=============================================================================== 02006f0c <_API_extensions_Run_postdriver>: * * _API_extensions_Run_postdriver */ void _API_extensions_Run_postdriver( void ) { 2006f0c: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _API_extensions_List.first ; 2006f10: 23 00 80 57 sethi %hi(0x2015c00), %l1 2006f14: e0 04 63 34 ld [ %l1 + 0x334 ], %l0 ! 2015f34 <_API_extensions_List> 2006f18: a2 14 63 34 or %l1, 0x334, %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2006f1c: a2 04 60 04 add %l1, 4, %l1 2006f20: 80 a4 00 11 cmp %l0, %l1 2006f24: 02 80 00 09 be 2006f48 <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN 2006f28: 01 00 00 00 nop * Currently all APIs configure this hook so it is always non-NULL. */ #if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API) if ( the_extension->postdriver_hook ) #endif (*the_extension->postdriver_hook)(); 2006f2c: c2 04 20 08 ld [ %l0 + 8 ], %g1 2006f30: 9f c0 40 00 call %g1 2006f34: 01 00 00 00 nop Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _API_extensions_List.first ; !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2006f38: e0 04 00 00 ld [ %l0 ], %l0 void _API_extensions_Run_postdriver( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _API_extensions_List.first ; 2006f3c: 80 a4 00 11 cmp %l0, %l1 2006f40: 32 bf ff fc bne,a 2006f30 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN 2006f44: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED 2006f48: 81 c7 e0 08 ret 2006f4c: 81 e8 00 00 restore =============================================================================== 02006f50 <_API_extensions_Run_postswitch>: * * _API_extensions_Run_postswitch */ void _API_extensions_Run_postswitch( void ) { 2006f50: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _API_extensions_List.first ; 2006f54: 23 00 80 57 sethi %hi(0x2015c00), %l1 2006f58: e0 04 63 34 ld [ %l1 + 0x334 ], %l0 ! 2015f34 <_API_extensions_List> 2006f5c: a2 14 63 34 or %l1, 0x334, %l1 2006f60: a2 04 60 04 add %l1, 4, %l1 2006f64: 80 a4 00 11 cmp %l0, %l1 2006f68: 02 80 00 0a be 2006f90 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN 2006f6c: 25 00 80 57 sethi %hi(0x2015c00), %l2 2006f70: a4 14 a3 6c or %l2, 0x36c, %l2 ! 2015f6c <_Per_CPU_Information> !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (API_extensions_Control *) the_node; (*the_extension->postswitch_hook)( _Thread_Executing ); 2006f74: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2006f78: 9f c0 40 00 call %g1 2006f7c: d0 04 a0 0c ld [ %l2 + 0xc ], %o0 Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _API_extensions_List.first ; !_Chain_Is_tail( &_API_extensions_List, the_node ) ; the_node = the_node->next ) { 2006f80: e0 04 00 00 ld [ %l0 ], %l0 void _API_extensions_Run_postswitch( void ) { Chain_Node *the_node; API_extensions_Control *the_extension; for ( the_node = _API_extensions_List.first ; 2006f84: 80 a4 00 11 cmp %l0, %l1 2006f88: 32 bf ff fc bne,a 2006f78 <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN 2006f8c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED 2006f90: 81 c7 e0 08 ret 2006f94: 81 e8 00 00 restore =============================================================================== 020175b4 <_CORE_message_queue_Broadcast>: Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 20175b4: 9d e3 bf a0 save %sp, -96, %sp Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 20175b8: c2 06 20 4c ld [ %i0 + 0x4c ], %g1 Objects_Id id __attribute__((unused)), CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)), #endif uint32_t *count ) { 20175bc: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; uint32_t number_broadcasted; Thread_Wait_information *waitp; if ( size > the_message_queue->maximum_message_size ) { 20175c0: 80 a0 40 1a cmp %g1, %i2 20175c4: 0a 80 00 17 bcs 2017620 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN 20175c8: b0 10 20 01 mov 1, %i0 * NOTE: This check is critical because threads can block on * send and receive and this ensures that we are broadcasting * the message to threads waiting to receive -- not to send. */ if ( the_message_queue->number_of_pending_messages != 0 ) { 20175cc: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 20175d0: 80 a0 60 00 cmp %g1, 0 20175d4: 02 80 00 0a be 20175fc <_CORE_message_queue_Broadcast+0x48> 20175d8: a4 10 20 00 clr %l2 *count = 0; 20175dc: c0 27 40 00 clr [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 20175e0: 81 c7 e0 08 ret 20175e4: 91 e8 20 00 restore %g0, 0, %o0 const void *source, void *destination, size_t size ) { memcpy(destination, source, size); 20175e8: d0 04 60 2c ld [ %l1 + 0x2c ], %o0 20175ec: 40 00 23 bf call 20204e8 20175f0: a4 04 a0 01 inc %l2 buffer, waitp->return_argument_second.mutable_object, size ); *(size_t *) the_thread->Wait.return_argument = size; 20175f4: c2 04 60 28 ld [ %l1 + 0x28 ], %g1 20175f8: f4 20 40 00 st %i2, [ %g1 ] /* * There must be no pending messages if there is a thread waiting to * receive a message. */ number_broadcasted = 0; while ((the_thread = 20175fc: 40 00 0a fc call 201a1ec <_Thread_queue_Dequeue> 2017600: 90 10 00 10 mov %l0, %o0 2017604: 92 10 00 19 mov %i1, %o1 2017608: a2 10 00 08 mov %o0, %l1 201760c: 80 a2 20 00 cmp %o0, 0 2017610: 12 bf ff f6 bne 20175e8 <_CORE_message_queue_Broadcast+0x34> 2017614: 94 10 00 1a mov %i2, %o2 if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_message_queue_mp_support) ( the_thread, id ); #endif } *count = number_broadcasted; 2017618: e4 27 40 00 st %l2, [ %i5 ] return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL; 201761c: b0 10 20 00 clr %i0 } 2017620: 81 c7 e0 08 ret 2017624: 81 e8 00 00 restore =============================================================================== 02010e70 <_CORE_message_queue_Initialize>: CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010e70: 9d e3 bf a0 save %sp, -96, %sp size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; the_message_queue->number_of_pending_messages = 0; 2010e74: c0 26 20 48 clr [ %i0 + 0x48 ] ) { size_t message_buffering_required; size_t allocated_message_size; the_message_queue->maximum_pending_messages = maximum_pending_messages; 2010e78: f4 26 20 44 st %i2, [ %i0 + 0x44 ] the_message_queue->number_of_pending_messages = 0; the_message_queue->maximum_message_size = maximum_message_size; 2010e7c: f6 26 20 4c st %i3, [ %i0 + 0x4c ] CORE_message_queue_Control *the_message_queue, CORE_message_queue_Attributes *the_message_queue_attributes, uint32_t maximum_pending_messages, size_t maximum_message_size ) { 2010e80: a0 10 00 18 mov %i0, %l0 /* * Round size up to multiple of a pointer for chain init and * check for overflow on adding overhead to each message. */ allocated_message_size = maximum_message_size; if (allocated_message_size & (sizeof(uint32_t) - 1)) { 2010e84: 80 8e e0 03 btst 3, %i3 2010e88: 02 80 00 07 be 2010ea4 <_CORE_message_queue_Initialize+0x34> 2010e8c: a4 10 00 1b mov %i3, %l2 allocated_message_size += sizeof(uint32_t); 2010e90: a4 06 e0 04 add %i3, 4, %l2 allocated_message_size &= ~(sizeof(uint32_t) - 1); 2010e94: a4 0c bf fc and %l2, -4, %l2 } if (allocated_message_size < maximum_message_size) 2010e98: 80 a6 c0 12 cmp %i3, %l2 2010e9c: 18 80 00 22 bgu 2010f24 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 2010ea0: b0 10 20 00 clr %i0 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); 2010ea4: a2 04 a0 10 add %l2, 0x10, %l1 /* * Calculate how much total memory is required for message buffering and * check for overflow on the multiplication. */ message_buffering_required = (size_t) maximum_pending_messages * 2010ea8: 92 10 00 1a mov %i2, %o1 2010eac: 90 10 00 11 mov %l1, %o0 2010eb0: 40 00 3f 76 call 2020c88 <.umul> 2010eb4: b0 10 20 00 clr %i0 (allocated_message_size + sizeof(CORE_message_queue_Buffer_control)); if (message_buffering_required < allocated_message_size) 2010eb8: 80 a2 00 12 cmp %o0, %l2 2010ebc: 0a 80 00 1a bcs 2010f24 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN 2010ec0: 01 00 00 00 nop /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) _Workspace_Allocate( message_buffering_required ); 2010ec4: 40 00 0c 89 call 20140e8 <_Workspace_Allocate> 2010ec8: 01 00 00 00 nop return false; /* * Attempt to allocate the message memory */ the_message_queue->message_buffers = (CORE_message_queue_Buffer *) 2010ecc: d0 24 20 5c st %o0, [ %l0 + 0x5c ] _Workspace_Allocate( message_buffering_required ); if (the_message_queue->message_buffers == 0) 2010ed0: 80 a2 20 00 cmp %o0, 0 2010ed4: 02 80 00 14 be 2010f24 <_CORE_message_queue_Initialize+0xb4> 2010ed8: 92 10 00 08 mov %o0, %o1 /* * Initialize the pool of inactive messages, pending messages, * and set of waiting threads. */ _Chain_Initialize ( 2010edc: 90 04 20 60 add %l0, 0x60, %o0 2010ee0: 94 10 00 1a mov %i2, %o2 2010ee4: 40 00 15 6e call 201649c <_Chain_Initialize> 2010ee8: 96 10 00 11 mov %l1, %o3 allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010eec: c4 06 40 00 ld [ %i1 ], %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2010ef0: 82 04 20 54 add %l0, 0x54, %g1 2010ef4: 84 18 a0 01 xor %g2, 1, %g2 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2010ef8: c2 24 20 50 st %g1, [ %l0 + 0x50 ] 2010efc: 80 a0 00 02 cmp %g0, %g2 the_message_queue->message_buffers, (size_t) maximum_pending_messages, allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); 2010f00: 82 04 20 50 add %l0, 0x50, %g1 THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO, STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; 2010f04: b0 10 20 01 mov 1, %i0 the_chain->permanent_null = NULL; 2010f08: c0 24 20 54 clr [ %l0 + 0x54 ] allocated_message_size + sizeof( CORE_message_queue_Buffer_control ) ); _Chain_Initialize_empty( &the_message_queue->Pending_messages ); _Thread_queue_Initialize( 2010f0c: 90 10 00 10 mov %l0, %o0 the_chain->last = _Chain_Head(the_chain); 2010f10: c2 24 20 58 st %g1, [ %l0 + 0x58 ] 2010f14: 92 60 3f ff subx %g0, -1, %o1 2010f18: 94 10 20 80 mov 0x80, %o2 2010f1c: 40 00 09 1f call 2013398 <_Thread_queue_Initialize> 2010f20: 96 10 20 06 mov 6, %o3 STATES_WAITING_FOR_MESSAGE, CORE_MESSAGE_QUEUE_STATUS_TIMEOUT ); return true; } 2010f24: 81 c7 e0 08 ret 2010f28: 81 e8 00 00 restore =============================================================================== 0200729c <_CORE_mutex_Seize>: Objects_Id _id, bool _wait, Watchdog_Interval _timeout, ISR_Level _level ) { 200729c: 9d e3 bf a0 save %sp, -96, %sp _CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level ); 20072a0: 21 00 80 57 sethi %hi(0x2015c00), %l0 20072a4: c2 04 21 08 ld [ %l0 + 0x108 ], %g1 ! 2015d08 <_Thread_Dispatch_disable_level> 20072a8: 80 a0 60 00 cmp %g1, 0 20072ac: 02 80 00 05 be 20072c0 <_CORE_mutex_Seize+0x24> 20072b0: f8 27 a0 54 st %i4, [ %fp + 0x54 ] 20072b4: 80 8e a0 ff btst 0xff, %i2 20072b8: 12 80 00 1a bne 2007320 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN 20072bc: 03 00 80 57 sethi %hi(0x2015c00), %g1 20072c0: 90 10 00 18 mov %i0, %o0 20072c4: 40 00 14 8d call 200c4f8 <_CORE_mutex_Seize_interrupt_trylock> 20072c8: 92 07 a0 54 add %fp, 0x54, %o1 20072cc: 80 a2 20 00 cmp %o0, 0 20072d0: 02 80 00 12 be 2007318 <_CORE_mutex_Seize+0x7c> 20072d4: 80 8e a0 ff btst 0xff, %i2 20072d8: 02 80 00 1a be 2007340 <_CORE_mutex_Seize+0xa4> 20072dc: 01 00 00 00 nop 20072e0: c4 04 21 08 ld [ %l0 + 0x108 ], %g2 20072e4: 03 00 80 57 sethi %hi(0x2015c00), %g1 20072e8: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 2015f78 <_Per_CPU_Information+0xc> RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section ( Thread_queue_Control *the_thread_queue ) { the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED; 20072ec: 86 10 20 01 mov 1, %g3 20072f0: c6 26 20 30 st %g3, [ %i0 + 0x30 ] 20072f4: f0 20 60 44 st %i0, [ %g1 + 0x44 ] 20072f8: f2 20 60 20 st %i1, [ %g1 + 0x20 ] 20072fc: 82 00 a0 01 add %g2, 1, %g1 2007300: c2 24 21 08 st %g1, [ %l0 + 0x108 ] 2007304: 7f ff eb e8 call 20022a4 2007308: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 200730c: 90 10 00 18 mov %i0, %o0 2007310: 7f ff ff c0 call 2007210 <_CORE_mutex_Seize_interrupt_blocking> 2007314: 92 10 00 1b mov %i3, %o1 2007318: 81 c7 e0 08 ret 200731c: 81 e8 00 00 restore 2007320: c2 00 62 8c ld [ %g1 + 0x28c ], %g1 2007324: 80 a0 60 01 cmp %g1, 1 2007328: 28 bf ff e7 bleu,a 20072c4 <_CORE_mutex_Seize+0x28> 200732c: 90 10 00 18 mov %i0, %o0 2007330: 90 10 20 00 clr %o0 2007334: 92 10 20 00 clr %o1 2007338: 40 00 01 dc call 2007aa8 <_Internal_error_Occurred> 200733c: 94 10 20 12 mov 0x12, %o2 2007340: 7f ff eb d9 call 20022a4 2007344: d0 07 a0 54 ld [ %fp + 0x54 ], %o0 2007348: 03 00 80 57 sethi %hi(0x2015c00), %g1 200734c: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 2015f78 <_Per_CPU_Information+0xc> 2007350: 84 10 20 01 mov 1, %g2 2007354: c4 20 60 34 st %g2, [ %g1 + 0x34 ] 2007358: 81 c7 e0 08 ret 200735c: 81 e8 00 00 restore =============================================================================== 0200c4f8 <_CORE_mutex_Seize_interrupt_trylock>: #if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__) int _CORE_mutex_Seize_interrupt_trylock( CORE_mutex_Control *the_mutex, ISR_Level *level_p ) { 200c4f8: 9d e3 bf a0 save %sp, -96, %sp { Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; 200c4fc: 03 00 80 57 sethi %hi(0x2015c00), %g1 200c500: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 2015f78 <_Per_CPU_Information+0xc> executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200c504: c4 06 20 50 ld [ %i0 + 0x50 ], %g2 Thread_Control *executing; /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; 200c508: c0 20 60 34 clr [ %g1 + 0x34 ] if ( !_CORE_mutex_Is_locked( the_mutex ) ) { 200c50c: 80 a0 a0 00 cmp %g2, 0 200c510: 02 80 00 13 be 200c55c <_CORE_mutex_Seize_interrupt_trylock+0x64> 200c514: a0 10 00 18 mov %i0, %l0 the_mutex->lock = CORE_MUTEX_LOCKED; the_mutex->holder = executing; the_mutex->holder_id = executing->Object.id; 200c518: c8 00 60 08 ld [ %g1 + 8 ], %g4 return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p ); } 200c51c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2 the_mutex->nest_count = 1; 200c520: 86 10 20 01 mov 1, %g3 /* disabled when you get here */ executing = _Thread_Executing; executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL; if ( !_CORE_mutex_Is_locked( the_mutex ) ) { the_mutex->lock = CORE_MUTEX_LOCKED; 200c524: c0 26 20 50 clr [ %i0 + 0x50 ] the_mutex->holder = executing; 200c528: c2 26 20 5c st %g1, [ %i0 + 0x5c ] the_mutex->holder_id = executing->Object.id; 200c52c: c8 26 20 60 st %g4, [ %i0 + 0x60 ] the_mutex->nest_count = 1; if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) || 200c530: 80 a0 a0 02 cmp %g2, 2 200c534: 02 80 00 10 be 200c574 <_CORE_mutex_Seize_interrupt_trylock+0x7c> 200c538: c6 26 20 54 st %g3, [ %i0 + 0x54 ] 200c53c: 80 a0 a0 03 cmp %g2, 3 200c540: 22 80 00 21 be,a 200c5c4 <_CORE_mutex_Seize_interrupt_trylock+0xcc> 200c544: da 00 60 1c ld [ %g1 + 0x1c ], %o5 executing->resource_count++; } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); 200c548: d0 06 40 00 ld [ %i1 ], %o0 200c54c: 7f ff d7 56 call 20022a4 200c550: b0 10 20 00 clr %i0 200c554: 81 c7 e0 08 ret 200c558: 81 e8 00 00 restore /* * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { 200c55c: c4 06 20 5c ld [ %i0 + 0x5c ], %g2 200c560: 80 a0 40 02 cmp %g1, %g2 200c564: 02 80 00 0c be 200c594 <_CORE_mutex_Seize_interrupt_trylock+0x9c> 200c568: b0 10 20 01 mov 1, %i0 200c56c: 81 c7 e0 08 ret 200c570: 81 e8 00 00 restore _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200c574: c4 00 60 1c ld [ %g1 + 0x1c ], %g2 200c578: 84 00 a0 01 inc %g2 200c57c: c4 20 60 1c st %g2, [ %g1 + 0x1c ] } if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) { _ISR_Enable( *level_p ); 200c580: d0 06 40 00 ld [ %i1 ], %o0 200c584: 7f ff d7 48 call 20022a4 200c588: b0 10 20 00 clr %i0 200c58c: 81 c7 e0 08 ret 200c590: 81 e8 00 00 restore * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200c594: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 200c598: 80 a0 a0 00 cmp %g2, 0 200c59c: 12 80 00 2b bne 200c648 <_CORE_mutex_Seize_interrupt_trylock+0x150> 200c5a0: 80 a0 a0 01 cmp %g2, 1 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; 200c5a4: c2 04 20 54 ld [ %l0 + 0x54 ], %g1 200c5a8: 82 00 60 01 inc %g1 200c5ac: c2 24 20 54 st %g1, [ %l0 + 0x54 ] _ISR_Enable( *level_p ); 200c5b0: d0 06 40 00 ld [ %i1 ], %o0 200c5b4: 7f ff d7 3c call 20022a4 200c5b8: b0 10 20 00 clr %i0 200c5bc: 81 c7 e0 08 ret 200c5c0: 81 e8 00 00 restore */ { Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; 200c5c4: c8 06 20 4c ld [ %i0 + 0x4c ], %g4 current = executing->current_priority; 200c5c8: c4 00 60 14 ld [ %g1 + 0x14 ], %g2 _Chain_Prepend_unprotected( &executing->lock_mutex, &the_mutex->queue.lock_queue ); the_mutex->queue.priority_before = executing->current_priority; #endif executing->resource_count++; 200c5cc: 98 03 60 01 add %o5, 1, %o4 Priority_Control ceiling; Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { 200c5d0: 80 a1 00 02 cmp %g4, %g2 200c5d4: 02 80 00 25 be 200c668 <_CORE_mutex_Seize_interrupt_trylock+0x170> 200c5d8: d8 20 60 1c st %o4, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); return 0; } if ( current > ceiling ) { 200c5dc: 80 a1 00 02 cmp %g4, %g2 200c5e0: 1a 80 00 11 bcc 200c624 <_CORE_mutex_Seize_interrupt_trylock+0x12c> 200c5e4: 84 10 20 06 mov 6, %g2 rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 200c5e8: 03 00 80 57 sethi %hi(0x2015c00), %g1 200c5ec: c4 00 61 08 ld [ %g1 + 0x108 ], %g2 ! 2015d08 <_Thread_Dispatch_disable_level> 200c5f0: 84 00 a0 01 inc %g2 200c5f4: c4 20 61 08 st %g2, [ %g1 + 0x108 ] _Thread_Disable_dispatch(); _ISR_Enable( *level_p ); 200c5f8: 7f ff d7 2b call 20022a4 200c5fc: d0 06 40 00 ld [ %i1 ], %o0 _Thread_Change_priority( 200c600: d0 06 20 5c ld [ %i0 + 0x5c ], %o0 200c604: d2 06 20 4c ld [ %i0 + 0x4c ], %o1 200c608: 94 10 20 00 clr %o2 200c60c: 7f ff ef ab call 20084b8 <_Thread_Change_priority> 200c610: b0 10 20 00 clr %i0 the_mutex->holder, the_mutex->Attributes.priority_ceiling, false ); _Thread_Enable_dispatch(); 200c614: 7f ff f1 39 call 2008af8 <_Thread_Enable_dispatch> 200c618: 01 00 00 00 nop 200c61c: 81 c7 e0 08 ret 200c620: 81 e8 00 00 restore return 0; } /* if ( current < ceiling ) */ { executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED; 200c624: c4 20 60 34 st %g2, [ %g1 + 0x34 ] the_mutex->lock = CORE_MUTEX_UNLOCKED; 200c628: c6 26 20 50 st %g3, [ %i0 + 0x50 ] the_mutex->nest_count = 0; /* undo locking above */ 200c62c: c0 26 20 54 clr [ %i0 + 0x54 ] executing->resource_count--; /* undo locking above */ 200c630: da 20 60 1c st %o5, [ %g1 + 0x1c ] _ISR_Enable( *level_p ); 200c634: d0 06 40 00 ld [ %i1 ], %o0 200c638: 7f ff d7 1b call 20022a4 200c63c: b0 10 20 00 clr %i0 200c640: 81 c7 e0 08 ret 200c644: 81 e8 00 00 restore * At this point, we know the mutex was not available. If this thread * is the thread that has locked the mutex, let's see if we are allowed * to nest access. */ if ( _Thread_Is_executing( the_mutex->holder ) ) { switch ( the_mutex->Attributes.lock_nesting_behavior ) { 200c648: 12 bf ff c3 bne 200c554 <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN 200c64c: 84 10 20 02 mov 2, %g2 case CORE_MUTEX_NESTING_ACQUIRES: the_mutex->nest_count++; _ISR_Enable( *level_p ); return 0; case CORE_MUTEX_NESTING_IS_ERROR: executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED; 200c650: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED _ISR_Enable( *level_p ); 200c654: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED 200c658: 7f ff d7 13 call 20022a4 <== NOT EXECUTED 200c65c: b0 10 20 00 clr %i0 <== NOT EXECUTED 200c660: 81 c7 e0 08 ret <== NOT EXECUTED 200c664: 81 e8 00 00 restore <== NOT EXECUTED Priority_Control current; ceiling = the_mutex->Attributes.priority_ceiling; current = executing->current_priority; if ( current == ceiling ) { _ISR_Enable( *level_p ); 200c668: d0 06 40 00 ld [ %i1 ], %o0 200c66c: 7f ff d7 0e call 20022a4 200c670: b0 10 20 00 clr %i0 200c674: 81 c7 e0 08 ret 200c678: 81 e8 00 00 restore =============================================================================== 020074dc <_CORE_semaphore_Surrender>: CORE_semaphore_Status _CORE_semaphore_Surrender( CORE_semaphore_Control *the_semaphore, Objects_Id id, CORE_semaphore_API_mp_support_callout api_semaphore_mp_support ) { 20074dc: 9d e3 bf a0 save %sp, -96, %sp 20074e0: a0 10 00 18 mov %i0, %l0 Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 20074e4: b0 10 20 00 clr %i0 if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) { 20074e8: 40 00 06 80 call 2008ee8 <_Thread_queue_Dequeue> 20074ec: 90 10 00 10 mov %l0, %o0 20074f0: 80 a2 20 00 cmp %o0, 0 20074f4: 02 80 00 04 be 2007504 <_CORE_semaphore_Surrender+0x28> 20074f8: 01 00 00 00 nop status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); } return status; } 20074fc: 81 c7 e0 08 ret 2007500: 81 e8 00 00 restore if ( !_Objects_Is_local_id( the_thread->Object.id ) ) (*api_semaphore_mp_support) ( the_thread, id ); #endif } else { _ISR_Disable( level ); 2007504: 7f ff eb 64 call 2002294 2007508: 01 00 00 00 nop if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) 200750c: c2 04 20 48 ld [ %l0 + 0x48 ], %g1 2007510: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 2007514: 80 a0 40 02 cmp %g1, %g2 2007518: 1a 80 00 05 bcc 200752c <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN 200751c: b0 10 20 04 mov 4, %i0 the_semaphore->count += 1; 2007520: 82 00 60 01 inc %g1 { Thread_Control *the_thread; ISR_Level level; CORE_semaphore_Status status; status = CORE_SEMAPHORE_STATUS_SUCCESSFUL; 2007524: b0 10 20 00 clr %i0 #endif } else { _ISR_Disable( level ); if ( the_semaphore->count < the_semaphore->Attributes.maximum_count ) the_semaphore->count += 1; 2007528: c2 24 20 48 st %g1, [ %l0 + 0x48 ] else status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED; _ISR_Enable( level ); 200752c: 7f ff eb 5e call 20022a4 2007530: 01 00 00 00 nop } return status; } 2007534: 81 c7 e0 08 ret 2007538: 81 e8 00 00 restore =============================================================================== 020077e4 <_Chain_Get_with_empty_check>: bool _Chain_Get_with_empty_check( Chain_Control *chain, Chain_Node **node ) { 20077e4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; bool is_empty_now; _ISR_Disable( level ); 20077e8: 7f ff ec 32 call 20028b0 20077ec: 01 00 00 00 nop Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; Chain_Node *first = the_chain->first; 20077f0: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 20077f4: 86 06 20 04 add %i0, 4, %g3 ) { bool is_empty_now = true; Chain_Node *first = the_chain->first; if ( first != _Chain_Tail( the_chain ) ) { 20077f8: 80 a0 40 03 cmp %g1, %g3 20077fc: 22 80 00 0d be,a 2007830 <_Chain_Get_with_empty_check+0x4c><== NEVER TAKEN 2007800: c0 26 40 00 clr [ %i1 ] <== NOT EXECUTED Chain_Node *new_first = first->next; 2007804: c4 00 40 00 ld [ %g1 ], %g2 the_chain->first = new_first; 2007808: c4 26 00 00 st %g2, [ %i0 ] new_first->previous = _Chain_Head( the_chain ); 200780c: f0 20 a0 04 st %i0, [ %g2 + 4 ] *the_node = first; 2007810: c2 26 40 00 st %g1, [ %i1 ] is_empty_now = new_first == _Chain_Tail( the_chain ); 2007814: 84 18 c0 02 xor %g3, %g2, %g2 2007818: 80 a0 00 02 cmp %g0, %g2 200781c: b0 60 3f ff subx %g0, -1, %i0 is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node ); _ISR_Enable( level ); 2007820: 7f ff ec 28 call 20028c0 2007824: 01 00 00 00 nop return is_empty_now; } 2007828: 81 c7 e0 08 ret 200782c: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE bool _Chain_Get_with_empty_check_unprotected( Chain_Control *the_chain, Chain_Node **the_node ) { bool is_empty_now = true; 2007830: b0 10 20 01 mov 1, %i0 <== NOT EXECUTED ISR_Level level; bool is_empty_now; _ISR_Disable( level ); is_empty_now = _Chain_Get_with_empty_check_unprotected( chain, node ); _ISR_Enable( level ); 2007834: 7f ff ec 23 call 20028c0 <== NOT EXECUTED 2007838: 01 00 00 00 nop <== NOT EXECUTED return is_empty_now; } 200783c: 81 c7 e0 08 ret <== NOT EXECUTED 2007840: 81 e8 00 00 restore <== NOT EXECUTED =============================================================================== 0200c494 <_Chain_Initialize>: Chain_Control *the_chain, void *starting_address, size_t number_nodes, size_t node_size ) { 200c494: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *current; Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; 200c498: c0 26 20 04 clr [ %i0 + 4 ] next = starting_address; while ( count-- ) { 200c49c: 80 a6 a0 00 cmp %i2, 0 200c4a0: 02 80 00 11 be 200c4e4 <_Chain_Initialize+0x50> <== NEVER TAKEN 200c4a4: 84 10 00 18 mov %i0, %g2 200c4a8: b4 06 bf ff add %i2, -1, %i2 Chain_Node *next; count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; 200c4ac: 82 10 00 19 mov %i1, %g1 while ( count-- ) { 200c4b0: 10 80 00 05 b 200c4c4 <_Chain_Initialize+0x30> 200c4b4: 92 10 00 1a mov %i2, %o1 200c4b8: 84 10 00 01 mov %g1, %g2 200c4bc: b4 06 bf ff add %i2, -1, %i2 current->next = next; next->previous = current; current = next; next = (Chain_Node *) 200c4c0: 82 10 00 03 mov %g3, %g1 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { current->next = next; 200c4c4: c2 20 80 00 st %g1, [ %g2 ] next->previous = current; 200c4c8: c4 20 60 04 st %g2, [ %g1 + 4 ] count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { 200c4cc: 80 a6 a0 00 cmp %i2, 0 200c4d0: 12 bf ff fa bne 200c4b8 <_Chain_Initialize+0x24> 200c4d4: 86 00 40 1b add %g1, %i3, %g3 * node_size - size of node in bytes * * Output parameters: NONE */ void _Chain_Initialize( 200c4d8: 40 00 16 c7 call 2011ff4 <.umul> 200c4dc: 90 10 00 1b mov %i3, %o0 count = number_nodes; current = _Chain_Head( the_chain ); the_chain->permanent_null = NULL; next = starting_address; while ( count-- ) { 200c4e0: 84 06 40 08 add %i1, %o0, %g2 200c4e4: 82 06 20 04 add %i0, 4, %g1 next->previous = current; current = next; next = (Chain_Node *) _Addresses_Add_offset( (void *) next, node_size ); } current->next = _Chain_Tail( the_chain ); 200c4e8: c2 20 80 00 st %g1, [ %g2 ] the_chain->last = current; 200c4ec: c4 26 20 08 st %g2, [ %i0 + 8 ] } 200c4f0: 81 c7 e0 08 ret 200c4f4: 81 e8 00 00 restore =============================================================================== 020061ac <_Event_Surrender>: */ void _Event_Surrender( Thread_Control *the_thread ) { 20061ac: 9d e3 bf a0 save %sp, -96, %sp rtems_event_set event_condition; rtems_event_set seized_events; rtems_option option_set; RTEMS_API_Control *api; api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20061b0: e0 06 21 60 ld [ %i0 + 0x160 ], %l0 option_set = (rtems_option) the_thread->Wait.option; _ISR_Disable( level ); 20061b4: 7f ff f0 38 call 2002294 20061b8: e4 06 20 30 ld [ %i0 + 0x30 ], %l2 20061bc: a2 10 00 08 mov %o0, %l1 pending_events = api->pending_events; 20061c0: c4 04 00 00 ld [ %l0 ], %g2 event_condition = (rtems_event_set) the_thread->Wait.count; 20061c4: c2 06 20 24 ld [ %i0 + 0x24 ], %g1 seized_events = _Event_sets_Get( pending_events, event_condition ); /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { 20061c8: 86 88 40 02 andcc %g1, %g2, %g3 20061cc: 02 80 00 3e be 20062c4 <_Event_Surrender+0x118> 20061d0: 09 00 80 57 sethi %hi(0x2015c00), %g4 /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 20061d4: 88 11 23 6c or %g4, 0x36c, %g4 ! 2015f6c <_Per_CPU_Information> 20061d8: da 01 20 08 ld [ %g4 + 8 ], %o5 20061dc: 80 a3 60 00 cmp %o5, 0 20061e0: 32 80 00 1d bne,a 2006254 <_Event_Surrender+0xa8> 20061e4: c8 01 20 0c ld [ %g4 + 0xc ], %g4 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_EVENT); 20061e8: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 } /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { 20061ec: 80 89 21 00 btst 0x100, %g4 20061f0: 02 80 00 33 be 20062bc <_Event_Surrender+0x110> 20061f4: 80 a0 40 03 cmp %g1, %g3 if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { 20061f8: 02 80 00 04 be 2006208 <_Event_Surrender+0x5c> 20061fc: 80 8c a0 02 btst 2, %l2 2006200: 02 80 00 2f be 20062bc <_Event_Surrender+0x110> <== NEVER TAKEN 2006204: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events, seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006208: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear( rtems_event_set the_event_set, rtems_event_set the_mask ) { return ( the_event_set & ~(the_mask) ); 200620c: 84 28 80 03 andn %g2, %g3, %g2 /* * Otherwise, this is a normal send to another thread */ if ( _States_Is_waiting_for_event( the_thread->current_state ) ) { if ( seized_events == event_condition || _Options_Is_any( option_set ) ) { api->pending_events = _Event_sets_Clear( pending_events, seized_events ); 2006210: c4 24 00 00 st %g2, [ %l0 ] the_thread->Wait.count = 0; 2006214: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006218: c6 20 40 00 st %g3, [ %g1 ] _ISR_Flash( level ); 200621c: 7f ff f0 22 call 20022a4 2006220: 90 10 00 11 mov %l1, %o0 2006224: 7f ff f0 1c call 2002294 2006228: 01 00 00 00 nop if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { 200622c: c2 06 20 50 ld [ %i0 + 0x50 ], %g1 2006230: 80 a0 60 02 cmp %g1, 2 2006234: 02 80 00 26 be 20062cc <_Event_Surrender+0x120> 2006238: 82 10 20 03 mov 3, %g1 _ISR_Enable( level ); 200623c: 90 10 00 11 mov %l1, %o0 2006240: 7f ff f0 19 call 20022a4 2006244: 33 04 00 ff sethi %hi(0x1003fc00), %i1 RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006248: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 200624c: 40 00 09 1e call 20086c4 <_Thread_Clear_state> 2006250: 81 e8 00 00 restore /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && 2006254: 80 a6 00 04 cmp %i0, %g4 2006258: 32 bf ff e5 bne,a 20061ec <_Event_Surrender+0x40> 200625c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006260: 09 00 80 57 sethi %hi(0x2015c00), %g4 2006264: da 01 23 88 ld [ %g4 + 0x388 ], %o5 ! 2015f88 <_Event_Sync_state> /* * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && 2006268: 80 a3 60 02 cmp %o5, 2 200626c: 02 80 00 07 be 2006288 <_Event_Surrender+0xdc> <== NEVER TAKEN 2006270: 80 a0 40 03 cmp %g1, %g3 ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { 2006274: da 01 23 88 ld [ %g4 + 0x388 ], %o5 * If we are in an ISR and sending to the current thread, then * we have a critical section issue to deal with. */ if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || 2006278: 80 a3 60 01 cmp %o5, 1 200627c: 32 bf ff dc bne,a 20061ec <_Event_Surrender+0x40> 2006280: c8 06 20 10 ld [ %i0 + 0x10 ], %g4 (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { 2006284: 80 a0 40 03 cmp %g1, %g3 2006288: 02 80 00 04 be 2006298 <_Event_Surrender+0xec> 200628c: 80 8c a0 02 btst 2, %l2 2006290: 02 80 00 09 be 20062b4 <_Event_Surrender+0x108> <== NEVER TAKEN 2006294: 01 00 00 00 nop api->pending_events = _Event_sets_Clear( pending_events,seized_events ); the_thread->Wait.count = 0; *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 2006298: c2 06 20 28 ld [ %i0 + 0x28 ], %g1 200629c: 84 28 80 03 andn %g2, %g3, %g2 if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) && ((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) || (_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) { if ( seized_events == event_condition || _Options_Is_any(option_set) ) { api->pending_events = _Event_sets_Clear( pending_events,seized_events ); 20062a0: c4 24 00 00 st %g2, [ %l0 ] the_thread->Wait.count = 0; 20062a4: c0 26 20 24 clr [ %i0 + 0x24 ] *(rtems_event_set *)the_thread->Wait.return_argument = seized_events; 20062a8: c6 20 40 00 st %g3, [ %g1 ] _Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED; 20062ac: 82 10 20 03 mov 3, %g1 20062b0: c2 21 23 88 st %g1, [ %g4 + 0x388 ] } _ISR_Enable( level ); 20062b4: 7f ff ef fc call 20022a4 20062b8: 91 e8 00 11 restore %g0, %l1, %o0 _Thread_Unblock( the_thread ); } return; } } _ISR_Enable( level ); 20062bc: 7f ff ef fa call 20022a4 20062c0: 91 e8 00 11 restore %g0, %l1, %o0 /* * No events were seized in this operation */ if ( _Event_sets_Is_empty( seized_events ) ) { _ISR_Enable( level ); 20062c4: 7f ff ef f8 call 20022a4 20062c8: 91 e8 00 08 restore %g0, %o0, %o0 RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate( Watchdog_Control *the_watchdog ) { the_watchdog->state = WATCHDOG_REMOVE_IT; 20062cc: c2 26 20 50 st %g1, [ %i0 + 0x50 ] if ( !_Watchdog_Is_active( &the_thread->Timer ) ) { _ISR_Enable( level ); _Thread_Unblock( the_thread ); } else { _Watchdog_Deactivate( &the_thread->Timer ); _ISR_Enable( level ); 20062d0: 7f ff ef f5 call 20022a4 20062d4: 90 10 00 11 mov %l1, %o0 (void) _Watchdog_Remove( &the_thread->Timer ); 20062d8: 40 00 0f 0c call 2009f08 <_Watchdog_Remove> 20062dc: 90 06 20 48 add %i0, 0x48, %o0 20062e0: 33 04 00 ff sethi %hi(0x1003fc00), %i1 20062e4: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 20062e8: 40 00 08 f7 call 20086c4 <_Thread_Clear_state> 20062ec: 81 e8 00 00 restore =============================================================================== 020062f4 <_Event_Timeout>: void _Event_Timeout( Objects_Id id, void *ignored ) { 20062f4: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; ISR_Level level; the_thread = _Thread_Get( id, &location ); 20062f8: 90 10 00 18 mov %i0, %o0 20062fc: 40 00 0a 0d call 2008b30 <_Thread_Get> 2006300: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2006304: c2 07 bf fc ld [ %fp + -4 ], %g1 2006308: 80 a0 60 00 cmp %g1, 0 200630c: 12 80 00 15 bne 2006360 <_Event_Timeout+0x6c> <== NEVER TAKEN 2006310: a0 10 00 08 mov %o0, %l0 * * If it is not satisfied, then it is "nothing happened" and * this is the "timeout" transition. After a request is satisfied, * a timeout is not allowed to occur. */ _ISR_Disable( level ); 2006314: 7f ff ef e0 call 2002294 2006318: 01 00 00 00 nop RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 200631c: 03 00 80 57 sethi %hi(0x2015c00), %g1 return; } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { 2006320: c2 00 63 78 ld [ %g1 + 0x378 ], %g1 ! 2015f78 <_Per_CPU_Information+0xc> 2006324: 80 a4 00 01 cmp %l0, %g1 2006328: 02 80 00 10 be 2006368 <_Event_Timeout+0x74> 200632c: c0 24 20 24 clr [ %l0 + 0x24 ] if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006330: 82 10 20 06 mov 6, %g1 2006334: c2 24 20 34 st %g1, [ %l0 + 0x34 ] _ISR_Enable( level ); 2006338: 7f ff ef db call 20022a4 200633c: 01 00 00 00 nop RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2006340: 90 10 00 10 mov %l0, %o0 2006344: 13 04 00 ff sethi %hi(0x1003fc00), %o1 2006348: 40 00 08 df call 20086c4 <_Thread_Clear_state> 200634c: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2006350: 03 00 80 57 sethi %hi(0x2015c00), %g1 2006354: c4 00 61 08 ld [ %g1 + 0x108 ], %g2 ! 2015d08 <_Thread_Dispatch_disable_level> 2006358: 84 00 bf ff add %g2, -1, %g2 200635c: c4 20 61 08 st %g2, [ %g1 + 0x108 ] 2006360: 81 c7 e0 08 ret 2006364: 81 e8 00 00 restore } #endif the_thread->Wait.count = 0; if ( _Thread_Is_executing( the_thread ) ) { if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) 2006368: 03 00 80 57 sethi %hi(0x2015c00), %g1 200636c: c4 00 63 88 ld [ %g1 + 0x388 ], %g2 ! 2015f88 <_Event_Sync_state> 2006370: 80 a0 a0 01 cmp %g2, 1 2006374: 32 bf ff f0 bne,a 2006334 <_Event_Timeout+0x40> 2006378: 82 10 20 06 mov 6, %g1 _Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT; 200637c: 84 10 20 02 mov 2, %g2 2006380: c4 20 63 88 st %g2, [ %g1 + 0x388 ] } the_thread->Wait.return_code = RTEMS_TIMEOUT; 2006384: 10 bf ff ec b 2006334 <_Event_Timeout+0x40> 2006388: 82 10 20 06 mov 6, %g1 =============================================================================== 0200c6f8 <_Heap_Allocate_aligned_with_boundary>: Heap_Control *heap, uintptr_t alloc_size, uintptr_t alignment, uintptr_t boundary ) { 200c6f8: 9d e3 bf 98 save %sp, -104, %sp 200c6fc: a0 10 00 18 mov %i0, %l0 Heap_Statistics *const stats = &heap->stats; uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE 200c700: a4 06 60 04 add %i1, 4, %l2 - HEAP_ALLOC_BONUS; uintptr_t const page_size = heap->page_size; 200c704: fa 06 20 10 ld [ %i0 + 0x10 ], %i5 Heap_Block *block = NULL; uintptr_t alloc_begin = 0; uint32_t search_count = 0; bool search_again = false; if ( block_size_floor < alloc_size ) { 200c708: 80 a6 40 12 cmp %i1, %l2 200c70c: 18 80 00 6e bgu 200c8c4 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c710: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { 200c714: 80 a6 e0 00 cmp %i3, 0 200c718: 12 80 00 75 bne 200c8ec <_Heap_Allocate_aligned_with_boundary+0x1f4> 200c71c: 80 a6 40 1b cmp %i1, %i3 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c720: e8 04 20 08 ld [ %l0 + 8 ], %l4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c724: 80 a4 00 14 cmp %l0, %l4 200c728: 02 80 00 67 be 200c8c4 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c72c: b0 10 20 00 clr %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c730: 82 07 60 07 add %i5, 7, %g1 + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200c734: b8 10 20 04 mov 4, %i4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c738: a2 10 20 01 mov 1, %l1 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c73c: c2 27 bf fc st %g1, [ %fp + -4 ] + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; 200c740: b8 27 00 19 sub %i4, %i1, %i4 /* * The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag * field. Thus the value is about one unit larger than the real block * size. The greater than operator takes this into account. */ if ( block->size_and_flag > block_size_floor ) { 200c744: e6 05 20 04 ld [ %l4 + 4 ], %l3 200c748: 80 a4 80 13 cmp %l2, %l3 200c74c: 3a 80 00 4b bcc,a 200c878 <_Heap_Allocate_aligned_with_boundary+0x180> 200c750: e8 05 20 08 ld [ %l4 + 8 ], %l4 if ( alignment == 0 ) { 200c754: 80 a6 a0 00 cmp %i2, 0 200c758: 02 80 00 44 be 200c868 <_Heap_Allocate_aligned_with_boundary+0x170> 200c75c: b0 05 20 08 add %l4, 8, %i0 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200c760: c4 07 bf fc ld [ %fp + -4 ], %g2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c764: ee 04 20 14 ld [ %l0 + 0x14 ], %l7 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c768: a6 0c ff fe and %l3, -2, %l3 uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; 200c76c: 82 20 80 17 sub %g2, %l7, %g1 uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; 200c770: a6 05 00 13 add %l4, %l3, %l3 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c774: 92 10 00 1a mov %i2, %o1 uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size + HEAP_BLOCK_HEADER_SIZE + page_size - 1; uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS; uintptr_t alloc_begin = alloc_end - alloc_size; 200c778: b0 07 00 13 add %i4, %l3, %i0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); uintptr_t const block_end = block_begin + block_size; uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block ); uintptr_t const alloc_begin_ceiling = block_end - min_block_size 200c77c: a6 00 40 13 add %g1, %l3, %l3 200c780: 40 00 17 03 call 201238c <.urem> 200c784: 90 10 00 18 mov %i0, %o0 200c788: b0 26 00 08 sub %i0, %o0, %i0 uintptr_t alloc_begin = alloc_end - alloc_size; alloc_begin = _Heap_Align_down( alloc_begin, alignment ); /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { 200c78c: 80 a4 c0 18 cmp %l3, %i0 200c790: 1a 80 00 06 bcc 200c7a8 <_Heap_Allocate_aligned_with_boundary+0xb0> 200c794: ac 05 20 08 add %l4, 8, %l6 200c798: 90 10 00 13 mov %l3, %o0 200c79c: 40 00 16 fc call 201238c <.urem> 200c7a0: 92 10 00 1a mov %i2, %o1 200c7a4: b0 24 c0 08 sub %l3, %o0, %i0 } alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { 200c7a8: 80 a6 e0 00 cmp %i3, 0 200c7ac: 02 80 00 24 be 200c83c <_Heap_Allocate_aligned_with_boundary+0x144> 200c7b0: 80 a5 80 18 cmp %l6, %i0 /* Ensure that the we have a valid new block at the end */ if ( alloc_begin > alloc_begin_ceiling ) { alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment ); } alloc_end = alloc_begin + alloc_size; 200c7b4: a6 06 00 19 add %i0, %i1, %l3 200c7b8: 92 10 00 1b mov %i3, %o1 200c7bc: 40 00 16 f4 call 201238c <.urem> 200c7c0: 90 10 00 13 mov %l3, %o0 200c7c4: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c7c8: 80 a2 00 13 cmp %o0, %l3 200c7cc: 1a 80 00 1b bcc 200c838 <_Heap_Allocate_aligned_with_boundary+0x140> 200c7d0: 80 a6 00 08 cmp %i0, %o0 200c7d4: 1a 80 00 1a bcc 200c83c <_Heap_Allocate_aligned_with_boundary+0x144> 200c7d8: 80 a5 80 18 cmp %l6, %i0 alloc_end = alloc_begin + alloc_size; /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; 200c7dc: aa 05 80 19 add %l6, %i1, %l5 uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { if ( boundary_line < boundary_floor ) { 200c7e0: 80 a5 40 08 cmp %l5, %o0 200c7e4: 28 80 00 09 bleu,a 200c808 <_Heap_Allocate_aligned_with_boundary+0x110> 200c7e8: b0 22 00 19 sub %o0, %i1, %i0 if ( alloc_begin != 0 ) { break; } block = block->next; 200c7ec: 10 80 00 23 b 200c878 <_Heap_Allocate_aligned_with_boundary+0x180> 200c7f0: e8 05 20 08 ld [ %l4 + 8 ], %l4 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c7f4: 1a 80 00 11 bcc 200c838 <_Heap_Allocate_aligned_with_boundary+0x140> 200c7f8: 80 a5 40 08 cmp %l5, %o0 if ( boundary_line < boundary_floor ) { 200c7fc: 38 80 00 1f bgu,a 200c878 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN 200c800: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED return 0; } alloc_begin = boundary_line - alloc_size; 200c804: b0 22 00 19 sub %o0, %i1, %i0 200c808: 92 10 00 1a mov %i2, %o1 200c80c: 40 00 16 e0 call 201238c <.urem> 200c810: 90 10 00 18 mov %i0, %o0 200c814: 92 10 00 1b mov %i3, %o1 200c818: b0 26 00 08 sub %i0, %o0, %i0 alloc_begin = _Heap_Align_down( alloc_begin, alignment ); alloc_end = alloc_begin + alloc_size; 200c81c: a6 06 00 19 add %i0, %i1, %l3 200c820: 40 00 16 db call 201238c <.urem> 200c824: 90 10 00 13 mov %l3, %o0 200c828: 90 24 c0 08 sub %l3, %o0, %o0 /* Ensure boundary constaint */ if ( boundary != 0 ) { uintptr_t const boundary_floor = alloc_begin_floor + alloc_size; uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary ); while ( alloc_begin < boundary_line && boundary_line < alloc_end ) { 200c82c: 80 a2 00 13 cmp %o0, %l3 200c830: 0a bf ff f1 bcs 200c7f4 <_Heap_Allocate_aligned_with_boundary+0xfc> 200c834: 80 a6 00 08 cmp %i0, %o0 boundary_line = _Heap_Align_down( alloc_end, boundary ); } } /* Ensure that the we have a valid new block at the beginning */ if ( alloc_begin >= alloc_begin_floor ) { 200c838: 80 a5 80 18 cmp %l6, %i0 200c83c: 38 80 00 0f bgu,a 200c878 <_Heap_Allocate_aligned_with_boundary+0x180> 200c840: e8 05 20 08 ld [ %l4 + 8 ], %l4 200c844: 82 10 3f f8 mov -8, %g1 200c848: 