 80 a0 60 04 cmp %g1, 4 2016230: 02 80 00 04 be 2016240 <== NEVER TAKEN 2016234: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 2016238: 40 00 15 0e call 201b670 <_Watchdog_Remove> 201623c: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016240: 40 00 0f a8 call 201a0e0 <_Thread_Enable_dispatch> 2016244: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2016248: 81 c7 e0 08 ret 201624c: 81 e8 00 00 restore =============================================================================== 02016714 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016714: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 2016718: 03 00 80 f2 sethi %hi(0x203c800), %g1 201671c: e0 00 61 04 ld [ %g1 + 0x104 ], %l0 ! 203c904 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016720: a2 10 00 18 mov %i0, %l1 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016724: 80 a4 20 00 cmp %l0, 0 2016728: 02 80 00 10 be 2016768 201672c: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016730: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016734: c2 08 61 e0 ldub [ %g1 + 0x1e0 ], %g1 ! 203c5e0 <_TOD_Is_set> 2016738: 80 a0 60 00 cmp %g1, 0 201673c: 02 80 00 0b be 2016768 <== NEVER TAKEN 2016740: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016744: 80 a6 a0 00 cmp %i2, 0 2016748: 02 80 00 08 be 2016768 201674c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016750: 90 10 00 19 mov %i1, %o0 2016754: 7f ff f3 b2 call 201361c <_TOD_Validate> 2016758: b0 10 20 14 mov 0x14, %i0 201675c: 80 8a 20 ff btst 0xff, %o0 2016760: 12 80 00 04 bne 2016770 2016764: 01 00 00 00 nop case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016768: 81 c7 e0 08 ret 201676c: 81 e8 00 00 restore return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016770: 7f ff f3 75 call 2013544 <_TOD_To_seconds> 2016774: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 2016778: 25 00 80 f1 sethi %hi(0x203c400), %l2 201677c: c2 04 a2 7c ld [ %l2 + 0x27c ], %g1 ! 203c67c <_TOD_Now> 2016780: 80 a2 00 01 cmp %o0, %g1 2016784: 08 bf ff f9 bleu 2016768 2016788: b2 10 00 08 mov %o0, %i1 201678c: 92 10 00 11 mov %l1, %o1 2016790: 11 00 80 f2 sethi %hi(0x203c800), %o0 2016794: 94 07 bf fc add %fp, -4, %o2 2016798: 40 00 0b 0d call 20193cc <_Objects_Get> 201679c: 90 12 20 c4 or %o0, 0xc4, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 20167a0: c2 07 bf fc ld [ %fp + -4 ], %g1 20167a4: 80 a0 60 00 cmp %g1, 0 20167a8: 12 80 00 16 bne 2016800 20167ac: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20167b0: 40 00 13 b0 call 201b670 <_Watchdog_Remove> 20167b4: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20167b8: c4 04 a2 7c ld [ %l2 + 0x27c ], %g2 (*timer_server->schedule_operation)( timer_server, the_timer ); 20167bc: c2 04 20 04 ld [ %l0 + 4 ], %g1 20167c0: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20167c4: b2 26 40 02 sub %i1, %g2, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20167c8: 90 10 00 10 mov %l0, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20167cc: 84 10 20 03 mov 3, %g2 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20167d0: f4 26 20 2c st %i2, [ %i0 + 0x2c ] 20167d4: c4 26 20 38 st %g2, [ %i0 + 0x38 ] the_watchdog->id = id; 20167d8: e2 26 20 30 st %l1, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20167dc: f6 26 20 34 st %i3, [ %i0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20167e0: f2 26 20 1c st %i1, [ %i0 + 0x1c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20167e4: c0 26 20 18 clr [ %i0 + 0x18 ] (*timer_server->schedule_operation)( timer_server, the_timer ); 20167e8: 9f c0 40 00 call %g1 20167ec: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 20167f0: 40 00 0e 3c call 201a0e0 <_Thread_Enable_dispatch> 20167f4: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20167f8: 81 c7 e0 08 ret 20167fc: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016800: 81 c7 e0 08 ret 2016804: 91 e8 20 04 restore %g0, 4, %o0