RTEMS 4.11Annotated Report
Sat Nov 27 10:30:36 2010
02006f20 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
2006f20: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
2006f24: 23 00 80 58 sethi %hi(0x2016000), %l1
2006f28: e0 04 60 64 ld [ %l1 + 0x64 ], %l0 ! 2016064 <_API_extensions_List>
2006f2c: a2 14 60 64 or %l1, 0x64, %l1
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006f30: a2 04 60 04 add %l1, 4, %l1
2006f34: 80 a4 00 11 cmp %l0, %l1
2006f38: 02 80 00 09 be 2006f5c <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
2006f3c: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
2006f40: c2 04 20 08 ld [ %l0 + 8 ], %g1
2006f44: 9f c0 40 00 call %g1
2006f48: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2006f4c: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006f50: 80 a4 00 11 cmp %l0, %l1
2006f54: 32 bf ff fc bne,a 2006f44 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2006f58: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
2006f5c: 81 c7 e0 08 ret
2006f60: 81 e8 00 00 restore
02006f64 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
2006f64: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
}
}
2006f68: 23 00 80 58 sethi %hi(0x2016000), %l1
2006f6c: e0 04 60 64 ld [ %l1 + 0x64 ], %l0 ! 2016064 <_API_extensions_List>
2006f70: a2 14 60 64 or %l1, 0x64, %l1
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006f74: a2 04 60 04 add %l1, 4, %l1
2006f78: 80 a4 00 11 cmp %l0, %l1
2006f7c: 02 80 00 0a be 2006fa4 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
2006f80: 25 00 80 58 sethi %hi(0x2016000), %l2
2006f84: a4 14 a0 9c or %l2, 0x9c, %l2 ! 201609c <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
2006f88: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2006f8c: 9f c0 40 00 call %g1
2006f90: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2006f94: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_API_extensions_List );
2006f98: 80 a4 00 11 cmp %l0, %l1
2006f9c: 32 bf ff fc bne,a 2006f8c <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
2006fa0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
2006fa4: 81 c7 e0 08 ret
2006fa8: 81 e8 00 00 restore
020175cc <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
20175cc: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
20175d0: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
20175d4: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
20175d8: 80 a0 40 1a cmp %g1, %i2
20175dc: 0a 80 00 17 bcs 2017638 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
20175e0: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
20175e4: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
20175e8: 80 a0 60 00 cmp %g1, 0
20175ec: 02 80 00 0a be 2017614 <_CORE_message_queue_Broadcast+0x48>
20175f0: a4 10 20 00 clr %l2
*count = 0;
20175f4: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
20175f8: 81 c7 e0 08 ret
20175fc: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
2017600: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
2017604: 40 00 23 97 call 2020460 <memcpy>
2017608: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
201760c: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
2017610: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
2017614: 40 00 0b a9 call 201a4b8 <_Thread_queue_Dequeue>
2017618: 90 10 00 10 mov %l0, %o0
201761c: 92 10 00 19 mov %i1, %o1
2017620: a2 10 00 08 mov %o0, %l1
2017624: 80 a2 20 00 cmp %o0, 0
2017628: 12 bf ff f6 bne 2017600 <_CORE_message_queue_Broadcast+0x34>
201762c: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
2017630: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017634: b0 10 20 00 clr %i0
}
2017638: 81 c7 e0 08 ret
201763c: 81 e8 00 00 restore
02010e74 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010e74: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2010e78: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010e7c: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
2010e80: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010e84: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2010e88: 80 8e e0 03 btst 3, %i3
2010e8c: 02 80 00 07 be 2010ea8 <_CORE_message_queue_Initialize+0x34>
2010e90: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
2010e94: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2010e98: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
2010e9c: 80 a6 c0 12 cmp %i3, %l2
2010ea0: 18 80 00 22 bgu 2010f28 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
2010ea4: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
2010ea8: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
2010eac: 92 10 00 1a mov %i2, %o1
2010eb0: 90 10 00 11 mov %l1, %o0
2010eb4: 40 00 3f bd call 2020da8 <.umul>
2010eb8: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
2010ebc: 80 a2 00 12 cmp %o0, %l2
2010ec0: 0a 80 00 1a bcs 2010f28 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
2010ec4: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010ec8: 40 00 0c b3 call 2014194 <_Workspace_Allocate>
2010ecc: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010ed0: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010ed4: 80 a2 20 00 cmp %o0, 0
2010ed8: 02 80 00 14 be 2010f28 <_CORE_message_queue_Initialize+0xb4>
2010edc: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010ee0: 90 04 20 60 add %l0, 0x60, %o0
2010ee4: 94 10 00 1a mov %i2, %o2
2010ee8: 40 00 15 98 call 2016548 <_Chain_Initialize>
2010eec: 96 10 00 11 mov %l1, %o3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
2010ef0: 82 04 20 50 add %l0, 0x50, %g1
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
2010ef4: c0 24 20 54 clr [ %l0 + 0x54 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2010ef8: 84 04 20 54 add %l0, 0x54, %g2
head->next = tail;
head->previous = NULL;
tail->previous = head;
2010efc: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2010f00: c4 24 20 50 st %g2, [ %l0 + 0x50 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010f04: c2 06 40 00 ld [ %i1 ], %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
2010f08: b0 10 20 01 mov 1, %i0
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010f0c: 82 18 60 01 xor %g1, 1, %g1
2010f10: 80 a0 00 01 cmp %g0, %g1
2010f14: 90 10 00 10 mov %l0, %o0
2010f18: 94 10 20 80 mov 0x80, %o2
2010f1c: 92 60 3f ff subx %g0, -1, %o1
2010f20: 40 00 09 cc call 2013650 <_Thread_queue_Initialize>
2010f24: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010f28: 81 c7 e0 08 ret
2010f2c: 81 e8 00 00 restore
020072b0 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
20072b0: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
20072b4: 21 00 80 57 sethi %hi(0x2015c00), %l0
20072b8: c2 04 22 40 ld [ %l0 + 0x240 ], %g1 ! 2015e40 <_Thread_Dispatch_disable_level>
20072bc: 80 a0 60 00 cmp %g1, 0
20072c0: 02 80 00 05 be 20072d4 <_CORE_mutex_Seize+0x24>
20072c4: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
20072c8: 80 8e a0 ff btst 0xff, %i2
20072cc: 12 80 00 1a bne 2007334 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
20072d0: 03 00 80 57 sethi %hi(0x2015c00), %g1
20072d4: 90 10 00 18 mov %i0, %o0
20072d8: 40 00 14 b8 call 200c5b8 <_CORE_mutex_Seize_interrupt_trylock>
20072dc: 92 07 a0 54 add %fp, 0x54, %o1
20072e0: 80 a2 20 00 cmp %o0, 0
20072e4: 02 80 00 12 be 200732c <_CORE_mutex_Seize+0x7c>
20072e8: 80 8e a0 ff btst 0xff, %i2
20072ec: 02 80 00 1a be 2007354 <_CORE_mutex_Seize+0xa4>
20072f0: 01 00 00 00 nop
20072f4: c4 04 22 40 ld [ %l0 + 0x240 ], %g2
20072f8: 03 00 80 58 sethi %hi(0x2016000), %g1
20072fc: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2007300: 86 10 20 01 mov 1, %g3
2007304: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
2007308: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
200730c: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2007310: 82 00 a0 01 add %g2, 1, %g1
2007314: c2 24 22 40 st %g1, [ %l0 + 0x240 ]
2007318: 7f ff eb e3 call 20022a4 <sparc_enable_interrupts>
200731c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2007320: 90 10 00 18 mov %i0, %o0
2007324: 7f ff ff c0 call 2007224 <_CORE_mutex_Seize_interrupt_blocking>
2007328: 92 10 00 1b mov %i3, %o1
200732c: 81 c7 e0 08 ret
2007330: 81 e8 00 00 restore
2007334: c2 00 63 bc ld [ %g1 + 0x3bc ], %g1
2007338: 80 a0 60 01 cmp %g1, 1
200733c: 28 bf ff e7 bleu,a 20072d8 <_CORE_mutex_Seize+0x28>
2007340: 90 10 00 18 mov %i0, %o0
2007344: 90 10 20 00 clr %o0
2007348: 92 10 20 00 clr %o1
200734c: 40 00 01 dc call 2007abc <_Internal_error_Occurred>
2007350: 94 10 20 12 mov 0x12, %o2
2007354: 7f ff eb d4 call 20022a4 <sparc_enable_interrupts>
2007358: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
200735c: 03 00 80 58 sethi %hi(0x2016000), %g1
2007360: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc>
2007364: 84 10 20 01 mov 1, %g2
2007368: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
200736c: 81 c7 e0 08 ret
2007370: 81 e8 00 00 restore
0200c5b8 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
200c5b8: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
200c5bc: 03 00 80 58 sethi %hi(0x2016000), %g1
200c5c0: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200c5c4: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200c5c8: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200c5cc: 80 a0 a0 00 cmp %g2, 0
200c5d0: 02 80 00 13 be 200c61c <_CORE_mutex_Seize_interrupt_trylock+0x64>
200c5d4: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200c5d8: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
200c5dc: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
200c5e0: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
200c5e4: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
200c5e8: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
200c5ec: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200c5f0: 80 a0 a0 02 cmp %g2, 2
200c5f4: 02 80 00 10 be 200c634 <_CORE_mutex_Seize_interrupt_trylock+0x7c>
200c5f8: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
200c5fc: 80 a0 a0 03 cmp %g2, 3
200c600: 22 80 00 21 be,a 200c684 <_CORE_mutex_Seize_interrupt_trylock+0xcc>
200c604: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
200c608: d0 06 40 00 ld [ %i1 ], %o0
200c60c: 7f ff d7 26 call 20022a4 <sparc_enable_interrupts>
200c610: b0 10 20 00 clr %i0
200c614: 81 c7 e0 08 ret
200c618: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
200c61c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
200c620: 80 a0 40 02 cmp %g1, %g2
200c624: 02 80 00 0c be 200c654 <_CORE_mutex_Seize_interrupt_trylock+0x9c>
200c628: b0 10 20 01 mov 1, %i0
200c62c: 81 c7 e0 08 ret
200c630: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200c634: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
200c638: 84 00 a0 01 inc %g2
200c63c: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
200c640: d0 06 40 00 ld [ %i1 ], %o0
200c644: 7f ff d7 18 call 20022a4 <sparc_enable_interrupts>
200c648: b0 10 20 00 clr %i0
200c64c: 81 c7 e0 08 ret
200c650: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200c654: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
200c658: 80 a0 a0 00 cmp %g2, 0
200c65c: 12 80 00 2b bne 200c708 <_CORE_mutex_Seize_interrupt_trylock+0x150>
200c660: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
200c664: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
200c668: 82 00 60 01 inc %g1
200c66c: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200c670: d0 06 40 00 ld [ %i1 ], %o0
200c674: 7f ff d7 0c call 20022a4 <sparc_enable_interrupts>
200c678: b0 10 20 00 clr %i0
200c67c: 81 c7 e0 08 ret
200c680: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
200c684: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
200c688: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200c68c: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
200c690: 80 a1 00 02 cmp %g4, %g2
200c694: 02 80 00 25 be 200c728 <_CORE_mutex_Seize_interrupt_trylock+0x170>
200c698: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
200c69c: 80 a1 00 02 cmp %g4, %g2
200c6a0: 1a 80 00 11 bcc 200c6e4 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200c6a4: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
200c6a8: 03 00 80 57 sethi %hi(0x2015c00), %g1
200c6ac: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level>
200c6b0: 84 00 a0 01 inc %g2
200c6b4: c4 20 62 40 st %g2, [ %g1 + 0x240 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
200c6b8: 7f ff d6 fb call 20022a4 <sparc_enable_interrupts>
200c6bc: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200c6c0: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
200c6c4: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
200c6c8: 94 10 20 00 clr %o2
200c6cc: 7f ff f0 6d call 2008880 <_Thread_Change_priority>
200c6d0: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
200c6d4: 7f ff f1 c1 call 2008dd8 <_Thread_Enable_dispatch>
200c6d8: 01 00 00 00 nop
200c6dc: 81 c7 e0 08 ret
200c6e0: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200c6e4: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
200c6e8: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
200c6ec: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
200c6f0: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200c6f4: d0 06 40 00 ld [ %i1 ], %o0
200c6f8: 7f ff d6 eb call 20022a4 <sparc_enable_interrupts>
200c6fc: b0 10 20 00 clr %i0
200c700: 81 c7 e0 08 ret
200c704: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200c708: 12 bf ff c3 bne 200c614 <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
200c70c: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200c710: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
200c714: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
200c718: 7f ff d6 e3 call 20022a4 <sparc_enable_interrupts> <== NOT EXECUTED
200c71c: b0 10 20 00 clr %i0 <== NOT EXECUTED
200c720: 81 c7 e0 08 ret <== NOT EXECUTED
200c724: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
200c728: d0 06 40 00 ld [ %i1 ], %o0
200c72c: 7f ff d6 de call 20022a4 <sparc_enable_interrupts>
200c730: b0 10 20 00 clr %i0
200c734: 81 c7 e0 08 ret
200c738: 81 e8 00 00 restore
020074f0 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
20074f0: 9d e3 bf a0 save %sp, -96, %sp
20074f4: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20074f8: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
20074fc: 40 00 07 2d call 20091b0 <_Thread_queue_Dequeue>
2007500: 90 10 00 10 mov %l0, %o0
2007504: 80 a2 20 00 cmp %o0, 0
2007508: 02 80 00 04 be 2007518 <_CORE_semaphore_Surrender+0x28>
200750c: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
2007510: 81 c7 e0 08 ret
2007514: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2007518: 7f ff eb 5f call 2002294 <sparc_disable_interrupts>
200751c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2007520: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2007524: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2007528: 80 a0 40 02 cmp %g1, %g2
200752c: 1a 80 00 05 bcc 2007540 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
2007530: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
2007534: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2007538: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
200753c: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
2007540: 7f ff eb 59 call 20022a4 <sparc_enable_interrupts>
2007544: 01 00 00 00 nop
}
return status;
}
2007548: 81 c7 e0 08 ret
200754c: 81 e8 00 00 restore
0200c550 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
200c550: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
200c554: c0 26 20 04 clr [ %i0 + 4 ]
size_t node_size
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200c558: a0 06 20 04 add %i0, 4, %l0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c55c: 80 a6 a0 00 cmp %i2, 0
200c560: 02 80 00 12 be 200c5a8 <_Chain_Initialize+0x58> <== NEVER TAKEN
200c564: 90 10 00 18 mov %i0, %o0
200c568: b4 06 bf ff add %i2, -1, %i2
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
Chain_Node *next = starting_address;
200c56c: 82 10 00 19 mov %i1, %g1
head->previous = NULL;
while ( count-- ) {
200c570: 92 10 00 1a mov %i2, %o1
)
{
size_t count = number_nodes;
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *current = head;
200c574: 10 80 00 05 b 200c588 <_Chain_Initialize+0x38>
200c578: 84 10 00 18 mov %i0, %g2
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c57c: 84 10 00 01 mov %g1, %g2
200c580: b4 06 bf ff add %i2, -1, %i2
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
200c584: 82 10 00 03 mov %g3, %g1
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
current->next = next;
200c588: c2 20 80 00 st %g1, [ %g2 ]
next->previous = current;
200c58c: c4 20 60 04 st %g2, [ %g1 + 4 ]
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c590: 80 a6 a0 00 cmp %i2, 0
200c594: 12 bf ff fa bne 200c57c <_Chain_Initialize+0x2c>
200c598: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
200c59c: 40 00 16 e2 call 2012124 <.umul>
200c5a0: 90 10 00 1b mov %i3, %o0
Chain_Node *current = head;
Chain_Node *next = starting_address;
head->previous = NULL;
while ( count-- ) {
200c5a4: 90 06 40 08 add %i1, %o0, %o0
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = tail;
200c5a8: e0 22 00 00 st %l0, [ %o0 ]
tail->previous = current;
200c5ac: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
200c5b0: 81 c7 e0 08 ret
200c5b4: 81 e8 00 00 restore
020061ac <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
20061ac: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20061b0: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
20061b4: 7f ff f0 38 call 2002294 <sparc_disable_interrupts>
20061b8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
20061bc: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
20061c0: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
20061c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
20061c8: 86 88 40 02 andcc %g1, %g2, %g3
20061cc: 02 80 00 3e be 20062c4 <_Event_Surrender+0x118>
20061d0: 09 00 80 58 sethi %hi(0x2016000), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20061d4: 88 11 20 9c or %g4, 0x9c, %g4 ! 201609c <_Per_CPU_Information>
20061d8: da 01 20 08 ld [ %g4 + 8 ], %o5
20061dc: 80 a3 60 00 cmp %o5, 0
20061e0: 32 80 00 1d bne,a 2006254 <_Event_Surrender+0xa8>
20061e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
20061e8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
20061ec: 80 89 21 00 btst 0x100, %g4
20061f0: 02 80 00 33 be 20062bc <_Event_Surrender+0x110>
20061f4: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
20061f8: 02 80 00 04 be 2006208 <_Event_Surrender+0x5c>
20061fc: 80 8c a0 02 btst 2, %l2
2006200: 02 80 00 2f be 20062bc <_Event_Surrender+0x110> <== NEVER TAKEN
2006204: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006208: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
200620c: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2006210: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
2006214: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006218: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
200621c: 7f ff f0 22 call 20022a4 <sparc_enable_interrupts>
2006220: 90 10 00 11 mov %l1, %o0
2006224: 7f ff f0 1c call 2002294 <sparc_disable_interrupts>
2006228: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200622c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
2006230: 80 a0 60 02 cmp %g1, 2
2006234: 02 80 00 26 be 20062cc <_Event_Surrender+0x120>
2006238: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200623c: 90 10 00 11 mov %l1, %o0
2006240: 7f ff f0 19 call 20022a4 <sparc_enable_interrupts>
2006244: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006248: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
200624c: 40 00 09 f4 call 2008a1c <_Thread_Clear_state>
2006250: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006254: 80 a6 00 04 cmp %i0, %g4
2006258: 32 bf ff e5 bne,a 20061ec <_Event_Surrender+0x40>
200625c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2006260: 09 00 80 58 sethi %hi(0x2016000), %g4
2006264: da 01 20 f0 ld [ %g4 + 0xf0 ], %o5 ! 20160f0 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
2006268: 80 a3 60 02 cmp %o5, 2
200626c: 02 80 00 07 be 2006288 <_Event_Surrender+0xdc> <== NEVER TAKEN
2006270: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
2006274: da 01 20 f0 ld [ %g4 + 0xf0 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
2006278: 80 a3 60 01 cmp %o5, 1
200627c: 32 bf ff dc bne,a 20061ec <_Event_Surrender+0x40>
2006280: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2006284: 80 a0 40 03 cmp %g1, %g3
2006288: 02 80 00 04 be 2006298 <_Event_Surrender+0xec>
200628c: 80 8c a0 02 btst 2, %l2
2006290: 02 80 00 09 be 20062b4 <_Event_Surrender+0x108> <== NEVER TAKEN
2006294: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
2006298: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
200629c: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
20062a0: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
20062a4: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
20062a8: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
20062ac: 82 10 20 03 mov 3, %g1
20062b0: c2 21 20 f0 st %g1, [ %g4 + 0xf0 ]
}
_ISR_Enable( level );
20062b4: 7f ff ef fc call 20022a4 <sparc_enable_interrupts>
20062b8: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
20062bc: 7f ff ef fa call 20022a4 <sparc_enable_interrupts>
20062c0: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
20062c4: 7f ff ef f8 call 20022a4 <sparc_enable_interrupts>
20062c8: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
20062cc: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
20062d0: 7f ff ef f5 call 20022a4 <sparc_enable_interrupts>
20062d4: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
20062d8: 40 00 0f 3b call 2009fc4 <_Watchdog_Remove>
20062dc: 90 06 20 48 add %i0, 0x48, %o0
20062e0: 33 04 00 ff sethi %hi(0x1003fc00), %i1
20062e4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
20062e8: 40 00 09 cd call 2008a1c <_Thread_Clear_state>
20062ec: 81 e8 00 00 restore
020062f4 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
20062f4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
20062f8: 90 10 00 18 mov %i0, %o0
20062fc: 40 00 0a c5 call 2008e10 <_Thread_Get>
2006300: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2006304: c2 07 bf fc ld [ %fp + -4 ], %g1
2006308: 80 a0 60 00 cmp %g1, 0
200630c: 12 80 00 15 bne 2006360 <_Event_Timeout+0x6c> <== NEVER TAKEN
2006310: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2006314: 7f ff ef e0 call 2002294 <sparc_disable_interrupts>
2006318: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
200631c: 03 00 80 58 sethi %hi(0x2016000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
2006320: c2 00 60 a8 ld [ %g1 + 0xa8 ], %g1 ! 20160a8 <_Per_CPU_Information+0xc>
2006324: 80 a4 00 01 cmp %l0, %g1
2006328: 02 80 00 10 be 2006368 <_Event_Timeout+0x74>
200632c: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2006330: 82 10 20 06 mov 6, %g1
2006334: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
2006338: 7f ff ef db call 20022a4 <sparc_enable_interrupts>
200633c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2006340: 90 10 00 10 mov %l0, %o0
2006344: 13 04 00 ff sethi %hi(0x1003fc00), %o1
2006348: 40 00 09 b5 call 2008a1c <_Thread_Clear_state>
200634c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2006350: 03 00 80 57 sethi %hi(0x2015c00), %g1
2006354: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level>
2006358: 84 00 bf ff add %g2, -1, %g2
200635c: c4 20 62 40 st %g2, [ %g1 + 0x240 ]
2006360: 81 c7 e0 08 ret
2006364: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
2006368: 03 00 80 58 sethi %hi(0x2016000), %g1
200636c: c4 00 60 f0 ld [ %g1 + 0xf0 ], %g2 ! 20160f0 <_Event_Sync_state>
2006370: 80 a0 a0 01 cmp %g2, 1
2006374: 32 bf ff f0 bne,a 2006334 <_Event_Timeout+0x40>
2006378: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
200637c: 84 10 20 02 mov 2, %g2
2006380: c4 20 60 f0 st %g2, [ %g1 + 0xf0 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2006384: 10 bf ff ec b 2006334 <_Event_Timeout+0x40>
2006388: 82 10 20 06 mov 6, %g1
0200c7b8 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200c7b8: 9d e3 bf 98 save %sp, -104, %sp
200c7bc: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200c7c0: a4 06 60 04 add %i1, 4, %l2
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
200c7c4: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
200c7c8: 80 a6 40 12 cmp %i1, %l2
200c7cc: 18 80 00 6e bgu 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c7d0: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200c7d4: 80 a6 e0 00 cmp %i3, 0
200c7d8: 12 80 00 75 bne 200c9ac <_Heap_Allocate_aligned_with_boundary+0x1f4>
200c7dc: 80 a6 40 1b cmp %i1, %i3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c7e0: e8 04 20 08 ld [ %l0 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c7e4: 80 a4 00 14 cmp %l0, %l4
200c7e8: 02 80 00 67 be 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c7ec: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c7f0: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200c7f4: b8 10 20 04 mov 4, %i4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c7f8: a2 10 20 01 mov 1, %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c7fc: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
200c800: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200c804: e6 05 20 04 ld [ %l4 + 4 ], %l3
200c808: 80 a4 80 13 cmp %l2, %l3
200c80c: 3a 80 00 4b bcc,a 200c938 <_Heap_Allocate_aligned_with_boundary+0x180>
200c810: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
200c814: 80 a6 a0 00 cmp %i2, 0
200c818: 02 80 00 44 be 200c928 <_Heap_Allocate_aligned_with_boundary+0x170>
200c81c: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200c820: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c824: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c828: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200c82c: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200c830: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c834: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
200c838: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c83c: a6 00 40 13 add %g1, %l3, %l3
200c840: 40 00 17 1f call 20124bc <.urem>
200c844: 90 10 00 18 mov %i0, %o0
200c848: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200c84c: 80 a4 c0 18 cmp %l3, %i0
200c850: 1a 80 00 06 bcc 200c868 <_Heap_Allocate_aligned_with_boundary+0xb0>
200c854: ac 05 20 08 add %l4, 8, %l6
200c858: 90 10 00 13 mov %l3, %o0
200c85c: 40 00 17 18 call 20124bc <.urem>
200c860: 92 10 00 1a mov %i2, %o1
200c864: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200c868: 80 a6 e0 00 cmp %i3, 0
200c86c: 02 80 00 24 be 200c8fc <_Heap_Allocate_aligned_with_boundary+0x144>
200c870: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200c874: a6 06 00 19 add %i0, %i1, %l3
200c878: 92 10 00 1b mov %i3, %o1
200c87c: 40 00 17 10 call 20124bc <.urem>
200c880: 90 10 00 13 mov %l3, %o0
200c884: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200c888: 80 a2 00 13 cmp %o0, %l3
200c88c: 1a 80 00 1b bcc 200c8f8 <_Heap_Allocate_aligned_with_boundary+0x140>
200c890: 80 a6 00 08 cmp %i0, %o0
200c894: 1a 80 00 1a bcc 200c8fc <_Heap_Allocate_aligned_with_boundary+0x144>
200c898: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200c89c: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
200c8a0: 80 a5 40 08 cmp %l5, %o0
200c8a4: 28 80 00 09 bleu,a 200c8c8 <_Heap_Allocate_aligned_with_boundary+0x110>
200c8a8: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200c8ac: 10 80 00 23 b 200c938 <_Heap_Allocate_aligned_with_boundary+0x180>
200c8b0: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200c8b4: 1a 80 00 11 bcc 200c8f8 <_Heap_Allocate_aligned_with_boundary+0x140>
200c8b8: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
200c8bc: 38 80 00 1f bgu,a 200c938 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
200c8c0: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
200c8c4: b0 22 00 19 sub %o0, %i1, %i0
200c8c8: 92 10 00 1a mov %i2, %o1
200c8cc: 40 00 16 fc call 20124bc <.urem>
200c8d0: 90 10 00 18 mov %i0, %o0
200c8d4: 92 10 00 1b mov %i3, %o1
200c8d8: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200c8dc: a6 06 00 19 add %i0, %i1, %l3
200c8e0: 40 00 16 f7 call 20124bc <.urem>
200c8e4: 90 10 00 13 mov %l3, %o0
200c8e8: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200c8ec: 80 a2 00 13 cmp %o0, %l3
200c8f0: 0a bf ff f1 bcs 200c8b4 <_Heap_Allocate_aligned_with_boundary+0xfc>
200c8f4: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200c8f8: 80 a5 80 18 cmp %l6, %i0
200c8fc: 38 80 00 0f bgu,a 200c938 <_Heap_Allocate_aligned_with_boundary+0x180>
200c900: e8 05 20 08 ld [ %l4 + 8 ], %l4
200c904: 82 10 3f f8 mov -8, %g1
200c908: 90 10 00 18 mov %i0, %o0
200c90c: a6 20 40 14 sub %g1, %l4, %l3
200c910: 92 10 00 1d mov %i5, %o1
200c914: 40 00 16 ea call 20124bc <.urem>
200c918: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200c91c: 90 a4 c0 08 subcc %l3, %o0, %o0
200c920: 12 80 00 1b bne 200c98c <_Heap_Allocate_aligned_with_boundary+0x1d4>
200c924: 80 a2 00 17 cmp %o0, %l7
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
200c928: 80 a6 20 00 cmp %i0, 0
200c92c: 32 80 00 08 bne,a 200c94c <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN
200c930: c4 04 20 48 ld [ %l0 + 0x48 ], %g2
break;
}
block = block->next;
200c934: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c938: 80 a4 00 14 cmp %l0, %l4
200c93c: 02 80 00 1a be 200c9a4 <_Heap_Allocate_aligned_with_boundary+0x1ec>
200c940: 82 04 60 01 add %l1, 1, %g1
200c944: 10 bf ff b0 b 200c804 <_Heap_Allocate_aligned_with_boundary+0x4c>
200c948: a2 10 00 01 mov %g1, %l1
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
stats->searches += search_count;
200c94c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200c950: 84 00 a0 01 inc %g2
stats->searches += search_count;
200c954: 82 00 40 11 add %g1, %l1, %g1
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
200c958: c4 24 20 48 st %g2, [ %l0 + 0x48 ]
stats->searches += search_count;
200c95c: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200c960: 90 10 00 10 mov %l0, %o0
200c964: 92 10 00 14 mov %l4, %o1
200c968: 94 10 00 18 mov %i0, %o2
200c96c: 7f ff ec 08 call 200798c <_Heap_Block_allocate>
200c970: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200c974: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200c978: 80 a0 40 11 cmp %g1, %l1
200c97c: 2a 80 00 02 bcs,a 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c980: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c984: 81 c7 e0 08 ret
200c988: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200c98c: 1a bf ff e8 bcc 200c92c <_Heap_Allocate_aligned_with_boundary+0x174>
200c990: 80 a6 20 00 cmp %i0, 0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200c994: e8 05 20 08 ld [ %l4 + 8 ], %l4
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
200c998: 80 a4 00 14 cmp %l0, %l4
200c99c: 12 bf ff ea bne 200c944 <_Heap_Allocate_aligned_with_boundary+0x18c>
200c9a0: 82 04 60 01 add %l1, 1, %g1
200c9a4: 10 bf ff f4 b 200c974 <_Heap_Allocate_aligned_with_boundary+0x1bc>
200c9a8: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200c9ac: 18 bf ff f6 bgu 200c984 <_Heap_Allocate_aligned_with_boundary+0x1cc>
200c9b0: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200c9b4: 22 bf ff 8b be,a 200c7e0 <_Heap_Allocate_aligned_with_boundary+0x28>
200c9b8: b4 10 00 1d mov %i5, %i2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c9bc: 10 bf ff 8a b 200c7e4 <_Heap_Allocate_aligned_with_boundary+0x2c>
200c9c0: e8 04 20 08 ld [ %l0 + 8 ], %l4
0200cccc <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200cccc: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200ccd0: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200ccd4: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200ccd8: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200ccdc: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200cce0: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200cce4: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200cce8: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200ccec: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200ccf0: 80 a6 40 11 cmp %i1, %l1
200ccf4: 18 80 00 86 bgu 200cf0c <_Heap_Extend+0x240>
200ccf8: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200ccfc: 90 10 00 19 mov %i1, %o0
200cd00: 92 10 00 1a mov %i2, %o1
200cd04: 94 10 00 13 mov %l3, %o2
200cd08: 98 07 bf fc add %fp, -4, %o4
200cd0c: 7f ff eb 81 call 2007b10 <_Heap_Get_first_and_last_block>
200cd10: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200cd14: 80 8a 20 ff btst 0xff, %o0
200cd18: 02 80 00 7d be 200cf0c <_Heap_Extend+0x240>
200cd1c: ba 10 20 00 clr %i5
200cd20: b0 10 00 12 mov %l2, %i0
200cd24: b8 10 20 00 clr %i4
200cd28: ac 10 20 00 clr %l6