90 10 00 18 mov %i0, %o0 200c84c: a6 20 40 14 sub %g1, %l4, %l3 200c850: 92 10 00 1d mov %i5, %o1 200c854: 40 00 16 ce call 201238c <.urem> 200c858: a6 04 c0 18 add %l3, %i0, %l3 uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200c85c: 90 a4 c0 08 subcc %l3, %o0, %o0 200c860: 12 80 00 1b bne 200c8cc <_Heap_Allocate_aligned_with_boundary+0x1d4> 200c864: 80 a2 00 17 cmp %o0, %l7 } /* Statistics */ ++search_count; if ( alloc_begin != 0 ) { 200c868: 80 a6 20 00 cmp %i0, 0 200c86c: 32 80 00 08 bne,a 200c88c <_Heap_Allocate_aligned_with_boundary+0x194><== ALWAYS TAKEN 200c870: c4 04 20 48 ld [ %l0 + 0x48 ], %g2 break; } block = block->next; 200c874: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c878: 80 a4 00 14 cmp %l0, %l4 200c87c: 02 80 00 1a be 200c8e4 <_Heap_Allocate_aligned_with_boundary+0x1ec> 200c880: 82 04 60 01 add %l1, 1, %g1 200c884: 10 bf ff b0 b 200c744 <_Heap_Allocate_aligned_with_boundary+0x4c> 200c888: a2 10 00 01 mov %g1, %l1 } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; stats->searches += search_count; 200c88c: c2 04 20 4c ld [ %l0 + 0x4c ], %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200c890: 84 00 a0 01 inc %g2 stats->searches += search_count; 200c894: 82 00 40 11 add %g1, %l1, %g1 search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin ); } while ( search_again ); if ( alloc_begin != 0 ) { /* Statistics */ ++stats->allocs; 200c898: c4 24 20 48 st %g2, [ %l0 + 0x48 ] stats->searches += search_count; 200c89c: c2 24 20 4c st %g1, [ %l0 + 0x4c ] block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size ); 200c8a0: 90 10 00 10 mov %l0, %o0 200c8a4: 92 10 00 14 mov %l4, %o1 200c8a8: 94 10 00 18 mov %i0, %o2 200c8ac: 7f ff ec 33 call 2007978 <_Heap_Block_allocate> 200c8b0: 96 10 00 19 mov %i1, %o3 boundary ); } /* Statistics */ if ( stats->max_search < search_count ) { 200c8b4: c2 04 20 44 ld [ %l0 + 0x44 ], %g1 200c8b8: 80 a0 40 11 cmp %g1, %l1 200c8bc: 2a 80 00 02 bcs,a 200c8c4 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c8c0: e2 24 20 44 st %l1, [ %l0 + 0x44 ] stats->max_search = search_count; } return (void *) alloc_begin; } 200c8c4: 81 c7 e0 08 ret 200c8c8: 81 e8 00 00 restore if ( alloc_begin >= alloc_begin_floor ) { uintptr_t const alloc_block_begin = (uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size ); uintptr_t const free_size = alloc_block_begin - block_begin; if ( free_size >= min_block_size || free_size == 0 ) { 200c8cc: 1a bf ff e8 bcc 200c86c <_Heap_Allocate_aligned_with_boundary+0x174> 200c8d0: 80 a6 20 00 cmp %i0, 0 if ( alloc_begin != 0 ) { break; } block = block->next; 200c8d4: e8 05 20 08 ld [ %l4 + 8 ], %l4 do { Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); block = _Heap_Free_list_first( heap ); while ( block != free_list_tail ) { 200c8d8: 80 a4 00 14 cmp %l0, %l4 200c8dc: 12 bf ff ea bne 200c884 <_Heap_Allocate_aligned_with_boundary+0x18c> 200c8e0: 82 04 60 01 add %l1, 1, %g1 200c8e4: 10 bf ff f4 b 200c8b4 <_Heap_Allocate_aligned_with_boundary+0x1bc> 200c8e8: b0 10 20 00 clr %i0 /* Integer overflow occured */ return NULL; } if ( boundary != 0 ) { if ( boundary < alloc_size ) { 200c8ec: 18 bf ff f6 bgu 200c8c4 <_Heap_Allocate_aligned_with_boundary+0x1cc> 200c8f0: 80 a6 a0 00 cmp %i2, 0 return NULL; } if ( alignment == 0 ) { 200c8f4: 22 bf ff 8b be,a 200c720 <_Heap_Allocate_aligned_with_boundary+0x28> 200c8f8: b4 10 00 1d mov %i5, %i2 if ( stats->max_search < search_count ) { stats->max_search = search_count; } return (void *) alloc_begin; } 200c8fc: 10 bf ff 8a b 200c724 <_Heap_Allocate_aligned_with_boundary+0x2c> 200c900: e8 04 20 08 ld [ %l0 + 8 ], %l4 =============================================================================== 0200cc0c <_Heap_Extend>: Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200cc0c: 9d e3 bf 98 save %sp, -104, %sp Heap_Block *start_block = first_block; Heap_Block *merge_below_block = NULL; Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; 200cc10: c0 27 bf fc clr [ %fp + -4 ] Heap_Block *extend_last_block = NULL; 200cc14: c0 27 bf f8 clr [ %fp + -8 ] Heap_Control *heap, void *extend_area_begin_ptr, uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { 200cc18: a0 10 00 18 mov %i0, %l0 Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; uintptr_t const min_block_size = heap->min_block_size; uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; 200cc1c: a2 06 40 1a add %i1, %i2, %l1 uintptr_t extend_area_size, uintptr_t *extended_size_ptr ) { Heap_Statistics *const stats = &heap->stats; Heap_Block *const first_block = heap->first_block; 200cc20: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *merge_above_block = NULL; Heap_Block *link_below_block = NULL; Heap_Block *link_above_block = NULL; Heap_Block *extend_first_block = NULL; Heap_Block *extend_last_block = NULL; uintptr_t const page_size = heap->page_size; 200cc24: e6 06 20 10 ld [ %i0 + 0x10 ], %l3 uintptr_t const min_block_size = heap->min_block_size; 200cc28: d6 06 20 14 ld [ %i0 + 0x14 ], %o3 uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr; uintptr_t const extend_area_end = extend_area_begin + extend_area_size; uintptr_t const free_size = stats->free_size; 200cc2c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4 uintptr_t extend_first_block_size = 0; uintptr_t extended_size = 0; bool extend_area_ok = false; if ( extend_area_end < extend_area_begin ) { 200cc30: 80 a6 40 11 cmp %i1, %l1 200cc34: 18 80 00 86 bgu 200ce4c <_Heap_Extend+0x240> 200cc38: b0 10 20 00 clr %i0 return false; } extend_area_ok = _Heap_Get_first_and_last_block( 200cc3c: 90 10 00 19 mov %i1, %o0 200cc40: 92 10 00 1a mov %i2, %o1 200cc44: 94 10 00 13 mov %l3, %o2 200cc48: 98 07 bf fc add %fp, -4, %o4 200cc4c: 7f ff eb ac call 2007afc <_Heap_Get_first_and_last_block> 200cc50: 9a 07 bf f8 add %fp, -8, %o5 page_size, min_block_size, &extend_first_block, &extend_last_block ); if (!extend_area_ok ) { 200cc54: 80 8a 20 ff btst 0xff, %o0 200cc58: 02 80 00 7d be 200ce4c <_Heap_Extend+0x240> 200cc5c: ba 10 20 00 clr %i5 200cc60: b0 10 00 12 mov %l2, %i0 200cc64: b8 10 20 00 clr %i4 200cc68: ac 10 20 00 clr %l6 200cc6c: 10 80 00 14 b 200ccbc <_Heap_Extend+0xb0> 200cc70: ae 10 20 00 clr %l7 return false; } if ( extend_area_end == sub_area_begin ) { merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { 200cc74: 2a 80 00 02 bcs,a 200cc7c <_Heap_Extend+0x70> 200cc78: b8 10 00 18 mov %i0, %i4 200cc7c: 90 10 00 15 mov %l5, %o0 200cc80: 40 00 17 16 call 20128d8 <.urem> 200cc84: 92 10 00 13 mov %l3, %o1 200cc88: 82 05 7f f8 add %l5, -8, %g1 link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200cc8c: 80 a5 40 19 cmp %l5, %i1 200cc90: 02 80 00 1c be 200cd00 <_Heap_Extend+0xf4> 200cc94: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; merge_above_block = end_block; } else if ( sub_area_end < extend_area_begin ) { 200cc98: 80 a6 40 15 cmp %i1, %l5 200cc9c: 38 80 00 02 bgu,a 200cca4 <_Heap_Extend+0x98> 200cca0: ba 10 00 01 mov %g1, %i5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cca4: f0 00 60 04 ld [ %g1 + 4 ], %i0 200cca8: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200ccac: b0 00 40 18 add %g1, %i0, %i0 link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200ccb0: 80 a4 80 18 cmp %l2, %i0 200ccb4: 22 80 00 1b be,a 200cd20 <_Heap_Extend+0x114> 200ccb8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200ccbc: 80 a6 00 12 cmp %i0, %l2 200ccc0: 02 80 00 65 be 200ce54 <_Heap_Extend+0x248> 200ccc4: 82 10 00 18 mov %i0, %g1 uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200ccc8: 80 a0 40 11 cmp %g1, %l1 200cccc: 0a 80 00 6f bcs 200ce88 <_Heap_Extend+0x27c> 200ccd0: ea 06 00 00 ld [ %i0 ], %l5 sub_area_end > extend_area_begin && extend_area_end > sub_area_begin ) { return false; } if ( extend_area_end == sub_area_begin ) { 200ccd4: 80 a0 40 11 cmp %g1, %l1 200ccd8: 12 bf ff e7 bne 200cc74 <_Heap_Extend+0x68> 200ccdc: 80 a4 40 15 cmp %l1, %l5 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cce0: 90 10 00 15 mov %l5, %o0 200cce4: 40 00 16 fd call 20128d8 <.urem> 200cce8: 92 10 00 13 mov %l3, %o1 200ccec: 82 05 7f f8 add %l5, -8, %g1 200ccf0: ae 10 00 18 mov %i0, %l7 merge_below_block = start_block; } else if ( extend_area_end < sub_area_end ) { link_below_block = start_block; } if ( sub_area_end == extend_area_begin ) { 200ccf4: 80 a5 40 19 cmp %l5, %i1 200ccf8: 12 bf ff e8 bne 200cc98 <_Heap_Extend+0x8c> <== ALWAYS TAKEN 200ccfc: 82 20 40 08 sub %g1, %o0, %g1 start_block->prev_size = extend_area_end; 200cd00: e2 26 00 00 st %l1, [ %i0 ] - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200cd04: f0 00 60 04 ld [ %g1 + 4 ], %i0 200cd08: b0 0e 3f fe and %i0, -2, %i0 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200cd0c: b0 00 40 18 add %g1, %i0, %i0 } else if ( sub_area_end < extend_area_begin ) { link_above_block = end_block; } start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); 200cd10: 80 a4 80 18 cmp %l2, %i0 200cd14: 12 bf ff ea bne 200ccbc <_Heap_Extend+0xb0> <== NEVER TAKEN 200cd18: ac 10 00 01 mov %g1, %l6 if ( extend_area_begin < heap->area_begin ) { 200cd1c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 200cd20: 80 a6 40 01 cmp %i1, %g1 200cd24: 3a 80 00 54 bcc,a 200ce74 <_Heap_Extend+0x268> 200cd28: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 heap->area_begin = extend_area_begin; 200cd2c: f2 24 20 18 st %i1, [ %l0 + 0x18 ] } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200cd30: c2 07 bf fc ld [ %fp + -4 ], %g1 200cd34: c4 07 bf f8 ld [ %fp + -8 ], %g2 extend_last_block->prev_size = extend_first_block_size; extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200cd38: c8 04 20 20 ld [ %l0 + 0x20 ], %g4 heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { heap->area_end = extend_area_end; } extend_first_block_size = 200cd3c: 86 20 80 01 sub %g2, %g1, %g3 (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; 200cd40: e2 20 40 00 st %l1, [ %g1 ] extend_first_block->size_and_flag = extend_first_block_size | HEAP_PREV_BLOCK_USED; 200cd44: 9a 10 e0 01 or %g3, 1, %o5 extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; extend_first_block->prev_size = extend_area_end; extend_first_block->size_and_flag = 200cd48: da 20 60 04 st %o5, [ %g1 + 4 ] extend_first_block_size | HEAP_PREV_BLOCK_USED; _Heap_Protection_block_initialize( heap, extend_first_block ); extend_last_block->prev_size = extend_first_block_size; 200cd4c: c6 20 80 00 st %g3, [ %g2 ] extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { 200cd50: 80 a1 00 01 cmp %g4, %g1 200cd54: 08 80 00 42 bleu 200ce5c <_Heap_Extend+0x250> 200cd58: c0 20 a0 04 clr [ %g2 + 4 ] heap->first_block = extend_first_block; 200cd5c: c2 24 20 20 st %g1, [ %l0 + 0x20 ] } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200cd60: 80 a5 e0 00 cmp %l7, 0 200cd64: 02 80 00 62 be 200ceec <_Heap_Extend+0x2e0> 200cd68: b2 06 60 08 add %i1, 8, %i1 Heap_Control *heap, uintptr_t extend_area_begin, Heap_Block *first_block ) { uintptr_t const page_size = heap->page_size; 200cd6c: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up( uintptr_t value, uintptr_t alignment ) { uintptr_t remainder = value % alignment; 200cd70: 92 10 00 12 mov %l2, %o1 200cd74: 40 00 16 d9 call 20128d8 <.urem> 200cd78: 90 10 00 19 mov %i1, %o0 if ( remainder != 0 ) { 200cd7c: 80 a2 20 00 cmp %o0, 0 200cd80: 02 80 00 04 be 200cd90 <_Heap_Extend+0x184> <== ALWAYS TAKEN 200cd84: c4 05 c0 00 ld [ %l7 ], %g2 return value - remainder + alignment; 200cd88: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED 200cd8c: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = 200cd90: 82 06 7f f8 add %i1, -8, %g1 uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; 200cd94: c4 26 7f f8 st %g2, [ %i1 + -8 ] uintptr_t const new_first_block_alloc_begin = _Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size ); uintptr_t const new_first_block_begin = new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE; uintptr_t const first_block_begin = (uintptr_t) first_block; uintptr_t const new_first_block_size = 200cd98: 84 25 c0 01 sub %l7, %g1, %g2 first_block_begin - new_first_block_begin; Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin; new_first_block->prev_size = first_block->prev_size; new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED; 200cd9c: 84 10 a0 01 or %g2, 1, %g2 _Heap_Free_block( heap, new_first_block ); 200cda0: 90 10 00 10 mov %l0, %o0 200cda4: 92 10 00 01 mov %g1, %o1 200cda8: 7f ff ff 8e call 200cbe0 <_Heap_Free_block> 200cdac: c4 20 60 04 st %g2, [ %g1 + 4 ] link_below_block, extend_last_block ); } if ( merge_above_block != NULL ) { 200cdb0: 80 a5 a0 00 cmp %l6, 0 200cdb4: 02 80 00 3a be 200ce9c <_Heap_Extend+0x290> 200cdb8: a2 04 7f f8 add %l1, -8, %l1 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200cdbc: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 uintptr_t extend_area_end ) { uintptr_t const page_size = heap->page_size; uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const last_block_new_size = _Heap_Align_down( 200cdc0: a2 24 40 16 sub %l1, %l6, %l1 200cdc4: 40 00 16 c5 call 20128d8 <.urem> 200cdc8: 90 10 00 11 mov %l1, %o0 ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = (last_block->size_and_flag - last_block_new_size) 200cdcc: c2 05 a0 04 ld [ %l6 + 4 ], %g1 200cdd0: a2 24 40 08 sub %l1, %o0, %l1 200cdd4: 82 20 40 11 sub %g1, %l1, %g1 | HEAP_PREV_BLOCK_USED; 200cdd8: 82 10 60 01 or %g1, 1, %g1 page_size ); Heap_Block *const new_last_block = _Heap_Block_at( last_block, last_block_new_size ); new_last_block->size_and_flag = 200cddc: 84 04 40 16 add %l1, %l6, %g2 200cde0: c2 20 a0 04 st %g1, [ %g2 + 4 ] RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cde4: c2 05 a0 04 ld [ %l6 + 4 ], %g1 (last_block->size_and_flag - last_block_new_size) | HEAP_PREV_BLOCK_USED; _Heap_Block_set_size( last_block, last_block_new_size ); _Heap_Free_block( heap, last_block ); 200cde8: 90 10 00 10 mov %l0, %o0 200cdec: 82 08 60 01 and %g1, 1, %g1 200cdf0: 92 10 00 16 mov %l6, %o1 block->size_and_flag = size | flag; 200cdf4: a2 14 40 01 or %l1, %g1, %l1 200cdf8: 7f ff ff 7a call 200cbe0 <_Heap_Free_block> 200cdfc: e2 25 a0 04 st %l1, [ %l6 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200ce00: 80 a5 a0 00 cmp %l6, 0 200ce04: 02 80 00 33 be 200ced0 <_Heap_Extend+0x2c4> 200ce08: 80 a5 e0 00 cmp %l7, 0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200ce0c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200ce10: da 04 20 20 ld [ %l0 + 0x20 ], %o5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ce14: c8 00 60 04 ld [ %g1 + 4 ], %g4 _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; /* Statistics */ stats->size += extended_size; 200ce18: c4 04 20 2c ld [ %l0 + 0x2c ], %g2 _Heap_Free_block( heap, extend_first_block ); } _Heap_Set_last_block_size( heap ); extended_size = stats->free_size - free_size; 200ce1c: c6 04 20 30 ld [ %l0 + 0x30 ], %g3 * This feature will be used to terminate the scattered heap area list. See * also _Heap_Extend(). */ RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap ) { _Heap_Block_set_size( 200ce20: 9a 23 40 01 sub %o5, %g1, %o5 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200ce24: 88 09 20 01 and %g4, 1, %g4 block->size_and_flag = size | flag; 200ce28: 88 13 40 04 or %o5, %g4, %g4 200ce2c: c8 20 60 04 st %g4, [ %g1 + 4 ] 200ce30: a8 20 c0 14 sub %g3, %l4, %l4 /* Statistics */ stats->size += extended_size; 200ce34: 82 00 80 14 add %g2, %l4, %g1 200ce38: c2 24 20 2c st %g1, [ %l0 + 0x2c ] if ( extended_size_ptr != NULL ) 200ce3c: 80 a6 e0 00 cmp %i3, 0 200ce40: 02 80 00 03 be 200ce4c <_Heap_Extend+0x240> <== NEVER TAKEN 200ce44: b0 10 20 01 mov 1, %i0 *extended_size_ptr = extended_size; 200ce48: e8 26 c0 00 st %l4, [ %i3 ] 200ce4c: 81 c7 e0 08 ret 200ce50: 81 e8 00 00 restore return false; } do { uintptr_t const sub_area_begin = (start_block != first_block) ? (uintptr_t) start_block : heap->area_begin; 200ce54: 10 bf ff 9d b 200ccc8 <_Heap_Extend+0xbc> 200ce58: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 extend_last_block->size_and_flag = 0; _Heap_Protection_block_initialize( heap, extend_last_block ); if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) { heap->first_block = extend_first_block; } else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) { 200ce5c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 200ce60: 80 a0 40 02 cmp %g1, %g2 200ce64: 2a bf ff bf bcs,a 200cd60 <_Heap_Extend+0x154> 200ce68: c4 24 20 24 st %g2, [ %l0 + 0x24 ] heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { 200ce6c: 10 bf ff be b 200cd64 <_Heap_Extend+0x158> 200ce70: 80 a5 e0 00 cmp %l7, 0 start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) ); } while ( start_block != first_block ); if ( extend_area_begin < heap->area_begin ) { heap->area_begin = extend_area_begin; } else if ( heap->area_end < extend_area_end ) { 200ce74: 80 a4 40 01 cmp %l1, %g1 200ce78: 38 bf ff ae bgu,a 200cd30 <_Heap_Extend+0x124> 200ce7c: e2 24 20 1c st %l1, [ %l0 + 0x1c ] heap->area_end = extend_area_end; } extend_first_block_size = (uintptr_t) extend_last_block - (uintptr_t) extend_first_block; 200ce80: 10 bf ff ad b 200cd34 <_Heap_Extend+0x128> 200ce84: c2 07 bf fc ld [ %fp + -4 ], %g1 (uintptr_t) start_block : heap->area_begin; uintptr_t const sub_area_end = start_block->prev_size; Heap_Block *const end_block = _Heap_Block_of_alloc_area( sub_area_end, page_size ); if ( 200ce88: 80 a6 40 15 cmp %i1, %l5 200ce8c: 1a bf ff 93 bcc 200ccd8 <_Heap_Extend+0xcc> 200ce90: 80 a0 40 11 cmp %g1, %l1 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200ce94: 81 c7 e0 08 ret 200ce98: 91 e8 20 00 restore %g0, 0, %o0 ); } if ( merge_above_block != NULL ) { _Heap_Merge_above( heap, merge_above_block, extend_area_end ); } else if ( link_above_block != NULL ) { 200ce9c: 80 a7 60 00 cmp %i5, 0 200cea0: 02 bf ff d8 be 200ce00 <_Heap_Extend+0x1f4> 200cea4: c4 07 bf fc ld [ %fp + -4 ], %g2 RTEMS_INLINE_ROUTINE void _Heap_Block_set_size( Heap_Block *block, uintptr_t size ) { uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED; 200cea8: c6 07 60 04 ld [ %i5 + 4 ], %g3 _Heap_Link_above( 200ceac: c2 07 bf f8 ld [ %fp + -8 ], %g1 200ceb0: 86 08 e0 01 and %g3, 1, %g3 ) { uintptr_t const link_begin = (uintptr_t) link; uintptr_t const first_block_begin = (uintptr_t) first_block; _Heap_Block_set_size( link, first_block_begin - link_begin ); 200ceb4: 84 20 80 1d sub %g2, %i5, %g2 block->size_and_flag = size | flag; 200ceb8: 84 10 80 03 or %g2, %g3, %g2 200cebc: c4 27 60 04 st %g2, [ %i5 + 4 ] last_block->size_and_flag |= HEAP_PREV_BLOCK_USED; 200cec0: c4 00 60 04 ld [ %g1 + 4 ], %g2 200cec4: 84 10 a0 01 or %g2, 1, %g2 200cec8: 10 bf ff ce b 200ce00 <_Heap_Extend+0x1f4> 200cecc: c4 20 60 04 st %g2, [ %g1 + 4 ] extend_first_block, extend_last_block ); } if ( merge_below_block == NULL && merge_above_block == NULL ) { 200ced0: 32 bf ff d0 bne,a 200ce10 <_Heap_Extend+0x204> 200ced4: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 _Heap_Free_block( heap, extend_first_block ); 200ced8: d2 07 bf fc ld [ %fp + -4 ], %o1 200cedc: 7f ff ff 41 call 200cbe0 <_Heap_Free_block> 200cee0: 90 10 00 10 mov %l0, %o0 if ( extended_size_ptr != NULL ) *extended_size_ptr = extended_size; return true; } 200cee4: 10 bf ff cb b 200ce10 <_Heap_Extend+0x204> 200cee8: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 heap->last_block = extend_last_block; } if ( merge_below_block != NULL ) { _Heap_Merge_below( heap, extend_area_begin, merge_below_block ); } else if ( link_below_block != NULL ) { 200ceec: 80 a7 20 00 cmp %i4, 0 200cef0: 02 bf ff b1 be 200cdb4 <_Heap_Extend+0x1a8> 200cef4: 80 a5 a0 00 cmp %l6, 0 { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = (link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED; 200cef8: b8 27 00 02 sub %i4, %g2, %i4 200cefc: b8 17 20 01 or %i4, 1, %i4 ) { uintptr_t const last_block_begin = (uintptr_t) last_block; uintptr_t const link_begin = (uintptr_t) link; last_block->size_and_flag = 200cf00: 10 bf ff ad b 200cdb4 <_Heap_Extend+0x1a8> 200cf04: f8 20 a0 04 st %i4, [ %g2 + 4 ] =============================================================================== 0200c904 <_Heap_Free>: return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) { 200c904: 9d e3 bf a0 save %sp, -96, %sp 200c908: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 200c90c: 40 00 16 a0 call 201238c <.urem> 200c910: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 200c914: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 200c918: a0 10 00 18 mov %i0, %l0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 200c91c: a2 06 7f f8 add %i1, -8, %l1 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 200c920: 90 24 40 08 sub %l1, %o0, %o0 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c924: 80 a2 00 01 cmp %o0, %g1 200c928: 0a 80 00 4d bcs 200ca5c <_Heap_Free+0x158> 200c92c: b0 10 20 00 clr %i0 200c930: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 200c934: 80 a2 00 03 cmp %o0, %g3 200c938: 18 80 00 49 bgu 200ca5c <_Heap_Free+0x158> 200c93c: 01 00 00 00 nop --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c940: da 02 20 04 ld [ %o0 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200c944: 88 0b 7f fe and %o5, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c948: 84 02 00 04 add %o0, %g4, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c94c: 80 a0 40 02 cmp %g1, %g2 200c950: 18 80 00 43 bgu 200ca5c <_Heap_Free+0x158> <== NEVER TAKEN 200c954: 80 a0 c0 02 cmp %g3, %g2 200c958: 0a 80 00 41 bcs 200ca5c <_Heap_Free+0x158> <== NEVER TAKEN 200c95c: 01 00 00 00 nop 200c960: d8 00 a0 04 ld [ %g2 + 4 ], %o4 if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { _HAssert( false ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 200c964: 80 8b 20 01 btst 1, %o4 200c968: 02 80 00 3d be 200ca5c <_Heap_Free+0x158> <== NEVER TAKEN 200c96c: 96 0b 3f fe and %o4, -2, %o3 return true; } next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); 200c970: 80 a0 c0 02 cmp %g3, %g2 200c974: 02 80 00 06 be 200c98c <_Heap_Free+0x88> 200c978: 98 10 20 00 clr %o4 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c97c: 98 00 80 0b add %g2, %o3, %o4 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c980: d8 03 20 04 ld [ %o4 + 4 ], %o4 200c984: 98 0b 20 01 and %o4, 1, %o4 return do_free; } #endif bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr ) 200c988: 98 1b 20 01 xor %o4, 1, %o4 next_block_size = _Heap_Block_size( next_block ); next_is_free = next_block != heap->last_block && !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size )); if ( !_Heap_Is_prev_used( block ) ) { 200c98c: 80 8b 60 01 btst 1, %o5 200c990: 12 80 00 1d bne 200ca04 <_Heap_Free+0x100> 200c994: 80 8b 20 ff btst 0xff, %o4 uintptr_t const prev_size = block->prev_size; 200c998: d4 02 00 00 ld [ %o0 ], %o2 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200c99c: 9a 22 00 0a sub %o0, %o2, %o5 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 200c9a0: 80 a0 40 0d cmp %g1, %o5 200c9a4: 18 80 00 2e bgu 200ca5c <_Heap_Free+0x158> <== NEVER TAKEN 200c9a8: b0 10 20 00 clr %i0 200c9ac: 80 a0 c0 0d cmp %g3, %o5 200c9b0: 0a 80 00 2b bcs 200ca5c <_Heap_Free+0x158> <== NEVER TAKEN 200c9b4: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 200c9b8: c2 03 60 04 ld [ %o5 + 4 ], %g1 return( false ); } /* As we always coalesce free blocks, the block that preceedes prev_block must have been used. */ if ( !_Heap_Is_prev_used ( prev_block) ) { 200c9bc: 80 88 60 01 btst 1, %g1 200c9c0: 02 80 00 27 be 200ca5c <_Heap_Free+0x158> <== NEVER TAKEN 200c9c4: 80 8b 20 ff btst 0xff, %o4 _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ 200c9c8: 22 80 00 39 be,a 200caac <_Heap_Free+0x1a8> 200c9cc: 94 01 00 0a add %g4, %o2, %o2 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200c9d0: c2 00 a0 08 ld [ %g2 + 8 ], %g1 200c9d4: c4 00 a0 0c ld [ %g2 + 0xc ], %g2 } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; 200c9d8: c6 04 20 38 ld [ %l0 + 0x38 ], %g3 RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block ) { Heap_Block *next = block->next; Heap_Block *prev = block->prev; prev->next = next; 200c9dc: c2 20 a0 08 st %g1, [ %g2 + 8 ] next->prev = prev; 200c9e0: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200c9e4: 82 00 ff ff add %g3, -1, %g1 200c9e8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _HAssert( false ); return( false ); } if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; 200c9ec: 96 01 00 0b add %g4, %o3, %o3 200c9f0: 94 02 c0 0a add %o3, %o2, %o2 _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c9f4: 82 12 a0 01 or %o2, 1, %g1 next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; 200c9f8: d4 23 40 0a st %o2, [ %o5 + %o2 ] if ( next_is_free ) { /* coalesce both */ uintptr_t const size = block_size + prev_size + next_block_size; _Heap_Free_list_remove( next_block ); stats->free_blocks -= 1; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200c9fc: 10 80 00 0e b 200ca34 <_Heap_Free+0x130> 200ca00: c2 23 60 04 st %g1, [ %o5 + 4 ] uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ 200ca04: 22 80 00 18 be,a 200ca64 <_Heap_Free+0x160> 200ca08: c6 04 20 08 ld [ %l0 + 8 ], %g3 --stats->used_blocks; ++stats->frees; stats->free_size += block_size; return( true ); } 200ca0c: c6 00 a0 08 ld [ %g2 + 8 ], %g3 200ca10: c2 00 a0 0c ld [ %g2 + 0xc ], %g1 ) { Heap_Block *next = old_block->next; Heap_Block *prev = old_block->prev; new_block->next = next; 200ca14: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = prev; 200ca18: c2 22 20 0c st %g1, [ %o0 + 0xc ] prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = size; } } else if ( next_is_free ) { /* coalesce next */ uintptr_t const size = block_size + next_block_size; 200ca1c: 96 02 c0 04 add %o3, %g4, %o3 next->prev = new_block; 200ca20: d0 20 e0 0c st %o0, [ %g3 + 0xc ] _Heap_Free_list_replace( next_block, block ); block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200ca24: 84 12 e0 01 or %o3, 1, %g2 prev->next = new_block; 200ca28: d0 20 60 08 st %o0, [ %g1 + 8 ] 200ca2c: c4 22 20 04 st %g2, [ %o0 + 4 ] next_block = _Heap_Block_at( block, size ); next_block->prev_size = size; 200ca30: d6 22 00 0b st %o3, [ %o0 + %o3 ] stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200ca34: c4 04 20 40 ld [ %l0 + 0x40 ], %g2 ++stats->frees; 200ca38: c2 04 20 50 ld [ %l0 + 0x50 ], %g1 stats->free_size += block_size; 200ca3c: c6 04 20 30 ld [ %l0 + 0x30 ], %g3 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200ca40: 84 00 bf ff add %g2, -1, %g2 ++stats->frees; 200ca44: 82 00 60 01 inc %g1 stats->free_size += block_size; 200ca48: 88 00 c0 04 add %g3, %g4, %g4 stats->max_free_blocks = stats->free_blocks; } } /* Statistics */ --stats->used_blocks; 200ca4c: c4 24 20 40 st %g2, [ %l0 + 0x40 ] ++stats->frees; 200ca50: c2 24 20 50 st %g1, [ %l0 + 0x50 ] stats->free_size += block_size; 200ca54: c8 24 20 30 st %g4, [ %l0 + 0x30 ] return( true ); 200ca58: b0 10 20 01 mov 1, %i0 } 200ca5c: 81 c7 e0 08 ret 200ca60: 81 e8 00 00 restore next_block->prev_size = size; } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; 200ca64: 82 11 20 01 or %g4, 1, %g1 200ca68: c2 22 20 04 st %g1, [ %o0 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ca6c: da 00 a0 04 ld [ %g2 + 4 ], %o5 next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ca70: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 ) { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; 200ca74: e0 22 20 0c st %l0, [ %o0 + 0xc ] Heap_Block *new_block ) { Heap_Block *next = block_before->next; new_block->next = next; 200ca78: c6 22 20 08 st %g3, [ %o0 + 8 ] new_block->prev = block_before; block_before->next = new_block; next->prev = new_block; 200ca7c: d0 20 e0 0c st %o0, [ %g3 + 0xc ] /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; 200ca80: c8 22 00 04 st %g4, [ %o0 + %g4 ] } else { /* no coalesce */ /* Add 'block' to the head of the free blocks list as it tends to produce less fragmentation than adding to the tail. */ _Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block ); block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200ca84: 86 0b 7f fe and %o5, -2, %g3 200ca88: c6 20 a0 04 st %g3, [ %g2 + 4 ] next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; if ( stats->max_free_blocks < stats->free_blocks ) { 200ca8c: c4 04 20 3c ld [ %l0 + 0x3c ], %g2 block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; next_block->prev_size = block_size; /* Statistics */ ++stats->free_blocks; 200ca90: 82 00 60 01 inc %g1 { Heap_Block *next = block_before->next; new_block->next = next; new_block->prev = block_before; block_before->next = new_block; 200ca94: d0 24 20 08 st %o0, [ %l0 + 8 ] if ( stats->max_free_blocks < stats->free_blocks ) { 200ca98: 80 a0 40 02 cmp %g1, %g2 200ca9c: 08 bf ff e6 bleu 200ca34 <_Heap_Free+0x130> 200caa0: c2 24 20 38 st %g1, [ %l0 + 0x38 ] stats->max_free_blocks = stats->free_blocks; 200caa4: 10 bf ff e4 b 200ca34 <_Heap_Free+0x130> 200caa8: c2 24 20 3c st %g1, [ %l0 + 0x3c ] next_block = _Heap_Block_at( prev_block, size ); _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; 200caac: 82 12 a0 01 or %o2, 1, %g1 200cab0: c2 23 60 04 st %g1, [ %o5 + 4 ] next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cab4: c2 00 a0 04 ld [ %g2 + 4 ], %g1 next_block->prev_size = size; 200cab8: d4 22 00 04 st %o2, [ %o0 + %g4 ] _HAssert(!_Heap_Is_prev_used( next_block)); next_block->prev_size = size; } else { /* coalesce prev */ uintptr_t const size = block_size + prev_size; prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED; next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED; 200cabc: 82 08 7f fe and %g1, -2, %g1 200cac0: 10 bf ff dd b 200ca34 <_Heap_Free+0x130> 200cac4: c2 20 a0 04 st %g1, [ %g2 + 4 ] =============================================================================== 0200d628 <_Heap_Get_information>: void _Heap_Get_information( Heap_Control *the_heap, Heap_Information_block *the_info ) { 200d628: 9d e3 bf a0 save %sp, -96, %sp Heap_Block *the_block = the_heap->first_block; 200d62c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 Heap_Block *const end = the_heap->last_block; 200d630: c4 06 20 24 ld [ %i0 + 0x24 ], %g2 memset(the_info, 0, sizeof(*the_info)); 200d634: c0 26 40 00 clr [ %i1 ] 200d638: c0 26 60 04 clr [ %i1 + 4 ] 200d63c: c0 26 60 08 clr [ %i1 + 8 ] 200d640: c0 26 60 0c clr [ %i1 + 0xc ] 200d644: c0 26 60 10 clr [ %i1 + 0x10 ] while ( the_block != end ) { 200d648: 80 a0 40 02 cmp %g1, %g2 200d64c: 02 80 00 17 be 200d6a8 <_Heap_Get_information+0x80> <== NEVER TAKEN 200d650: c0 26 60 14 clr [ %i1 + 0x14 ] 200d654: da 00 60 04 ld [ %g1 + 4 ], %o5 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 200d658: 88 0b 7f fe and %o5, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 200d65c: 82 00 40 04 add %g1, %g4, %g1 if ( info->largest < the_size ) info->largest = the_size; the_block = next_block; } } 200d660: da 00 60 04 ld [ %g1 + 4 ], %o5 while ( the_block != end ) { uintptr_t const the_size = _Heap_Block_size(the_block); Heap_Block *const next_block = _Heap_Block_at(the_block, the_size); Heap_Information *info; if ( _Heap_Is_prev_used(next_block) ) 200d664: 80 8b 60 01 btst 1, %o5 200d668: 02 80 00 03 be 200d674 <_Heap_Get_information+0x4c> 200d66c: 86 10 00 19 mov %i1, %g3 info = &the_info->Used; 200d670: 86 06 60 0c add %i1, 0xc, %g3 else info = &the_info->Free; info->number++; 200d674: d4 00 c0 00 ld [ %g3 ], %o2 info->total += the_size; 200d678: d6 00 e0 08 ld [ %g3 + 8 ], %o3 if ( info->largest < the_size ) 200d67c: d8 00 e0 04 ld [ %g3 + 4 ], %o4 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d680: 94 02 a0 01 inc %o2 info->total += the_size; 200d684: 96 02 c0 04 add %o3, %g4, %o3 if ( _Heap_Is_prev_used(next_block) ) info = &the_info->Used; else info = &the_info->Free; info->number++; 200d688: d4 20 c0 00 st %o2, [ %g3 ] info->total += the_size; if ( info->largest < the_size ) 200d68c: 80 a3 00 04 cmp %o4, %g4 200d690: 1a 80 00 03 bcc 200d69c <_Heap_Get_information+0x74> 200d694: d6 20 e0 08 st %o3, [ %g3 + 8 ] info->largest = the_size; 200d698: c8 20 e0 04 st %g4, [ %g3 + 4 ] Heap_Block *the_block = the_heap->first_block; Heap_Block *const end = the_heap->last_block; memset(the_info, 0, sizeof(*the_info)); while ( the_block != end ) { 200d69c: 80 a0 80 01 cmp %g2, %g1 200d6a0: 12 bf ff ef bne 200d65c <_Heap_Get_information+0x34> 200d6a4: 88 0b 7f fe and %o5, -2, %g4 200d6a8: 81 c7 e0 08 ret 200d6ac: 81 e8 00 00 restore =============================================================================== 02013e2c <_Heap_Size_of_alloc_area>: bool _Heap_Size_of_alloc_area( Heap_Control *heap, void *alloc_begin_ptr, uintptr_t *alloc_size ) { 2013e2c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013e30: d2 06 20 10 ld [ %i0 + 0x10 ], %o1 2013e34: 7f ff f9 56 call 201238c <.urem> 2013e38: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap( const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block 2013e3c: c2 06 20 20 ld [ %i0 + 0x20 ], %g1 2013e40: a0 10 00 18 mov %i0, %l0 RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down( uintptr_t value, uintptr_t alignment ) { return value - (value % alignment); 2013e44: 84 06 7f f8 add %i1, -8, %g2 uintptr_t alloc_begin, uintptr_t page_size ) { return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size ) - HEAP_BLOCK_HEADER_SIZE); 2013e48: 84 20 80 08 sub %g2, %o0, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2013e4c: 80 a0 80 01 cmp %g2, %g1 2013e50: 0a 80 00 15 bcs 2013ea4 <_Heap_Size_of_alloc_area+0x78> 2013e54: b0 10 20 00 clr %i0 2013e58: c6 04 20 24 ld [ %l0 + 0x24 ], %g3 2013e5c: 80 a0 80 03 cmp %g2, %g3 2013e60: 18 80 00 11 bgu 2013ea4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013e64: 01 00 00 00 nop - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2013e68: c8 00 a0 04 ld [ %g2 + 4 ], %g4 2013e6c: 88 09 3f fe and %g4, -2, %g4 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2013e70: 84 00 80 04 add %g2, %g4, %g2 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2013e74: 80 a0 40 02 cmp %g1, %g2 2013e78: 18 80 00 0b bgu 2013ea4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013e7c: 80 a0 c0 02 cmp %g3, %g2 2013e80: 0a 80 00 09 bcs 2013ea4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013e84: 01 00 00 00 nop block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2013e88: c2 00 a0 04 ld [ %g2 + 4 ], %g1 block_size = _Heap_Block_size( block ); next_block = _Heap_Block_at( block, block_size ); if ( !_Heap_Is_block_in_heap( heap, next_block ) || !_Heap_Is_prev_used( next_block ) 2013e8c: 80 88 60 01 btst 1, %g1 2013e90: 02 80 00 05 be 2013ea4 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN 2013e94: 84 20 80 19 sub %g2, %i1, %g2 return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; return true; 2013e98: b0 10 20 01 mov 1, %i0 || !_Heap_Is_prev_used( next_block ) ) { return false; } *alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin; 2013e9c: 84 00 a0 04 add %g2, 4, %g2 2013ea0: c4 26 80 00 st %g2, [ %i2 ] return true; } 2013ea4: 81 c7 e0 08 ret 2013ea8: 81 e8 00 00 restore =============================================================================== 0200893c <_Heap_Walk>: bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 200893c: 9d e3 bf 80 save %sp, -128, %sp uintptr_t const min_block_size = heap->min_block_size; Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008940: 23 00 80 22 sethi %hi(0x2008800), %l1 bool _Heap_Walk( Heap_Control *heap, int source, bool dump ) { 2008944: a0 10 00 18 mov %i0, %l0 uintptr_t const page_size = heap->page_size; 2008948: e8 06 20 10 ld [ %i0 + 0x10 ], %l4 uintptr_t const min_block_size = heap->min_block_size; 200894c: e6 06 20 14 ld [ %i0 + 0x14 ], %l3 Heap_Block *const first_block = heap->first_block; 2008950: e4 06 20 20 ld [ %i0 + 0x20 ], %l2 Heap_Block *const last_block = heap->last_block; 2008954: ea 06 20 24 ld [ %i0 + 0x24 ], %l5 Heap_Block *block = first_block; Heap_Walk_printer printer = dump ? _Heap_Walk_print : _Heap_Walk_print_nothing; 2008958: 80 8e a0 ff btst 0xff, %i2 200895c: 02 80 00 04 be 200896c <_Heap_Walk+0x30> 2008960: a2 14 60 d0 or %l1, 0xd0, %l1 2008964: 23 00 80 22 sethi %hi(0x2008800), %l1 2008968: a2 14 60 d8 or %l1, 0xd8, %l1 ! 20088d8 <_Heap_Walk_print> if ( !_System_state_Is_up( _System_state_Get() ) ) { 200896c: 03 00 80 61 sethi %hi(0x2018400), %g1 2008970: c2 00 62 4c ld [ %g1 + 0x24c ], %g1 ! 201864c <_System_state_Current> 2008974: 80 a0 60 03 cmp %g1, 3 2008978: 12 80 00 33 bne 2008a44 <_Heap_Walk+0x108> 200897c: b0 10 20 01 mov 1, %i0 Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); Heap_Block *const first_block = heap->first_block; Heap_Block *const last_block = heap->last_block; (*printer)( 2008980: da 04 20 18 ld [ %l0 + 0x18 ], %o5 2008984: c6 04 20 1c ld [ %l0 + 0x1c ], %g3 2008988: c4 04 20 08 ld [ %l0 + 8 ], %g2 200898c: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2008990: 90 10 00 19 mov %i1, %o0 2008994: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008998: e4 23 a0 60 st %l2, [ %sp + 0x60 ] 200899c: ea 23 a0 64 st %l5, [ %sp + 0x64 ] 20089a0: c4 23 a0 68 st %g2, [ %sp + 0x68 ] 20089a4: c2 23 a0 6c st %g1, [ %sp + 0x6c ] 20089a8: 92 10 20 00 clr %o1 20089ac: 96 10 00 14 mov %l4, %o3 20089b0: 15 00 80 56 sethi %hi(0x2015800), %o2 20089b4: 98 10 00 13 mov %l3, %o4 20089b8: 9f c4 40 00 call %l1 20089bc: 94 12 a3 f8 or %o2, 0x3f8, %o2 heap->area_begin, heap->area_end, first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { 20089c0: 80 a5 20 00 cmp %l4, 0 20089c4: 02 80 00 2a be 2008a6c <_Heap_Walk+0x130> 20089c8: 80 8d 20 07 btst 7, %l4 (*printer)( source, true, "page size is zero\n" ); return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { 20089cc: 12 80 00 30 bne 2008a8c <_Heap_Walk+0x150> 20089d0: 90 10 00 13 mov %l3, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 20089d4: 7f ff e4 37 call 2001ab0 <.urem> 20089d8: 92 10 00 14 mov %l4, %o1 ); return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { 20089dc: 80 a2 20 00 cmp %o0, 0 20089e0: 12 80 00 34 bne 2008ab0 <_Heap_Walk+0x174> 20089e4: 90 04 a0 08 add %l2, 8, %o0 20089e8: 7f ff e4 32 call 2001ab0 <.urem> 20089ec: 92 10 00 14 mov %l4, %o1 ); return false; } if ( 20089f0: 80 a2 20 00 cmp %o0, 0 20089f4: 32 80 00 38 bne,a 2008ad4 <_Heap_Walk+0x198> 20089f8: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 20089fc: f8 04 a0 04 ld [ %l2 + 4 ], %i4 ); return false; } if ( !_Heap_Is_prev_used( first_block ) ) { 2008a00: 80 8f 20 01 btst 1, %i4 2008a04: 22 80 00 4d be,a 2008b38 <_Heap_Walk+0x1fc> 2008a08: 90 10 00 19 mov %i1, %o0 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008a0c: c2 05 60 04 ld [ %l5 + 4 ], %g1 2008a10: 82 08 7f fe and %g1, -2, %g1 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008a14: 82 05 40 01 add %l5, %g1, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008a18: c4 00 60 04 ld [ %g1 + 4 ], %g2 ); return false; } if ( _Heap_Is_free( last_block ) ) { 2008a1c: 80 88 a0 01 btst 1, %g2 2008a20: 02 80 00 0b be 2008a4c <_Heap_Walk+0x110> 2008a24: 80 a4 80 01 cmp %l2, %g1 ); return false; } if ( 2008a28: 02 80 00 33 be 2008af4 <_Heap_Walk+0x1b8> <== ALWAYS TAKEN 2008a2c: 90 10 00 19 mov %i1, %o0 _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008a30: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED 2008a34: 15 00 80 57 sethi %hi(0x2015c00), %o2 <== NOT EXECUTED if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a38: b0 10 20 00 clr %i0 <== NOT EXECUTED } if ( _Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block ) { (*printer)( 2008a3c: 9f c4 40 00 call %l1 <== NOT EXECUTED 2008a40: 94 12 a1 70 or %o2, 0x170, %o2 <== NOT EXECUTED 2008a44: 81 c7 e0 08 ret 2008a48: 81 e8 00 00 restore return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 2008a4c: 90 10 00 19 mov %i1, %o0 2008a50: 92 10 20 01 mov 1, %o1 2008a54: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a58: b0 10 20 00 clr %i0 return false; } if ( _Heap_Is_free( last_block ) ) { (*printer)( 2008a5c: 9f c4 40 00 call %l1 2008a60: 94 12 a1 58 or %o2, 0x158, %o2 2008a64: 81 c7 e0 08 ret 2008a68: 81 e8 00 00 restore first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008a6c: 90 10 00 19 mov %i1, %o0 2008a70: 92 10 20 01 mov 1, %o1 2008a74: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a78: b0 10 20 00 clr %i0 first_block, last_block, first_free_block, last_free_block ); if ( page_size == 0 ) { (*printer)( source, true, "page size is zero\n" ); 2008a7c: 9f c4 40 00 call %l1 2008a80: 94 12 a0 90 or %o2, 0x90, %o2 2008a84: 81 c7 e0 08 ret 2008a88: 81 e8 00 00 restore return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008a8c: 90 10 00 19 mov %i1, %o0 2008a90: 92 10 20 01 mov 1, %o1 2008a94: 96 10 00 14 mov %l4, %o3 2008a98: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008a9c: b0 10 20 00 clr %i0 return false; } if ( !_Addresses_Is_aligned( (void *) page_size ) ) { (*printer)( 2008aa0: 9f c4 40 00 call %l1 2008aa4: 94 12 a0 a8 or %o2, 0xa8, %o2 2008aa8: 81 c7 e0 08 ret 2008aac: 81 e8 00 00 restore return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008ab0: 90 10 00 19 mov %i1, %o0 2008ab4: 92 10 20 01 mov 1, %o1 2008ab8: 96 10 00 13 mov %l3, %o3 2008abc: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008ac0: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Is_aligned( min_block_size, page_size ) ) { (*printer)( 2008ac4: 9f c4 40 00 call %l1 2008ac8: 94 12 a0 c8 or %o2, 0xc8, %o2 2008acc: 81 c7 e0 08 ret 2008ad0: 81 e8 00 00 restore } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008ad4: 92 10 20 01 mov 1, %o1 2008ad8: 96 10 00 12 mov %l2, %o3 2008adc: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008ae0: b0 10 20 00 clr %i0 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size ) ) { (*printer)( 2008ae4: 9f c4 40 00 call %l1 2008ae8: 94 12 a0 f0 or %o2, 0xf0, %o2 2008aec: 81 c7 e0 08 ret 2008af0: 81 e8 00 00 restore block = next_block; } while ( block != first_block ); return true; } 2008af4: ec 04 20 08 ld [ %l0 + 8 ], %l6 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008af8: 80 a4 00 16 cmp %l0, %l6 2008afc: 02 80 01 18 be 2008f5c <_Heap_Walk+0x620> 2008b00: f6 04 20 10 ld [ %l0 + 0x10 ], %i3 block = next_block; } while ( block != first_block ); return true; } 2008b04: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008b08: 80 a0 40 16 cmp %g1, %l6 2008b0c: 28 80 00 12 bleu,a 2008b54 <_Heap_Walk+0x218> <== ALWAYS TAKEN 2008b10: fa 04 20 24 ld [ %l0 + 0x24 ], %i5 const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 2008b14: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008b18: 92 10 20 01 mov 1, %o1 2008b1c: 96 10 00 16 mov %l6, %o3 2008b20: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008b24: b0 10 20 00 clr %i0 const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { if ( !