RTEMS 4.11Annotated Report
Fri Jul 16 13:19:53 2010
02006f90 <_API_extensions_Run_postdriver>:
*
* _API_extensions_Run_postdriver
*/
void _API_extensions_Run_postdriver( void )
{
2006f90: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
2006f94: 23 00 80 58 sethi %hi(0x2016000), %l1
2006f98: e0 04 60 14 ld [ %l1 + 0x14 ], %l0 ! 2016014 <_API_extensions_List>
2006f9c: a2 14 60 14 or %l1, 0x14, %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2006fa0: a2 04 60 04 add %l1, 4, %l1
2006fa4: 80 a4 00 11 cmp %l0, %l1
2006fa8: 02 80 00 09 be 2006fcc <_API_extensions_Run_postdriver+0x3c><== NEVER TAKEN
2006fac: 01 00 00 00 nop
* Currently all APIs configure this hook so it is always non-NULL.
*/
#if defined(FUNCTIONALITY_NOT_CURRENTLY_USED_BY_ANY_API)
if ( the_extension->postdriver_hook )
#endif
(*the_extension->postdriver_hook)();
2006fb0: c2 04 20 08 ld [ %l0 + 8 ], %g1
2006fb4: 9f c0 40 00 call %g1
2006fb8: 01 00 00 00 nop
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2006fbc: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postdriver( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
2006fc0: 80 a4 00 11 cmp %l0, %l1
2006fc4: 32 bf ff fc bne,a 2006fb4 <_API_extensions_Run_postdriver+0x24><== NEVER TAKEN
2006fc8: c2 04 20 08 ld [ %l0 + 8 ], %g1 <== NOT EXECUTED
2006fcc: 81 c7 e0 08 ret
2006fd0: 81 e8 00 00 restore
02006fd4 <_API_extensions_Run_postswitch>:
*
* _API_extensions_Run_postswitch
*/
void _API_extensions_Run_postswitch( void )
{
2006fd4: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
2006fd8: 23 00 80 58 sethi %hi(0x2016000), %l1
2006fdc: e0 04 60 14 ld [ %l1 + 0x14 ], %l0 ! 2016014 <_API_extensions_List>
2006fe0: a2 14 60 14 or %l1, 0x14, %l1
2006fe4: a2 04 60 04 add %l1, 4, %l1
2006fe8: 80 a4 00 11 cmp %l0, %l1
2006fec: 02 80 00 0a be 2007014 <_API_extensions_Run_postswitch+0x40><== NEVER TAKEN
2006ff0: 25 00 80 58 sethi %hi(0x2016000), %l2
2006ff4: a4 14 a0 4c or %l2, 0x4c, %l2 ! 201604c <_Per_CPU_Information>
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (API_extensions_Control *) the_node;
(*the_extension->postswitch_hook)( _Thread_Executing );
2006ff8: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2006ffc: 9f c0 40 00 call %g1
2007000: d0 04 a0 0c ld [ %l2 + 0xc ], %o0
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
!_Chain_Is_tail( &_API_extensions_List, the_node ) ;
the_node = the_node->next ) {
2007004: e0 04 00 00 ld [ %l0 ], %l0
void _API_extensions_Run_postswitch( void )
{
Chain_Node *the_node;
API_extensions_Control *the_extension;
for ( the_node = _API_extensions_List.first ;
2007008: 80 a4 00 11 cmp %l0, %l1
200700c: 32 bf ff fc bne,a 2006ffc <_API_extensions_Run_postswitch+0x28><== NEVER TAKEN
2007010: c2 04 20 0c ld [ %l0 + 0xc ], %g1 <== NOT EXECUTED
2007014: 81 c7 e0 08 ret
2007018: 81 e8 00 00 restore
02017728 <_CORE_message_queue_Broadcast>:
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
2017728: 9d e3 bf a0 save %sp, -96, %sp
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
201772c: c2 06 20 4c ld [ %i0 + 0x4c ], %g1
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
2017730: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
2017734: 80 a0 40 1a cmp %g1, %i2
2017738: 0a 80 00 17 bcs 2017794 <_CORE_message_queue_Broadcast+0x6c><== NEVER TAKEN
201773c: b0 10 20 01 mov 1, %i0
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
2017740: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2017744: 80 a0 60 00 cmp %g1, 0
2017748: 02 80 00 0a be 2017770 <_CORE_message_queue_Broadcast+0x48>
201774c: a4 10 20 00 clr %l2
*count = 0;
2017750: c0 27 40 00 clr [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017754: 81 c7 e0 08 ret
2017758: 91 e8 20 00 restore %g0, 0, %o0
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
201775c: d0 04 60 2c ld [ %l1 + 0x2c ], %o0
2017760: 40 00 24 49 call 2020884 <memcpy>
2017764: a4 04 a0 01 inc %l2
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
2017768: c2 04 60 28 ld [ %l1 + 0x28 ], %g1
201776c: f4 20 40 00 st %i2, [ %g1 ]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
2017770: 40 00 0a f5 call 201a344 <_Thread_queue_Dequeue>
2017774: 90 10 00 10 mov %l0, %o0
2017778: 92 10 00 19 mov %i1, %o1
201777c: a2 10 00 08 mov %o0, %l1
2017780: 80 a2 20 00 cmp %o0, 0
2017784: 12 bf ff f6 bne 201775c <_CORE_message_queue_Broadcast+0x34>
2017788: 94 10 00 1a mov %i2, %o2
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
201778c: e4 27 40 00 st %l2, [ %i5 ]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
2017790: b0 10 20 00 clr %i0
}
2017794: 81 c7 e0 08 ret
2017798: 81 e8 00 00 restore
02010f00 <_CORE_message_queue_Initialize>:
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010f00: 9d e3 bf a0 save %sp, -96, %sp
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
the_message_queue->number_of_pending_messages = 0;
2010f04: c0 26 20 48 clr [ %i0 + 0x48 ]
)
{
size_t message_buffering_required;
size_t allocated_message_size;
the_message_queue->maximum_pending_messages = maximum_pending_messages;
2010f08: f4 26 20 44 st %i2, [ %i0 + 0x44 ]
the_message_queue->number_of_pending_messages = 0;
the_message_queue->maximum_message_size = maximum_message_size;
2010f0c: f6 26 20 4c st %i3, [ %i0 + 0x4c ]
CORE_message_queue_Control *the_message_queue,
CORE_message_queue_Attributes *the_message_queue_attributes,
uint32_t maximum_pending_messages,
size_t maximum_message_size
)
{
2010f10: a0 10 00 18 mov %i0, %l0
/*
* Round size up to multiple of a pointer for chain init and
* check for overflow on adding overhead to each message.