200cd2c: 10 80 00 14 b 200cd7c <_Heap_Extend+0xb0>
200cd30: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200cd34: 2a 80 00 02 bcs,a 200cd3c <_Heap_Extend+0x70>
200cd38: b8 10 00 18 mov %i0, %i4
200cd3c: 90 10 00 15 mov %l5, %o0
200cd40: 40 00 17 32 call 2012a08 <.urem>
200cd44: 92 10 00 13 mov %l3, %o1
200cd48: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200cd4c: 80 a5 40 19 cmp %l5, %i1
200cd50: 02 80 00 1c be 200cdc0 <_Heap_Extend+0xf4>
200cd54: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200cd58: 80 a6 40 15 cmp %i1, %l5
200cd5c: 38 80 00 02 bgu,a 200cd64 <_Heap_Extend+0x98>
200cd60: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cd64: f0 00 60 04 ld [ %g1 + 4 ], %i0
200cd68: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cd6c: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200cd70: 80 a4 80 18 cmp %l2, %i0
200cd74: 22 80 00 1b be,a 200cde0 <_Heap_Extend+0x114>
200cd78: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200cd7c: 80 a6 00 12 cmp %i0, %l2
200cd80: 02 80 00 65 be 200cf14 <_Heap_Extend+0x248>
200cd84: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cd88: 80 a0 40 11 cmp %g1, %l1
200cd8c: 0a 80 00 6f bcs 200cf48 <_Heap_Extend+0x27c>
200cd90: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200cd94: 80 a0 40 11 cmp %g1, %l1
200cd98: 12 bf ff e7 bne 200cd34 <_Heap_Extend+0x68>
200cd9c: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cda0: 90 10 00 15 mov %l5, %o0
200cda4: 40 00 17 19 call 2012a08 <.urem>
200cda8: 92 10 00 13 mov %l3, %o1
200cdac: 82 05 7f f8 add %l5, -8, %g1
200cdb0: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200cdb4: 80 a5 40 19 cmp %l5, %i1
200cdb8: 12 bf ff e8 bne 200cd58 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
200cdbc: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
200cdc0: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cdc4: f0 00 60 04 ld [ %g1 + 4 ], %i0
200cdc8: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cdcc: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200cdd0: 80 a4 80 18 cmp %l2, %i0
200cdd4: 12 bf ff ea bne 200cd7c <_Heap_Extend+0xb0> <== NEVER TAKEN
200cdd8: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
200cddc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200cde0: 80 a6 40 01 cmp %i1, %g1
200cde4: 3a 80 00 54 bcc,a 200cf34 <_Heap_Extend+0x268>
200cde8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200cdec: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cdf0: c2 07 bf fc ld [ %fp + -4 ], %g1
200cdf4: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200cdf8: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200cdfc: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200ce00: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200ce04: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200ce08: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
200ce0c: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200ce10: 80 a1 00 01 cmp %g4, %g1
200ce14: 08 80 00 42 bleu 200cf1c <_Heap_Extend+0x250>
200ce18: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200ce1c: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200ce20: 80 a5 e0 00 cmp %l7, 0
200ce24: 02 80 00 62 be 200cfac <_Heap_Extend+0x2e0>
200ce28: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200ce2c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200ce30: 92 10 00 12 mov %l2, %o1
200ce34: 40 00 16 f5 call 2012a08 <.urem>
200ce38: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200ce3c: 80 a2 20 00 cmp %o0, 0
200ce40: 02 80 00 04 be 200ce50 <_Heap_Extend+0x184> <== ALWAYS TAKEN
200ce44: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
200ce48: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
200ce4c: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200ce50: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200ce54: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200ce58: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200ce5c: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200ce60: 90 10 00 10 mov %l0, %o0
200ce64: 92 10 00 01 mov %g1, %o1
200ce68: 7f ff ff 8e call 200cca0 <_Heap_Free_block>
200ce6c: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200ce70: 80 a5 a0 00 cmp %l6, 0
200ce74: 02 80 00 3a be 200cf5c <_Heap_Extend+0x290>
200ce78: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200ce7c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200ce80: a2 24 40 16 sub %l1, %l6, %l1
200ce84: 40 00 16 e1 call 2012a08 <.urem>
200ce88: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200ce8c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
200ce90: a2 24 40 08 sub %l1, %o0, %l1
200ce94: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
200ce98: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200ce9c: 84 04 40 16 add %l1, %l6, %g2
200cea0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cea4: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200cea8: 90 10 00 10 mov %l0, %o0
200ceac: 82 08 60 01 and %g1, 1, %g1
200ceb0: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
200ceb4: a2 14 40 01 or %l1, %g1, %l1
200ceb8: 7f ff ff 7a call 200cca0 <_Heap_Free_block>
200cebc: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200cec0: 80 a5 a0 00 cmp %l6, 0
200cec4: 02 80 00 33 be 200cf90 <_Heap_Extend+0x2c4>
200cec8: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cecc: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200ced0: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ced4: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200ced8: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200cedc: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200cee0: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cee4: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
200cee8: 88 13 40 04 or %o5, %g4, %g4
200ceec: c8 20 60 04 st %g4, [ %g1 + 4 ]
200cef0: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
200cef4: 82 00 80 14 add %g2, %l4, %g1
200cef8: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
200cefc: 80 a6 e0 00 cmp %i3, 0
200cf00: 02 80 00 03 be 200cf0c <_Heap_Extend+0x240> <== NEVER TAKEN
200cf04: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
200cf08: e8 26 c0 00 st %l4, [ %i3 ]
200cf0c: 81 c7 e0 08 ret
200cf10: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200cf14: 10 bf ff 9d b 200cd88 <_Heap_Extend+0xbc>
200cf18: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200cf1c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200cf20: 80 a0 40 02 cmp %g1, %g2
200cf24: 2a bf ff bf bcs,a 200ce20 <_Heap_Extend+0x154>
200cf28: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200cf2c: 10 bf ff be b 200ce24 <_Heap_Extend+0x158>
200cf30: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200cf34: 80 a4 40 01 cmp %l1, %g1
200cf38: 38 bf ff ae bgu,a 200cdf0 <_Heap_Extend+0x124>
200cf3c: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cf40: 10 bf ff ad b 200cdf4 <_Heap_Extend+0x128>
200cf44: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cf48: 80 a6 40 15 cmp %i1, %l5
200cf4c: 1a bf ff 93 bcc 200cd98 <_Heap_Extend+0xcc>
200cf50: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cf54: 81 c7 e0 08 ret
200cf58: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200cf5c: 80 a7 60 00 cmp %i5, 0
200cf60: 02 bf ff d8 be 200cec0 <_Heap_Extend+0x1f4>
200cf64: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cf68: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
200cf6c: c2 07 bf f8 ld [ %fp + -8 ], %g1
200cf70: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200cf74: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
200cf78: 84 10 80 03 or %g2, %g3, %g2
200cf7c: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200cf80: c4 00 60 04 ld [ %g1 + 4 ], %g2
200cf84: 84 10 a0 01 or %g2, 1, %g2
200cf88: 10 bf ff ce b 200cec0 <_Heap_Extend+0x1f4>
200cf8c: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200cf90: 32 bf ff d0 bne,a 200ced0 <_Heap_Extend+0x204>
200cf94: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200cf98: d2 07 bf fc ld [ %fp + -4 ], %o1
200cf9c: 7f ff ff 41 call 200cca0 <_Heap_Free_block>
200cfa0: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200cfa4: 10 bf ff cb b 200ced0 <_Heap_Extend+0x204>
200cfa8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200cfac: 80 a7 20 00 cmp %i4, 0
200cfb0: 02 bf ff b1 be 200ce74 <_Heap_Extend+0x1a8>
200cfb4: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200cfb8: b8 27 00 02 sub %i4, %g2, %i4
200cfbc: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200cfc0: 10 bf ff ad b 200ce74 <_Heap_Extend+0x1a8>
200cfc4: f8 20 a0 04 st %i4, [ %g2 + 4 ]
0200c9c4 <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200c9c4: 9d e3 bf a0 save %sp, -96, %sp
200c9c8: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200c9cc: 40 00 16 bc call 20124bc <.urem>
200c9d0: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200c9d4: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
200c9d8: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c9dc: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200c9e0: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200c9e4: 80 a2 00 01 cmp %o0, %g1
200c9e8: 0a 80 00 4d bcs 200cb1c <_Heap_Free+0x158>
200c9ec: b0 10 20 00 clr %i0
200c9f0: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200c9f4: 80 a2 00 03 cmp %o0, %g3
200c9f8: 18 80 00 49 bgu 200cb1c <_Heap_Free+0x158>
200c9fc: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200ca00: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200ca04: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200ca08: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200ca0c: 80 a0 40 02 cmp %g1, %g2
200ca10: 18 80 00 43 bgu 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN
200ca14: 80 a0 c0 02 cmp %g3, %g2
200ca18: 0a 80 00 41 bcs 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN
200ca1c: 01 00 00 00 nop
200ca20: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200ca24: 80 8b 20 01 btst 1, %o4
200ca28: 02 80 00 3d be 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN
200ca2c: 96 0b 3f fe and %o4, -2, %o3
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200ca30: 80 a0 c0 02 cmp %g3, %g2
200ca34: 02 80 00 06 be 200ca4c <_Heap_Free+0x88>
200ca38: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200ca3c: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ca40: d8 03 20 04 ld [ %o4 + 4 ], %o4
200ca44: 98 0b 20 01 and %o4, 1, %o4
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
200ca48: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200ca4c: 80 8b 60 01 btst 1, %o5
200ca50: 12 80 00 1d bne 200cac4 <_Heap_Free+0x100>
200ca54: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
200ca58: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200ca5c: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200ca60: 80 a0 40 0d cmp %g1, %o5
200ca64: 18 80 00 2e bgu 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN
200ca68: b0 10 20 00 clr %i0
200ca6c: 80 a0 c0 0d cmp %g3, %o5
200ca70: 0a 80 00 2b bcs 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN
200ca74: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200ca78: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200ca7c: 80 88 60 01 btst 1, %g1
200ca80: 02 80 00 27 be 200cb1c <_Heap_Free+0x158> <== NEVER TAKEN
200ca84: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200ca88: 22 80 00 39 be,a 200cb6c <_Heap_Free+0x1a8>
200ca8c: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200ca90: c2 00 a0 08 ld [ %g2 + 8 ], %g1
200ca94: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200ca98: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
200ca9c: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200caa0: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200caa4: 82 00 ff ff add %g3, -1, %g1
200caa8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200caac: 96 01 00 0b add %g4, %o3, %o3
200cab0: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cab4: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200cab8: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cabc: 10 80 00 0e b 200caf4 <_Heap_Free+0x130>
200cac0: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200cac4: 22 80 00 18 be,a 200cb24 <_Heap_Free+0x160>
200cac8: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cacc: c6 00 a0 08 ld [ %g2 + 8 ], %g3
200cad0: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
200cad4: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
200cad8: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200cadc: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
200cae0: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cae4: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
200cae8: d0 20 60 08 st %o0, [ %g1 + 8 ]
200caec: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200caf0: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200caf4: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
200caf8: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
200cafc: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cb00: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
200cb04: 82 00 60 01 inc %g1
stats->free_size += block_size;
200cb08: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cb0c: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
200cb10: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200cb14: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
200cb18: b0 10 20 01 mov 1, %i0
}
200cb1c: 81 c7 e0 08 ret
200cb20: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200cb24: 82 11 20 01 or %g4, 1, %g1
200cb28: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cb2c: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200cb30: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200cb34: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200cb38: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200cb3c: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
200cb40: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cb44: 86 0b 7f fe and %o5, -2, %g3
200cb48: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200cb4c: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200cb50: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200cb54: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200cb58: 80 a0 40 02 cmp %g1, %g2
200cb5c: 08 bf ff e6 bleu 200caf4 <_Heap_Free+0x130>
200cb60: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200cb64: 10 bf ff e4 b 200caf4 <_Heap_Free+0x130>
200cb68: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cb6c: 82 12 a0 01 or %o2, 1, %g1
200cb70: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cb74: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
200cb78: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cb7c: 82 08 7f fe and %g1, -2, %g1
200cb80: 10 bf ff dd b 200caf4 <_Heap_Free+0x130>
200cb84: c2 20 a0 04 st %g1, [ %g2 + 4 ]
0200d6e8 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
200d6e8: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
200d6ec: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
200d6f0: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
200d6f4: c0 26 40 00 clr [ %i1 ]
200d6f8: c0 26 60 04 clr [ %i1 + 4 ]
200d6fc: c0 26 60 08 clr [ %i1 + 8 ]
200d700: c0 26 60 0c clr [ %i1 + 0xc ]
200d704: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
200d708: 80 a0 40 02 cmp %g1, %g2
200d70c: 02 80 00 17 be 200d768 <_Heap_Get_information+0x80> <== NEVER TAKEN
200d710: c0 26 60 14 clr [ %i1 + 0x14 ]
200d714: da 00 60 04 ld [ %g1 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200d718: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200d71c: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
200d720: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
200d724: 80 8b 60 01 btst 1, %o5
200d728: 02 80 00 03 be 200d734 <_Heap_Get_information+0x4c>
200d72c: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
200d730: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
200d734: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
200d738: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
200d73c: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d740: 94 02 a0 01 inc %o2
info->total += the_size;
200d744: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
200d748: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
200d74c: 80 a3 00 04 cmp %o4, %g4
200d750: 1a 80 00 03 bcc 200d75c <_Heap_Get_information+0x74>
200d754: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
200d758: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
200d75c: 80 a0 80 01 cmp %g2, %g1
200d760: 12 bf ff ef bne 200d71c <_Heap_Get_information+0x34>
200d764: 88 0b 7f fe and %o5, -2, %g4
200d768: 81 c7 e0 08 ret
200d76c: 81 e8 00 00 restore
02013f5c <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
2013f5c: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2013f60: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
2013f64: 7f ff f9 56 call 20124bc <.urem>
2013f68: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
2013f6c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
2013f70: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
2013f74: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
2013f78: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2013f7c: 80 a0 80 01 cmp %g2, %g1
2013f80: 0a 80 00 15 bcs 2013fd4 <_Heap_Size_of_alloc_area+0x78>
2013f84: b0 10 20 00 clr %i0
2013f88: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
2013f8c: 80 a0 80 03 cmp %g2, %g3
2013f90: 18 80 00 11 bgu 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013f94: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2013f98: c8 00 a0 04 ld [ %g2 + 4 ], %g4
2013f9c: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2013fa0: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2013fa4: 80 a0 40 02 cmp %g1, %g2
2013fa8: 18 80 00 0b bgu 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013fac: 80 a0 c0 02 cmp %g3, %g2
2013fb0: 0a 80 00 09 bcs 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013fb4: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2013fb8: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2013fbc: 80 88 60 01 btst 1, %g1
2013fc0: 02 80 00 05 be 2013fd4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2013fc4: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
2013fc8: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
2013fcc: 84 00 a0 04 add %g2, 4, %g2
2013fd0: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
2013fd4: 81 c7 e0 08 ret
2013fd8: 81 e8 00 00 restore
02008950 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2008950: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
2008954: 23 00 80 22 sethi %hi(0x2008800), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
2008958: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
200895c: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
2008960: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
2008964: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
2008968: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
200896c: 80 8e a0 ff btst 0xff, %i2
2008970: 02 80 00 04 be 2008980 <_Heap_Walk+0x30>
2008974: a2 14 60 e4 or %l1, 0xe4, %l1
2008978: 23 00 80 22 sethi %hi(0x2008800), %l1
200897c: a2 14 60 ec or %l1, 0xec, %l1 ! 20088ec <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
2008980: 03 00 80 61 sethi %hi(0x2018400), %g1
2008984: c2 00 63 7c ld [ %g1 + 0x37c ], %g1 ! 201877c <_System_state_Current>
2008988: 80 a0 60 03 cmp %g1, 3
200898c: 12 80 00 33 bne 2008a58 <_Heap_Walk+0x108>
2008990: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
2008994: da 04 20 18 ld [ %l0 + 0x18 ], %o5
2008998: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
200899c: c4 04 20 08 ld [ %l0 + 8 ], %g2
20089a0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20089a4: 90 10 00 19 mov %i1, %o0
20089a8: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
20089ac: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
20089b0: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
20089b4: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
20089b8: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
20089bc: 92 10 20 00 clr %o1
20089c0: 96 10 00 14 mov %l4, %o3
20089c4: 15 00 80 57 sethi %hi(0x2015c00), %o2
20089c8: 98 10 00 13 mov %l3, %o4
20089cc: 9f c4 40 00 call %l1
20089d0: 94 12 a1 30 or %o2, 0x130, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
20089d4: 80 a5 20 00 cmp %l4, 0
20089d8: 02 80 00 2a be 2008a80 <_Heap_Walk+0x130>
20089dc: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
20089e0: 12 80 00 30 bne 2008aa0 <_Heap_Walk+0x150>
20089e4: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
20089e8: 7f ff e4 32 call 2001ab0 <.urem>
20089ec: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
20089f0: 80 a2 20 00 cmp %o0, 0
20089f4: 12 80 00 34 bne 2008ac4 <_Heap_Walk+0x174>
20089f8: 90 04 a0 08 add %l2, 8, %o0
20089fc: 7f ff e4 2d call 2001ab0 <.urem>
2008a00: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
2008a04: 80 a2 20 00 cmp %o0, 0
2008a08: 32 80 00 38 bne,a 2008ae8 <_Heap_Walk+0x198>
2008a0c: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
2008a10: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2008a14: 80 8f 20 01 btst 1, %i4
2008a18: 22 80 00 4d be,a 2008b4c <_Heap_Walk+0x1fc>
2008a1c: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008a20: c2 05 60 04 ld [ %l5 + 4 ], %g1
2008a24: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008a28: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008a2c: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
2008a30: 80 88 a0 01 btst 1, %g2
2008a34: 02 80 00 0b be 2008a60 <_Heap_Walk+0x110>
2008a38: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
2008a3c: 02 80 00 33 be 2008b08 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
2008a40: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008a44: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
2008a48: 15 00 80 57 sethi %hi(0x2015c00), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008a4c: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008a50: 9f c4 40 00 call %l1 <== NOT EXECUTED
2008a54: 94 12 a2 a8 or %o2, 0x2a8, %o2 <== NOT EXECUTED
2008a58: 81 c7 e0 08 ret
2008a5c: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
2008a60: 90 10 00 19 mov %i1, %o0
2008a64: 92 10 20 01 mov 1, %o1
2008a68: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008a6c: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
2008a70: 9f c4 40 00 call %l1
2008a74: 94 12 a2 90 or %o2, 0x290, %o2
2008a78: 81 c7 e0 08 ret
2008a7c: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008a80: 90 10 00 19 mov %i1, %o0
2008a84: 92 10 20 01 mov 1, %o1
2008a88: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008a8c: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008a90: 9f c4 40 00 call %l1
2008a94: 94 12 a1 c8 or %o2, 0x1c8, %o2
2008a98: 81 c7 e0 08 ret
2008a9c: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008aa0: 90 10 00 19 mov %i1, %o0
2008aa4: 92 10 20 01 mov 1, %o1
2008aa8: 96 10 00 14 mov %l4, %o3
2008aac: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008ab0: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008ab4: 9f c4 40 00 call %l1
2008ab8: 94 12 a1 e0 or %o2, 0x1e0, %o2
2008abc: 81 c7 e0 08 ret
2008ac0: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008ac4: 90 10 00 19 mov %i1, %o0
2008ac8: 92 10 20 01 mov 1, %o1
2008acc: 96 10 00 13 mov %l3, %o3
2008ad0: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008ad4: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008ad8: 9f c4 40 00 call %l1
2008adc: 94 12 a2 00 or %o2, 0x200, %o2
2008ae0: 81 c7 e0 08 ret
2008ae4: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008ae8: 92 10 20 01 mov 1, %o1
2008aec: 96 10 00 12 mov %l2, %o3
2008af0: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008af4: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008af8: 9f c4 40 00 call %l1
2008afc: 94 12 a2 28 or %o2, 0x228, %o2
2008b00: 81 c7 e0 08 ret
2008b04: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
2008b08: ec 04 20 08 ld [ %l0 + 8 ], %l6
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008b0c: 80 a4 00 16 cmp %l0, %l6
2008b10: 02 80 01 18 be 2008f70 <_Heap_Walk+0x620>
2008b14: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
2008b18: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008b1c: 80 a0 40 16 cmp %g1, %l6
2008b20: 28 80 00 12 bleu,a 2008b68 <_Heap_Walk+0x218> <== ALWAYS TAKEN
2008b24: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
2008b28: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008b2c: 92 10 20 01 mov 1, %o1
2008b30: 96 10 00 16 mov %l6, %o3
2008b34: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008b38: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
2008b3c: 9f c4 40 00 call %l1
2008b40: 94 12 a2 d8 or %o2, 0x2d8, %o2
2008b44: 81 c7 e0 08 ret
2008b48: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
2008b4c: 92 10 20 01 mov 1, %o1
2008b50: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008b54: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
2008b58: 9f c4 40 00 call %l1
2008b5c: 94 12 a2 60 or %o2, 0x260, %o2
2008b60: 81 c7 e0 08 ret
2008b64: 81 e8 00 00 restore
2008b68: 80 a7 40 16 cmp %i5, %l6
2008b6c: 0a bf ff f0 bcs 2008b2c <_Heap_Walk+0x1dc> <== NEVER TAKEN
2008b70: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008b74: c2 27 bf fc st %g1, [ %fp + -4 ]
2008b78: 90 05 a0 08 add %l6, 8, %o0
2008b7c: 7f ff e3 cd call 2001ab0 <.urem>
2008b80: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2008b84: 80 a2 20 00 cmp %o0, 0
2008b88: 12 80 00 2e bne 2008c40 <_Heap_Walk+0x2f0> <== NEVER TAKEN
2008b8c: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008b90: c4 05 a0 04 ld [ %l6 + 4 ], %g2
2008b94: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008b98: 84 05 80 02 add %l6, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008b9c: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008ba0: 80 88 a0 01 btst 1, %g2
2008ba4: 12 80 00 30 bne 2008c64 <_Heap_Walk+0x314> <== NEVER TAKEN
2008ba8: 84 10 00 10 mov %l0, %g2
2008bac: ae 10 00 16 mov %l6, %l7
2008bb0: 10 80 00 17 b 2008c0c <_Heap_Walk+0x2bc>
2008bb4: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008bb8: 80 a4 00 16 cmp %l0, %l6
2008bbc: 02 80 00 33 be 2008c88 <_Heap_Walk+0x338>
2008bc0: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008bc4: 18 bf ff da bgu 2008b2c <_Heap_Walk+0x1dc>
2008bc8: 90 10 00 19 mov %i1, %o0
2008bcc: 80 a5 80 1d cmp %l6, %i5
2008bd0: 18 bf ff d8 bgu 2008b30 <_Heap_Walk+0x1e0> <== NEVER TAKEN
2008bd4: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008bd8: 90 05 a0 08 add %l6, 8, %o0
2008bdc: 7f ff e3 b5 call 2001ab0 <.urem>
2008be0: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2008be4: 80 a2 20 00 cmp %o0, 0
2008be8: 12 80 00 16 bne 2008c40 <_Heap_Walk+0x2f0>
2008bec: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008bf0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
2008bf4: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
2008bf8: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008bfc: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c00: 80 88 60 01 btst 1, %g1
2008c04: 12 80 00 18 bne 2008c64 <_Heap_Walk+0x314>
2008c08: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
2008c0c: d8 05 a0 0c ld [ %l6 + 0xc ], %o4
2008c10: 80 a3 00 02 cmp %o4, %g2
2008c14: 22 bf ff e9 be,a 2008bb8 <_Heap_Walk+0x268>
2008c18: ec 05 a0 08 ld [ %l6 + 8 ], %l6
(*printer)(
2008c1c: 90 10 00 19 mov %i1, %o0
2008c20: 92 10 20 01 mov 1, %o1
2008c24: 96 10 00 16 mov %l6, %o3
2008c28: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c2c: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
2008c30: 9f c4 40 00 call %l1
2008c34: 94 12 a3 48 or %o2, 0x348, %o2
2008c38: 81 c7 e0 08 ret
2008c3c: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008c40: 90 10 00 19 mov %i1, %o0
2008c44: 92 10 20 01 mov 1, %o1
2008c48: 96 10 00 16 mov %l6, %o3
2008c4c: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c50: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008c54: 9f c4 40 00 call %l1
2008c58: 94 12 a2 f8 or %o2, 0x2f8, %o2
2008c5c: 81 c7 e0 08 ret
2008c60: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008c64: 90 10 00 19 mov %i1, %o0
2008c68: 92 10 20 01 mov 1, %o1
2008c6c: 96 10 00 16 mov %l6, %o3
2008c70: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c74: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008c78: 9f c4 40 00 call %l1
2008c7c: 94 12 a3 28 or %o2, 0x328, %o2
2008c80: 81 c7 e0 08 ret
2008c84: 81 e8 00 00 restore
2008c88: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008c8c: 35 00 80 58 sethi %hi(0x2016000), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008c90: 31 00 80 58 sethi %hi(0x2016000), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c94: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008c98: b4 16 a1 08 or %i2, 0x108, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008c9c: b0 16 20 f0 or %i0, 0xf0, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008ca0: 37 00 80 58 sethi %hi(0x2016000), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008ca4: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008ca8: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008cac: 80 a0 40 16 cmp %g1, %l6
2008cb0: 28 80 00 0c bleu,a 2008ce0 <_Heap_Walk+0x390> <== ALWAYS TAKEN
2008cb4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
2008cb8: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008cbc: 92 10 20 01 mov 1, %o1
2008cc0: 96 10 00 17 mov %l7, %o3
2008cc4: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008cc8: 98 10 00 16 mov %l6, %o4
2008ccc: 94 12 a3 80 or %o2, 0x380, %o2
2008cd0: 9f c4 40 00 call %l1
2008cd4: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
2008cd8: 81 c7 e0 08 ret
2008cdc: 81 e8 00 00 restore
2008ce0: 80 a0 40 16 cmp %g1, %l6
2008ce4: 0a bf ff f6 bcs 2008cbc <_Heap_Walk+0x36c>
2008ce8: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2008cec: 82 1d c0 15 xor %l7, %l5, %g1
2008cf0: 80 a0 00 01 cmp %g0, %g1
2008cf4: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008cf8: 90 10 00 1d mov %i5, %o0
2008cfc: c2 27 bf fc st %g1, [ %fp + -4 ]
2008d00: 7f ff e3 6c call 2001ab0 <.urem>
2008d04: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008d08: 80 a2 20 00 cmp %o0, 0
2008d0c: 02 80 00 05 be 2008d20 <_Heap_Walk+0x3d0>
2008d10: c2 07 bf fc ld [ %fp + -4 ], %g1
2008d14: 80 88 60 ff btst 0xff, %g1
2008d18: 12 80 00 79 bne 2008efc <_Heap_Walk+0x5ac>
2008d1c: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008d20: 80 a4 c0 1d cmp %l3, %i5
2008d24: 08 80 00 05 bleu 2008d38 <_Heap_Walk+0x3e8>
2008d28: 80 a5 c0 16 cmp %l7, %l6
2008d2c: 80 88 60 ff btst 0xff, %g1
2008d30: 12 80 00 7c bne 2008f20 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
2008d34: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2008d38: 2a 80 00 06 bcs,a 2008d50 <_Heap_Walk+0x400>
2008d3c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
2008d40: 80 88 60 ff btst 0xff, %g1
2008d44: 12 80 00 82 bne 2008f4c <_Heap_Walk+0x5fc>
2008d48: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008d4c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2008d50: 80 88 60 01 btst 1, %g1
2008d54: 02 80 00 19 be 2008db8 <_Heap_Walk+0x468>
2008d58: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2008d5c: 80 a7 20 00 cmp %i4, 0
2008d60: 22 80 00 0e be,a 2008d98 <_Heap_Walk+0x448>
2008d64: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
2008d68: 90 10 00 19 mov %i1, %o0
2008d6c: 92 10 20 00 clr %o1
2008d70: 94 10 00 18 mov %i0, %o2
2008d74: 96 10 00 17 mov %l7, %o3
2008d78: 9f c4 40 00 call %l1
2008d7c: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008d80: 80 a4 80 16 cmp %l2, %l6
2008d84: 02 80 00 43 be 2008e90 <_Heap_Walk+0x540>
2008d88: ae 10 00 16 mov %l6, %l7
2008d8c: f8 05 a0 04 ld [ %l6 + 4 ], %i4
2008d90: 10 bf ff c5 b 2008ca4 <_Heap_Walk+0x354>
2008d94: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008d98: 96 10 00 17 mov %l7, %o3
2008d9c: 90 10 00 19 mov %i1, %o0
2008da0: 92 10 20 00 clr %o1
2008da4: 94 10 00 1a mov %i2, %o2
2008da8: 9f c4 40 00 call %l1
2008dac: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008db0: 10 bf ff f5 b 2008d84 <_Heap_Walk+0x434>
2008db4: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008db8: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008dbc: c2 04 20 08 ld [ %l0 + 8 ], %g1
2008dc0: 05 00 80 57 sethi %hi(0x2015c00), %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008dc4: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008dc8: 80 a0 40 0d cmp %g1, %o5
2008dcc: 02 80 00 05 be 2008de0 <_Heap_Walk+0x490>
2008dd0: 86 10 a0 f0 or %g2, 0xf0, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008dd4: 80 a4 00 0d cmp %l0, %o5
2008dd8: 02 80 00 3e be 2008ed0 <_Heap_Walk+0x580>
2008ddc: 86 16 e0 b8 or %i3, 0xb8, %g3
block->next,
block->next == last_free_block ?