_Heap_Is_block_in_heap( heap, free_block ) ) { (*printer)( 2008b28: 9f c4 40 00 call %l1 2008b2c: 94 12 a1 a0 or %o2, 0x1a0, %o2 2008b30: 81 c7 e0 08 ret 2008b34: 81 e8 00 00 restore return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 2008b38: 92 10 20 01 mov 1, %o1 2008b3c: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008b40: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Is_prev_used( first_block ) ) { (*printer)( 2008b44: 9f c4 40 00 call %l1 2008b48: 94 12 a1 28 or %o2, 0x128, %o2 2008b4c: 81 c7 e0 08 ret 2008b50: 81 e8 00 00 restore 2008b54: 80 a7 40 16 cmp %i5, %l6 2008b58: 0a bf ff f0 bcs 2008b18 <_Heap_Walk+0x1dc> <== NEVER TAKEN 2008b5c: 90 10 00 19 mov %i1, %o0 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008b60: c2 27 bf fc st %g1, [ %fp + -4 ] 2008b64: 90 05 a0 08 add %l6, 8, %o0 2008b68: 7f ff e3 d2 call 2001ab0 <.urem> 2008b6c: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2008b70: 80 a2 20 00 cmp %o0, 0 2008b74: 12 80 00 2e bne 2008c2c <_Heap_Walk+0x2f0> <== NEVER TAKEN 2008b78: c2 07 bf fc ld [ %fp + -4 ], %g1 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008b7c: c4 05 a0 04 ld [ %l6 + 4 ], %g2 2008b80: 84 08 bf fe and %g2, -2, %g2 block = next_block; } while ( block != first_block ); return true; } 2008b84: 84 05 80 02 add %l6, %g2, %g2 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008b88: c4 00 a0 04 ld [ %g2 + 4 ], %g2 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008b8c: 80 88 a0 01 btst 1, %g2 2008b90: 12 80 00 30 bne 2008c50 <_Heap_Walk+0x314> <== NEVER TAKEN 2008b94: 84 10 00 10 mov %l0, %g2 2008b98: ae 10 00 16 mov %l6, %l7 2008b9c: 10 80 00 17 b 2008bf8 <_Heap_Walk+0x2bc> 2008ba0: b4 10 00 01 mov %g1, %i2 const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008ba4: 80 a4 00 16 cmp %l0, %l6 2008ba8: 02 80 00 33 be 2008c74 <_Heap_Walk+0x338> 2008bac: 80 a6 80 16 cmp %i2, %l6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008bb0: 18 bf ff da bgu 2008b18 <_Heap_Walk+0x1dc> 2008bb4: 90 10 00 19 mov %i1, %o0 2008bb8: 80 a5 80 1d cmp %l6, %i5 2008bbc: 18 bf ff d8 bgu 2008b1c <_Heap_Walk+0x1e0> <== NEVER TAKEN 2008bc0: 92 10 20 01 mov 1, %o1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008bc4: 90 05 a0 08 add %l6, 8, %o0 2008bc8: 7f ff e3 ba call 2001ab0 <.urem> 2008bcc: 92 10 00 1b mov %i3, %o1 ); return false; } if ( 2008bd0: 80 a2 20 00 cmp %o0, 0 2008bd4: 12 80 00 16 bne 2008c2c <_Heap_Walk+0x2f0> 2008bd8: 84 10 00 17 mov %l7, %g2 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008bdc: c2 05 a0 04 ld [ %l6 + 4 ], %g1 2008be0: 82 08 7f fe and %g1, -2, %g1 block = next_block; } while ( block != first_block ); return true; } 2008be4: 82 00 40 16 add %g1, %l6, %g1 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008be8: c2 00 60 04 ld [ %g1 + 4 ], %g1 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008bec: 80 88 60 01 btst 1, %g1 2008bf0: 12 80 00 18 bne 2008c50 <_Heap_Walk+0x314> 2008bf4: ae 10 00 16 mov %l6, %l7 ); return false; } if ( free_block->prev != prev_block ) { 2008bf8: d8 05 a0 0c ld [ %l6 + 0xc ], %o4 2008bfc: 80 a3 00 02 cmp %o4, %g2 2008c00: 22 bf ff e9 be,a 2008ba4 <_Heap_Walk+0x268> 2008c04: ec 05 a0 08 ld [ %l6 + 8 ], %l6 (*printer)( 2008c08: 90 10 00 19 mov %i1, %o0 2008c0c: 92 10 20 01 mov 1, %o1 2008c10: 96 10 00 16 mov %l6, %o3 2008c14: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c18: b0 10 20 00 clr %i0 return false; } if ( free_block->prev != prev_block ) { (*printer)( 2008c1c: 9f c4 40 00 call %l1 2008c20: 94 12 a2 10 or %o2, 0x210, %o2 2008c24: 81 c7 e0 08 ret 2008c28: 81 e8 00 00 restore } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008c2c: 90 10 00 19 mov %i1, %o0 2008c30: 92 10 20 01 mov 1, %o1 2008c34: 96 10 00 16 mov %l6, %o3 2008c38: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c3c: b0 10 20 00 clr %i0 } if ( !_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size ) ) { (*printer)( 2008c40: 9f c4 40 00 call %l1 2008c44: 94 12 a1 c0 or %o2, 0x1c0, %o2 2008c48: 81 c7 e0 08 ret 2008c4c: 81 e8 00 00 restore return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c50: 90 10 00 19 mov %i1, %o0 2008c54: 92 10 20 01 mov 1, %o1 2008c58: 96 10 00 16 mov %l6, %o3 2008c5c: 15 00 80 57 sethi %hi(0x2015c00), %o2 if ( !_System_state_Is_up( _System_state_Get() ) ) { return true; } if ( !_Heap_Walk_check_control( source, printer, heap ) ) { return false; 2008c60: b0 10 20 00 clr %i0 return false; } if ( _Heap_Is_used( free_block ) ) { (*printer)( 2008c64: 9f c4 40 00 call %l1 2008c68: 94 12 a1 f0 or %o2, 0x1f0, %o2 2008c6c: 81 c7 e0 08 ret 2008c70: 81 e8 00 00 restore 2008c74: 82 10 00 1a mov %i2, %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008c78: 35 00 80 57 sethi %hi(0x2015c00), %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008c7c: 31 00 80 57 sethi %hi(0x2015c00), %i0 ); return false; } if ( _Heap_Is_used( free_block ) ) { 2008c80: ae 10 00 12 mov %l2, %l7 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008c84: b4 16 a3 d0 or %i2, 0x3d0, %i2 if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { (*printer)( 2008c88: b0 16 23 b8 or %i0, 0x3b8, %i0 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008c8c: 37 00 80 57 sethi %hi(0x2015c00), %i3 - HEAP_BLOCK_HEADER_SIZE); } RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block ) { return block->size_and_flag & ~HEAP_PREV_BLOCK_USED; 2008c90: ba 0f 3f fe and %i4, -2, %i5 RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at( const Heap_Block *block, uintptr_t offset ) { return (Heap_Block *) ((uintptr_t) block + offset); 2008c94: ac 07 40 17 add %i5, %l7, %l6 const Heap_Control *heap, const Heap_Block *block ) { return (uintptr_t) block >= (uintptr_t) heap->first_block && (uintptr_t) block <= (uintptr_t) heap->last_block; 2008c98: 80 a0 40 16 cmp %g1, %l6 2008c9c: 28 80 00 0c bleu,a 2008ccc <_Heap_Walk+0x390> <== ALWAYS TAKEN 2008ca0: c2 04 20 24 ld [ %l0 + 0x24 ], %g1 Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; if ( !_Heap_Is_block_in_heap( heap, next_block ) ) { (*printer)( 2008ca4: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED 2008ca8: 92 10 20 01 mov 1, %o1 2008cac: 96 10 00 17 mov %l7, %o3 2008cb0: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008cb4: 98 10 00 16 mov %l6, %o4 2008cb8: 94 12 a2 48 or %o2, 0x248, %o2 2008cbc: 9f c4 40 00 call %l1 2008cc0: b0 10 20 00 clr %i0 "block 0x%08x: next block 0x%08x not in heap\n", block, next_block ); return false; 2008cc4: 81 c7 e0 08 ret 2008cc8: 81 e8 00 00 restore 2008ccc: 80 a0 40 16 cmp %g1, %l6 2008cd0: 0a bf ff f6 bcs 2008ca8 <_Heap_Walk+0x36c> 2008cd4: 90 10 00 19 mov %i1, %o0 uintptr_t const block_begin = (uintptr_t) block; uintptr_t const block_size = _Heap_Block_size( block ); bool const prev_used = _Heap_Is_prev_used( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); uintptr_t const next_block_begin = (uintptr_t) next_block; bool const is_not_last_block = block != last_block; 2008cd8: 82 1d c0 15 xor %l7, %l5, %g1 2008cdc: 80 a0 00 01 cmp %g0, %g1 2008ce0: 82 40 20 00 addx %g0, 0, %g1 RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned( uintptr_t value, uintptr_t alignment ) { return (value % alignment) == 0; 2008ce4: 90 10 00 1d mov %i5, %o0 2008ce8: c2 27 bf fc st %g1, [ %fp + -4 ] 2008cec: 7f ff e3 71 call 2001ab0 <.urem> 2008cf0: 92 10 00 14 mov %l4, %o1 ); return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { 2008cf4: 80 a2 20 00 cmp %o0, 0 2008cf8: 02 80 00 05 be 2008d0c <_Heap_Walk+0x3d0> 2008cfc: c2 07 bf fc ld [ %fp + -4 ], %g1 2008d00: 80 88 60 ff btst 0xff, %g1 2008d04: 12 80 00 79 bne 2008ee8 <_Heap_Walk+0x5ac> 2008d08: 90 10 00 19 mov %i1, %o0 ); return false; } if ( block_size < min_block_size && is_not_last_block ) { 2008d0c: 80 a4 c0 1d cmp %l3, %i5 2008d10: 08 80 00 05 bleu 2008d24 <_Heap_Walk+0x3e8> 2008d14: 80 a5 c0 16 cmp %l7, %l6 2008d18: 80 88 60 ff btst 0xff, %g1 2008d1c: 12 80 00 7c bne 2008f0c <_Heap_Walk+0x5d0> <== ALWAYS TAKEN 2008d20: 80 a5 c0 16 cmp %l7, %l6 ); return false; } if ( next_block_begin <= block_begin && is_not_last_block ) { 2008d24: 2a 80 00 06 bcs,a 2008d3c <_Heap_Walk+0x400> 2008d28: c2 05 a0 04 ld [ %l6 + 4 ], %g1 2008d2c: 80 88 60 ff btst 0xff, %g1 2008d30: 12 80 00 82 bne 2008f38 <_Heap_Walk+0x5fc> 2008d34: 90 10 00 19 mov %i1, %o0 block->size_and_flag = size | flag; } RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block ) { return block->size_and_flag & HEAP_PREV_BLOCK_USED; 2008d38: c2 05 a0 04 ld [ %l6 + 4 ], %g1 ); return false; } if ( !_Heap_Is_prev_used( next_block ) ) { 2008d3c: 80 88 60 01 btst 1, %g1 2008d40: 02 80 00 19 be 2008da4 <_Heap_Walk+0x468> 2008d44: b8 0f 20 01 and %i4, 1, %i4 if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; } } else if (prev_used) { 2008d48: 80 a7 20 00 cmp %i4, 0 2008d4c: 22 80 00 0e be,a 2008d84 <_Heap_Walk+0x448> 2008d50: da 05 c0 00 ld [ %l7 ], %o5 (*printer)( 2008d54: 90 10 00 19 mov %i1, %o0 2008d58: 92 10 20 00 clr %o1 2008d5c: 94 10 00 18 mov %i0, %o2 2008d60: 96 10 00 17 mov %l7, %o3 2008d64: 9f c4 40 00 call %l1 2008d68: 98 10 00 1d mov %i5, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008d6c: 80 a4 80 16 cmp %l2, %l6 2008d70: 02 80 00 43 be 2008e7c <_Heap_Walk+0x540> 2008d74: ae 10 00 16 mov %l6, %l7 2008d78: f8 05 a0 04 ld [ %l6 + 4 ], %i4 2008d7c: 10 bf ff c5 b 2008c90 <_Heap_Walk+0x354> 2008d80: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 "block 0x%08x: size %u\n", block, block_size ); } else { (*printer)( 2008d84: 96 10 00 17 mov %l7, %o3 2008d88: 90 10 00 19 mov %i1, %o0 2008d8c: 92 10 20 00 clr %o1 2008d90: 94 10 00 1a mov %i2, %o2 2008d94: 9f c4 40 00 call %l1 2008d98: 98 10 00 1d mov %i5, %o4 block->prev_size ); } block = next_block; } while ( block != first_block ); 2008d9c: 10 bf ff f5 b 2008d70 <_Heap_Walk+0x434> 2008da0: 80 a4 80 16 cmp %l2, %l6 false, "block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n", block, block_size, block->prev, block->prev == first_free_block ? 2008da4: da 05 e0 0c ld [ %l7 + 0xc ], %o5 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008da8: c2 04 20 08 ld [ %l0 + 8 ], %g1 2008dac: 05 00 80 56 sethi %hi(0x2015800), %g2 block = next_block; } while ( block != first_block ); return true; } 2008db0: c8 04 20 0c ld [ %l0 + 0xc ], %g4 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008db4: 80 a0 40 0d cmp %g1, %o5 2008db8: 02 80 00 05 be 2008dcc <_Heap_Walk+0x490> 2008dbc: 86 10 a3 b8 or %g2, 0x3b8, %g3 block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008dc0: 80 a4 00 0d cmp %l0, %o5 2008dc4: 02 80 00 3e be 2008ebc <_Heap_Walk+0x580> 2008dc8: 86 16 e3 80 or %i3, 0x380, %g3 block->next, block->next == last_free_block ? 2008dcc: c2 05 e0 08 ld [ %l7 + 8 ], %g1 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008dd0: 19 00 80 56 sethi %hi(0x2015800), %o4 2008dd4: 80 a1 00 01 cmp %g4, %g1 2008dd8: 02 80 00 05 be 2008dec <_Heap_Walk+0x4b0> 2008ddc: 84 13 23 d8 or %o4, 0x3d8, %g2 " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008de0: 80 a4 00 01 cmp %l0, %g1 2008de4: 02 80 00 33 be 2008eb0 <_Heap_Walk+0x574> 2008de8: 84 16 e3 80 or %i3, 0x380, %g2 Heap_Block *const last_free_block = _Heap_Free_list_last( heap ); bool const prev_used = _Heap_Is_prev_used( block ); uintptr_t const block_size = _Heap_Block_size( block ); Heap_Block *const next_block = _Heap_Block_at( block, block_size ); (*printer)( 2008dec: c6 23 a0 5c st %g3, [ %sp + 0x5c ] 2008df0: c2 23 a0 60 st %g1, [ %sp + 0x60 ] 2008df4: c4 23 a0 64 st %g2, [ %sp + 0x64 ] 2008df8: 90 10 00 19 mov %i1, %o0 2008dfc: 92 10 20 00 clr %o1 2008e00: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008e04: 96 10 00 17 mov %l7, %o3 2008e08: 94 12 a3 10 or %o2, 0x310, %o2 2008e0c: 9f c4 40 00 call %l1 2008e10: 98 10 00 1d mov %i5, %o4 block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { 2008e14: da 05 80 00 ld [ %l6 ], %o5 2008e18: 80 a7 40 0d cmp %i5, %o5 2008e1c: 12 80 00 1a bne 2008e84 <_Heap_Walk+0x548> 2008e20: 80 a7 20 00 cmp %i4, 0 ); return false; } if ( !prev_used ) { 2008e24: 02 80 00 29 be 2008ec8 <_Heap_Walk+0x58c> 2008e28: 90 10 00 19 mov %i1, %o0 block = next_block; } while ( block != first_block ); return true; } 2008e2c: c2 04 20 08 ld [ %l0 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008e30: 80 a4 00 01 cmp %l0, %g1 2008e34: 02 80 00 0b be 2008e60 <_Heap_Walk+0x524> <== NEVER TAKEN 2008e38: 92 10 20 01 mov 1, %o1 if ( free_block == block ) { 2008e3c: 80 a5 c0 01 cmp %l7, %g1 2008e40: 02 bf ff cc be 2008d70 <_Heap_Walk+0x434> 2008e44: 80 a4 80 16 cmp %l2, %l6 return true; } free_block = free_block->next; 2008e48: c2 00 60 08 ld [ %g1 + 8 ], %g1 ) { const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *free_block = _Heap_Free_list_first( heap ); while ( free_block != free_list_tail ) { 2008e4c: 80 a4 00 01 cmp %l0, %g1 2008e50: 12 bf ff fc bne 2008e40 <_Heap_Walk+0x504> 2008e54: 80 a5 c0 01 cmp %l7, %g1 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008e58: 90 10 00 19 mov %i1, %o0 2008e5c: 92 10 20 01 mov 1, %o1 2008e60: 96 10 00 17 mov %l7, %o3 2008e64: 15 00 80 57 sethi %hi(0x2015c00), %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008e68: b0 10 20 00 clr %i0 return false; } if ( !_Heap_Walk_is_in_free_list( heap, block ) ) { (*printer)( 2008e6c: 9f c4 40 00 call %l1 2008e70: 94 12 a3 f8 or %o2, 0x3f8, %o2 2008e74: 81 c7 e0 08 ret 2008e78: 81 e8 00 00 restore block = next_block; } while ( block != first_block ); return true; } 2008e7c: 81 c7 e0 08 ret 2008e80: 91 e8 20 01 restore %g0, 1, %o0 " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") ); if ( block_size != next_block->prev_size ) { (*printer)( 2008e84: ec 23 a0 5c st %l6, [ %sp + 0x5c ] 2008e88: 90 10 00 19 mov %i1, %o0 2008e8c: 92 10 20 01 mov 1, %o1 2008e90: 96 10 00 17 mov %l7, %o3 2008e94: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008e98: 98 10 00 1d mov %i5, %o4 2008e9c: 94 12 a3 48 or %o2, 0x348, %o2 2008ea0: 9f c4 40 00 call %l1 2008ea4: b0 10 20 00 clr %i0 2008ea8: 81 c7 e0 08 ret 2008eac: 81 e8 00 00 restore " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), block->next, block->next == last_free_block ? " (= last free)" : (block->next == free_list_tail ? " (= tail)" : "") 2008eb0: 09 00 80 56 sethi %hi(0x2015800), %g4 2008eb4: 10 bf ff ce b 2008dec <_Heap_Walk+0x4b0> 2008eb8: 84 11 23 e8 or %g4, 0x3e8, %g2 ! 2015be8 <_Status_Object_name_errors_to_status+0x68> block, block_size, block->prev, block->prev == first_free_block ? " (= first free)" : (block->prev == free_list_head ? " (= head)" : ""), 2008ebc: 19 00 80 56 sethi %hi(0x2015800), %o4 2008ec0: 10 bf ff c3 b 2008dcc <_Heap_Walk+0x490> 2008ec4: 86 13 23 c8 or %o4, 0x3c8, %g3 ! 2015bc8 <_Status_Object_name_errors_to_status+0x48> return false; } if ( !prev_used ) { (*printer)( 2008ec8: 92 10 20 01 mov 1, %o1 2008ecc: 96 10 00 17 mov %l7, %o3 2008ed0: 15 00 80 57 sethi %hi(0x2015c00), %o2 return false; } if ( !_Heap_Is_prev_used( next_block ) ) { if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) { return false; 2008ed4: b0 10 20 00 clr %i0 return false; } if ( !prev_used ) { (*printer)( 2008ed8: 9f c4 40 00 call %l1 2008edc: 94 12 a3 88 or %o2, 0x388, %o2 2008ee0: 81 c7 e0 08 ret 2008ee4: 81 e8 00 00 restore return false; } if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) { (*printer)( 2008ee8: 92 10 20 01 mov 1, %o1 2008eec: 96 10 00 17 mov %l7, %o3 2008ef0: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008ef4: 98 10 00 1d mov %i5, %o4 2008ef8: 94 12 a2 78 or %o2, 0x278, %o2 2008efc: 9f c4 40 00 call %l1 2008f00: b0 10 20 00 clr %i0 "block 0x%08x: block size %u not page aligned\n", block, block_size ); return false; 2008f04: 81 c7 e0 08 ret 2008f08: 81 e8 00 00 restore } if ( block_size < min_block_size && is_not_last_block ) { (*printer)( 2008f0c: 90 10 00 19 mov %i1, %o0 2008f10: 92 10 20 01 mov 1, %o1 2008f14: 96 10 00 17 mov %l7, %o3 2008f18: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008f1c: 98 10 00 1d mov %i5, %o4 2008f20: 94 12 a2 a8 or %o2, 0x2a8, %o2 2008f24: 9a 10 00 13 mov %l3, %o5 2008f28: 9f c4 40 00 call %l1 2008f2c: b0 10 20 00 clr %i0 block, block_size, min_block_size ); return false; 2008f30: 81 c7 e0 08 ret 2008f34: 81 e8 00 00 restore } if ( next_block_begin <= block_begin && is_not_last_block ) { (*printer)( 2008f38: 92 10 20 01 mov 1, %o1 2008f3c: 96 10 00 17 mov %l7, %o3 2008f40: 15 00 80 57 sethi %hi(0x2015c00), %o2 2008f44: 98 10 00 16 mov %l6, %o4 2008f48: 94 12 a2 d8 or %o2, 0x2d8, %o2 2008f4c: 9f c4 40 00 call %l1 2008f50: b0 10 20 00 clr %i0 "block 0x%08x: next block 0x%08x is not a successor\n", block, next_block ); return false; 2008f54: 81 c7 e0 08 ret 2008f58: 81 e8 00 00 restore const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap ); const Heap_Block *const first_free_block = _Heap_Free_list_first( heap ); const Heap_Block *prev_block = free_list_tail; const Heap_Block *free_block = first_free_block; while ( free_block != free_list_tail ) { 2008f5c: 10 bf ff 47 b 2008c78 <_Heap_Walk+0x33c> 2008f60: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 =============================================================================== 02006e20 <_IO_Initialize_all_drivers>: * * Output Parameters: NONE */ void _IO_Initialize_all_drivers( void ) { 2006e20: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2006e24: 23 00 80 57 sethi %hi(0x2015c00), %l1 2006e28: c2 04 63 cc ld [ %l1 + 0x3cc ], %g1 ! 2015fcc <_IO_Number_of_drivers> 2006e2c: 80 a0 60 00 cmp %g1, 0 2006e30: 02 80 00 0c be 2006e60 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN 2006e34: a0 10 20 00 clr %l0 2006e38: a2 14 63 cc or %l1, 0x3cc, %l1 (void) rtems_io_initialize( major, 0, NULL ); 2006e3c: 90 10 00 10 mov %l0, %o0 2006e40: 92 10 20 00 clr %o1 2006e44: 40 00 15 7d call 200c438 2006e48: 94 10 20 00 clr %o2 void _IO_Initialize_all_drivers( void ) { rtems_device_major_number major; for ( major=0 ; major < _IO_Number_of_drivers ; major ++ ) 2006e4c: c2 04 40 00 ld [ %l1 ], %g1 2006e50: a0 04 20 01 inc %l0 2006e54: 80 a0 40 10 cmp %g1, %l0 2006e58: 18 bf ff fa bgu 2006e40 <_IO_Initialize_all_drivers+0x20> 2006e5c: 90 10 00 10 mov %l0, %o0 2006e60: 81 c7 e0 08 ret 2006e64: 81 e8 00 00 restore =============================================================================== 02006d54 <_IO_Manager_initialization>: * workspace. * */ void _IO_Manager_initialization(void) { 2006d54: 9d e3 bf a0 save %sp, -96, %sp uint32_t index; rtems_driver_address_table *driver_table; uint32_t drivers_in_table; uint32_t number_of_drivers; driver_table = Configuration.Device_driver_table; 2006d58: 03 00 80 54 sethi %hi(0x2015000), %g1 2006d5c: 82 10 61 68 or %g1, 0x168, %g1 ! 2015168 drivers_in_table = Configuration.number_of_device_drivers; 2006d60: e2 00 60 30 ld [ %g1 + 0x30 ], %l1 number_of_drivers = Configuration.maximum_drivers; 2006d64: e8 00 60 2c ld [ %g1 + 0x2c ], %l4 /* * If the user claims there are less drivers than are actually in * the table, then let's just go with the table's count. */ if ( number_of_drivers <= drivers_in_table ) 2006d68: 80 a4 40 14 cmp %l1, %l4 2006d6c: 0a 80 00 08 bcs 2006d8c <_IO_Manager_initialization+0x38> 2006d70: e0 00 60 34 ld [ %g1 + 0x34 ], %l0 * If the maximum number of driver is the same as the number in the * table, then we do not have to copy the driver table. They can't * register any dynamically. */ if ( number_of_drivers == drivers_in_table ) { _IO_Driver_address_table = driver_table; 2006d74: 03 00 80 57 sethi %hi(0x2015c00), %g1 2006d78: e0 20 63 d0 st %l0, [ %g1 + 0x3d0 ] ! 2015fd0 <_IO_Driver_address_table> _IO_Number_of_drivers = number_of_drivers; 2006d7c: 03 00 80 57 sethi %hi(0x2015c00), %g1 2006d80: e2 20 63 cc st %l1, [ %g1 + 0x3cc ] ! 2015fcc <_IO_Number_of_drivers> return; 2006d84: 81 c7 e0 08 ret 2006d88: 81 e8 00 00 restore * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) 2006d8c: 83 2d 20 03 sll %l4, 3, %g1 2006d90: a7 2d 20 05 sll %l4, 5, %l3 2006d94: a6 24 c0 01 sub %l3, %g1, %l3 * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) _Workspace_Allocate_or_fatal_error( 2006d98: 40 00 0c e8 call 200a138 <_Workspace_Allocate_or_fatal_error> 2006d9c: 90 10 00 13 mov %l3, %o0 sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2006da0: 03 00 80 57 sethi %hi(0x2015c00), %g1 /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2006da4: 25 00 80 57 sethi %hi(0x2015c00), %l2 _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; 2006da8: e8 20 63 cc st %l4, [ %g1 + 0x3cc ] /* * The application requested extra slots in the driver table, so we * have to allocate a new driver table and copy theirs to it. */ _IO_Driver_address_table = (rtems_driver_address_table *) 2006dac: d0 24 a3 d0 st %o0, [ %l2 + 0x3d0 ] _Workspace_Allocate_or_fatal_error( sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); _IO_Number_of_drivers = number_of_drivers; memset( 2006db0: 92 10 20 00 clr %o1 2006db4: 40 00 21 4e call 200f2ec 2006db8: 94 10 00 13 mov %l3, %o2 _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006dbc: 80 a4 60 00 cmp %l1, 0 2006dc0: 02 bf ff f1 be 2006d84 <_IO_Manager_initialization+0x30> <== NEVER TAKEN 2006dc4: da 04 a3 d0 ld [ %l2 + 0x3d0 ], %o5 2006dc8: 82 10 20 00 clr %g1 2006dcc: 88 10 20 00 clr %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006dd0: c4 04 00 01 ld [ %l0 + %g1 ], %g2 2006dd4: 86 04 00 01 add %l0, %g1, %g3 2006dd8: c4 23 40 01 st %g2, [ %o5 + %g1 ] 2006ddc: d8 00 e0 04 ld [ %g3 + 4 ], %o4 2006de0: 84 03 40 01 add %o5, %g1, %g2 2006de4: d8 20 a0 04 st %o4, [ %g2 + 4 ] 2006de8: d8 00 e0 08 ld [ %g3 + 8 ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006dec: 88 01 20 01 inc %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006df0: d8 20 a0 08 st %o4, [ %g2 + 8 ] 2006df4: d8 00 e0 0c ld [ %g3 + 0xc ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006df8: 82 00 60 18 add %g1, 0x18, %g1 _IO_Driver_address_table[index] = driver_table[index]; 2006dfc: d8 20 a0 0c st %o4, [ %g2 + 0xc ] 2006e00: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006e04: 80 a4 40 04 cmp %l1, %g4 _IO_Driver_address_table[index] = driver_table[index]; 2006e08: d8 20 a0 10 st %o4, [ %g2 + 0x10 ] 2006e0c: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 memset( _IO_Driver_address_table, 0, sizeof( rtems_driver_address_table ) * ( number_of_drivers ) ); for ( index = 0 ; index < drivers_in_table ; index++ ) 2006e10: 18 bf ff f0 bgu 2006dd0 <_IO_Manager_initialization+0x7c> 2006e14: c6 20 a0 14 st %g3, [ %g2 + 0x14 ] 2006e18: 81 c7 e0 08 ret 2006e1c: 81 e8 00 00 restore =============================================================================== 02007b5c <_Objects_Allocate>: */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007b5c: 9d e3 bf a0 save %sp, -96, %sp * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007b60: c2 06 20 18 ld [ %i0 + 0x18 ], %g1 */ Objects_Control *_Objects_Allocate( Objects_Information *information ) { 2007b64: a0 10 00 18 mov %i0, %l0 * If the application is using the optional manager stubs and * still attempts to create the object, the information block * should be all zeroed out because it is in the BSS. So let's * check that code for this manager is even present. */ if ( information->size == 0 ) 2007b68: 80 a0 60 00 cmp %g1, 0 2007b6c: 02 80 00 19 be 2007bd0 <_Objects_Allocate+0x74> <== NEVER TAKEN 2007b70: b0 10 20 00 clr %i0 /* * OK. The manager should be initialized and configured to have objects. * With any luck, it is safe to attempt to allocate an object. */ the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007b74: a2 04 20 20 add %l0, 0x20, %l1 2007b78: 7f ff fd 58 call 20070d8 <_Chain_Get> 2007b7c: 90 10 00 11 mov %l1, %o0 if ( information->auto_extend ) { 2007b80: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1 2007b84: 80 a0 60 00 cmp %g1, 0 2007b88: 02 80 00 12 be 2007bd0 <_Objects_Allocate+0x74> 2007b8c: b0 10 00 08 mov %o0, %i0 /* * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { 2007b90: 80 a2 20 00 cmp %o0, 0 2007b94: 02 80 00 11 be 2007bd8 <_Objects_Allocate+0x7c> 2007b98: 01 00 00 00 nop } if ( the_object ) { uint32_t block; block = (uint32_t) _Objects_Get_index( the_object->id ) - 2007b9c: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 2007ba0: d0 16 20 0a lduh [ %i0 + 0xa ], %o0 _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; 2007ba4: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1 2007ba8: 40 00 29 4d call 20120dc <.udiv> 2007bac: 90 22 00 01 sub %o0, %g1, %o0 information->inactive_per_block[ block ]--; 2007bb0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2007bb4: 91 2a 20 02 sll %o0, 2, %o0 2007bb8: c6 00 40 08 ld [ %g1 + %o0 ], %g3 information->inactive--; 2007bbc: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2 block = (uint32_t) _Objects_Get_index( the_object->id ) - _Objects_Get_index( information->minimum_id ); block /= information->allocation_size; information->inactive_per_block[ block ]--; 2007bc0: 86 00 ff ff add %g3, -1, %g3 2007bc4: c6 20 40 08 st %g3, [ %g1 + %o0 ] information->inactive--; 2007bc8: 82 00 bf ff add %g2, -1, %g1 2007bcc: c2 34 20 2c sth %g1, [ %l0 + 0x2c ] ); } #endif return the_object; } 2007bd0: 81 c7 e0 08 ret 2007bd4: 81 e8 00 00 restore * If the list is empty then we are out of objects and need to * extend information base. */ if ( !the_object ) { _Objects_Extend_information( information ); 2007bd8: 40 00 00 11 call 2007c1c <_Objects_Extend_information> 2007bdc: 90 10 00 10 mov %l0, %o0 the_object = (Objects_Control *) _Chain_Get( &information->Inactive ); 2007be0: 7f ff fd 3e call 20070d8 <_Chain_Get> 2007be4: 90 10 00 11 mov %l1, %o0 } if ( the_object ) { 2007be8: b0 92 20 00 orcc %o0, 0, %i0 2007bec: 32 bf ff ed bne,a 2007ba0 <_Objects_Allocate+0x44> 2007bf0: c2 14 20 0a lduh [ %l0 + 0xa ], %g1 ); } #endif return the_object; } 2007bf4: 81 c7 e0 08 ret 2007bf8: 81 e8 00 00 restore =============================================================================== 02007c1c <_Objects_Extend_information>: */ void _Objects_Extend_information( Objects_Information *information ) { 2007c1c: 9d e3 bf 90 save %sp, -112, %sp minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007c20: e8 06 20 34 ld [ %i0 + 0x34 ], %l4 2007c24: 80 a5 20 00 cmp %l4, 0 2007c28: 02 80 00 a9 be 2007ecc <_Objects_Extend_information+0x2b0> 2007c2c: e4 16 20 0a lduh [ %i0 + 0xa ], %l2 block_count = 0; else { block_count = information->maximum / information->allocation_size; 2007c30: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5 2007c34: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3 2007c38: ab 2d 60 10 sll %l5, 0x10, %l5 2007c3c: 92 10 00 13 mov %l3, %o1 2007c40: 40 00 29 27 call 20120dc <.udiv> 2007c44: 91 35 60 10 srl %l5, 0x10, %o0 2007c48: bb 2a 20 10 sll %o0, 0x10, %i5 2007c4c: bb 37 60 10 srl %i5, 0x10, %i5 for ( ; block < block_count; block++ ) { 2007c50: 80 a7 60 00 cmp %i5, 0 2007c54: 02 80 00 a6 be 2007eec <_Objects_Extend_information+0x2d0><== NEVER TAKEN 2007c58: 90 10 00 13 mov %l3, %o0 if ( information->object_blocks[ block ] == NULL ) { 2007c5c: c2 05 00 00 ld [ %l4 ], %g1 2007c60: 80 a0 60 00 cmp %g1, 0 2007c64: 02 80 00 a6 be 2007efc <_Objects_Extend_information+0x2e0><== NEVER TAKEN 2007c68: a2 10 00 12 mov %l2, %l1 * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007c6c: 10 80 00 06 b 2007c84 <_Objects_Extend_information+0x68> 2007c70: a0 10 20 00 clr %l0 block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { 2007c74: c2 05 00 01 ld [ %l4 + %g1 ], %g1 2007c78: 80 a0 60 00 cmp %g1, 0 2007c7c: 22 80 00 08 be,a 2007c9c <_Objects_Extend_information+0x80> 2007c80: a8 10 20 00 clr %l4 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007c84: a0 04 20 01 inc %l0 if ( information->object_blocks[ block ] == NULL ) { do_extend = false; break; } else index_base += information->allocation_size; 2007c88: a2 04 40 13 add %l1, %l3, %l1 if ( information->object_blocks == NULL ) block_count = 0; else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { 2007c8c: 80 a7 40 10 cmp %i5, %l0 2007c90: 18 bf ff f9 bgu 2007c74 <_Objects_Extend_information+0x58> 2007c94: 83 2c 20 02 sll %l0, 2, %g1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007c98: a8 10 20 01 mov 1, %l4 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007c9c: ab 35 60 10 srl %l5, 0x10, %l5 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007ca0: 03 00 00 3f sethi %hi(0xfc00), %g1 } else index_base += information->allocation_size; } } maximum = (uint32_t) information->maximum + information->allocation_size; 2007ca4: aa 05 40 08 add %l5, %o0, %l5 /* * We need to limit the number of objects to the maximum number * representable in the index portion of the object Id. In the * case of 16-bit Ids, this is only 256 object instances. */ if ( maximum > OBJECTS_ID_FINAL_INDEX ) { 2007ca8: 82 10 63 ff or %g1, 0x3ff, %g1 2007cac: 80 a5 40 01 cmp %l5, %g1 2007cb0: 18 80 00 98 bgu 2007f10 <_Objects_Extend_information+0x2f4> 2007cb4: 01 00 00 00 nop /* * Allocate the name table, and the objects and if it fails either return or * generate a fatal error depending on auto-extending being active. */ block_size = information->allocation_size * information->size; 2007cb8: 40 00 28 cf call 2011ff4 <.umul> 2007cbc: d2 06 20 18 ld [ %i0 + 0x18 ], %o1 if ( information->auto_extend ) { 2007cc0: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1 2007cc4: 80 a0 60 00 cmp %g1, 0 2007cc8: 02 80 00 6d be 2007e7c <_Objects_Extend_information+0x260> 2007ccc: 01 00 00 00 nop new_object_block = _Workspace_Allocate( block_size ); 2007cd0: 40 00 09 0a call 200a0f8 <_Workspace_Allocate> 2007cd4: 01 00 00 00 nop if ( !new_object_block ) 2007cd8: a6 92 20 00 orcc %o0, 0, %l3 2007cdc: 02 80 00 8d be 2007f10 <_Objects_Extend_information+0x2f4> 2007ce0: 01 00 00 00 nop } /* * Do we need to grow the tables? */ if ( do_extend ) { 2007ce4: 80 8d 20 ff btst 0xff, %l4 2007ce8: 22 80 00 42 be,a 2007df0 <_Objects_Extend_information+0x1d4> 2007cec: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 */ /* * Up the block count and maximum */ block_count++; 2007cf0: a8 07 60 01 add %i5, 1, %l4 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007cf4: 91 2d 20 01 sll %l4, 1, %o0 2007cf8: 90 02 00 14 add %o0, %l4, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); 2007cfc: 90 05 40 08 add %l5, %o0, %o0 /* * Allocate the tables and break it up. */ block_size = block_count * (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + 2007d00: 90 02 00 12 add %o0, %l2, %o0 ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); 2007d04: 40 00 08 fd call 200a0f8 <_Workspace_Allocate> 2007d08: 91 2a 20 02 sll %o0, 2, %o0 if ( !object_blocks ) { 2007d0c: ac 92 20 00 orcc %o0, 0, %l6 2007d10: 02 80 00 7e be 2007f08 <_Objects_Extend_information+0x2ec> 2007d14: a9 2d 20 02 sll %l4, 2, %l4 * Take the block count down. Saves all the (block_count - 1) * in the copies. */ block_count--; if ( information->maximum > minimum_index ) { 2007d18: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1 2007d1c: 80 a4 80 01 cmp %l2, %g1 2007d20: ae 05 80 14 add %l6, %l4, %l7 2007d24: 0a 80 00 5a bcs 2007e8c <_Objects_Extend_information+0x270> 2007d28: a8 05 c0 14 add %l7, %l4, %l4 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2007d2c: 80 a4 a0 00 cmp %l2, 0 2007d30: 02 80 00 07 be 2007d4c <_Objects_Extend_information+0x130><== NEVER TAKEN 2007d34: 82 10 20 00 clr %g1 * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2007d38: 85 28 60 02 sll %g1, 2, %g2 } else { /* * Deal with the special case of the 0 to minimum_index */ for ( index = 0; index < minimum_index; index++ ) { 2007d3c: 82 00 60 01 inc %g1 2007d40: 80 a4 80 01 cmp %l2, %g1 2007d44: 18 bf ff fd bgu 2007d38 <_Objects_Extend_information+0x11c><== NEVER TAKEN 2007d48: c0 20 80 14 clr [ %g2 + %l4 ] 2007d4c: bb 2f 60 02 sll %i5, 2, %i5 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007d50: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 } /* * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; 2007d54: c0 25 80 1d clr [ %l6 + %i5 ] inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007d58: 86 04 40 03 add %l1, %g3, %g3 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007d5c: 80 a4 40 03 cmp %l1, %g3 2007d60: 1a 80 00 0a bcc 2007d88 <_Objects_Extend_information+0x16c><== NEVER TAKEN 2007d64: c0 25 c0 1d clr [ %l7 + %i5 ] * information - object information table * * Output parameters: NONE */ void _Objects_Extend_information( 2007d68: 83 2c 60 02 sll %l1, 2, %g1 2007d6c: 84 10 00 11 mov %l1, %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007d70: 82 05 00 01 add %l4, %g1, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; 2007d74: c0 20 40 00 clr [ %g1 ] object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); index++ ) { 2007d78: 84 00 a0 01 inc %g2 * Initialise the new entries in the table. */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; 2007d7c: 80 a0 80 03 cmp %g2, %g3 2007d80: 0a bf ff fd bcs 2007d74 <_Objects_Extend_information+0x158> 2007d84: 82 00 60 04 add %g1, 4, %g1 index < ( information->allocation_size + index_base ); index++ ) { local_table[ index ] = NULL; } _ISR_Disable( level ); 2007d88: 7f ff e9 43 call 2002294 2007d8c: 01 00 00 00 nop uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007d90: c6 06 00 00 ld [ %i0 ], %g3 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2007d94: c4 16 20 04 lduh [ %i0 + 4 ], %g2 local_table[ index ] = NULL; } _ISR_Disable( level ); old_tables = information->object_blocks; 2007d98: e4 06 20 34 ld [ %i0 + 0x34 ], %l2 information->object_blocks = object_blocks; information->inactive_per_block = inactive_per_block; information->local_table = local_table; information->maximum = (Objects_Maximum) maximum; 2007d9c: ea 36 20 10 sth %l5, [ %i0 + 0x10 ] 2007da0: 87 28 e0 18 sll %g3, 0x18, %g3 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007da4: 85 28 a0 1b sll %g2, 0x1b, %g2 _ISR_Disable( level ); old_tables = information->object_blocks; information->object_blocks = object_blocks; 2007da8: ec 26 20 34 st %l6, [ %i0 + 0x34 ] information->inactive_per_block = inactive_per_block; 2007dac: ee 26 20 30 st %l7, [ %i0 + 0x30 ] information->local_table = local_table; 2007db0: e8 26 20 1c st %l4, [ %i0 + 0x1c ] information->maximum = (Objects_Maximum) maximum; information->maximum_id = _Objects_Build_id( 2007db4: ab 2d 60 10 sll %l5, 0x10, %l5 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007db8: 03 00 00 40 sethi %hi(0x10000), %g1 2007dbc: ab 35 60 10 srl %l5, 0x10, %l5 2007dc0: 82 10 c0 01 or %g3, %g1, %g1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007dc4: 82 10 40 02 or %g1, %g2, %g1 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007dc8: 82 10 40 15 or %g1, %l5, %g1 2007dcc: c2 26 20 0c st %g1, [ %i0 + 0xc ] information->the_class, _Objects_Local_node, information->maximum ); _ISR_Enable( level ); 2007dd0: 7f ff e9 35 call 20022a4 2007dd4: 01 00 00 00 nop if ( old_tables ) 2007dd8: 80 a4 a0 00 cmp %l2, 0 2007ddc: 22 80 00 05 be,a 2007df0 <_Objects_Extend_information+0x1d4> 2007de0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 _Workspace_Free( old_tables ); 2007de4: 40 00 08 ce call 200a11c <_Workspace_Free> 2007de8: 90 10 00 12 mov %l2, %o0 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007dec: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007df0: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2 2007df4: d6 06 20 18 ld [ %i0 + 0x18 ], %o3 2007df8: 92 10 00 13 mov %l3, %o1 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007dfc: a1 2c 20 02 sll %l0, 2, %l0 /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007e00: a4 07 bf f4 add %fp, -12, %l2 } /* * Assign the new object block to the object block table. */ information->object_blocks[ block ] = new_object_block; 2007e04: e6 20 40 10 st %l3, [ %g1 + %l0 ] /* * Initialize objects .. add to a local chain first. */ _Chain_Initialize( 2007e08: 90 10 00 12 mov %l2, %o0 2007e0c: 40 00 11 a2 call 200c494 <_Chain_Initialize> 2007e10: 29 00 00 40 sethi %hi(0x10000), %l4 /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2007e14: 10 80 00 0d b 2007e48 <_Objects_Extend_information+0x22c> 2007e18: a6 06 20 20 add %i0, 0x20, %l3 the_object->id = _Objects_Build_id( 2007e1c: c6 16 20 04 lduh [ %i0 + 4 ], %g3 2007e20: 85 28 a0 18 sll %g2, 0x18, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007e24: 87 28 e0 1b sll %g3, 0x1b, %g3 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007e28: 84 10 80 14 or %g2, %l4, %g2 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 2007e2c: 84 10 80 03 or %g2, %g3, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2007e30: 84 10 80 11 or %g2, %l1, %g2 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2007e34: 90 10 00 13 mov %l3, %o0 2007e38: 92 10 00 01 mov %g1, %o1 index++; 2007e3c: a2 04 60 01 inc %l1 information->the_class, _Objects_Local_node, index ); _Chain_Append( &information->Inactive, &the_object->Node ); 2007e40: 7f ff fc 90 call 2007080 <_Chain_Append> 2007e44: c4 20 60 08 st %g2, [ %g1 + 8 ] /* * Move from the local chain, initialise, then append to the inactive chain */ index = index_base; while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) { 2007e48: 7f ff fc a4 call 20070d8 <_Chain_Get> 2007e4c: 90 10 00 12 mov %l2, %o0 2007e50: 82 92 20 00 orcc %o0, 0, %g1 2007e54: 32 bf ff f2 bne,a 2007e1c <_Objects_Extend_information+0x200> 2007e58: c4 06 00 00 ld [ %i0 ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2007e5c: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4 2007e60: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2007e64: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 _Chain_Append( &information->Inactive, &the_object->Node ); index++; } information->inactive_per_block[ block ] = information->allocation_size; 2007e68: c8 20 c0 10 st %g4, [ %g3 + %l0 ] information->inactive = (Objects_Maximum)(information->inactive + information->allocation_size); 2007e6c: 82 00 80 04 add %g2, %g4, %g1 index++; } information->inactive_per_block[ block ] = information->allocation_size; information->inactive = 2007e70: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] 2007e74: 81 c7 e0 08 ret 2007e78: 81 e8 00 00 restore if ( information->auto_extend ) { new_object_block = _Workspace_Allocate( block_size ); if ( !new_object_block ) return; } else { new_object_block = _Workspace_Allocate_or_fatal_error( block_size ); 2007e7c: 40 00 08 af call 200a138 <_Workspace_Allocate_or_fatal_error> 2007e80: 01 00 00 00 nop 2007e84: 10 bf ff 98 b 2007ce4 <_Objects_Extend_information+0xc8> 2007e88: a6 10 00 08 mov %o0, %l3 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2007e8c: d2 06 20 34 ld [ %i0 + 0x34 ], %o1 information->object_blocks, block_count * sizeof(void*) ); 2007e90: bb 2f 60 02 sll %i5, 2, %i5 /* * Copy each section of the table over. This has to be performed as * separate parts as size of each block has changed. */ memcpy( object_blocks, 2007e94: 40 00 1c dd call 200f208 2007e98: 94 10 00 1d mov %i5, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, 2007e9c: d2 06 20 30 ld [ %i0 + 0x30 ], %o1 2007ea0: 94 10 00 1d mov %i5, %o2 2007ea4: 40 00 1c d9 call 200f208 2007ea8: 90 10 00 17 mov %l7, %o0 information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2007eac: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2007eb0: d2 06 20 1c ld [ %i0 + 0x1c ], %o1 information->local_table, (information->maximum + minimum_index) * sizeof(Objects_Control *) ); 2007eb4: 94 04 80 0a add %l2, %o2, %o2 information->object_blocks, block_count * sizeof(void*) ); memcpy( inactive_per_block, information->inactive_per_block, block_count * sizeof(uint32_t) ); memcpy( local_table, 2007eb8: 90 10 00 14 mov %l4, %o0 2007ebc: 40 00 1c d3 call 200f208 2007ec0: 95 2a a0 02 sll %o2, 2, %o2 */ object_blocks[block_count] = NULL; inactive_per_block[block_count] = 0; for ( index=index_base ; index < ( information->allocation_size + index_base ); 2007ec4: 10 bf ff a4 b 2007d54 <_Objects_Extend_information+0x138> 2007ec8: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) 2007ecc: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5 2007ed0: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007ed4: a2 10 00 12 mov %l2, %l1 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007ed8: a8 10 20 01 mov 1, %l4 minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007edc: a0 10 20 00 clr %l0 /* if ( information->maximum < minimum_index ) */ if ( information->object_blocks == NULL ) block_count = 0; 2007ee0: ba 10 20 00 clr %i5 2007ee4: 10 bf ff 6e b 2007c9c <_Objects_Extend_information+0x80> 2007ee8: ab 2d 60 10 sll %l5, 0x10, %l5 /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); 2007eec: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED /* * Search for a free block of indexes. If we do NOT need to allocate or * extend the block table, then we will change do_extend. */ do_extend = true; 2007ef0: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007ef4: 10 bf ff 6a b 2007c9c <_Objects_Extend_information+0x80> <== NOT EXECUTED 2007ef8: a0 10 20 00 clr %l0 <== NOT EXECUTED else { block_count = information->maximum / information->allocation_size; for ( ; block < block_count; block++ ) { if ( information->object_blocks[ block ] == NULL ) { do_extend = false; 2007efc: a8 10 20 00 clr %l4 <== NOT EXECUTED * extend the block table, then we will change do_extend. */ do_extend = true; minimum_index = _Objects_Get_index( information->minimum_id ); index_base = minimum_index; block = 0; 2007f00: 10 bf ff 67 b 2007c9c <_Objects_Extend_information+0x80> <== NOT EXECUTED 2007f04: a0 10 20 00 clr %l0 <== NOT EXECUTED (sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) + ((maximum + minimum_index) * sizeof(Objects_Control *)); object_blocks = (void**) _Workspace_Allocate( block_size ); if ( !object_blocks ) { _Workspace_Free( new_object_block ); 2007f08: 40 00 08 85 call 200a11c <_Workspace_Free> 2007f0c: 90 10 00 13 mov %l3, %o0 return; 2007f10: 81 c7 e0 08 ret 2007f14: 81 e8 00 00 restore =============================================================================== 02007fc4 <_Objects_Get_information>: Objects_Information *_Objects_Get_information( Objects_APIs the_api, uint16_t the_class ) { 2007fc4: 9d e3 bf a0 save %sp, -96, %sp Objects_Information *info; int the_class_api_maximum; if ( !the_class ) 2007fc8: b3 2e 60 10 sll %i1, 0x10, %i1 2007fcc: b3 36 60 10 srl %i1, 0x10, %i1 2007fd0: 80 a6 60 00 cmp %i1, 0 2007fd4: 12 80 00 04 bne 2007fe4 <_Objects_Get_information+0x20> 2007fd8: a0 10 20 00 clr %l0 if ( info->maximum == 0 ) return NULL; #endif return info; } 2007fdc: 81 c7 e0 08 ret 2007fe0: 91 e8 00 10 restore %g0, %l0, %o0 /* * This call implicitly validates the_api so we do not call * _Objects_Is_api_valid above here. */ the_class_api_maximum = _Objects_API_maximum_class( the_api ); 2007fe4: 40 00 12 b9 call 200cac8 <_Objects_API_maximum_class> 2007fe8: 90 10 00 18 mov %i0, %o0 if ( the_class_api_maximum == 0 ) 2007fec: 80 a2 20 00 cmp %o0, 0 2007ff0: 02 bf ff fb be 2007fdc <_Objects_Get_information+0x18> 2007ff4: 80 a2 00 19 cmp %o0, %i1 return NULL; if ( the_class > (uint32_t) the_class_api_maximum ) 2007ff8: 0a bf ff f9 bcs 2007fdc <_Objects_Get_information+0x18> 2007ffc: 03 00 80 57 sethi %hi(0x2015c00), %g1 return NULL; if ( !