*/
allocated_message_size = maximum_message_size;
if (allocated_message_size & (sizeof(uint32_t) - 1)) {
2010f14: 80 8e e0 03 btst 3, %i3
2010f18: 02 80 00 07 be 2010f34 <_CORE_message_queue_Initialize+0x34>
2010f1c: a4 10 00 1b mov %i3, %l2
allocated_message_size += sizeof(uint32_t);
2010f20: a4 06 e0 04 add %i3, 4, %l2
allocated_message_size &= ~(sizeof(uint32_t) - 1);
2010f24: a4 0c bf fc and %l2, -4, %l2
}
if (allocated_message_size < maximum_message_size)
2010f28: 80 a6 c0 12 cmp %i3, %l2
2010f2c: 18 80 00 22 bgu 2010fb4 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
2010f30: b0 10 20 00 clr %i0
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
2010f34: a2 04 a0 10 add %l2, 0x10, %l1
/*
* Calculate how much total memory is required for message buffering and
* check for overflow on the multiplication.
*/
message_buffering_required = (size_t) maximum_pending_messages *
2010f38: 92 10 00 1a mov %i2, %o1
2010f3c: 90 10 00 11 mov %l1, %o0
2010f40: 40 00 40 04 call 2020f50 <.umul>
2010f44: b0 10 20 00 clr %i0
(allocated_message_size + sizeof(CORE_message_queue_Buffer_control));
if (message_buffering_required < allocated_message_size)
2010f48: 80 a2 00 12 cmp %o0, %l2
2010f4c: 0a 80 00 1a bcs 2010fb4 <_CORE_message_queue_Initialize+0xb4><== NEVER TAKEN
2010f50: 01 00 00 00 nop
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
_Workspace_Allocate( message_buffering_required );
2010f54: 40 00 0c 86 call 201416c <_Workspace_Allocate>
2010f58: 01 00 00 00 nop
return false;
/*
* Attempt to allocate the message memory
*/
the_message_queue->message_buffers = (CORE_message_queue_Buffer *)
2010f5c: d0 24 20 5c st %o0, [ %l0 + 0x5c ]
_Workspace_Allocate( message_buffering_required );
if (the_message_queue->message_buffers == 0)
2010f60: 80 a2 20 00 cmp %o0, 0
2010f64: 02 80 00 14 be 2010fb4 <_CORE_message_queue_Initialize+0xb4>
2010f68: 92 10 00 08 mov %o0, %o1
/*
* Initialize the pool of inactive messages, pending messages,
* and set of waiting threads.
*/
_Chain_Initialize (
2010f6c: 90 04 20 60 add %l0, 0x60, %o0
2010f70: 94 10 00 1a mov %i2, %o2
2010f74: 40 00 15 e5 call 2016708 <_Chain_Initialize>
2010f78: 96 10 00 11 mov %l1, %o3
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010f7c: c4 06 40 00 ld [ %i1 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2010f80: 82 04 20 54 add %l0, 0x54, %g1
2010f84: 84 18 a0 01 xor %g2, 1, %g2
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2010f88: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
2010f8c: 80 a0 00 02 cmp %g0, %g2
the_message_queue->message_buffers,
(size_t) maximum_pending_messages,
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
2010f90: 82 04 20 50 add %l0, 0x50, %g1
THREAD_QUEUE_DISCIPLINE_PRIORITY : THREAD_QUEUE_DISCIPLINE_FIFO,
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
2010f94: b0 10 20 01 mov 1, %i0
the_chain->permanent_null = NULL;
2010f98: c0 24 20 54 clr [ %l0 + 0x54 ]
allocated_message_size + sizeof( CORE_message_queue_Buffer_control )
);
_Chain_Initialize_empty( &the_message_queue->Pending_messages );
_Thread_queue_Initialize(
2010f9c: 90 10 00 10 mov %l0, %o0
the_chain->last = _Chain_Head(the_chain);
2010fa0: c2 24 20 58 st %g1, [ %l0 + 0x58 ]
2010fa4: 92 60 3f ff subx %g0, -1, %o1
2010fa8: 94 10 20 80 mov 0x80, %o2
2010fac: 40 00 09 1c call 201341c <_Thread_queue_Initialize>
2010fb0: 96 10 20 06 mov 6, %o3
STATES_WAITING_FOR_MESSAGE,
CORE_MESSAGE_QUEUE_STATUS_TIMEOUT
);
return true;
}
2010fb4: 81 c7 e0 08 ret
2010fb8: 81 e8 00 00 restore
02007320 <_CORE_mutex_Seize>:
Objects_Id _id,
bool _wait,
Watchdog_Interval _timeout,
ISR_Level _level
)
{
2007320: 9d e3 bf a0 save %sp, -96, %sp
_CORE_mutex_Seize_body( _the_mutex, _id, _wait, _timeout, _level );
2007324: 21 00 80 57 sethi %hi(0x2015c00), %l0