2008de0: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008de4: 19 00 80 57 sethi %hi(0x2015c00), %o4
2008de8: 80 a1 00 01 cmp %g4, %g1
2008dec: 02 80 00 05 be 2008e00 <_Heap_Walk+0x4b0>
2008df0: 84 13 21 10 or %o4, 0x110, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008df4: 80 a4 00 01 cmp %l0, %g1
2008df8: 02 80 00 33 be 2008ec4 <_Heap_Walk+0x574>
2008dfc: 84 16 e0 b8 or %i3, 0xb8, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008e00: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008e04: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
2008e08: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
2008e0c: 90 10 00 19 mov %i1, %o0
2008e10: 92 10 20 00 clr %o1
2008e14: 15 00 80 58 sethi %hi(0x2016000), %o2
2008e18: 96 10 00 17 mov %l7, %o3
2008e1c: 94 12 a0 48 or %o2, 0x48, %o2
2008e20: 9f c4 40 00 call %l1
2008e24: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008e28: da 05 80 00 ld [ %l6 ], %o5
2008e2c: 80 a7 40 0d cmp %i5, %o5
2008e30: 12 80 00 1a bne 2008e98 <_Heap_Walk+0x548>
2008e34: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
2008e38: 02 80 00 29 be 2008edc <_Heap_Walk+0x58c>
2008e3c: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
2008e40: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008e44: 80 a4 00 01 cmp %l0, %g1
2008e48: 02 80 00 0b be 2008e74 <_Heap_Walk+0x524> <== NEVER TAKEN
2008e4c: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
2008e50: 80 a5 c0 01 cmp %l7, %g1
2008e54: 02 bf ff cc be 2008d84 <_Heap_Walk+0x434>
2008e58: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
2008e5c: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008e60: 80 a4 00 01 cmp %l0, %g1
2008e64: 12 bf ff fc bne 2008e54 <_Heap_Walk+0x504>
2008e68: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008e6c: 90 10 00 19 mov %i1, %o0
2008e70: 92 10 20 01 mov 1, %o1
2008e74: 96 10 00 17 mov %l7, %o3
2008e78: 15 00 80 58 sethi %hi(0x2016000), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008e7c: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008e80: 9f c4 40 00 call %l1
2008e84: 94 12 a1 30 or %o2, 0x130, %o2
2008e88: 81 c7 e0 08 ret
2008e8c: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
2008e90: 81 c7 e0 08 ret
2008e94: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
2008e98: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
2008e9c: 90 10 00 19 mov %i1, %o0
2008ea0: 92 10 20 01 mov 1, %o1
2008ea4: 96 10 00 17 mov %l7, %o3
2008ea8: 15 00 80 58 sethi %hi(0x2016000), %o2
2008eac: 98 10 00 1d mov %i5, %o4
2008eb0: 94 12 a0 80 or %o2, 0x80, %o2
2008eb4: 9f c4 40 00 call %l1
2008eb8: b0 10 20 00 clr %i0
2008ebc: 81 c7 e0 08 ret
2008ec0: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008ec4: 09 00 80 57 sethi %hi(0x2015c00), %g4
2008ec8: 10 bf ff ce b 2008e00 <_Heap_Walk+0x4b0>
2008ecc: 84 11 21 20 or %g4, 0x120, %g2 ! 2015d20 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008ed0: 19 00 80 57 sethi %hi(0x2015c00), %o4
2008ed4: 10 bf ff c3 b 2008de0 <_Heap_Walk+0x490>
2008ed8: 86 13 21 00 or %o4, 0x100, %g3 ! 2015d00 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
2008edc: 92 10 20 01 mov 1, %o1
2008ee0: 96 10 00 17 mov %l7, %o3
2008ee4: 15 00 80 58 sethi %hi(0x2016000), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008ee8: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
2008eec: 9f c4 40 00 call %l1
2008ef0: 94 12 a0 c0 or %o2, 0xc0, %o2
2008ef4: 81 c7 e0 08 ret
2008ef8: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
2008efc: 92 10 20 01 mov 1, %o1
2008f00: 96 10 00 17 mov %l7, %o3
2008f04: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008f08: 98 10 00 1d mov %i5, %o4
2008f0c: 94 12 a3 b0 or %o2, 0x3b0, %o2
2008f10: 9f c4 40 00 call %l1
2008f14: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
2008f18: 81 c7 e0 08 ret
2008f1c: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
2008f20: 90 10 00 19 mov %i1, %o0
2008f24: 92 10 20 01 mov 1, %o1
2008f28: 96 10 00 17 mov %l7, %o3
2008f2c: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008f30: 98 10 00 1d mov %i5, %o4
2008f34: 94 12 a3 e0 or %o2, 0x3e0, %o2
2008f38: 9a 10 00 13 mov %l3, %o5
2008f3c: 9f c4 40 00 call %l1
2008f40: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
2008f44: 81 c7 e0 08 ret
2008f48: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
2008f4c: 92 10 20 01 mov 1, %o1
2008f50: 96 10 00 17 mov %l7, %o3
2008f54: 15 00 80 58 sethi %hi(0x2016000), %o2
2008f58: 98 10 00 16 mov %l6, %o4
2008f5c: 94 12 a0 10 or %o2, 0x10, %o2
2008f60: 9f c4 40 00 call %l1
2008f64: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2008f68: 81 c7 e0 08 ret
2008f6c: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008f70: 10 bf ff 47 b 2008c8c <_Heap_Walk+0x33c>
2008f74: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
02006e34 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
2006e34: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2006e38: 23 00 80 58 sethi %hi(0x2016000), %l1
2006e3c: c2 04 61 34 ld [ %l1 + 0x134 ], %g1 ! 2016134 <_IO_Number_of_drivers>
2006e40: 80 a0 60 00 cmp %g1, 0
2006e44: 02 80 00 0c be 2006e74 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
2006e48: a0 10 20 00 clr %l0
2006e4c: a2 14 61 34 or %l1, 0x134, %l1
(void) rtems_io_initialize( major, 0, NULL );
2006e50: 90 10 00 10 mov %l0, %o0
2006e54: 92 10 20 00 clr %o1
2006e58: 40 00 15 a7 call 200c4f4 <rtems_io_initialize>
2006e5c: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2006e60: c2 04 40 00 ld [ %l1 ], %g1
2006e64: a0 04 20 01 inc %l0
2006e68: 80 a0 40 10 cmp %g1, %l0
2006e6c: 18 bf ff fa bgu 2006e54 <_IO_Initialize_all_drivers+0x20>
2006e70: 90 10 00 10 mov %l0, %o0
2006e74: 81 c7 e0 08 ret
2006e78: 81 e8 00 00 restore
02006d68 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
2006d68: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
2006d6c: 03 00 80 54 sethi %hi(0x2015000), %g1
2006d70: 82 10 62 a8 or %g1, 0x2a8, %g1 ! 20152a8 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
2006d74: e2 00 60 34 ld [ %g1 + 0x34 ], %l1
number_of_drivers = Configuration.maximum_drivers;
2006d78: e8 00 60 30 ld [ %g1 + 0x30 ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2006d7c: 80 a4 40 14 cmp %l1, %l4
2006d80: 0a 80 00 08 bcs 2006da0 <_IO_Manager_initialization+0x38>
2006d84: e0 00 60 38 ld [ %g1 + 0x38 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
2006d88: 03 00 80 58 sethi %hi(0x2016000), %g1
2006d8c: e0 20 61 38 st %l0, [ %g1 + 0x138 ] ! 2016138 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
2006d90: 03 00 80 58 sethi %hi(0x2016000), %g1
2006d94: e2 20 61 34 st %l1, [ %g1 + 0x134 ] ! 2016134 <_IO_Number_of_drivers>
return;
2006d98: 81 c7 e0 08 ret
2006d9c: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
2006da0: 83 2d 20 03 sll %l4, 3, %g1
2006da4: a7 2d 20 05 sll %l4, 5, %l3
2006da8: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
2006dac: 40 00 0d 12 call 200a1f4 <_Workspace_Allocate_or_fatal_error>
2006db0: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2006db4: 03 00 80 58 sethi %hi(0x2016000), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2006db8: 25 00 80 58 sethi %hi(0x2016000), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2006dbc: e8 20 61 34 st %l4, [ %g1 + 0x134 ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2006dc0: d0 24 a1 38 st %o0, [ %l2 + 0x138 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
2006dc4: 92 10 20 00 clr %o1
2006dc8: 40 00 21 95 call 200f41c <memset>
2006dcc: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006dd0: 80 a4 60 00 cmp %l1, 0
2006dd4: 02 bf ff f1 be 2006d98 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
2006dd8: da 04 a1 38 ld [ %l2 + 0x138 ], %o5
2006ddc: 82 10 20 00 clr %g1
2006de0: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
2006de4: c4 04 00 01 ld [ %l0 + %g1 ], %g2
2006de8: 86 04 00 01 add %l0, %g1, %g3
2006dec: c4 23 40 01 st %g2, [ %o5 + %g1 ]
2006df0: d8 00 e0 04 ld [ %g3 + 4 ], %o4
2006df4: 84 03 40 01 add %o5, %g1, %g2
2006df8: d8 20 a0 04 st %o4, [ %g2 + 4 ]
2006dfc: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e00: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
2006e04: d8 20 a0 08 st %o4, [ %g2 + 8 ]
2006e08: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e0c: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
2006e10: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
2006e14: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e18: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
2006e1c: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
2006e20: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e24: 18 bf ff f0 bgu 2006de4 <_IO_Manager_initialization+0x7c>
2006e28: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
2006e2c: 81 c7 e0 08 ret
2006e30: 81 e8 00 00 restore
02007b70 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007b70: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007b74: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007b78: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007b7c: 80 a0 60 00 cmp %g1, 0
2007b80: 02 80 00 19 be 2007be4 <_Objects_Allocate+0x74> <== NEVER TAKEN
2007b84: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007b88: a2 04 20 20 add %l0, 0x20, %l1
2007b8c: 7f ff fd 58 call 20070ec <_Chain_Get>
2007b90: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
2007b94: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
2007b98: 80 a0 60 00 cmp %g1, 0
2007b9c: 02 80 00 12 be 2007be4 <_Objects_Allocate+0x74>
2007ba0: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007ba4: 80 a2 20 00 cmp %o0, 0
2007ba8: 02 80 00 11 be 2007bec <_Objects_Allocate+0x7c>
2007bac: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2007bb0: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
2007bb4: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007bb8: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
2007bbc: 40 00 29 94 call 201220c <.udiv>
2007bc0: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007bc4: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2007bc8: 91 2a 20 02 sll %o0, 2, %o0
2007bcc: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
2007bd0: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
2007bd4: 86 00 ff ff add %g3, -1, %g3
2007bd8: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
2007bdc: 82 00 bf ff add %g2, -1, %g1
2007be0: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
2007be4: 81 c7 e0 08 ret
2007be8: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
2007bec: 40 00 00 11 call 2007c30 <_Objects_Extend_information>
2007bf0: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007bf4: 7f ff fd 3e call 20070ec <_Chain_Get>
2007bf8: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
2007bfc: b0 92 20 00 orcc %o0, 0, %i0
2007c00: 32 bf ff ed bne,a 2007bb4 <_Objects_Allocate+0x44>
2007c04: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
2007c08: 81 c7 e0 08 ret
2007c0c: 81 e8 00 00 restore
02007c30 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
2007c30: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007c34: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
2007c38: 80 a5 20 00 cmp %l4, 0
2007c3c: 02 80 00 a9 be 2007ee0 <_Objects_Extend_information+0x2b0>
2007c40: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2007c44: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
2007c48: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
2007c4c: ab 2d 60 10 sll %l5, 0x10, %l5
2007c50: 92 10 00 13 mov %l3, %o1
2007c54: 40 00 29 6e call 201220c <.udiv>
2007c58: 91 35 60 10 srl %l5, 0x10, %o0
2007c5c: bb 2a 20 10 sll %o0, 0x10, %i5
2007c60: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
2007c64: 80 a7 60 00 cmp %i5, 0
2007c68: 02 80 00 a6 be 2007f00 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
2007c6c: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
2007c70: c2 05 00 00 ld [ %l4 ], %g1
2007c74: 80 a0 60 00 cmp %g1, 0
2007c78: 02 80 00 a6 be 2007f10 <_Objects_Extend_information+0x2e0><== NEVER TAKEN
2007c7c: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007c80: 10 80 00 06 b 2007c98 <_Objects_Extend_information+0x68>
2007c84: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007c88: c2 05 00 01 ld [ %l4 + %g1 ], %g1
2007c8c: 80 a0 60 00 cmp %g1, 0
2007c90: 22 80 00 08 be,a 2007cb0 <_Objects_Extend_information+0x80>
2007c94: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007c98: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
2007c9c: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007ca0: 80 a7 40 10 cmp %i5, %l0
2007ca4: 18 bf ff f9 bgu 2007c88 <_Objects_Extend_information+0x58>
2007ca8: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007cac: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007cb0: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007cb4: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007cb8: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007cbc: 82 10 63 ff or %g1, 0x3ff, %g1
2007cc0: 80 a5 40 01 cmp %l5, %g1
2007cc4: 18 80 00 98 bgu 2007f24 <_Objects_Extend_information+0x2f4>
2007cc8: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
2007ccc: 40 00 29 16 call 2012124 <.umul>
2007cd0: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
2007cd4: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
2007cd8: 80 a0 60 00 cmp %g1, 0
2007cdc: 02 80 00 6d be 2007e90 <_Objects_Extend_information+0x260>
2007ce0: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
2007ce4: 40 00 09 34 call 200a1b4 <_Workspace_Allocate>
2007ce8: 01 00 00 00 nop
if ( !new_object_block )
2007cec: a6 92 20 00 orcc %o0, 0, %l3
2007cf0: 02 80 00 8d be 2007f24 <_Objects_Extend_information+0x2f4>
2007cf4: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
2007cf8: 80 8d 20 ff btst 0xff, %l4
2007cfc: 22 80 00 42 be,a 2007e04 <_Objects_Extend_information+0x1d4>
2007d00: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
2007d04: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007d08: 91 2d 20 01 sll %l4, 1, %o0
2007d0c: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
2007d10: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007d14: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
2007d18: 40 00 09 27 call 200a1b4 <_Workspace_Allocate>
2007d1c: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
2007d20: ac 92 20 00 orcc %o0, 0, %l6
2007d24: 02 80 00 7e be 2007f1c <_Objects_Extend_information+0x2ec>
2007d28: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
2007d2c: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2007d30: 80 a4 80 01 cmp %l2, %g1
2007d34: ae 05 80 14 add %l6, %l4, %l7
2007d38: 0a 80 00 5a bcs 2007ea0 <_Objects_Extend_information+0x270>
2007d3c: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2007d40: 80 a4 a0 00 cmp %l2, 0
2007d44: 02 80 00 07 be 2007d60 <_Objects_Extend_information+0x130><== NEVER TAKEN
2007d48: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2007d4c: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2007d50: 82 00 60 01 inc %g1
2007d54: 80 a4 80 01 cmp %l2, %g1
2007d58: 18 bf ff fd bgu 2007d4c <_Objects_Extend_information+0x11c><== NEVER TAKEN
2007d5c: c0 20 80 14 clr [ %g2 + %l4 ]
2007d60: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007d64: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
2007d68: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007d6c: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007d70: 80 a4 40 03 cmp %l1, %g3
2007d74: 1a 80 00 0a bcc 2007d9c <_Objects_Extend_information+0x16c><== NEVER TAKEN
2007d78: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2007d7c: 83 2c 60 02 sll %l1, 2, %g1
2007d80: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007d84: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
2007d88: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
2007d8c: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007d90: 80 a0 80 03 cmp %g2, %g3
2007d94: 0a bf ff fd bcs 2007d88 <_Objects_Extend_information+0x158>
2007d98: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
2007d9c: 7f ff e9 3e call 2002294 <sparc_disable_interrupts>
2007da0: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007da4: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2007da8: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
2007dac: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2007db0: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
2007db4: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007db8: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
2007dbc: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
2007dc0: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
2007dc4: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2007dc8: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007dcc: 03 00 00 40 sethi %hi(0x10000), %g1
2007dd0: ab 35 60 10 srl %l5, 0x10, %l5
2007dd4: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007dd8: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007ddc: 82 10 40 15 or %g1, %l5, %g1
2007de0: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
2007de4: 7f ff e9 30 call 20022a4 <sparc_enable_interrupts>
2007de8: 01 00 00 00 nop
if ( old_tables )
2007dec: 80 a4 a0 00 cmp %l2, 0
2007df0: 22 80 00 05 be,a 2007e04 <_Objects_Extend_information+0x1d4>
2007df4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
2007df8: 40 00 08 f8 call 200a1d8 <_Workspace_Free>
2007dfc: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007e00: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007e04: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
2007e08: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
2007e0c: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007e10: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007e14: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007e18: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007e1c: 90 10 00 12 mov %l2, %o0
2007e20: 40 00 11 cc call 200c550 <_Chain_Initialize>
2007e24: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2007e28: 10 80 00 0d b 2007e5c <_Objects_Extend_information+0x22c>
2007e2c: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
2007e30: c6 16 20 04 lduh [ %i0 + 4 ], %g3
2007e34: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007e38: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007e3c: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007e40: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007e44: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2007e48: 90 10 00 13 mov %l3, %o0
2007e4c: 92 10 00 01 mov %g1, %o1
index++;
2007e50: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2007e54: 7f ff fc 90 call 2007094 <_Chain_Append>
2007e58: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2007e5c: 7f ff fc a4 call 20070ec <_Chain_Get>
2007e60: 90 10 00 12 mov %l2, %o0
2007e64: 82 92 20 00 orcc %o0, 0, %g1
2007e68: 32 bf ff f2 bne,a 2007e30 <_Objects_Extend_information+0x200>
2007e6c: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2007e70: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
2007e74: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2007e78: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2007e7c: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2007e80: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
2007e84: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2007e88: 81 c7 e0 08 ret
2007e8c: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
2007e90: 40 00 08 d9 call 200a1f4 <_Workspace_Allocate_or_fatal_error>
2007e94: 01 00 00 00 nop
2007e98: 10 bf ff 98 b 2007cf8 <_Objects_Extend_information+0xc8>
2007e9c: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2007ea0: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
2007ea4: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2007ea8: 40 00 1d 24 call 200f338 <memcpy>
2007eac: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
2007eb0: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
2007eb4: 94 10 00 1d mov %i5, %o2
2007eb8: 40 00 1d 20 call 200f338 <memcpy>
2007ebc: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2007ec0: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2007ec4: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2007ec8: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2007ecc: 90 10 00 14 mov %l4, %o0
2007ed0: 40 00 1d 1a call 200f338 <memcpy>
2007ed4: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007ed8: 10 bf ff a4 b 2007d68 <_Objects_Extend_information+0x138>
2007edc: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007ee0: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
2007ee4: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007ee8: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007eec: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007ef0: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
2007ef4: ba 10 20 00 clr %i5
2007ef8: 10 bf ff 6e b 2007cb0 <_Objects_Extend_information+0x80>
2007efc: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007f00: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007f04: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007f08: 10 bf ff 6a b 2007cb0 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2007f0c: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
2007f10: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007f14: 10 bf ff 67 b 2007cb0 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2007f18: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
2007f1c: 40 00 08 af call 200a1d8 <_Workspace_Free>
2007f20: 90 10 00 13 mov %l3, %o0
return;
2007f24: 81 c7 e0 08 ret
2007f28: 81 e8 00 00 restore
02007fd8 <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint16_t the_class
)
{
2007fd8: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2007fdc: b3 2e 60 10 sll %i1, 0x10, %i1
2007fe0: b3 36 60 10 srl %i1, 0x10, %i1
2007fe4: 80 a6 60 00 cmp %i1, 0
2007fe8: 12 80 00 04 bne 2007ff8 <_Objects_Get_information+0x20>
2007fec: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
2007ff0: 81 c7 e0 08 ret
2007ff4: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2007ff8: 40 00 12 e4 call 200cb88 <_Objects_API_maximum_class>
2007ffc: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
2008000: 80 a2 20 00 cmp %o0, 0
2008004: 02 bf ff fb be 2007ff0 <_Objects_Get_information+0x18>
2008008: 80 a2 00 19 cmp %o0, %i1
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
200800c: 0a bf ff f9 bcs 2007ff0 <_Objects_Get_information+0x18>
2008010: 03 00 80 57 sethi %hi(0x2015c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2008014: b1 2e 20 02 sll %i0, 2, %i0
2008018: 82 10 61 a8 or %g1, 0x1a8, %g1
200801c: c2 00 40 18 ld [ %g1 + %i0 ], %g1
2008020: 80 a0 60 00 cmp %g1, 0
2008024: 02 bf ff f3 be 2007ff0 <_Objects_Get_information+0x18> <== NEVER TAKEN
2008028: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
200802c: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
2008030: 80 a4 20 00 cmp %l0, 0
2008034: 02 bf ff ef be 2007ff0 <_Objects_Get_information+0x18> <== NEVER TAKEN
2008038: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
200803c: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
2008040: 80 a0 00 01 cmp %g0, %g1
2008044: 82 60 20 00 subx %g0, 0, %g1
2008048: 10 bf ff ea b 2007ff0 <_Objects_Get_information+0x18>
200804c: a0 0c 00 01 and %l0, %g1, %l0
02009d84 <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
2009d84: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
2009d88: 80 a6 60 00 cmp %i1, 0
2009d8c: 12 80 00 05 bne 2009da0 <_Objects_Get_name_as_string+0x1c>
2009d90: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
2009d94: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
2009d98: 81 c7 e0 08 ret
2009d9c: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
2009da0: 02 bf ff fe be 2009d98 <_Objects_Get_name_as_string+0x14>
2009da4: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009da8: 12 80 00 04 bne 2009db8 <_Objects_Get_name_as_string+0x34>
2009dac: 03 00 80 9b sethi %hi(0x2026c00), %g1
2009db0: c2 00 60 08 ld [ %g1 + 8 ], %g1 ! 2026c08 <_Per_CPU_Information+0xc>
2009db4: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
2009db8: 7f ff ff b1 call 2009c7c <_Objects_Get_information_id>
2009dbc: 90 10 00 18 mov %i0, %o0
if ( !information )
2009dc0: 80 a2 20 00 cmp %o0, 0
2009dc4: 22 bf ff f5 be,a 2009d98 <_Objects_Get_name_as_string+0x14>
2009dc8: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
2009dcc: 92 10 00 18 mov %i0, %o1
2009dd0: 40 00 00 2d call 2009e84 <_Objects_Get>
2009dd4: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
2009dd8: c2 07 bf fc ld [ %fp + -4 ], %g1
2009ddc: 80 a0 60 00 cmp %g1, 0
2009de0: 32 bf ff ee bne,a 2009d98 <_Objects_Get_name_as_string+0x14>
2009de4: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
2009de8: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
2009dec: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009df0: 89 30 60 18 srl %g1, 0x18, %g4
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009df4: 87 30 60 10 srl %g1, 0x10, %g3
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009df8: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009dfc: c6 2f bf f1 stb %g3, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009e00: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009e04: c8 2f bf f0 stb %g4, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
2009e08: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009e0c: 84 10 00 04 mov %g4, %g2
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009e10: b2 86 7f ff addcc %i1, -1, %i1
2009e14: 02 80 00 19 be 2009e78 <_Objects_Get_name_as_string+0xf4> <== NEVER TAKEN
2009e18: 86 10 00 1a mov %i2, %g3
2009e1c: 80 a1 20 00 cmp %g4, 0
2009e20: 02 80 00 16 be 2009e78 <_Objects_Get_name_as_string+0xf4>
2009e24: 19 00 80 78 sethi %hi(0x201e000), %o4
2009e28: 82 10 20 00 clr %g1
2009e2c: 10 80 00 06 b 2009e44 <_Objects_Get_name_as_string+0xc0>
2009e30: 98 13 22 8c or %o4, 0x28c, %o4
2009e34: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
2009e38: 80 a3 60 00 cmp %o5, 0
2009e3c: 02 80 00 0f be 2009e78 <_Objects_Get_name_as_string+0xf4>
2009e40: c4 09 00 01 ldub [ %g4 + %g1 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
2009e44: da 03 00 00 ld [ %o4 ], %o5
2009e48: 88 08 a0 ff and %g2, 0xff, %g4
2009e4c: 88 03 40 04 add %o5, %g4, %g4
2009e50: da 49 20 01 ldsb [ %g4 + 1 ], %o5
2009e54: 80 8b 60 97 btst 0x97, %o5
2009e58: 12 80 00 03 bne 2009e64 <_Objects_Get_name_as_string+0xe0>
2009e5c: 88 07 bf f0 add %fp, -16, %g4
2009e60: 84 10 20 2a mov 0x2a, %g2
2009e64: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009e68: 82 00 60 01 inc %g1
2009e6c: 80 a0 40 19 cmp %g1, %i1
2009e70: 0a bf ff f1 bcs 2009e34 <_Objects_Get_name_as_string+0xb0>
2009e74: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
2009e78: 40 00 03 1c call 200aae8 <_Thread_Enable_dispatch>
2009e7c: c0 28 c0 00 clrb [ %g3 ]
return name;
2009e80: 30 bf ff c6 b,a 2009d98 <_Objects_Get_name_as_string+0x14>
02019384 <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
2019384: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
2019388: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
201938c: 84 22 40 02 sub %o1, %g2, %g2
2019390: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
2019394: 80 a0 80 01 cmp %g2, %g1
2019398: 18 80 00 09 bgu 20193bc <_Objects_Get_no_protection+0x38>
201939c: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
20193a0: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
20193a4: d0 00 40 02 ld [ %g1 + %g2 ], %o0
20193a8: 80 a2 20 00 cmp %o0, 0
20193ac: 02 80 00 05 be 20193c0 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
20193b0: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
20193b4: 81 c3 e0 08 retl
20193b8: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
20193bc: 82 10 20 01 mov 1, %g1
return NULL;
20193c0: 90 10 20 00 clr %o0
}
20193c4: 81 c3 e0 08 retl
20193c8: c2 22 80 00 st %g1, [ %o2 ]
02009878 <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
2009878: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
200987c: 80 a6 20 00 cmp %i0, 0
2009880: 12 80 00 06 bne 2009898 <_Objects_Id_to_name+0x20>
2009884: 83 36 20 18 srl %i0, 0x18, %g1
2009888: 03 00 80 77 sethi %hi(0x201dc00), %g1
200988c: c2 00 63 08 ld [ %g1 + 0x308 ], %g1 ! 201df08 <_Per_CPU_Information+0xc>
2009890: f0 00 60 08 ld [ %g1 + 8 ], %i0
2009894: 83 36 20 18 srl %i0, 0x18, %g1
2009898: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
200989c: 84 00 7f ff add %g1, -1, %g2
20098a0: 80 a0 a0 02 cmp %g2, 2
20098a4: 18 80 00 17 bgu 2009900 <_Objects_Id_to_name+0x88>
20098a8: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
20098ac: 83 28 60 02 sll %g1, 2, %g1
20098b0: 05 00 80 77 sethi %hi(0x201dc00), %g2
20098b4: 84 10 a0 08 or %g2, 8, %g2 ! 201dc08 <_Objects_Information_table>
20098b8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
20098bc: 80 a0 60 00 cmp %g1, 0
20098c0: 02 80 00 10 be 2009900 <_Objects_Id_to_name+0x88>
20098c4: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
20098c8: 85 28 a0 02 sll %g2, 2, %g2
20098cc: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
20098d0: 80 a2 20 00 cmp %o0, 0
20098d4: 02 80 00 0b be 2009900 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
20098d8: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
20098dc: 7f ff ff ca call 2009804 <_Objects_Get>
20098e0: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
20098e4: 80 a2 20 00 cmp %o0, 0
20098e8: 02 80 00 06 be 2009900 <_Objects_Id_to_name+0x88>
20098ec: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
20098f0: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
20098f4: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
20098f8: 40 00 03 2c call 200a5a8 <_Thread_Enable_dispatch>
20098fc: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2009900: 81 c7 e0 08 ret
2009904: 91 e8 00 10 restore %g0, %l0, %o0
02008138 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2008138: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
200813c: 05 00 80 57 sethi %hi(0x2015c00), %g2
2008140: 83 2e 60 02 sll %i1, 2, %g1
2008144: 84 10 a1 a8 or %g2, 0x1a8, %g2
2008148: c2 00 80 01 ld [ %g2 + %g1 ], %g1
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
200814c: f4 36 20 04 sth %i2, [ %i0 + 4 ]
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
2008150: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
information->size = size;
2008154: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
2008158: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
200815c: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
2008160: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
2008164: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
2008168: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
200816c: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
2008170: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
2008174: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
2008178: b5 2e a0 10 sll %i2, 0x10, %i2
200817c: b5 36 a0 10 srl %i2, 0x10, %i2
2008180: 85 2e a0 02 sll %i2, 2, %g2
2008184: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
2008188: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
200818c: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
2008190: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
2008194: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
2008198: 02 80 00 05 be 20081ac <_Objects_Initialize_information+0x74>
200819c: b6 2e c0 01 andn %i3, %g1, %i3
20081a0: 80 a6 e0 00 cmp %i3, 0
20081a4: 02 80 00 27 be 2008240 <_Objects_Initialize_information+0x108>
20081a8: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20081ac: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
20081b0: 80 a0 00 1b cmp %g0, %i3
20081b4: b3 2e 60 18 sll %i1, 0x18, %i1
20081b8: 82 40 20 00 addx %g0, 0, %g1
20081bc: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
20081c0: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
20081c4: 05 00 80 56 sethi %hi(0x2015800), %g2
20081c8: b4 16 40 1a or %i1, %i2, %i2
20081cc: 84 10 a2 f4 or %g2, 0x2f4, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
20081d0: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
20081d4: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
20081d8: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
20081dc: 80 88 e0 03 btst 3, %g3
20081e0: 12 80 00 0c bne 2008210 <_Objects_Initialize_information+0xd8><== NEVER TAKEN
20081e4: f4 26 20 08 st %i2, [ %i0 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
20081e8: 84 06 20 24 add %i0, 0x24, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
20081ec: 82 06 20 20 add %i0, 0x20, %g1
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
20081f0: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20081f4: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
head->previous = NULL;