_Objects_Information_table[ the_api ] ) 2008000: b1 2e 20 02 sll %i0, 2, %i0 2008004: 82 10 60 6c or %g1, 0x6c, %g1 2008008: c2 00 40 18 ld [ %g1 + %i0 ], %g1 200800c: 80 a0 60 00 cmp %g1, 0 2008010: 02 bf ff f3 be 2007fdc <_Objects_Get_information+0x18> <== NEVER TAKEN 2008014: b3 2e 60 02 sll %i1, 2, %i1 return NULL; info = _Objects_Information_table[ the_api ][ the_class ]; 2008018: e0 00 40 19 ld [ %g1 + %i1 ], %l0 if ( !info ) 200801c: 80 a4 20 00 cmp %l0, 0 2008020: 02 bf ff ef be 2007fdc <_Objects_Get_information+0x18> <== NEVER TAKEN 2008024: 01 00 00 00 nop * In a multprocessing configuration, we may access remote objects. * Thus we may have 0 local instances and still have a valid object * pointer. */ #if !defined(RTEMS_MULTIPROCESSING) if ( info->maximum == 0 ) 2008028: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1 return NULL; 200802c: 80 a0 00 01 cmp %g0, %g1 2008030: 82 60 20 00 subx %g0, 0, %g1 2008034: 10 bf ff ea b 2007fdc <_Objects_Get_information+0x18> 2008038: a0 0c 00 01 and %l0, %g1, %l0 =============================================================================== 02009d58 <_Objects_Get_name_as_string>: char *_Objects_Get_name_as_string( Objects_Id id, size_t length, char *name ) { 2009d58: 9d e3 bf 90 save %sp, -112, %sp char lname[5]; Objects_Control *the_object; Objects_Locations location; Objects_Id tmpId; if ( length == 0 ) 2009d5c: 80 a6 60 00 cmp %i1, 0 2009d60: 12 80 00 05 bne 2009d74 <_Objects_Get_name_as_string+0x1c> 2009d64: 80 a6 a0 00 cmp %i2, 0 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* not supported */ #endif case OBJECTS_ERROR: return NULL; 2009d68: b4 10 20 00 clr %i2 _Thread_Enable_dispatch(); return name; } return NULL; /* unreachable path */ } 2009d6c: 81 c7 e0 08 ret 2009d70: 91 e8 00 1a restore %g0, %i2, %o0 Objects_Id tmpId; if ( length == 0 ) return NULL; if ( name == NULL ) 2009d74: 02 bf ff fe be 2009d6c <_Objects_Get_name_as_string+0x14> 2009d78: 80 a6 20 00 cmp %i0, 0 return NULL; tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009d7c: 12 80 00 04 bne 2009d8c <_Objects_Get_name_as_string+0x34> 2009d80: 03 00 80 9b sethi %hi(0x2026c00), %g1 2009d84: c2 00 60 88 ld [ %g1 + 0x88 ], %g1 ! 2026c88 <_Per_CPU_Information+0xc> 2009d88: f0 00 60 08 ld [ %g1 + 8 ], %i0 information = _Objects_Get_information_id( tmpId ); 2009d8c: 7f ff ff b1 call 2009c50 <_Objects_Get_information_id> 2009d90: 90 10 00 18 mov %i0, %o0 if ( !information ) 2009d94: 80 a2 20 00 cmp %o0, 0 2009d98: 22 bf ff f5 be,a 2009d6c <_Objects_Get_name_as_string+0x14> 2009d9c: b4 10 20 00 clr %i2 return NULL; the_object = _Objects_Get( information, tmpId, &location ); 2009da0: 92 10 00 18 mov %i0, %o1 2009da4: 40 00 00 2d call 2009e58 <_Objects_Get> 2009da8: 94 07 bf fc add %fp, -4, %o2 switch ( location ) { 2009dac: c2 07 bf fc ld [ %fp + -4 ], %g1 2009db0: 80 a0 60 00 cmp %g1, 0 2009db4: 32 bf ff ee bne,a 2009d6c <_Objects_Get_name_as_string+0x14> 2009db8: b4 10 20 00 clr %i2 if ( information->is_string ) { s = the_object->name.name_p; } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; 2009dbc: c2 02 20 0c ld [ %o0 + 0xc ], %g1 lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; lname[ 4 ] = '\0'; 2009dc0: c0 2f bf f4 clrb [ %fp + -12 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009dc4: 89 30 60 18 srl %g1, 0x18, %g4 lname[ 1 ] = (u32_name >> 16) & 0xff; 2009dc8: 87 30 60 10 srl %g1, 0x10, %g3 lname[ 2 ] = (u32_name >> 8) & 0xff; 2009dcc: 85 30 60 08 srl %g1, 8, %g2 #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; lname[ 1 ] = (u32_name >> 16) & 0xff; 2009dd0: c6 2f bf f1 stb %g3, [ %fp + -15 ] lname[ 2 ] = (u32_name >> 8) & 0xff; 2009dd4: c4 2f bf f2 stb %g2, [ %fp + -14 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009dd8: c8 2f bf f0 stb %g4, [ %fp + -16 ] lname[ 1 ] = (u32_name >> 16) & 0xff; lname[ 2 ] = (u32_name >> 8) & 0xff; lname[ 3 ] = (u32_name >> 0) & 0xff; 2009ddc: c2 2f bf f3 stb %g1, [ %fp + -13 ] } else #endif { uint32_t u32_name = (uint32_t) the_object->name.name_u32; lname[ 0 ] = (u32_name >> 24) & 0xff; 2009de0: 84 10 00 04 mov %g4, %g2 s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009de4: b2 86 7f ff addcc %i1, -1, %i1 2009de8: 02 80 00 19 be 2009e4c <_Objects_Get_name_as_string+0xf4> <== NEVER TAKEN 2009dec: 86 10 00 1a mov %i2, %g3 2009df0: 80 a1 20 00 cmp %g4, 0 2009df4: 02 80 00 16 be 2009e4c <_Objects_Get_name_as_string+0xf4> 2009df8: 19 00 80 78 sethi %hi(0x201e000), %o4 2009dfc: 82 10 20 00 clr %g1 2009e00: 10 80 00 06 b 2009e18 <_Objects_Get_name_as_string+0xc0> 2009e04: 98 13 22 f4 or %o4, 0x2f4, %o4 2009e08: da 49 00 01 ldsb [ %g4 + %g1 ], %o5 2009e0c: 80 a3 60 00 cmp %o5, 0 2009e10: 02 80 00 0f be 2009e4c <_Objects_Get_name_as_string+0xf4> 2009e14: c4 09 00 01 ldub [ %g4 + %g1 ], %g2 *d = (isprint((unsigned char)*s)) ? *s : '*'; 2009e18: da 03 00 00 ld [ %o4 ], %o5 2009e1c: 88 08 a0 ff and %g2, 0xff, %g4 2009e20: 88 03 40 04 add %o5, %g4, %g4 2009e24: da 49 20 01 ldsb [ %g4 + 1 ], %o5 2009e28: 80 8b 60 97 btst 0x97, %o5 2009e2c: 12 80 00 03 bne 2009e38 <_Objects_Get_name_as_string+0xe0> 2009e30: 88 07 bf f0 add %fp, -16, %g4 2009e34: 84 10 20 2a mov 0x2a, %g2 2009e38: c4 28 c0 00 stb %g2, [ %g3 ] s = lname; } d = name; if ( s ) { for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) { 2009e3c: 82 00 60 01 inc %g1 2009e40: 80 a0 40 19 cmp %g1, %i1 2009e44: 0a bf ff f1 bcs 2009e08 <_Objects_Get_name_as_string+0xb0> 2009e48: 86 00 e0 01 inc %g3 *d = (isprint((unsigned char)*s)) ? *s : '*'; } } *d = '\0'; _Thread_Enable_dispatch(); 2009e4c: 40 00 02 69 call 200a7f0 <_Thread_Enable_dispatch> 2009e50: c0 28 c0 00 clrb [ %g3 ] return name; 2009e54: 30 bf ff c6 b,a 2009d6c <_Objects_Get_name_as_string+0x14> =============================================================================== 0201936c <_Objects_Get_no_protection>: /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 201936c: c4 02 20 08 ld [ %o0 + 8 ], %g2 if ( information->maximum >= index ) { 2019370: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1 /* * You can't just extract the index portion or you can get tricked * by a value between 1 and maximum. */ index = id - information->minimum_id + 1; 2019374: 84 22 40 02 sub %o1, %g2, %g2 2019378: 84 00 a0 01 inc %g2 if ( information->maximum >= index ) { 201937c: 80 a0 80 01 cmp %g2, %g1 2019380: 18 80 00 09 bgu 20193a4 <_Objects_Get_no_protection+0x38> 2019384: 85 28 a0 02 sll %g2, 2, %g2 if ( (the_object = information->local_table[ index ]) != NULL ) { 2019388: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 201938c: d0 00 40 02 ld [ %g1 + %g2 ], %o0 2019390: 80 a2 20 00 cmp %o0, 0 2019394: 02 80 00 05 be 20193a8 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN 2019398: 82 10 20 01 mov 1, %g1 *location = OBJECTS_LOCAL; return the_object; 201939c: 81 c3 e0 08 retl 20193a0: c0 22 80 00 clr [ %o2 ] /* * This isn't supported or required yet for Global objects so * if it isn't local, we don't find it. */ *location = OBJECTS_ERROR; 20193a4: 82 10 20 01 mov 1, %g1 return NULL; 20193a8: 90 10 20 00 clr %o0 } 20193ac: 81 c3 e0 08 retl 20193b0: c2 22 80 00 st %g1, [ %o2 ] =============================================================================== 02009864 <_Objects_Id_to_name>: */ Objects_Name_or_id_lookup_errors _Objects_Id_to_name ( Objects_Id id, Objects_Name *name ) { 2009864: 9d e3 bf 98 save %sp, -104, %sp /* * Caller is trusted for name != NULL. */ tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id; 2009868: 80 a6 20 00 cmp %i0, 0 200986c: 12 80 00 06 bne 2009884 <_Objects_Id_to_name+0x20> 2009870: 83 36 20 18 srl %i0, 0x18, %g1 2009874: 03 00 80 77 sethi %hi(0x201dc00), %g1 2009878: c2 00 62 f8 ld [ %g1 + 0x2f8 ], %g1 ! 201def8 <_Per_CPU_Information+0xc> 200987c: f0 00 60 08 ld [ %g1 + 8 ], %i0 2009880: 83 36 20 18 srl %i0, 0x18, %g1 2009884: 82 08 60 07 and %g1, 7, %g1 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2009888: 84 00 7f ff add %g1, -1, %g2 200988c: 80 a0 a0 02 cmp %g2, 2 2009890: 18 80 00 17 bgu 20098ec <_Objects_Id_to_name+0x88> 2009894: a0 10 20 03 mov 3, %l0 the_api = _Objects_Get_API( tmpId ); if ( !_Objects_Is_api_valid( the_api ) ) return OBJECTS_INVALID_ID; if ( !_Objects_Information_table[ the_api ] ) 2009898: 83 28 60 02 sll %g1, 2, %g1 200989c: 05 00 80 76 sethi %hi(0x201d800), %g2 20098a0: 84 10 a3 ec or %g2, 0x3ec, %g2 ! 201dbec <_Objects_Information_table> 20098a4: c2 00 80 01 ld [ %g2 + %g1 ], %g1 20098a8: 80 a0 60 00 cmp %g1, 0 20098ac: 02 80 00 10 be 20098ec <_Objects_Id_to_name+0x88> 20098b0: 85 36 20 1b srl %i0, 0x1b, %g2 return OBJECTS_INVALID_ID; the_class = _Objects_Get_class( tmpId ); information = _Objects_Information_table[ the_api ][ the_class ]; 20098b4: 85 28 a0 02 sll %g2, 2, %g2 20098b8: d0 00 40 02 ld [ %g1 + %g2 ], %o0 if ( !information ) 20098bc: 80 a2 20 00 cmp %o0, 0 20098c0: 02 80 00 0b be 20098ec <_Objects_Id_to_name+0x88> <== NEVER TAKEN 20098c4: 92 10 00 18 mov %i0, %o1 #if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES) if ( information->is_string ) return OBJECTS_INVALID_ID; #endif the_object = _Objects_Get( information, tmpId, &ignored_location ); 20098c8: 7f ff ff ca call 20097f0 <_Objects_Get> 20098cc: 94 07 bf fc add %fp, -4, %o2 if ( !the_object ) 20098d0: 80 a2 20 00 cmp %o0, 0 20098d4: 02 80 00 06 be 20098ec <_Objects_Id_to_name+0x88> 20098d8: 01 00 00 00 nop return OBJECTS_INVALID_ID; *name = the_object->name; 20098dc: c2 02 20 0c ld [ %o0 + 0xc ], %g1 _Thread_Enable_dispatch(); return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; 20098e0: a0 10 20 00 clr %l0 the_object = _Objects_Get( information, tmpId, &ignored_location ); if ( !the_object ) return OBJECTS_INVALID_ID; *name = the_object->name; _Thread_Enable_dispatch(); 20098e4: 40 00 02 79 call 200a2c8 <_Thread_Enable_dispatch> 20098e8: c2 26 40 00 st %g1, [ %i1 ] return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL; } 20098ec: 81 c7 e0 08 ret 20098f0: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02008124 <_Objects_Initialize_information>: , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2008124: 9d e3 bf a0 save %sp, -96, %sp information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2008128: 05 00 80 57 sethi %hi(0x2015c00), %g2 200812c: 83 2e 60 02 sll %i1, 2, %g1 2008130: 84 10 a0 6c or %g2, 0x6c, %g2 2008134: c2 00 80 01 ld [ %g2 + %g1 ], %g1 #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; 2008138: f4 36 20 04 sth %i2, [ %i0 + 4 ] uint32_t maximum_per_allocation; #if defined(RTEMS_MULTIPROCESSING) uint32_t index; #endif information->the_api = the_api; 200813c: f2 26 00 00 st %i1, [ %i0 ] information->the_class = the_class; information->size = size; 2008140: 85 2f 20 10 sll %i4, 0x10, %g2 information->local_table = 0; 2008144: c0 26 20 1c clr [ %i0 + 0x1c ] uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2008148: 85 30 a0 10 srl %g2, 0x10, %g2 information->local_table = 0; information->inactive_per_block = 0; 200814c: c0 26 20 30 clr [ %i0 + 0x30 ] uint32_t index; #endif information->the_api = the_api; information->the_class = the_class; information->size = size; 2008150: c4 26 20 18 st %g2, [ %i0 + 0x18 ] information->local_table = 0; information->inactive_per_block = 0; information->object_blocks = 0; 2008154: c0 26 20 34 clr [ %i0 + 0x34 ] information->inactive = 0; 2008158: c0 36 20 2c clrh [ %i0 + 0x2c ] /* * Set the maximum value to 0. It will be updated when objects are * added to the inactive set from _Objects_Extend_information() */ information->maximum = 0; 200815c: c0 36 20 10 clrh [ %i0 + 0x10 ] , bool supports_global, Objects_Thread_queue_Extract_callout extract #endif ) { 2008160: c6 07 a0 5c ld [ %fp + 0x5c ], %g3 information->maximum = 0; /* * Register this Object Class in the Object Information Table. */ _Objects_Information_table[ the_api ][ the_class ] = information; 2008164: b5 2e a0 10 sll %i2, 0x10, %i2 2008168: b5 36 a0 10 srl %i2, 0x10, %i2 200816c: 85 2e a0 02 sll %i2, 2, %g2 2008170: f0 20 40 02 st %i0, [ %g1 + %g2 ] /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; 2008174: 83 36 e0 1f srl %i3, 0x1f, %g1 _Objects_Information_table[ the_api ][ the_class ] = information; /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = 2008178: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ] maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 200817c: 80 a0 60 00 cmp %g1, 0 /* * Are we operating in limited or unlimited (e.g. auto-extend) mode. */ information->auto_extend = (maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false; maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS; 2008180: 03 20 00 00 sethi %hi(0x80000000), %g1 /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { 2008184: 02 80 00 05 be 2008198 <_Objects_Initialize_information+0x74> 2008188: b6 2e c0 01 andn %i3, %g1, %i3 200818c: 80 a6 e0 00 cmp %i3, 0 2008190: 02 80 00 27 be 200822c <_Objects_Initialize_information+0x108> 2008194: 90 10 20 00 clr %o0 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 2008198: 05 00 00 40 sethi %hi(0x10000), %g2 information->local_table = &null_local_table; /* * Calculate minimum and maximum Id's */ minimum_index = (maximum_per_allocation == 0) ? 0 : 1; 200819c: 80 a0 00 1b cmp %g0, %i3 20081a0: b3 2e 60 18 sll %i1, 0x18, %i1 20081a4: 82 40 20 00 addx %g0, 0, %g1 20081a8: b2 16 40 02 or %i1, %g2, %i1 (( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) | 20081ac: b5 2e a0 1b sll %i2, 0x1b, %i2 information->allocation_size = maximum_per_allocation; /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 20081b0: 05 00 80 56 sethi %hi(0x2015800), %g2 20081b4: b4 16 40 1a or %i1, %i2, %i2 20081b8: 84 10 a1 b4 or %g2, 0x1b4, %g2 uint32_t the_class, uint32_t node, uint32_t index ) { return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) | 20081bc: b4 16 80 01 or %i2, %g1, %i2 } /* * The allocation unit is the maximum value */ information->allocation_size = maximum_per_allocation; 20081c0: f6 36 20 14 sth %i3, [ %i0 + 0x14 ] /* * Provide a null local table entry for the case of any empty table. */ information->local_table = &null_local_table; 20081c4: c4 26 20 1c st %g2, [ %i0 + 0x1c ] /* * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) 20081c8: 80 88 e0 03 btst 3, %g3 20081cc: 12 80 00 0c bne 20081fc <_Objects_Initialize_information+0xd8><== NEVER TAKEN 20081d0: f4 26 20 08 st %i2, [ %i0 + 8 ] */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 20081d4: 84 06 20 24 add %i0, 0x24, %g2 name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; _Chain_Initialize_empty( &information->Inactive ); 20081d8: 82 06 20 20 add %i0, 0x20, %g1 if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 20081dc: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 20081e0: c4 26 20 20 st %g2, [ %i0 + 0x20 ] the_chain->permanent_null = NULL; 20081e4: c0 26 20 24 clr [ %i0 + 0x24 ] _Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 20081e8: 80 a6 e0 00 cmp %i3, 0 20081ec: 12 80 00 0e bne 2008224 <_Objects_Initialize_information+0x100> 20081f0: c2 26 20 28 st %g1, [ %i0 + 0x28 ] 20081f4: 81 c7 e0 08 ret 20081f8: 81 e8 00 00 restore * Calculate the maximum name length */ name_length = maximum_name_length; if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & 20081fc: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2008200: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED 2008204: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; _Chain_Initialize_empty( &information->Inactive ); 2008208: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) ) name_length = (name_length + OBJECTS_NAME_ALIGNMENT) & ~(OBJECTS_NAME_ALIGNMENT-1); information->name_length = name_length; 200820c: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2008210: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED the_chain->permanent_null = NULL; 2008214: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED _Chain_Initialize_empty( &information->Inactive ); /* * Initialize objects .. if there are any */ if ( maximum_per_allocation ) { 2008218: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 200821c: 02 bf ff f6 be 20081f4 <_Objects_Initialize_information+0xd0><== NOT EXECUTED 2008220: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED /* * Always have the maximum size available so the current performance * figures are create are met. If the user moves past the maximum * number then a performance hit is taken. */ _Objects_Extend_information( information ); 2008224: 7f ff fe 7e call 2007c1c <_Objects_Extend_information> 2008228: 81 e8 00 00 restore /* * Unlimited and maximum of zero is illogical. */ if ( information->auto_extend && maximum_per_allocation == 0) { _Internal_error_Occurred( 200822c: 92 10 20 01 mov 1, %o1 2008230: 7f ff fe 1e call 2007aa8 <_Internal_error_Occurred> 2008234: 94 10 20 13 mov 0x13, %o2 =============================================================================== 020082f4 <_Objects_Shrink_information>: */ void _Objects_Shrink_information( Objects_Information *information ) { 20082f4: 9d e3 bf a0 save %sp, -96, %sp /* * Search the list to find block or chunk with all objects inactive. */ index_base = _Objects_Get_index( information->minimum_id ); 20082f8: e0 16 20 0a lduh [ %i0 + 0xa ], %l0 block_count = (information->maximum - index_base) / 20082fc: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1 2008300: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0 2008304: 92 10 00 11 mov %l1, %o1 2008308: 40 00 27 75 call 20120dc <.udiv> 200830c: 90 22 00 10 sub %o0, %l0, %o0 information->allocation_size; for ( block = 0; block < block_count; block++ ) { 2008310: 80 a2 20 00 cmp %o0, 0 2008314: 02 80 00 34 be 20083e4 <_Objects_Shrink_information+0xf0> <== NEVER TAKEN 2008318: 01 00 00 00 nop if ( information->inactive_per_block[ block ] == 200831c: c8 06 20 30 ld [ %i0 + 0x30 ], %g4 2008320: c2 01 00 00 ld [ %g4 ], %g1 2008324: 80 a4 40 01 cmp %l1, %g1 2008328: 02 80 00 0f be 2008364 <_Objects_Shrink_information+0x70> <== NEVER TAKEN 200832c: 82 10 20 00 clr %g1 2008330: 10 80 00 07 b 200834c <_Objects_Shrink_information+0x58> 2008334: a4 10 20 04 mov 4, %l2 information->inactive -= information->allocation_size; return; } index_base += information->allocation_size; 2008338: 86 04 a0 04 add %l2, 4, %g3 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { if ( information->inactive_per_block[ block ] == 200833c: 80 a4 40 02 cmp %l1, %g2 2008340: 02 80 00 0a be 2008368 <_Objects_Shrink_information+0x74> 2008344: a0 04 00 11 add %l0, %l1, %l0 2008348: a4 10 00 03 mov %g3, %l2 index_base = _Objects_Get_index( information->minimum_id ); block_count = (information->maximum - index_base) / information->allocation_size; for ( block = 0; block < block_count; block++ ) { 200834c: 82 00 60 01 inc %g1 2008350: 80 a2 00 01 cmp %o0, %g1 2008354: 38 bf ff f9 bgu,a 2008338 <_Objects_Shrink_information+0x44> 2008358: c4 01 00 12 ld [ %g4 + %l2 ], %g2 200835c: 81 c7 e0 08 ret 2008360: 81 e8 00 00 restore if ( information->inactive_per_block[ block ] == 2008364: a4 10 20 00 clr %l2 <== NOT EXECUTED information->allocation_size ) { /* * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; 2008368: 10 80 00 06 b 2008380 <_Objects_Shrink_information+0x8c> 200836c: d0 06 20 20 ld [ %i0 + 0x20 ], %o0 if ((index >= index_base) && (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); } } while ( the_object ); 2008370: 80 a4 60 00 cmp %l1, 0 2008374: 22 80 00 12 be,a 20083bc <_Objects_Shrink_information+0xc8> 2008378: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 index = _Objects_Get_index( the_object->id ); /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; 200837c: 90 10 00 11 mov %l1, %o0 * Assume the Inactive chain is never empty at this point */ the_object = (Objects_Control *) information->Inactive.first; do { index = _Objects_Get_index( the_object->id ); 2008380: c2 12 20 0a lduh [ %o0 + 0xa ], %g1 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008384: 80 a0 40 10 cmp %g1, %l0 2008388: 0a bf ff fa bcs 2008370 <_Objects_Shrink_information+0x7c> 200838c: e2 02 00 00 ld [ %o0 ], %l1 (index < (index_base + information->allocation_size))) { 2008390: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2 2008394: 84 04 00 02 add %l0, %g2, %g2 /* * Get the next node before the node is extracted */ extract_me = the_object; the_object = (Objects_Control *) the_object->Node.next; if ((index >= index_base) && 2008398: 80 a0 40 02 cmp %g1, %g2 200839c: 1a bf ff f6 bcc 2008374 <_Objects_Shrink_information+0x80> 20083a0: 80 a4 60 00 cmp %l1, 0 (index < (index_base + information->allocation_size))) { _Chain_Extract( &extract_me->Node ); 20083a4: 7f ff fb 43 call 20070b0 <_Chain_Extract> 20083a8: 01 00 00 00 nop } } while ( the_object ); 20083ac: 80 a4 60 00 cmp %l1, 0 20083b0: 12 bf ff f4 bne 2008380 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN 20083b4: 90 10 00 11 mov %l1, %o0 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); 20083b8: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED 20083bc: 40 00 07 58 call 200a11c <_Workspace_Free> 20083c0: d0 00 40 12 ld [ %g1 + %l2 ], %o0 information->object_blocks[ block ] = NULL; 20083c4: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 information->inactive_per_block[ block ] = 0; 20083c8: c6 06 20 30 ld [ %i0 + 0x30 ], %g3 information->inactive -= information->allocation_size; 20083cc: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2 /* * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; 20083d0: c0 20 40 12 clr [ %g1 + %l2 ] information->inactive_per_block[ block ] = 0; information->inactive -= information->allocation_size; 20083d4: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1 * Free the memory and reset the structures in the object' information */ _Workspace_Free( information->object_blocks[ block ] ); information->object_blocks[ block ] = NULL; information->inactive_per_block[ block ] = 0; 20083d8: c0 20 c0 12 clr [ %g3 + %l2 ] information->inactive -= information->allocation_size; 20083dc: 82 20 80 01 sub %g2, %g1, %g1 20083e0: c2 36 20 2c sth %g1, [ %i0 + 0x2c ] return; 20083e4: 81 c7 e0 08 ret 20083e8: 81 e8 00 00 restore =============================================================================== 02006a5c <_RTEMS_tasks_Initialize_user_tasks_body>: * * Output parameters: NONE */ void _RTEMS_tasks_Initialize_user_tasks_body( void ) { 2006a5c: 9d e3 bf 98 save %sp, -104, %sp rtems_initialization_tasks_table *user_tasks; /* * Move information into local variables */ user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table; 2006a60: 03 00 80 54 sethi %hi(0x2015000), %g1 2006a64: 82 10 61 30 or %g1, 0x130, %g1 ! 2015130 2006a68: e0 00 60 2c ld [ %g1 + 0x2c ], %l0 maximum = Configuration_RTEMS_API.number_of_initialization_tasks; /* * Verify that we have a set of user tasks to iterate */ if ( !user_tasks ) 2006a6c: 80 a4 20 00 cmp %l0, 0 2006a70: 02 80 00 19 be 2006ad4 <_RTEMS_tasks_Initialize_user_tasks_body+0x78> 2006a74: e4 00 60 28 ld [ %g1 + 0x28 ], %l2 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006a78: 80 a4 a0 00 cmp %l2, 0 2006a7c: 02 80 00 16 be 2006ad4 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN 2006a80: a2 10 20 00 clr %l1 2006a84: a6 07 bf fc add %fp, -4, %l3 return_value = rtems_task_create( 2006a88: d4 04 20 04 ld [ %l0 + 4 ], %o2 2006a8c: d0 04 00 00 ld [ %l0 ], %o0 2006a90: d2 04 20 08 ld [ %l0 + 8 ], %o1 2006a94: d6 04 20 14 ld [ %l0 + 0x14 ], %o3 2006a98: d8 04 20 0c ld [ %l0 + 0xc ], %o4 2006a9c: 7f ff ff 6d call 2006850 2006aa0: 9a 10 00 13 mov %l3, %o5 user_tasks[ index ].stack_size, user_tasks[ index ].mode_set, user_tasks[ index ].attribute_set, &id ); if ( !rtems_is_status_successful( return_value ) ) 2006aa4: 94 92 20 00 orcc %o0, 0, %o2 2006aa8: 12 80 00 0d bne 2006adc <_RTEMS_tasks_Initialize_user_tasks_body+0x80> 2006aac: d0 07 bf fc ld [ %fp + -4 ], %o0 _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); return_value = rtems_task_start( 2006ab0: d4 04 20 18 ld [ %l0 + 0x18 ], %o2 2006ab4: 40 00 00 0e call 2006aec 2006ab8: d2 04 20 10 ld [ %l0 + 0x10 ], %o1 id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) 2006abc: 94 92 20 00 orcc %o0, 0, %o2 2006ac0: 12 80 00 07 bne 2006adc <_RTEMS_tasks_Initialize_user_tasks_body+0x80> 2006ac4: a2 04 60 01 inc %l1 return; /* * Now iterate over the initialization tasks and create/start them. */ for ( index=0 ; index < maximum ; index++ ) { 2006ac8: 80 a4 80 11 cmp %l2, %l1 2006acc: 18 bf ff ef bgu 2006a88 <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN 2006ad0: a0 04 20 1c add %l0, 0x1c, %l0 2006ad4: 81 c7 e0 08 ret 2006ad8: 81 e8 00 00 restore id, user_tasks[ index ].entry_point, user_tasks[ index ].argument ); if ( !rtems_is_status_successful( return_value ) ) _Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value ); 2006adc: 90 10 20 01 mov 1, %o0 2006ae0: 40 00 03 f2 call 2007aa8 <_Internal_error_Occurred> 2006ae4: 92 10 20 01 mov 1, %o1 =============================================================================== 0200c1f4 <_RTEMS_tasks_Post_switch_extension>: */ void _RTEMS_tasks_Post_switch_extension( Thread_Control *executing ) { 200c1f4: 9d e3 bf 98 save %sp, -104, %sp RTEMS_API_Control *api; ASR_Information *asr; rtems_signal_set signal_set; Modes_Control prev_mode; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200c1f8: e0 06 21 60 ld [ %i0 + 0x160 ], %l0 if ( !api ) 200c1fc: 80 a4 20 00 cmp %l0, 0 200c200: 02 80 00 1f be 200c27c <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN 200c204: 01 00 00 00 nop * Signal Processing */ asr = &api->Signal; _ISR_Disable( level ); 200c208: 7f ff d8 23 call 2002294 200c20c: 01 00 00 00 nop signal_set = asr->signals_posted; 200c210: e2 04 20 14 ld [ %l0 + 0x14 ], %l1 asr->signals_posted = 0; 200c214: c0 24 20 14 clr [ %l0 + 0x14 ] _ISR_Enable( level ); 200c218: 7f ff d8 23 call 20022a4 200c21c: 01 00 00 00 nop if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ 200c220: 80 a4 60 00 cmp %l1, 0 200c224: 32 80 00 04 bne,a 200c234 <_RTEMS_tasks_Post_switch_extension+0x40> 200c228: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200c22c: 81 c7 e0 08 ret 200c230: 81 e8 00 00 restore return; asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c234: d0 04 20 10 ld [ %l0 + 0x10 ], %o0 if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */ return; asr->nest_level += 1; 200c238: 82 00 60 01 inc %g1 rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c23c: a4 07 bf fc add %fp, -4, %l2 200c240: 27 00 00 3f sethi %hi(0xfc00), %l3 200c244: 94 10 00 12 mov %l2, %o2 200c248: 92 14 e3 ff or %l3, 0x3ff, %o1 200c24c: 40 00 08 1a call 200e2b4 200c250: c2 24 20 1c st %g1, [ %l0 + 0x1c ] (*asr->handler)( signal_set ); 200c254: c2 04 20 0c ld [ %l0 + 0xc ], %g1 200c258: 9f c0 40 00 call %g1 200c25c: 90 10 00 11 mov %l1, %o0 asr->nest_level -= 1; 200c260: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c264: d0 07 bf fc ld [ %fp + -4 ], %o0 asr->nest_level += 1; rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode ); (*asr->handler)( signal_set ); asr->nest_level -= 1; 200c268: 82 00 7f ff add %g1, -1, %g1 rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode ); 200c26c: 92 14 e3 ff or %l3, 0x3ff, %o1 200c270: 94 10 00 12 mov %l2, %o2 200c274: 40 00 08 10 call 200e2b4 200c278: c2 24 20 1c st %g1, [ %l0 + 0x1c ] 200c27c: 81 c7 e0 08 ret 200c280: 81 e8 00 00 restore =============================================================================== 0200c164 <_RTEMS_tasks_Switch_extension>: /* * Per Task Variables */ tvp = executing->task_variables; 200c164: c2 02 21 6c ld [ %o0 + 0x16c ], %g1 while (tvp) { 200c168: 80 a0 60 00 cmp %g1, 0 200c16c: 22 80 00 0b be,a 200c198 <_RTEMS_tasks_Switch_extension+0x34> 200c170: c2 02 61 6c ld [ %o1 + 0x16c ], %g1 tvp->tval = *tvp->ptr; 200c174: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->gval; 200c178: c6 00 60 08 ld [ %g1 + 8 ], %g3 * Per Task Variables */ tvp = executing->task_variables; while (tvp) { tvp->tval = *tvp->ptr; 200c17c: c8 00 80 00 ld [ %g2 ], %g4 200c180: c8 20 60 0c st %g4, [ %g1 + 0xc ] *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; 200c184: c2 00 40 00 ld [ %g1 ], %g1 /* * Per Task Variables */ tvp = executing->task_variables; while (tvp) { 200c188: 80 a0 60 00 cmp %g1, 0 200c18c: 12 bf ff fa bne 200c174 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN 200c190: c6 20 80 00 st %g3, [ %g2 ] tvp->tval = *tvp->ptr; *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; 200c194: c2 02 61 6c ld [ %o1 + 0x16c ], %g1 while (tvp) { 200c198: 80 a0 60 00 cmp %g1, 0 200c19c: 02 80 00 0a be 200c1c4 <_RTEMS_tasks_Switch_extension+0x60> 200c1a0: 01 00 00 00 nop tvp->gval = *tvp->ptr; 200c1a4: c4 00 60 04 ld [ %g1 + 4 ], %g2 *tvp->ptr = tvp->tval; 200c1a8: c6 00 60 0c ld [ %g1 + 0xc ], %g3 tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { tvp->gval = *tvp->ptr; 200c1ac: c8 00 80 00 ld [ %g2 ], %g4 200c1b0: c8 20 60 08 st %g4, [ %g1 + 8 ] *tvp->ptr = tvp->tval; tvp = (rtems_task_variable_t *)tvp->next; 200c1b4: c2 00 40 00 ld [ %g1 ], %g1 *tvp->ptr = tvp->gval; tvp = (rtems_task_variable_t *)tvp->next; } tvp = heir->task_variables; while (tvp) { 200c1b8: 80 a0 60 00 cmp %g1, 0 200c1bc: 12 bf ff fa bne 200c1a4 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN 200c1c0: c6 20 80 00 st %g3, [ %g2 ] 200c1c4: 81 c3 e0 08 retl =============================================================================== 02007d70 <_Rate_monotonic_Timeout>: void _Rate_monotonic_Timeout( Objects_Id id, void *ignored ) { 2007d70: 9d e3 bf 98 save %sp, -104, %sp 2007d74: 11 00 80 78 sethi %hi(0x201e000), %o0 2007d78: 92 10 00 18 mov %i0, %o1 2007d7c: 90 12 22 04 or %o0, 0x204, %o0 2007d80: 40 00 08 41 call 2009e84 <_Objects_Get> 2007d84: 94 07 bf fc add %fp, -4, %o2 /* * When we get here, the Timer is already off the chain so we do not * have to worry about that -- hence no _Watchdog_Remove(). */ the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 2007d88: c2 07 bf fc ld [ %fp + -4 ], %g1 2007d8c: 80 a0 60 00 cmp %g1, 0 2007d90: 12 80 00 16 bne 2007de8 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN 2007d94: a0 10 00 08 mov %o0, %l0 case OBJECTS_LOCAL: the_thread = the_period->owner; 2007d98: d0 02 20 40 ld [ %o0 + 0x40 ], %o0 if ( _States_Is_waiting_for_period( the_thread->current_state ) && 2007d9c: 03 00 00 10 sethi %hi(0x4000), %g1 */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period ( States_Control the_states ) { return (the_states & STATES_WAITING_FOR_PERIOD); 2007da0: c4 02 20 10 ld [ %o0 + 0x10 ], %g2 2007da4: 80 88 80 01 btst %g2, %g1 2007da8: 22 80 00 08 be,a 2007dc8 <_Rate_monotonic_Timeout+0x58> 2007dac: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007db0: c4 02 20 20 ld [ %o0 + 0x20 ], %g2 2007db4: c2 04 20 08 ld [ %l0 + 8 ], %g1 2007db8: 80 a0 80 01 cmp %g2, %g1 2007dbc: 02 80 00 19 be 2007e20 <_Rate_monotonic_Timeout+0xb0> 2007dc0: 13 04 00 ff sethi %hi(0x1003fc00), %o1 _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { 2007dc4: c2 04 20 38 ld [ %l0 + 0x38 ], %g1 2007dc8: 80 a0 60 01 cmp %g1, 1 2007dcc: 02 80 00 09 be 2007df0 <_Rate_monotonic_Timeout+0x80> 2007dd0: 82 10 20 04 mov 4, %g1 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else the_period->state = RATE_MONOTONIC_EXPIRED; 2007dd4: c2 24 20 38 st %g1, [ %l0 + 0x38 ] */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 2007dd8: 03 00 80 78 sethi %hi(0x201e000), %g1 2007ddc: c4 00 63 78 ld [ %g1 + 0x378 ], %g2 ! 201e378 <_Thread_Dispatch_disable_level> 2007de0: 84 00 bf ff add %g2, -1, %g2 2007de4: c4 20 63 78 st %g2, [ %g1 + 0x378 ] 2007de8: 81 c7 e0 08 ret 2007dec: 81 e8 00 00 restore _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007df0: 82 10 20 03 mov 3, %g1 _Rate_monotonic_Initiate_statistics( the_period ); 2007df4: 90 10 00 10 mov %l0, %o0 _Rate_monotonic_Initiate_statistics( the_period ); _Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length ); } else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) { the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING; 2007df8: c2 24 20 38 st %g1, [ %l0 + 0x38 ] _Rate_monotonic_Initiate_statistics( the_period ); 2007dfc: 7f ff fe 4c call 200772c <_Rate_monotonic_Initiate_statistics> 2007e00: 01 00 00 00 nop Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007e04: c2 04 20 3c ld [ %l0 + 0x3c ], %g1 _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007e08: 11 00 80 79 sethi %hi(0x201e400), %o0 Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007e0c: c2 24 20 1c st %g1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007e10: 90 12 20 40 or %o0, 0x40, %o0 2007e14: 40 00 10 0f call 200be50 <_Watchdog_Insert> 2007e18: 92 04 20 10 add %l0, 0x10, %o1 2007e1c: 30 bf ff ef b,a 2007dd8 <_Rate_monotonic_Timeout+0x68> RTEMS_INLINE_ROUTINE void _Thread_Unblock ( Thread_Control *the_thread ) { _Thread_Clear_state( the_thread, STATES_BLOCKED ); 2007e20: 40 00 09 9e call 200a498 <_Thread_Clear_state> 2007e24: 92 12 63 f8 or %o1, 0x3f8, %o1 the_thread = the_period->owner; if ( _States_Is_waiting_for_period( the_thread->current_state ) && the_thread->Wait.id == the_period->Object.id ) { _Thread_Unblock( the_thread ); _Rate_monotonic_Initiate_statistics( the_period ); 2007e28: 10 bf ff f5 b 2007dfc <_Rate_monotonic_Timeout+0x8c> 2007e2c: 90 10 00 10 mov %l0, %o0 =============================================================================== 020075f4 <_TOD_Tickle_ticks>: * * Output parameters: NONE */ void _TOD_Tickle_ticks( void ) { 20075f4: 9d e3 bf 98 save %sp, -104, %sp /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 20075f8: 05 00 80 57 sethi %hi(0x2015c00), %g2 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 20075fc: 03 00 80 54 sethi %hi(0x2015000), %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007600: c6 00 a2 44 ld [ %g2 + 0x244 ], %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 2007604: c2 00 61 74 ld [ %g1 + 0x174 ], %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007608: 86 00 e0 01 inc %g3 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 200760c: 9b 28 60 07 sll %g1, 7, %o5 2007610: 89 28 60 02 sll %g1, 2, %g4 2007614: 88 23 40 04 sub %o5, %g4, %g4 2007618: 82 01 00 01 add %g4, %g1, %g1 200761c: 83 28 60 03 sll %g1, 3, %g1 /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007620: a0 07 bf f8 add %fp, -8, %l0 /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; 2007624: c6 20 a2 44 st %g3, [ %g2 + 0x244 ] /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007628: 92 10 00 10 mov %l0, %o1 { Timestamp_Control tick; uint32_t seconds; /* Convert the tick quantum to a timestamp */ _Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() ); 200762c: c2 27 bf fc st %g1, [ %fp + -4 ] 2007630: c0 27 bf f8 clr [ %fp + -8 ] /* Update the counter of ticks since boot */ _Watchdog_Ticks_since_boot += 1; /* Update the timespec format uptime */ _Timestamp_Add_to( &_TOD_Uptime, &tick ); 2007634: 11 00 80 57 sethi %hi(0x2015c00), %o0 2007638: 40 00 08 db call 20099a4 <_Timespec_Add_to> 200763c: 90 12 21 84 or %o0, 0x184, %o0 ! 2015d84 <_TOD_Uptime> /* we do not care how much the uptime changed */ /* Update the timespec format TOD */ seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick ); 2007640: 92 10 00 10 mov %l0, %o1 2007644: 11 00 80 57 sethi %hi(0x2015c00), %o0 2007648: 40 00 08 d7 call 20099a4 <_Timespec_Add_to> 200764c: 90 12 21 94 or %o0, 0x194, %o0 ! 2015d94 <_TOD_Now> while ( seconds ) { 2007650: a0 92 20 00 orcc %o0, 0, %l0 2007654: 02 80 00 08 be 2007674 <_TOD_Tickle_ticks+0x80> 2007658: 23 00 80 57 sethi %hi(0x2015c00), %l1 */ RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void ) { _Watchdog_Tickle( &_Watchdog_Seconds_chain ); 200765c: a2 14 61 c4 or %l1, 0x1c4, %l1 ! 2015dc4 <_Watchdog_Seconds_chain> 2007660: 40 00 0a 60 call 2009fe0 <_Watchdog_Tickle> 2007664: 90 10 00 11 mov %l1, %o0 2007668: a0 84 3f ff addcc %l0, -1, %l0 200766c: 12 bf ff fd bne 2007660 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN 2007670: 01 00 00 00 nop 2007674: 81 c7 e0 08 ret 2007678: 81 e8 00 00 restore =============================================================================== 020076e8 <_TOD_Validate>: */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20076e8: 9d e3 bf a0 save %sp, -96, %sp uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20076ec: 03 00 80 78 sethi %hi(0x201e000), %g1 */ bool _TOD_Validate( const rtems_time_of_day *the_tod ) { 20076f0: a0 10 00 18 mov %i0, %l0 uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / rtems_configuration_get_microseconds_per_tick(); 20076f4: d2 00 60 54 ld [ %g1 + 0x54 ], %o1 if ((!the_tod) || 20076f8: 80 a4 20 00 cmp %l0, 0 20076fc: 02 80 00 2c be 20077ac <_TOD_Validate+0xc4> <== NEVER TAKEN 2007700: b0 10 20 00 clr %i0 ) { uint32_t days_in_month; uint32_t ticks_per_second; ticks_per_second = TOD_MICROSECONDS_PER_SECOND / 2007704: 11 00 03 d0 sethi %hi(0xf4000), %o0 2007708: 40 00 49 68 call 2019ca8 <.udiv> 200770c: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || 2007710: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2007714: 80 a2 00 01 cmp %o0, %g1 2007718: 08 80 00 25 bleu 20077ac <_TOD_Validate+0xc4> 200771c: 01 00 00 00 nop (the_tod->ticks >= ticks_per_second) || 2007720: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2007724: 80 a0 60 3b cmp %g1, 0x3b 2007728: 18 80 00 21 bgu 20077ac <_TOD_Validate+0xc4> 200772c: 01 00 00 00 nop (the_tod->second >= TOD_SECONDS_PER_MINUTE) || 2007730: c2 04 20 10 ld [ %l0 + 0x10 ], %g1 2007734: 80 a0 60 3b cmp %g1, 0x3b 2007738: 18 80 00 1d bgu 20077ac <_TOD_Validate+0xc4> 200773c: 01 00 00 00 nop (the_tod->minute >= TOD_MINUTES_PER_HOUR) || 2007740: c2 04 20 0c ld [ %l0 + 0xc ], %g1 2007744: 80 a0 60 17 cmp %g1, 0x17 2007748: 18 80 00 19 bgu 20077ac <_TOD_Validate+0xc4> 200774c: 01 00 00 00 nop (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || 2007750: c2 04 20 04 ld [ %l0 + 4 ], %g1 rtems_configuration_get_microseconds_per_tick(); if ((!the_tod) || (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || 2007754: 80 a0 60 00 cmp %g1, 0 2007758: 02 80 00 15 be 20077ac <_TOD_Validate+0xc4> <== NEVER TAKEN 200775c: 80 a0 60 0c cmp %g1, 0xc (the_tod->month == 0) || 2007760: 18 80 00 13 bgu 20077ac <_TOD_Validate+0xc4> 2007764: 01 00 00 00 nop (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 2007768: c4 04 00 00 ld [ %l0 ], %g2 (the_tod->ticks >= ticks_per_second) || (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || 200776c: 80 a0 a7 c3 cmp %g2, 0x7c3 2007770: 08 80 00 0f bleu 20077ac <_TOD_Validate+0xc4> 2007774: 01 00 00 00 nop (the_tod->year < TOD_BASE_YEAR) || (the_tod->day == 0) ) 2007778: c6 04 20 08 ld [ %l0 + 8 ], %g3 (the_tod->second >= TOD_SECONDS_PER_MINUTE) || (the_tod->minute >= TOD_MINUTES_PER_HOUR) || (the_tod->hour >= TOD_HOURS_PER_DAY) || (the_tod->month == 0) || (the_tod->month > TOD_MONTHS_PER_YEAR) || (the_tod->year < TOD_BASE_YEAR) || 200777c: 80 a0 e0 00 cmp %g3, 0 2007780: 02 80 00 0b be 20077ac <_TOD_Validate+0xc4> <== NEVER TAKEN 2007784: 80 88 a0 03 btst 3, %g2 (the_tod->day == 0) ) return false; if ( (the_tod->year % 4) == 0 ) 2007788: 32 80 00 0b bne,a 20077b4 <_TOD_Validate+0xcc> 200778c: 83 28 60 02 sll %g1, 2, %g1 days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; 2007790: 82 00 60 0d add %g1, 0xd, %g1 2007794: 05 00 80 73 sethi %hi(0x201cc00), %g2 2007798: 83 28 60 02 sll %g1, 2, %g1 200779c: 84 10 a0 90 or %g2, 0x90, %g2 20077a0: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20077a4: 80 a0 40 03 cmp %g1, %g3 20077a8: b0 60 3f ff subx %g0, -1, %i0 if ( the_tod->day > days_in_month ) return false; return true; } 20077ac: 81 c7 e0 08 ret 20077b0: 81 e8 00 00 restore return false; if ( (the_tod->year % 4) == 0 ) days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ]; else days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ]; 20077b4: 05 00 80 73 sethi %hi(0x201cc00), %g2 20077b8: 84 10 a0 90 or %g2, 0x90, %g2 ! 