2007328: c2 04 21 e8 ld [ %l0 + 0x1e8 ], %g1 ! 2015de8 <_Thread_Dispatch_disable_level>
200732c: 80 a0 60 00 cmp %g1, 0
2007330: 02 80 00 05 be 2007344 <_CORE_mutex_Seize+0x24>
2007334: f8 27 a0 54 st %i4, [ %fp + 0x54 ]
2007338: 80 8e a0 ff btst 0xff, %i2
200733c: 12 80 00 1a bne 20073a4 <_CORE_mutex_Seize+0x84> <== ALWAYS TAKEN
2007340: 03 00 80 57 sethi %hi(0x2015c00), %g1
2007344: 90 10 00 18 mov %i0, %o0
2007348: 40 00 15 04 call 200c758 <_CORE_mutex_Seize_interrupt_trylock>
200734c: 92 07 a0 54 add %fp, 0x54, %o1
2007350: 80 a2 20 00 cmp %o0, 0
2007354: 02 80 00 12 be 200739c <_CORE_mutex_Seize+0x7c>
2007358: 80 8e a0 ff btst 0xff, %i2
200735c: 02 80 00 1a be 20073c4 <_CORE_mutex_Seize+0xa4>
2007360: 01 00 00 00 nop
2007364: c4 04 21 e8 ld [ %l0 + 0x1e8 ], %g2
2007368: 03 00 80 58 sethi %hi(0x2016000), %g1
200736c: c2 00 60 58 ld [ %g1 + 0x58 ], %g1 ! 2016058 <_Per_CPU_Information+0xc>
RTEMS_INLINE_ROUTINE void _Thread_queue_Enter_critical_section (
Thread_queue_Control *the_thread_queue
)
{
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2007370: 86 10 20 01 mov 1, %g3
2007374: c6 26 20 30 st %g3, [ %i0 + 0x30 ]
2007378: f0 20 60 44 st %i0, [ %g1 + 0x44 ]
200737c: f2 20 60 20 st %i1, [ %g1 + 0x20 ]
2007380: 82 00 a0 01 add %g2, 1, %g1
2007384: c2 24 21 e8 st %g1, [ %l0 + 0x1e8 ]
2007388: 7f ff eb c7 call 20022a4 <sparc_enable_interrupts>
200738c: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
2007390: 90 10 00 18 mov %i0, %o0
2007394: 7f ff ff c0 call 2007294 <_CORE_mutex_Seize_interrupt_blocking>
2007398: 92 10 00 1b mov %i3, %o1
200739c: 81 c7 e0 08 ret
20073a0: 81 e8 00 00 restore
20073a4: c2 00 63 6c ld [ %g1 + 0x36c ], %g1
20073a8: 80 a0 60 01 cmp %g1, 1
20073ac: 28 bf ff e7 bleu,a 2007348 <_CORE_mutex_Seize+0x28>
20073b0: 90 10 00 18 mov %i0, %o0
20073b4: 90 10 20 00 clr %o0
20073b8: 92 10 20 00 clr %o1
20073bc: 40 00 01 dd call 2007b30 <_Internal_error_Occurred>
20073c0: 94 10 20 12 mov 0x12, %o2
20073c4: 7f ff eb b8 call 20022a4 <sparc_enable_interrupts>
20073c8: d0 07 a0 54 ld [ %fp + 0x54 ], %o0
20073cc: 03 00 80 58 sethi %hi(0x2016000), %g1
20073d0: c2 00 60 58 ld [ %g1 + 0x58 ], %g1 ! 2016058 <_Per_CPU_Information+0xc>
20073d4: 84 10 20 01 mov 1, %g2
20073d8: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
20073dc: 81 c7 e0 08 ret
20073e0: 81 e8 00 00 restore
0200c758 <_CORE_mutex_Seize_interrupt_trylock>:
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
200c758: 9d e3 bf a0 save %sp, -96, %sp
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
200c75c: 03 00 80 58 sethi %hi(0x2016000), %g1
200c760: c2 00 60 58 ld [ %g1 + 0x58 ], %g1 ! 2016058 <_Per_CPU_Information+0xc>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200c764: c4 06 20 50 ld [ %i0 + 0x50 ], %g2
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
200c768: c0 20 60 34 clr [ %g1 + 0x34 ]
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
200c76c: 80 a0 a0 00 cmp %g2, 0
200c770: 02 80 00 13 be 200c7bc <_CORE_mutex_Seize_interrupt_trylock+0x64>
200c774: a0 10 00 18 mov %i0, %l0
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
200c778: c8 00 60 08 ld [ %g1 + 8 ], %g4
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
200c77c: c4 06 20 48 ld [ %i0 + 0x48 ], %g2
the_mutex->nest_count = 1;
200c780: 86 10 20 01 mov 1, %g3
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
200c784: c0 26 20 50 clr [ %i0 + 0x50 ]
the_mutex->holder = executing;
200c788: c2 26 20 5c st %g1, [ %i0 + 0x5c ]
the_mutex->holder_id = executing->Object.id;
200c78c: c8 26 20 60 st %g4, [ %i0 + 0x60 ]
the_mutex->nest_count = 1;
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
200c790: 80 a0 a0 02 cmp %g2, 2
200c794: 02 80 00 10 be 200c7d4 <_CORE_mutex_Seize_interrupt_trylock+0x7c>
200c798: c6 26 20 54 st %g3, [ %i0 + 0x54 ]
200c79c: 80 a0 a0 03 cmp %g2, 3
200c7a0: 22 80 00 21 be,a 200c824 <_CORE_mutex_Seize_interrupt_trylock+0xcc>