20081f8: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
20081fc: 80 a6 e0 00 cmp %i3, 0
2008200: 12 80 00 0e bne 2008238 <_Objects_Initialize_information+0x100>
2008204: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
2008208: 81 c7 e0 08 ret
200820c: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2008210: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
2008214: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
2008218: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
200821c: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
2008220: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2008224: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
head->previous = NULL;
2008228: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
200822c: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
2008230: 02 bf ff f6 be 2008208 <_Objects_Initialize_information+0xd0><== NOT EXECUTED
2008234: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
2008238: 7f ff fe 7e call 2007c30 <_Objects_Extend_information>
200823c: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
2008240: 92 10 20 01 mov 1, %o1
2008244: 7f ff fe 1e call 2007abc <_Internal_error_Occurred>
2008248: 94 10 20 13 mov 0x13, %o2
02008308 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
2008308: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
200830c: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
2008310: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
2008314: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
2008318: 92 10 00 11 mov %l1, %o1
200831c: 40 00 27 bc call 201220c <.udiv>
2008320: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2008324: 80 a2 20 00 cmp %o0, 0
2008328: 02 80 00 34 be 20083f8 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN
200832c: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
2008330: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
2008334: c2 01 00 00 ld [ %g4 ], %g1
2008338: 80 a4 40 01 cmp %l1, %g1
200833c: 02 80 00 0f be 2008378 <_Objects_Shrink_information+0x70> <== NEVER TAKEN
2008340: 82 10 20 00 clr %g1
2008344: 10 80 00 07 b 2008360 <_Objects_Shrink_information+0x58>
2008348: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
200834c: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
2008350: 80 a4 40 02 cmp %l1, %g2
2008354: 02 80 00 0a be 200837c <_Objects_Shrink_information+0x74>
2008358: a0 04 00 11 add %l0, %l1, %l0
200835c: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2008360: 82 00 60 01 inc %g1
2008364: 80 a2 00 01 cmp %o0, %g1
2008368: 38 bf ff f9 bgu,a 200834c <_Objects_Shrink_information+0x44>
200836c: c4 01 00 12 ld [ %g4 + %l2 ], %g2
2008370: 81 c7 e0 08 ret
2008374: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
2008378: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
200837c: 10 80 00 06 b 2008394 <_Objects_Shrink_information+0x8c>
2008380: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
2008384: 80 a4 60 00 cmp %l1, 0
2008388: 22 80 00 12 be,a 20083d0 <_Objects_Shrink_information+0xc8>
200838c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
2008390: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
2008394: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2008398: 80 a0 40 10 cmp %g1, %l0
200839c: 0a bf ff fa bcs 2008384 <_Objects_Shrink_information+0x7c>
20083a0: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
20083a4: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
20083a8: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
20083ac: 80 a0 40 02 cmp %g1, %g2
20083b0: 1a bf ff f6 bcc 2008388 <_Objects_Shrink_information+0x80>
20083b4: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
20083b8: 7f ff fb 43 call 20070c4 <_Chain_Extract>
20083bc: 01 00 00 00 nop
}
}
while ( the_object );
20083c0: 80 a4 60 00 cmp %l1, 0
20083c4: 12 bf ff f4 bne 2008394 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
20083c8: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
20083cc: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
20083d0: 40 00 07 82 call 200a1d8 <_Workspace_Free>
20083d4: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
20083d8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
20083dc: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
20083e0: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
20083e4: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
20083e8: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
20083ec: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
20083f0: 82 20 80 01 sub %g2, %g1, %g1
20083f4: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
20083f8: 81 c7 e0 08 ret
20083fc: 81 e8 00 00 restore
02006a5c <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
2006a5c: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
2006a60: 03 00 80 54 sethi %hi(0x2015000), %g1
2006a64: 82 10 62 70 or %g1, 0x270, %g1 ! 2015270 <Configuration_RTEMS_API>
2006a68: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
2006a6c: 80 a4 20 00 cmp %l0, 0
2006a70: 02 80 00 19 be 2006ad4 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
2006a74: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006a78: 80 a4 a0 00 cmp %l2, 0
2006a7c: 02 80 00 16 be 2006ad4 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
2006a80: a2 10 20 00 clr %l1
2006a84: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
2006a88: d4 04 20 04 ld [ %l0 + 4 ], %o2
2006a8c: d0 04 00 00 ld [ %l0 ], %o0
2006a90: d2 04 20 08 ld [ %l0 + 8 ], %o1
2006a94: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
2006a98: d8 04 20 0c ld [ %l0 + 0xc ], %o4
2006a9c: 7f ff ff 6d call 2006850 <rtems_task_create>
2006aa0: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
2006aa4: 94 92 20 00 orcc %o0, 0, %o2
2006aa8: 12 80 00 0d bne 2006adc <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
2006aac: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
2006ab0: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
2006ab4: 40 00 00 0e call 2006aec <rtems_task_start>
2006ab8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2006abc: 94 92 20 00 orcc %o0, 0, %o2
2006ac0: 12 80 00 07 bne 2006adc <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
2006ac4: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006ac8: 80 a4 80 11 cmp %l2, %l1
2006acc: 18 bf ff ef bgu 2006a88 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
2006ad0: a0 04 20 1c add %l0, 0x1c, %l0
2006ad4: 81 c7 e0 08 ret
2006ad8: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
2006adc: 90 10 20 01 mov 1, %o0
2006ae0: 40 00 03 f7 call 2007abc <_Internal_error_Occurred>
2006ae4: 92 10 20 01 mov 1, %o1
0200c2b0 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200c2b0: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200c2b4: e0 06 21 58 ld [ %i0 + 0x158 ], %l0
if ( !api )
200c2b8: 80 a4 20 00 cmp %l0, 0
200c2bc: 02 80 00 1f be 200c338 <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
200c2c0: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200c2c4: 7f ff d7 f4 call 2002294 <sparc_disable_interrupts>
200c2c8: 01 00 00 00 nop
signal_set = asr->signals_posted;
200c2cc: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
200c2d0: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200c2d4: 7f ff d7 f4 call 20022a4 <sparc_enable_interrupts>
200c2d8: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200c2dc: 80 a4 60 00 cmp %l1, 0
200c2e0: 32 80 00 04 bne,a 200c2f0 <_RTEMS_tasks_Post_switch_extension+0x40>
200c2e4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200c2e8: 81 c7 e0 08 ret
200c2ec: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c2f0: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200c2f4: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c2f8: a4 07 bf fc add %fp, -4, %l2
200c2fc: 27 00 00 3f sethi %hi(0xfc00), %l3
200c300: 94 10 00 12 mov %l2, %o2
200c304: 92 14 e3 ff or %l3, 0x3ff, %o1
200c308: 40 00 08 37 call 200e3e4 <rtems_task_mode>
200c30c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
200c310: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200c314: 9f c0 40 00 call %g1
200c318: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
200c31c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c320: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200c324: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c328: 92 14 e3 ff or %l3, 0x3ff, %o1
200c32c: 94 10 00 12 mov %l2, %o2
200c330: 40 00 08 2d call 200e3e4 <rtems_task_mode>
200c334: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
200c338: 81 c7 e0 08 ret
200c33c: 81 e8 00 00 restore
0200c220 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200c220: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
200c224: 80 a0 60 00 cmp %g1, 0
200c228: 22 80 00 0b be,a 200c254 <_RTEMS_tasks_Switch_extension+0x34>
200c22c: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
tvp->tval = *tvp->ptr;
200c230: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200c234: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200c238: c8 00 80 00 ld [ %g2 ], %g4
200c23c: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
200c240: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200c244: 80 a0 60 00 cmp %g1, 0
200c248: 12 bf ff fa bne 200c230 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
200c24c: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200c250: c2 02 61 64 ld [ %o1 + 0x164 ], %g1
while (tvp) {
200c254: 80 a0 60 00 cmp %g1, 0
200c258: 02 80 00 0a be 200c280 <_RTEMS_tasks_Switch_extension+0x60>
200c25c: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200c260: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200c264: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200c268: c8 00 80 00 ld [ %g2 ], %g4
200c26c: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
200c270: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200c274: 80 a0 60 00 cmp %g1, 0
200c278: 12 bf ff fa bne 200c260 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
200c27c: c6 20 80 00 st %g3, [ %g2 ]
200c280: 81 c3 e0 08 retl
02007d70 <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007d70: 9d e3 bf 98 save %sp, -104, %sp
2007d74: 11 00 80 78 sethi %hi(0x201e000), %o0
2007d78: 92 10 00 18 mov %i0, %o1
2007d7c: 90 12 22 04 or %o0, 0x204, %o0
2007d80: 40 00 08 46 call 2009e98 <_Objects_Get>
2007d84: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007d88: c2 07 bf fc ld [ %fp + -4 ], %g1
2007d8c: 80 a0 60 00 cmp %g1, 0
2007d90: 12 80 00 16 bne 2007de8 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
2007d94: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007d98: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007d9c: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007da0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007da4: 80 88 80 01 btst %g2, %g1
2007da8: 22 80 00 08 be,a 2007dc8 <_Rate_monotonic_Timeout+0x58>
2007dac: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007db0: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007db4: c2 04 20 08 ld [ %l0 + 8 ], %g1
2007db8: 80 a0 80 01 cmp %g2, %g1
2007dbc: 02 80 00 19 be 2007e20 <_Rate_monotonic_Timeout+0xb0>
2007dc0: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007dc4: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007dc8: 80 a0 60 01 cmp %g1, 1
2007dcc: 02 80 00 09 be 2007df0 <_Rate_monotonic_Timeout+0x80>
2007dd0: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007dd4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2007dd8: 03 00 80 78 sethi %hi(0x201e000), %g1
2007ddc: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201e370 <_Thread_Dispatch_disable_level>
2007de0: 84 00 bf ff add %g2, -1, %g2
2007de4: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
2007de8: 81 c7 e0 08 ret
2007dec: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007df0: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
2007df4: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007df8: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007dfc: 7f ff fe 4c call 200772c <_Rate_monotonic_Initiate_statistics>
2007e00: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007e04: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007e08: 11 00 80 79 sethi %hi(0x201e400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007e0c: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007e10: 90 12 20 54 or %o0, 0x54, %o0
2007e14: 40 00 0f f3 call 200bde0 <_Watchdog_Insert>
2007e18: 92 04 20 10 add %l0, 0x10, %o1
2007e1c: 30 bf ff ef b,a 2007dd8 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007e20: 40 00 0a 74 call 200a7f0 <_Thread_Clear_state>
2007e24: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
2007e28: 10 bf ff f5 b 2007dfc <_Rate_monotonic_Timeout+0x8c>
2007e2c: 90 10 00 10 mov %l0, %o0
0200cbb0 <_Scheduler_priority_Block>:
void _Scheduler_priority_Block(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
200cbb0: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_extract(
Thread_Control *the_thread
)
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
200cbb4: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
200cbb8: c2 00 40 00 ld [ %g1 ], %g1
if ( _Chain_Has_only_one_node( ready ) ) {
200cbbc: c6 00 40 00 ld [ %g1 ], %g3
200cbc0: c4 00 60 08 ld [ %g1 + 8 ], %g2
200cbc4: 80 a0 c0 02 cmp %g3, %g2
200cbc8: 22 80 00 39 be,a 200ccac <_Scheduler_priority_Block+0xfc>
200cbcc: c0 20 60 04 clr [ %g1 + 4 ]
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
200cbd0: c4 06 40 00 ld [ %i1 ], %g2
previous = the_node->previous;
200cbd4: c2 06 60 04 ld [ %i1 + 4 ], %g1
next->previous = previous;
200cbd8: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
200cbdc: c4 20 40 00 st %g2, [ %g1 ]
RTEMS_INLINE_ROUTINE bool _Thread_Is_heir (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Heir );
200cbe0: 03 00 80 58 sethi %hi(0x2016000), %g1
200cbe4: 82 10 60 9c or %g1, 0x9c, %g1 ! 201609c <_Per_CPU_Information>
{
_Scheduler_priority_Ready_queue_extract(the_thread);
/* TODO: flash critical section */
if ( _Thread_Is_heir( the_thread ) )
200cbe8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200cbec: 80 a6 40 02 cmp %i1, %g2
200cbf0: 02 80 00 09 be 200cc14 <_Scheduler_priority_Block+0x64>
200cbf4: 05 00 80 58 sethi %hi(0x2016000), %g2
_Scheduler_priority_Schedule_body(the_scheduler);
if ( _Thread_Is_executing( the_thread ) )
200cbf8: c4 00 60 0c ld [ %g1 + 0xc ], %g2
200cbfc: 80 a6 40 02 cmp %i1, %g2
200cc00: 12 80 00 03 bne 200cc0c <_Scheduler_priority_Block+0x5c>
200cc04: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
200cc08: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
200cc0c: 81 c7 e0 08 ret
200cc10: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
200cc14: c4 10 a0 c0 lduh [ %g2 + 0xc0 ], %g2
200cc18: 85 28 a0 10 sll %g2, 0x10, %g2
200cc1c: 89 30 a0 10 srl %g2, 0x10, %g4
200cc20: 80 a1 20 ff cmp %g4, 0xff
200cc24: 18 80 00 38 bgu 200cd04 <_Scheduler_priority_Block+0x154>
200cc28: c6 06 00 00 ld [ %i0 ], %g3
200cc2c: 1b 00 80 52 sethi %hi(0x2014800), %o5
200cc30: 9a 13 60 b8 or %o5, 0xb8, %o5 ! 20148b8 <__log2table>
200cc34: c4 0b 40 04 ldub [ %o5 + %g4 ], %g2
200cc38: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
200cc3c: 85 28 a0 10 sll %g2, 0x10, %g2
200cc40: 19 00 80 58 sethi %hi(0x2016000), %o4
200cc44: 89 30 a0 0f srl %g2, 0xf, %g4
200cc48: 98 13 20 d0 or %o4, 0xd0, %o4
200cc4c: c8 13 00 04 lduh [ %o4 + %g4 ], %g4
200cc50: 89 29 20 10 sll %g4, 0x10, %g4
200cc54: 99 31 20 10 srl %g4, 0x10, %o4
200cc58: 80 a3 20 ff cmp %o4, 0xff
200cc5c: 38 80 00 28 bgu,a 200ccfc <_Scheduler_priority_Block+0x14c>
200cc60: 89 31 20 18 srl %g4, 0x18, %g4
200cc64: c8 0b 40 0c ldub [ %o5 + %o4 ], %g4
200cc68: 88 01 20 08 add %g4, 8, %g4
return (_Priority_Bits_index( major ) << 4) +
200cc6c: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
200cc70: 89 29 20 10 sll %g4, 0x10, %g4
200cc74: 89 31 20 10 srl %g4, 0x10, %g4
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
200cc78: 88 01 00 02 add %g4, %g2, %g4
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
200cc7c: 9b 29 20 02 sll %g4, 2, %o5
200cc80: 85 29 20 04 sll %g4, 4, %g2
200cc84: 84 20 80 0d sub %g2, %o5, %g2
_Scheduler_priority_Block_body(the_scheduler, the_thread);
}
200cc88: da 00 c0 02 ld [ %g3 + %g2 ], %o5
200cc8c: 84 00 c0 02 add %g3, %g2, %g2
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200cc90: 84 00 a0 04 add %g2, 4, %g2
200cc94: 80 a3 40 02 cmp %o5, %g2
200cc98: 02 80 00 03 be 200cca4 <_Scheduler_priority_Block+0xf4> <== NEVER TAKEN
200cc9c: 88 10 20 00 clr %g4
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
200cca0: 88 10 00 0d mov %o5, %g4
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
200cca4: 10 bf ff d5 b 200cbf8 <_Scheduler_priority_Block+0x48>
200cca8: c8 20 60 10 st %g4, [ %g1 + 0x10 ]
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
head->previous = NULL;
tail->previous = head;
200ccac: c2 20 60 08 st %g1, [ %g1 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
200ccb0: 84 00 60 04 add %g1, 4, %g2
head->next = tail;
200ccb4: c4 20 40 00 st %g2, [ %g1 ]
{
Chain_Control *ready = the_thread->scheduler.priority->ready_chain;
if ( _Chain_Has_only_one_node( ready ) ) {
_Chain_Initialize_empty( ready );
_Priority_bit_map_Remove( &the_thread->scheduler.priority->Priority_map );
200ccb8: c2 06 60 8c ld [ %i1 + 0x8c ], %g1
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Remove (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor &= the_priority_map->block_minor;
200ccbc: c6 00 60 04 ld [ %g1 + 4 ], %g3
200ccc0: c4 10 60 0e lduh [ %g1 + 0xe ], %g2
200ccc4: c8 10 c0 00 lduh [ %g3 ], %g4
200ccc8: 84 09 00 02 and %g4, %g2, %g2
200cccc: c4 30 c0 00 sth %g2, [ %g3 ]
if ( *the_priority_map->minor == 0 )
200ccd0: 85 28 a0 10 sll %g2, 0x10, %g2
200ccd4: 80 a0 a0 00 cmp %g2, 0
200ccd8: 32 bf ff c3 bne,a 200cbe4 <_Scheduler_priority_Block+0x34>
200ccdc: 03 00 80 58 sethi %hi(0x2016000), %g1
_Priority_Major_bit_map &= the_priority_map->block_major;
200cce0: 05 00 80 58 sethi %hi(0x2016000), %g2
200cce4: c2 10 60 0c lduh [ %g1 + 0xc ], %g1
200cce8: c6 10 a0 c0 lduh [ %g2 + 0xc0 ], %g3
200ccec: 82 08 c0 01 and %g3, %g1, %g1
200ccf0: c2 30 a0 c0 sth %g1, [ %g2 + 0xc0 ]
200ccf4: 10 bf ff bc b 200cbe4 <_Scheduler_priority_Block+0x34>
200ccf8: 03 00 80 58 sethi %hi(0x2016000), %g1
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
200ccfc: 10 bf ff dc b 200cc6c <_Scheduler_priority_Block+0xbc>
200cd00: c8 0b 40 04 ldub [ %o5 + %g4 ], %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
200cd04: 1b 00 80 52 sethi %hi(0x2014800), %o5
200cd08: 85 30 a0 18 srl %g2, 0x18, %g2
200cd0c: 9a 13 60 b8 or %o5, 0xb8, %o5
200cd10: 10 bf ff cb b 200cc3c <_Scheduler_priority_Block+0x8c>
200cd14: c4 0b 40 02 ldub [ %o5 + %g2 ], %g2
02008574 <_Scheduler_priority_Schedule>:
*/
void _Scheduler_priority_Schedule(
Scheduler_Control *the_scheduler
)
{
2008574: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2008578: 03 00 80 58 sethi %hi(0x2016000), %g1
200857c: c2 10 60 c0 lduh [ %g1 + 0xc0 ], %g1 ! 20160c0 <_Priority_Major_bit_map>
2008580: 83 28 60 10 sll %g1, 0x10, %g1
2008584: 87 30 60 10 srl %g1, 0x10, %g3
2008588: 80 a0 e0 ff cmp %g3, 0xff
200858c: 18 80 00 26 bgu 2008624 <_Scheduler_priority_Schedule+0xb0>
2008590: c4 06 00 00 ld [ %i0 ], %g2
2008594: 09 00 80 52 sethi %hi(0x2014800), %g4
2008598: 88 11 20 b8 or %g4, 0xb8, %g4 ! 20148b8 <__log2table>
200859c: c2 09 00 03 ldub [ %g4 + %g3 ], %g1
20085a0: 82 00 60 08 add %g1, 8, %g1
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
20085a4: 83 28 60 10 sll %g1, 0x10, %g1
20085a8: 1b 00 80 58 sethi %hi(0x2016000), %o5
20085ac: 87 30 60 0f srl %g1, 0xf, %g3
20085b0: 9a 13 60 d0 or %o5, 0xd0, %o5
20085b4: c6 13 40 03 lduh [ %o5 + %g3 ], %g3
20085b8: 87 28 e0 10 sll %g3, 0x10, %g3
20085bc: 9b 30 e0 10 srl %g3, 0x10, %o5
20085c0: 80 a3 60 ff cmp %o5, 0xff
20085c4: 38 80 00 16 bgu,a 200861c <_Scheduler_priority_Schedule+0xa8>
20085c8: 87 30 e0 18 srl %g3, 0x18, %g3
20085cc: c6 09 00 0d ldub [ %g4 + %o5 ], %g3
20085d0: 86 00 e0 08 add %g3, 8, %g3
return (_Priority_Bits_index( major ) << 4) +
20085d4: 83 30 60 0c srl %g1, 0xc, %g1
_Priority_Bits_index( minor );
20085d8: 87 28 e0 10 sll %g3, 0x10, %g3
20085dc: 87 30 e0 10 srl %g3, 0x10, %g3
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
return (_Priority_Bits_index( major ) << 4) +
20085e0: 86 00 c0 01 add %g3, %g1, %g3
Chain_Control *the_ready_queue
)
{
Priority_Control index = _Priority_bit_map_Get_highest();
if ( !_Chain_Is_empty( &the_ready_queue[ index ] ) )
20085e4: 89 28 e0 02 sll %g3, 2, %g4
20085e8: 83 28 e0 04 sll %g3, 4, %g1
20085ec: 82 20 40 04 sub %g1, %g4, %g1
_Scheduler_priority_Schedule_body( the_scheduler );
}
20085f0: c8 00 80 01 ld [ %g2 + %g1 ], %g4
20085f4: 82 00 80 01 add %g2, %g1, %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
20085f8: 82 00 60 04 add %g1, 4, %g1
20085fc: 80 a1 00 01 cmp %g4, %g1
2008600: 02 80 00 03 be 200860c <_Scheduler_priority_Schedule+0x98><== NEVER TAKEN
2008604: 86 10 20 00 clr %g3
return (Thread_Control *) _Chain_First( &the_ready_queue[ index ] );
2008608: 86 10 00 04 mov %g4, %g3
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Schedule_body(
Scheduler_Control *the_scheduler
)
{
_Thread_Heir = _Scheduler_priority_Ready_queue_first(
200860c: 03 00 80 58 sethi %hi(0x2016000), %g1
2008610: c6 20 60 ac st %g3, [ %g1 + 0xac ] ! 20160ac <_Per_CPU_Information+0x10>
2008614: 81 c7 e0 08 ret
2008618: 81 e8 00 00 restore
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
200861c: 10 bf ff ee b 20085d4 <_Scheduler_priority_Schedule+0x60>
2008620: c6 09 00 03 ldub [ %g4 + %g3 ], %g3
RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void )
{
Priority_bit_map_Control minor;
Priority_bit_map_Control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2008624: 09 00 80 52 sethi %hi(0x2014800), %g4
2008628: 83 30 60 18 srl %g1, 0x18, %g1
200862c: 88 11 20 b8 or %g4, 0xb8, %g4
2008630: 10 bf ff dd b 20085a4 <_Scheduler_priority_Schedule+0x30>
2008634: c2 09 00 01 ldub [ %g4 + %g1 ], %g1
02008774 <_Scheduler_priority_Yield>:
*/
void _Scheduler_priority_Yield(
Scheduler_Control *the_scheduler __attribute__((unused))
)
{
2008774: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
2008778: 25 00 80 58 sethi %hi(0x2016000), %l2
200877c: a4 14 a0 9c or %l2, 0x9c, %l2 ! 201609c <_Per_CPU_Information>
2008780: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->scheduler.priority->ready_chain;
2008784: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
_ISR_Disable( level );
2008788: 7f ff e6 c3 call 2002294 <sparc_disable_interrupts>
200878c: e2 00 40 00 ld [ %g1 ], %l1
2008790: b0 10 00 08 mov %o0, %i0
if ( !_Chain_Has_only_one_node( ready ) ) {
2008794: c4 04 40 00 ld [ %l1 ], %g2
2008798: c2 04 60 08 ld [ %l1 + 8 ], %g1
200879c: 80 a0 80 01 cmp %g2, %g1
20087a0: 02 80 00 16 be 20087f8 <_Scheduler_priority_Yield+0x84>
20087a4: 86 04 60 04 add %l1, 4, %g3
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
20087a8: c2 04 20 04 ld [ %l0 + 4 ], %g1
)
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
20087ac: c4 04 00 00 ld [ %l0 ], %g2
previous = the_node->previous;
next->previous = previous;
20087b0: c2 20 a0 04 st %g1, [ %g2 + 4 ]
previous->next = next;
20087b4: c4 20 40 00 st %g2, [ %g1 ]
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
20087b8: c2 04 60 08 ld [ %l1 + 8 ], %g1
the_node->next = tail;
20087bc: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
20087c0: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last->next = the_node;
20087c4: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
20087c8: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
20087cc: 7f ff e6 b6 call 20022a4 <sparc_enable_interrupts>
20087d0: 01 00 00 00 nop
20087d4: 7f ff e6 b0 call 2002294 <sparc_disable_interrupts>
20087d8: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
20087dc: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
20087e0: 80 a4 00 01 cmp %l0, %g1
20087e4: 02 80 00 0b be 2008810 <_Scheduler_priority_Yield+0x9c> <== ALWAYS TAKEN
20087e8: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
20087ec: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
20087f0: 7f ff e6 ad call 20022a4 <sparc_enable_interrupts>
20087f4: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
20087f8: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
20087fc: 80 a4 00 01 cmp %l0, %g1
2008800: 02 bf ff fc be 20087f0 <_Scheduler_priority_Yield+0x7c> <== ALWAYS TAKEN
2008804: 82 10 20 01 mov 1, %g1
_Thread_Dispatch_necessary = true;
2008808: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
200880c: 30 bf ff f9 b,a 20087f0 <_Scheduler_priority_Yield+0x7c> <== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) _Chain_First( ready );
2008810: c2 04 40 00 ld [ %l1 ], %g1
2008814: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Thread_Dispatch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Thread_Dispatch_necessary = true;
2008818: 82 10 20 01 mov 1, %g1
200881c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
2008820: 30 bf ff f4 b,a 20087f0 <_Scheduler_priority_Yield+0x7c>
02007608 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
2007608: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
200760c: 05 00 80 57 sethi %hi(0x2015c00), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007610: 03 00 80 54 sethi %hi(0x2015000), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007614: c6 00 a3 74 ld [ %g2 + 0x374 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007618: c2 00 62 b4 ld [ %g1 + 0x2b4 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
200761c: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007620: 9b 28 60 07 sll %g1, 7, %o5
2007624: 89 28 60 02 sll %g1, 2, %g4
2007628: 88 23 40 04 sub %o5, %g4, %g4
200762c: 82 01 00 01 add %g4, %g1, %g1
2007630: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
2007634: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007638: c6 20 a3 74 st %g3, [ %g2 + 0x374 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
200763c: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007640: c2 27 bf fc st %g1, [ %fp + -4 ]
2007644: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
2007648: 11 00 80 57 sethi %hi(0x2015c00), %o0
200764c: 40 00 09 06 call 2009a64 <_Timespec_Add_to>
2007650: 90 12 22 bc or %o0, 0x2bc, %o0 ! 2015ebc <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
2007654: 92 10 00 10 mov %l0, %o1
2007658: 11 00 80 57 sethi %hi(0x2015c00), %o0
200765c: 40 00 09 02 call 2009a64 <_Timespec_Add_to>
2007660: 90 12 22 ec or %o0, 0x2ec, %o0 ! 2015eec <_TOD_Now>
while ( seconds ) {
2007664: a0 92 20 00 orcc %o0, 0, %l0
2007668: 02 80 00 08 be 2007688 <_TOD_Tickle_ticks+0x80>
200766c: 23 00 80 57 sethi %hi(0x2015c00), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
2007670: a2 14 63 18 or %l1, 0x318, %l1 ! 2015f18 <_Watchdog_Seconds_chain>
2007674: 40 00 0a 8a call 200a09c <_Watchdog_Tickle>
2007678: 90 10 00 11 mov %l1, %o0
200767c: a0 84 3f ff addcc %l0, -1, %l0
2007680: 12 bf ff fd bne 2007674 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
2007684: 01 00 00 00 nop
2007688: 81 c7 e0 08 ret
200768c: 81 e8 00 00 restore
020076f4 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20076f4: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
20076f8: 03 00 80 77 sethi %hi(0x201dc00), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
20076fc: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007700: d2 00 63 e4 ld [ %g1 + 0x3e4 ], %o1
if ((!the_tod) ||
2007704: 80 a4 20 00 cmp %l0, 0
2007708: 02 80 00 2c be 20077b8 <_TOD_Validate+0xc4> <== NEVER TAKEN
200770c: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007710: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007714: 40 00 49 49 call 2019c38 <.udiv>
2007718: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
200771c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2007720: 80 a2 00 01 cmp %o0, %g1
2007724: 08 80 00 25 bleu 20077b8 <_TOD_Validate+0xc4>
2007728: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
200772c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2007730: 80 a0 60 3b cmp %g1, 0x3b
2007734: 18 80 00 21 bgu 20077b8 <_TOD_Validate+0xc4>
2007738: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
200773c: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
2007740: 80 a0 60 3b cmp %g1, 0x3b
2007744: 18 80 00 1d bgu 20077b8 <_TOD_Validate+0xc4>
2007748: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
200774c: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2007750: 80 a0 60 17 cmp %g1, 0x17
2007754: 18 80 00 19 bgu 20077b8 <_TOD_Validate+0xc4>
2007758: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
200775c: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
2007760: 80 a0 60 00 cmp %g1, 0
2007764: 02 80 00 15 be 20077b8 <_TOD_Validate+0xc4> <== NEVER TAKEN
2007768: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
200776c: 18 80 00 13 bgu 20077b8 <_TOD_Validate+0xc4>
2007770: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007774: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
2007778: 80 a0 a7 c3 cmp %g2, 0x7c3
200777c: 08 80 00 0f bleu 20077b8 <_TOD_Validate+0xc4>
2007780: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007784: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
2007788: 80 a0 e0 00 cmp %g3, 0
200778c: 02 80 00 0b be 20077b8 <_TOD_Validate+0xc4> <== NEVER TAKEN
2007790: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007794: 32 80 00 0b bne,a 20077c0 <_TOD_Validate+0xcc>
2007798: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
200779c: 82 00 60 0d add %g1, 0xd, %g1
20077a0: 05 00 80 73 sethi %hi(0x201cc00), %g2
20077a4: 83 28 60 02 sll %g1, 2, %g1
20077a8: 84 10 a0 28 or %g2, 0x28, %g2
20077ac: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20077b0: 80 a0 40 03 cmp %g1, %g3
20077b4: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
20077b8: 81 c7 e0 08 ret
20077bc: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
20077c0: 05 00 80 73 sethi %hi(0x201cc00), %g2
20077c4: 84 10 a0 28 or %g2, 0x28, %g2 ! 201cc28 <_TOD_Days_per_month>
20077c8: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
20077cc: 80 a0 40 03 cmp %g1, %g3
20077d0: b0 60 3f ff subx %g0, -1, %i0
20077d4: 81 c7 e0 08 ret
20077d8: 81 e8 00 00 restore
02008880 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2008880: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
2008884: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2008888: 40 00 03 e2 call 2009810 <_Thread_Set_transient>
200888c: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2008890: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2008894: 80 a0 40 19 cmp %g1, %i1
2008898: 02 80 00 05 be 20088ac <_Thread_Change_priority+0x2c>
200889c: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
20088a0: 90 10 00 18 mov %i0, %o0
20088a4: 40 00 03 be call 200979c <_Thread_Set_priority>
20088a8: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
20088ac: 7f ff e6 7a call 2002294 <sparc_disable_interrupts>
20088b0: 01 00 00 00 nop
20088b4: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
20088b8: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
20088bc: 80 a4 a0 04 cmp %l2, 4
20088c0: 02 80 00 18 be 2008920 <_Thread_Change_priority+0xa0>
20088c4: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
20088c8: 02 80 00 0b be 20088f4 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
20088cc: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
20088d0: 7f ff e6 75 call 20022a4 <sparc_enable_interrupts> <== NOT EXECUTED
20088d4: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
20088d8: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
20088dc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
20088e0: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
20088e4: 32 80 00 0d bne,a 2008918 <_Thread_Change_priority+0x98> <== NOT EXECUTED
20088e8: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
20088ec: 81 c7 e0 08 ret
20088f0: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20088f4: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
20088f8: 7f ff e6 6b call 20022a4 <sparc_enable_interrupts>
20088fc: 90 10 00 18 mov %i0, %o0
2008900: 03 00 00 ef sethi %hi(0x3bc00), %g1
2008904: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008908: 80 8c 80 01 btst %l2, %g1
200890c: 02 bf ff f8 be 20088ec <_Thread_Change_priority+0x6c>
2008910: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
2008914: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
2008918: 40 00 03 71 call 20096dc <_Thread_queue_Requeue>
200891c: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
2008920: 12 80 00 15 bne 2008974 <_Thread_Change_priority+0xf4> <== NEVER TAKEN
2008924: 80 8e a0 ff btst 0xff, %i2
* FIXME: hard-coded for priority scheduling. Might be ok since this
* function is specific to priority scheduling?