201cc90 <_TOD_Days_per_month> 20077bc: c2 00 80 01 ld [ %g2 + %g1 ], %g1 * false - if the the_tod is invalid * * NOTE: This routine only works for leap-years through 2099. */ bool _TOD_Validate( 20077c0: 80 a0 40 03 cmp %g1, %g3 20077c4: b0 60 3f ff subx %g0, -1, %i0 20077c8: 81 c7 e0 08 ret 20077cc: 81 e8 00 00 restore =============================================================================== 020084b8 <_Thread_Change_priority>: void _Thread_Change_priority( Thread_Control *the_thread, Priority_Control new_priority, bool prepend_it ) { 20084b8: 9d e3 bf a0 save %sp, -96, %sp */ /* * Save original state */ original_state = the_thread->current_state; 20084bc: e2 06 20 10 ld [ %i0 + 0x10 ], %l1 /* * Set a transient state for the thread so it is pulled off the Ready chains. * This will prevent it from being scheduled no matter what happens in an * ISR. */ _Thread_Set_transient( the_thread ); 20084c0: 40 00 04 81 call 20096c4 <_Thread_Set_transient> 20084c4: 90 10 00 18 mov %i0, %o0 /* * Do not bother recomputing all the priority related information if * we are not REALLY changing priority. */ if ( the_thread->current_priority != new_priority ) 20084c8: c2 06 20 14 ld [ %i0 + 0x14 ], %g1 20084cc: 80 a0 40 19 cmp %g1, %i1 20084d0: 02 80 00 05 be 20084e4 <_Thread_Change_priority+0x2c> 20084d4: a0 10 00 18 mov %i0, %l0 _Thread_Set_priority( the_thread, new_priority ); 20084d8: 90 10 00 18 mov %i0, %o0 20084dc: 40 00 03 fe call 20094d4 <_Thread_Set_priority> 20084e0: 92 10 00 19 mov %i1, %o1 _ISR_Disable( level ); 20084e4: 7f ff e7 6c call 2002294 20084e8: 01 00 00 00 nop 20084ec: b0 10 00 08 mov %o0, %i0 /* * If the thread has more than STATES_TRANSIENT set, then it is blocked, * If it is blocked on a thread queue, then we need to requeue it. */ state = the_thread->current_state; 20084f0: e4 04 20 10 ld [ %l0 + 0x10 ], %l2 if ( state != STATES_TRANSIENT ) { 20084f4: 80 a4 a0 04 cmp %l2, 4 20084f8: 02 80 00 18 be 2008558 <_Thread_Change_priority+0xa0> 20084fc: 80 8c 60 04 btst 4, %l1 /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) 2008500: 02 80 00 0b be 200852c <_Thread_Change_priority+0x74> <== ALWAYS TAKEN 2008504: 82 0c bf fb and %l2, -5, %g1 the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); _ISR_Enable( level ); 2008508: 7f ff e7 67 call 20022a4 <== NOT EXECUTED 200850c: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED */ RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue ( States_Control the_states ) { return (the_states & STATES_WAITING_ON_THREAD_QUEUE); 2008510: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED 2008514: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <== NOT EXECUTED if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008518: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED 200851c: 32 80 00 0d bne,a 2008550 <_Thread_Change_priority+0x98> <== NOT EXECUTED 2008520: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED 2008524: 81 c7 e0 08 ret 2008528: 81 e8 00 00 restore */ state = the_thread->current_state; if ( state != STATES_TRANSIENT ) { /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 200852c: c2 24 20 10 st %g1, [ %l0 + 0x10 ] _ISR_Enable( level ); 2008530: 7f ff e7 5d call 20022a4 2008534: 90 10 00 18 mov %i0, %o0 2008538: 03 00 00 ef sethi %hi(0x3bc00), %g1 200853c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( state ) ) { 2008540: 80 8c 80 01 btst %l2, %g1 2008544: 02 bf ff f8 be 2008524 <_Thread_Change_priority+0x6c> 2008548: 01 00 00 00 nop _Thread_queue_Requeue( the_thread->Wait.queue, the_thread ); 200854c: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 2008550: 40 00 03 b1 call 2009414 <_Thread_queue_Requeue> 2008554: 93 e8 00 10 restore %g0, %l0, %o1 } return; } /* Only clear the transient state if it wasn't set already */ if ( ! _States_Is_transient( original_state ) ) { 2008558: 12 80 00 14 bne 20085a8 <_Thread_Change_priority+0xf0> <== NEVER TAKEN 200855c: 25 00 80 57 sethi %hi(0x2015c00), %l2 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2008560: c2 04 20 90 ld [ %l0 + 0x90 ], %g1 2008564: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2 2008568: c6 10 40 00 lduh [ %g1 ], %g3 * Interrupts are STILL disabled. * We now know the thread will be in the READY state when we remove * the TRANSIENT state. So we have to place it on the appropriate * Ready Queue with interrupts off. */ the_thread->current_state = _States_Clear( STATES_TRANSIENT, state ); 200856c: c0 24 20 10 clr [ %l0 + 0x10 ] 2008570: 84 10 c0 02 or %g3, %g2, %g2 2008574: c4 30 40 00 sth %g2, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2008578: c4 14 a1 ac lduh [ %l2 + 0x1ac ], %g2 200857c: c2 14 20 94 lduh [ %l0 + 0x94 ], %g1 _Priority_bit_map_Add( &the_thread->Priority_map ); if ( prepend_it ) 2008580: 80 8e a0 ff btst 0xff, %i2 2008584: 82 10 80 01 or %g2, %g1, %g1 2008588: c2 34 a1 ac sth %g1, [ %l2 + 0x1ac ] 200858c: 02 80 00 47 be 20086a8 <_Thread_Change_priority+0x1f0> 2008590: c2 04 20 8c ld [ %l0 + 0x8c ], %g1 ) { Chain_Node *before_node; the_node->previous = after_node; before_node = after_node->next; 2008594: c4 00 40 00 ld [ %g1 ], %g2 Chain_Node *the_node ) { Chain_Node *before_node; the_node->previous = after_node; 2008598: c2 24 20 04 st %g1, [ %l0 + 4 ] before_node = after_node->next; after_node->next = the_node; 200859c: e0 20 40 00 st %l0, [ %g1 ] the_node->next = before_node; 20085a0: c4 24 00 00 st %g2, [ %l0 ] before_node->previous = the_node; 20085a4: e0 20 a0 04 st %l0, [ %g2 + 4 ] _Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node ); else _Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node ); } _ISR_Flash( level ); 20085a8: 7f ff e7 3f call 20022a4 20085ac: 90 10 00 18 mov %i0, %o0 20085b0: 7f ff e7 39 call 2002294 20085b4: 01 00 00 00 nop RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 20085b8: c2 14 a1 ac lduh [ %l2 + 0x1ac ], %g1 */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) _Thread_Ready_chain[ _Priority_bit_map_Get_highest() ].first; 20085bc: 05 00 80 57 sethi %hi(0x2015c00), %g2 20085c0: 83 28 60 10 sll %g1, 0x10, %g1 20085c4: da 00 a0 64 ld [ %g2 + 0x64 ], %o5 20085c8: 85 30 60 10 srl %g1, 0x10, %g2 20085cc: 80 a0 a0 ff cmp %g2, 0xff 20085d0: 08 80 00 26 bleu 2008668 <_Thread_Change_priority+0x1b0> 20085d4: 07 00 80 51 sethi %hi(0x2014400), %g3 20085d8: 83 30 60 18 srl %g1, 0x18, %g1 20085dc: 86 10 e3 80 or %g3, 0x380, %g3 20085e0: c4 08 c0 01 ldub [ %g3 + %g1 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 20085e4: 09 00 80 57 sethi %hi(0x2015c00), %g4 20085e8: 85 28 a0 10 sll %g2, 0x10, %g2 20085ec: 88 11 22 20 or %g4, 0x220, %g4 20085f0: 83 30 a0 0f srl %g2, 0xf, %g1 20085f4: c2 11 00 01 lduh [ %g4 + %g1 ], %g1 20085f8: 83 28 60 10 sll %g1, 0x10, %g1 20085fc: 89 30 60 10 srl %g1, 0x10, %g4 2008600: 80 a1 20 ff cmp %g4, 0xff 2008604: 18 80 00 27 bgu 20086a0 <_Thread_Change_priority+0x1e8> 2008608: 83 30 60 18 srl %g1, 0x18, %g1 200860c: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1 2008610: 82 00 60 08 add %g1, 8, %g1 return (_Priority_Bits_index( major ) << 4) + 2008614: 85 30 a0 0c srl %g2, 0xc, %g2 _Priority_Bits_index( minor ); 2008618: 83 28 60 10 sll %g1, 0x10, %g1 200861c: 83 30 60 10 srl %g1, 0x10, %g1 2008620: 82 00 40 02 add %g1, %g2, %g1 2008624: 85 28 60 02 sll %g1, 2, %g2 2008628: 83 28 60 04 sll %g1, 4, %g1 200862c: 82 20 40 02 sub %g1, %g2, %g1 * ready thread. */ RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void ) { _Thread_Heir = (Thread_Control *) 2008630: c4 03 40 01 ld [ %o5 + %g1 ], %g2 2008634: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008638: 82 10 63 6c or %g1, 0x36c, %g1 ! 2015f6c <_Per_CPU_Information> * is also the heir thread, and false otherwise. */ RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void ) { return ( _Thread_Executing == _Thread_Heir ); 200863c: c6 00 60 0c ld [ %g1 + 0xc ], %g3 * We altered the set of thread priorities. So let's figure out * who is the heir and if we need to switch to them. */ _Thread_Calculate_heir(); if ( !_Thread_Is_executing_also_the_heir() && 2008640: 80 a0 80 03 cmp %g2, %g3 2008644: 02 80 00 07 be 2008660 <_Thread_Change_priority+0x1a8> 2008648: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 200864c: c4 08 e0 74 ldub [ %g3 + 0x74 ], %g2 2008650: 80 a0 a0 00 cmp %g2, 0 2008654: 02 80 00 03 be 2008660 <_Thread_Change_priority+0x1a8> 2008658: 84 10 20 01 mov 1, %g2 _Thread_Executing->is_preemptible ) _Thread_Dispatch_necessary = true; 200865c: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] _ISR_Enable( level ); 2008660: 7f ff e7 11 call 20022a4 2008664: 81 e8 00 00 restore RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2008668: 86 10 e3 80 or %g3, 0x380, %g3 200866c: c4 08 c0 02 ldub [ %g3 + %g2 ], %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2008670: 09 00 80 57 sethi %hi(0x2015c00), %g4 RTEMS_INLINE_ROUTINE Priority_Control _Priority_bit_map_Get_highest( void ) { Priority_bit_map_Control minor; Priority_bit_map_Control major; _Bitfield_Find_first_bit( _Priority_Major_bit_map, major ); 2008674: 84 00 a0 08 add %g2, 8, %g2 _Bitfield_Find_first_bit( _Priority_Bit_map[major], minor ); 2008678: 88 11 22 20 or %g4, 0x220, %g4 200867c: 85 28 a0 10 sll %g2, 0x10, %g2 2008680: 83 30 a0 0f srl %g2, 0xf, %g1 2008684: c2 11 00 01 lduh [ %g4 + %g1 ], %g1 2008688: 83 28 60 10 sll %g1, 0x10, %g1 200868c: 89 30 60 10 srl %g1, 0x10, %g4 2008690: 80 a1 20 ff cmp %g4, 0xff 2008694: 28 bf ff df bleu,a 2008610 <_Thread_Change_priority+0x158> 2008698: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1 200869c: 83 30 60 18 srl %g1, 0x18, %g1 20086a0: 10 bf ff dd b 2008614 <_Thread_Change_priority+0x15c> 20086a4: c2 08 c0 01 ldub [ %g3 + %g1 ], %g1 ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); old_last_node = the_chain->last; 20086a8: c4 00 60 08 ld [ %g1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 20086ac: 86 00 60 04 add %g1, 4, %g3 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 20086b0: c6 24 00 00 st %g3, [ %l0 ] old_last_node = the_chain->last; the_chain->last = the_node; 20086b4: e0 20 60 08 st %l0, [ %g1 + 8 ] old_last_node->next = the_node; 20086b8: e0 20 80 00 st %l0, [ %g2 ] the_node->previous = old_last_node; 20086bc: 10 bf ff bb b 20085a8 <_Thread_Change_priority+0xf0> 20086c0: c4 24 20 04 st %g2, [ %l0 + 4 ] =============================================================================== 020086c4 <_Thread_Clear_state>: void _Thread_Clear_state( Thread_Control *the_thread, States_Control state ) { 20086c4: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 20086c8: 7f ff e6 f3 call 2002294 20086cc: 01 00 00 00 nop 20086d0: a0 10 00 08 mov %o0, %l0 current_state = the_thread->current_state; 20086d4: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 if ( current_state & state ) { 20086d8: 80 8e 40 01 btst %i1, %g1 20086dc: 02 80 00 05 be 20086f0 <_Thread_Clear_state+0x2c> 20086e0: 82 28 40 19 andn %g1, %i1, %g1 current_state = the_thread->current_state = _States_Clear( state, current_state ); if ( _States_Is_ready( current_state ) ) { 20086e4: 80 a0 60 00 cmp %g1, 0 20086e8: 02 80 00 04 be 20086f8 <_Thread_Clear_state+0x34> 20086ec: c2 26 20 10 st %g1, [ %i0 + 0x10 ] the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; } } } _ISR_Enable( level ); 20086f0: 7f ff e6 ed call 20022a4 20086f4: 91 e8 00 10 restore %g0, %l0, %o0 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 20086f8: c2 06 20 90 ld [ %i0 + 0x90 ], %g1 20086fc: c6 16 20 96 lduh [ %i0 + 0x96 ], %g3 2008700: c8 10 40 00 lduh [ %g1 ], %g4 _Priority_Major_bit_map |= the_priority_map->ready_major; 2008704: 05 00 80 57 sethi %hi(0x2015c00), %g2 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 2008708: 86 11 00 03 or %g4, %g3, %g3 200870c: c6 30 40 00 sth %g3, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 2008710: c8 10 a1 ac lduh [ %g2 + 0x1ac ], %g4 2008714: c6 16 20 94 lduh [ %i0 + 0x94 ], %g3 if ( _States_Is_ready( current_state ) ) { _Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 2008718: c2 06 20 8c ld [ %i0 + 0x8c ], %g1 200871c: 86 11 00 03 or %g4, %g3, %g3 2008720: c6 30 a1 ac sth %g3, [ %g2 + 0x1ac ] ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); old_last_node = the_chain->last; 2008724: c4 00 60 08 ld [ %g1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2008728: 86 00 60 04 add %g1, 4, %g3 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 200872c: c6 26 00 00 st %g3, [ %i0 ] old_last_node = the_chain->last; the_chain->last = the_node; 2008730: f0 20 60 08 st %i0, [ %g1 + 8 ] old_last_node->next = the_node; 2008734: f0 20 80 00 st %i0, [ %g2 ] the_node->previous = old_last_node; 2008738: c4 26 20 04 st %g2, [ %i0 + 4 ] _ISR_Flash( level ); 200873c: 7f ff e6 da call 20022a4 2008740: 01 00 00 00 nop 2008744: 7f ff e6 d4 call 2002294 2008748: 01 00 00 00 nop * a context switch. * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 200874c: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008750: 82 10 63 6c or %g1, 0x36c, %g1 ! 2015f6c <_Per_CPU_Information> 2008754: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2008758: c4 06 20 14 ld [ %i0 + 0x14 ], %g2 200875c: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 2008760: 80 a0 80 03 cmp %g2, %g3 2008764: 1a bf ff e3 bcc 20086f0 <_Thread_Clear_state+0x2c> 2008768: 01 00 00 00 nop _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200876c: c6 00 60 0c ld [ %g1 + 0xc ], %g3 * Pseudo-ISR case: * Even if the thread isn't preemptible, if the new heir is * a pseudo-ISR system task, we need to do a context switch. */ if ( the_thread->current_priority < _Thread_Heir->current_priority ) { _Thread_Heir = the_thread; 2008770: f0 20 60 10 st %i0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 2008774: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3 2008778: 80 a0 e0 00 cmp %g3, 0 200877c: 32 80 00 05 bne,a 2008790 <_Thread_Clear_state+0xcc> 2008780: 84 10 20 01 mov 1, %g2 2008784: 80 a0 a0 00 cmp %g2, 0 2008788: 12 bf ff da bne 20086f0 <_Thread_Clear_state+0x2c> <== ALWAYS TAKEN 200878c: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 2008790: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 2008794: 7f ff e6 c4 call 20022a4 2008798: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02008940 <_Thread_Delay_ended>: void _Thread_Delay_ended( Objects_Id id, void *ignored __attribute__((unused)) ) { 2008940: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2008944: 90 10 00 18 mov %i0, %o0 2008948: 40 00 00 7a call 2008b30 <_Thread_Get> 200894c: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 2008950: c2 07 bf fc ld [ %fp + -4 ], %g1 2008954: 80 a0 60 00 cmp %g1, 0 2008958: 12 80 00 08 bne 2008978 <_Thread_Delay_ended+0x38> <== NEVER TAKEN 200895c: 13 04 00 00 sethi %hi(0x10000000), %o1 #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_Clear_state( 2008960: 7f ff ff 59 call 20086c4 <_Thread_Clear_state> 2008964: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 2008968: 03 00 80 57 sethi %hi(0x2015c00), %g1 200896c: c4 00 61 08 ld [ %g1 + 0x108 ], %g2 ! 2015d08 <_Thread_Dispatch_disable_level> 2008970: 84 00 bf ff add %g2, -1, %g2 2008974: c4 20 61 08 st %g2, [ %g1 + 0x108 ] 2008978: 81 c7 e0 08 ret 200897c: 81 e8 00 00 restore =============================================================================== 02008980 <_Thread_Dispatch>: * dispatch thread * no dispatch thread */ void _Thread_Dispatch( void ) { 2008980: 9d e3 bf 90 save %sp, -112, %sp Thread_Control *executing; Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; 2008984: 25 00 80 57 sethi %hi(0x2015c00), %l2 2008988: a4 14 a3 6c or %l2, 0x36c, %l2 ! 2015f6c <_Per_CPU_Information> _ISR_Disable( level ); 200898c: 7f ff e6 42 call 2002294 2008990: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 while ( _Thread_Dispatch_necessary == true ) { 2008994: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1 2008998: 80 a0 60 00 cmp %g1, 0 200899c: 02 80 00 50 be 2008adc <_Thread_Dispatch+0x15c> 20089a0: 2f 00 80 57 sethi %hi(0x2015c00), %l7 heir = _Thread_Heir; 20089a4: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1 _Thread_Dispatch_disable_level = 1; 20089a8: 82 10 20 01 mov 1, %g1 20089ac: c2 25 e1 08 st %g1, [ %l7 + 0x108 ] _Thread_Dispatch_necessary = false; 20089b0: c0 2c a0 18 clrb [ %l2 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 20089b4: 80 a4 00 11 cmp %l0, %l1 20089b8: 02 80 00 49 be 2008adc <_Thread_Dispatch+0x15c> 20089bc: e2 24 a0 0c st %l1, [ %l2 + 0xc ] 20089c0: 27 00 80 57 sethi %hi(0x2015c00), %l3 20089c4: 39 00 80 57 sethi %hi(0x2015c00), %i4 20089c8: a6 14 e1 bc or %l3, 0x1bc, %l3 20089cc: aa 07 bf f8 add %fp, -8, %l5 20089d0: a8 07 bf f0 add %fp, -16, %l4 20089d4: b8 17 21 90 or %i4, 0x190, %i4 #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 20089d8: 35 00 80 57 sethi %hi(0x2015c00), %i2 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); _Timestamp_Subtract( 20089dc: ba 10 00 13 mov %l3, %i5 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 20089e0: 2d 00 80 57 sethi %hi(0x2015c00), %l6 executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { heir = _Thread_Heir; _Thread_Dispatch_disable_level = 1; 20089e4: 10 80 00 38 b 2008ac4 <_Thread_Dispatch+0x144> 20089e8: b6 10 20 01 mov 1, %i3 rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) heir->cpu_time_budget = _Thread_Ticks_per_timeslice; _ISR_Enable( level ); 20089ec: 7f ff e6 2e call 20022a4 20089f0: 01 00 00 00 nop #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ { Timestamp_Control uptime, ran; _TOD_Get_uptime( &uptime ); 20089f4: 40 00 0f 22 call 200c67c <_TOD_Get_uptime> 20089f8: 90 10 00 15 mov %l5, %o0 _Timestamp_Subtract( 20089fc: 90 10 00 1d mov %i5, %o0 2008a00: 92 10 00 15 mov %l5, %o1 2008a04: 40 00 04 01 call 2009a08 <_Timespec_Subtract> 2008a08: 94 10 00 14 mov %l4, %o2 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); 2008a0c: 90 04 20 84 add %l0, 0x84, %o0 2008a10: 40 00 03 e5 call 20099a4 <_Timespec_Add_to> 2008a14: 92 10 00 14 mov %l4, %o1 _Thread_Time_of_last_context_switch = uptime; 2008a18: c4 07 bf f8 ld [ %fp + -8 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008a1c: c2 07 00 00 ld [ %i4 ], %g1 &_Thread_Time_of_last_context_switch, &uptime, &ran ); _Timestamp_Add_to( &executing->cpu_time_used, &ran ); _Thread_Time_of_last_context_switch = uptime; 2008a20: c4 24 c0 00 st %g2, [ %l3 ] 2008a24: c4 07 bf fc ld [ %fp + -4 ], %g2 #endif /* * Switch libc's task specific data. */ if ( _Thread_libc_reent ) { 2008a28: 80 a0 60 00 cmp %g1, 0 2008a2c: 02 80 00 06 be 2008a44 <_Thread_Dispatch+0xc4> <== NEVER TAKEN 2008a30: c4 24 e0 04 st %g2, [ %l3 + 4 ] executing->libc_reent = *_Thread_libc_reent; 2008a34: c4 00 40 00 ld [ %g1 ], %g2 2008a38: c4 24 21 5c st %g2, [ %l0 + 0x15c ] *_Thread_libc_reent = heir->libc_reent; 2008a3c: c4 04 61 5c ld [ %l1 + 0x15c ], %g2 2008a40: c4 20 40 00 st %g2, [ %g1 ] } _User_extensions_Thread_switch( executing, heir ); 2008a44: 90 10 00 10 mov %l0, %o0 2008a48: 40 00 04 b4 call 2009d18 <_User_extensions_Thread_switch> 2008a4c: 92 10 00 11 mov %l1, %o1 if ( executing->fp_context != NULL ) _Context_Save_fp( &executing->fp_context ); #endif #endif _Context_Switch( &executing->Registers, &heir->Registers ); 2008a50: 90 04 20 d0 add %l0, 0xd0, %o0 2008a54: 40 00 06 02 call 200a25c <_CPU_Context_switch> 2008a58: 92 04 60 d0 add %l1, 0xd0, %o1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 2008a5c: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 2008a60: 80 a0 60 00 cmp %g1, 0 2008a64: 02 80 00 0c be 2008a94 <_Thread_Dispatch+0x114> 2008a68: d0 05 a1 8c ld [ %l6 + 0x18c ], %o0 2008a6c: 80 a4 00 08 cmp %l0, %o0 2008a70: 02 80 00 09 be 2008a94 <_Thread_Dispatch+0x114> 2008a74: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 2008a78: 02 80 00 04 be 2008a88 <_Thread_Dispatch+0x108> 2008a7c: 01 00 00 00 nop _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 2008a80: 40 00 05 bd call 200a174 <_CPU_Context_save_fp> 2008a84: 90 02 21 58 add %o0, 0x158, %o0 _Context_Restore_fp( &executing->fp_context ); 2008a88: 40 00 05 d8 call 200a1e8 <_CPU_Context_restore_fp> 2008a8c: 90 04 21 58 add %l0, 0x158, %o0 _Thread_Allocated_fp = executing; 2008a90: e0 25 a1 8c st %l0, [ %l6 + 0x18c ] #endif #endif executing = _Thread_Executing; _ISR_Disable( level ); 2008a94: 7f ff e6 00 call 2002294 2008a98: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 Thread_Control *heir; ISR_Level level; executing = _Thread_Executing; _ISR_Disable( level ); while ( _Thread_Dispatch_necessary == true ) { 2008a9c: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1 2008aa0: 80 a0 60 00 cmp %g1, 0 2008aa4: 02 80 00 0e be 2008adc <_Thread_Dispatch+0x15c> 2008aa8: 01 00 00 00 nop heir = _Thread_Heir; 2008aac: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1 _Thread_Dispatch_disable_level = 1; 2008ab0: f6 25 e1 08 st %i3, [ %l7 + 0x108 ] _Thread_Dispatch_necessary = false; 2008ab4: c0 2c a0 18 clrb [ %l2 + 0x18 ] /* * When the heir and executing are the same, then we are being * requested to do the post switch dispatching. This is normally * done to dispatch signals. */ if ( heir == executing ) 2008ab8: 80 a4 40 10 cmp %l1, %l0 2008abc: 02 80 00 08 be 2008adc <_Thread_Dispatch+0x15c> <== NEVER TAKEN 2008ac0: e2 24 a0 0c st %l1, [ %l2 + 0xc ] */ #if __RTEMS_ADA__ executing->rtems_ada_self = rtems_ada_self; rtems_ada_self = heir->rtems_ada_self; #endif if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE ) 2008ac4: c2 04 60 7c ld [ %l1 + 0x7c ], %g1 2008ac8: 80 a0 60 01 cmp %g1, 1 2008acc: 12 bf ff c8 bne 20089ec <_Thread_Dispatch+0x6c> 2008ad0: c2 06 a0 68 ld [ %i2 + 0x68 ], %g1 heir->cpu_time_budget = _Thread_Ticks_per_timeslice; 2008ad4: 10 bf ff c6 b 20089ec <_Thread_Dispatch+0x6c> 2008ad8: c2 24 60 78 st %g1, [ %l1 + 0x78 ] _ISR_Disable( level ); } post_switch: _Thread_Dispatch_disable_level = 0; 2008adc: c0 25 e1 08 clr [ %l7 + 0x108 ] _ISR_Enable( level ); 2008ae0: 7f ff e5 f1 call 20022a4 2008ae4: 01 00 00 00 nop _API_extensions_Run_postswitch(); 2008ae8: 7f ff f9 1a call 2006f50 <_API_extensions_Run_postswitch> 2008aec: 01 00 00 00 nop } 2008af0: 81 c7 e0 08 ret 2008af4: 81 e8 00 00 restore =============================================================================== 02008b30 <_Thread_Get>: */ Thread_Control *_Thread_Get ( Objects_Id id, Objects_Locations *location ) { 2008b30: 82 10 00 08 mov %o0, %g1 uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { 2008b34: 80 a2 20 00 cmp %o0, 0 2008b38: 02 80 00 1d be 2008bac <_Thread_Get+0x7c> 2008b3c: 94 10 00 09 mov %o1, %o2 */ RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API( Objects_Id id ) { return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS); 2008b40: 85 32 20 18 srl %o0, 0x18, %g2 2008b44: 84 08 a0 07 and %g2, 7, %g2 */ RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid( uint32_t the_api ) { if ( !the_api || the_api > OBJECTS_APIS_LAST ) 2008b48: 86 00 bf ff add %g2, -1, %g3 2008b4c: 80 a0 e0 02 cmp %g3, 2 2008b50: 38 80 00 14 bgu,a 2008ba0 <_Thread_Get+0x70> 2008b54: 82 10 20 01 mov 1, %g1 */ RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class( Objects_Id id ) { return (uint32_t) 2008b58: 89 32 20 1b srl %o0, 0x1b, %g4 *location = OBJECTS_ERROR; goto done; } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ 2008b5c: 80 a1 20 01 cmp %g4, 1 2008b60: 32 80 00 10 bne,a 2008ba0 <_Thread_Get+0x70> 2008b64: 82 10 20 01 mov 1, %g1 *location = OBJECTS_ERROR; goto done; } api_information = _Objects_Information_table[ the_api ]; 2008b68: 85 28 a0 02 sll %g2, 2, %g2 2008b6c: 07 00 80 57 sethi %hi(0x2015c00), %g3 2008b70: 86 10 e0 6c or %g3, 0x6c, %g3 ! 2015c6c <_Objects_Information_table> 2008b74: c4 00 c0 02 ld [ %g3 + %g2 ], %g2 /* * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { 2008b78: 80 a0 a0 00 cmp %g2, 0 2008b7c: 22 80 00 16 be,a 2008bd4 <_Thread_Get+0xa4> <== NEVER TAKEN 2008b80: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED *location = OBJECTS_ERROR; goto done; } #endif information = api_information[ the_class ]; 2008b84: d0 00 a0 04 ld [ %g2 + 4 ], %o0 if ( !information ) { 2008b88: 80 a2 20 00 cmp %o0, 0 2008b8c: 02 80 00 10 be 2008bcc <_Thread_Get+0x9c> 2008b90: 92 10 00 01 mov %g1, %o1 *location = OBJECTS_ERROR; goto done; } tp = (Thread_Control *) _Objects_Get( information, id, location ); 2008b94: 82 13 c0 00 mov %o7, %g1 2008b98: 7f ff fd 46 call 20080b0 <_Objects_Get> 2008b9c: 9e 10 40 00 mov %g1, %o7 { uint32_t the_api; uint32_t the_class; Objects_Information **api_information; Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; 2008ba0: 90 10 20 00 clr %o0 } the_class = _Objects_Get_class( id ); if ( the_class != 1 ) { /* threads are always first class :) */ *location = OBJECTS_ERROR; goto done; 2008ba4: 81 c3 e0 08 retl 2008ba8: c2 22 80 00 st %g1, [ %o2 ] rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 2008bac: 03 00 80 57 sethi %hi(0x2015c00), %g1 2008bb0: c4 00 61 08 ld [ %g1 + 0x108 ], %g2 ! 2015d08 <_Thread_Dispatch_disable_level> 2008bb4: 84 00 a0 01 inc %g2 2008bb8: c4 20 61 08 st %g2, [ %g1 + 0x108 ] Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; tp = _Thread_Executing; 2008bbc: 03 00 80 57 sethi %hi(0x2015c00), %g1 Objects_Information *information; Thread_Control *tp = (Thread_Control *) 0; if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) { _Thread_Disable_dispatch(); *location = OBJECTS_LOCAL; 2008bc0: c0 22 40 00 clr [ %o1 ] tp = _Thread_Executing; goto done; 2008bc4: 81 c3 e0 08 retl 2008bc8: d0 00 63 78 ld [ %g1 + 0x378 ], %o0 #endif information = api_information[ the_class ]; if ( !information ) { *location = OBJECTS_ERROR; goto done; 2008bcc: 81 c3 e0 08 retl 2008bd0: c8 22 80 00 st %g4, [ %o2 ] * There is no way for this to happen if POSIX is enabled. */ #if !defined(RTEMS_POSIX_API) if ( !api_information ) { *location = OBJECTS_ERROR; goto done; 2008bd4: 81 c3 e0 08 retl <== NOT EXECUTED 2008bd8: 90 10 20 00 clr %o0 <== NOT EXECUTED =============================================================================== 0200e640 <_Thread_Handler>: * * Output parameters: NONE */ void _Thread_Handler( void ) { 200e640: 9d e3 bf a0 save %sp, -96, %sp #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) static char doneConstructors; char doneCons; #endif executing = _Thread_Executing; 200e644: 03 00 80 57 sethi %hi(0x2015c00), %g1 200e648: e0 00 63 78 ld [ %g1 + 0x378 ], %l0 ! 2015f78 <_Per_CPU_Information+0xc> /* * Some CPUs need to tinker with the call frame or registers when the * thread actually begins to execute for the first time. This is a * hook point where the port gets a shot at doing whatever it requires. */ _Context_Initialization_at_thread_begin(); 200e64c: 3f 00 80 39 sethi %hi(0x200e400), %i7 200e650: be 17 e2 40 or %i7, 0x240, %i7 ! 200e640 <_Thread_Handler> /* * have to put level into a register for those cpu's that use * inline asm here */ level = executing->Start.isr_level; 200e654: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0 _ISR_Set_level(level); 200e658: 7f ff cf 13 call 20022a4 200e65c: 91 2a 20 08 sll %o0, 8, %o0 #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e660: 03 00 80 56 sethi %hi(0x2015800), %g1 doneConstructors = 1; 200e664: 84 10 20 01 mov 1, %g2 level = executing->Start.isr_level; _ISR_Set_level(level); #if defined(EXECUTE_GLOBAL_CONSTRUCTORS) doneCons = doneConstructors; 200e668: e4 08 61 bc ldub [ %g1 + 0x1bc ], %l2 doneConstructors = 1; 200e66c: c4 28 61 bc stb %g2, [ %g1 + 0x1bc ] #endif #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) #if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE ) if ( (executing->fp_context != NULL) && 200e670: c2 04 21 58 ld [ %l0 + 0x158 ], %g1 200e674: 80 a0 60 00 cmp %g1, 0 200e678: 02 80 00 0b be 200e6a4 <_Thread_Handler+0x64> 200e67c: 23 00 80 57 sethi %hi(0x2015c00), %l1 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Allocated_fp ); 200e680: d0 04 61 8c ld [ %l1 + 0x18c ], %o0 ! 2015d8c <_Thread_Allocated_fp> 200e684: 80 a4 00 08 cmp %l0, %o0 200e688: 02 80 00 07 be 200e6a4 <_Thread_Handler+0x64> 200e68c: 80 a2 20 00 cmp %o0, 0 !_Thread_Is_allocated_fp( executing ) ) { if ( _Thread_Allocated_fp != NULL ) 200e690: 22 80 00 05 be,a 200e6a4 <_Thread_Handler+0x64> 200e694: e0 24 61 8c st %l0, [ %l1 + 0x18c ] _Context_Save_fp( &_Thread_Allocated_fp->fp_context ); 200e698: 7f ff ee b7 call 200a174 <_CPU_Context_save_fp> 200e69c: 90 02 21 58 add %o0, 0x158, %o0 _Thread_Allocated_fp = executing; 200e6a0: e0 24 61 8c st %l0, [ %l1 + 0x18c ] /* * Take care that 'begin' extensions get to complete before * 'switch' extensions can run. This means must keep dispatch * disabled until all 'begin' extensions complete. */ _User_extensions_Thread_begin( executing ); 200e6a4: 7f ff ed 1d call 2009b18 <_User_extensions_Thread_begin> 200e6a8: 90 10 00 10 mov %l0, %o0 /* * At this point, the dispatch disable level BETTER be 1. */ _Thread_Enable_dispatch(); 200e6ac: 7f ff e9 13 call 2008af8 <_Thread_Enable_dispatch> 200e6b0: a5 2c a0 18 sll %l2, 0x18, %l2 /* * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { 200e6b4: 80 a4 a0 00 cmp %l2, 0 200e6b8: 02 80 00 0c be 200e6e8 <_Thread_Handler+0xa8> 200e6bc: 01 00 00 00 nop INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e6c0: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 200e6c4: 80 a0 60 00 cmp %g1, 0 200e6c8: 22 80 00 0f be,a 200e704 <_Thread_Handler+0xc4> <== ALWAYS TAKEN 200e6cc: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 * was placed in return_argument. This assumed that if it returned * anything (which is not supporting in all APIs), then it would be * able to fit in a (void *). */ _User_extensions_Thread_exitted( executing ); 200e6d0: 7f ff ed 26 call 2009b68 <_User_extensions_Thread_exitted> 200e6d4: 90 10 00 10 mov %l0, %o0 _Internal_error_Occurred( 200e6d8: 90 10 20 00 clr %o0 200e6dc: 92 10 20 01 mov 1, %o1 200e6e0: 7f ff e4 f2 call 2007aa8 <_Internal_error_Occurred> 200e6e4: 94 10 20 05 mov 5, %o2 * _init could be a weak symbol and we SHOULD test it but it isn't * in any configuration I know of and it generates a warning on every * RTEMS target configuration. --joel (12 May 2007) */ if (!doneCons) /* && (volatile void *)_init) */ { INIT_NAME (); 200e6e8: 40 00 1a 62 call 2015070 <_init> 200e6ec: 01 00 00 00 nop } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { 200e6f0: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1 200e6f4: 80 a0 60 00 cmp %g1, 0 200e6f8: 12 bf ff f6 bne 200e6d0 <_Thread_Handler+0x90> <== NEVER TAKEN 200e6fc: 01 00 00 00 nop executing->Wait.return_argument = (*(Thread_Entry_numeric) executing->Start.entry_point)( 200e700: c2 04 20 9c ld [ %l0 + 0x9c ], %g1 200e704: 9f c0 40 00 call %g1 200e708: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0 INIT_NAME (); } #endif if ( executing->Start.prototype == THREAD_START_NUMERIC ) { executing->Wait.return_argument = 200e70c: 10 bf ff f1 b 200e6d0 <_Thread_Handler+0x90> 200e710: d0 24 20 28 st %o0, [ %l0 + 0x28 ] =============================================================================== 02008bdc <_Thread_Initialize>: Thread_CPU_budget_algorithms budget_algorithm, Thread_CPU_budget_algorithm_callout budget_callout, uint32_t isr_level, Objects_Name name ) { 2008bdc: 9d e3 bf a0 save %sp, -96, %sp 2008be0: c2 07 a0 6c ld [ %fp + 0x6c ], %g1 2008be4: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0 2008be8: e2 00 40 00 ld [ %g1 ], %l1 /* * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; 2008bec: c0 26 61 60 clr [ %i1 + 0x160 ] 2008bf0: c0 26 61 64 clr [ %i1 + 0x164 ] extensions_area = NULL; the_thread->libc_reent = NULL; 2008bf4: c0 26 61 5c clr [ %i1 + 0x15c ] /* * Allocate and Initialize the stack for this thread. */ #if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API) actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size ); 2008bf8: 90 10 00 19 mov %i1, %o0 2008bfc: 40 00 02 d6 call 2009754 <_Thread_Stack_Allocate> 2008c00: 92 10 00 1b mov %i3, %o1 if ( !actual_stack_size || actual_stack_size < stack_size ) 2008c04: 80 a2 00 1b cmp %o0, %i3 2008c08: 0a 80 00 54 bcs 2008d58 <_Thread_Initialize+0x17c> 2008c0c: 80 a2 20 00 cmp %o0, 0 2008c10: 02 80 00 52 be 2008d58 <_Thread_Initialize+0x17c> <== NEVER TAKEN 2008c14: a4 10 20 00 clr %l2 Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008c18: c2 06 60 cc ld [ %i1 + 0xcc ], %g1 the_stack->size = size; 2008c1c: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ] Stack_Control *the_stack, void *starting_address, size_t size ) { the_stack->area = starting_address; 2008c20: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ] /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { 2008c24: 80 8f 20 ff btst 0xff, %i4 2008c28: 12 80 00 50 bne 2008d68 <_Thread_Initialize+0x18c> 2008c2c: 82 10 20 00 clr %g1 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008c30: 27 00 80 57 sethi %hi(0x2015c00), %l3 2008c34: c4 04 e1 9c ld [ %l3 + 0x19c ], %g2 ! 2015d9c <_Thread_Maximum_extensions> fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008c38: c2 26 61 58 st %g1, [ %i1 + 0x158 ] the_thread->Start.fp_context = fp_area; 2008c3c: c2 26 60 c8 st %g1, [ %i1 + 0xc8 ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008c40: c0 26 60 50 clr [ %i1 + 0x50 ] the_watchdog->routine = routine; 2008c44: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008c48: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008c4c: 80 a0 a0 00 cmp %g2, 0 2008c50: 12 80 00 55 bne 2008da4 <_Thread_Initialize+0x1c8> 2008c54: c0 26 60 6c clr [ %i1 + 0x6c ] (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2008c58: c0 26 61 68 clr [ %i1 + 0x168 ] * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2008c5c: b6 10 20 00 clr %i3 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008c60: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 2008c64: 90 10 00 19 mov %i1, %o0 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008c68: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ] the_thread->Start.budget_callout = budget_callout; 2008c6c: c2 07 a0 64 ld [ %fp + 0x64 ], %g1 the_thread->current_state = STATES_DORMANT; the_thread->Wait.queue = NULL; the_thread->resource_count = 0; the_thread->real_priority = priority; the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 2008c70: 92 10 00 1d mov %i5, %o1 * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; the_thread->Start.budget_callout = budget_callout; 2008c74: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008c78: c2 07 a0 68 ld [ %fp + 0x68 ], %g1 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; 2008c7c: e0 2e 60 ac stb %l0, [ %i1 + 0xac ] case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT: break; #endif } the_thread->Start.isr_level = isr_level; 2008c80: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ] the_thread->current_state = STATES_DORMANT; 2008c84: 82 10 20 01 mov 1, %g1 the_thread->Wait.queue = NULL; 2008c88: c0 26 60 44 clr [ %i1 + 0x44 ] #endif } the_thread->Start.isr_level = isr_level; the_thread->current_state = STATES_DORMANT; 2008c8c: c2 26 60 10 st %g1, [ %i1 + 0x10 ] the_thread->Wait.queue = NULL; the_thread->resource_count = 0; 2008c90: c0 26 60 1c clr [ %i1 + 0x1c ] the_thread->real_priority = priority; 2008c94: fa 26 60 18 st %i5, [ %i1 + 0x18 ] the_thread->Start.initial_priority = priority; _Thread_Set_priority( the_thread, priority ); 2008c98: 40 00 02 0f call 20094d4 <_Thread_Set_priority> 2008c9c: fa 26 60 bc st %i5, [ %i1 + 0xbc ] _Thread_Stack_Free( the_thread ); return false; } 2008ca0: c4 06 20 1c ld [ %i0 + 0x1c ], %g2 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2008ca4: c2 16 60 0a lduh [ %i1 + 0xa ], %g1 /* * Initialize the CPU usage statistics */ #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ _Timestamp_Set_to_zero( &the_thread->cpu_time_used ); 2008ca8: c0 26 60 84 clr [ %i1 + 0x84 ] 2008cac: c0 26 60 88 clr [ %i1 + 0x88 ] #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2008cb0: 83 28 60 02 sll %g1, 2, %g1 2008cb4: f2 20 80 01 st %i1, [ %g2 + %g1 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2008cb8: e2 26 60 0c st %l1, [ %i1 + 0xc ] * enabled when we get here. We want to be able to run the * user extensions with dispatching enabled. The Allocator * Mutex provides sufficient protection to let the user extensions * run safely. */ extension_status = _User_extensions_Thread_create( the_thread ); 2008cbc: 90 10 00 19 mov %i1, %o0 2008cc0: 40 00 03 d1 call 2009c04 <_User_extensions_Thread_create> 2008cc4: b0 10 20 01 mov 1, %i0 if ( extension_status ) 2008cc8: 80 8a 20 ff btst 0xff, %o0 2008ccc: 12 80 00 25 bne 2008d60 <_Thread_Initialize+0x184> 2008cd0: 01 00 00 00 nop return true; failed: if ( the_thread->libc_reent ) 2008cd4: d0 06 61 5c ld [ %i1 + 0x15c ], %o0 2008cd8: 80 a2 20 00 cmp %o0, 0 2008cdc: 22 80 00 05 be,a 2008cf0 <_Thread_Initialize+0x114> 2008ce0: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 _Workspace_Free( the_thread->libc_reent ); 2008ce4: 40 00 05 0e call 200a11c <_Workspace_Free> 2008ce8: 01 00 00 00 nop for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 2008cec: d0 06 61 60 ld [ %i1 + 0x160 ], %o0 2008cf0: 80 a2 20 00 cmp %o0, 0 2008cf4: 22 80 00 05 be,a 2008d08 <_Thread_Initialize+0x12c> 2008cf8: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 _Workspace_Free( the_thread->API_Extensions[i] ); 2008cfc: 40 00 05 08 call 200a11c <_Workspace_Free> 2008d00: 01 00 00 00 nop failed: if ( the_thread->libc_reent ) _Workspace_Free( the_thread->libc_reent ); for ( i=0 ; i <= THREAD_API_LAST ; i++ ) if ( the_thread->API_Extensions[i] ) 2008d04: d0 06 61 64 ld [ %i1 + 0x164 ], %o0 2008d08: 80 a2 20 00 cmp %o0, 0 2008d0c: 02 80 00 05 be 2008d20 <_Thread_Initialize+0x144> <== ALWAYS TAKEN 2008d10: 80 a6 e0 00 cmp %i3, 0 _Workspace_Free( the_thread->API_Extensions[i] ); 2008d14: 40 00 05 02 call 200a11c <_Workspace_Free> <== NOT EXECUTED 2008d18: 01 00 00 00 nop <== NOT EXECUTED if ( extensions_area ) 2008d1c: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED 2008d20: 02 80 00 05 be 2008d34 <_Thread_Initialize+0x158> 2008d24: 80 a4 a0 00 cmp %l2, 0 (void) _Workspace_Free( extensions_area ); 2008d28: 40 00 04 fd call 200a11c <_Workspace_Free> 2008d2c: 90 10 00 1b mov %i3, %o0 #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( fp_area ) 2008d30: 80 a4 a0 00 cmp %l2, 0 2008d34: 02 80 00 05 be 2008d48 <_Thread_Initialize+0x16c> 2008d38: 90 10 00 19 mov %i1, %o0 (void) _Workspace_Free( fp_area ); 2008d3c: 40 00 04 f8 call 200a11c <_Workspace_Free> 2008d40: 90 10 00 12 mov %l2, %o0 #endif _Thread_Stack_Free( the_thread ); 2008d44: 90 10 00 19 mov %i1, %o0 2008d48: 40 00 02 9e call 20097c0 <_Thread_Stack_Free> 2008d4c: b0 10 20 00 clr %i0 return false; 2008d50: 81 c7 e0 08 ret 2008d54: 81 e8 00 00 restore } 2008d58: 81 c7 e0 08 ret 2008d5c: 91 e8 20 00 restore %g0, 0, %o0 2008d60: 81 c7 e0 08 ret 2008d64: 81 e8 00 00 restore /* * Allocate the floating point area for this thread */ #if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE ) if ( is_fp ) { fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); 2008d68: 40 00 04 e4 call 200a0f8 <_Workspace_Allocate> 2008d6c: 90 10 20 88 mov 0x88, %o0 if ( !fp_area ) 2008d70: a4 92 20 00 orcc %o0, 0, %l2 2008d74: 02 80 00 1d be 2008de8 <_Thread_Initialize+0x20c> 2008d78: 82 10 00 12 mov %l2, %g1 #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d7c: 27 00 80 57 sethi %hi(0x2015c00), %l3 2008d80: c4 04 e1 9c ld [ %l3 + 0x19c ], %g2 ! 2015d9c <_Thread_Maximum_extensions> Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 2008d84: c0 26 60 50 clr [ %i1 + 0x50 ] fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE ); if ( !fp_area ) goto failed; fp_area = _Context_Fp_start( fp_area, 0 ); } the_thread->fp_context = fp_area; 2008d88: c2 26 61 58 st %g1, [ %i1 + 0x158 ] the_thread->Start.fp_context = fp_area; 2008d8c: c2 26 60 c8 st %g1, [ %i1 + 0xc8 ] the_watchdog->routine = routine; 2008d90: c0 26 60 64 clr [ %i1 + 0x64 ] the_watchdog->id = id; 2008d94: c0 26 60 68 clr [ %i1 + 0x68 ] #endif /* * Allocate the extensions area for this thread */ if ( _Thread_Maximum_extensions ) { 2008d98: 80 a0 a0 00 cmp %g2, 0 2008d9c: 02 bf ff af be 2008c58 <_Thread_Initialize+0x7c> 2008da0: c0 26 60 6c clr [ %i1 + 0x6c ] extensions_area = _Workspace_Allocate( 2008da4: 84 00 a0 01 inc %g2 2008da8: 40 00 04 d4 call 200a0f8 <_Workspace_Allocate> 2008dac: 91 28 a0 02 sll %g2, 2, %o0 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) 2008db0: b6 92 20 00 orcc %o0, 0, %i3 2008db4: 02 bf ff c8 be 2008cd4 <_Thread_Initialize+0xf8> 2008db8: c6 04 e1 9c ld [ %l3 + 0x19c ], %g3 goto failed; } the_thread->extensions = (void **) extensions_area; 2008dbc: f6 26 61 68 st %i3, [ %i1 + 0x168 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008dc0: 84 10 20 00 clr %g2 (_Thread_Maximum_extensions + 1) * sizeof( void * ) ); if ( !extensions_area ) goto failed; } the_thread->extensions = (void **) extensions_area; 2008dc4: 82 10 20 00 clr %g1 * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) the_thread->extensions[i] = NULL; 2008dc8: 85 28 a0 02 sll %g2, 2, %g2 2008dcc: c0 26 c0 02 clr [ %i3 + %g2 ] * create the extension long after tasks have been created * so they cannot rely on the thread create user extension * call. */ if ( the_thread->extensions ) { for ( i = 0; i <= _Thread_Maximum_extensions ; i++ ) 2008dd0: 82 00 60 01 inc %g1 2008dd4: 80 a0 c0 01 cmp %g3, %g1 2008dd8: 1a bf ff fc bcc 2008dc8 <_Thread_Initialize+0x1ec> 2008ddc: 84 10 00 01 mov %g1, %g2 /* * General initialization */ the_thread->Start.is_preemptible = is_preemptible; the_thread->Start.budget_algorithm = budget_algorithm; 2008de0: 10 bf ff a1 b 2008c64 <_Thread_Initialize+0x88> 2008de4: c2 07 a0 60 ld [ %fp + 0x60 ], %g1 * Zero out all the allocated memory fields */ for ( i=0 ; i <= THREAD_API_LAST ; i++ ) the_thread->API_Extensions[i] = NULL; extensions_area = NULL; 2008de8: 10 bf ff bb b 2008cd4 <_Thread_Initialize+0xf8> 2008dec: b6 10 20 00 clr %i3 =============================================================================== 0200ce58 <_Thread_Resume>: void _Thread_Resume( Thread_Control *the_thread, bool force ) { 200ce58: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; States_Control current_state; _ISR_Disable( level ); 200ce5c: 7f ff d5 7d call 2002450 200ce60: 01 00 00 00 nop 200ce64: a0 10 00 08 mov %o0, %l0 current_state = the_thread->current_state; 200ce68: c2 06 20 10 ld [ %i0 + 0x10 ], %g1 if ( current_state & STATES_SUSPENDED ) { 200ce6c: 80 88 60 02 btst 2, %g1 200ce70: 02 80 00 05 be 200ce84 <_Thread_Resume+0x2c> <== NEVER TAKEN 200ce74: 82 08 7f fd and %g1, -3, %g1 current_state = the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state); if ( _States_Is_ready( current_state ) ) { 200ce78: 80 a0 60 00 cmp %g1, 0 200ce7c: 02 80 00 04 be 200ce8c <_Thread_Resume+0x34> 200ce80: c2 26 20 10 st %g1, [ %i0 + 0x10 ] _Thread_Dispatch_necessary = true; } } } _ISR_Enable( level ); 200ce84: 7f ff d5 77 call 2002460 200ce88: 91 e8 00 10 restore %g0, %l0, %o0 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 200ce8c: c2 06 20 90 ld [ %i0 + 0x90 ], %g1 200ce90: c6 16 20 96 lduh [ %i0 + 0x96 ], %g3 200ce94: c8 10 40 00 lduh [ %g1 ], %g4 _Priority_Major_bit_map |= the_priority_map->ready_major; 200ce98: 05 00 80 67 sethi %hi(0x2019c00), %g2 RTEMS_INLINE_ROUTINE void _Priority_bit_map_Add ( Priority_bit_map_Information *the_priority_map ) { *the_priority_map->minor |= the_priority_map->ready_minor; 200ce9c: 86 11 00 03 or %g4, %g3, %g3 200cea0: c6 30 40 00 sth %g3, [ %g1 ] _Priority_Major_bit_map |= the_priority_map->ready_major; 200cea4: c8 10 a2 2c lduh [ %g2 + 0x22c ], %g4 200cea8: c6 16 20 94 lduh [ %i0 + 0x94 ], %g3 if ( _States_Is_ready( current_state ) ) { _Priority_bit_map_Add( &the_thread->Priority_map ); _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); 200ceac: c2 06 20 8c ld [ %i0 + 0x8c ], %g1 200ceb0: 86 11 00 03 or %g4, %g3, %g3 200ceb4: c6 30 a2 2c sth %g3, [ %g2 + 0x22c ] ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); old_last_node = the_chain->last; 200ceb8: c4 00 60 08 ld [ %g1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200cebc: 86 00 60 04 add %g1, 4, %g3 Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 200cec0: c6 26 00 00 st %g3, [ %i0 ] old_last_node = the_chain->last; the_chain->last = the_node; 200cec4: f0 20 60 08 st %i0, [ %g1 + 8 ] old_last_node->next = the_node; 200cec8: f0 20 80 00 st %i0, [ %g2 ] the_node->previous = old_last_node; 200cecc: c4 26 20 04 st %g2, [ %i0 + 4 ] _ISR_Flash( level ); 200ced0: 7f ff d5 64 call 2002460 200ced4: 01 00 00 00 nop 200ced8: 7f ff d5 5e call 2002450 200cedc: 01 00 00 00 nop if ( the_thread->current_priority < _Thread_Heir->current_priority ) { 200cee0: 03 00 80 67 sethi %hi(0x2019c00), %g1 200cee4: 82 10 63 ec or %g1, 0x3ec, %g1 ! 