200c7a4: da 00 60 1c ld [ %g1 + 0x1c ], %o5
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
200c7a8: d0 06 40 00 ld [ %i1 ], %o0
200c7ac: 7f ff d6 be call 20022a4 <sparc_enable_interrupts>
200c7b0: b0 10 20 00 clr %i0
200c7b4: 81 c7 e0 08 ret
200c7b8: 81 e8 00 00 restore
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
200c7bc: c4 06 20 5c ld [ %i0 + 0x5c ], %g2
200c7c0: 80 a0 40 02 cmp %g1, %g2
200c7c4: 02 80 00 0c be 200c7f4 <_CORE_mutex_Seize_interrupt_trylock+0x9c>
200c7c8: b0 10 20 01 mov 1, %i0
200c7cc: 81 c7 e0 08 ret
200c7d0: 81 e8 00 00 restore
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200c7d4: c4 00 60 1c ld [ %g1 + 0x1c ], %g2
200c7d8: 84 00 a0 01 inc %g2
200c7dc: c4 20 60 1c st %g2, [ %g1 + 0x1c ]
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
200c7e0: d0 06 40 00 ld [ %i1 ], %o0
200c7e4: 7f ff d6 b0 call 20022a4 <sparc_enable_interrupts>
200c7e8: b0 10 20 00 clr %i0
200c7ec: 81 c7 e0 08 ret
200c7f0: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200c7f4: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
200c7f8: 80 a0 a0 00 cmp %g2, 0
200c7fc: 12 80 00 2b bne 200c8a8 <_CORE_mutex_Seize_interrupt_trylock+0x150>
200c800: 80 a0 a0 01 cmp %g2, 1
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
200c804: c2 04 20 54 ld [ %l0 + 0x54 ], %g1
200c808: 82 00 60 01 inc %g1
200c80c: c2 24 20 54 st %g1, [ %l0 + 0x54 ]
_ISR_Enable( *level_p );
200c810: d0 06 40 00 ld [ %i1 ], %o0
200c814: 7f ff d6 a4 call 20022a4 <sparc_enable_interrupts>
200c818: b0 10 20 00 clr %i0
200c81c: 81 c7 e0 08 ret
200c820: 81 e8 00 00 restore
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
200c824: c8 06 20 4c ld [ %i0 + 0x4c ], %g4
current = executing->current_priority;
200c828: c4 00 60 14 ld [ %g1 + 0x14 ], %g2
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
200c82c: 98 03 60 01 add %o5, 1, %o4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
200c830: 80 a1 00 02 cmp %g4, %g2
200c834: 02 80 00 25 be 200c8c8 <_CORE_mutex_Seize_interrupt_trylock+0x170>
200c838: d8 20 60 1c st %o4, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
200c83c: 80 a1 00 02 cmp %g4, %g2
200c840: 1a 80 00 11 bcc 200c884 <_CORE_mutex_Seize_interrupt_trylock+0x12c>
200c844: 84 10 20 06 mov 6, %g2
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
200c848: 03 00 80 57 sethi %hi(0x2015c00), %g1
200c84c: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 2015de8 <_Thread_Dispatch_disable_level>
200c850: 84 00 a0 01 inc %g2
200c854: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ]
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
200c858: 7f ff d6 93 call 20022a4 <sparc_enable_interrupts>
200c85c: d0 06 40 00 ld [ %i1 ], %o0
_Thread_Change_priority(
200c860: d0 06 20 5c ld [ %i0 + 0x5c ], %o0
200c864: d2 06 20 4c ld [ %i0 + 0x4c ], %o1
200c868: 94 10 20 00 clr %o2
200c86c: 7f ff ef 31 call 2008530 <_Thread_Change_priority>
200c870: b0 10 20 00 clr %i0
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
200c874: 7f ff f0 bf call 2008b70 <_Thread_Enable_dispatch>
200c878: 01 00 00 00 nop
200c87c: 81 c7 e0 08 ret
200c880: 81 e8 00 00 restore
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
200c884: c4 20 60 34 st %g2, [ %g1 + 0x34 ]
the_mutex->lock = CORE_MUTEX_UNLOCKED;
200c888: c6 26 20 50 st %g3, [ %i0 + 0x50 ]
the_mutex->nest_count = 0; /* undo locking above */
200c88c: c0 26 20 54 clr [ %i0 + 0x54 ]
executing->resource_count--; /* undo locking above */
200c890: da 20 60 1c st %o5, [ %g1 + 0x1c ]
_ISR_Enable( *level_p );
200c894: d0 06 40 00 ld [ %i1 ], %o0
200c898: 7f ff d6 83 call 20022a4 <sparc_enable_interrupts>
200c89c: b0 10 20 00 clr %i0
200c8a0: 81 c7 e0 08 ret
200c8a4: 81 e8 00 00 restore
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