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
if ( prepend_it )
2008928: 02 80 00 2a be 20089d0 <_Thread_Change_priority+0x150>
200892c: c0 24 20 10 clr [ %l0 + 0x10 ]
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue_first(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
2008930: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
2008934: 07 00 80 58 sethi %hi(0x2016000), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2008938: c8 00 60 04 ld [ %g1 + 4 ], %g4
200893c: da 10 60 0a lduh [ %g1 + 0xa ], %o5
2008940: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Prepend_unprotected( the_thread->scheduler.priority->ready_chain,
2008944: c4 00 40 00 ld [ %g1 ], %g2
2008948: 9a 13 00 0d or %o4, %o5, %o5
200894c: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2008950: c8 10 60 08 lduh [ %g1 + 8 ], %g4
2008954: da 10 e0 c0 lduh [ %g3 + 0xc0 ], %o5
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
2008958: c2 00 80 00 ld [ %g2 ], %g1
200895c: 88 13 40 04 or %o5, %g4, %g4
2008960: c8 30 e0 c0 sth %g4, [ %g3 + 0xc0 ]
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008964: c4 24 20 04 st %g2, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008968: e0 20 80 00 st %l0, [ %g2 ]
the_node->next = before_node;
200896c: c2 24 00 00 st %g1, [ %l0 ]
before_node->previous = the_node;
2008970: e0 20 60 04 st %l0, [ %g1 + 4 ]
_Scheduler_priority_Ready_queue_enqueue_first( the_thread );
else
_Scheduler_priority_Ready_queue_enqueue( the_thread );
}
_ISR_Flash( level );
2008974: 7f ff e6 4c call 20022a4 <sparc_enable_interrupts>
2008978: 90 10 00 18 mov %i0, %o0
200897c: 7f ff e6 46 call 2002294 <sparc_disable_interrupts>
2008980: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Scheduler_Schedule(
Scheduler_Control *the_scheduler
)
{
the_scheduler->Operations.schedule( the_scheduler );
2008984: 11 00 80 57 sethi %hi(0x2015c00), %o0
2008988: 90 12 22 c8 or %o0, 0x2c8, %o0 ! 2015ec8 <_Scheduler>
200898c: c2 02 20 04 ld [ %o0 + 4 ], %g1
2008990: 9f c0 40 00 call %g1
2008994: 01 00 00 00 nop
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
2008998: 03 00 80 58 sethi %hi(0x2016000), %g1
200899c: 82 10 60 9c or %g1, 0x9c, %g1 ! 201609c <_Per_CPU_Information>
20089a0: c4 00 60 0c ld [ %g1 + 0xc ], %g2
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Scheduler_Schedule(&_Scheduler);
if ( !_Thread_Is_executing_also_the_heir() &&
20089a4: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20089a8: 80 a0 80 03 cmp %g2, %g3
20089ac: 02 80 00 07 be 20089c8 <_Thread_Change_priority+0x148>
20089b0: 01 00 00 00 nop
20089b4: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
20089b8: 80 a0 a0 00 cmp %g2, 0
20089bc: 02 80 00 03 be 20089c8 <_Thread_Change_priority+0x148>
20089c0: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Thread_Dispatch_necessary = true;
20089c4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20089c8: 7f ff e6 37 call 20022a4 <sparc_enable_interrupts>
20089cc: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE void _Scheduler_priority_Ready_queue_enqueue(
Thread_Control *the_thread
)
{
_Priority_bit_map_Add( &the_thread->scheduler.priority->Priority_map );
20089d0: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
20089d4: 07 00 80 58 sethi %hi(0x2016000), %g3
RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add (
Priority_bit_map_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
20089d8: c8 00 60 04 ld [ %g1 + 4 ], %g4
20089dc: da 10 60 0a lduh [ %g1 + 0xa ], %o5
20089e0: d8 11 00 00 lduh [ %g4 ], %o4
_Chain_Append_unprotected( the_thread->scheduler.priority->ready_chain,
20089e4: c4 00 40 00 ld [ %g1 ], %g2
20089e8: 9a 13 00 0d or %o4, %o5, %o5
20089ec: da 31 00 00 sth %o5, [ %g4 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
20089f0: c8 10 60 08 lduh [ %g1 + 8 ], %g4
20089f4: da 10 e0 c0 lduh [ %g3 + 0xc0 ], %o5
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
Chain_Node *old_last = tail->previous;
20089f8: c2 00 a0 08 ld [ %g2 + 8 ], %g1
20089fc: 88 13 40 04 or %o5, %g4, %g4
2008a00: c8 30 e0 c0 sth %g4, [ %g3 + 0xc0 ]
the_node->next = tail;
tail->previous = the_node;
2008a04: e0 20 a0 08 st %l0, [ %g2 + 8 ]
RTEMS_INLINE_ROUTINE void _Chain_Append_unprotected(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
Chain_Node *tail = _Chain_Tail( the_chain );
2008a08: 86 00 a0 04 add %g2, 4, %g3
Chain_Node *old_last = tail->previous;
the_node->next = tail;
2008a0c: c6 24 00 00 st %g3, [ %l0 ]
tail->previous = the_node;
old_last->next = the_node;
2008a10: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last;
2008a14: 10 bf ff d8 b 2008974 <_Thread_Change_priority+0xf4>
2008a18: c2 24 20 04 st %g1, [ %l0 + 4 ]
02008c20 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
2008c20: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2008c24: 90 10 00 18 mov %i0, %o0
2008c28: 40 00 00 7a call 2008e10 <_Thread_Get>
2008c2c: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2008c30: c2 07 bf fc ld [ %fp + -4 ], %g1
2008c34: 80 a0 60 00 cmp %g1, 0
2008c38: 12 80 00 08 bne 2008c58 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
2008c3c: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
2008c40: 7f ff ff 77 call 2008a1c <_Thread_Clear_state>
2008c44: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
2008c48: 03 00 80 57 sethi %hi(0x2015c00), %g1
2008c4c: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level>
2008c50: 84 00 bf ff add %g2, -1, %g2
2008c54: c4 20 62 40 st %g2, [ %g1 + 0x240 ]
2008c58: 81 c7 e0 08 ret
2008c5c: 81 e8 00 00 restore
02008c60 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
2008c60: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
2008c64: 25 00 80 58 sethi %hi(0x2016000), %l2
2008c68: a4 14 a0 9c or %l2, 0x9c, %l2 ! 201609c <_Per_CPU_Information>
_ISR_Disable( level );
2008c6c: 7f ff e5 8a call 2002294 <sparc_disable_interrupts>
2008c70: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
while ( _Thread_Dispatch_necessary == true ) {
2008c74: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
2008c78: 80 a0 60 00 cmp %g1, 0
2008c7c: 02 80 00 50 be 2008dbc <_Thread_Dispatch+0x15c>
2008c80: 2f 00 80 57 sethi %hi(0x2015c00), %l7
heir = _Thread_Heir;
2008c84: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1
_Thread_Dispatch_disable_level = 1;
2008c88: 82 10 20 01 mov 1, %g1
2008c8c: c2 25 e2 40 st %g1, [ %l7 + 0x240 ]
_Thread_Dispatch_necessary = false;
2008c90: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008c94: 80 a4 00 11 cmp %l0, %l1
2008c98: 02 80 00 49 be 2008dbc <_Thread_Dispatch+0x15c>
2008c9c: e2 24 a0 0c st %l1, [ %l2 + 0xc ]
2008ca0: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008ca4: 39 00 80 57 sethi %hi(0x2015c00), %i4
2008ca8: a6 14 e3 10 or %l3, 0x310, %l3
2008cac: aa 07 bf f8 add %fp, -8, %l5
2008cb0: a8 07 bf f0 add %fp, -16, %l4
2008cb4: b8 17 22 e8 or %i4, 0x2e8, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008cb8: 35 00 80 57 sethi %hi(0x2015c00), %i2
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008cbc: ba 10 00 13 mov %l3, %i5
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
2008cc0: 2d 00 80 57 sethi %hi(0x2015c00), %l6
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008cc4: 10 80 00 38 b 2008da4 <_Thread_Dispatch+0x144>
2008cc8: b6 10 20 01 mov 1, %i3
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
2008ccc: 7f ff e5 76 call 20022a4 <sparc_enable_interrupts>
2008cd0: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008cd4: 40 00 0e 9a call 200c73c <_TOD_Get_uptime>
2008cd8: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
2008cdc: 90 10 00 1d mov %i5, %o0
2008ce0: 92 10 00 15 mov %l5, %o1
2008ce4: 40 00 03 79 call 2009ac8 <_Timespec_Subtract>
2008ce8: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008cec: 90 04 20 84 add %l0, 0x84, %o0
2008cf0: 40 00 03 5d call 2009a64 <_Timespec_Add_to>
2008cf4: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
2008cf8: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008cfc: c2 07 00 00 ld [ %i4 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
2008d00: c4 24 c0 00 st %g2, [ %l3 ]
2008d04: c4 07 bf fc ld [ %fp + -4 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008d08: 80 a0 60 00 cmp %g1, 0
2008d0c: 02 80 00 06 be 2008d24 <_Thread_Dispatch+0xc4> <== NEVER TAKEN
2008d10: c4 24 e0 04 st %g2, [ %l3 + 4 ]
executing->libc_reent = *_Thread_libc_reent;
2008d14: c4 00 40 00 ld [ %g1 ], %g2
2008d18: c4 24 21 54 st %g2, [ %l0 + 0x154 ]
*_Thread_libc_reent = heir->libc_reent;
2008d1c: c4 04 61 54 ld [ %l1 + 0x154 ], %g2
2008d20: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2008d24: 90 10 00 10 mov %l0, %o0
2008d28: 40 00 04 2c call 2009dd8 <_User_extensions_Thread_switch>
2008d2c: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008d30: 90 04 20 c8 add %l0, 0xc8, %o0
2008d34: 40 00 05 79 call 200a318 <_CPU_Context_switch>
2008d38: 92 04 60 c8 add %l1, 0xc8, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008d3c: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
2008d40: 80 a0 60 00 cmp %g1, 0
2008d44: 02 80 00 0c be 2008d74 <_Thread_Dispatch+0x114>
2008d48: d0 05 a2 c4 ld [ %l6 + 0x2c4 ], %o0
2008d4c: 80 a4 00 08 cmp %l0, %o0
2008d50: 02 80 00 09 be 2008d74 <_Thread_Dispatch+0x114>
2008d54: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008d58: 02 80 00 04 be 2008d68 <_Thread_Dispatch+0x108>
2008d5c: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008d60: 40 00 05 34 call 200a230 <_CPU_Context_save_fp>
2008d64: 90 02 21 50 add %o0, 0x150, %o0
_Context_Restore_fp( &executing->fp_context );
2008d68: 40 00 05 4f call 200a2a4 <_CPU_Context_restore_fp>
2008d6c: 90 04 21 50 add %l0, 0x150, %o0
_Thread_Allocated_fp = executing;
2008d70: e0 25 a2 c4 st %l0, [ %l6 + 0x2c4 ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
2008d74: 7f ff e5 48 call 2002294 <sparc_disable_interrupts>
2008d78: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Thread_Dispatch_necessary == true ) {
2008d7c: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
2008d80: 80 a0 60 00 cmp %g1, 0
2008d84: 02 80 00 0e be 2008dbc <_Thread_Dispatch+0x15c>
2008d88: 01 00 00 00 nop
heir = _Thread_Heir;
2008d8c: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1
_Thread_Dispatch_disable_level = 1;
2008d90: f6 25 e2 40 st %i3, [ %l7 + 0x240 ]
_Thread_Dispatch_necessary = false;
2008d94: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008d98: 80 a4 40 10 cmp %l1, %l0
2008d9c: 02 80 00 08 be 2008dbc <_Thread_Dispatch+0x15c> <== NEVER TAKEN
2008da0: e2 24 a0 0c st %l1, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008da4: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008da8: 80 a0 60 01 cmp %g1, 1
2008dac: 12 bf ff c8 bne 2008ccc <_Thread_Dispatch+0x6c>
2008db0: c2 06 a1 a4 ld [ %i2 + 0x1a4 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008db4: 10 bf ff c6 b 2008ccc <_Thread_Dispatch+0x6c>
2008db8: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
2008dbc: c0 25 e2 40 clr [ %l7 + 0x240 ]
_ISR_Enable( level );
2008dc0: 7f ff e5 39 call 20022a4 <sparc_enable_interrupts>
2008dc4: 01 00 00 00 nop
_API_extensions_Run_postswitch();
2008dc8: 7f ff f8 67 call 2006f64 <_API_extensions_Run_postswitch>
2008dcc: 01 00 00 00 nop
}
2008dd0: 81 c7 e0 08 ret
2008dd4: 81 e8 00 00 restore
02008e10 <_Thread_Get>:
*/
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
2008e10: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
2008e14: 80 a2 20 00 cmp %o0, 0
2008e18: 02 80 00 1d be 2008e8c <_Thread_Get+0x7c>
2008e1c: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
2008e20: 85 32 20 18 srl %o0, 0x18, %g2
2008e24: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2008e28: 86 00 bf ff add %g2, -1, %g3
2008e2c: 80 a0 e0 02 cmp %g3, 2
2008e30: 38 80 00 14 bgu,a 2008e80 <_Thread_Get+0x70>
2008e34: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
2008e38: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
2008e3c: 80 a1 20 01 cmp %g4, 1
2008e40: 32 80 00 10 bne,a 2008e80 <_Thread_Get+0x70>
2008e44: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
2008e48: 85 28 a0 02 sll %g2, 2, %g2
2008e4c: 07 00 80 57 sethi %hi(0x2015c00), %g3
2008e50: 86 10 e1 a8 or %g3, 0x1a8, %g3 ! 2015da8 <_Objects_Information_table>
2008e54: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
/*
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
2008e58: 80 a0 a0 00 cmp %g2, 0
2008e5c: 22 80 00 16 be,a 2008eb4 <_Thread_Get+0xa4> <== NEVER TAKEN
2008e60: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
#endif
information = api_information[ the_class ];
2008e64: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
2008e68: 80 a2 20 00 cmp %o0, 0
2008e6c: 02 80 00 10 be 2008eac <_Thread_Get+0x9c>
2008e70: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
2008e74: 82 13 c0 00 mov %o7, %g1
2008e78: 7f ff fc 93 call 20080c4 <_Objects_Get>
2008e7c: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
2008e80: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
2008e84: 81 c3 e0 08 retl
2008e88: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2008e8c: 03 00 80 57 sethi %hi(0x2015c00), %g1
2008e90: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level>
2008e94: 84 00 a0 01 inc %g2
2008e98: c4 20 62 40 st %g2, [ %g1 + 0x240 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
2008e9c: 03 00 80 58 sethi %hi(0x2016000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
2008ea0: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
2008ea4: 81 c3 e0 08 retl
2008ea8: d0 00 60 a8 ld [ %g1 + 0xa8 ], %o0
#endif
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
2008eac: 81 c3 e0 08 retl
2008eb0: c8 22 80 00 st %g4, [ %o2 ]
* There is no way for this to happen if POSIX is enabled.
*/
#if !defined(RTEMS_POSIX_API)
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
2008eb4: 81 c3 e0 08 retl <== NOT EXECUTED
2008eb8: 90 10 20 00 clr %o0 <== NOT EXECUTED
0200e770 <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200e770: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200e774: 03 00 80 58 sethi %hi(0x2016000), %g1
200e778: e0 00 60 a8 ld [ %g1 + 0xa8 ], %l0 ! 20160a8 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e77c: 3f 00 80 39 sethi %hi(0x200e400), %i7
200e780: be 17 e3 70 or %i7, 0x370, %i7 ! 200e770 <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e784: d0 04 20 ac ld [ %l0 + 0xac ], %o0
_ISR_Set_level(level);
200e788: 7f ff ce c7 call 20022a4 <sparc_enable_interrupts>
200e78c: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e790: 03 00 80 56 sethi %hi(0x2015800), %g1
doneConstructors = 1;
200e794: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e798: e4 08 62 fc ldub [ %g1 + 0x2fc ], %l2
doneConstructors = 1;
200e79c: c4 28 62 fc stb %g2, [ %g1 + 0x2fc ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e7a0: c2 04 21 50 ld [ %l0 + 0x150 ], %g1
200e7a4: 80 a0 60 00 cmp %g1, 0
200e7a8: 02 80 00 0b be 200e7d4 <_Thread_Handler+0x64>
200e7ac: 23 00 80 57 sethi %hi(0x2015c00), %l1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e7b0: d0 04 62 c4 ld [ %l1 + 0x2c4 ], %o0 ! 2015ec4 <_Thread_Allocated_fp>
200e7b4: 80 a4 00 08 cmp %l0, %o0
200e7b8: 02 80 00 07 be 200e7d4 <_Thread_Handler+0x64>
200e7bc: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e7c0: 22 80 00 05 be,a 200e7d4 <_Thread_Handler+0x64>
200e7c4: e0 24 62 c4 st %l0, [ %l1 + 0x2c4 ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e7c8: 7f ff ee 9a call 200a230 <_CPU_Context_save_fp>
200e7cc: 90 02 21 50 add %o0, 0x150, %o0
_Thread_Allocated_fp = executing;
200e7d0: e0 24 62 c4 st %l0, [ %l1 + 0x2c4 ]
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200e7d4: 7f ff ed 01 call 2009bd8 <_User_extensions_Thread_begin>
200e7d8: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e7dc: 7f ff e9 7f call 2008dd8 <_Thread_Enable_dispatch>
200e7e0: a5 2c a0 18 sll %l2, 0x18, %l2
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200e7e4: 80 a4 a0 00 cmp %l2, 0
200e7e8: 02 80 00 0c be 200e818 <_Thread_Handler+0xa8>
200e7ec: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e7f0: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
200e7f4: 80 a0 60 00 cmp %g1, 0
200e7f8: 22 80 00 0f be,a 200e834 <_Thread_Handler+0xc4> <== ALWAYS TAKEN
200e7fc: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200e800: 7f ff ed 0a call 2009c28 <_User_extensions_Thread_exitted>
200e804: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200e808: 90 10 20 00 clr %o0
200e80c: 92 10 20 01 mov 1, %o1
200e810: 7f ff e4 ab call 2007abc <_Internal_error_Occurred>
200e814: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200e818: 40 00 1a 64 call 20151a8 <_init>
200e81c: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e820: c2 04 20 94 ld [ %l0 + 0x94 ], %g1
200e824: 80 a0 60 00 cmp %g1, 0
200e828: 12 bf ff f6 bne 200e800 <_Thread_Handler+0x90> <== NEVER TAKEN
200e82c: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e830: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
200e834: 9f c0 40 00 call %g1
200e838: d0 04 20 9c ld [ %l0 + 0x9c ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200e83c: 10 bf ff f1 b 200e800 <_Thread_Handler+0x90>
200e840: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
02008ebc <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2008ebc: 9d e3 bf a0 save %sp, -96, %sp
2008ec0: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008ec4: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
2008ec8: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008ecc: c0 26 61 58 clr [ %i1 + 0x158 ]
2008ed0: c0 26 61 5c clr [ %i1 + 0x15c ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008ed4: c0 26 61 54 clr [ %i1 + 0x154 ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008ed8: 90 10 00 19 mov %i1, %o0
2008edc: 40 00 02 74 call 20098ac <_Thread_Stack_Allocate>
2008ee0: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008ee4: 80 a2 00 1b cmp %o0, %i3
2008ee8: 0a 80 00 60 bcs 2009068 <_Thread_Initialize+0x1ac>
2008eec: 80 a2 20 00 cmp %o0, 0
2008ef0: 02 80 00 5e be 2009068 <_Thread_Initialize+0x1ac> <== NEVER TAKEN
2008ef4: a4 10 20 00 clr %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008ef8: c2 06 60 c0 ld [ %i1 + 0xc0 ], %g1
the_stack->size = size;
2008efc: d0 26 60 b4 st %o0, [ %i1 + 0xb4 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008f00: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008f04: 80 8f 20 ff btst 0xff, %i4
2008f08: 12 80 00 5a bne 2009070 <_Thread_Initialize+0x1b4>
2008f0c: 82 10 20 00 clr %g1
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008f10: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008f14: c4 04 e2 f4 ld [ %l3 + 0x2f4 ], %g2 ! 2015ef4 <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008f18: c2 26 61 50 st %g1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
2008f1c: c2 26 60 bc st %g1, [ %i1 + 0xbc ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2008f20: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008f24: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008f28: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008f2c: 80 a0 a0 00 cmp %g2, 0
2008f30: 12 80 00 5f bne 20090ac <_Thread_Initialize+0x1f0>
2008f34: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2008f38: c0 26 61 60 clr [ %i1 + 0x160 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
2008f3c: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008f40: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
the_scheduler->Operations.scheduler_allocate( the_scheduler, the_thread );
2008f44: 11 00 80 57 sethi %hi(0x2015c00), %o0
2008f48: c4 26 60 a4 st %g2, [ %i1 + 0xa4 ]
the_thread->Start.budget_callout = budget_callout;
2008f4c: c4 07 a0 64 ld [ %fp + 0x64 ], %g2
2008f50: 90 12 22 c8 or %o0, 0x2c8, %o0
2008f54: c4 26 60 a8 st %g2, [ %i1 + 0xa8 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008f58: c4 07 a0 68 ld [ %fp + 0x68 ], %g2
RTEMS_INLINE_ROUTINE void* _Scheduler_Thread_scheduler_allocate(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
return
2008f5c: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
2008f60: c4 26 60 ac st %g2, [ %i1 + 0xac ]
the_thread->current_state = STATES_DORMANT;
2008f64: 84 10 20 01 mov 1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008f68: e0 2e 60 a0 stb %l0, [ %i1 + 0xa0 ]
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
2008f6c: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
2008f70: c4 26 60 10 st %g2, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008f74: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008f78: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
2008f7c: fa 26 60 b0 st %i5, [ %i1 + 0xb0 ]
2008f80: 9f c0 40 00 call %g1
2008f84: 92 10 00 19 mov %i1, %o1
sched =_Scheduler_Thread_scheduler_allocate( &_Scheduler, the_thread );
if ( !sched )
2008f88: a0 92 20 00 orcc %o0, 0, %l0
2008f8c: 02 80 00 11 be 2008fd0 <_Thread_Initialize+0x114>
2008f90: 90 10 00 19 mov %i1, %o0
goto failed;
_Thread_Set_priority( the_thread, priority );
2008f94: 40 00 02 02 call 200979c <_Thread_Set_priority>
2008f98: 92 10 00 1d mov %i5, %o1
_Thread_Stack_Free( the_thread );
return false;
}
2008f9c: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008fa0: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008fa4: c0 26 60 84 clr [ %i1 + 0x84 ]
2008fa8: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008fac: 83 28 60 02 sll %g1, 2, %g1
2008fb0: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008fb4: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008fb8: 90 10 00 19 mov %i1, %o0
2008fbc: 40 00 03 42 call 2009cc4 <_User_extensions_Thread_create>
2008fc0: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008fc4: 80 8a 20 ff btst 0xff, %o0
2008fc8: 12 80 00 4a bne 20090f0 <_Thread_Initialize+0x234>
2008fcc: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
2008fd0: d0 06 61 54 ld [ %i1 + 0x154 ], %o0
2008fd4: 80 a2 20 00 cmp %o0, 0
2008fd8: 22 80 00 05 be,a 2008fec <_Thread_Initialize+0x130>
2008fdc: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
_Workspace_Free( the_thread->libc_reent );
2008fe0: 40 00 04 7e call 200a1d8 <_Workspace_Free>
2008fe4: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
2008fe8: d0 06 61 58 ld [ %i1 + 0x158 ], %o0
2008fec: 80 a2 20 00 cmp %o0, 0
2008ff0: 22 80 00 05 be,a 2009004 <_Thread_Initialize+0x148>
2008ff4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
2008ff8: 40 00 04 78 call 200a1d8 <_Workspace_Free>
2008ffc: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
2009000: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
2009004: 80 a2 20 00 cmp %o0, 0
2009008: 02 80 00 05 be 200901c <_Thread_Initialize+0x160> <== ALWAYS TAKEN
200900c: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
2009010: 40 00 04 72 call 200a1d8 <_Workspace_Free> <== NOT EXECUTED
2009014: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
2009018: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
200901c: 02 80 00 05 be 2009030 <_Thread_Initialize+0x174>
2009020: 80 a4 a0 00 cmp %l2, 0
(void) _Workspace_Free( extensions_area );
2009024: 40 00 04 6d call 200a1d8 <_Workspace_Free>
2009028: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
200902c: 80 a4 a0 00 cmp %l2, 0
2009030: 02 80 00 05 be 2009044 <_Thread_Initialize+0x188>
2009034: 80 a4 20 00 cmp %l0, 0
(void) _Workspace_Free( fp_area );
2009038: 40 00 04 68 call 200a1d8 <_Workspace_Free>
200903c: 90 10 00 12 mov %l2, %o0
#endif
if ( sched )
2009040: 80 a4 20 00 cmp %l0, 0
2009044: 02 80 00 05 be 2009058 <_Thread_Initialize+0x19c>
2009048: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( sched );
200904c: 40 00 04 63 call 200a1d8 <_Workspace_Free>
2009050: 90 10 00 10 mov %l0, %o0
_Thread_Stack_Free( the_thread );
2009054: 90 10 00 19 mov %i1, %o0
2009058: 40 00 02 30 call 2009918 <_Thread_Stack_Free>
200905c: b0 10 20 00 clr %i0
return false;
2009060: 81 c7 e0 08 ret
2009064: 81 e8 00 00 restore
}
2009068: 81 c7 e0 08 ret
200906c: 91 e8 20 00 restore %g0, 0, %o0
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2009070: 40 00 04 51 call 200a1b4 <_Workspace_Allocate>
2009074: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2009078: a4 92 20 00 orcc %o0, 0, %l2
200907c: 02 80 00 1f be 20090f8 <_Thread_Initialize+0x23c>
2009080: 82 10 00 12 mov %l2, %g1
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2009084: 27 00 80 57 sethi %hi(0x2015c00), %l3
2009088: c4 04 e2 f4 ld [ %l3 + 0x2f4 ], %g2 ! 2015ef4 <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200908c: c0 26 60 50 clr [ %i1 + 0x50 ]
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2009090: c2 26 61 50 st %g1, [ %i1 + 0x150 ]
the_thread->Start.fp_context = fp_area;
2009094: c2 26 60 bc st %g1, [ %i1 + 0xbc ]
the_watchdog->routine = routine;
2009098: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
200909c: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
20090a0: 80 a0 a0 00 cmp %g2, 0
20090a4: 02 bf ff a5 be 2008f38 <_Thread_Initialize+0x7c>
20090a8: c0 26 60 6c clr [ %i1 + 0x6c ]
extensions_area = _Workspace_Allocate(
20090ac: 84 00 a0 01 inc %g2
20090b0: 40 00 04 41 call 200a1b4 <_Workspace_Allocate>
20090b4: 91 28 a0 02 sll %g2, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
20090b8: b6 92 20 00 orcc %o0, 0, %i3
20090bc: 02 80 00 12 be 2009104 <_Thread_Initialize+0x248>
20090c0: c6 04 e2 f4 ld [ %l3 + 0x2f4 ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
20090c4: f6 26 61 60 st %i3, [ %i1 + 0x160 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20090c8: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
20090cc: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
20090d0: 85 28 a0 02 sll %g2, 2, %g2
20090d4: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
20090d8: 82 00 60 01 inc %g1
20090dc: 80 a0 c0 01 cmp %g3, %g1
20090e0: 1a bf ff fc bcc 20090d0 <_Thread_Initialize+0x214>
20090e4: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
20090e8: 10 bf ff 97 b 2008f44 <_Thread_Initialize+0x88>
20090ec: c4 07 a0 60 ld [ %fp + 0x60 ], %g2
20090f0: 81 c7 e0 08 ret
20090f4: 81 e8 00 00 restore
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
20090f8: b6 10 20 00 clr %i3
size_t actual_stack_size = 0;
void *stack = NULL;
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
void *fp_area;
#endif
void *sched = NULL;
20090fc: 10 bf ff b5 b 2008fd0 <_Thread_Initialize+0x114>
2009100: a0 10 20 00 clr %l0
2009104: 10 bf ff b3 b 2008fd0 <_Thread_Initialize+0x114>
2009108: a0 10 20 00 clr %l0
0200d110 <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
200d110: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
200d114: 7f ff d4 cf call 2002450 <sparc_disable_interrupts>
200d118: 01 00 00 00 nop
200d11c: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
200d120: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200d124: 80 88 60 02 btst 2, %g1
200d128: 02 80 00 05 be 200d13c <_Thread_Resume+0x2c> <== NEVER TAKEN
200d12c: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
200d130: 80 a0 60 00 cmp %g1, 0
200d134: 02 80 00 04 be 200d144 <_Thread_Resume+0x34>
200d138: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
_Scheduler_Unblock( &_Scheduler, the_thread );
}
}
_ISR_Enable( level );