2019fec <_Per_CPU_Information> 200cee8: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 200ceec: c4 06 20 14 ld [ %i0 + 0x14 ], %g2 200cef0: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3 200cef4: 80 a0 80 03 cmp %g2, %g3 200cef8: 1a bf ff e3 bcc 200ce84 <_Thread_Resume+0x2c> 200cefc: 01 00 00 00 nop _Thread_Heir = the_thread; if ( _Thread_Executing->is_preemptible || 200cf00: c6 00 60 0c ld [ %g1 + 0xc ], %g3 _Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node); _ISR_Flash( level ); if ( the_thread->current_priority < _Thread_Heir->current_priority ) { _Thread_Heir = the_thread; 200cf04: f0 20 60 10 st %i0, [ %g1 + 0x10 ] if ( _Thread_Executing->is_preemptible || 200cf08: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3 200cf0c: 80 a0 e0 00 cmp %g3, 0 200cf10: 32 80 00 05 bne,a 200cf24 <_Thread_Resume+0xcc> 200cf14: 84 10 20 01 mov 1, %g2 200cf18: 80 a0 a0 00 cmp %g2, 0 200cf1c: 12 bf ff da bne 200ce84 <_Thread_Resume+0x2c> <== ALWAYS TAKEN 200cf20: 84 10 20 01 mov 1, %g2 the_thread->current_priority == 0 ) _Thread_Dispatch_necessary = true; 200cf24: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] } } } _ISR_Enable( level ); 200cf28: 7f ff d5 4e call 2002460 200cf2c: 91 e8 00 10 restore %g0, %l0, %o0 =============================================================================== 02009900 <_Thread_Yield_processor>: * ready chain * select heir */ void _Thread_Yield_processor( void ) { 2009900: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Thread_Control *executing; Chain_Control *ready; executing = _Thread_Executing; 2009904: 25 00 80 57 sethi %hi(0x2015c00), %l2 2009908: a4 14 a3 6c or %l2, 0x36c, %l2 ! 2015f6c <_Per_CPU_Information> 200990c: e0 04 a0 0c ld [ %l2 + 0xc ], %l0 ready = executing->ready; _ISR_Disable( level ); 2009910: 7f ff e2 61 call 2002294 2009914: e2 04 20 8c ld [ %l0 + 0x8c ], %l1 2009918: b0 10 00 08 mov %o0, %i0 } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; _ISR_Enable( level ); } 200991c: c2 04 60 08 ld [ %l1 + 8 ], %g1 Chain_Control *ready; executing = _Thread_Executing; ready = executing->ready; _ISR_Disable( level ); if ( !_Chain_Has_only_one_node( ready ) ) { 2009920: c4 04 40 00 ld [ %l1 ], %g2 2009924: 80 a0 80 01 cmp %g2, %g1 2009928: 02 80 00 14 be 2009978 <_Thread_Yield_processor+0x78> 200992c: 88 04 60 04 add %l1, 4, %g4 { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009930: c4 1c 00 00 ldd [ %l0 ], %g2 next->previous = previous; previous->next = next; 2009934: c4 20 c0 00 st %g2, [ %g3 ] Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; next->previous = previous; 2009938: c6 20 a0 04 st %g3, [ %g2 + 4 ] Chain_Node *the_node ) { Chain_Node *old_last_node; the_node->next = _Chain_Tail(the_chain); 200993c: c8 24 00 00 st %g4, [ %l0 ] old_last_node = the_chain->last; the_chain->last = the_node; 2009940: e0 24 60 08 st %l0, [ %l1 + 8 ] old_last_node->next = the_node; 2009944: e0 20 40 00 st %l0, [ %g1 ] the_node->previous = old_last_node; 2009948: c2 24 20 04 st %g1, [ %l0 + 4 ] _Chain_Extract_unprotected( &executing->Object.Node ); _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); 200994c: 7f ff e2 56 call 20022a4 2009950: 01 00 00 00 nop 2009954: 7f ff e2 50 call 2002294 2009958: 01 00 00 00 nop if ( _Thread_Is_heir( executing ) ) 200995c: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 2009960: 80 a4 00 01 cmp %l0, %g1 2009964: 02 80 00 0b be 2009990 <_Thread_Yield_processor+0x90> <== ALWAYS TAKEN 2009968: 82 10 20 01 mov 1, %g1 _Thread_Heir = (Thread_Control *) ready->first; _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 200996c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED _ISR_Enable( level ); 2009970: 7f ff e2 4d call 20022a4 2009974: 81 e8 00 00 restore if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) ready->first; _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) 2009978: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1 200997c: 80 a4 00 01 cmp %l0, %g1 2009980: 02 bf ff fc be 2009970 <_Thread_Yield_processor+0x70> <== ALWAYS TAKEN 2009984: 82 10 20 01 mov 1, %g1 _Thread_Dispatch_necessary = true; 2009988: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED 200998c: 30 bf ff f9 b,a 2009970 <_Thread_Yield_processor+0x70> <== NOT EXECUTED _Chain_Append_unprotected( ready, &executing->Object.Node ); _ISR_Flash( level ); if ( _Thread_Is_heir( executing ) ) _Thread_Heir = (Thread_Control *) ready->first; 2009990: c2 04 40 00 ld [ %l1 ], %g1 2009994: c2 24 a0 10 st %g1, [ %l2 + 0x10 ] _Thread_Dispatch_necessary = true; } else if ( !_Thread_Is_heir( executing ) ) _Thread_Dispatch_necessary = true; 2009998: 82 10 20 01 mov 1, %g1 200999c: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] 20099a0: 30 bf ff f4 b,a 2009970 <_Thread_Yield_processor+0x70> =============================================================================== 02009414 <_Thread_queue_Requeue>: void _Thread_queue_Requeue( Thread_queue_Control *the_thread_queue, Thread_Control *the_thread ) { 2009414: 9d e3 bf 98 save %sp, -104, %sp /* * Just in case the thread really wasn't blocked on a thread queue * when we get here. */ if ( !the_thread_queue ) 2009418: 80 a6 20 00 cmp %i0, 0 200941c: 02 80 00 13 be 2009468 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN 2009420: 01 00 00 00 nop /* * If queueing by FIFO, there is nothing to do. This only applies to * priority blocking discipline. */ if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) { 2009424: e2 06 20 34 ld [ %i0 + 0x34 ], %l1 2009428: 80 a4 60 01 cmp %l1, 1 200942c: 02 80 00 04 be 200943c <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN 2009430: 01 00 00 00 nop 2009434: 81 c7 e0 08 ret <== NOT EXECUTED 2009438: 81 e8 00 00 restore <== NOT EXECUTED Thread_queue_Control *tq = the_thread_queue; ISR_Level level; ISR_Level level_ignored; _ISR_Disable( level ); 200943c: 7f ff e3 96 call 2002294 2009440: 01 00 00 00 nop 2009444: a0 10 00 08 mov %o0, %l0 2009448: c4 06 60 10 ld [ %i1 + 0x10 ], %g2 200944c: 03 00 00 ef sethi %hi(0x3bc00), %g1 2009450: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { 2009454: 80 88 80 01 btst %g2, %g1 2009458: 12 80 00 06 bne 2009470 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN 200945c: 90 10 00 18 mov %i0, %o0 _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); } _ISR_Enable( level ); 2009460: 7f ff e3 91 call 20022a4 2009464: 90 10 00 10 mov %l0, %o0 2009468: 81 c7 e0 08 ret 200946c: 81 e8 00 00 restore ISR_Level level_ignored; _ISR_Disable( level ); if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) { _Thread_queue_Enter_critical_section( tq ); _Thread_queue_Extract_priority_helper( tq, the_thread, true ); 2009470: 92 10 00 19 mov %i1, %o1 2009474: 94 10 20 01 mov 1, %o2 2009478: 40 00 0e 00 call 200cc78 <_Thread_queue_Extract_priority_helper> 200947c: e2 26 20 30 st %l1, [ %i0 + 0x30 ] (void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored ); 2009480: 90 10 00 18 mov %i0, %o0 2009484: 92 10 00 19 mov %i1, %o1 2009488: 7f ff ff 2b call 2009134 <_Thread_queue_Enqueue_priority> 200948c: 94 07 bf fc add %fp, -4, %o2 2009490: 30 bf ff f4 b,a 2009460 <_Thread_queue_Requeue+0x4c> =============================================================================== 02009494 <_Thread_queue_Timeout>: void _Thread_queue_Timeout( Objects_Id id, void *ignored __attribute__((unused)) ) { 2009494: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; the_thread = _Thread_Get( id, &location ); 2009498: 90 10 00 18 mov %i0, %o0 200949c: 7f ff fd a5 call 2008b30 <_Thread_Get> 20094a0: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20094a4: c2 07 bf fc ld [ %fp + -4 ], %g1 20094a8: 80 a0 60 00 cmp %g1, 0 20094ac: 12 80 00 08 bne 20094cc <_Thread_queue_Timeout+0x38> <== NEVER TAKEN 20094b0: 01 00 00 00 nop #if defined(RTEMS_MULTIPROCESSING) case OBJECTS_REMOTE: /* impossible */ #endif break; case OBJECTS_LOCAL: _Thread_queue_Process_timeout( the_thread ); 20094b4: 40 00 0e 2a call 200cd5c <_Thread_queue_Process_timeout> 20094b8: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void ) { RTEMS_COMPILER_MEMORY_BARRIER(); _Thread_Dispatch_disable_level -= 1; 20094bc: 03 00 80 57 sethi %hi(0x2015c00), %g1 20094c0: c4 00 61 08 ld [ %g1 + 0x108 ], %g2 ! 2015d08 <_Thread_Dispatch_disable_level> 20094c4: 84 00 bf ff add %g2, -1, %g2 20094c8: c4 20 61 08 st %g2, [ %g1 + 0x108 ] 20094cc: 81 c7 e0 08 ret 20094d0: 81 e8 00 00 restore =============================================================================== 020168a4 <_Timer_server_Body>: * @a arg points to the corresponding timer server control block. */ static rtems_task _Timer_server_Body( rtems_task_argument arg ) { 20168a4: 9d e3 bf 88 save %sp, -120, %sp 20168a8: 2f 00 80 f1 sethi %hi(0x203c400), %l7 20168ac: ba 07 bf f4 add %fp, -12, %i5 20168b0: aa 07 bf f8 add %fp, -8, %l5 20168b4: a4 07 bf e8 add %fp, -24, %l2 20168b8: a8 07 bf ec add %fp, -20, %l4 20168bc: 2d 00 80 f1 sethi %hi(0x203c400), %l6 20168c0: 39 00 80 f1 sethi %hi(0x203c400), %i4 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 20168c4: ea 27 bf f4 st %l5, [ %fp + -12 ] the_chain->permanent_null = NULL; 20168c8: c0 27 bf f8 clr [ %fp + -8 ] the_chain->last = _Chain_Head(the_chain); 20168cc: fa 27 bf fc st %i5, [ %fp + -4 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 20168d0: e8 27 bf e8 st %l4, [ %fp + -24 ] the_chain->permanent_null = NULL; 20168d4: c0 27 bf ec clr [ %fp + -20 ] the_chain->last = _Chain_Head(the_chain); 20168d8: e4 27 bf f0 st %l2, [ %fp + -16 ] 20168dc: ae 15 e3 84 or %l7, 0x384, %l7 20168e0: a2 06 20 30 add %i0, 0x30, %l1 20168e4: ac 15 a2 d4 or %l6, 0x2d4, %l6 20168e8: a6 06 20 68 add %i0, 0x68, %l3 20168ec: b8 17 22 48 or %i4, 0x248, %i4 20168f0: b4 06 20 08 add %i0, 8, %i2 20168f4: b6 06 20 40 add %i0, 0x40, %i3 Chain_Control *tmp; /* * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; 20168f8: fa 26 20 78 st %i5, [ %i0 + 0x78 ] static void _Timer_server_Process_interval_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot; 20168fc: c2 05 c0 00 ld [ %l7 ], %g1 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; 2016900: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 watchdogs->last_snapshot = snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016904: 94 10 00 12 mov %l2, %o2 2016908: 90 10 00 11 mov %l1, %o0 /* * We assume adequate unsigned arithmetic here. */ Watchdog_Interval delta = snapshot - watchdogs->last_snapshot; watchdogs->last_snapshot = snapshot; 201690c: c2 26 20 3c st %g1, [ %i0 + 0x3c ] _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016910: 40 00 12 f9 call 201b4f4 <_Watchdog_Adjust_to_chain> 2016914: 92 20 40 09 sub %g1, %o1, %o1 Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); Watchdog_Interval last_snapshot = watchdogs->last_snapshot; 2016918: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 static void _Timer_server_Process_tod_watchdogs( Timer_server_Watchdogs *watchdogs, Chain_Control *fire_chain ) { Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 201691c: e0 05 80 00 ld [ %l6 ], %l0 /* * Process the seconds chain. Start by checking that the Time * of Day (TOD) has not been set backwards. If it has then * we want to adjust the watchdogs->Chain to indicate this. */ if ( snapshot > last_snapshot ) { 2016920: 80 a4 00 0a cmp %l0, %o2 2016924: 18 80 00 43 bgu 2016a30 <_Timer_server_Body+0x18c> 2016928: 92 24 00 0a sub %l0, %o2, %o1 * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); } else if ( snapshot < last_snapshot ) { 201692c: 0a 80 00 39 bcs 2016a10 <_Timer_server_Body+0x16c> 2016930: 90 10 00 13 mov %l3, %o0 */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); } watchdogs->last_snapshot = snapshot; 2016934: e0 26 20 74 st %l0, [ %i0 + 0x74 ] } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016938: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 201693c: 40 00 02 f2 call 2017504 <_Chain_Get> 2016940: 01 00 00 00 nop if ( timer == NULL ) { 2016944: 92 92 20 00 orcc %o0, 0, %o1 2016948: 02 80 00 10 be 2016988 <_Timer_server_Body+0xe4> 201694c: 01 00 00 00 nop static void _Timer_server_Insert_timer( Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016950: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 2016954: 80 a0 60 01 cmp %g1, 1 2016958: 02 80 00 32 be 2016a20 <_Timer_server_Body+0x17c> 201695c: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016960: 12 bf ff f6 bne 2016938 <_Timer_server_Body+0x94> <== NEVER TAKEN 2016964: 92 02 60 10 add %o1, 0x10, %o1 _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016968: 40 00 13 16 call 201b5c0 <_Watchdog_Insert> 201696c: 90 10 00 13 mov %l3, %o0 } static void _Timer_server_Process_insertions( Timer_server_Control *ts ) { while ( true ) { Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain ); 2016970: d0 06 20 78 ld [ %i0 + 0x78 ], %o0 2016974: 40 00 02 e4 call 2017504 <_Chain_Get> 2016978: 01 00 00 00 nop if ( timer == NULL ) { 201697c: 92 92 20 00 orcc %o0, 0, %o1 2016980: 32 bf ff f5 bne,a 2016954 <_Timer_server_Body+0xb0> <== NEVER TAKEN 2016984: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED * of zero it will be processed in the next iteration of the timer server * body loop. */ _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); 2016988: 7f ff e2 39 call 200f26c 201698c: 01 00 00 00 nop tmp = ts->insert_chain; 2016990: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 if ( _Chain_Is_empty( insert_chain ) ) { 2016994: c2 07 bf f4 ld [ %fp + -12 ], %g1 2016998: 80 a5 40 01 cmp %l5, %g1 201699c: 02 80 00 29 be 2016a40 <_Timer_server_Body+0x19c> <== ALWAYS TAKEN 20169a0: a0 10 20 01 mov 1, %l0 ts->insert_chain = NULL; do_loop = false; } _ISR_Enable( level ); 20169a4: 7f ff e2 36 call 200f27c 20169a8: 01 00 00 00 nop * Afterwards all timer inserts are directed to this chain and the interval * and TOD chains will be no more modified by other parties. */ ts->insert_chain = insert_chain; while ( do_loop ) { 20169ac: 80 8c 20 ff btst 0xff, %l0 20169b0: 12 bf ff d3 bne 20168fc <_Timer_server_Body+0x58> <== NEVER TAKEN 20169b4: c2 07 bf e8 ld [ %fp + -24 ], %g1 _Chain_Initialize_empty( &fire_chain ); while ( true ) { _Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain ); if ( !_Chain_Is_empty( &fire_chain ) ) { 20169b8: 80 a5 00 01 cmp %l4, %g1 20169bc: 12 80 00 0c bne 20169ec <_Timer_server_Body+0x148> 20169c0: 01 00 00 00 nop 20169c4: 30 80 00 22 b,a 2016a4c <_Timer_server_Body+0x1a8> Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; the_chain->first = new_first; new_first->previous = _Chain_Head(the_chain); 20169c8: e4 20 60 04 st %l2, [ %g1 + 4 ] Chain_Node *return_node; Chain_Node *new_first; return_node = the_chain->first; new_first = return_node->next; the_chain->first = new_first; 20169cc: c2 27 bf e8 st %g1, [ %fp + -24 ] * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; 20169d0: c0 24 20 08 clr [ %l0 + 8 ] _ISR_Enable( level ); 20169d4: 7f ff e2 2a call 200f27c 20169d8: 01 00 00 00 nop /* * The timer server may block here and wait for resources or time. * The system watchdogs are inactive and will remain inactive since * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); 20169dc: d0 04 20 20 ld [ %l0 + 0x20 ], %o0 20169e0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 20169e4: 9f c0 40 00 call %g1 20169e8: d2 04 20 24 ld [ %l0 + 0x24 ], %o1 /* * It is essential that interrupts are disable here since an interrupt * service routine may remove a watchdog from the chain. */ _ISR_Disable( level ); 20169ec: 7f ff e2 20 call 200f26c 20169f0: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 20169f4: e0 07 bf e8 ld [ %fp + -24 ], %l0 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected( Chain_Control *the_chain ) { if ( !_Chain_Is_empty(the_chain)) 20169f8: 80 a5 00 10 cmp %l4, %l0 20169fc: 32 bf ff f3 bne,a 20169c8 <_Timer_server_Body+0x124> 2016a00: c2 04 00 00 ld [ %l0 ], %g1 watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain ); if ( watchdog != NULL ) { watchdog->state = WATCHDOG_INACTIVE; _ISR_Enable( level ); } else { _ISR_Enable( level ); 2016a04: 7f ff e2 1e call 200f27c 2016a08: 01 00 00 00 nop 2016a0c: 30 bf ff bb b,a 20168f8 <_Timer_server_Body+0x54> /* * The current TOD is before the last TOD which indicates that * TOD has been set backwards. */ delta = last_snapshot - snapshot; _Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta ); 2016a10: 92 10 20 01 mov 1, %o1 ! 1 2016a14: 40 00 12 88 call 201b434 <_Watchdog_Adjust> 2016a18: 94 22 80 10 sub %o2, %l0, %o2 2016a1c: 30 bf ff c6 b,a 2016934 <_Timer_server_Body+0x90> Timer_server_Control *ts, Timer_Control *timer ) { if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016a20: 90 10 00 11 mov %l1, %o0 2016a24: 40 00 12 e7 call 201b5c0 <_Watchdog_Insert> 2016a28: 92 02 60 10 add %o1, 0x10, %o1 2016a2c: 30 bf ff c3 b,a 2016938 <_Timer_server_Body+0x94> /* * This path is for normal forward movement and cases where the * TOD has been set forward. */ delta = snapshot - last_snapshot; _Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain ); 2016a30: 90 10 00 13 mov %l3, %o0 2016a34: 40 00 12 b0 call 201b4f4 <_Watchdog_Adjust_to_chain> 2016a38: 94 10 00 12 mov %l2, %o2 2016a3c: 30 bf ff be b,a 2016934 <_Timer_server_Body+0x90> _Timer_server_Process_insertions( ts ); _ISR_Disable( level ); tmp = ts->insert_chain; if ( _Chain_Is_empty( insert_chain ) ) { ts->insert_chain = NULL; 2016a40: c0 26 20 78 clr [ %i0 + 0x78 ] do_loop = false; 2016a44: 10 bf ff d8 b 20169a4 <_Timer_server_Body+0x100> 2016a48: a0 10 20 00 clr %l0 * the active flag of the timer server is true. */ (*watchdog->routine)( watchdog->id, watchdog->user_data ); } } else { ts->active = false; 2016a4c: c0 2e 20 7c clrb [ %i0 + 0x7c ] 2016a50: c2 07 00 00 ld [ %i4 ], %g1 2016a54: 82 00 60 01 inc %g1 2016a58: c2 27 00 00 st %g1, [ %i4 ] /* * Block until there is something to do. */ _Thread_Disable_dispatch(); _Thread_Set_state( ts->thread, STATES_DELAYING ); 2016a5c: d0 06 00 00 ld [ %i0 ], %o0 2016a60: 40 00 0f d4 call 201a9b0 <_Thread_Set_state> 2016a64: 92 10 20 08 mov 8, %o1 _Timer_server_Reset_interval_system_watchdog( ts ); 2016a68: 7f ff ff 65 call 20167fc <_Timer_server_Reset_interval_system_watchdog> 2016a6c: 90 10 00 18 mov %i0, %o0 _Timer_server_Reset_tod_system_watchdog( ts ); 2016a70: 7f ff ff 78 call 2016850 <_Timer_server_Reset_tod_system_watchdog> 2016a74: 90 10 00 18 mov %i0, %o0 _Thread_Enable_dispatch(); 2016a78: 40 00 0c e1 call 2019dfc <_Thread_Enable_dispatch> 2016a7c: 01 00 00 00 nop ts->active = true; 2016a80: 82 10 20 01 mov 1, %g1 ! 1 static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016a84: 90 10 00 1a mov %i2, %o0 _Thread_Set_state( ts->thread, STATES_DELAYING ); _Timer_server_Reset_interval_system_watchdog( ts ); _Timer_server_Reset_tod_system_watchdog( ts ); _Thread_Enable_dispatch(); ts->active = true; 2016a88: c2 2e 20 7c stb %g1, [ %i0 + 0x7c ] static void _Timer_server_Stop_interval_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog ); 2016a8c: 40 00 13 37 call 201b768 <_Watchdog_Remove> 2016a90: 01 00 00 00 nop static void _Timer_server_Stop_tod_system_watchdog( Timer_server_Control *ts ) { _Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog ); 2016a94: 40 00 13 35 call 201b768 <_Watchdog_Remove> 2016a98: 90 10 00 1b mov %i3, %o0 2016a9c: 30 bf ff 97 b,a 20168f8 <_Timer_server_Body+0x54> =============================================================================== 02016aa0 <_Timer_server_Schedule_operation_method>: static void _Timer_server_Schedule_operation_method( Timer_server_Control *ts, Timer_Control *timer ) { 2016aa0: 9d e3 bf a0 save %sp, -96, %sp if ( ts->insert_chain == NULL ) { 2016aa4: c2 06 20 78 ld [ %i0 + 0x78 ], %g1 2016aa8: 80 a0 60 00 cmp %g1, 0 2016aac: 02 80 00 05 be 2016ac0 <_Timer_server_Schedule_operation_method+0x20> 2016ab0: a0 10 00 19 mov %i1, %l0 * server is not preemptible, so we must be in interrupt context here. No * thread dispatch will happen until the timer server finishes its * critical section. We have to use the protected chain methods because * we may be interrupted by a higher priority interrupt. */ _Chain_Append( ts->insert_chain, &timer->Object.Node ); 2016ab4: f0 06 20 78 ld [ %i0 + 0x78 ], %i0 2016ab8: 40 00 02 7d call 20174ac <_Chain_Append> 2016abc: 81 e8 00 00 restore 2016ac0: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016ac4: c4 00 62 48 ld [ %g1 + 0x248 ], %g2 ! 203c648 <_Thread_Dispatch_disable_level> 2016ac8: 84 00 a0 01 inc %g2 2016acc: c4 20 62 48 st %g2, [ %g1 + 0x248 ] * being inserted. This could result in an integer overflow. */ _Thread_Disable_dispatch(); if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { 2016ad0: c2 06 60 38 ld [ %i1 + 0x38 ], %g1 2016ad4: 80 a0 60 01 cmp %g1, 1 2016ad8: 02 80 00 28 be 2016b78 <_Timer_server_Schedule_operation_method+0xd8> 2016adc: 80 a0 60 03 cmp %g1, 3 _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); if ( !ts->active ) { _Timer_server_Reset_interval_system_watchdog( ts ); } } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { 2016ae0: 02 80 00 04 be 2016af0 <_Timer_server_Schedule_operation_method+0x50><== ALWAYS TAKEN 2016ae4: 01 00 00 00 nop if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016ae8: 40 00 0c c5 call 2019dfc <_Thread_Enable_dispatch> 2016aec: 81 e8 00 00 restore } else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) { /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016af0: 7f ff e1 df call 200f26c 2016af4: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016af8: c4 06 20 68 ld [ %i0 + 0x68 ], %g2 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; 2016afc: c6 06 20 74 ld [ %i0 + 0x74 ], %g3 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2016b00: 88 06 20 6c add %i0, 0x6c, %g4 /* * We have to advance the last known seconds value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); 2016b04: 03 00 80 f1 sethi %hi(0x203c400), %g1 last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { 2016b08: 80 a0 80 04 cmp %g2, %g4 2016b0c: 02 80 00 0d be 2016b40 <_Timer_server_Schedule_operation_method+0xa0> 2016b10: c2 00 62 d4 ld [ %g1 + 0x2d4 ], %g1 first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; 2016b14: da 00 a0 10 ld [ %g2 + 0x10 ], %o5 if ( snapshot > last_snapshot ) { 2016b18: 80 a0 40 03 cmp %g1, %g3 } } else { /* * Someone put us in the past. */ delta = last_snapshot - snapshot; 2016b1c: 88 03 40 03 add %o5, %g3, %g4 snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch(); last_snapshot = ts->TOD_watchdogs.last_snapshot; if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) { first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain ); delta_interval = first_watchdog->delta_interval; if ( snapshot > last_snapshot ) { 2016b20: 08 80 00 07 bleu 2016b3c <_Timer_server_Schedule_operation_method+0x9c> 2016b24: 88 21 00 01 sub %g4, %g1, %g4 /* * We advanced in time. */ delta = snapshot - last_snapshot; 2016b28: 86 20 40 03 sub %g1, %g3, %g3 if (delta_interval > delta) { 2016b2c: 80 a3 40 03 cmp %o5, %g3 2016b30: 08 80 00 03 bleu 2016b3c <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN 2016b34: 88 10 20 00 clr %g4 delta_interval -= delta; 2016b38: 88 23 40 03 sub %o5, %g3, %g4 * Someone put us in the past. */ delta = last_snapshot - snapshot; delta_interval += delta; } first_watchdog->delta_interval = delta_interval; 2016b3c: c8 20 a0 10 st %g4, [ %g2 + 0x10 ] } ts->TOD_watchdogs.last_snapshot = snapshot; 2016b40: c2 26 20 74 st %g1, [ %i0 + 0x74 ] _ISR_Enable( level ); 2016b44: 7f ff e1 ce call 200f27c 2016b48: 01 00 00 00 nop _Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker ); 2016b4c: 90 06 20 68 add %i0, 0x68, %o0 2016b50: 40 00 12 9c call 201b5c0 <_Watchdog_Insert> 2016b54: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016b58: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016b5c: 80 a0 60 00 cmp %g1, 0 2016b60: 12 bf ff e2 bne 2016ae8 <_Timer_server_Schedule_operation_method+0x48> 2016b64: 01 00 00 00 nop _Timer_server_Reset_tod_system_watchdog( ts ); 2016b68: 7f ff ff 3a call 2016850 <_Timer_server_Reset_tod_system_watchdog> 2016b6c: 90 10 00 18 mov %i0, %o0 } } _Thread_Enable_dispatch(); 2016b70: 40 00 0c a3 call 2019dfc <_Thread_Enable_dispatch> 2016b74: 81 e8 00 00 restore if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) { /* * We have to advance the last known ticks value of the server and update * the watchdog chain accordingly. */ _ISR_Disable( level ); 2016b78: 7f ff e1 bd call 200f26c 2016b7c: 01 00 00 00 nop snapshot = _Watchdog_Ticks_since_boot; 2016b80: 05 00 80 f1 sethi %hi(0x203c400), %g2 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 2016b84: c2 06 20 30 ld [ %i0 + 0x30 ], %g1 2016b88: c4 00 a3 84 ld [ %g2 + 0x384 ], %g2 last_snapshot = ts->Interval_watchdogs.last_snapshot; 2016b8c: c8 06 20 3c ld [ %i0 + 0x3c ], %g4 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2016b90: 86 06 20 34 add %i0, 0x34, %g3 if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) { 2016b94: 80 a0 40 03 cmp %g1, %g3 2016b98: 02 80 00 08 be 2016bb8 <_Timer_server_Schedule_operation_method+0x118> 2016b9c: 88 20 80 04 sub %g2, %g4, %g4 /* * We assume adequate unsigned arithmetic here. */ delta = snapshot - last_snapshot; delta_interval = first_watchdog->delta_interval; 2016ba0: da 00 60 10 ld [ %g1 + 0x10 ], %o5 if (delta_interval > delta) { 2016ba4: 80 a1 00 0d cmp %g4, %o5 2016ba8: 1a 80 00 03 bcc 2016bb4 <_Timer_server_Schedule_operation_method+0x114> 2016bac: 86 10 20 00 clr %g3 delta_interval -= delta; 2016bb0: 86 23 40 04 sub %o5, %g4, %g3 } else { delta_interval = 0; } first_watchdog->delta_interval = delta_interval; 2016bb4: c6 20 60 10 st %g3, [ %g1 + 0x10 ] } ts->Interval_watchdogs.last_snapshot = snapshot; 2016bb8: c4 26 20 3c st %g2, [ %i0 + 0x3c ] _ISR_Enable( level ); 2016bbc: 7f ff e1 b0 call 200f27c 2016bc0: 01 00 00 00 nop _Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker ); 2016bc4: 90 06 20 30 add %i0, 0x30, %o0 2016bc8: 40 00 12 7e call 201b5c0 <_Watchdog_Insert> 2016bcc: 92 04 20 10 add %l0, 0x10, %o1 if ( !ts->active ) { 2016bd0: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1 2016bd4: 80 a0 60 00 cmp %g1, 0 2016bd8: 12 bf ff c4 bne 2016ae8 <_Timer_server_Schedule_operation_method+0x48> 2016bdc: 01 00 00 00 nop _Timer_server_Reset_interval_system_watchdog( ts ); 2016be0: 7f ff ff 07 call 20167fc <_Timer_server_Reset_interval_system_watchdog> 2016be4: 90 10 00 18 mov %i0, %o0 if ( !ts->active ) { _Timer_server_Reset_tod_system_watchdog( ts ); } } _Thread_Enable_dispatch(); 2016be8: 40 00 0c 85 call 2019dfc <_Thread_Enable_dispatch> 2016bec: 81 e8 00 00 restore =============================================================================== 020099a4 <_Timespec_Add_to>: uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { 20099a4: 9d e3 bf a0 save %sp, -96, %sp 20099a8: 82 10 00 18 mov %i0, %g1 uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 20099ac: c6 06 00 00 ld [ %i0 ], %g3 time->tv_nsec += add->tv_nsec; 20099b0: c8 06 60 04 ld [ %i1 + 4 ], %g4 uint32_t _Timespec_Add_to( struct timespec *time, const struct timespec *add ) { uint32_t seconds = add->tv_sec; 20099b4: f0 06 40 00 ld [ %i1 ], %i0 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; 20099b8: c4 00 60 04 ld [ %g1 + 4 ], %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 20099bc: 86 00 c0 18 add %g3, %i0, %g3 time->tv_nsec += add->tv_nsec; 20099c0: 84 01 00 02 add %g4, %g2, %g2 ) { uint32_t seconds = add->tv_sec; /* Add the basics */ time->tv_sec += add->tv_sec; 20099c4: c6 20 40 00 st %g3, [ %g1 ] time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 20099c8: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4 20099cc: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff 20099d0: 80 a0 80 04 cmp %g2, %g4 20099d4: 08 80 00 0b bleu 2009a00 <_Timespec_Add_to+0x5c> 20099d8: c4 20 60 04 st %g2, [ %g1 + 4 ] time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND; 20099dc: 1b 31 19 4d sethi %hi(0xc4653400), %o5 20099e0: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 20099e4: 84 00 80 0d add %g2, %o5, %g2 * * This routines adds two timespecs. The second argument is added * to the first. */ uint32_t _Timespec_Add_to( 20099e8: 86 00 e0 01 inc %g3 /* Add the basics */ time->tv_sec += add->tv_sec; time->tv_nsec += add->tv_nsec; /* Now adjust it so nanoseconds is in range */ while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) { 20099ec: 80 a0 80 04 cmp %g2, %g4 20099f0: 18 bf ff fd bgu 20099e4 <_Timespec_Add_to+0x40> <== NEVER TAKEN 20099f4: b0 06 20 01 inc %i0 20099f8: c4 20 60 04 st %g2, [ %g1 + 4 ] 20099fc: c6 20 40 00 st %g3, [ %g1 ] time->tv_sec++; seconds++; } return seconds; } 2009a00: 81 c7 e0 08 ret 2009a04: 81 e8 00 00 restore =============================================================================== 0200ba68 <_Timespec_Greater_than>: bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { if ( lhs->tv_sec > rhs->tv_sec ) 200ba68: c6 02 00 00 ld [ %o0 ], %g3 200ba6c: c4 02 40 00 ld [ %o1 ], %g2 bool _Timespec_Greater_than( const struct timespec *lhs, const struct timespec *rhs ) { 200ba70: 82 10 00 08 mov %o0, %g1 if ( lhs->tv_sec > rhs->tv_sec ) 200ba74: 80 a0 c0 02 cmp %g3, %g2 200ba78: 14 80 00 0a bg 200baa0 <_Timespec_Greater_than+0x38> 200ba7c: 90 10 20 01 mov 1, %o0 return true; if ( lhs->tv_sec < rhs->tv_sec ) 200ba80: 80 a0 c0 02 cmp %g3, %g2 200ba84: 06 80 00 07 bl 200baa0 <_Timespec_Greater_than+0x38> <== NEVER TAKEN 200ba88: 90 10 20 00 clr %o0 #include #include #include bool _Timespec_Greater_than( 200ba8c: c4 00 60 04 ld [ %g1 + 4 ], %g2 200ba90: c2 02 60 04 ld [ %o1 + 4 ], %g1 200ba94: 80 a0 80 01 cmp %g2, %g1 200ba98: 04 80 00 04 ble 200baa8 <_Timespec_Greater_than+0x40> 200ba9c: 90 10 20 01 mov 1, %o0 /* ASSERT: lhs->tv_sec == rhs->tv_sec */ if ( lhs->tv_nsec > rhs->tv_nsec ) return true; return false; } 200baa0: 81 c3 e0 08 retl 200baa4: 01 00 00 00 nop 200baa8: 81 c3 e0 08 retl 200baac: 90 10 20 00 clr %o0 ! 0 =============================================================================== 02009bb4 <_User_extensions_Fatal>: void _User_extensions_Fatal ( Internal_errors_Source the_source, bool is_internal, Internal_errors_t the_error ) { 2009bb4: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009bb8: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009bbc: a2 14 63 28 or %l1, 0x328, %l1 ! 2015f28 <_User_extensions_List> 2009bc0: e0 04 60 08 ld [ %l1 + 8 ], %l0 2009bc4: 80 a4 00 11 cmp %l0, %l1 2009bc8: 02 80 00 0d be 2009bfc <_User_extensions_Fatal+0x48> <== NEVER TAKEN 2009bcc: b2 0e 60 ff and %i1, 0xff, %i1 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.fatal != NULL ) 2009bd0: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2009bd4: 80 a0 60 00 cmp %g1, 0 2009bd8: 02 80 00 05 be 2009bec <_User_extensions_Fatal+0x38> 2009bdc: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.fatal)( the_source, is_internal, the_error ); 2009be0: 92 10 00 19 mov %i1, %o1 2009be4: 9f c0 40 00 call %g1 2009be8: 94 10 00 1a mov %i2, %o2 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009bec: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009bf0: 80 a4 00 11 cmp %l0, %l1 2009bf4: 32 bf ff f8 bne,a 2009bd4 <_User_extensions_Fatal+0x20> 2009bf8: c2 04 20 30 ld [ %l0 + 0x30 ], %g1 2009bfc: 81 c7 e0 08 ret 2009c00: 81 e8 00 00 restore =============================================================================== 02009a60 <_User_extensions_Handler_initialization>: #include #include #include void _User_extensions_Handler_initialization(void) { 2009a60: 9d e3 bf a0 save %sp, -96, %sp User_extensions_Control *extension; uint32_t i; uint32_t number_of_extensions; User_extensions_Table *initial_extensions; number_of_extensions = Configuration.number_of_initial_extensions; 2009a64: 07 00 80 54 sethi %hi(0x2015000), %g3 2009a68: 86 10 e1 68 or %g3, 0x168, %g3 ! 2015168 initial_extensions = Configuration.User_extension_table; 2009a6c: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3 */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2009a70: 1b 00 80 57 sethi %hi(0x2015c00), %o5 2009a74: 09 00 80 57 sethi %hi(0x2015c00), %g4 2009a78: 84 13 63 28 or %o5, 0x328, %g2 2009a7c: 82 11 21 0c or %g4, 0x10c, %g1 2009a80: 96 00 a0 04 add %g2, 4, %o3 2009a84: 98 00 60 04 add %g1, 4, %o4 2009a88: d6 23 63 28 st %o3, [ %o5 + 0x328 ] the_chain->permanent_null = NULL; 2009a8c: c0 20 a0 04 clr [ %g2 + 4 ] the_chain->last = _Chain_Head(the_chain); 2009a90: c4 20 a0 08 st %g2, [ %g2 + 8 ] */ RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty( Chain_Control *the_chain ) { the_chain->first = _Chain_Tail(the_chain); 2009a94: d8 21 21 0c st %o4, [ %g4 + 0x10c ] the_chain->permanent_null = NULL; 2009a98: c0 20 60 04 clr [ %g1 + 4 ] the_chain->last = _Chain_Head(the_chain); 2009a9c: c2 20 60 08 st %g1, [ %g1 + 8 ] _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { 2009aa0: 80 a4 e0 00 cmp %l3, 0 2009aa4: 02 80 00 1b be 2009b10 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009aa8: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2 extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( number_of_extensions * sizeof( User_extensions_Control ) 2009aac: 83 2c a0 02 sll %l2, 2, %g1 2009ab0: a3 2c a0 04 sll %l2, 4, %l1 2009ab4: a2 24 40 01 sub %l1, %g1, %l1 2009ab8: a2 04 40 12 add %l1, %l2, %l1 2009abc: a3 2c 60 02 sll %l1, 2, %l1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009ac0: 40 00 01 9e call 200a138 <_Workspace_Allocate_or_fatal_error> 2009ac4: 90 10 00 11 mov %l1, %o0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009ac8: 92 10 20 00 clr %o1 _Chain_Initialize_empty( &_User_extensions_List ); _Chain_Initialize_empty( &_User_extensions_Switches_list ); if ( initial_extensions ) { extension = (User_extensions_Control *) _Workspace_Allocate_or_fatal_error( 2009acc: a0 10 00 08 mov %o0, %l0 number_of_extensions * sizeof( User_extensions_Control ) ); memset ( 2009ad0: 40 00 16 07 call 200f2ec 2009ad4: 94 10 00 11 mov %l1, %o2 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009ad8: 80 a4 a0 00 cmp %l2, 0 2009adc: 02 80 00 0d be 2009b10 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN 2009ae0: a2 10 20 00 clr %l1 #include #include #include #include void _User_extensions_Handler_initialization(void) 2009ae4: 93 2c 60 05 sll %l1, 5, %o1 RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table( User_extensions_Control *extension, const User_extensions_Table *extension_table ) { extension->Callouts = *extension_table; 2009ae8: 94 10 20 20 mov 0x20, %o2 2009aec: 92 04 c0 09 add %l3, %o1, %o1 2009af0: 40 00 15 c6 call 200f208 2009af4: 90 04 20 14 add %l0, 0x14, %o0 _User_extensions_Add_set( extension ); 2009af8: 40 00 0c fe call 200cef0 <_User_extensions_Add_set> 2009afc: 90 10 00 10 mov %l0, %o0 extension, 0, number_of_extensions * sizeof( User_extensions_Control ) ); for ( i = 0 ; i < number_of_extensions ; i++ ) { 2009b00: a2 04 60 01 inc %l1 2009b04: 80 a4 80 11 cmp %l2, %l1 2009b08: 18 bf ff f7 bgu 2009ae4 <_User_extensions_Handler_initialization+0x84> 2009b0c: a0 04 20 34 add %l0, 0x34, %l0 2009b10: 81 c7 e0 08 ret 2009b14: 81 e8 00 00 restore =============================================================================== 02009b18 <_User_extensions_Thread_begin>: #include void _User_extensions_Thread_begin ( Thread_Control *executing ) { 2009b18: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; 2009b1c: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009b20: e0 04 63 28 ld [ %l1 + 0x328 ], %l0 ! 2015f28 <_User_extensions_List> 2009b24: a2 14 63 28 or %l1, 0x328, %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 2009b28: a2 04 60 04 add %l1, 4, %l1 2009b2c: 80 a4 00 11 cmp %l0, %l1 2009b30: 02 80 00 0c be 2009b60 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN 2009b34: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_begin != NULL ) 2009b38: c2 04 20 28 ld [ %l0 + 0x28 ], %g1 2009b3c: 80 a0 60 00 cmp %g1, 0 2009b40: 02 80 00 04 be 2009b50 <_User_extensions_Thread_begin+0x38> 2009b44: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_begin)( executing ); 2009b48: 9f c0 40 00 call %g1 2009b4c: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009b50: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; 2009b54: 80 a4 00 11 cmp %l0, %l1 2009b58: 32 bf ff f9 bne,a 2009b3c <_User_extensions_Thread_begin+0x24> 2009b5c: c2 04 20 28 ld [ %l0 + 0x28 ], %g1 2009b60: 81 c7 e0 08 ret 2009b64: 81 e8 00 00 restore =============================================================================== 02009c04 <_User_extensions_Thread_create>: #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009c04: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; 2009c08: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009c0c: e0 04 63 28 ld [ %l1 + 0x328 ], %l0 ! 2015f28 <_User_extensions_List> #include bool _User_extensions_Thread_create ( Thread_Control *the_thread ) { 2009c10: a6 10 00 18 mov %i0, %l3 Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; 2009c14: a2 14 63 28 or %l1, 0x328, %l1 2009c18: a2 04 60 04 add %l1, 4, %l1 2009c1c: 80 a4 00 11 cmp %l0, %l1 2009c20: 02 80 00 13 be 2009c6c <_User_extensions_Thread_create+0x68><== NEVER TAKEN 2009c24: b0 10 20 01 mov 1, %i0 the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { status = (*the_extension->Callouts.thread_create)( 2009c28: 25 00 80 57 sethi %hi(0x2015c00), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_create != NULL ) { 2009c2c: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 2009c30: 80 a0 60 00 cmp %g1, 0 2009c34: 02 80 00 08 be 2009c54 <_User_extensions_Thread_create+0x50> 2009c38: 84 14 a3 6c or %l2, 0x36c, %g2 status = (*the_extension->Callouts.thread_create)( 2009c3c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009c40: 9f c0 40 00 call %g1 2009c44: 92 10 00 13 mov %l3, %o1 _Thread_Executing, the_thread ); if ( !status ) 2009c48: 80 8a 20 ff btst 0xff, %o0 2009c4c: 22 80 00 08 be,a 2009c6c <_User_extensions_Thread_create+0x68> 2009c50: b0 10 20 00 clr %i0 User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009c54: e0 04 00 00 ld [ %l0 ], %l0 { Chain_Node *the_node; User_extensions_Control *the_extension; bool status; for ( the_node = _User_extensions_List.first ; 2009c58: 80 a4 00 11 cmp %l0, %l1 2009c5c: 32 bf ff f5 bne,a 2009c30 <_User_extensions_Thread_create+0x2c> 2009c60: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 if ( !status ) return false; } } return true; 2009c64: 81 c7 e0 08 ret 2009c68: 91 e8 20 01 restore %g0, 1, %o0 } 2009c6c: 81 c7 e0 08 ret 2009c70: 81 e8 00 00 restore =============================================================================== 02009c74 <_User_extensions_Thread_delete>: #include void _User_extensions_Thread_delete ( Thread_Control *the_thread ) { 2009c74: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009c78: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009c7c: a2 14 63 28 or %l1, 0x328, %l1 ! 2015f28 <_User_extensions_List> 2009c80: e0 04 60 08 ld [ %l1 + 8 ], %l0 2009c84: 80 a4 00 11 cmp %l0, %l1 2009c88: 02 80 00 0d be 2009cbc <_User_extensions_Thread_delete+0x48><== NEVER TAKEN 2009c8c: 25 00 80 57 sethi %hi(0x2015c00), %l2 !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_delete != NULL ) 2009c90: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 2009c94: 80 a0 60 00 cmp %g1, 0 2009c98: 02 80 00 05 be 2009cac <_User_extensions_Thread_delete+0x38> 2009c9c: 84 14 a3 6c or %l2, 0x36c, %g2 (*the_extension->Callouts.thread_delete)( 2009ca0: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009ca4: 9f c0 40 00 call %g1 2009ca8: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009cac: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009cb0: 80 a4 00 11 cmp %l0, %l1 2009cb4: 32 bf ff f8 bne,a 2009c94 <_User_extensions_Thread_delete+0x20> 2009cb8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1 2009cbc: 81 c7 e0 08 ret 2009cc0: 81 e8 00 00 restore =============================================================================== 02009b68 <_User_extensions_Thread_exitted>: } void _User_extensions_Thread_exitted ( Thread_Control *executing ) { 2009b68: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009b6c: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009b70: a2 14 63 28 or %l1, 0x328, %l1 ! 2015f28 <_User_extensions_List> 2009b74: e0 04 60 08 ld [ %l1 + 8 ], %l0 2009b78: 80 a4 00 11 cmp %l0, %l1 2009b7c: 02 80 00 0c be 2009bac <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN 2009b80: 01 00 00 00 nop !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_exitted != NULL ) 2009b84: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 2009b88: 80 a0 60 00 cmp %g1, 0 2009b8c: 02 80 00 04 be 2009b9c <_User_extensions_Thread_exitted+0x34> 2009b90: 90 10 00 18 mov %i0, %o0 (*the_extension->Callouts.thread_exitted)( executing ); 2009b94: 9f c0 40 00 call %g1 2009b98: 01 00 00 00 nop Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; !_Chain_Is_head( &_User_extensions_List, the_node ) ; the_node = the_node->previous ) { 2009b9c: e0 04 20 04 ld [ %l0 + 4 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.last ; 2009ba0: 80 a4 00 11 cmp %l0, %l1 2009ba4: 32 bf ff f9 bne,a 2009b88 <_User_extensions_Thread_exitted+0x20> 2009ba8: c2 04 20 2c ld [ %l0 + 0x2c ], %g1 2009bac: 81 c7 e0 08 ret 2009bb0: 81 e8 00 00 restore =============================================================================== 0200aa08 <_User_extensions_Thread_restart>: #include void _User_extensions_Thread_restart ( Thread_Control *the_thread ) { 200aa08: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; 200aa0c: 23 00 80 74 sethi %hi(0x201d000), %l1 200aa10: e0 04 60 18 ld [ %l1 + 0x18 ], %l0 ! 