200c8a8: 12 bf ff c3 bne 200c7b4 <_CORE_mutex_Seize_interrupt_trylock+0x5c><== ALWAYS TAKEN
200c8ac: 84 10 20 02 mov 2, %g2
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
200c8b0: c4 20 60 34 st %g2, [ %g1 + 0x34 ] <== NOT EXECUTED
_ISR_Enable( *level_p );
200c8b4: d0 06 40 00 ld [ %i1 ], %o0 <== NOT EXECUTED
200c8b8: 7f ff d6 7b call 20022a4 <sparc_enable_interrupts> <== NOT EXECUTED
200c8bc: b0 10 20 00 clr %i0 <== NOT EXECUTED
200c8c0: 81 c7 e0 08 ret <== NOT EXECUTED
200c8c4: 81 e8 00 00 restore <== NOT EXECUTED
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
200c8c8: d0 06 40 00 ld [ %i1 ], %o0
200c8cc: 7f ff d6 76 call 20022a4 <sparc_enable_interrupts>
200c8d0: b0 10 20 00 clr %i0
200c8d4: 81 c7 e0 08 ret
200c8d8: 81 e8 00 00 restore
02007560 <_CORE_semaphore_Surrender>:
CORE_semaphore_Status _CORE_semaphore_Surrender(
CORE_semaphore_Control *the_semaphore,
Objects_Id id,
CORE_semaphore_API_mp_support_callout api_semaphore_mp_support
)
{
2007560: 9d e3 bf a0 save %sp, -96, %sp
2007564: a0 10 00 18 mov %i0, %l0
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
2007568: b0 10 20 00 clr %i0
if ( (the_thread = _Thread_queue_Dequeue(&the_semaphore->Wait_queue)) ) {
200756c: 40 00 06 7d call 2008f60 <_Thread_queue_Dequeue>
2007570: 90 10 00 10 mov %l0, %o0
2007574: 80 a2 20 00 cmp %o0, 0
2007578: 02 80 00 04 be 2007588 <_CORE_semaphore_Surrender+0x28>
200757c: 01 00 00 00 nop
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
}
return status;
}
2007580: 81 c7 e0 08 ret
2007584: 81 e8 00 00 restore
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_semaphore_mp_support) ( the_thread, id );
#endif
} else {
_ISR_Disable( level );
2007588: 7f ff eb 43 call 2002294 <sparc_disable_interrupts>
200758c: 01 00 00 00 nop
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
2007590: c2 04 20 48 ld [ %l0 + 0x48 ], %g1
2007594: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
2007598: 80 a0 40 02 cmp %g1, %g2
200759c: 1a 80 00 05 bcc 20075b0 <_CORE_semaphore_Surrender+0x50> <== NEVER TAKEN
20075a0: b0 10 20 04 mov 4, %i0
the_semaphore->count += 1;
20075a4: 82 00 60 01 inc %g1
{
Thread_Control *the_thread;
ISR_Level level;
CORE_semaphore_Status status;
status = CORE_SEMAPHORE_STATUS_SUCCESSFUL;
20075a8: b0 10 20 00 clr %i0
#endif
} else {
_ISR_Disable( level );
if ( the_semaphore->count < the_semaphore->Attributes.maximum_count )
the_semaphore->count += 1;
20075ac: c2 24 20 48 st %g1, [ %l0 + 0x48 ]
else
status = CORE_SEMAPHORE_MAXIMUM_COUNT_EXCEEDED;
_ISR_Enable( level );
20075b0: 7f ff eb 3d call 20022a4 <sparc_enable_interrupts>
20075b4: 01 00 00 00 nop
}
return status;
}
20075b8: 81 c7 e0 08 ret
20075bc: 81 e8 00 00 restore
0200c6f4 <_Chain_Initialize>:
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
200c6f4: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
200c6f8: c0 26 20 04 clr [ %i0 + 4 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head(
Chain_Control *the_chain
)
{
return (Chain_Node *) the_chain;
200c6fc: 90 10 00 18 mov %i0, %o0
next = starting_address;
200c700: 84 10 00 1a mov %i2, %g2
while ( count-- ) {
200c704: 80 a6 a0 00 cmp %i2, 0
200c708: 12 80 00 06 bne 200c720 <_Chain_Initialize+0x2c> <== ALWAYS TAKEN
200c70c: 82 10 00 19 mov %i1, %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200c710: 10 80 00 0e b 200c748 <_Chain_Initialize+0x54> <== NOT EXECUTED
200c714: 82 06 20 04 add %i0, 4, %g1 <== NOT EXECUTED
200c718: 90 10 00 01 mov %g1, %o0
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
200c71c: 82 10 00 03 mov %g3, %g1
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
current->next = next;
200c720: c2 22 00 00 st %g1, [ %o0 ]
next->previous = current;
200c724: d0 20 60 04 st %o0, [ %g1 + 4 ]
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
200c728: 84 80 bf ff addcc %g2, -1, %g2
200c72c: 12 bf ff fb bne 200c718 <_Chain_Initialize+0x24>