200d13c: 7f ff d4 c9 call 2002460 <sparc_enable_interrupts>
200d140: 91 e8 00 10 restore %g0, %l0, %o0
RTEMS_INLINE_ROUTINE void _Scheduler_Unblock(
Scheduler_Control *the_scheduler,
Thread_Control *the_thread
)
{
the_scheduler->Operations.unblock( the_scheduler, the_thread );
200d144: 11 00 80 67 sethi %hi(0x2019c00), %o0
200d148: 90 12 21 78 or %o0, 0x178, %o0 ! 2019d78 <_Scheduler>
200d14c: c2 02 20 10 ld [ %o0 + 0x10 ], %g1
200d150: 9f c0 40 00 call %g1
200d154: 92 10 00 18 mov %i0, %o1
200d158: 7f ff d4 c2 call 2002460 <sparc_enable_interrupts>
200d15c: 91 e8 00 10 restore %g0, %l0, %o0
020096dc <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
20096dc: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
20096e0: 80 a6 20 00 cmp %i0, 0
20096e4: 02 80 00 13 be 2009730 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
20096e8: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
20096ec: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
20096f0: 80 a4 60 01 cmp %l1, 1
20096f4: 02 80 00 04 be 2009704 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
20096f8: 01 00 00 00 nop
20096fc: 81 c7 e0 08 ret
2009700: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
2009704: 7f ff e2 e4 call 2002294 <sparc_disable_interrupts>
2009708: 01 00 00 00 nop
200970c: a0 10 00 08 mov %o0, %l0
2009710: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
2009714: 03 00 00 ef sethi %hi(0x3bc00), %g1
2009718: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200971c: 80 88 80 01 btst %g2, %g1
2009720: 12 80 00 06 bne 2009738 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
2009724: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
2009728: 7f ff e2 df call 20022a4 <sparc_enable_interrupts>
200972c: 90 10 00 10 mov %l0, %o0
2009730: 81 c7 e0 08 ret
2009734: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
2009738: 92 10 00 19 mov %i1, %o1
200973c: 94 10 20 01 mov 1, %o2
2009740: 40 00 0d d8 call 200cea0 <_Thread_queue_Extract_priority_helper>
2009744: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
2009748: 90 10 00 18 mov %i0, %o0
200974c: 92 10 00 19 mov %i1, %o1
2009750: 7f ff ff 2c call 2009400 <_Thread_queue_Enqueue_priority>
2009754: 94 07 bf fc add %fp, -4, %o2
2009758: 30 bf ff f4 b,a 2009728 <_Thread_queue_Requeue+0x4c>
0200975c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200975c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009760: 90 10 00 18 mov %i0, %o0
2009764: 7f ff fd ab call 2008e10 <_Thread_Get>
2009768: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200976c: c2 07 bf fc ld [ %fp + -4 ], %g1
2009770: 80 a0 60 00 cmp %g1, 0
2009774: 12 80 00 08 bne 2009794 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2009778: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200977c: 40 00 0e 04 call 200cf8c <_Thread_queue_Process_timeout>
2009780: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2009784: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009788: c4 00 62 40 ld [ %g1 + 0x240 ], %g2 ! 2015e40 <_Thread_Dispatch_disable_level>
200978c: 84 00 bf ff add %g2, -1, %g2
2009790: c4 20 62 40 st %g2, [ %g1 + 0x240 ]
2009794: 81 c7 e0 08 ret
2009798: 81 e8 00 00 restore
020168b0 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
20168b0: 9d e3 bf 88 save %sp, -120, %sp
20168b4: 2f 00 80 f1 sethi %hi(0x203c400), %l7
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20168b8: ba 07 bf f4 add %fp, -12, %i5
20168bc: aa 07 bf f8 add %fp, -8, %l5
20168c0: a4 07 bf e8 add %fp, -24, %l2
20168c4: a8 07 bf ec add %fp, -20, %l4
20168c8: 2d 00 80 f1 sethi %hi(0x203c400), %l6
20168cc: 39 00 80 f1 sethi %hi(0x203c400), %i4
20168d0: ea 27 bf f4 st %l5, [ %fp + -12 ]
head->previous = NULL;
20168d4: c0 27 bf f8 clr [ %fp + -8 ]
tail->previous = head;
20168d8: fa 27 bf fc st %i5, [ %fp + -4 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
20168dc: e8 27 bf e8 st %l4, [ %fp + -24 ]
head->previous = NULL;
20168e0: c0 27 bf ec clr [ %fp + -20 ]
tail->previous = head;
20168e4: e4 27 bf f0 st %l2, [ %fp + -16 ]
20168e8: ae 15 e3 04 or %l7, 0x304, %l7
20168ec: a2 06 20 30 add %i0, 0x30, %l1
20168f0: ac 15 a2 7c or %l6, 0x27c, %l6
20168f4: a6 06 20 68 add %i0, 0x68, %l3
20168f8: b8 17 21 d0 or %i4, 0x1d0, %i4
20168fc: b4 06 20 08 add %i0, 8, %i2
2016900: b6 06 20 40 add %i0, 0x40, %i3
Chain_Control *tmp;
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2016904: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016908: c2 05 c0 00 ld [ %l7 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
201690c: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016910: 94 10 00 12 mov %l2, %o2
2016914: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016918: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
201691c: 40 00 12 b9 call 201b400 <_Watchdog_Adjust_to_chain>
2016920: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016924: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016928: e0 05 80 00 ld [ %l6 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
201692c: 80 a4 00 0a cmp %l0, %o2
2016930: 18 80 00 43 bgu 2016a3c <_Timer_server_Body+0x18c>
2016934: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
2016938: 0a 80 00 39 bcs 2016a1c <_Timer_server_Body+0x16c>
201693c: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
2016940: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016944: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016948: 40 00 02 f4 call 2017518 <_Chain_Get>
201694c: 01 00 00 00 nop
if ( timer == NULL ) {
2016950: 92 92 20 00 orcc %o0, 0, %o1
2016954: 02 80 00 10 be 2016994 <_Timer_server_Body+0xe4>
2016958: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
201695c: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2016960: 80 a0 60 01 cmp %g1, 1
2016964: 02 80 00 32 be 2016a2c <_Timer_server_Body+0x17c>
2016968: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
201696c: 12 bf ff f6 bne 2016944 <_Timer_server_Body+0x94> <== NEVER TAKEN
2016970: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016974: 40 00 12 d6 call 201b4cc <_Watchdog_Insert>
2016978: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
201697c: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016980: 40 00 02 e6 call 2017518 <_Chain_Get>
2016984: 01 00 00 00 nop
if ( timer == NULL ) {
2016988: 92 92 20 00 orcc %o0, 0, %o1
201698c: 32 bf ff f5 bne,a 2016960 <_Timer_server_Body+0xb0> <== NEVER TAKEN
2016990: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016994: 7f ff e2 36 call 200f26c <sparc_disable_interrupts>
2016998: 01 00 00 00 nop
tmp = ts->insert_chain;
201699c: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
if ( _Chain_Is_empty( insert_chain ) ) {
20169a0: c2 07 bf f4 ld [ %fp + -12 ], %g1
20169a4: 80 a0 40 15 cmp %g1, %l5
20169a8: 02 80 00 29 be 2016a4c <_Timer_server_Body+0x19c> <== ALWAYS TAKEN
20169ac: a0 10 20 01 mov 1, %l0
ts->insert_chain = NULL;
do_loop = false;
}
_ISR_Enable( level );
20169b0: 7f ff e2 33 call 200f27c <sparc_enable_interrupts>
20169b4: 01 00 00 00 nop
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
while ( do_loop ) {
20169b8: 80 8c 20 ff btst 0xff, %l0
20169bc: 12 bf ff d3 bne 2016908 <_Timer_server_Body+0x58> <== NEVER TAKEN
20169c0: c2 07 bf e8 ld [ %fp + -24 ], %g1
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
20169c4: 80 a0 40 14 cmp %g1, %l4
20169c8: 12 80 00 0c bne 20169f8 <_Timer_server_Body+0x148>
20169cc: 01 00 00 00 nop
20169d0: 30 80 00 22 b,a 2016a58 <_Timer_server_Body+0x1a8>
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
new_first->previous = head;
20169d4: e4 20 60 04 st %l2, [ %g1 + 4 ]
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *old_first = head->next;
Chain_Node *new_first = old_first->next;
head->next = new_first;
20169d8: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
20169dc: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
20169e0: 7f ff e2 27 call 200f27c <sparc_enable_interrupts>
20169e4: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
20169e8: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
20169ec: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
20169f0: 9f c0 40 00 call %g1
20169f4: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
20169f8: 7f ff e2 1d call 200f26c <sparc_disable_interrupts>
20169fc: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
2016a00: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016a04: 80 a4 00 14 cmp %l0, %l4
2016a08: 32 bf ff f3 bne,a 20169d4 <_Timer_server_Body+0x124>
2016a0c: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016a10: 7f ff e2 1b call 200f27c <sparc_enable_interrupts>
2016a14: 01 00 00 00 nop
2016a18: 30 bf ff bb b,a 2016904 <_Timer_server_Body+0x54>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016a1c: 92 10 20 01 mov 1, %o1 ! 1 <PROM_START+0x1>
2016a20: 40 00 12 48 call 201b340 <_Watchdog_Adjust>
2016a24: 94 22 80 10 sub %o2, %l0, %o2
2016a28: 30 bf ff c6 b,a 2016940 <_Timer_server_Body+0x90>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016a2c: 90 10 00 11 mov %l1, %o0
2016a30: 40 00 12 a7 call 201b4cc <_Watchdog_Insert>
2016a34: 92 02 60 10 add %o1, 0x10, %o1
2016a38: 30 bf ff c3 b,a 2016944 <_Timer_server_Body+0x94>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016a3c: 90 10 00 13 mov %l3, %o0
2016a40: 40 00 12 70 call 201b400 <_Watchdog_Adjust_to_chain>
2016a44: 94 10 00 12 mov %l2, %o2
2016a48: 30 bf ff be b,a 2016940 <_Timer_server_Body+0x90>
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
tmp = ts->insert_chain;
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
2016a4c: c0 26 20 78 clr [ %i0 + 0x78 ]
do_loop = false;
2016a50: 10 bf ff d8 b 20169b0 <_Timer_server_Body+0x100>
2016a54: a0 10 20 00 clr %l0
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2016a58: c0 2e 20 7c clrb [ %i0 + 0x7c ]
2016a5c: c2 07 00 00 ld [ %i4 ], %g1
2016a60: 82 00 60 01 inc %g1
2016a64: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016a68: d0 06 00 00 ld [ %i0 ], %o0
2016a6c: 40 00 10 4f call 201aba8 <_Thread_Set_state>
2016a70: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016a74: 7f ff ff 65 call 2016808 <_Timer_server_Reset_interval_system_watchdog>
2016a78: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016a7c: 7f ff ff 78 call 201685c <_Timer_server_Reset_tod_system_watchdog>
2016a80: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016a84: 40 00 0d 97 call 201a0e0 <_Thread_Enable_dispatch>
2016a88: 01 00 00 00 nop
ts->active = true;
2016a8c: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016a90: 90 10 00 1a mov %i2, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016a94: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016a98: 40 00 12 f6 call 201b670 <_Watchdog_Remove>
2016a9c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016aa0: 40 00 12 f4 call 201b670 <_Watchdog_Remove>
2016aa4: 90 10 00 1b mov %i3, %o0
2016aa8: 30 bf ff 97 b,a 2016904 <_Timer_server_Body+0x54>
02016aac <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016aac: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016ab0: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016ab4: 80 a0 60 00 cmp %g1, 0
2016ab8: 02 80 00 05 be 2016acc <_Timer_server_Schedule_operation_method+0x20>
2016abc: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016ac0: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016ac4: 40 00 02 7f call 20174c0 <_Chain_Append>
2016ac8: 81 e8 00 00 restore
2016acc: 03 00 80 f1 sethi %hi(0x203c400), %g1
2016ad0: c4 00 61 d0 ld [ %g1 + 0x1d0 ], %g2 ! 203c5d0 <_Thread_Dispatch_disable_level>
2016ad4: 84 00 a0 01 inc %g2
2016ad8: c4 20 61 d0 st %g2, [ %g1 + 0x1d0 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016adc: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016ae0: 80 a0 60 01 cmp %g1, 1
2016ae4: 02 80 00 28 be 2016b84 <_Timer_server_Schedule_operation_method+0xd8>
2016ae8: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016aec: 02 80 00 04 be 2016afc <_Timer_server_Schedule_operation_method+0x50>
2016af0: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016af4: 40 00 0d 7b call 201a0e0 <_Thread_Enable_dispatch>
2016af8: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016afc: 7f ff e1 dc call 200f26c <sparc_disable_interrupts>
2016b00: 01 00 00 00 nop
initialized = false;
}
#endif
return status;
}
2016b04: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016b08: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
2016b0c: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016b10: 03 00 80 f1 sethi %hi(0x203c400), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016b14: 80 a0 80 04 cmp %g2, %g4
2016b18: 02 80 00 0d be 2016b4c <_Timer_server_Schedule_operation_method+0xa0>
2016b1c: c2 00 62 7c ld [ %g1 + 0x27c ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016b20: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
2016b24: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016b28: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016b2c: 08 80 00 07 bleu 2016b48 <_Timer_server_Schedule_operation_method+0x9c>
2016b30: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016b34: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
2016b38: 80 a3 40 03 cmp %o5, %g3
2016b3c: 08 80 00 03 bleu 2016b48 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
2016b40: 88 10 20 00 clr %g4
delta_interval -= delta;
2016b44: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016b48: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016b4c: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016b50: 7f ff e1 cb call 200f27c <sparc_enable_interrupts>
2016b54: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016b58: 90 06 20 68 add %i0, 0x68, %o0
2016b5c: 40 00 12 5c call 201b4cc <_Watchdog_Insert>
2016b60: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016b64: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016b68: 80 a0 60 00 cmp %g1, 0
2016b6c: 12 bf ff e2 bne 2016af4 <_Timer_server_Schedule_operation_method+0x48>
2016b70: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016b74: 7f ff ff 3a call 201685c <_Timer_server_Reset_tod_system_watchdog>
2016b78: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016b7c: 40 00 0d 59 call 201a0e0 <_Thread_Enable_dispatch>
2016b80: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016b84: 7f ff e1 ba call 200f26c <sparc_disable_interrupts>
2016b88: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016b8c: 05 00 80 f1 sethi %hi(0x203c400), %g2
initialized = false;
}
#endif
return status;
}
2016b90: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = _Watchdog_Ticks_since_boot;
2016b94: c4 00 a3 04 ld [ %g2 + 0x304 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016b98: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
2016b9c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016ba0: 80 a0 40 03 cmp %g1, %g3
2016ba4: 02 80 00 08 be 2016bc4 <_Timer_server_Schedule_operation_method+0x118>
2016ba8: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016bac: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016bb0: 80 a1 00 0d cmp %g4, %o5
2016bb4: 1a 80 00 03 bcc 2016bc0 <_Timer_server_Schedule_operation_method+0x114>
2016bb8: 86 10 20 00 clr %g3
delta_interval -= delta;
2016bbc: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016bc0: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016bc4: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016bc8: 7f ff e1 ad call 200f27c <sparc_enable_interrupts>
2016bcc: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016bd0: 90 06 20 30 add %i0, 0x30, %o0
2016bd4: 40 00 12 3e call 201b4cc <_Watchdog_Insert>
2016bd8: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016bdc: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016be0: 80 a0 60 00 cmp %g1, 0
2016be4: 12 bf ff c4 bne 2016af4 <_Timer_server_Schedule_operation_method+0x48>
2016be8: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016bec: 7f ff ff 07 call 2016808 <_Timer_server_Reset_interval_system_watchdog>
2016bf0: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016bf4: 40 00 0d 3b call 201a0e0 <_Thread_Enable_dispatch>
2016bf8: 81 e8 00 00 restore
02009a64 <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
2009a64: 9d e3 bf a0 save %sp, -96, %sp
2009a68: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009a6c: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
2009a70: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
2009a74: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
2009a78: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009a7c: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
2009a80: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009a84: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009a88: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
2009a8c: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_END+0x395ac9ff>
2009a90: 80 a0 80 04 cmp %g2, %g4
2009a94: 08 80 00 0b bleu 2009ac0 <_Timespec_Add_to+0x5c>
2009a98: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
2009a9c: 1b 31 19 4d sethi %hi(0xc4653400), %o5
2009aa0: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <RAM_END+0xc2253600>
2009aa4: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
2009aa8: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009aac: 80 a0 80 04 cmp %g2, %g4
2009ab0: 18 bf ff fd bgu 2009aa4 <_Timespec_Add_to+0x40> <== NEVER TAKEN
2009ab4: b0 06 20 01 inc %i0
2009ab8: c4 20 60 04 st %g2, [ %g1 + 4 ]
2009abc: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
2009ac0: 81 c7 e0 08 ret
2009ac4: 81 e8 00 00 restore
0200b9f8 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
200b9f8: c6 02 00 00 ld [ %o0 ], %g3
200b9fc: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
200ba00: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200ba04: 80 a0 c0 02 cmp %g3, %g2
200ba08: 14 80 00 0a bg 200ba30 <_Timespec_Greater_than+0x38>
200ba0c: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
200ba10: 80 a0 c0 02 cmp %g3, %g2
200ba14: 06 80 00 07 bl 200ba30 <_Timespec_Greater_than+0x38> <== NEVER TAKEN
200ba18: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
200ba1c: c4 00 60 04 ld [ %g1 + 4 ], %g2
200ba20: c2 02 60 04 ld [ %o1 + 4 ], %g1
200ba24: 80 a0 80 01 cmp %g2, %g1
200ba28: 04 80 00 04 ble 200ba38 <_Timespec_Greater_than+0x40>
200ba2c: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
200ba30: 81 c3 e0 08 retl
200ba34: 01 00 00 00 nop
200ba38: 81 c3 e0 08 retl
200ba3c: 90 10 20 00 clr %o0 ! 0 <PROM_START>
02009c74 <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2009c74: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
2009c78: 23 00 80 58 sethi %hi(0x2016000), %l1
2009c7c: a2 14 60 58 or %l1, 0x58, %l1 ! 2016058 <_User_extensions_List>
2009c80: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009c84: 80 a4 00 11 cmp %l0, %l1
2009c88: 02 80 00 0d be 2009cbc <_User_extensions_Fatal+0x48> <== NEVER TAKEN
2009c8c: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
2009c90: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2009c94: 80 a0 60 00 cmp %g1, 0
2009c98: 02 80 00 05 be 2009cac <_User_extensions_Fatal+0x38>
2009c9c: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
2009ca0: 92 10 00 19 mov %i1, %o1
2009ca4: 9f c0 40 00 call %g1
2009ca8: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009cac: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009cb0: 80 a4 00 11 cmp %l0, %l1
2009cb4: 32 bf ff f8 bne,a 2009c94 <_User_extensions_Fatal+0x20>
2009cb8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2009cbc: 81 c7 e0 08 ret
2009cc0: 81 e8 00 00 restore
02009b20 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009b20: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009b24: 07 00 80 54 sethi %hi(0x2015000), %g3
2009b28: 86 10 e2 a8 or %g3, 0x2a8, %g3 ! 20152a8 <Configuration>
initial_extensions = Configuration.User_extension_table;
2009b2c: e6 00 e0 40 ld [ %g3 + 0x40 ], %l3
2009b30: 1b 00 80 58 sethi %hi(0x2016000), %o5
2009b34: 09 00 80 57 sethi %hi(0x2015c00), %g4
2009b38: 84 13 60 58 or %o5, 0x58, %g2
2009b3c: 82 11 22 44 or %g4, 0x244, %g1
2009b40: 96 00 a0 04 add %g2, 4, %o3
2009b44: 98 00 60 04 add %g1, 4, %o4
2009b48: d6 23 60 58 st %o3, [ %o5 + 0x58 ]
head->previous = NULL;
2009b4c: c0 20 a0 04 clr [ %g2 + 4 ]
tail->previous = head;
2009b50: c4 20 a0 08 st %g2, [ %g2 + 8 ]
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
2009b54: d8 21 22 44 st %o4, [ %g4 + 0x244 ]
head->previous = NULL;
2009b58: c0 20 60 04 clr [ %g1 + 4 ]
tail->previous = head;
2009b5c: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009b60: 80 a4 e0 00 cmp %l3, 0
2009b64: 02 80 00 1b be 2009bd0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009b68: e4 00 e0 3c ld [ %g3 + 0x3c ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009b6c: 83 2c a0 02 sll %l2, 2, %g1
2009b70: a3 2c a0 04 sll %l2, 4, %l1
2009b74: a2 24 40 01 sub %l1, %g1, %l1
2009b78: a2 04 40 12 add %l1, %l2, %l1
2009b7c: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009b80: 40 00 01 9d call 200a1f4 <_Workspace_Allocate_or_fatal_error>
2009b84: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009b88: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009b8c: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009b90: 40 00 16 23 call 200f41c <memset>
2009b94: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009b98: 80 a4 a0 00 cmp %l2, 0
2009b9c: 02 80 00 0d be 2009bd0 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009ba0: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
2009ba4: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009ba8: 94 10 20 20 mov 0x20, %o2
2009bac: 92 04 c0 09 add %l3, %o1, %o1
2009bb0: 40 00 15 e2 call 200f338 <memcpy>
2009bb4: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
2009bb8: 40 00 0d 1a call 200d020 <_User_extensions_Add_set>
2009bbc: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009bc0: a2 04 60 01 inc %l1
2009bc4: 80 a4 80 11 cmp %l2, %l1
2009bc8: 18 bf ff f7 bgu 2009ba4 <_User_extensions_Handler_initialization+0x84>
2009bcc: a0 04 20 34 add %l0, 0x34, %l0
2009bd0: 81 c7 e0 08 ret
2009bd4: 81 e8 00 00 restore
02009bd8 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
2009bd8: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
2009bdc: 23 00 80 58 sethi %hi(0x2016000), %l1
2009be0: e0 04 60 58 ld [ %l1 + 0x58 ], %l0 ! 2016058 <_User_extensions_List>
2009be4: a2 14 60 58 or %l1, 0x58, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009be8: a2 04 60 04 add %l1, 4, %l1
2009bec: 80 a4 00 11 cmp %l0, %l1
2009bf0: 02 80 00 0c be 2009c20 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
2009bf4: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
2009bf8: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
2009bfc: 80 a0 60 00 cmp %g1, 0
2009c00: 02 80 00 04 be 2009c10 <_User_extensions_Thread_begin+0x38>
2009c04: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
2009c08: 9f c0 40 00 call %g1
2009c0c: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009c10: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009c14: 80 a4 00 11 cmp %l0, %l1
2009c18: 32 bf ff f9 bne,a 2009bfc <_User_extensions_Thread_begin+0x24>
2009c1c: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
2009c20: 81 c7 e0 08 ret
2009c24: 81 e8 00 00 restore
02009cc4 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
2009cc4: 9d e3 bf a0 save %sp, -96, %sp
return false;
}
}
return true;
}
2009cc8: 23 00 80 58 sethi %hi(0x2016000), %l1
2009ccc: e0 04 60 58 ld [ %l1 + 0x58 ], %l0 ! 2016058 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
2009cd0: a6 10 00 18 mov %i0, %l3
return false;
}
}
return true;
}
2009cd4: a2 14 60 58 or %l1, 0x58, %l1
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
2009cd8: a2 04 60 04 add %l1, 4, %l1
2009cdc: 80 a4 00 11 cmp %l0, %l1
2009ce0: 02 80 00 13 be 2009d2c <_User_extensions_Thread_create+0x68><== NEVER TAKEN
2009ce4: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
2009ce8: 25 00 80 58 sethi %hi(0x2016000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
2009cec: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2009cf0: 80 a0 60 00 cmp %g1, 0
2009cf4: 02 80 00 08 be 2009d14 <_User_extensions_Thread_create+0x50>
2009cf8: 84 14 a0 9c or %l2, 0x9c, %g2
status = (*the_extension->Callouts.thread_create)(
2009cfc: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009d00: 9f c0 40 00 call %g1
2009d04: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
2009d08: 80 8a 20 ff btst 0xff, %o0
2009d0c: 22 80 00 08 be,a 2009d2c <_User_extensions_Thread_create+0x68>
2009d10: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009d14: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
2009d18: 80 a4 00 11 cmp %l0, %l1
2009d1c: 32 bf ff f5 bne,a 2009cf0 <_User_extensions_Thread_create+0x2c>
2009d20: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
2009d24: 81 c7 e0 08 ret
2009d28: 91 e8 20 01 restore %g0, 1, %o0
}
2009d2c: 81 c7 e0 08 ret
2009d30: 81 e8 00 00 restore
02009d34 <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
2009d34: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_delete)(
_Thread_Executing,
the_thread
);
}
}
2009d38: 23 00 80 58 sethi %hi(0x2016000), %l1
2009d3c: a2 14 60 58 or %l1, 0x58, %l1 ! 2016058 <_User_extensions_List>
2009d40: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009d44: 80 a4 00 11 cmp %l0, %l1
2009d48: 02 80 00 0d be 2009d7c <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
2009d4c: 25 00 80 58 sethi %hi(0x2016000), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
2009d50: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
2009d54: 80 a0 60 00 cmp %g1, 0
2009d58: 02 80 00 05 be 2009d6c <_User_extensions_Thread_delete+0x38>
2009d5c: 84 14 a0 9c or %l2, 0x9c, %g2
(*the_extension->Callouts.thread_delete)(
2009d60: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009d64: 9f c0 40 00 call %g1
2009d68: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009d6c: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009d70: 80 a4 00 11 cmp %l0, %l1
2009d74: 32 bf ff f8 bne,a 2009d54 <_User_extensions_Thread_delete+0x20>
2009d78: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
2009d7c: 81 c7 e0 08 ret
2009d80: 81 e8 00 00 restore
02009c28 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
2009c28: 9d e3 bf a0 save %sp, -96, %sp
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
}
}
2009c2c: 23 00 80 58 sethi %hi(0x2016000), %l1
2009c30: a2 14 60 58 or %l1, 0x58, %l1 ! 2016058 <_User_extensions_List>
2009c34: e0 04 60 08 ld [ %l1 + 8 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009c38: 80 a4 00 11 cmp %l0, %l1
2009c3c: 02 80 00 0c be 2009c6c <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
2009c40: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
2009c44: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
2009c48: 80 a0 60 00 cmp %g1, 0
2009c4c: 02 80 00 04 be 2009c5c <_User_extensions_Thread_exitted+0x34>
2009c50: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
2009c54: 9f c0 40 00 call %g1
2009c58: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009c5c: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_Last( &_User_extensions_List );
2009c60: 80 a4 00 11 cmp %l0, %l1