201d018 <_User_extensions_List> 200aa14: a2 14 60 18 or %l1, 0x18, %l1 200aa18: a2 04 60 04 add %l1, 4, %l1 200aa1c: 80 a4 00 11 cmp %l0, %l1 200aa20: 02 80 00 0d be 200aa54 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN 200aa24: 25 00 80 74 sethi %hi(0x201d000), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_restart != NULL ) 200aa28: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200aa2c: 80 a0 60 00 cmp %g1, 0 200aa30: 02 80 00 05 be 200aa44 <_User_extensions_Thread_restart+0x3c> 200aa34: 84 14 a0 5c or %l2, 0x5c, %g2 (*the_extension->Callouts.thread_restart)( 200aa38: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 200aa3c: 9f c0 40 00 call %g1 200aa40: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 200aa44: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; 200aa48: 80 a4 00 11 cmp %l0, %l1 200aa4c: 32 bf ff f8 bne,a 200aa2c <_User_extensions_Thread_restart+0x24> 200aa50: c2 04 20 1c ld [ %l0 + 0x1c ], %g1 200aa54: 81 c7 e0 08 ret 200aa58: 81 e8 00 00 restore =============================================================================== 02009cc4 <_User_extensions_Thread_start>: #include void _User_extensions_Thread_start ( Thread_Control *the_thread ) { 2009cc4: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; 2009cc8: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009ccc: e0 04 63 28 ld [ %l1 + 0x328 ], %l0 ! 2015f28 <_User_extensions_List> 2009cd0: a2 14 63 28 or %l1, 0x328, %l1 2009cd4: a2 04 60 04 add %l1, 4, %l1 2009cd8: 80 a4 00 11 cmp %l0, %l1 2009cdc: 02 80 00 0d be 2009d10 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN 2009ce0: 25 00 80 57 sethi %hi(0x2015c00), %l2 !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { the_extension = (User_extensions_Control *) the_node; if ( the_extension->Callouts.thread_start != NULL ) 2009ce4: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2009ce8: 80 a0 60 00 cmp %g1, 0 2009cec: 02 80 00 05 be 2009d00 <_User_extensions_Thread_start+0x3c> 2009cf0: 84 14 a3 6c or %l2, 0x36c, %g2 (*the_extension->Callouts.thread_start)( 2009cf4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0 2009cf8: 9f c0 40 00 call %g1 2009cfc: 92 10 00 18 mov %i0, %o1 Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; !_Chain_Is_tail( &_User_extensions_List, the_node ) ; the_node = the_node->next ) { 2009d00: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Control *the_extension; for ( the_node = _User_extensions_List.first ; 2009d04: 80 a4 00 11 cmp %l0, %l1 2009d08: 32 bf ff f8 bne,a 2009ce8 <_User_extensions_Thread_start+0x24> 2009d0c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2009d10: 81 c7 e0 08 ret 2009d14: 81 e8 00 00 restore =============================================================================== 02009d18 <_User_extensions_Thread_switch>: void _User_extensions_Thread_switch ( Thread_Control *executing, Thread_Control *heir ) { 2009d18: 9d e3 bf a0 save %sp, -96, %sp Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _User_extensions_Switches_list.first ; 2009d1c: 23 00 80 57 sethi %hi(0x2015c00), %l1 2009d20: e0 04 61 0c ld [ %l1 + 0x10c ], %l0 ! 2015d0c <_User_extensions_Switches_list> 2009d24: a2 14 61 0c or %l1, 0x10c, %l1 2009d28: a2 04 60 04 add %l1, 4, %l1 2009d2c: 80 a4 00 11 cmp %l0, %l1 2009d30: 02 80 00 0a be 2009d58 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN 2009d34: 01 00 00 00 nop !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { the_extension_switch = (User_extensions_Switch_control *) the_node; (*the_extension_switch->thread_switch)( executing, heir ); 2009d38: c2 04 20 08 ld [ %l0 + 8 ], %g1 2009d3c: 90 10 00 18 mov %i0, %o0 2009d40: 9f c0 40 00 call %g1 2009d44: 92 10 00 19 mov %i1, %o1 Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _User_extensions_Switches_list.first ; !_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ; the_node = the_node->next ) { 2009d48: e0 04 00 00 ld [ %l0 ], %l0 ) { Chain_Node *the_node; User_extensions_Switch_control *the_extension_switch; for ( the_node = _User_extensions_Switches_list.first ; 2009d4c: 80 a4 00 11 cmp %l0, %l1 2009d50: 32 bf ff fb bne,a 2009d3c <_User_extensions_Thread_switch+0x24> 2009d54: c2 04 20 08 ld [ %l0 + 8 ], %g1 2009d58: 81 c7 e0 08 ret 2009d5c: 81 e8 00 00 restore =============================================================================== 0200bf54 <_Watchdog_Adjust>: void _Watchdog_Adjust( Chain_Control *header, Watchdog_Adjust_directions direction, Watchdog_Interval units ) { 200bf54: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; _ISR_Disable( level ); 200bf58: 7f ff dc ae call 2003210 200bf5c: a0 10 00 18 mov %i0, %l0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200bf60: c2 06 00 00 ld [ %i0 ], %g1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200bf64: a4 06 20 04 add %i0, 4, %l2 * hence the compiler must not assume *header to remain * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { 200bf68: 80 a0 40 12 cmp %g1, %l2 200bf6c: 02 80 00 1f be 200bfe8 <_Watchdog_Adjust+0x94> 200bf70: 80 a6 60 00 cmp %i1, 0 switch ( direction ) { 200bf74: 12 80 00 1f bne 200bff0 <_Watchdog_Adjust+0x9c> 200bf78: 80 a6 60 01 cmp %i1, 1 case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bf7c: 80 a6 a0 00 cmp %i2, 0 200bf80: 02 80 00 1a be 200bfe8 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bf84: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bf88: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 200bf8c: 80 a6 80 11 cmp %i2, %l1 200bf90: 1a 80 00 0b bcc 200bfbc <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN 200bf94: a6 10 20 01 mov 1, %l3 _Watchdog_First( header )->delta_interval -= units; 200bf98: 10 80 00 1d b 200c00c <_Watchdog_Adjust+0xb8> <== NOT EXECUTED 200bf9c: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED switch ( direction ) { case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; break; case WATCHDOG_FORWARD: while ( units ) { 200bfa0: b4 a6 80 11 subcc %i2, %l1, %i2 200bfa4: 02 80 00 11 be 200bfe8 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bfa8: 01 00 00 00 nop if ( units < _Watchdog_First( header )->delta_interval ) { 200bfac: e2 00 60 10 ld [ %g1 + 0x10 ], %l1 200bfb0: 80 a4 40 1a cmp %l1, %i2 200bfb4: 38 80 00 16 bgu,a 200c00c <_Watchdog_Adjust+0xb8> 200bfb8: a2 24 40 1a sub %l1, %i2, %l1 _Watchdog_First( header )->delta_interval -= units; break; } else { units -= _Watchdog_First( header )->delta_interval; _Watchdog_First( header )->delta_interval = 1; 200bfbc: e6 20 60 10 st %l3, [ %g1 + 0x10 ] _ISR_Enable( level ); 200bfc0: 7f ff dc 98 call 2003220 200bfc4: 01 00 00 00 nop _Watchdog_Tickle( header ); 200bfc8: 40 00 00 b3 call 200c294 <_Watchdog_Tickle> 200bfcc: 90 10 00 10 mov %l0, %o0 _ISR_Disable( level ); 200bfd0: 7f ff dc 90 call 2003210 200bfd4: 01 00 00 00 nop */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200bfd8: c4 04 00 00 ld [ %l0 ], %g2 if ( _Chain_Is_empty( header ) ) 200bfdc: 80 a4 80 02 cmp %l2, %g2 200bfe0: 12 bf ff f0 bne 200bfa0 <_Watchdog_Adjust+0x4c> 200bfe4: 82 10 00 02 mov %g2, %g1 } break; } } _ISR_Enable( level ); 200bfe8: 7f ff dc 8e call 2003220 200bfec: 91 e8 00 08 restore %g0, %o0, %o0 * unmodified across that call. * * Till Straumann, 7/2003 */ if ( !_Chain_Is_empty( header ) ) { switch ( direction ) { 200bff0: 12 bf ff fe bne 200bfe8 <_Watchdog_Adjust+0x94> <== NEVER TAKEN 200bff4: 01 00 00 00 nop case WATCHDOG_BACKWARD: _Watchdog_First( header )->delta_interval += units; 200bff8: c4 00 60 10 ld [ %g1 + 0x10 ], %g2 200bffc: b4 00 80 1a add %g2, %i2, %i2 200c000: f4 20 60 10 st %i2, [ %g1 + 0x10 ] } break; } } _ISR_Enable( level ); 200c004: 7f ff dc 87 call 2003220 200c008: 91 e8 00 08 restore %g0, %o0, %o0 break; case WATCHDOG_FORWARD: while ( units ) { if ( units < _Watchdog_First( header )->delta_interval ) { _Watchdog_First( header )->delta_interval -= units; break; 200c00c: 10 bf ff f7 b 200bfe8 <_Watchdog_Adjust+0x94> 200c010: e2 20 60 10 st %l1, [ %g1 + 0x10 ] =============================================================================== 02009f08 <_Watchdog_Remove>: */ Watchdog_States _Watchdog_Remove( Watchdog_Control *the_watchdog ) { 2009f08: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); 2009f0c: 7f ff e0 e2 call 2002294 2009f10: 01 00 00 00 nop previous_state = the_watchdog->state; 2009f14: e0 06 20 08 ld [ %i0 + 8 ], %l0 switch ( previous_state ) { 2009f18: 80 a4 20 01 cmp %l0, 1 2009f1c: 02 80 00 2a be 2009fc4 <_Watchdog_Remove+0xbc> 2009f20: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009f24: 1a 80 00 09 bcc 2009f48 <_Watchdog_Remove+0x40> 2009f28: 80 a4 20 03 cmp %l0, 3 _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009f2c: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009f30: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 ! 2015e44 <_Watchdog_Ticks_since_boot> 2009f34: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009f38: 7f ff e0 db call 20022a4 2009f3c: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009f40: 81 c7 e0 08 ret 2009f44: 81 e8 00 00 restore Watchdog_States previous_state; Watchdog_Control *next_watchdog; _ISR_Disable( level ); previous_state = the_watchdog->state; switch ( previous_state ) { 2009f48: 18 bf ff fa bgu 2009f30 <_Watchdog_Remove+0x28> <== NEVER TAKEN 2009f4c: 03 00 80 57 sethi %hi(0x2015c00), %g1 } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; _ISR_Enable( level ); return( previous_state ); } 2009f50: c2 06 00 00 ld [ %i0 ], %g1 break; case WATCHDOG_ACTIVE: case WATCHDOG_REMOVE_IT: the_watchdog->state = WATCHDOG_INACTIVE; 2009f54: c0 26 20 08 clr [ %i0 + 8 ] next_watchdog = _Watchdog_Next( the_watchdog ); if ( _Watchdog_Next(next_watchdog) ) 2009f58: c4 00 40 00 ld [ %g1 ], %g2 2009f5c: 80 a0 a0 00 cmp %g2, 0 2009f60: 02 80 00 07 be 2009f7c <_Watchdog_Remove+0x74> 2009f64: 05 00 80 57 sethi %hi(0x2015c00), %g2 next_watchdog->delta_interval += the_watchdog->delta_interval; 2009f68: c6 00 60 10 ld [ %g1 + 0x10 ], %g3 2009f6c: c4 06 20 10 ld [ %i0 + 0x10 ], %g2 2009f70: 84 00 c0 02 add %g3, %g2, %g2 2009f74: c4 20 60 10 st %g2, [ %g1 + 0x10 ] if ( _Watchdog_Sync_count ) 2009f78: 05 00 80 57 sethi %hi(0x2015c00), %g2 2009f7c: c4 00 a2 40 ld [ %g2 + 0x240 ], %g2 ! 2015e40 <_Watchdog_Sync_count> 2009f80: 80 a0 a0 00 cmp %g2, 0 2009f84: 22 80 00 07 be,a 2009fa0 <_Watchdog_Remove+0x98> 2009f88: c4 06 20 04 ld [ %i0 + 4 ], %g2 _Watchdog_Sync_level = _ISR_Nest_level; 2009f8c: 05 00 80 57 sethi %hi(0x2015c00), %g2 2009f90: c6 00 a3 74 ld [ %g2 + 0x374 ], %g3 ! 2015f74 <_Per_CPU_Information+0x8> 2009f94: 05 00 80 57 sethi %hi(0x2015c00), %g2 2009f98: c6 20 a1 b4 st %g3, [ %g2 + 0x1b4 ] ! 2015db4 <_Watchdog_Sync_level> { Chain_Node *next; Chain_Node *previous; next = the_node->next; previous = the_node->previous; 2009f9c: c4 06 20 04 ld [ %i0 + 4 ], %g2 next->previous = previous; 2009fa0: c4 20 60 04 st %g2, [ %g1 + 4 ] previous->next = next; 2009fa4: c2 20 80 00 st %g1, [ %g2 ] _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009fa8: 03 00 80 57 sethi %hi(0x2015c00), %g1 2009fac: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 ! 2015e44 <_Watchdog_Ticks_since_boot> 2009fb0: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009fb4: 7f ff e0 bc call 20022a4 2009fb8: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009fbc: 81 c7 e0 08 ret 2009fc0: 81 e8 00 00 restore _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009fc4: c2 00 62 44 ld [ %g1 + 0x244 ], %g1 /* * It is not actually on the chain so just change the state and * the Insert operation we interrupted will be aborted. */ the_watchdog->state = WATCHDOG_INACTIVE; 2009fc8: c0 26 20 08 clr [ %i0 + 8 ] _Watchdog_Sync_level = _ISR_Nest_level; _Chain_Extract_unprotected( &the_watchdog->Node ); break; } the_watchdog->stop_time = _Watchdog_Ticks_since_boot; 2009fcc: c2 26 20 18 st %g1, [ %i0 + 0x18 ] _ISR_Enable( level ); 2009fd0: 7f ff e0 b5 call 20022a4 2009fd4: b0 10 00 10 mov %l0, %i0 return( previous_state ); } 2009fd8: 81 c7 e0 08 ret 2009fdc: 81 e8 00 00 restore =============================================================================== 0200b7b0 <_Watchdog_Report_chain>: void _Watchdog_Report_chain( const char *name, Chain_Control *header ) { 200b7b0: 9d e3 bf a0 save %sp, -96, %sp ISR_Level level; Chain_Node *node; _ISR_Disable( level ); 200b7b4: 7f ff dd 69 call 2002d58 200b7b8: 01 00 00 00 nop 200b7bc: a0 10 00 08 mov %o0, %l0 printk( "Watchdog Chain: %s %p\n", name, header ); 200b7c0: 11 00 80 71 sethi %hi(0x201c400), %o0 200b7c4: 94 10 00 19 mov %i1, %o2 200b7c8: 92 10 00 18 mov %i0, %o1 200b7cc: 7f ff e4 2f call 2004888 200b7d0: 90 12 21 88 or %o0, 0x188, %o0 */ RTEMS_INLINE_ROUTINE bool _Chain_Is_empty( Chain_Control *the_chain ) { return (the_chain->first == _Chain_Tail(the_chain)); 200b7d4: e2 06 40 00 ld [ %i1 ], %l1 */ RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail( Chain_Control *the_chain ) { return (Chain_Node *) &the_chain->permanent_null; 200b7d8: b2 06 60 04 add %i1, 4, %i1 if ( !_Chain_Is_empty( header ) ) { 200b7dc: 80 a4 40 19 cmp %l1, %i1 200b7e0: 02 80 00 0f be 200b81c <_Watchdog_Report_chain+0x6c> 200b7e4: 11 00 80 71 sethi %hi(0x201c400), %o0 node != _Chain_Tail(header) ; node = node->next ) { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); 200b7e8: 92 10 00 11 mov %l1, %o1 200b7ec: 40 00 00 0f call 200b828 <_Watchdog_Report> 200b7f0: 90 10 20 00 clr %o0 _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; node != _Chain_Tail(header) ; node = node->next ) 200b7f4: e2 04 40 00 ld [ %l1 ], %l1 Chain_Node *node; _ISR_Disable( level ); printk( "Watchdog Chain: %s %p\n", name, header ); if ( !_Chain_Is_empty( header ) ) { for ( node = header->first ; 200b7f8: 80 a4 40 19 cmp %l1, %i1 200b7fc: 12 bf ff fc bne 200b7ec <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN 200b800: 92 10 00 11 mov %l1, %o1 { Watchdog_Control *watch = (Watchdog_Control *) node; _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); 200b804: 11 00 80 71 sethi %hi(0x201c400), %o0 200b808: 92 10 00 18 mov %i0, %o1 200b80c: 7f ff e4 1f call 2004888 200b810: 90 12 21 a0 or %o0, 0x1a0, %o0 } else { printk( "Chain is empty\n" ); } _ISR_Enable( level ); 200b814: 7f ff dd 55 call 2002d68 200b818: 91 e8 00 10 restore %g0, %l0, %o0 _Watchdog_Report( NULL, watch ); } printk( "== end of %s \n", name ); } else { printk( "Chain is empty\n" ); 200b81c: 7f ff e4 1b call 2004888 200b820: 90 12 21 b0 or %o0, 0x1b0, %o0 200b824: 30 bf ff fc b,a 200b814 <_Watchdog_Report_chain+0x64> =============================================================================== 0200ee38 : rtems_name name, rtems_attribute attribute_set, uint32_t maximum_waiters, rtems_id *id ) { 200ee38: 9d e3 bf 98 save %sp, -104, %sp 200ee3c: a0 10 00 18 mov %i0, %l0 Barrier_Control *the_barrier; CORE_barrier_Attributes the_attributes; if ( !rtems_is_name_valid( name ) ) 200ee40: 80 a4 20 00 cmp %l0, 0 200ee44: 02 80 00 23 be 200eed0 200ee48: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !id ) 200ee4c: 80 a6 e0 00 cmp %i3, 0 200ee50: 02 80 00 20 be 200eed0 200ee54: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; /* Initialize core barrier attributes */ if ( _Attributes_Is_barrier_automatic( attribute_set ) ) { 200ee58: 80 8e 60 10 btst 0x10, %i1 200ee5c: 02 80 00 1f be 200eed8 200ee60: 80 a6 a0 00 cmp %i2, 0 the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE; 200ee64: c0 27 bf f8 clr [ %fp + -8 ] if ( maximum_waiters == 0 ) 200ee68: 02 80 00 1a be 200eed0 200ee6c: b0 10 20 0a mov 0xa, %i0 200ee70: 03 00 80 83 sethi %hi(0x2020c00), %g1 200ee74: c4 00 61 88 ld [ %g1 + 0x188 ], %g2 ! 2020d88 <_Thread_Dispatch_disable_level> return RTEMS_INVALID_NUMBER; } else the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE; the_attributes.maximum_count = maximum_waiters; 200ee78: f4 27 bf fc st %i2, [ %fp + -4 ] 200ee7c: 84 00 a0 01 inc %g2 200ee80: c4 20 61 88 st %g2, [ %g1 + 0x188 ] * This function allocates a barrier control block from * the inactive chain of free barrier control blocks. */ RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void ) { return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information ); 200ee84: 25 00 80 84 sethi %hi(0x2021000), %l2 200ee88: 7f ff eb ec call 2009e38 <_Objects_Allocate> 200ee8c: 90 14 a0 08 or %l2, 8, %o0 ! 2021008 <_Barrier_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_barrier = _Barrier_Allocate(); if ( !the_barrier ) { 200ee90: a2 92 20 00 orcc %o0, 0, %l1 200ee94: 02 80 00 1e be 200ef0c <== NEVER TAKEN 200ee98: 90 04 60 14 add %l1, 0x14, %o0 return RTEMS_TOO_MANY; } the_barrier->attribute_set = attribute_set; _CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes ); 200ee9c: 92 07 bf f8 add %fp, -8, %o1 200eea0: 40 00 02 42 call 200f7a8 <_CORE_barrier_Initialize> 200eea4: f2 24 60 10 st %i1, [ %l1 + 0x10 ] 200eea8: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 *id = the_barrier->Object.id; _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 200eeac: a4 14 a0 08 or %l2, 8, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200eeb0: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 200eeb4: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 200eeb8: 85 28 a0 02 sll %g2, 2, %g2 200eebc: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 200eec0: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Barrier_Information, &the_barrier->Object, (Objects_Name) name ); *id = the_barrier->Object.id; 200eec4: c2 26 c0 00 st %g1, [ %i3 ] _Thread_Enable_dispatch(); 200eec8: 7f ff ef a3 call 200ad54 <_Thread_Enable_dispatch> 200eecc: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; } 200eed0: 81 c7 e0 08 ret 200eed4: 81 e8 00 00 restore if ( _Attributes_Is_barrier_automatic( attribute_set ) ) { the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE; if ( maximum_waiters == 0 ) return RTEMS_INVALID_NUMBER; } else the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE; 200eed8: 82 10 20 01 mov 1, %g1 200eedc: c2 27 bf f8 st %g1, [ %fp + -8 ] 200eee0: 03 00 80 83 sethi %hi(0x2020c00), %g1 200eee4: c4 00 61 88 ld [ %g1 + 0x188 ], %g2 ! 2020d88 <_Thread_Dispatch_disable_level> the_attributes.maximum_count = maximum_waiters; 200eee8: f4 27 bf fc st %i2, [ %fp + -4 ] 200eeec: 84 00 a0 01 inc %g2 200eef0: c4 20 61 88 st %g2, [ %g1 + 0x188 ] 200eef4: 25 00 80 84 sethi %hi(0x2021000), %l2 200eef8: 7f ff eb d0 call 2009e38 <_Objects_Allocate> 200eefc: 90 14 a0 08 or %l2, 8, %o0 ! 2021008 <_Barrier_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_barrier = _Barrier_Allocate(); if ( !the_barrier ) { 200ef00: a2 92 20 00 orcc %o0, 0, %l1 200ef04: 12 bf ff e6 bne 200ee9c 200ef08: 90 04 60 14 add %l1, 0x14, %o0 _Thread_Enable_dispatch(); 200ef0c: 7f ff ef 92 call 200ad54 <_Thread_Enable_dispatch> 200ef10: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 200ef14: 81 c7 e0 08 ret 200ef18: 81 e8 00 00 restore =============================================================================== 020071b4 : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 20071b4: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_append_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Append_with_empty_check( chain, node ); 20071b8: 90 10 00 18 mov %i0, %o0 20071bc: 40 00 01 63 call 2007748 <_Chain_Append_with_empty_check> 20071c0: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { 20071c4: 80 8a 20 ff btst 0xff, %o0 20071c8: 12 80 00 04 bne 20071d8 <== ALWAYS TAKEN 20071cc: b0 10 20 00 clr %i0 sc = rtems_event_send( task, events ); } return sc; } 20071d0: 81 c7 e0 08 ret <== NOT EXECUTED 20071d4: 81 e8 00 00 restore <== NOT EXECUTED { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_append_with_empty_check( chain, node ); if ( was_empty ) { sc = rtems_event_send( task, events ); 20071d8: b0 10 00 1a mov %i2, %i0 20071dc: 7f ff fd 64 call 200676c 20071e0: 93 e8 00 1b restore %g0, %i3, %o1 =============================================================================== 020071e8 : rtems_chain_control *chain, rtems_id task, rtems_event_set events, rtems_chain_node **node ) { 20071e8: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_get_with_empty_check( rtems_chain_control *chain, rtems_chain_node **node ) { return _Chain_Get_with_empty_check( chain, node ); 20071ec: 90 10 00 18 mov %i0, %o0 20071f0: 40 00 01 7d call 20077e4 <_Chain_Get_with_empty_check> 20071f4: 92 10 00 1b mov %i3, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { 20071f8: 80 8a 20 ff btst 0xff, %o0 20071fc: 12 80 00 04 bne 200720c <== ALWAYS TAKEN 2007200: b0 10 20 00 clr %i0 sc = rtems_event_send( task, events ); } return sc; } 2007204: 81 c7 e0 08 ret <== NOT EXECUTED 2007208: 81 e8 00 00 restore <== NOT EXECUTED { rtems_status_code sc = RTEMS_SUCCESSFUL; bool is_empty = rtems_chain_get_with_empty_check( chain, node ); if ( is_empty ) { sc = rtems_event_send( task, events ); 200720c: b0 10 00 19 mov %i1, %i0 2007210: 7f ff fd 57 call 200676c 2007214: 93 e8 00 1a restore %g0, %i2, %o1 =============================================================================== 0200721c : rtems_chain_control *chain, rtems_event_set events, rtems_interval timeout, rtems_chain_node **node_ptr ) { 200721c: 9d e3 bf 98 save %sp, -104, %sp 2007220: a0 10 00 18 mov %i0, %l0 while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL ) { rtems_event_set out; sc = rtems_event_receive( 2007224: a4 07 bf fc add %fp, -4, %l2 */ RTEMS_INLINE_ROUTINE rtems_chain_node *rtems_chain_get( rtems_chain_control *the_chain ) { return _Chain_Get( the_chain ); 2007228: 40 00 01 87 call 2007844 <_Chain_Get> 200722c: 90 10 00 10 mov %l0, %o0 2007230: 92 10 20 00 clr %o1 2007234: a2 10 00 08 mov %o0, %l1 2007238: 94 10 00 1a mov %i2, %o2 200723c: 90 10 00 19 mov %i1, %o0 rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 2007240: 80 a4 60 00 cmp %l1, 0 2007244: 12 80 00 0a bne 200726c 2007248: 96 10 00 12 mov %l2, %o3 ) { rtems_event_set out; sc = rtems_event_receive( 200724c: 7f ff fc e5 call 20065e0 2007250: 01 00 00 00 nop ) { rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( 2007254: 80 a2 20 00 cmp %o0, 0 2007258: 02 bf ff f4 be 2007228 <== NEVER TAKEN 200725c: b0 10 00 08 mov %o0, %i0 timeout, &out ); } *node_ptr = node; 2007260: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 2007264: 81 c7 e0 08 ret 2007268: 81 e8 00 00 restore rtems_status_code sc = RTEMS_SUCCESSFUL; rtems_chain_node *node = NULL; while ( sc == RTEMS_SUCCESSFUL && (node = rtems_chain_get( chain )) == NULL 200726c: 90 10 20 00 clr %o0 timeout, &out ); } *node_ptr = node; 2007270: e2 26 c0 00 st %l1, [ %i3 ] return sc; } 2007274: 81 c7 e0 08 ret 2007278: 91 e8 00 08 restore %g0, %o0, %o0 =============================================================================== 0200727c : rtems_chain_control *chain, rtems_chain_node *node, rtems_id task, rtems_event_set events ) { 200727c: 9d e3 bf a0 save %sp, -96, %sp RTEMS_INLINE_ROUTINE bool rtems_chain_prepend_with_empty_check( rtems_chain_control *chain, rtems_chain_node *node ) { return _Chain_Prepend_with_empty_check( chain, node ); 2007280: 90 10 00 18 mov %i0, %o0 2007284: 40 00 01 8e call 20078bc <_Chain_Prepend_with_empty_check> 2007288: 92 10 00 19 mov %i1, %o1 rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { 200728c: 80 8a 20 ff btst 0xff, %o0 2007290: 12 80 00 04 bne 20072a0 <== ALWAYS TAKEN 2007294: b0 10 20 00 clr %i0 sc = rtems_event_send( task, events ); } return sc; } 2007298: 81 c7 e0 08 ret <== NOT EXECUTED 200729c: 81 e8 00 00 restore <== NOT EXECUTED { rtems_status_code sc = RTEMS_SUCCESSFUL; bool was_empty = rtems_chain_prepend_with_empty_check( chain, node ); if (was_empty) { sc = rtems_event_send( task, events ); 20072a0: b0 10 00 1a mov %i2, %i0 20072a4: 7f ff fd 32 call 200676c 20072a8: 93 e8 00 1b restore %g0, %i3, %o1 =============================================================================== 02008090 : rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 2008090: 9d e3 bf a0 save %sp, -96, %sp rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) 2008094: 03 00 80 68 sethi %hi(0x201a000), %g1 2008098: c4 00 61 d4 ld [ %g1 + 0x1d4 ], %g2 ! 201a1d4 <_Per_CPU_Information+0x8> rtems_status_code rtems_io_register_driver( rtems_device_major_number major, const rtems_driver_address_table *driver_table, rtems_device_major_number *registered_major ) { 200809c: 86 10 00 19 mov %i1, %g3 rtems_device_major_number major_limit = _IO_Number_of_drivers; 20080a0: 03 00 80 68 sethi %hi(0x201a000), %g1 if ( rtems_interrupt_is_in_progress() ) 20080a4: 80 a0 a0 00 cmp %g2, 0 20080a8: 12 80 00 42 bne 20081b0 20080ac: c8 00 62 2c ld [ %g1 + 0x22c ], %g4 return RTEMS_CALLED_FROM_ISR; if ( registered_major == NULL ) 20080b0: 80 a6 a0 00 cmp %i2, 0 20080b4: 02 80 00 50 be 20081f4 20080b8: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; /* Set it to an invalid value */ *registered_major = major_limit; if ( driver_table == NULL ) 20080bc: 80 a6 60 00 cmp %i1, 0 20080c0: 02 80 00 4d be 20081f4 20080c4: c8 26 80 00 st %g4, [ %i2 ] static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20080c8: c4 06 40 00 ld [ %i1 ], %g2 20080cc: 80 a0 a0 00 cmp %g2, 0 20080d0: 22 80 00 46 be,a 20081e8 20080d4: c4 06 60 04 ld [ %i1 + 4 ], %g2 return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; if ( major >= major_limit ) 20080d8: 80 a1 00 18 cmp %g4, %i0 20080dc: 08 80 00 33 bleu 20081a8 20080e0: 01 00 00 00 nop rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 20080e4: 05 00 80 67 sethi %hi(0x2019c00), %g2 20080e8: c8 00 a3 68 ld [ %g2 + 0x368 ], %g4 ! 2019f68 <_Thread_Dispatch_disable_level> 20080ec: 88 01 20 01 inc %g4 20080f0: c8 20 a3 68 st %g4, [ %g2 + 0x368 ] return RTEMS_INVALID_NUMBER; _Thread_Disable_dispatch(); if ( major == 0 ) { 20080f4: 80 a6 20 00 cmp %i0, 0 20080f8: 12 80 00 30 bne 20081b8 20080fc: 1b 00 80 68 sethi %hi(0x201a000), %o5 static rtems_status_code rtems_io_obtain_major_number( rtems_device_major_number *major ) { rtems_device_major_number n = _IO_Number_of_drivers; 2008100: c8 00 62 2c ld [ %g1 + 0x22c ], %g4 rtems_device_major_number m = 0; /* major is error checked by caller */ for ( m = 0; m < n; ++m ) { 2008104: 80 a1 20 00 cmp %g4, 0 2008108: 22 80 00 3d be,a 20081fc <== NEVER TAKEN 200810c: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED 2008110: 10 80 00 05 b 2008124 2008114: c2 03 62 30 ld [ %o5 + 0x230 ], %g1 2008118: 80 a1 00 18 cmp %g4, %i0 200811c: 08 80 00 0a bleu 2008144 2008120: 82 00 60 18 add %g1, 0x18, %g1 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 2008124: c4 00 40 00 ld [ %g1 ], %g2 2008128: 80 a0 a0 00 cmp %g2, 0 200812c: 32 bf ff fb bne,a 2008118 2008130: b0 06 20 01 inc %i0 2008134: c4 00 60 04 ld [ %g1 + 4 ], %g2 2008138: 80 a0 a0 00 cmp %g2, 0 200813c: 32 bf ff f7 bne,a 2008118 2008140: b0 06 20 01 inc %i0 } /* Assigns invalid value in case of failure */ *major = m; if ( m != n ) 2008144: 80 a1 00 18 cmp %g4, %i0 2008148: 02 80 00 2d be 20081fc 200814c: f0 26 80 00 st %i0, [ %i2 ] 2008150: 83 2e 20 03 sll %i0, 3, %g1 2008154: 85 2e 20 05 sll %i0, 5, %g2 2008158: 84 20 80 01 sub %g2, %g1, %g2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 200815c: c8 03 62 30 ld [ %o5 + 0x230 ], %g4 2008160: da 00 c0 00 ld [ %g3 ], %o5 2008164: 82 01 00 02 add %g4, %g2, %g1 2008168: da 21 00 02 st %o5, [ %g4 + %g2 ] 200816c: c4 00 e0 04 ld [ %g3 + 4 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 2008170: b2 10 20 00 clr %i1 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2008174: c4 20 60 04 st %g2, [ %g1 + 4 ] 2008178: c4 00 e0 08 ld [ %g3 + 8 ], %g2 _Thread_Enable_dispatch(); return rtems_io_initialize( major, 0, NULL ); 200817c: b4 10 20 00 clr %i2 } *registered_major = major; } _IO_Driver_address_table [major] = *driver_table; 2008180: c4 20 60 08 st %g2, [ %g1 + 8 ] 2008184: c4 00 e0 0c ld [ %g3 + 0xc ], %g2 2008188: c4 20 60 0c st %g2, [ %g1 + 0xc ] 200818c: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2 2008190: c4 20 60 10 st %g2, [ %g1 + 0x10 ] 2008194: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2 _Thread_Enable_dispatch(); 2008198: 40 00 07 36 call 2009e70 <_Thread_Enable_dispatch> 200819c: c4 20 60 14 st %g2, [ %g1 + 0x14 ] return rtems_io_initialize( major, 0, NULL ); 20081a0: 40 00 21 cf call 20108dc 20081a4: 81 e8 00 00 restore } 20081a8: 81 c7 e0 08 ret 20081ac: 91 e8 20 0a restore %g0, 0xa, %o0 ) { rtems_device_major_number major_limit = _IO_Number_of_drivers; if ( rtems_interrupt_is_in_progress() ) return RTEMS_CALLED_FROM_ISR; 20081b0: 81 c7 e0 08 ret 20081b4: 91 e8 20 12 restore %g0, 0x12, %o0 _Thread_Enable_dispatch(); return sc; } major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; 20081b8: c2 03 62 30 ld [ %o5 + 0x230 ], %g1 20081bc: 89 2e 20 05 sll %i0, 5, %g4 20081c0: 85 2e 20 03 sll %i0, 3, %g2 20081c4: 84 21 00 02 sub %g4, %g2, %g2 static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20081c8: c8 00 40 02 ld [ %g1 + %g2 ], %g4 20081cc: 80 a1 20 00 cmp %g4, 0 20081d0: 02 80 00 0f be 200820c 20081d4: 82 00 40 02 add %g1, %g2, %g1 major = *registered_major; } else { rtems_driver_address_table *const table = _IO_Driver_address_table + major; if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); 20081d8: 40 00 07 26 call 2009e70 <_Thread_Enable_dispatch> 20081dc: b0 10 20 0c mov 0xc, %i0 return RTEMS_RESOURCE_IN_USE; 20081e0: 81 c7 e0 08 ret 20081e4: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 20081e8: 80 a0 a0 00 cmp %g2, 0 20081ec: 32 bf ff bc bne,a 20080dc 20081f0: 80 a1 00 18 cmp %g4, %i0 if ( driver_table == NULL ) return RTEMS_INVALID_ADDRESS; if ( rtems_io_is_empty_table( driver_table ) ) return RTEMS_INVALID_ADDRESS; 20081f4: 81 c7 e0 08 ret 20081f8: 91 e8 20 09 restore %g0, 9, %o0 if ( major == 0 ) { rtems_status_code sc = rtems_io_obtain_major_number( registered_major ); if ( sc != RTEMS_SUCCESSFUL ) { _Thread_Enable_dispatch(); 20081fc: 40 00 07 1d call 2009e70 <_Thread_Enable_dispatch> 2008200: b0 10 20 05 mov 5, %i0 return sc; 2008204: 81 c7 e0 08 ret 2008208: 81 e8 00 00 restore static inline bool rtems_io_is_empty_table( const rtems_driver_address_table *table ) { return table->initialization_entry == NULL && table->open_entry == NULL; 200820c: c2 00 60 04 ld [ %g1 + 4 ], %g1 2008210: 80 a0 60 00 cmp %g1, 0 2008214: 12 bf ff f1 bne 20081d8 2008218: 01 00 00 00 nop if ( !rtems_io_is_empty_table( table ) ) { _Thread_Enable_dispatch(); return RTEMS_RESOURCE_IN_USE; } *registered_major = major; 200821c: 10 bf ff d0 b 200815c 2008220: f0 26 80 00 st %i0, [ %i2 ] =============================================================================== 02009774 : #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) { 2009774: 9d e3 bf a0 save %sp, -96, %sp uint32_t i; uint32_t api_index; Thread_Control *the_thread; Objects_Information *information; if ( !routine ) 2009778: 80 a6 20 00 cmp %i0, 0 200977c: 02 80 00 20 be 20097fc <== NEVER TAKEN 2009780: 25 00 80 9a sethi %hi(0x2026800), %l2 2009784: a4 14 a1 40 or %l2, 0x140, %l2 ! 2026940 <_Objects_Information_table+0x4> #endif #include #include void rtems_iterate_over_all_threads(rtems_per_thread_routine routine) 2009788: a6 04 a0 0c add %l2, 0xc, %l3 #if defined(RTEMS_DEBUG) if ( !_Objects_Information_table[ api_index ] ) continue; #endif information = _Objects_Information_table[ api_index ][ 1 ]; 200978c: c2 04 80 00 ld [ %l2 ], %g1 2009790: e2 00 60 04 ld [ %g1 + 4 ], %l1 if ( !information ) 2009794: 80 a4 60 00 cmp %l1, 0 2009798: 22 80 00 16 be,a 20097f0 200979c: a4 04 a0 04 add %l2, 4, %l2 continue; for ( i=1 ; i <= information->maximum ; i++ ) { 20097a0: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1 20097a4: 84 90 60 00 orcc %g1, 0, %g2 20097a8: 22 80 00 12 be,a 20097f0 <== NEVER TAKEN 20097ac: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED 20097b0: a0 10 20 01 mov 1, %l0 the_thread = (Thread_Control *)information->local_table[ i ]; 20097b4: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 20097b8: 83 2c 20 02 sll %l0, 2, %g1 20097bc: c2 00 c0 01 ld [ %g3 + %g1 ], %g1 if ( !the_thread ) 20097c0: 90 90 60 00 orcc %g1, 0, %o0 20097c4: 02 80 00 05 be 20097d8 20097c8: a0 04 20 01 inc %l0 continue; (*routine)(the_thread); 20097cc: 9f c6 00 00 call %i0 20097d0: 01 00 00 00 nop 20097d4: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2 information = _Objects_Information_table[ api_index ][ 1 ]; if ( !information ) continue; for ( i=1 ; i <= information->maximum ; i++ ) { 20097d8: 83 28 a0 10 sll %g2, 0x10, %g1 20097dc: 83 30 60 10 srl %g1, 0x10, %g1 20097e0: 80 a0 40 10 cmp %g1, %l0 20097e4: 3a bf ff f5 bcc,a 20097b8 20097e8: c6 04 60 1c ld [ %l1 + 0x1c ], %g3 20097ec: a4 04 a0 04 add %l2, 4, %l2 Objects_Information *information; if ( !routine ) return; for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) { 20097f0: 80 a4 80 13 cmp %l2, %l3 20097f4: 32 bf ff e7 bne,a 2009790 20097f8: c2 04 80 00 ld [ %l2 ], %g1 20097fc: 81 c7 e0 08 ret 2009800: 81 e8 00 00 restore =============================================================================== 020082f0 : rtems_status_code rtems_object_get_class_information( int the_api, int the_class, rtems_object_api_class_information *info ) { 20082f0: 9d e3 bf a0 save %sp, -96, %sp 20082f4: 90 10 00 18 mov %i0, %o0 int i; /* * Validate parameters and look up information structure. */ if ( !info ) 20082f8: 80 a6 a0 00 cmp %i2, 0 20082fc: 02 80 00 21 be 2008380 2008300: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 2008304: 93 2e 60 10 sll %i1, 0x10, %o1 if ( !obj_info ) return RTEMS_INVALID_NUMBER; 2008308: b0 10 20 0a mov 0xa, %i0 * Validate parameters and look up information structure. */ if ( !info ) return RTEMS_INVALID_ADDRESS; obj_info = _Objects_Get_information( the_api, the_class ); 200830c: 40 00 07 78 call 200a0ec <_Objects_Get_information> 2008310: 93 32 60 10 srl %o1, 0x10, %o1 if ( !obj_info ) 2008314: 80 a2 20 00 cmp %o0, 0 2008318: 02 80 00 1a be 2008380 200831c: 01 00 00 00 nop /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 2008320: c4 02 20 0c ld [ %o0 + 0xc ], %g2 info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; 2008324: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4 return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2008328: c6 02 20 08 ld [ %o0 + 8 ], %g3 info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 200832c: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1 /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; 2008330: c4 26 a0 04 st %g2, [ %i2 + 4 ] return RTEMS_INVALID_NUMBER; /* * Return information about this object class to the user. */ info->minimum_id = obj_info->minimum_id; 2008334: c6 26 80 00 st %g3, [ %i2 ] info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; 2008338: c2 2e a0 0c stb %g1, [ %i2 + 0xc ] info->maximum = obj_info->maximum; 200833c: c8 26 a0 08 st %g4, [ %i2 + 8 ] for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008340: 80 a1 20 00 cmp %g4, 0 2008344: 02 80 00 0d be 2008378 <== NEVER TAKEN 2008348: 84 10 20 00 clr %g2 200834c: da 02 20 1c ld [ %o0 + 0x1c ], %o5 2008350: 86 10 20 01 mov 1, %g3 2008354: 82 10 20 01 mov 1, %g1 if ( !obj_info->local_table[i] ) 2008358: 87 28 e0 02 sll %g3, 2, %g3 200835c: c6 03 40 03 ld [ %o5 + %g3 ], %g3 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 2008360: 82 00 60 01 inc %g1 if ( !obj_info->local_table[i] ) unallocated++; 2008364: 80 a0 00 03 cmp %g0, %g3 2008368: 84 60 bf ff subx %g2, -1, %g2 info->minimum_id = obj_info->minimum_id; info->maximum_id = obj_info->maximum_id; info->auto_extend = obj_info->auto_extend; info->maximum = obj_info->maximum; for ( unallocated=0, i=1 ; i <= info->maximum ; i++ ) 200836c: 80 a1 00 01 cmp %g4, %g1 2008370: 1a bf ff fa bcc 2008358 2008374: 86 10 00 01 mov %g1, %g3 if ( !obj_info->local_table[i] ) unallocated++; info->unallocated = unallocated; 2008378: c4 26 a0 10 st %g2, [ %i2 + 0x10 ] return RTEMS_SUCCESSFUL; 200837c: b0 10 20 00 clr %i0 } 2008380: 81 c7 e0 08 ret 2008384: 81 e8 00 00 restore =============================================================================== 0201417c : uint32_t length, uint32_t buffer_size, rtems_attribute attribute_set, rtems_id *id ) { 201417c: 9d e3 bf a0 save %sp, -96, %sp 2014180: a0 10 00 18 mov %i0, %l0 register Partition_Control *the_partition; if ( !rtems_is_name_valid( name ) ) 2014184: 80 a4 20 00 cmp %l0, 0 2014188: 02 80 00 34 be 2014258 201418c: b0 10 20 03 mov 3, %i0 return RTEMS_INVALID_NAME; if ( !starting_address ) 2014190: 80 a6 60 00 cmp %i1, 0 2014194: 02 80 00 31 be 2014258 2014198: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !id ) 201419c: 80 a7 60 00 cmp %i5, 0 20141a0: 02 80 00 2e be 2014258 <== NEVER TAKEN 20141a4: 80 a6 e0 00 cmp %i3, 0 return RTEMS_INVALID_ADDRESS; if ( length == 0 || buffer_size == 0 || length < buffer_size || 20141a8: 02 80 00 2e be 2014260 20141ac: 80 a6 a0 00 cmp %i2, 0 20141b0: 02 80 00 2c be 2014260 20141b4: 80 a6 80 1b cmp %i2, %i3 20141b8: 0a 80 00 28 bcs 2014258 20141bc: b0 10 20 08 mov 8, %i0 20141c0: 80 8e e0 07 btst 7, %i3 20141c4: 12 80 00 25 bne 2014258 20141c8: 80 8e 60 07 btst 7, %i1 !_Partition_Is_buffer_size_aligned( buffer_size ) ) return RTEMS_INVALID_SIZE; if ( !_Addresses_Is_aligned( starting_address ) ) 20141cc: 12 80 00 23 bne 2014258 20141d0: b0 10 20 09 mov 9, %i0 20141d4: 03 00 80 f1 sethi %hi(0x203c400), %g1 20141d8: c4 00 62 48 ld [ %g1 + 0x248 ], %g2 ! 203c648 <_Thread_Dispatch_disable_level> 20141dc: 84 00 a0 01 inc %g2 20141e0: c4 20 62 48 st %g2, [ %g1 + 0x248 ] * This function allocates a partition control block from * the inactive chain of free partition control blocks. */ RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void ) { return (Partition_Control *) _Objects_Allocate( &_Partition_Information ); 20141e4: 25 00 80 f1 sethi %hi(0x203c400), %l2 20141e8: 40 00 13 0c call 2018e18 <_Objects_Allocate> 20141ec: 90 14 a0 54 or %l2, 0x54, %o0 ! 203c454 <_Partition_Information> _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { 20141f0: a2 92 20 00 orcc %o0, 0, %l1 20141f4: 02 80 00 1d be 2014268 20141f8: 92 10 00 1b mov %i3, %o1 #endif the_partition->starting_address = starting_address; the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; 20141fc: f8 24 60 1c st %i4, [ %l1 + 0x1c ] _Thread_Enable_dispatch(); return RTEMS_TOO_MANY; } #endif the_partition->starting_address = starting_address; 2014200: f2 24 60 10 st %i1, [ %l1 + 0x10 ] the_partition->length = length; 2014204: f4 24 60 14 st %i2, [ %l1 + 0x14 ] the_partition->buffer_size = buffer_size; 2014208: f6 24 60 18 st %i3, [ %l1 + 0x18 ] the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; 201420c: c0 24 60 20 clr [ %l1 + 0x20 ] _Chain_Initialize( &the_partition->Memory, starting_address, length / buffer_size, buffer_size ); 2014210: 40 00 61 8e call 202c848 <.udiv> 2014214: 90 10 00 1a mov %i2, %o0 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014218: 92 10 00 19 mov %i1, %o1 length / buffer_size, buffer_size ); 201421c: 94 10 00 08 mov %o0, %o2 the_partition->length = length; the_partition->buffer_size = buffer_size; the_partition->attribute_set = attribute_set; the_partition->number_of_used_blocks = 0; _Chain_Initialize( &the_partition->Memory, starting_address, 2014220: 96 10 00 1b mov %i3, %o3 2014224: b8 04 60 24 add %l1, 0x24, %i4 2014228: 40 00 0c ca call 2017550 <_Chain_Initialize> 201422c: 90 10 00 1c mov %i4, %o0 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 2014230: c4 14 60 0a lduh [ %l1 + 0xa ], %g2 ); #endif _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } 2014234: a4 14 a0 54 or %l2, 0x54, %l2 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014238: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3 Objects_Information *information, Objects_Control *the_object, Objects_Name name ) { _Objects_Set_local_object( 201423c: c2 04 60 08 ld [ %l1 + 8 ], %g1 #if defined(RTEMS_DEBUG) if ( index > information->maximum ) return; #endif information->local_table[ index ] = the_object; 2014240: 85 28 a0 02 sll %g2, 2, %g2 2014244: e2 20 c0 02 st %l1, [ %g3 + %g2 ] information, _Objects_Get_index( the_object->id ), the_object ); the_object->name = name; 2014248: e0 24 60 0c st %l0, [ %l1 + 0xc ] &_Partition_Information, &the_partition->Object, (Objects_Name) name ); *id = the_partition->Object.id; 201424c: c2 27 40 00 st %g1, [ %i5 ] name, 0 /* Not used */ ); #endif _Thread_Enable_dispatch(); 2014250: 40 00 16 eb call 2019dfc <_Thread_Enable_dispatch> 2014254: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2014258: 81 c7 e0 08 ret 201425c: 81 e8 00 00 restore } 2014260: 81 c7 e0 08 ret 2014264: 91 e8 20 08 restore %g0, 8, %o0 _Thread_Disable_dispatch(); /* prevents deletion */ the_partition = _Partition_Allocate(); if ( !the_partition ) { _Thread_Enable_dispatch(); 2014268: 40 00 16 e5 call 2019dfc <_Thread_Enable_dispatch> 201426c: b0 10 20 05 mov 5, %i0 return RTEMS_TOO_MANY; 2014270: 81 c7 e0 08 ret 2014274: 81 e8 00 00 restore =============================================================================== 0200789c : rtems_status_code rtems_rate_monotonic_period( rtems_id id, rtems_interval length ) { 200789c: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Rate_monotonic_Control *) _Objects_Get( &_Rate_monotonic_Information, id, location ); 20078a0: 11 00 80 78 sethi %hi(0x201e000), %o0 20078a4: 92 10 00 18 mov %i0, %o1 20078a8: 90 12 22 04 or %o0, 0x204, %o0 20078ac: 40 00 09 76 call 2009e84 <_Objects_Get> 20078b0: 94 07 bf fc add %fp, -4, %o2 rtems_rate_monotonic_period_states local_state; ISR_Level level; the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { 20078b4: c2 07 bf fc ld [ %fp + -4 ], %g1 20078b8: 80 a0 60 00 cmp %g1, 0 20078bc: 02 80 00 04 be 20078cc 20078c0: a0 10 00 08 mov %o0, %l0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20078c4: 81 c7 e0 08 ret 20078c8: 91 e8 20 04 restore %g0, 4, %o0 the_period = _Rate_monotonic_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: if ( !_Thread_Is_executing( the_period->owner ) ) { 20078cc: c4 02 20 40 ld [ %o0 + 0x40 ], %g2 RTEMS_INLINE_ROUTINE bool _Thread_Is_executing ( const Thread_Control *the_thread ) { return ( the_thread == _Thread_Executing ); 20078d0: 23 00 80 79 sethi %hi(0x201e400), %l1 20078d4: a2 14 61 dc or %l1, 0x1dc, %l1 ! 201e5dc <_Per_CPU_Information> 20078d8: c2 04 60 0c ld [ %l1 + 0xc ], %g1 20078dc: 80 a0 80 01 cmp %g2, %g1 20078e0: 02 80 00 06 be 20078f8 20078e4: 80 a6 60 00 cmp %i1, 0 _Thread_Enable_dispatch(); 20078e8: 40 00 0b f9 call 200a8cc <_Thread_Enable_dispatch> 20078ec: b0 10 20 17 mov 0x17, %i0 return RTEMS_NOT_OWNER_OF_RESOURCE; 20078f0: 81 c7 e0 08 ret 20078f4: 81 e8 00 00 restore } if ( length == RTEMS_PERIOD_STATUS ) { 20078f8: 12 80 00 0f bne 2007934 20078fc: 01 00 00 00 nop switch ( the_period->state ) { 2007900: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 2007904: 80 a0 60 04 cmp %g1, 4 2007908: 08 80 00 06 bleu 2007920 <== ALWAYS TAKEN 200790c: b0 10 20 00 clr %i0 the_period->state = RATE_MONOTONIC_ACTIVE; the_period->next_length = length; _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 2007910: 40 00 0b ef call 200a8cc <_Thread_Enable_dispatch> 2007914: 01 00 00 00 nop return RTEMS_TIMEOUT; 2007918: 81 c7 e0 08 ret 200791c: 81 e8 00 00 restore _Thread_Enable_dispatch(); return RTEMS_NOT_OWNER_OF_RESOURCE; } if ( length == RTEMS_PERIOD_STATUS ) { switch ( the_period->state ) { 2007920: 83 28 60 02 sll %g1, 2, %g1 2007924: 05 00 80 70 sethi %hi(0x201c000), %g2 2007928: 84 10 a2 6c or %g2, 0x26c, %g2 ! 