200c730: 86 00 40 1b add %g1, %i3, %g3
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
200c734: 90 06 bf ff add %i2, -1, %o0
200c738: 40 00 16 c4 call 2012248 <.umul>
200c73c: 92 10 00 1b mov %i3, %o1
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
200c740: 90 06 40 08 add %i1, %o0, %o0
200c744: 82 06 20 04 add %i0, 4, %g1
next->previous = current;
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = _Chain_Tail( the_chain );
200c748: c2 22 00 00 st %g1, [ %o0 ]
the_chain->last = current;
200c74c: d0 26 20 08 st %o0, [ %i0 + 8 ]
}
200c750: 81 c7 e0 08 ret
200c754: 81 e8 00 00 restore
020060bc <_Event_Seize>:
rtems_event_set event_in,
rtems_option option_set,
rtems_interval ticks,
rtems_event_set *event_out
)
{
20060bc: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set pending_events;
ISR_Level level;
RTEMS_API_Control *api;
Thread_blocking_operation_States sync_state;
executing = _Thread_Executing;
20060c0: 03 00 80 58 sethi %hi(0x2016000), %g1
20060c4: e0 00 60 58 ld [ %g1 + 0x58 ], %l0 ! 2016058 <_Per_CPU_Information+0xc>
executing->Wait.return_code = RTEMS_SUCCESSFUL;
20060c8: c0 24 20 34 clr [ %l0 + 0x34 ]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
_ISR_Disable( level );
20060cc: 7f ff f0 72 call 2002294 <sparc_disable_interrupts>
20060d0: e2 04 21 60 ld [ %l0 + 0x160 ], %l1
pending_events = api->pending_events;
20060d4: c2 04 40 00 ld [ %l1 ], %g1
seized_events = _Event_sets_Get( pending_events, event_in );
if ( !_Event_sets_Is_empty( seized_events ) &&
20060d8: a4 8e 00 01 andcc %i0, %g1, %l2
20060dc: 02 80 00 09 be 2006100 <_Event_Seize+0x44>
20060e0: 80 8e 60 01 btst 1, %i1
20060e4: 80 a6 00 12 cmp %i0, %l2
20060e8: 02 80 00 25 be 200617c <_Event_Seize+0xc0>
20060ec: 82 28 40 12 andn %g1, %l2, %g1
(seized_events == event_in || _Options_Is_any( option_set )) ) {
20060f0: 80 8e 60 02 btst 2, %i1
20060f4: 32 80 00 23 bne,a 2006180 <_Event_Seize+0xc4> <== ALWAYS TAKEN
20060f8: c2 24 40 00 st %g1, [ %l1 ]
_ISR_Enable( level );
*event_out = seized_events;
return;
}
if ( _Options_Is_no_wait( option_set ) ) {
20060fc: 80 8e 60 01 btst 1, %i1 <== NOT EXECUTED
2006100: 12 80 00 18 bne 2006160 <_Event_Seize+0xa4>
2006104: 23 00 80 58 sethi %hi(0x2016000), %l1
* set properly when we are marked as in the event critical section.
*
* NOTE: Since interrupts are disabled, this isn't that much of an
* issue but better safe than sorry.
*/
executing->Wait.option = (uint32_t) option_set;
2006108: f2 24 20 30 st %i1, [ %l0 + 0x30 ]
executing->Wait.count = (uint32_t) event_in;
200610c: f0 24 20 24 st %i0, [ %l0 + 0x24 ]
executing->Wait.return_argument = event_out;
2006110: f6 24 20 28 st %i3, [ %l0 + 0x28 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
2006114: 82 10 20 01 mov 1, %g1
2006118: c2 24 60 68 st %g1, [ %l1 + 0x68 ]
_ISR_Enable( level );
200611c: 7f ff f0 62 call 20022a4 <sparc_enable_interrupts>
2006120: 01 00 00 00 nop
if ( ticks ) {
2006124: 80 a6 a0 00 cmp %i2, 0
2006128: 32 80 00 1b bne,a 2006194 <_Event_Seize+0xd8>
200612c: c2 04 20 08 ld [ %l0 + 8 ], %g1
NULL
);
_Watchdog_Insert_ticks( &executing->Timer, ticks );
}
_Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
2006130: 90 10 00 10 mov %l0, %o0
2006134: 40 00 0d 22 call 20095bc <_Thread_Set_state>
2006138: 92 10 21 00 mov 0x100, %o1
_ISR_Disable( level );
200613c: 7f ff f0 56 call 2002294 <sparc_disable_interrupts>
2006140: 01 00 00 00 nop
sync_state = _Event_Sync_state;
2006144: f0 04 60 68 ld [ %l1 + 0x68 ], %i0
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
2006148: c0 24 60 68 clr [ %l1 + 0x68 ]
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
200614c: 80 a6 20 01 cmp %i0, 1
2006150: 02 80 00 1e be 20061c8 <_Event_Seize+0x10c>
2006154: b2 10 00 10 mov %l0, %i1
* An interrupt completed the thread's blocking request.