2009c64: 32 bf ff f9 bne,a 2009c48 <_User_extensions_Thread_exitted+0x20>
2009c68: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
2009c6c: 81 c7 e0 08 ret
2009c70: 81 e8 00 00 restore
0200aac8 <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
200aac8: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_restart)(
_Thread_Executing,
the_thread
);
}
}
200aacc: 23 00 80 74 sethi %hi(0x201d000), %l1
200aad0: e0 04 61 48 ld [ %l1 + 0x148 ], %l0 ! 201d148 <_User_extensions_List>
200aad4: a2 14 61 48 or %l1, 0x148, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200aad8: a2 04 60 04 add %l1, 4, %l1
200aadc: 80 a4 00 11 cmp %l0, %l1
200aae0: 02 80 00 0d be 200ab14 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
200aae4: 25 00 80 74 sethi %hi(0x201d000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
200aae8: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200aaec: 80 a0 60 00 cmp %g1, 0
200aaf0: 02 80 00 05 be 200ab04 <_User_extensions_Thread_restart+0x3c>
200aaf4: 84 14 a1 8c or %l2, 0x18c, %g2
(*the_extension->Callouts.thread_restart)(
200aaf8: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200aafc: 9f c0 40 00 call %g1
200ab00: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200ab04: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
200ab08: 80 a4 00 11 cmp %l0, %l1
200ab0c: 32 bf ff f8 bne,a 200aaec <_User_extensions_Thread_restart+0x24>
200ab10: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200ab14: 81 c7 e0 08 ret
200ab18: 81 e8 00 00 restore
02009d84 <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
2009d84: 9d e3 bf a0 save %sp, -96, %sp
(*the_extension->Callouts.thread_start)(
_Thread_Executing,
the_thread
);
}
}
2009d88: 23 00 80 58 sethi %hi(0x2016000), %l1
2009d8c: e0 04 60 58 ld [ %l1 + 0x58 ], %l0 ! 2016058 <_User_extensions_List>
2009d90: a2 14 60 58 or %l1, 0x58, %l1
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009d94: a2 04 60 04 add %l1, 4, %l1
2009d98: 80 a4 00 11 cmp %l0, %l1
2009d9c: 02 80 00 0d be 2009dd0 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
2009da0: 25 00 80 58 sethi %hi(0x2016000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
2009da4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2009da8: 80 a0 60 00 cmp %g1, 0
2009dac: 02 80 00 05 be 2009dc0 <_User_extensions_Thread_start+0x3c>
2009db0: 84 14 a0 9c or %l2, 0x9c, %g2
(*the_extension->Callouts.thread_start)(
2009db4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009db8: 9f c0 40 00 call %g1
2009dbc: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009dc0: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _Chain_First( &_User_extensions_List );
2009dc4: 80 a4 00 11 cmp %l0, %l1
2009dc8: 32 bf ff f8 bne,a 2009da8 <_User_extensions_Thread_start+0x24>
2009dcc: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2009dd0: 81 c7 e0 08 ret
2009dd4: 81 e8 00 00 restore
02009dd8 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
2009dd8: 9d e3 bf a0 save %sp, -96, %sp
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
}
}
2009ddc: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009de0: e0 04 62 44 ld [ %l1 + 0x244 ], %l0 ! 2015e44 <_User_extensions_Switches_list>
2009de4: a2 14 62 44 or %l1, 0x244, %l1
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
2009de8: a2 04 60 04 add %l1, 4, %l1
2009dec: 80 a4 00 11 cmp %l0, %l1
2009df0: 02 80 00 0a be 2009e18 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
2009df4: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
2009df8: c2 04 20 08 ld [ %l0 + 8 ], %g1
2009dfc: 90 10 00 18 mov %i0, %o0
2009e00: 9f c0 40 00 call %g1
2009e04: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
2009e08: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _Chain_First( &_User_extensions_Switches_list );
2009e0c: 80 a4 00 11 cmp %l0, %l1
2009e10: 32 bf ff fb bne,a 2009dfc <_User_extensions_Thread_switch+0x24>
2009e14: c2 04 20 08 ld [ %l0 + 8 ], %g1
2009e18: 81 c7 e0 08 ret
2009e1c: 81 e8 00 00 restore
0200be74 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200be74: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200be78: 7f ff dc e6 call 2003210 <sparc_disable_interrupts>
200be7c: a0 10 00 18 mov %i0, %l0
}
}
_ISR_Enable( level );
}
200be80: c2 06 00 00 ld [ %i0 ], %g1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200be84: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200be88: 80 a0 40 12 cmp %g1, %l2
200be8c: 02 80 00 1f be 200bf08 <_Watchdog_Adjust+0x94>
200be90: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200be94: 12 80 00 1f bne 200bf10 <_Watchdog_Adjust+0x9c>
200be98: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200be9c: 80 a6 a0 00 cmp %i2, 0
200bea0: 02 80 00 1a be 200bf08 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200bea4: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200bea8: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
200beac: 80 a6 80 11 cmp %i2, %l1
200beb0: 1a 80 00 0b bcc 200bedc <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
200beb4: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
200beb8: 10 80 00 1d b 200bf2c <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
200bebc: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200bec0: b4 a6 80 11 subcc %i2, %l1, %i2
200bec4: 02 80 00 11 be 200bf08 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200bec8: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200becc: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
200bed0: 80 a4 40 1a cmp %l1, %i2
200bed4: 38 80 00 16 bgu,a 200bf2c <_Watchdog_Adjust+0xb8>
200bed8: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200bedc: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
200bee0: 7f ff dc d0 call 2003220 <sparc_enable_interrupts>
200bee4: 01 00 00 00 nop
_Watchdog_Tickle( header );
200bee8: 40 00 00 b2 call 200c1b0 <_Watchdog_Tickle>
200beec: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200bef0: 7f ff dc c8 call 2003210 <sparc_disable_interrupts>
200bef4: 01 00 00 00 nop
}
}
_ISR_Enable( level );
}
200bef8: c4 04 00 00 ld [ %l0 ], %g2
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
200befc: 80 a4 80 02 cmp %l2, %g2
200bf00: 12 bf ff f0 bne 200bec0 <_Watchdog_Adjust+0x4c>
200bf04: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
200bf08: 7f ff dc c6 call 2003220 <sparc_enable_interrupts>
200bf0c: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200bf10: 12 bf ff fe bne 200bf08 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200bf14: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200bf18: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200bf1c: b4 00 80 1a add %g2, %i2, %i2
200bf20: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200bf24: 7f ff dc bf call 2003220 <sparc_enable_interrupts>
200bf28: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200bf2c: 10 bf ff f7 b 200bf08 <_Watchdog_Adjust+0x94>
200bf30: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
02009fc4 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009fc4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009fc8: 7f ff e0 b3 call 2002294 <sparc_disable_interrupts>
2009fcc: 01 00 00 00 nop
previous_state = the_watchdog->state;
2009fd0: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
2009fd4: 80 a4 20 01 cmp %l0, 1
2009fd8: 02 80 00 2a be 200a080 <_Watchdog_Remove+0xbc>
2009fdc: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009fe0: 1a 80 00 09 bcc 200a004 <_Watchdog_Remove+0x40>
2009fe4: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009fe8: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009fec: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 ! 2015f74 <_Watchdog_Ticks_since_boot>
2009ff0: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
2009ff4: 7f ff e0 ac call 20022a4 <sparc_enable_interrupts>
2009ff8: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
2009ffc: 81 c7 e0 08 ret
200a000: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
200a004: 18 bf ff fa bgu 2009fec <_Watchdog_Remove+0x28> <== NEVER TAKEN
200a008: 03 00 80 57 sethi %hi(0x2015c00), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
200a00c: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
200a010: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
200a014: c4 00 40 00 ld [ %g1 ], %g2
200a018: 80 a0 a0 00 cmp %g2, 0
200a01c: 02 80 00 07 be 200a038 <_Watchdog_Remove+0x74>
200a020: 05 00 80 57 sethi %hi(0x2015c00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
200a024: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200a028: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
200a02c: 84 00 c0 02 add %g3, %g2, %g2
200a030: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
200a034: 05 00 80 57 sethi %hi(0x2015c00), %g2
200a038: c4 00 a3 70 ld [ %g2 + 0x370 ], %g2 ! 2015f70 <_Watchdog_Sync_count>
200a03c: 80 a0 a0 00 cmp %g2, 0
200a040: 22 80 00 07 be,a 200a05c <_Watchdog_Remove+0x98>
200a044: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200a048: 05 00 80 58 sethi %hi(0x2016000), %g2
200a04c: c6 00 a0 a4 ld [ %g2 + 0xa4 ], %g3 ! 20160a4 <_Per_CPU_Information+0x8>
200a050: 05 00 80 57 sethi %hi(0x2015c00), %g2
200a054: c6 20 a3 08 st %g3, [ %g2 + 0x308 ] ! 2015f08 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200a058: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
200a05c: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200a060: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a064: 03 00 80 57 sethi %hi(0x2015c00), %g1
200a068: c2 00 63 74 ld [ %g1 + 0x374 ], %g1 ! 2015f74 <_Watchdog_Ticks_since_boot>
200a06c: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a070: 7f ff e0 8d call 20022a4 <sparc_enable_interrupts>
200a074: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
200a078: 81 c7 e0 08 ret
200a07c: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a080: c2 00 63 74 ld [ %g1 + 0x374 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
200a084: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a088: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a08c: 7f ff e0 86 call 20022a4 <sparc_enable_interrupts>
200a090: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
200a094: 81 c7 e0 08 ret
200a098: 81 e8 00 00 restore
0200b6b4 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200b6b4: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200b6b8: 7f ff dd a8 call 2002d58 <sparc_disable_interrupts>
200b6bc: 01 00 00 00 nop
200b6c0: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
200b6c4: 11 00 80 71 sethi %hi(0x201c400), %o0
200b6c8: 94 10 00 19 mov %i1, %o2
200b6cc: 92 10 00 18 mov %i0, %o1
200b6d0: 7f ff e4 6e call 2004888 <printk>
200b6d4: 90 12 21 00 or %o0, 0x100, %o0
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
}
200b6d8: e2 06 40 00 ld [ %i1 ], %l1
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
200b6dc: b2 06 60 04 add %i1, 4, %i1
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
200b6e0: 80 a4 40 19 cmp %l1, %i1
200b6e4: 02 80 00 0f be 200b720 <_Watchdog_Report_chain+0x6c>
200b6e8: 11 00 80 71 sethi %hi(0x201c400), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200b6ec: 92 10 00 11 mov %l1, %o1
200b6f0: 40 00 00 0f call 200b72c <_Watchdog_Report>
200b6f4: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
node != _Chain_Tail(header) ;
node = node->next )
200b6f8: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = _Chain_First( header ) ;
200b6fc: 80 a4 40 19 cmp %l1, %i1
200b700: 12 bf ff fc bne 200b6f0 <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200b704: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200b708: 11 00 80 71 sethi %hi(0x201c400), %o0
200b70c: 92 10 00 18 mov %i0, %o1
200b710: 7f ff e4 5e call 2004888 <printk>
200b714: 90 12 21 18 or %o0, 0x118, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200b718: 7f ff dd 94 call 2002d68 <sparc_enable_interrupts>
200b71c: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200b720: 7f ff e4 5a call 2004888 <printk>
200b724: 90 12 21 28 or %o0, 0x128, %o0
200b728: 30 bf ff fc b,a 200b718 <_Watchdog_Report_chain+0x64>
0200eef4 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
200eef4: 9d e3 bf 98 save %sp, -104, %sp
200eef8: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
200eefc: 80 a4 20 00 cmp %l0, 0
200ef00: 02 80 00 23 be 200ef8c <rtems_barrier_create+0x98>
200ef04: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
200ef08: 80 a6 e0 00 cmp %i3, 0
200ef0c: 02 80 00 20 be 200ef8c <rtems_barrier_create+0x98>
200ef10: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
200ef14: 80 8e 60 10 btst 0x10, %i1
200ef18: 02 80 00 1f be 200ef94 <rtems_barrier_create+0xa0>
200ef1c: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
200ef20: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
200ef24: 02 80 00 1a be 200ef8c <rtems_barrier_create+0x98>
200ef28: b0 10 20 0a mov 0xa, %i0
200ef2c: 03 00 80 83 sethi %hi(0x2020c00), %g1
200ef30: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 2020eb0 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
200ef34: f4 27 bf fc st %i2, [ %fp + -4 ]
200ef38: 84 00 a0 01 inc %g2
200ef3c: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
200ef40: 25 00 80 84 sethi %hi(0x2021000), %l2
200ef44: 7f ff eb c2 call 2009e4c <_Objects_Allocate>
200ef48: 90 14 a1 60 or %l2, 0x160, %o0 ! 2021160 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
200ef4c: a2 92 20 00 orcc %o0, 0, %l1
200ef50: 02 80 00 1e be 200efc8 <rtems_barrier_create+0xd4> <== NEVER TAKEN
200ef54: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
200ef58: 92 07 bf f8 add %fp, -8, %o1
200ef5c: 40 00 02 43 call 200f868 <_CORE_barrier_Initialize>
200ef60: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
200ef64: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
200ef68: a4 14 a1 60 or %l2, 0x160, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200ef6c: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200ef70: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200ef74: 85 28 a0 02 sll %g2, 2, %g2
200ef78: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200ef7c: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
200ef80: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
200ef84: 7f ff f0 2c call 200b034 <_Thread_Enable_dispatch>
200ef88: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
200ef8c: 81 c7 e0 08 ret
200ef90: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
200ef94: 82 10 20 01 mov 1, %g1
200ef98: c2 27 bf f8 st %g1, [ %fp + -8 ]
200ef9c: 03 00 80 83 sethi %hi(0x2020c00), %g1
200efa0: c4 00 62 b0 ld [ %g1 + 0x2b0 ], %g2 ! 2020eb0 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
200efa4: f4 27 bf fc st %i2, [ %fp + -4 ]
200efa8: 84 00 a0 01 inc %g2
200efac: c4 20 62 b0 st %g2, [ %g1 + 0x2b0 ]
200efb0: 25 00 80 84 sethi %hi(0x2021000), %l2
200efb4: 7f ff eb a6 call 2009e4c <_Objects_Allocate>
200efb8: 90 14 a1 60 or %l2, 0x160, %o0 ! 2021160 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
200efbc: a2 92 20 00 orcc %o0, 0, %l1
200efc0: 12 bf ff e6 bne 200ef58 <rtems_barrier_create+0x64>
200efc4: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
200efc8: 7f ff f0 1b call 200b034 <_Thread_Enable_dispatch>
200efcc: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
200efd0: 81 c7 e0 08 ret
200efd4: 81 e8 00 00 restore
02007300 <rtems_chain_append_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
2007300: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Append_with_empty_check( chain, node );
2007304: 90 10 00 18 mov %i0, %o0
2007308: 40 00 01 65 call 200789c <_Chain_Append_with_empty_check>
200730c: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
2007310: 80 8a 20 ff btst 0xff, %o0
2007314: 12 80 00 04 bne 2007324 <rtems_chain_append_with_notification+0x24><== ALWAYS TAKEN
2007318: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
200731c: 81 c7 e0 08 ret
2007320: 81 e8 00 00 restore
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_append_with_empty_check( chain, node );
if ( was_empty ) {
sc = rtems_event_send( task, events );
2007324: b0 10 00 1a mov %i2, %i0
2007328: 7f ff fd 61 call 20068ac <rtems_event_send>
200732c: 93 e8 00 1b restore %g0, %i3, %o1
02007368 <rtems_chain_get_with_wait>:
rtems_chain_control *chain,
rtems_event_set events,
rtems_interval timeout,
rtems_chain_node **node_ptr
)
{
2007368: 9d e3 bf 98 save %sp, -104, %sp
200736c: a0 10 00 18 mov %i0, %l0
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
) {
rtems_event_set out;
sc = rtems_event_receive(
2007370: a4 07 bf fc add %fp, -4, %l2
*/
RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get(
rtems_chain_control *the_chain
)
{
return _Chain_Get( the_chain );
2007374: 40 00 01 89 call 2007998 <_Chain_Get>
2007378: 90 10 00 10 mov %l0, %o0
200737c: 92 10 20 00 clr %o1
2007380: a2 10 00 08 mov %o0, %l1
2007384: 94 10 00 1a mov %i2, %o2
2007388: 90 10 00 19 mov %i1, %o0
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
200738c: 80 a4 60 00 cmp %l1, 0
2007390: 12 80 00 0a bne 20073b8 <rtems_chain_get_with_wait+0x50>
2007394: 96 10 00 12 mov %l2, %o3
) {
rtems_event_set out;
sc = rtems_event_receive(
2007398: 7f ff fc e2 call 2006720 <rtems_event_receive>
200739c: 01 00 00 00 nop
)
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
20073a0: 80 a2 20 00 cmp %o0, 0
20073a4: 02 bf ff f4 be 2007374 <rtems_chain_get_with_wait+0xc> <== NEVER TAKEN
20073a8: b0 10 00 08 mov %o0, %i0
timeout,
&out
);
}
*node_ptr = node;
20073ac: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
20073b0: 81 c7 e0 08 ret
20073b4: 81 e8 00 00 restore
rtems_status_code sc = RTEMS_SUCCESSFUL;
rtems_chain_node *node = NULL;
while (
sc == RTEMS_SUCCESSFUL
&& (node = rtems_chain_get( chain )) == NULL
20073b8: 90 10 20 00 clr %o0
timeout,
&out
);
}
*node_ptr = node;
20073bc: e2 26 c0 00 st %l1, [ %i3 ]
return sc;
}
20073c0: 81 c7 e0 08 ret
20073c4: 91 e8 00 08 restore %g0, %o0, %o0
020073c8 <rtems_chain_prepend_with_notification>:
rtems_chain_control *chain,
rtems_chain_node *node,
rtems_id task,
rtems_event_set events
)
{
20073c8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check(
rtems_chain_control *chain,
rtems_chain_node *node
)
{
return _Chain_Prepend_with_empty_check( chain, node );
20073cc: 90 10 00 18 mov %i0, %o0
20073d0: 40 00 01 90 call 2007a10 <_Chain_Prepend_with_empty_check>
20073d4: 92 10 00 19 mov %i1, %o1
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
20073d8: 80 8a 20 ff btst 0xff, %o0
20073dc: 12 80 00 04 bne 20073ec <rtems_chain_prepend_with_notification+0x24><== ALWAYS TAKEN
20073e0: b0 10 20 00 clr %i0
sc = rtems_event_send( task, events );
}
return sc;
}
20073e4: 81 c7 e0 08 ret
20073e8: 81 e8 00 00 restore
{
rtems_status_code sc = RTEMS_SUCCESSFUL;
bool was_empty = rtems_chain_prepend_with_empty_check( chain, node );
if (was_empty) {
sc = rtems_event_send( task, events );
20073ec: b0 10 00 1a mov %i2, %i0
20073f0: 7f ff fd 2f call 20068ac <rtems_event_send>
20073f4: 93 e8 00 1b restore %g0, %i3, %o1
020080a4 <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
20080a4: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
20080a8: 03 00 80 68 sethi %hi(0x201a000), %g1
20080ac: c4 00 62 f4 ld [ %g1 + 0x2f4 ], %g2 ! 201a2f4 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
20080b0: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
20080b4: 03 00 80 68 sethi %hi(0x201a000), %g1
if ( rtems_interrupt_is_in_progress() )
20080b8: 80 a0 a0 00 cmp %g2, 0
20080bc: 12 80 00 42 bne 20081c4 <rtems_io_register_driver+0x120>
20080c0: c8 00 63 84 ld [ %g1 + 0x384 ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
20080c4: 80 a6 a0 00 cmp %i2, 0
20080c8: 02 80 00 50 be 2008208 <rtems_io_register_driver+0x164>
20080cc: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
20080d0: 80 a6 60 00 cmp %i1, 0
20080d4: 02 80 00 4d be 2008208 <rtems_io_register_driver+0x164>
20080d8: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
20080dc: c4 06 40 00 ld [ %i1 ], %g2
20080e0: 80 a0 a0 00 cmp %g2, 0
20080e4: 22 80 00 46 be,a 20081fc <rtems_io_register_driver+0x158>
20080e8: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
20080ec: 80 a1 00 18 cmp %g4, %i0
20080f0: 08 80 00 33 bleu 20081bc <rtems_io_register_driver+0x118>
20080f4: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
20080f8: 05 00 80 68 sethi %hi(0x201a000), %g2
20080fc: c8 00 a0 90 ld [ %g2 + 0x90 ], %g4 ! 201a090 <_Thread_Dispatch_disable_level>
2008100: 88 01 20 01 inc %g4
2008104: c8 20 a0 90 st %g4, [ %g2 + 0x90 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
2008108: 80 a6 20 00 cmp %i0, 0
200810c: 12 80 00 30 bne 20081cc <rtems_io_register_driver+0x128>
2008110: 1b 00 80 68 sethi %hi(0x201a000), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
2008114: c8 00 63 84 ld [ %g1 + 0x384 ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2008118: 80 a1 20 00 cmp %g4, 0
200811c: 22 80 00 3d be,a 2008210 <rtems_io_register_driver+0x16c><== NEVER TAKEN
2008120: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
2008124: 10 80 00 05 b 2008138 <rtems_io_register_driver+0x94>
2008128: c2 03 63 88 ld [ %o5 + 0x388 ], %g1
200812c: 80 a1 00 18 cmp %g4, %i0
2008130: 08 80 00 0a bleu 2008158 <rtems_io_register_driver+0xb4>
2008134: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008138: c4 00 40 00 ld [ %g1 ], %g2
200813c: 80 a0 a0 00 cmp %g2, 0
2008140: 32 bf ff fb bne,a 200812c <rtems_io_register_driver+0x88>
2008144: b0 06 20 01 inc %i0
2008148: c4 00 60 04 ld [ %g1 + 4 ], %g2
200814c: 80 a0 a0 00 cmp %g2, 0
2008150: 32 bf ff f7 bne,a 200812c <rtems_io_register_driver+0x88>
2008154: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
2008158: 80 a1 00 18 cmp %g4, %i0
200815c: 02 80 00 2d be 2008210 <rtems_io_register_driver+0x16c>
2008160: f0 26 80 00 st %i0, [ %i2 ]
2008164: 83 2e 20 03 sll %i0, 3, %g1
2008168: 85 2e 20 05 sll %i0, 5, %g2
200816c: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2008170: c8 03 63 88 ld [ %o5 + 0x388 ], %g4
2008174: da 00 c0 00 ld [ %g3 ], %o5
2008178: 82 01 00 02 add %g4, %g2, %g1
200817c: da 21 00 02 st %o5, [ %g4 + %g2 ]
2008180: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2008184: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2008188: c4 20 60 04 st %g2, [ %g1 + 4 ]
200818c: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
2008190: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
2008194: c4 20 60 08 st %g2, [ %g1 + 8 ]
2008198: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
200819c: c4 20 60 0c st %g2, [ %g1 + 0xc ]
20081a0: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
20081a4: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
20081a8: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
20081ac: 40 00 07 e9 call 200a150 <_Thread_Enable_dispatch>
20081b0: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
20081b4: 40 00 21 f2 call 201097c <rtems_io_initialize>
20081b8: 81 e8 00 00 restore
}
20081bc: 81 c7 e0 08 ret
20081c0: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
20081c4: 81 c7 e0 08 ret
20081c8: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
20081cc: c2 03 63 88 ld [ %o5 + 0x388 ], %g1
20081d0: 89 2e 20 05 sll %i0, 5, %g4
20081d4: 85 2e 20 03 sll %i0, 3, %g2
20081d8: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
20081dc: c8 00 40 02 ld [ %g1 + %g2 ], %g4
20081e0: 80 a1 20 00 cmp %g4, 0
20081e4: 02 80 00 0f be 2008220 <rtems_io_register_driver+0x17c>
20081e8: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
20081ec: 40 00 07 d9 call 200a150 <_Thread_Enable_dispatch>
20081f0: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
20081f4: 81 c7 e0 08 ret
20081f8: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
20081fc: 80 a0 a0 00 cmp %g2, 0
2008200: 32 bf ff bc bne,a 20080f0 <rtems_io_register_driver+0x4c>
2008204: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
2008208: 81 c7 e0 08 ret
200820c: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2008210: 40 00 07 d0 call 200a150 <_Thread_Enable_dispatch>
2008214: b0 10 20 05 mov 5, %i0
return sc;
2008218: 81 c7 e0 08 ret
200821c: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008220: c2 00 60 04 ld [ %g1 + 4 ], %g1
2008224: 80 a0 60 00 cmp %g1, 0
2008228: 12 bf ff f1 bne 20081ec <rtems_io_register_driver+0x148>
200822c: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2008230: 10 bf ff d0 b 2008170 <rtems_io_register_driver+0xcc>
2008234: f0 26 80 00 st %i0, [ %i2 ]
02009794 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2009794: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009798: 80 a6 20 00 cmp %i0, 0
200979c: 02 80 00 23 be 2009828 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
20097a0: 25 00 80 9a sethi %hi(0x2026800), %l2
20097a4: a4 14 a0 cc or %l2, 0xcc, %l2 ! 20268cc <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
20097a8: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
#if !defined(RTEMS_POSIX_API) || defined(RTEMS_DEBUG)
if ( !_Objects_Information_table[ api_index ] )
20097ac: c2 04 80 00 ld [ %l2 ], %g1
20097b0: 80 a0 60 00 cmp %g1, 0
20097b4: 22 80 00 1a be,a 200981c <rtems_iterate_over_all_threads+0x88>
20097b8: a4 04 a0 04 add %l2, 4, %l2
continue;
#endif
information = _Objects_Information_table[ api_index ][ 1 ];
20097bc: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
20097c0: 80 a4 60 00 cmp %l1, 0
20097c4: 22 80 00 16 be,a 200981c <rtems_iterate_over_all_threads+0x88>
20097c8: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
20097cc: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
20097d0: 84 90 60 00 orcc %g1, 0, %g2
20097d4: 22 80 00 12 be,a 200981c <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
20097d8: a4 04 a0 04 add %l2, 4, %l2
20097dc: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
20097e0: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
20097e4: 83 2c 20 02 sll %l0, 2, %g1
20097e8: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
20097ec: 90 90 60 00 orcc %g1, 0, %o0
20097f0: 02 80 00 05 be 2009804 <rtems_iterate_over_all_threads+0x70>
20097f4: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
20097f8: 9f c6 00 00 call %i0
20097fc: 01 00 00 00 nop
2009800: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009804: 83 28 a0 10 sll %g2, 0x10, %g1
2009808: 83 30 60 10 srl %g1, 0x10, %g1
200980c: 80 a0 40 10 cmp %g1, %l0
2009810: 3a bf ff f5 bcc,a 20097e4 <rtems_iterate_over_all_threads+0x50>
2009814: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
2009818: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200981c: 80 a4 80 13 cmp %l2, %l3
2009820: 32 bf ff e4 bne,a 20097b0 <rtems_iterate_over_all_threads+0x1c>
2009824: c2 04 80 00 ld [ %l2 ], %g1
2009828: 81 c7 e0 08 ret
200982c: 81 e8 00 00 restore
020082f0 <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
20082f0: 9d e3 bf a0 save %sp, -96, %sp
20082f4: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
20082f8: 80 a6 a0 00 cmp %i2, 0
20082fc: 02 80 00 21 be 2008380 <rtems_object_get_class_information+0x90>
2008300: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
2008304: 93 2e 60 10 sll %i1, 0x10, %o1
if ( !obj_info )
return RTEMS_INVALID_NUMBER;
2008308: b0 10 20 0a mov 0xa, %i0
* Validate parameters and look up information structure.