201c26c 200792c: 10 bf ff f9 b 2007910 2007930: f0 00 80 01 ld [ %g2 + %g1 ], %i0 } _Thread_Enable_dispatch(); return( return_value ); } _ISR_Disable( level ); 2007934: 7f ff ee 00 call 2003134 2007938: 01 00 00 00 nop 200793c: a6 10 00 08 mov %o0, %l3 if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { 2007940: e4 04 20 38 ld [ %l0 + 0x38 ], %l2 2007944: 80 a4 a0 00 cmp %l2, 0 2007948: 02 80 00 14 be 2007998 200794c: 80 a4 a0 02 cmp %l2, 2 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { 2007950: 02 80 00 29 be 20079f4 2007954: 80 a4 a0 04 cmp %l2, 4 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } if ( the_period->state == RATE_MONOTONIC_EXPIRED ) { 2007958: 12 bf ff e6 bne 20078f0 <== NEVER TAKEN 200795c: b0 10 20 04 mov 4, %i0 /* * Update statistics from the concluding period */ _Rate_monotonic_Update_statistics( the_period ); 2007960: 7f ff ff 8f call 200779c <_Rate_monotonic_Update_statistics> 2007964: 90 10 00 10 mov %l0, %o0 _ISR_Enable( level ); 2007968: 7f ff ed f7 call 2003144 200796c: 90 10 00 13 mov %l3, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 2007970: 82 10 20 02 mov 2, %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 2007974: 92 04 20 10 add %l0, 0x10, %o1 2007978: 11 00 80 79 sethi %hi(0x201e400), %o0 the_period->next_length = length; 200797c: f2 24 20 3c st %i1, [ %l0 + 0x3c ] 2007980: 90 12 20 40 or %o0, 0x40, %o0 */ _Rate_monotonic_Update_statistics( the_period ); _ISR_Enable( level ); the_period->state = RATE_MONOTONIC_ACTIVE; 2007984: c2 24 20 38 st %g1, [ %l0 + 0x38 ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 2007988: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 200798c: 40 00 11 31 call 200be50 <_Watchdog_Insert> 2007990: b0 10 20 06 mov 6, %i0 2007994: 30 bf ff df b,a 2007910 return( return_value ); } _ISR_Disable( level ); if ( the_period->state == RATE_MONOTONIC_INACTIVE ) { _ISR_Enable( level ); 2007998: 7f ff ed eb call 2003144 200799c: 01 00 00 00 nop /* * Baseline statistics information for the beginning of a period. */ _Rate_monotonic_Initiate_statistics( the_period ); 20079a0: 7f ff ff 63 call 200772c <_Rate_monotonic_Initiate_statistics> 20079a4: 90 10 00 10 mov %l0, %o0 the_period->state = RATE_MONOTONIC_ACTIVE; 20079a8: 82 10 20 02 mov 2, %g1 20079ac: 92 04 20 10 add %l0, 0x10, %o1 20079b0: c2 24 20 38 st %g1, [ %l0 + 0x38 ] 20079b4: 11 00 80 79 sethi %hi(0x201e400), %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20079b8: 03 00 80 1f sethi %hi(0x2007c00), %g1 ) { the_watchdog->initial = units; _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20079bc: 90 12 20 40 or %o0, 0x40, %o0 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20079c0: 82 10 61 70 or %g1, 0x170, %g1 the_watchdog->id = id; 20079c4: f0 24 20 30 st %i0, [ %l0 + 0x30 ] Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20079c8: c2 24 20 2c st %g1, [ %l0 + 0x2c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20079cc: c0 24 20 18 clr [ %l0 + 0x18 ] the_watchdog->routine = routine; the_watchdog->id = id; the_watchdog->user_data = user_data; 20079d0: c0 24 20 34 clr [ %l0 + 0x34 ] _Rate_monotonic_Timeout, id, NULL ); the_period->next_length = length; 20079d4: f2 24 20 3c st %i1, [ %l0 + 0x3c ] Watchdog_Control *the_watchdog, Watchdog_Interval units ) { the_watchdog->initial = units; 20079d8: f2 24 20 1c st %i1, [ %l0 + 0x1c ] _Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog ); 20079dc: 40 00 11 1d call 200be50 <_Watchdog_Insert> 20079e0: b0 10 20 00 clr %i0 _Watchdog_Insert_ticks( &the_period->Timer, length ); _Thread_Enable_dispatch(); 20079e4: 40 00 0b ba call 200a8cc <_Thread_Enable_dispatch> 20079e8: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20079ec: 81 c7 e0 08 ret 20079f0: 81 e8 00 00 restore if ( the_period->state == RATE_MONOTONIC_ACTIVE ) { /* * Update statistics from the concluding period. */ _Rate_monotonic_Update_statistics( the_period ); 20079f4: 7f ff ff 6a call 200779c <_Rate_monotonic_Update_statistics> 20079f8: 90 10 00 10 mov %l0, %o0 /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 20079fc: 82 10 20 01 mov 1, %g1 the_period->next_length = length; 2007a00: f2 24 20 3c st %i1, [ %l0 + 0x3c ] /* * This tells the _Rate_monotonic_Timeout that this task is * in the process of blocking on the period and that we * may be changing the length of the next period. */ the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING; 2007a04: c2 24 20 38 st %g1, [ %l0 + 0x38 ] the_period->next_length = length; _ISR_Enable( level ); 2007a08: 7f ff ed cf call 2003144 2007a0c: 90 10 00 13 mov %l3, %o0 _Thread_Executing->Wait.id = the_period->Object.id; 2007a10: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007a14: c4 04 20 08 ld [ %l0 + 8 ], %g2 _Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007a18: 90 10 00 01 mov %g1, %o0 2007a1c: 13 00 00 10 sethi %hi(0x4000), %o1 2007a20: 40 00 0e 3e call 200b318 <_Thread_Set_state> 2007a24: c4 20 60 20 st %g2, [ %g1 + 0x20 ] /* * Did the watchdog timer expire while we were actually blocking * on it? */ _ISR_Disable( level ); 2007a28: 7f ff ed c3 call 2003134 2007a2c: 01 00 00 00 nop local_state = the_period->state; 2007a30: e6 04 20 38 ld [ %l0 + 0x38 ], %l3 the_period->state = RATE_MONOTONIC_ACTIVE; 2007a34: e4 24 20 38 st %l2, [ %l0 + 0x38 ] _ISR_Enable( level ); 2007a38: 7f ff ed c3 call 2003144 2007a3c: 01 00 00 00 nop /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) 2007a40: 80 a4 e0 03 cmp %l3, 3 2007a44: 22 80 00 06 be,a 2007a5c 2007a48: d0 04 60 0c ld [ %l1 + 0xc ], %o0 _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); _Thread_Enable_dispatch(); 2007a4c: 40 00 0b a0 call 200a8cc <_Thread_Enable_dispatch> 2007a50: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 2007a54: 81 c7 e0 08 ret 2007a58: 81 e8 00 00 restore /* * If it did, then we want to unblock ourself and continue as * if nothing happen. The period was reset in the timeout routine. */ if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING ) _Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD ); 2007a5c: 40 00 0a 8f call 200a498 <_Thread_Clear_state> 2007a60: 13 00 00 10 sethi %hi(0x4000), %o1 2007a64: 30 bf ff fa b,a 2007a4c =============================================================================== 02007a68 : */ void rtems_rate_monotonic_report_statistics_with_plugin( void *context, rtems_printk_plugin_t print ) { 2007a68: 9d e3 bf 30 save %sp, -208, %sp rtems_id id; rtems_rate_monotonic_period_statistics the_stats; rtems_rate_monotonic_period_status the_status; char name[5]; if ( !print ) 2007a6c: 80 a6 60 00 cmp %i1, 0 2007a70: 02 80 00 4c be 2007ba0 <== NEVER TAKEN 2007a74: 90 10 00 18 mov %i0, %o0 return; (*print)( context, "Period information by period\n" ); 2007a78: 13 00 80 70 sethi %hi(0x201c000), %o1 2007a7c: 9f c6 40 00 call %i1 2007a80: 92 12 62 80 or %o1, 0x280, %o1 ! 201c280 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ (*print)( context, "--- CPU times are in seconds ---\n" ); 2007a84: 90 10 00 18 mov %i0, %o0 2007a88: 13 00 80 70 sethi %hi(0x201c000), %o1 2007a8c: 9f c6 40 00 call %i1 2007a90: 92 12 62 a0 or %o1, 0x2a0, %o1 ! 201c2a0 (*print)( context, "--- Wall times are in seconds ---\n" ); 2007a94: 90 10 00 18 mov %i0, %o0 2007a98: 13 00 80 70 sethi %hi(0x201c000), %o1 2007a9c: 9f c6 40 00 call %i1 2007aa0: 92 12 62 c8 or %o1, 0x2c8, %o1 ! 201c2c8 Be sure to test the various cases. (*print)( context,"\ 1234567890123456789012345678901234567890123456789012345678901234567890123456789\ \n"); */ (*print)( context, " ID OWNER COUNT MISSED " 2007aa4: 90 10 00 18 mov %i0, %o0 2007aa8: 13 00 80 70 sethi %hi(0x201c000), %o1 2007aac: 9f c6 40 00 call %i1 2007ab0: 92 12 62 f0 or %o1, 0x2f0, %o1 ! 201c2f0 #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ " " #endif " WALL TIME\n" ); (*print)( context, " " 2007ab4: 90 10 00 18 mov %i0, %o0 2007ab8: 13 00 80 70 sethi %hi(0x201c000), %o1 2007abc: 9f c6 40 00 call %i1 2007ac0: 92 12 63 40 or %o1, 0x340, %o1 ! 201c340 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007ac4: 23 00 80 78 sethi %hi(0x201e000), %l1 2007ac8: a2 14 62 04 or %l1, 0x204, %l1 ! 201e204 <_Rate_monotonic_Information> 2007acc: e0 04 60 08 ld [ %l1 + 8 ], %l0 2007ad0: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007ad4: 80 a4 00 01 cmp %l0, %g1 2007ad8: 18 80 00 32 bgu 2007ba0 <== NEVER TAKEN 2007adc: 2f 00 80 70 sethi %hi(0x201c000), %l7 struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); (*print)( context, 2007ae0: 39 00 80 70 sethi %hi(0x201c000), %i4 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007ae4: 2b 00 80 6d sethi %hi(0x201b400), %l5 2007ae8: a4 07 bf a0 add %fp, -96, %l2 status = rtems_rate_monotonic_get_statistics( id, &the_stats ); if ( status != RTEMS_SUCCESSFUL ) continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 2007aec: ba 07 bf d8 add %fp, -40, %i5 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007af0: a6 07 bf f8 add %fp, -8, %l3 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007af4: ae 15 e3 90 or %l7, 0x390, %l7 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; 2007af8: ac 07 bf b8 add %fp, -72, %l6 _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007afc: a8 07 bf f0 add %fp, -16, %l4 (*print)( context, 2007b00: b8 17 23 a8 or %i4, 0x3a8, %i4 { #ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__ struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; 2007b04: b4 07 bf d0 add %fp, -48, %i2 /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { (*print)( context, "\n" ); 2007b08: 10 80 00 06 b 2007b20 2007b0c: aa 15 61 98 or %l5, 0x198, %l5 * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007b10: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b14: 80 a0 40 10 cmp %g1, %l0 2007b18: 0a 80 00 22 bcs 2007ba0 2007b1c: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_get_statistics( id, &the_stats ); 2007b20: 90 10 00 10 mov %l0, %o0 2007b24: 40 00 19 ca call 200e24c 2007b28: 92 10 00 12 mov %l2, %o1 if ( status != RTEMS_SUCCESSFUL ) 2007b2c: 80 a2 20 00 cmp %o0, 0 2007b30: 32 bf ff f8 bne,a 2007b10 2007b34: c2 04 60 0c ld [ %l1 + 0xc ], %g1 continue; /* If the above passed, so should this but check it anyway */ status = rtems_rate_monotonic_get_status( id, &the_status ); 2007b38: 92 10 00 1d mov %i5, %o1 2007b3c: 40 00 19 f3 call 200e308 2007b40: 90 10 00 10 mov %l0, %o0 #if defined(RTEMS_DEBUG) if ( status != RTEMS_SUCCESSFUL ) continue; #endif rtems_object_get_name( the_status.owner, sizeof(name), name ); 2007b44: d0 07 bf d8 ld [ %fp + -40 ], %o0 2007b48: 94 10 00 13 mov %l3, %o2 2007b4c: 40 00 00 b9 call 2007e30 2007b50: 92 10 20 05 mov 5, %o1 /* * Print part of report line that is not dependent on granularity */ (*print)( context, 2007b54: d8 1f bf a0 ldd [ %fp + -96 ], %o4 2007b58: 92 10 00 17 mov %l7, %o1 2007b5c: 94 10 00 10 mov %l0, %o2 2007b60: 90 10 00 18 mov %i0, %o0 2007b64: 9f c6 40 00 call %i1 2007b68: 96 10 00 13 mov %l3, %o3 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007b6c: c2 07 bf a0 ld [ %fp + -96 ], %g1 struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007b70: 94 10 00 14 mov %l4, %o2 2007b74: 90 10 00 16 mov %l6, %o0 ); /* * If the count is zero, don't print statistics */ if (the_stats.count == 0) { 2007b78: 80 a0 60 00 cmp %g1, 0 2007b7c: 12 80 00 0b bne 2007ba8 2007b80: 92 10 00 15 mov %l5, %o1 (*print)( context, "\n" ); 2007b84: 9f c6 40 00 call %i1 2007b88: 90 10 00 18 mov %i0, %o0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b8c: c2 04 60 0c ld [ %l1 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007b90: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007b94: 80 a0 40 10 cmp %g1, %l0 2007b98: 1a bf ff e3 bcc 2007b24 <== ALWAYS TAKEN 2007b9c: 90 10 00 10 mov %l0, %o0 2007ba0: 81 c7 e0 08 ret 2007ba4: 81 e8 00 00 restore struct timespec cpu_average; struct timespec *min_cpu = &the_stats.min_cpu_time; struct timespec *max_cpu = &the_stats.max_cpu_time; struct timespec *total_cpu = &the_stats.total_cpu_time; _Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average ); 2007ba8: 40 00 0f 6e call 200b960 <_Timespec_Divide_by_integer> 2007bac: 92 10 00 01 mov %g1, %o1 (*print)( context, 2007bb0: d0 07 bf ac ld [ %fp + -84 ], %o0 2007bb4: 40 00 46 7a call 201959c <.div> 2007bb8: 92 10 23 e8 mov 0x3e8, %o1 2007bbc: 96 10 00 08 mov %o0, %o3 2007bc0: d0 07 bf b4 ld [ %fp + -76 ], %o0 2007bc4: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007bc8: 40 00 46 75 call 201959c <.div> 2007bcc: 92 10 23 e8 mov 0x3e8, %o1 2007bd0: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007bd4: b6 10 00 08 mov %o0, %i3 2007bd8: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007bdc: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007be0: 40 00 46 6f call 201959c <.div> 2007be4: 92 10 23 e8 mov 0x3e8, %o1 2007be8: d8 07 bf b0 ld [ %fp + -80 ], %o4 2007bec: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007bf0: d4 07 bf a8 ld [ %fp + -88 ], %o2 2007bf4: 9a 10 00 1b mov %i3, %o5 2007bf8: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007bfc: 92 10 00 1c mov %i4, %o1 2007c00: 9f c6 40 00 call %i1 2007c04: 90 10 00 18 mov %i0, %o0 struct timespec wall_average; struct timespec *min_wall = &the_stats.min_wall_time; struct timespec *max_wall = &the_stats.max_wall_time; struct timespec *total_wall = &the_stats.total_wall_time; _Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average); 2007c08: d2 07 bf a0 ld [ %fp + -96 ], %o1 2007c0c: 94 10 00 14 mov %l4, %o2 2007c10: 40 00 0f 54 call 200b960 <_Timespec_Divide_by_integer> 2007c14: 90 10 00 1a mov %i2, %o0 (*print)( context, 2007c18: d0 07 bf c4 ld [ %fp + -60 ], %o0 2007c1c: 40 00 46 60 call 201959c <.div> 2007c20: 92 10 23 e8 mov 0x3e8, %o1 2007c24: 96 10 00 08 mov %o0, %o3 2007c28: d0 07 bf cc ld [ %fp + -52 ], %o0 2007c2c: d6 27 bf 9c st %o3, [ %fp + -100 ] 2007c30: 40 00 46 5b call 201959c <.div> 2007c34: 92 10 23 e8 mov 0x3e8, %o1 2007c38: c2 07 bf f0 ld [ %fp + -16 ], %g1 2007c3c: b6 10 00 08 mov %o0, %i3 2007c40: d0 07 bf f4 ld [ %fp + -12 ], %o0 2007c44: 92 10 23 e8 mov 0x3e8, %o1 2007c48: 40 00 46 55 call 201959c <.div> 2007c4c: c2 23 a0 5c st %g1, [ %sp + 0x5c ] 2007c50: d4 07 bf c0 ld [ %fp + -64 ], %o2 2007c54: d6 07 bf 9c ld [ %fp + -100 ], %o3 2007c58: d8 07 bf c8 ld [ %fp + -56 ], %o4 2007c5c: d0 23 a0 60 st %o0, [ %sp + 0x60 ] 2007c60: 13 00 80 70 sethi %hi(0x201c000), %o1 2007c64: 90 10 00 18 mov %i0, %o0 2007c68: 92 12 63 c8 or %o1, 0x3c8, %o1 2007c6c: 9f c6 40 00 call %i1 2007c70: 9a 10 00 1b mov %i3, %o5 /* * Cycle through all possible ids and try to report on each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007c74: 10 bf ff a7 b 2007b10 2007c78: c2 04 60 0c ld [ %l1 + 0xc ], %g1 =============================================================================== 02007c98 : /* * rtems_rate_monotonic_reset_all_statistics */ void rtems_rate_monotonic_reset_all_statistics( void ) { 2007c98: 9d e3 bf a0 save %sp, -96, %sp rtems_fatal_error_occurred( 99 ); } } #endif _Thread_Dispatch_disable_level += 1; 2007c9c: 03 00 80 78 sethi %hi(0x201e000), %g1 2007ca0: c4 00 63 78 ld [ %g1 + 0x378 ], %g2 ! 201e378 <_Thread_Dispatch_disable_level> 2007ca4: 84 00 a0 01 inc %g2 2007ca8: c4 20 63 78 st %g2, [ %g1 + 0x378 ] /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007cac: 23 00 80 78 sethi %hi(0x201e000), %l1 2007cb0: a2 14 62 04 or %l1, 0x204, %l1 ! 201e204 <_Rate_monotonic_Information> 2007cb4: e0 04 60 08 ld [ %l1 + 8 ], %l0 2007cb8: c2 04 60 0c ld [ %l1 + 0xc ], %g1 2007cbc: 80 a4 00 01 cmp %l0, %g1 2007cc0: 18 80 00 09 bgu 2007ce4 <== NEVER TAKEN 2007cc4: 01 00 00 00 nop id <= _Rate_monotonic_Information.maximum_id ; id++ ) { status = rtems_rate_monotonic_reset_statistics( id ); 2007cc8: 40 00 00 0a call 2007cf0 2007ccc: 90 10 00 10 mov %l0, %o0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007cd0: c2 04 60 0c ld [ %l1 + 0xc ], %g1 id <= _Rate_monotonic_Information.maximum_id ; id++ ) { 2007cd4: a0 04 20 01 inc %l0 /* * Cycle through all possible ids and try to reset each one. If it * is a period that is inactive, we just get an error back. No big deal. */ for ( id=_Rate_monotonic_Information.minimum_id ; 2007cd8: 80 a0 40 10 cmp %g1, %l0 2007cdc: 1a bf ff fb bcc 2007cc8 2007ce0: 01 00 00 00 nop } /* * Done so exit thread dispatching disabled critical section. */ _Thread_Enable_dispatch(); 2007ce4: 40 00 0a fa call 200a8cc <_Thread_Enable_dispatch> 2007ce8: 81 e8 00 00 restore =============================================================================== 0201579c : rtems_status_code rtems_signal_send( rtems_id id, rtems_signal_set signal_set ) { 201579c: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; RTEMS_API_Control *api; ASR_Information *asr; if ( !signal_set ) 20157a0: 80 a6 60 00 cmp %i1, 0 20157a4: 12 80 00 04 bne 20157b4 20157a8: 82 10 20 0a mov 0xa, %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20157ac: 81 c7 e0 08 ret 20157b0: 91 e8 00 01 restore %g0, %g1, %o0 ASR_Information *asr; if ( !signal_set ) return RTEMS_INVALID_NUMBER; the_thread = _Thread_Get( id, &location ); 20157b4: 90 10 00 18 mov %i0, %o0 20157b8: 40 00 11 9f call 2019e34 <_Thread_Get> 20157bc: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 20157c0: c2 07 bf fc ld [ %fp + -4 ], %g1 20157c4: 80 a0 60 00 cmp %g1, 0 20157c8: 02 80 00 05 be 20157dc 20157cc: a2 10 00 08 mov %o0, %l1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; 20157d0: 82 10 20 04 mov 4, %g1 } 20157d4: 81 c7 e0 08 ret 20157d8: 91 e8 00 01 restore %g0, %g1, %o0 the_thread = _Thread_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: api = the_thread->API_Extensions[ THREAD_API_RTEMS ]; 20157dc: e0 02 21 60 ld [ %o0 + 0x160 ], %l0 asr = &api->Signal; if ( ! _ASR_Is_null_handler( asr->handler ) ) { 20157e0: c2 04 20 0c ld [ %l0 + 0xc ], %g1 20157e4: 80 a0 60 00 cmp %g1, 0 20157e8: 02 80 00 25 be 201587c 20157ec: 01 00 00 00 nop if ( asr->is_enabled ) { 20157f0: c2 0c 20 08 ldub [ %l0 + 8 ], %g1 20157f4: 80 a0 60 00 cmp %g1, 0 20157f8: 02 80 00 15 be 201584c 20157fc: 01 00 00 00 nop rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 2015800: 7f ff e6 9b call 200f26c 2015804: 01 00 00 00 nop *signal_set |= signals; 2015808: c2 04 20 14 ld [ %l0 + 0x14 ], %g1 201580c: b2 10 40 19 or %g1, %i1, %i1 2015810: f2 24 20 14 st %i1, [ %l0 + 0x14 ] _ISR_Enable( _level ); 2015814: 7f ff e6 9a call 200f27c 2015818: 01 00 00 00 nop _ASR_Post_signals( signal_set, &asr->signals_posted ); if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) ) 201581c: 03 00 80 f2 sethi %hi(0x203c800), %g1 2015820: 82 10 60 b4 or %g1, 0xb4, %g1 ! 203c8b4 <_Per_CPU_Information> 2015824: c4 00 60 08 ld [ %g1 + 8 ], %g2 2015828: 80 a0 a0 00 cmp %g2, 0 201582c: 02 80 00 0f be 2015868 2015830: 01 00 00 00 nop 2015834: c4 00 60 0c ld [ %g1 + 0xc ], %g2 2015838: 80 a4 40 02 cmp %l1, %g2 201583c: 12 80 00 0b bne 2015868 <== NEVER TAKEN 2015840: 84 10 20 01 mov 1, %g2 _Thread_Dispatch_necessary = true; 2015844: c4 28 60 18 stb %g2, [ %g1 + 0x18 ] 2015848: 30 80 00 08 b,a 2015868 rtems_signal_set *signal_set ) { ISR_Level _level; _ISR_Disable( _level ); 201584c: 7f ff e6 88 call 200f26c 2015850: 01 00 00 00 nop *signal_set |= signals; 2015854: c2 04 20 18 ld [ %l0 + 0x18 ], %g1 2015858: b2 10 40 19 or %g1, %i1, %i1 201585c: f2 24 20 18 st %i1, [ %l0 + 0x18 ] _ISR_Enable( _level ); 2015860: 7f ff e6 87 call 200f27c 2015864: 01 00 00 00 nop } else { _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); 2015868: 40 00 11 65 call 2019dfc <_Thread_Enable_dispatch> 201586c: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2015870: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2015874: 81 c7 e0 08 ret 2015878: 91 e8 00 01 restore %g0, %g1, %o0 _ASR_Post_signals( signal_set, &asr->signals_pending ); } _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } _Thread_Enable_dispatch(); 201587c: 40 00 11 60 call 2019dfc <_Thread_Enable_dispatch> 2015880: 01 00 00 00 nop return RTEMS_NOT_DEFINED; 2015884: 10 bf ff ca b 20157ac 2015888: 82 10 20 0b mov 0xb, %g1 ! b =============================================================================== 0200e2b4 : rtems_status_code rtems_task_mode( rtems_mode mode_set, rtems_mode mask, rtems_mode *previous_mode_set ) { 200e2b4: 9d e3 bf a0 save %sp, -96, %sp ASR_Information *asr; bool is_asr_enabled = false; bool needs_asr_dispatching = false; rtems_mode old_mode; if ( !previous_mode_set ) 200e2b8: 80 a6 a0 00 cmp %i2, 0 200e2bc: 02 80 00 43 be 200e3c8 200e2c0: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; 200e2c4: 27 00 80 57 sethi %hi(0x2015c00), %l3 200e2c8: a6 14 e3 6c or %l3, 0x36c, %l3 ! 2015f6c <_Per_CPU_Information> 200e2cc: e0 04 e0 0c ld [ %l3 + 0xc ], %l0 api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e2d0: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e2d4: c2 04 20 7c ld [ %l0 + 0x7c ], %g1 executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e2d8: 80 a0 00 02 cmp %g0, %g2 if ( !previous_mode_set ) return RTEMS_INVALID_ADDRESS; executing = _Thread_Executing; api = executing->API_Extensions[ THREAD_API_RTEMS ]; 200e2dc: e2 04 21 60 ld [ %l0 + 0x160 ], %l1 asr = &api->Signal; old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; 200e2e0: a4 60 3f ff subx %g0, -1, %l2 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) 200e2e4: 80 a0 60 00 cmp %g1, 0 200e2e8: 12 80 00 3a bne 200e3d0 200e2ec: a5 2c a0 08 sll %l2, 8, %l2 old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e2f0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1 200e2f4: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e2f8: 7f ff f0 e3 call 200a684 <_CPU_ISR_Get_level> 200e2fc: a8 60 3f ff subx %g0, -1, %l4 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e300: a9 2d 20 0a sll %l4, 0xa, %l4 200e304: a8 15 00 08 or %l4, %o0, %l4 old_mode |= _ISR_Get_level(); 200e308: a4 15 00 12 or %l4, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e30c: 80 8e 61 00 btst 0x100, %i1 200e310: 02 80 00 06 be 200e328 200e314: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e318: 82 0e 21 00 and %i0, 0x100, %g1 executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; 200e31c: 80 a0 00 01 cmp %g0, %g1 200e320: 82 60 3f ff subx %g0, -1, %g1 200e324: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ] if ( mask & RTEMS_TIMESLICE_MASK ) { 200e328: 80 8e 62 00 btst 0x200, %i1 200e32c: 02 80 00 0b be 200e358 200e330: 80 8e 60 0f btst 0xf, %i1 if ( _Modes_Is_timeslice(mode_set) ) { 200e334: 80 8e 22 00 btst 0x200, %i0 200e338: 22 80 00 07 be,a 200e354 200e33c: c0 24 20 7c clr [ %l0 + 0x7c ] executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; executing->cpu_time_budget = _Thread_Ticks_per_timeslice; 200e340: 03 00 80 57 sethi %hi(0x2015c00), %g1 200e344: c2 00 60 68 ld [ %g1 + 0x68 ], %g1 ! 2015c68 <_Thread_Ticks_per_timeslice> 200e348: c2 24 20 78 st %g1, [ %l0 + 0x78 ] if ( mask & RTEMS_PREEMPT_MASK ) executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false; if ( mask & RTEMS_TIMESLICE_MASK ) { if ( _Modes_Is_timeslice(mode_set) ) { executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE; 200e34c: 82 10 20 01 mov 1, %g1 200e350: c2 24 20 7c st %g1, [ %l0 + 0x7c ] } /* * Set the new interrupt level */ if ( mask & RTEMS_INTERRUPT_MASK ) 200e354: 80 8e 60 0f btst 0xf, %i1 200e358: 12 80 00 3d bne 200e44c 200e35c: 01 00 00 00 nop * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e360: 80 8e 64 00 btst 0x400, %i1 200e364: 02 80 00 14 be 200e3b4 200e368: 86 10 20 00 clr %g3 is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e36c: c4 0c 60 08 ldub [ %l1 + 8 ], %g2 */ RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled ( Modes_Control mode_set ) { return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR; 200e370: b0 0e 24 00 and %i0, 0x400, %i0 * Output: * *previous_mode_set - previous mode set * always return RTEMS_SUCCESSFUL; */ rtems_status_code rtems_task_mode( 200e374: 80 a0 00 18 cmp %g0, %i0 200e378: 82 60 3f ff subx %g0, -1, %g1 is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true; if ( is_asr_enabled != asr->is_enabled ) { 200e37c: 80 a0 80 01 cmp %g2, %g1 200e380: 22 80 00 0e be,a 200e3b8 200e384: 03 00 80 57 sethi %hi(0x2015c00), %g1 ) { rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); 200e388: 7f ff cf c3 call 2002294 200e38c: c2 2c 60 08 stb %g1, [ %l1 + 8 ] _signals = information->signals_pending; 200e390: c4 04 60 18 ld [ %l1 + 0x18 ], %g2 information->signals_pending = information->signals_posted; 200e394: c2 04 60 14 ld [ %l1 + 0x14 ], %g1 information->signals_posted = _signals; 200e398: c4 24 60 14 st %g2, [ %l1 + 0x14 ] rtems_signal_set _signals; ISR_Level _level; _ISR_Disable( _level ); _signals = information->signals_pending; information->signals_pending = information->signals_posted; 200e39c: c2 24 60 18 st %g1, [ %l1 + 0x18 ] information->signals_posted = _signals; _ISR_Enable( _level ); 200e3a0: 7f ff cf c1 call 20022a4 200e3a4: 01 00 00 00 nop asr->is_enabled = is_asr_enabled; _ASR_Swap_signals( asr ); if ( _ASR_Are_signals_pending( asr ) ) { 200e3a8: c2 04 60 14 ld [ %l1 + 0x14 ], %g1 /* * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; 200e3ac: 80 a0 00 01 cmp %g0, %g1 200e3b0: 86 40 20 00 addx %g0, 0, %g3 needs_asr_dispatching = true; } } } if ( _System_state_Is_up( _System_state_Get() ) ) { 200e3b4: 03 00 80 57 sethi %hi(0x2015c00), %g1 200e3b8: c4 00 62 8c ld [ %g1 + 0x28c ], %g2 ! 2015e8c <_System_state_Current> 200e3bc: 80 a0 a0 03 cmp %g2, 3 200e3c0: 02 80 00 11 be 200e404 <== ALWAYS TAKEN 200e3c4: 82 10 20 00 clr %g1 if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); } return RTEMS_SUCCESSFUL; } 200e3c8: 81 c7 e0 08 ret 200e3cc: 91 e8 00 01 restore %g0, %g1, %o0 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e3d0: c2 0c 60 08 ldub [ %l1 + 8 ], %g1 old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT; if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; 200e3d4: a4 14 a2 00 or %l2, 0x200, %l2 old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e3d8: 80 a0 00 01 cmp %g0, %g1 old_mode |= _ISR_Get_level(); 200e3dc: 7f ff f0 aa call 200a684 <_CPU_ISR_Get_level> 200e3e0: a8 60 3f ff subx %g0, -1, %l4 if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE ) old_mode |= RTEMS_NO_TIMESLICE; else old_mode |= RTEMS_TIMESLICE; old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR; 200e3e4: a9 2d 20 0a sll %l4, 0xa, %l4 200e3e8: a8 15 00 08 or %l4, %o0, %l4 old_mode |= _ISR_Get_level(); 200e3ec: a4 15 00 12 or %l4, %l2, %l2 *previous_mode_set = old_mode; /* * These are generic thread scheduling characteristics. */ if ( mask & RTEMS_PREEMPT_MASK ) 200e3f0: 80 8e 61 00 btst 0x100, %i1 200e3f4: 02 bf ff cd be 200e328 200e3f8: e4 26 80 00 st %l2, [ %i2 ] */ RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt ( Modes_Control mode_set ) { return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT; 200e3fc: 10 bf ff c8 b 200e31c 200e400: 82 0e 21 00 and %i0, 0x100, %g1 { Thread_Control *executing; executing = _Thread_Executing; if ( are_signals_pending || 200e404: 80 88 e0 ff btst 0xff, %g3 200e408: 12 80 00 0a bne 200e430 200e40c: c4 04 e0 0c ld [ %l3 + 0xc ], %g2 200e410: c6 04 e0 10 ld [ %l3 + 0x10 ], %g3 200e414: 80 a0 80 03 cmp %g2, %g3 200e418: 02 bf ff ec be 200e3c8 200e41c: 01 00 00 00 nop (!_Thread_Is_heir( executing ) && executing->is_preemptible) ) { 200e420: c4 08 a0 74 ldub [ %g2 + 0x74 ], %g2 200e424: 80 a0 a0 00 cmp %g2, 0 200e428: 02 bf ff e8 be 200e3c8 <== NEVER TAKEN 200e42c: 01 00 00 00 nop _Thread_Dispatch_necessary = true; 200e430: 82 10 20 01 mov 1, %g1 ! 1 200e434: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ] } } if ( _System_state_Is_up( _System_state_Get() ) ) { if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) ) _Thread_Dispatch(); 200e438: 7f ff e9 52 call 2008980 <_Thread_Dispatch> 200e43c: 01 00 00 00 nop } return RTEMS_SUCCESSFUL; 200e440: 82 10 20 00 clr %g1 ! 0 } 200e444: 81 c7 e0 08 ret 200e448: 91 e8 00 01 restore %g0, %g1, %o0 */ RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level ( Modes_Control mode_set ) { return ( mode_set & RTEMS_INTERRUPT_MASK ); 200e44c: 90 0e 20 0f and %i0, 0xf, %o0 */ RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level ( Modes_Control mode_set ) { _ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) ); 200e450: 7f ff cf 95 call 20022a4 200e454: 91 2a 20 08 sll %o0, 8, %o0 * This is specific to the RTEMS API */ is_asr_enabled = false; needs_asr_dispatching = false; if ( mask & RTEMS_ASR_MASK ) { 200e458: 10 bf ff c3 b 200e364 200e45c: 80 8e 64 00 btst 0x400, %i1 =============================================================================== 0200b530 : rtems_status_code rtems_task_set_priority( rtems_id id, rtems_task_priority new_priority, rtems_task_priority *old_priority ) { 200b530: 9d e3 bf 98 save %sp, -104, %sp register Thread_Control *the_thread; Objects_Locations location; if ( new_priority != RTEMS_CURRENT_PRIORITY && 200b534: 80 a6 60 00 cmp %i1, 0 200b538: 02 80 00 07 be 200b554 200b53c: 90 10 00 18 mov %i0, %o0 RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && ( the_priority <= RTEMS_MAXIMUM_PRIORITY ) ); 200b540: 03 00 80 67 sethi %hi(0x2019c00), %g1 200b544: c2 08 62 a4 ldub [ %g1 + 0x2a4 ], %g1 ! 2019ea4 */ RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid ( rtems_task_priority the_priority ) { return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) && 200b548: 80 a6 40 01 cmp %i1, %g1 200b54c: 18 80 00 1c bgu 200b5bc 200b550: b0 10 20 13 mov 0x13, %i0 !_RTEMS_tasks_Priority_is_valid( new_priority ) ) return RTEMS_INVALID_PRIORITY; if ( !old_priority ) 200b554: 80 a6 a0 00 cmp %i2, 0 200b558: 02 80 00 19 be 200b5bc 200b55c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get( id, &location ); 200b560: 40 00 08 a3 call 200d7ec <_Thread_Get> 200b564: 92 07 bf fc add %fp, -4, %o1 switch ( location ) { 200b568: c2 07 bf fc ld [ %fp + -4 ], %g1 200b56c: 80 a0 60 00 cmp %g1, 0 200b570: 12 80 00 13 bne 200b5bc 200b574: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* XXX need helper to "convert" from core priority */ *old_priority = the_thread->current_priority; 200b578: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 if ( new_priority != RTEMS_CURRENT_PRIORITY ) { 200b57c: 80 a6 60 00 cmp %i1, 0 200b580: 02 80 00 0d be 200b5b4 200b584: c2 26 80 00 st %g1, [ %i2 ] the_thread->real_priority = new_priority; if ( the_thread->resource_count == 0 || 200b588: c2 02 20 1c ld [ %o0 + 0x1c ], %g1 200b58c: 80 a0 60 00 cmp %g1, 0 200b590: 02 80 00 06 be 200b5a8 200b594: f2 22 20 18 st %i1, [ %o0 + 0x18 ] 200b598: c2 02 20 14 ld [ %o0 + 0x14 ], %g1 200b59c: 80 a6 40 01 cmp %i1, %g1 200b5a0: 1a 80 00 05 bcc 200b5b4 <== ALWAYS TAKEN 200b5a4: 01 00 00 00 nop the_thread->current_priority > new_priority ) _Thread_Change_priority( the_thread, new_priority, false ); 200b5a8: 92 10 00 19 mov %i1, %o1 200b5ac: 40 00 06 f2 call 200d174 <_Thread_Change_priority> 200b5b0: 94 10 20 00 clr %o2 } _Thread_Enable_dispatch(); 200b5b4: 40 00 08 80 call 200d7b4 <_Thread_Enable_dispatch> 200b5b8: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 200b5bc: 81 c7 e0 08 ret 200b5c0: 81 e8 00 00 restore =============================================================================== 020078d0 : rtems_status_code rtems_task_variable_delete( rtems_id tid, void **ptr ) { 20078d0: 9d e3 bf 98 save %sp, -104, %sp Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp, *prev; if ( !ptr ) 20078d4: 80 a6 60 00 cmp %i1, 0 20078d8: 02 80 00 1e be 2007950 20078dc: 82 10 20 09 mov 9, %g1 return RTEMS_INVALID_ADDRESS; prev = NULL; the_thread = _Thread_Get (tid, &location); 20078e0: 90 10 00 18 mov %i0, %o0 20078e4: 40 00 08 2b call 2009990 <_Thread_Get> 20078e8: 92 07 bf fc add %fp, -4, %o1 switch (location) { 20078ec: c2 07 bf fc ld [ %fp + -4 ], %g1 20078f0: 80 a0 60 00 cmp %g1, 0 20078f4: 12 80 00 19 bne 2007958 20078f8: 82 10 20 04 mov 4, %g1 case OBJECTS_LOCAL: tvp = the_thread->task_variables; 20078fc: c2 02 21 6c ld [ %o0 + 0x16c ], %g1 while (tvp) { 2007900: 80 a0 60 00 cmp %g1, 0 2007904: 02 80 00 10 be 2007944 2007908: 01 00 00 00 nop if (tvp->ptr == ptr) { 200790c: c4 00 60 04 ld [ %g1 + 4 ], %g2 2007910: 80 a0 80 19 cmp %g2, %i1 2007914: 32 80 00 09 bne,a 2007938 2007918: d2 00 40 00 ld [ %g1 ], %o1 if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 200791c: 10 80 00 19 b 2007980 2007920: c4 00 40 00 ld [ %g1 ], %g2 switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { 2007924: 80 a0 80 19 cmp %g2, %i1 2007928: 22 80 00 0e be,a 2007960 200792c: c4 02 40 00 ld [ %o1 ], %g2 2007930: 82 10 00 09 mov %o1, %g1 _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; 2007934: d2 00 40 00 ld [ %g1 ], %o1 the_thread = _Thread_Get (tid, &location); switch (location) { case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { 2007938: 80 a2 60 00 cmp %o1, 0 200793c: 32 bf ff fa bne,a 2007924 <== ALWAYS TAKEN 2007940: c4 02 60 04 ld [ %o1 + 4 ], %g2 return RTEMS_SUCCESSFUL; } prev = tvp; tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2007944: 40 00 08 05 call 2009958 <_Thread_Enable_dispatch> 2007948: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; 200794c: 82 10 20 09 mov 9, %g1 ! 9 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007950: 81 c7 e0 08 ret 2007954: 91 e8 00 01 restore %g0, %g1, %o0 2007958: 81 c7 e0 08 ret 200795c: 91 e8 00 01 restore %g0, %g1, %o0 case OBJECTS_LOCAL: tvp = the_thread->task_variables; while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; 2007960: c4 20 40 00 st %g2, [ %g1 ] else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; _RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp ); 2007964: 40 00 00 2e call 2007a1c <_RTEMS_Tasks_Invoke_task_variable_dtor> 2007968: 01 00 00 00 nop _Thread_Enable_dispatch(); 200796c: 40 00 07 fb call 2009958 <_Thread_Enable_dispatch> 2007970: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 2007974: 82 10 20 00 clr %g1 ! 0 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2007978: 81 c7 e0 08 ret 200797c: 91 e8 00 01 restore %g0, %g1, %o0 while (tvp) { if (tvp->ptr == ptr) { if (prev) prev->next = tvp->next; else the_thread->task_variables = (rtems_task_variable_t *)tvp->next; 2007980: 92 10 00 01 mov %g1, %o1 2007984: 10 bf ff f8 b 2007964 2007988: c4 22 21 6c st %g2, [ %o0 + 0x16c ] =============================================================================== 0200798c : rtems_status_code rtems_task_variable_get( rtems_id tid, void **ptr, void **result ) { 200798c: 9d e3 bf 98 save %sp, -104, %sp 2007990: 90 10 00 18 mov %i0, %o0 Thread_Control *the_thread; Objects_Locations location; rtems_task_variable_t *tvp; if ( !ptr ) 2007994: 80 a6 60 00 cmp %i1, 0 2007998: 02 80 00 1b be 2007a04 200799c: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !result ) 20079a0: 80 a6 a0 00 cmp %i2, 0 20079a4: 02 80 00 1c be 2007a14 20079a8: 01 00 00 00 nop return RTEMS_INVALID_ADDRESS; the_thread = _Thread_Get (tid, &location); 20079ac: 40 00 07 f9 call 2009990 <_Thread_Get> 20079b0: 92 07 bf fc add %fp, -4, %o1 switch (location) { 20079b4: c2 07 bf fc ld [ %fp + -4 ], %g1 20079b8: 80 a0 60 00 cmp %g1, 0 20079bc: 12 80 00 12 bne 2007a04 20079c0: b0 10 20 04 mov 4, %i0 case OBJECTS_LOCAL: /* * Figure out if the variable is in this task's list. */ tvp = the_thread->task_variables; 20079c4: c2 02 21 6c ld [ %o0 + 0x16c ], %g1 while (tvp) { 20079c8: 80 a0 60 00 cmp %g1, 0 20079cc: 32 80 00 07 bne,a 20079e8 20079d0: c4 00 60 04 ld [ %g1 + 4 ], %g2 20079d4: 30 80 00 0e b,a 2007a0c 20079d8: 80 a0 60 00 cmp %g1, 0 20079dc: 02 80 00 0c be 2007a0c <== NEVER TAKEN 20079e0: 01 00 00 00 nop if (tvp->ptr == ptr) { 20079e4: c4 00 60 04 ld [ %g1 + 4 ], %g2 20079e8: 80 a0 80 19 cmp %g2, %i1 20079ec: 32 bf ff fb bne,a 20079d8 20079f0: c2 00 40 00 ld [ %g1 ], %g1 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; 20079f4: c2 00 60 0c ld [ %g1 + 0xc ], %g1 _Thread_Enable_dispatch(); return RTEMS_SUCCESSFUL; 20079f8: b0 10 20 00 clr %i0 /* * Should this return the current (i.e not the * saved) value if `tid' is the current task? */ *result = tvp->tval; _Thread_Enable_dispatch(); 20079fc: 40 00 07 d7 call 2009958 <_Thread_Enable_dispatch> 2007a00: c2 26 80 00 st %g1, [ %i2 ] return RTEMS_SUCCESSFUL; 2007a04: 81 c7 e0 08 ret 2007a08: 81 e8 00 00 restore } tvp = (rtems_task_variable_t *)tvp->next; } _Thread_Enable_dispatch(); 2007a0c: 40 00 07 d3 call 2009958 <_Thread_Enable_dispatch> 2007a10: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; 2007a14: 81 c7 e0 08 ret 2007a18: 81 e8 00 00 restore =============================================================================== 020161f0 : */ rtems_status_code rtems_timer_cancel( rtems_id id ) { 20161f0: 9d e3 bf 98 save %sp, -104, %sp Objects_Id id, Objects_Locations *location ) { return (Timer_Control *) _Objects_Get( &_Timer_Information, id, location ); 20161f4: 11 00 80 f2 sethi %hi(0x203c800), %o0 20161f8: 92 10 00 18 mov %i0, %o1 20161fc: 90 12 21 14 or %o0, 0x114, %o0 2016200: 40 00 0c 6d call 20193b4 <_Objects_Get> 2016204: 94 07 bf fc add %fp, -4, %o2 Timer_Control *the_timer; Objects_Locations location; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016208: c2 07 bf fc ld [ %fp + -4 ], %g1 201620c: 80 a0 60 00 cmp %g1, 0 2016210: 22 80 00 04 be,a 2016220 2016214: c2 02 20 38 ld [ %o0 + 0x38 ], %g1 case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 2016218: 81 c7 e0 08 ret 201621c: 91 e8 20 04 restore %g0, 4, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: if ( !_Timer_Is_dormant_class( the_timer->the_class ) ) 2016220: 80 a0 60 04 cmp %g1, 4 2016224: 02 80 00 04 be 2016234 <== NEVER TAKEN 2016228: 01 00 00 00 nop (void) _Watchdog_Remove( &the_timer->Ticker ); 201622c: 40 00 15 4f call 201b768 <_Watchdog_Remove> 2016230: 90 02 20 10 add %o0, 0x10, %o0 _Thread_Enable_dispatch(); 2016234: 40 00 0e f2 call 2019dfc <_Thread_Enable_dispatch> 2016238: b0 10 20 00 clr %i0 return RTEMS_SUCCESSFUL; 201623c: 81 c7 e0 08 ret 2016240: 81 e8 00 00 restore =============================================================================== 02016708 : rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016708: 9d e3 bf 98 save %sp, -104, %sp Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; 201670c: 03 00 80 f2 sethi %hi(0x203c800), %g1 2016710: e0 00 61 54 ld [ %g1 + 0x154 ], %l0 ! 203c954 <_Timer_server> rtems_id id, rtems_time_of_day *wall_time, rtems_timer_service_routine_entry routine, void *user_data ) { 2016714: a2 10 00 18 mov %i0, %l1 Timer_Control *the_timer; Objects_Locations location; rtems_interval seconds; Timer_server_Control *timer_server = _Timer_server; if ( !timer_server ) 2016718: 80 a4 20 00 cmp %l0, 0 201671c: 02 80 00 10 be 201675c 2016720: b0 10 20 0e mov 0xe, %i0 return RTEMS_INCORRECT_STATE; if ( !_TOD_Is_set ) 2016724: 03 00 80 f1 sethi %hi(0x203c400), %g1 2016728: c2 08 62 58 ldub [ %g1 + 0x258 ], %g1 ! 203c658 <_TOD_Is_set> 201672c: 80 a0 60 00 cmp %g1, 0 2016730: 02 80 00 0b be 201675c <== NEVER TAKEN 2016734: b0 10 20 0b mov 0xb, %i0 return RTEMS_NOT_DEFINED; if ( !routine ) 2016738: 80 a6 a0 00 cmp %i2, 0 201673c: 02 80 00 08 be 201675c 2016740: b0 10 20 09 mov 9, %i0 return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) 2016744: 90 10 00 19 mov %i1, %o0 2016748: 7f ff f3 b5 call 201361c <_TOD_Validate> 201674c: b0 10 20 14 mov 0x14, %i0 2016750: 80 8a 20 ff btst 0xff, %o0 2016754: 12 80 00 04 bne 2016764 2016758: 01 00 00 00 nop case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 201675c: 81 c7 e0 08 ret 2016760: 81 e8 00 00 restore return RTEMS_INVALID_ADDRESS; if ( !_TOD_Validate( wall_time ) ) return RTEMS_INVALID_CLOCK; seconds = _TOD_To_seconds( wall_time ); 2016764: 7f ff f3 78 call 2013544 <_TOD_To_seconds> 2016768: 90 10 00 19 mov %i1, %o0 if ( seconds <= _TOD_Seconds_since_epoch() ) 201676c: 25 00 80 f1 sethi %hi(0x203c400), %l2 2016770: c2 04 a2 d4 ld [ %l2 + 0x2d4 ], %g1 ! 203c6d4 <_TOD_Now> 2016774: 80 a2 00 01 cmp %o0, %g1 2016778: 08 bf ff f9 bleu 201675c 201677c: b2 10 00 08 mov %o0, %i1 2016780: 92 10 00 11 mov %l1, %o1 2016784: 11 00 80 f2 sethi %hi(0x203c800), %o0 2016788: 94 07 bf fc add %fp, -4, %o2 201678c: 40 00 0b 0a call 20193b4 <_Objects_Get> 2016790: 90 12 21 14 or %o0, 0x114, %o0 return RTEMS_INVALID_CLOCK; the_timer = _Timer_Get( id, &location ); switch ( location ) { 2016794: c2 07 bf fc ld [ %fp + -4 ], %g1 2016798: 80 a0 60 00 cmp %g1, 0 201679c: 12 80 00 16 bne 20167f4 20167a0: b0 10 00 08 mov %o0, %i0 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); 20167a4: 40 00 13 f1 call 201b768 <_Watchdog_Remove> 20167a8: 90 02 20 10 add %o0, 0x10, %o0 the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20167ac: c4 04 a2 d4 ld [ %l2 + 0x2d4 ], %g2 (*timer_server->schedule_operation)( timer_server, the_timer ); 20167b0: c2 04 20 04 ld [ %l0 + 4 ], %g1 20167b4: 92 10 00 18 mov %i0, %o1 case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20167b8: b2 26 40 02 sub %i1, %g2, %i1 (*timer_server->schedule_operation)( timer_server, the_timer ); 20167bc: 90 10 00 10 mov %l0, %o0 the_timer = _Timer_Get( id, &location ); switch ( location ) { case OBJECTS_LOCAL: (void) _Watchdog_Remove( &the_timer->Ticker ); the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK; 20167c0: 84 10 20 03 mov 3, %g2 Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; the_watchdog->routine = routine; 20167c4: f4 26 20 2c st %i2, [ %i0 + 0x2c ] 20167c8: c4 26 20 38 st %g2, [ %i0 + 0x38 ] the_watchdog->id = id; 20167cc: e2 26 20 30 st %l1, [ %i0 + 0x30 ] the_watchdog->user_data = user_data; 20167d0: f6 26 20 34 st %i3, [ %i0 + 0x34 ] _Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data ); the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch(); 20167d4: f2 26 20 1c st %i1, [ %i0 + 0x1c ] Watchdog_Service_routine_entry routine, Objects_Id id, void *user_data ) { the_watchdog->state = WATCHDOG_INACTIVE; 20167d8: c0 26 20 18 clr [ %i0 + 0x18 ] (*timer_server->schedule_operation)( timer_server, the_timer ); 20167dc: 9f c0 40 00 call %g1 20167e0: b0 10 20 00 clr %i0 _Thread_Enable_dispatch(); 20167e4: 40 00 0d 86 call 2019dfc <_Thread_Enable_dispatch> 20167e8: 01 00 00 00 nop return RTEMS_SUCCESSFUL; 20167ec: 81 c7 e0 08 ret 20167f0: 81 e8 00 00 restore case OBJECTS_ERROR: break; } return RTEMS_INVALID_ID; } 20167f4: 81 c7 e0 08 ret 20167f8: 91 e8 20 04 restore %g0, 4, %o0