* The blocking thread was satisfied by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
_Thread_blocking_operation_Cancel( sync_state, executing, level );
2006158: 40 00 08 df call 20084d4 <_Thread_blocking_operation_Cancel>
200615c: 95 e8 00 08 restore %g0, %o0, %o2
*event_out = seized_events;
return;
}
if ( _Options_Is_no_wait( option_set ) ) {
_ISR_Enable( level );
2006160: 7f ff f0 51 call 20022a4 <sparc_enable_interrupts>
2006164: 01 00 00 00 nop
executing->Wait.return_code = RTEMS_UNSATISFIED;
2006168: 82 10 20 0d mov 0xd, %g1 ! d <PROM_START+0xd>
200616c: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
*event_out = seized_events;
2006170: e4 26 c0 00 st %l2, [ %i3 ]
2006174: 81 c7 e0 08 ret
2006178: 81 e8 00 00 restore
pending_events = api->pending_events;
seized_events = _Event_sets_Get( pending_events, event_in );
if ( !_Event_sets_Is_empty( seized_events ) &&
(seized_events == event_in || _Options_Is_any( option_set )) ) {
api->pending_events =
200617c: c2 24 40 00 st %g1, [ %l1 ]
_Event_sets_Clear( pending_events, seized_events );
_ISR_Enable( level );
2006180: 7f ff f0 49 call 20022a4 <sparc_enable_interrupts>
2006184: 01 00 00 00 nop
*event_out = seized_events;
2006188: e4 26 c0 00 st %l2, [ %i3 ]
return;
200618c: 81 c7 e0 08 ret
2006190: 81 e8 00 00 restore
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2006194: 05 00 80 18 sethi %hi(0x2006000), %g2
2006198: 84 10 a3 78 or %g2, 0x378, %g2 ! 2006378 <_Event_Timeout>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
200619c: c0 24 20 50 clr [ %l0 + 0x50 ]
the_watchdog->routine = routine;
20061a0: c4 24 20 64 st %g2, [ %l0 + 0x64 ]
the_watchdog->id = id;
20061a4: c2 24 20 68 st %g1, [ %l0 + 0x68 ]
the_watchdog->user_data = user_data;
20061a8: c0 24 20 6c clr [ %l0 + 0x6c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
20061ac: f4 24 20 54 st %i2, [ %l0 + 0x54 ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20061b0: 11 00 80 57 sethi %hi(0x2015c00), %o0
20061b4: 92 04 20 48 add %l0, 0x48, %o1
20061b8: 40 00 0f 08 call 2009dd8 <_Watchdog_Insert>
20061bc: 90 12 22 b0 or %o0, 0x2b0, %o0
NULL
);
_Watchdog_Insert_ticks( &executing->Timer, ticks );
}
_Thread_Set_state( executing, STATES_WAITING_FOR_EVENT );
20061c0: 10 bf ff dd b 2006134 <_Event_Seize+0x78>
20061c4: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
sync_state = _Event_Sync_state;
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED ) {
_ISR_Enable( level );
20061c8: 7f ff f0 37 call 20022a4 <sparc_enable_interrupts>
20061cc: 91 e8 00 08 restore %g0, %o0, %o0
02006230 <_Event_Surrender>:
*/
void _Event_Surrender(
Thread_Control *the_thread
)
{
2006230: 9d e3 bf a0 save %sp, -96, %sp
rtems_event_set event_condition;
rtems_event_set seized_events;
rtems_option option_set;
RTEMS_API_Control *api;
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
2006234: e0 06 21 60 ld [ %i0 + 0x160 ], %l0
option_set = (rtems_option) the_thread->Wait.option;
_ISR_Disable( level );
2006238: 7f ff f0 17 call 2002294 <sparc_disable_interrupts>
200623c: e4 06 20 30 ld [ %i0 + 0x30 ], %l2
2006240: a2 10 00 08 mov %o0, %l1
pending_events = api->pending_events;
2006244: c4 04 00 00 ld [ %l0 ], %g2
event_condition = (rtems_event_set) the_thread->Wait.count;
2006248: c2 06 20 24 ld [ %i0 + 0x24 ], %g1
seized_events = _Event_sets_Get( pending_events, event_condition );
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
200624c: 86 88 40 02 andcc %g1, %g2, %g3
2006250: 02 80 00 3e be 2006348 <_Event_Surrender+0x118>
2006254: 09 00 80 58 sethi %hi(0x2016000), %g4
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
2006258: 88 11 20 4c or %g4, 0x4c, %g4 ! 201604c <_Per_CPU_Information>
200625c: da 01 20 08 ld [ %g4 + 8 ], %o5
2006260: 80 a3 60 00 cmp %o5, 0
2006264: 32 80 00 1d bne,a 20062d8 <_Event_Surrender+0xa8>
2006268: c8 01 20 0c ld [ %g4 + 0xc ], %g4
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_event (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_EVENT);
200626c: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
}
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
2006270: 80 89 21 00 btst 0x100, %g4
2006274: 02 80 00 33 be 2006340 <_Event_Surrender+0x110>
2006278: 80 a0 40 03 cmp %g1, %g3
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
200627c: 02 80 00 04 be 200628c <_Event_Surrender+0x5c>
2006280: 80 8c a0 02 btst 2, %l2
2006284: 02 80 00 2f be 2006340 <_Event_Surrender+0x110> <== NEVER TAKEN
2006288: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200628c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
RTEMS_INLINE_ROUTINE rtems_event_set _Event_sets_Clear(
rtems_event_set the_event_set,
rtems_event_set the_mask
)
{
return ( the_event_set & ~(the_mask) );
2006290: 84 28 80 03 andn %g2, %g3, %g2
/*
* Otherwise, this is a normal send to another thread
*/
if ( _States_Is_waiting_for_event( the_thread->current_state ) ) {
if ( seized_events == event_condition || _Options_Is_any( option_set ) ) {
api->pending_events = _Event_sets_Clear( pending_events, seized_events );
2006294: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
2006298: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200629c: c6 20 40 00 st %g3, [ %g1 ]
_ISR_Flash( level );
20062a0: 7f ff f0 01 call 20022a4 <sparc_enable_interrupts>
20062a4: 90 10 00 11 mov %l1, %o0
20062a8: 7f ff ef fb call 2002294 <sparc_disable_interrupts>
20062ac: 01 00 00 00 nop
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
20062b0: c2 06 20 50 ld [ %i0 + 0x50 ], %g1
20062b4: 80 a0 60 02 cmp %g1, 2
20062b8: 02 80 00 26 be 2006350 <_Event_Surrender+0x120>
20062bc: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
20062c0: 90 10 00 11 mov %l1, %o0
20062c4: 7f ff ef f8 call 20022a4 <sparc_enable_interrupts>
20062c8: 33 04 00 ff sethi %hi(0x1003fc00), %i1
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20062cc: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
20062d0: 40 00 09 1b call 200873c <_Thread_Clear_state>
20062d4: 81 e8 00 00 restore
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
20062d8: 80 a6 00 04 cmp %i0, %g4
20062dc: 32 bf ff e5 bne,a 2006270 <_Event_Surrender+0x40>
20062e0: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20062e4: 09 00 80 58 sethi %hi(0x2016000), %g4
20062e8: da 01 20 68 ld [ %g4 + 0x68 ], %o5 ! 2016068 <_Event_Sync_state>
/*
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
20062ec: 80 a3 60 02 cmp %o5, 2
20062f0: 02 80 00 07 be 200630c <_Event_Surrender+0xdc> <== NEVER TAKEN
20062f4: 80 a0 40 03 cmp %g1, %g3
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
20062f8: da 01 20 68 ld [ %g4 + 0x68 ], %o5
* If we are in an ISR and sending to the current thread, then
* we have a critical section issue to deal with.