*/
if ( !info )
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
200830c: 40 00 07 7d call 200a100 <_Objects_Get_information>
2008310: 93 32 60 10 srl %o1, 0x10, %o1
if ( !obj_info )
2008314: 80 a2 20 00 cmp %o0, 0
2008318: 02 80 00 1a be 2008380 <rtems_object_get_class_information+0x90>
200831c: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
2008320: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
2008324: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
2008328: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
200832c: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
2008330: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
2008334: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
2008338: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
200833c: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008340: 80 a1 20 00 cmp %g4, 0
2008344: 02 80 00 0d be 2008378 <rtems_object_get_class_information+0x88><== NEVER TAKEN
2008348: 84 10 20 00 clr %g2
200834c: da 02 20 1c ld [ %o0 + 0x1c ], %o5
2008350: 86 10 20 01 mov 1, %g3
2008354: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
2008358: 87 28 e0 02 sll %g3, 2, %g3
200835c: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008360: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
2008364: 80 a0 00 03 cmp %g0, %g3
2008368: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
200836c: 80 a1 00 01 cmp %g4, %g1
2008370: 1a bf ff fa bcc 2008358 <rtems_object_get_class_information+0x68>
2008374: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
2008378: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
200837c: b0 10 20 00 clr %i0
}
2008380: 81 c7 e0 08 ret
2008384: 81 e8 00 00 restore
0201417c <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
201417c: 9d e3 bf a0 save %sp, -96, %sp
2014180: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
2014184: 80 a4 20 00 cmp %l0, 0
2014188: 02 80 00 34 be 2014258 <rtems_partition_create+0xdc>
201418c: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
2014190: 80 a6 60 00 cmp %i1, 0
2014194: 02 80 00 31 be 2014258 <rtems_partition_create+0xdc>
2014198: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
201419c: 80 a7 60 00 cmp %i5, 0
20141a0: 02 80 00 2e be 2014258 <rtems_partition_create+0xdc> <== NEVER TAKEN
20141a4: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
20141a8: 02 80 00 2e be 2014260 <rtems_partition_create+0xe4>
20141ac: 80 a6 a0 00 cmp %i2, 0
20141b0: 02 80 00 2c be 2014260 <rtems_partition_create+0xe4>
20141b4: 80 a6 80 1b cmp %i2, %i3
20141b8: 0a 80 00 28 bcs 2014258 <rtems_partition_create+0xdc>
20141bc: b0 10 20 08 mov 8, %i0
20141c0: 80 8e e0 07 btst 7, %i3
20141c4: 12 80 00 25 bne 2014258 <rtems_partition_create+0xdc>
20141c8: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
20141cc: 12 80 00 23 bne 2014258 <rtems_partition_create+0xdc>
20141d0: b0 10 20 09 mov 9, %i0
20141d4: 03 00 80 f1 sethi %hi(0x203c400), %g1
20141d8: c4 00 61 d0 ld [ %g1 + 0x1d0 ], %g2 ! 203c5d0 <_Thread_Dispatch_disable_level>
20141dc: 84 00 a0 01 inc %g2
20141e0: c4 20 61 d0 st %g2, [ %g1 + 0x1d0 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
20141e4: 25 00 80 f0 sethi %hi(0x203c000), %l2
20141e8: 40 00 13 12 call 2018e30 <_Objects_Allocate>
20141ec: 90 14 a3 e4 or %l2, 0x3e4, %o0 ! 203c3e4 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
20141f0: a2 92 20 00 orcc %o0, 0, %l1
20141f4: 02 80 00 1d be 2014268 <rtems_partition_create+0xec>
20141f8: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
20141fc: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2014200: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
2014204: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014208: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
201420c: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014210: 40 00 61 6c call 202c7c0 <.udiv>
2014214: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014218: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
201421c: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014220: 96 10 00 1b mov %i3, %o3
2014224: b8 04 60 24 add %l1, 0x24, %i4
2014228: 40 00 0c cf call 2017564 <_Chain_Initialize>
201422c: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014230: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
2014234: a4 14 a3 e4 or %l2, 0x3e4, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014238: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
201423c: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014240: 85 28 a0 02 sll %g2, 2, %g2
2014244: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014248: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
201424c: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2014250: 40 00 17 a4 call 201a0e0 <_Thread_Enable_dispatch>
2014254: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2014258: 81 c7 e0 08 ret
201425c: 81 e8 00 00 restore
}
2014260: 81 c7 e0 08 ret
2014264: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
2014268: 40 00 17 9e call 201a0e0 <_Thread_Enable_dispatch>
201426c: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
2014270: 81 c7 e0 08 ret
2014274: 81 e8 00 00 restore
0200789c <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
200789c: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
20078a0: 11 00 80 78 sethi %hi(0x201e000), %o0
20078a4: 92 10 00 18 mov %i0, %o1
20078a8: 90 12 22 04 or %o0, 0x204, %o0
20078ac: 40 00 09 7b call 2009e98 <_Objects_Get>
20078b0: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
20078b4: c2 07 bf fc ld [ %fp + -4 ], %g1
20078b8: 80 a0 60 00 cmp %g1, 0
20078bc: 02 80 00 04 be 20078cc <rtems_rate_monotonic_period+0x30>
20078c0: a0 10 00 08 mov %o0, %l0
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20078c4: 81 c7 e0 08 ret
20078c8: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
20078cc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20078d0: 23 00 80 79 sethi %hi(0x201e400), %l1
20078d4: a2 14 61 cc or %l1, 0x1cc, %l1 ! 201e5cc <_Per_CPU_Information>
20078d8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
20078dc: 80 a0 80 01 cmp %g2, %g1
20078e0: 02 80 00 06 be 20078f8 <rtems_rate_monotonic_period+0x5c>
20078e4: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
20078e8: 40 00 0c b1 call 200abac <_Thread_Enable_dispatch>
20078ec: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
20078f0: 81 c7 e0 08 ret
20078f4: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
20078f8: 12 80 00 0f bne 2007934 <rtems_rate_monotonic_period+0x98>
20078fc: 01 00 00 00 nop
switch ( the_period->state ) {
2007900: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007904: 80 a0 60 04 cmp %g1, 4
2007908: 08 80 00 06 bleu 2007920 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
200790c: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007910: 40 00 0c a7 call 200abac <_Thread_Enable_dispatch>
2007914: 01 00 00 00 nop
return RTEMS_TIMEOUT;
2007918: 81 c7 e0 08 ret
200791c: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
2007920: 83 28 60 02 sll %g1, 2, %g1
2007924: 05 00 80 70 sethi %hi(0x201c000), %g2
2007928: 84 10 a2 74 or %g2, 0x274, %g2 ! 201c274 <CSWTCH.2>
200792c: 10 bf ff f9 b 2007910 <rtems_rate_monotonic_period+0x74>
2007930: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
2007934: 7f ff ee 00 call 2003134 <sparc_disable_interrupts>
2007938: 01 00 00 00 nop
200793c: a6 10 00 08 mov %o0, %l3
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
2007940: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
2007944: 80 a4 a0 00 cmp %l2, 0
2007948: 02 80 00 14 be 2007998 <rtems_rate_monotonic_period+0xfc>
200794c: 80 a4 a0 02 cmp %l2, 2
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
2007950: 02 80 00 29 be 20079f4 <rtems_rate_monotonic_period+0x158>
2007954: 80 a4 a0 04 cmp %l2, 4
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
if ( the_period->state == RATE_MONOTONIC_EXPIRED ) {
2007958: 12 bf ff e6 bne 20078f0 <rtems_rate_monotonic_period+0x54><== NEVER TAKEN
200795c: b0 10 20 04 mov 4, %i0
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
2007960: 7f ff ff 8f call 200779c <_Rate_monotonic_Update_statistics>
2007964: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
2007968: 7f ff ed f7 call 2003144 <sparc_enable_interrupts>
200796c: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007970: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007974: 92 04 20 10 add %l0, 0x10, %o1
2007978: 11 00 80 79 sethi %hi(0x201e400), %o0
the_period->next_length = length;
200797c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
2007980: 90 12 20 54 or %o0, 0x54, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
2007984: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007988: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
200798c: 40 00 11 15 call 200bde0 <_Watchdog_Insert>
2007990: b0 10 20 06 mov 6, %i0
2007994: 30 bf ff df b,a 2007910 <rtems_rate_monotonic_period+0x74>
return( return_value );
}
_ISR_Disable( level );
if ( the_period->state == RATE_MONOTONIC_INACTIVE ) {
_ISR_Enable( level );
2007998: 7f ff ed eb call 2003144 <sparc_enable_interrupts>
200799c: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20079a0: 7f ff ff 63 call 200772c <_Rate_monotonic_Initiate_statistics>
20079a4: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20079a8: 82 10 20 02 mov 2, %g1
20079ac: 92 04 20 10 add %l0, 0x10, %o1
20079b0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
20079b4: 11 00 80 79 sethi %hi(0x201e400), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20079b8: 03 00 80 1f sethi %hi(0x2007c00), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20079bc: 90 12 20 54 or %o0, 0x54, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20079c0: 82 10 61 70 or %g1, 0x170, %g1
the_watchdog->id = id;
20079c4: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20079c8: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20079cc: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
20079d0: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
20079d4: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20079d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20079dc: 40 00 11 01 call 200bde0 <_Watchdog_Insert>
20079e0: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
20079e4: 40 00 0c 72 call 200abac <_Thread_Enable_dispatch>
20079e8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20079ec: 81 c7 e0 08 ret
20079f0: 81 e8 00 00 restore
if ( the_period->state == RATE_MONOTONIC_ACTIVE ) {
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
20079f4: 7f ff ff 6a call 200779c <_Rate_monotonic_Update_statistics>
20079f8: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
20079fc: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007a00: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007a04: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
2007a08: 7f ff ed cf call 2003144 <sparc_enable_interrupts>
2007a0c: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007a10: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007a14: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007a18: 90 10 00 01 mov %g1, %o0
2007a1c: 13 00 00 10 sethi %hi(0x4000), %o1
2007a20: 40 00 0e dd call 200b594 <_Thread_Set_state>
2007a24: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007a28: 7f ff ed c3 call 2003134 <sparc_disable_interrupts>
2007a2c: 01 00 00 00 nop
local_state = the_period->state;
2007a30: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
2007a34: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
2007a38: 7f ff ed c3 call 2003144 <sparc_enable_interrupts>
2007a3c: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007a40: 80 a4 e0 03 cmp %l3, 3
2007a44: 22 80 00 06 be,a 2007a5c <rtems_rate_monotonic_period+0x1c0>
2007a48: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
2007a4c: 40 00 0c 58 call 200abac <_Thread_Enable_dispatch>
2007a50: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2007a54: 81 c7 e0 08 ret
2007a58: 81 e8 00 00 restore
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007a5c: 40 00 0b 65 call 200a7f0 <_Thread_Clear_state>
2007a60: 13 00 00 10 sethi %hi(0x4000), %o1
2007a64: 30 bf ff fa b,a 2007a4c <rtems_rate_monotonic_period+0x1b0>
02007a68 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2007a68: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007a6c: 80 a6 60 00 cmp %i1, 0
2007a70: 02 80 00 4c be 2007ba0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
2007a74: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2007a78: 13 00 80 70 sethi %hi(0x201c000), %o1
2007a7c: 9f c6 40 00 call %i1
2007a80: 92 12 62 88 or %o1, 0x288, %o1 ! 201c288 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007a84: 90 10 00 18 mov %i0, %o0
2007a88: 13 00 80 70 sethi %hi(0x201c000), %o1
2007a8c: 9f c6 40 00 call %i1
2007a90: 92 12 62 a8 or %o1, 0x2a8, %o1 ! 201c2a8 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007a94: 90 10 00 18 mov %i0, %o0
2007a98: 13 00 80 70 sethi %hi(0x201c000), %o1
2007a9c: 9f c6 40 00 call %i1
2007aa0: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 201c2d0 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007aa4: 90 10 00 18 mov %i0, %o0
2007aa8: 13 00 80 70 sethi %hi(0x201c000), %o1
2007aac: 9f c6 40 00 call %i1
2007ab0: 92 12 62 f8 or %o1, 0x2f8, %o1 ! 201c2f8 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007ab4: 90 10 00 18 mov %i0, %o0
2007ab8: 13 00 80 70 sethi %hi(0x201c000), %o1
2007abc: 9f c6 40 00 call %i1
2007ac0: 92 12 63 48 or %o1, 0x348, %o1 ! 201c348 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007ac4: 23 00 80 78 sethi %hi(0x201e000), %l1
2007ac8: a2 14 62 04 or %l1, 0x204, %l1 ! 201e204 <_Rate_monotonic_Information>
2007acc: e0 04 60 08 ld [ %l1 + 8 ], %l0
2007ad0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007ad4: 80 a4 00 01 cmp %l0, %g1
2007ad8: 18 80 00 32 bgu 2007ba0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
2007adc: 2f 00 80 70 sethi %hi(0x201c000), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007ae0: 39 00 80 70 sethi %hi(0x201c000), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007ae4: 2b 00 80 6d sethi %hi(0x201b400), %l5
2007ae8: a4 07 bf a0 add %fp, -96, %l2
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007aec: ba 07 bf d8 add %fp, -40, %i5
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007af0: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007af4: ae 15 e3 98 or %l7, 0x398, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
2007af8: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007afc: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
2007b00: b8 17 23 b0 or %i4, 0x3b0, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
2007b04: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007b08: 10 80 00 06 b 2007b20 <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
2007b0c: aa 15 61 98 or %l5, 0x198, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007b10: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007b14: 80 a0 40 10 cmp %g1, %l0
2007b18: 0a 80 00 22 bcs 2007ba0 <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
2007b1c: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007b20: 90 10 00 10 mov %l0, %o0
2007b24: 40 00 19 ad call 200e1d8 <rtems_rate_monotonic_get_statistics>
2007b28: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
2007b2c: 80 a2 20 00 cmp %o0, 0
2007b30: 32 bf ff f8 bne,a 2007b10 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2007b34: c2 04 60 0c ld [ %l1 + 0xc ], %g1
#if defined(RTEMS_DEBUG)
status = rtems_rate_monotonic_get_status( id, &the_status );
if ( status != RTEMS_SUCCESSFUL )
continue;
#else
(void) rtems_rate_monotonic_get_status( id, &the_status );
2007b38: 92 10 00 1d mov %i5, %o1
2007b3c: 40 00 19 d6 call 200e294 <rtems_rate_monotonic_get_status>
2007b40: 90 10 00 10 mov %l0, %o0
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007b44: d0 07 bf d8 ld [ %fp + -40 ], %o0
2007b48: 94 10 00 13 mov %l3, %o2
2007b4c: 40 00 00 b9 call 2007e30 <rtems_object_get_name>
2007b50: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007b54: d8 1f bf a0 ldd [ %fp + -96 ], %o4
2007b58: 92 10 00 17 mov %l7, %o1
2007b5c: 94 10 00 10 mov %l0, %o2
2007b60: 90 10 00 18 mov %i0, %o0
2007b64: 9f c6 40 00 call %i1
2007b68: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007b6c: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007b70: 94 10 00 14 mov %l4, %o2
2007b74: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007b78: 80 a0 60 00 cmp %g1, 0
2007b7c: 12 80 00 0b bne 2007ba8 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
2007b80: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
2007b84: 9f c6 40 00 call %i1
2007b88: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007b8c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007b90: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007b94: 80 a0 40 10 cmp %g1, %l0
2007b98: 1a bf ff e3 bcc 2007b24 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
2007b9c: 90 10 00 10 mov %l0, %o0
2007ba0: 81 c7 e0 08 ret
2007ba4: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007ba8: 40 00 0f 52 call 200b8f0 <_Timespec_Divide_by_integer>
2007bac: 92 10 00 01 mov %g1, %o1
(*print)( context,
2007bb0: d0 07 bf ac ld [ %fp + -84 ], %o0
2007bb4: 40 00 46 7a call 201959c <.div>
2007bb8: 92 10 23 e8 mov 0x3e8, %o1
2007bbc: 96 10 00 08 mov %o0, %o3
2007bc0: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007bc4: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007bc8: 40 00 46 75 call 201959c <.div>
2007bcc: 92 10 23 e8 mov 0x3e8, %o1
2007bd0: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007bd4: b6 10 00 08 mov %o0, %i3
2007bd8: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007bdc: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007be0: 40 00 46 6f call 201959c <.div>
2007be4: 92 10 23 e8 mov 0x3e8, %o1
2007be8: d8 07 bf b0 ld [ %fp + -80 ], %o4
2007bec: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007bf0: d4 07 bf a8 ld [ %fp + -88 ], %o2
2007bf4: 9a 10 00 1b mov %i3, %o5
2007bf8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007bfc: 92 10 00 1c mov %i4, %o1
2007c00: 9f c6 40 00 call %i1
2007c04: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2007c08: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007c0c: 94 10 00 14 mov %l4, %o2
2007c10: 40 00 0f 38 call 200b8f0 <_Timespec_Divide_by_integer>
2007c14: 90 10 00 1a mov %i2, %o0
(*print)( context,
2007c18: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007c1c: 40 00 46 60 call 201959c <.div>
2007c20: 92 10 23 e8 mov 0x3e8, %o1
2007c24: 96 10 00 08 mov %o0, %o3
2007c28: d0 07 bf cc ld [ %fp + -52 ], %o0
2007c2c: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007c30: 40 00 46 5b call 201959c <.div>
2007c34: 92 10 23 e8 mov 0x3e8, %o1
2007c38: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007c3c: b6 10 00 08 mov %o0, %i3
2007c40: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007c44: 92 10 23 e8 mov 0x3e8, %o1
2007c48: 40 00 46 55 call 201959c <.div>
2007c4c: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007c50: d4 07 bf c0 ld [ %fp + -64 ], %o2
2007c54: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007c58: d8 07 bf c8 ld [ %fp + -56 ], %o4
2007c5c: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007c60: 13 00 80 70 sethi %hi(0x201c000), %o1
2007c64: 90 10 00 18 mov %i0, %o0
2007c68: 92 12 63 d0 or %o1, 0x3d0, %o1
2007c6c: 9f c6 40 00 call %i1
2007c70: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007c74: 10 bf ff a7 b 2007b10 <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2007c78: c2 04 60 0c ld [ %l1 + 0xc ], %g1
02007c98 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
2007c98: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2007c9c: 03 00 80 78 sethi %hi(0x201e000), %g1
2007ca0: c4 00 63 70 ld [ %g1 + 0x370 ], %g2 ! 201e370 <_Thread_Dispatch_disable_level>
2007ca4: 84 00 a0 01 inc %g2
2007ca8: c4 20 63 70 st %g2, [ %g1 + 0x370 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007cac: 23 00 80 78 sethi %hi(0x201e000), %l1
2007cb0: a2 14 62 04 or %l1, 0x204, %l1 ! 201e204 <_Rate_monotonic_Information>
2007cb4: e0 04 60 08 ld [ %l1 + 8 ], %l0
2007cb8: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007cbc: 80 a4 00 01 cmp %l0, %g1
2007cc0: 18 80 00 09 bgu 2007ce4 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
2007cc4: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
(void) rtems_rate_monotonic_reset_statistics( id );
2007cc8: 40 00 00 0a call 2007cf0 <rtems_rate_monotonic_reset_statistics>
2007ccc: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007cd0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007cd4: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007cd8: 80 a0 40 10 cmp %g1, %l0
2007cdc: 1a bf ff fb bcc 2007cc8 <rtems_rate_monotonic_reset_all_statistics+0x30>
2007ce0: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2007ce4: 40 00 0b b2 call 200abac <_Thread_Enable_dispatch>
2007ce8: 81 e8 00 00 restore
0201579c <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
201579c: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20157a0: 80 a6 60 00 cmp %i1, 0
20157a4: 12 80 00 04 bne 20157b4 <rtems_signal_send+0x18>
20157a8: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20157ac: 81 c7 e0 08 ret
20157b0: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20157b4: 90 10 00 18 mov %i0, %o0
20157b8: 40 00 12 58 call 201a118 <_Thread_Get>
20157bc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20157c0: c2 07 bf fc ld [ %fp + -4 ], %g1
20157c4: 80 a0 60 00 cmp %g1, 0
20157c8: 02 80 00 05 be 20157dc <rtems_signal_send+0x40>
20157cc: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
20157d0: 82 10 20 04 mov 4, %g1
}
20157d4: 81 c7 e0 08 ret
20157d8: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
20157dc: e0 02 21 58 ld [ %o0 + 0x158 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
20157e0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20157e4: 80 a0 60 00 cmp %g1, 0
20157e8: 02 80 00 25 be 201587c <rtems_signal_send+0xe0>
20157ec: 01 00 00 00 nop
if ( asr->is_enabled ) {
20157f0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
20157f4: 80 a0 60 00 cmp %g1, 0
20157f8: 02 80 00 15 be 201584c <rtems_signal_send+0xb0>
20157fc: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015800: 7f ff e6 9b call 200f26c <sparc_disable_interrupts>
2015804: 01 00 00 00 nop
*signal_set |= signals;
2015808: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
201580c: b2 10 40 19 or %g1, %i1, %i1
2015810: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
2015814: 7f ff e6 9a call 200f27c <sparc_enable_interrupts>
2015818: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
201581c: 03 00 80 f2 sethi %hi(0x203c800), %g1
2015820: 82 10 60 34 or %g1, 0x34, %g1 ! 203c834 <_Per_CPU_Information>
2015824: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015828: 80 a0 a0 00 cmp %g2, 0
201582c: 02 80 00 0f be 2015868 <rtems_signal_send+0xcc>
2015830: 01 00 00 00 nop
2015834: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015838: 80 a4 40 02 cmp %l1, %g2
201583c: 12 80 00 0b bne 2015868 <rtems_signal_send+0xcc> <== NEVER TAKEN
2015840: 84 10 20 01 mov 1, %g2
_Thread_Dispatch_necessary = true;
2015844: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015848: 30 80 00 08 b,a 2015868 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
201584c: 7f ff e6 88 call 200f26c <sparc_disable_interrupts>
2015850: 01 00 00 00 nop
*signal_set |= signals;
2015854: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2015858: b2 10 40 19 or %g1, %i1, %i1
201585c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
2015860: 7f ff e6 87 call 200f27c <sparc_enable_interrupts>
2015864: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
2015868: 40 00 12 1e call 201a0e0 <_Thread_Enable_dispatch>
201586c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2015870: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2015874: 81 c7 e0 08 ret
2015878: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
201587c: 40 00 12 19 call 201a0e0 <_Thread_Enable_dispatch>
2015880: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
2015884: 10 bf ff ca b 20157ac <rtems_signal_send+0x10>
2015888: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
0200e3e4 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200e3e4: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200e3e8: 80 a6 a0 00 cmp %i2, 0
200e3ec: 02 80 00 43 be 200e4f8 <rtems_task_mode+0x114>
200e3f0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200e3f4: 27 00 80 58 sethi %hi(0x2016000), %l3
200e3f8: a6 14 e0 9c or %l3, 0x9c, %l3 ! 201609c <_Per_CPU_Information>
200e3fc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e400: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e404: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e408: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200e40c: e2 04 21 58 ld [ %l0 + 0x158 ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e410: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e414: 80 a0 60 00 cmp %g1, 0
200e418: 12 80 00 3a bne 200e500 <rtems_task_mode+0x11c>
200e41c: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e420: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
200e424: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e428: 7f ff f0 c6 call 200a740 <_CPU_ISR_Get_level>
200e42c: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e430: a9 2d 20 0a sll %l4, 0xa, %l4
200e434: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
200e438: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e43c: 80 8e 61 00 btst 0x100, %i1
200e440: 02 80 00 06 be 200e458 <rtems_task_mode+0x74>
200e444: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e448: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200e44c: 80 a0 00 01 cmp %g0, %g1
200e450: 82 60 3f ff subx %g0, -1, %g1
200e454: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200e458: 80 8e 62 00 btst 0x200, %i1
200e45c: 02 80 00 0b be 200e488 <rtems_task_mode+0xa4>
200e460: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200e464: 80 8e 22 00 btst 0x200, %i0
200e468: 22 80 00 07 be,a 200e484 <rtems_task_mode+0xa0>
200e46c: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e470: 03 00 80 57 sethi %hi(0x2015c00), %g1
200e474: c2 00 61 a4 ld [ %g1 + 0x1a4 ], %g1 ! 2015da4 <_Thread_Ticks_per_timeslice>
200e478: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200e47c: 82 10 20 01 mov 1, %g1
200e480: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e484: 80 8e 60 0f btst 0xf, %i1
200e488: 12 80 00 3d bne 200e57c <rtems_task_mode+0x198>
200e48c: 01 00 00 00 nop
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e490: 80 8e 64 00 btst 0x400, %i1
200e494: 02 80 00 14 be 200e4e4 <rtems_task_mode+0x100>
200e498: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e49c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200e4a0: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200e4a4: 80 a0 00 18 cmp %g0, %i0
200e4a8: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e4ac: 80 a0 80 01 cmp %g2, %g1
200e4b0: 22 80 00 0e be,a 200e4e8 <rtems_task_mode+0x104>
200e4b4: 03 00 80 57 sethi %hi(0x2015c00), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200e4b8: 7f ff cf 77 call 2002294 <sparc_disable_interrupts>
200e4bc: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
200e4c0: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
200e4c4: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
200e4c8: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200e4cc: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200e4d0: 7f ff cf 75 call 20022a4 <sparc_enable_interrupts>
200e4d4: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200e4d8: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200e4dc: 80 a0 00 01 cmp %g0, %g1
200e4e0: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
200e4e4: 03 00 80 57 sethi %hi(0x2015c00), %g1
200e4e8: c4 00 63 bc ld [ %g1 + 0x3bc ], %g2 ! 2015fbc <_System_state_Current>
200e4ec: 80 a0 a0 03 cmp %g2, 3
200e4f0: 02 80 00 11 be 200e534 <rtems_task_mode+0x150> <== ALWAYS TAKEN
200e4f4: 82 10 20 00 clr %g1
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
}
200e4f8: 81 c7 e0 08 ret
200e4fc: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e500: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200e504: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e508: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e50c: 7f ff f0 8d call 200a740 <_CPU_ISR_Get_level>
200e510: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e514: a9 2d 20 0a sll %l4, 0xa, %l4
200e518: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
200e51c: a4 15 00 12 or %l4, %l2, %l2
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e520: 80 8e 61 00 btst 0x100, %i1
200e524: 02 bf ff cd be 200e458 <rtems_task_mode+0x74>
200e528: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e52c: 10 bf ff c8 b 200e44c <rtems_task_mode+0x68>
200e530: 82 0e 21 00 and %i0, 0x100, %g1
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
200e534: 80 88 e0 ff btst 0xff, %g3
200e538: 12 80 00 0a bne 200e560 <rtems_task_mode+0x17c>
200e53c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2
200e540: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3
200e544: 80 a0 80 03 cmp %g2, %g3
200e548: 02 bf ff ec be 200e4f8 <rtems_task_mode+0x114>
200e54c: 01 00 00 00 nop
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
200e550: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2
200e554: 80 a0 a0 00 cmp %g2, 0
200e558: 02 bf ff e8 be 200e4f8 <rtems_task_mode+0x114> <== NEVER TAKEN
200e55c: 01 00 00 00 nop
_Thread_Dispatch_necessary = true;
200e560: 82 10 20 01 mov 1, %g1 ! 1 <PROM_START+0x1>
200e564: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
200e568: 7f ff e9 be call 2008c60 <_Thread_Dispatch>
200e56c: 01 00 00 00 nop
}
return RTEMS_SUCCESSFUL;
200e570: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e574: 81 c7 e0 08 ret
200e578: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e57c: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e580: 7f ff cf 49 call 20022a4 <sparc_enable_interrupts>
200e584: 91 2a 20 08 sll %o0, 8, %o0
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e588: 10 bf ff c3 b 200e494 <rtems_task_mode+0xb0>
200e58c: 80 8e 64 00 btst 0x400, %i1
0200b520 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200b520: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200b524: 80 a6 60 00 cmp %i1, 0
200b528: 02 80 00 07 be 200b544 <rtems_task_set_priority+0x24>
200b52c: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200b530: 03 00 80 67 sethi %hi(0x2019c00), %g1
200b534: c2 08 62 24 ldub [ %g1 + 0x224 ], %g1 ! 2019e24 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200b538: 80 a6 40 01 cmp %i1, %g1
200b53c: 18 80 00 1c bgu 200b5ac <rtems_task_set_priority+0x8c>
200b540: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200b544: 80 a6 a0 00 cmp %i2, 0
200b548: 02 80 00 19 be 200b5ac <rtems_task_set_priority+0x8c>
200b54c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200b550: 40 00 09 5b call 200dabc <_Thread_Get>
200b554: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200b558: c2 07 bf fc ld [ %fp + -4 ], %g1
200b55c: 80 a0 60 00 cmp %g1, 0
200b560: 12 80 00 13 bne 200b5ac <rtems_task_set_priority+0x8c>
200b564: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200b568: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200b56c: 80 a6 60 00 cmp %i1, 0
200b570: 02 80 00 0d be 200b5a4 <rtems_task_set_priority+0x84>
200b574: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200b578: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200b57c: 80 a0 60 00 cmp %g1, 0
200b580: 02 80 00 06 be 200b598 <rtems_task_set_priority+0x78>
200b584: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200b588: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200b58c: 80 a6 40 01 cmp %i1, %g1
200b590: 1a 80 00 05 bcc 200b5a4 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200b594: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200b598: 92 10 00 19 mov %i1, %o1
200b59c: 40 00 07 e4 call 200d52c <_Thread_Change_priority>
200b5a0: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200b5a4: 40 00 09 38 call 200da84 <_Thread_Enable_dispatch>
200b5a8: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200b5ac: 81 c7 e0 08 ret
200b5b0: 81 e8 00 00 restore
020078e4 <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
20078e4: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
20078e8: 80 a6 60 00 cmp %i1, 0
20078ec: 02 80 00 1e be 2007964 <rtems_task_variable_delete+0x80>
20078f0: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
20078f4: 90 10 00 18 mov %i0, %o0
20078f8: 40 00 08 e3 call 2009c84 <_Thread_Get>
20078fc: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007900: c2 07 bf fc ld [ %fp + -4 ], %g1
2007904: 80 a0 60 00 cmp %g1, 0
2007908: 12 80 00 19 bne 200796c <rtems_task_variable_delete+0x88>
200790c: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
2007910: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
2007914: 80 a0 60 00 cmp %g1, 0
2007918: 02 80 00 10 be 2007958 <rtems_task_variable_delete+0x74>
200791c: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007920: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007924: 80 a0 80 19 cmp %g2, %i1
2007928: 32 80 00 09 bne,a 200794c <rtems_task_variable_delete+0x68>
200792c: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
2007930: 10 80 00 19 b 2007994 <rtems_task_variable_delete+0xb0>
2007934: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2007938: 80 a0 80 19 cmp %g2, %i1
200793c: 22 80 00 0e be,a 2007974 <rtems_task_variable_delete+0x90>
2007940: c4 02 40 00 ld [ %o1 ], %g2
2007944: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
2007948: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
200794c: 80 a2 60 00 cmp %o1, 0
2007950: 32 bf ff fa bne,a 2007938 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
2007954: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2007958: 40 00 08 bd call 2009c4c <_Thread_Enable_dispatch>
200795c: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
2007960: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007964: 81 c7 e0 08 ret
2007968: 91 e8 00 01 restore %g0, %g1, %o0
200796c: 81 c7 e0 08 ret
2007970: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
2007974: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
2007978: 40 00 00 2e call 2007a30 <_RTEMS_Tasks_Invoke_task_variable_dtor>
200797c: 01 00 00 00 nop
_Thread_Enable_dispatch();
2007980: 40 00 08 b3 call 2009c4c <_Thread_Enable_dispatch>
2007984: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2007988: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200798c: 81 c7 e0 08 ret
2007990: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
2007994: 92 10 00 01 mov %g1, %o1
2007998: 10 bf ff f8 b 2007978 <rtems_task_variable_delete+0x94>
200799c: c4 22 21 64 st %g2, [ %o0 + 0x164 ]
020079a0 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
20079a0: 9d e3 bf 98 save %sp, -104, %sp
20079a4: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
20079a8: 80 a6 60 00 cmp %i1, 0
20079ac: 02 80 00 1b be 2007a18 <rtems_task_variable_get+0x78>
20079b0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
20079b4: 80 a6 a0 00 cmp %i2, 0
20079b8: 02 80 00 1c be 2007a28 <rtems_task_variable_get+0x88>
20079bc: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
20079c0: 40 00 08 b1 call 2009c84 <_Thread_Get>
20079c4: 92 07 bf fc add %fp, -4, %o1
switch (location) {
20079c8: c2 07 bf fc ld [ %fp + -4 ], %g1
20079cc: 80 a0 60 00 cmp %g1, 0
20079d0: 12 80 00 12 bne 2007a18 <rtems_task_variable_get+0x78>
20079d4: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
20079d8: c2 02 21 64 ld [ %o0 + 0x164 ], %g1
while (tvp) {
20079dc: 80 a0 60 00 cmp %g1, 0
20079e0: 32 80 00 07 bne,a 20079fc <rtems_task_variable_get+0x5c>
20079e4: c4 00 60 04 ld [ %g1 + 4 ], %g2
20079e8: 30 80 00 0e b,a 2007a20 <rtems_task_variable_get+0x80>
20079ec: 80 a0 60 00 cmp %g1, 0
20079f0: 02 80 00 0c be 2007a20 <rtems_task_variable_get+0x80> <== NEVER TAKEN
20079f4: 01 00 00 00 nop
if (tvp->ptr == ptr) {
20079f8: c4 00 60 04 ld [ %g1 + 4 ], %g2
20079fc: 80 a0 80 19 cmp %g2, %i1
2007a00: 32 bf ff fb bne,a 20079ec <rtems_task_variable_get+0x4c>
2007a04: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
2007a08: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
2007a0c: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
2007a10: 40 00 08 8f call 2009c4c <_Thread_Enable_dispatch>
2007a14: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2007a18: 81 c7 e0 08 ret
2007a1c: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2007a20: 40 00 08 8b call 2009c4c <_Thread_Enable_dispatch>
2007a24: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
2007a28: 81 c7 e0 08 ret
2007a2c: 81 e8 00 00 restore
020161fc <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
20161fc: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
2016200: 11 00 80 f2 sethi %hi(0x203c800), %o0
2016204: 92 10 00 18 mov %i0, %o1
2016208: 90 12 20 c4 or %o0, 0xc4, %o0
201620c: 40 00 0c 70 call 20193cc <_Objects_Get>
2016210: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
2016214: c2 07 bf fc ld [ %fp + -4 ], %g1
2016218: 80 a0 60 00 cmp %g1, 0
201621c: 22 80 00 04 be,a 201622c <rtems_timer_cancel+0x30>
2016220: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016224: 81 c7 e0 08 ret
2016228: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
201622c: 80 a0 60 04 cmp %g1, 4
2016230: 02 80 00 04 be 2016240 <rtems_timer_cancel+0x44> <== NEVER TAKEN
2016234: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2016238: 40 00 15 0e call 201b670 <_Watchdog_Remove>
201623c: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016240: 40 00 0f a8 call 201a0e0 <_Thread_Enable_dispatch>
2016244: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2016248: 81 c7 e0 08 ret
201624c: 81 e8 00 00 restore
02016714 <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016714: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016718: 03 00 80 f2 sethi %hi(0x203c800), %g1
201671c: e0 00 61 04 ld [ %g1 + 0x104 ], %l0 ! 203c904 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016720: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
2016724: 80 a4 20 00 cmp %l0, 0
2016728: 02 80 00 10 be 2016768 <rtems_timer_server_fire_when+0x54>
201672c: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2016730: 03 00 80 f1 sethi %hi(0x203c400), %g1
2016734: c2 08 61 e0 ldub [ %g1 + 0x1e0 ], %g1 ! 203c5e0 <_TOD_Is_set>
2016738: 80 a0 60 00 cmp %g1, 0
201673c: 02 80 00 0b be 2016768 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
2016740: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
2016744: 80 a6 a0 00 cmp %i2, 0
2016748: 02 80 00 08 be 2016768 <rtems_timer_server_fire_when+0x54>
201674c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2016750: 90 10 00 19 mov %i1, %o0
2016754: 7f ff f3 b2 call 201361c <_TOD_Validate>
2016758: b0 10 20 14 mov 0x14, %i0
201675c: 80 8a 20 ff btst 0xff, %o0
2016760: 12 80 00 04 bne 2016770 <rtems_timer_server_fire_when+0x5c>
2016764: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016768: 81 c7 e0 08 ret
201676c: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
2016770: 7f ff f3 75 call 2013544 <_TOD_To_seconds>
2016774: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
2016778: 25 00 80 f1 sethi %hi(0x203c400), %l2
201677c: c2 04 a2 7c ld [ %l2 + 0x27c ], %g1 ! 203c67c <_TOD_Now>
2016780: 80 a2 00 01 cmp %o0, %g1
2016784: 08 bf ff f9 bleu 2016768 <rtems_timer_server_fire_when+0x54>
2016788: b2 10 00 08 mov %o0, %i1
201678c: 92 10 00 11 mov %l1, %o1
2016790: 11 00 80 f2 sethi %hi(0x203c800), %o0
2016794: 94 07 bf fc add %fp, -4, %o2
2016798: 40 00 0b 0d call 20193cc <_Objects_Get>
201679c: 90 12 20 c4 or %o0, 0xc4, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20167a0: c2 07 bf fc ld [ %fp + -4 ], %g1
20167a4: 80 a0 60 00 cmp %g1, 0
20167a8: 12 80 00 16 bne 2016800 <rtems_timer_server_fire_when+0xec>
20167ac: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
20167b0: 40 00 13 b0 call 201b670 <_Watchdog_Remove>
20167b4: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20167b8: c4 04 a2 7c ld [ %l2 + 0x27c ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
20167bc: c2 04 20 04 ld [ %l0 + 4 ], %g1
20167c0: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20167c4: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
20167c8: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
20167cc: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
20167d0: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
20167d4: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
20167d8: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
20167dc: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
20167e0: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
20167e4: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
20167e8: 9f c0 40 00 call %g1
20167ec: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
20167f0: 40 00 0e 3c call 201a0e0 <_Thread_Enable_dispatch>
20167f4: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20167f8: 81 c7 e0 08 ret
20167fc: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016800: 81 c7 e0 08 ret
2016804: 91 e8 20 04 restore %g0, 4, %o0