*/
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
20062fc: 80 a3 60 01 cmp %o5, 1
2006300: 32 bf ff dc bne,a 2006270 <_Event_Surrender+0x40>
2006304: c8 06 20 10 ld [ %i0 + 0x10 ], %g4
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
2006308: 80 a0 40 03 cmp %g1, %g3
200630c: 02 80 00 04 be 200631c <_Event_Surrender+0xec>
2006310: 80 8c a0 02 btst 2, %l2
2006314: 02 80 00 09 be 2006338 <_Event_Surrender+0x108> <== NEVER TAKEN
2006318: 01 00 00 00 nop
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
the_thread->Wait.count = 0;
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200631c: c2 06 20 28 ld [ %i0 + 0x28 ], %g1
2006320: 84 28 80 03 andn %g2, %g3, %g2
if ( _ISR_Is_in_progress() &&
_Thread_Is_executing( the_thread ) &&
((_Event_Sync_state == THREAD_BLOCKING_OPERATION_TIMEOUT) ||
(_Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED)) ) {
if ( seized_events == event_condition || _Options_Is_any(option_set) ) {
api->pending_events = _Event_sets_Clear( pending_events,seized_events );
2006324: c4 24 00 00 st %g2, [ %l0 ]
the_thread->Wait.count = 0;
2006328: c0 26 20 24 clr [ %i0 + 0x24 ]
*(rtems_event_set *)the_thread->Wait.return_argument = seized_events;
200632c: c6 20 40 00 st %g3, [ %g1 ]
_Event_Sync_state = THREAD_BLOCKING_OPERATION_SATISFIED;
2006330: 82 10 20 03 mov 3, %g1
2006334: c2 21 20 68 st %g1, [ %g4 + 0x68 ]
}
_ISR_Enable( level );
2006338: 7f ff ef db call 20022a4 <sparc_enable_interrupts>
200633c: 91 e8 00 11 restore %g0, %l1, %o0
_Thread_Unblock( the_thread );
}
return;
}
}
_ISR_Enable( level );
2006340: 7f ff ef d9 call 20022a4 <sparc_enable_interrupts>
2006344: 91 e8 00 11 restore %g0, %l1, %o0
/*
* No events were seized in this operation
*/
if ( _Event_sets_Is_empty( seized_events ) ) {
_ISR_Enable( level );
2006348: 7f ff ef d7 call 20022a4 <sparc_enable_interrupts>
200634c: 91 e8 00 08 restore %g0, %o0, %o0
RTEMS_INLINE_ROUTINE void _Watchdog_Deactivate(
Watchdog_Control *the_watchdog
)
{
the_watchdog->state = WATCHDOG_REMOVE_IT;
2006350: c2 26 20 50 st %g1, [ %i0 + 0x50 ]
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
_Thread_Unblock( the_thread );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
2006354: 7f ff ef d4 call 20022a4 <sparc_enable_interrupts>
2006358: 90 10 00 11 mov %l1, %o0
(void) _Watchdog_Remove( &the_thread->Timer );
200635c: 40 00 0f 09 call 2009f80 <_Watchdog_Remove>
2006360: 90 06 20 48 add %i0, 0x48, %o0
2006364: 33 04 00 ff sethi %hi(0x1003fc00), %i1
2006368: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
200636c: 40 00 08 f4 call 200873c <_Thread_Clear_state>
2006370: 81 e8 00 00 restore
02006378 <_Event_Timeout>:
void _Event_Timeout(
Objects_Id id,
void *ignored
)
{
2006378: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
ISR_Level level;
the_thread = _Thread_Get( id, &location );
200637c: 90 10 00 18 mov %i0, %o0
2006380: 40 00 0a 0a call 2008ba8 <_Thread_Get>
2006384: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2006388: c2 07 bf fc ld [ %fp + -4 ], %g1
200638c: 80 a0 60 00 cmp %g1, 0
2006390: 12 80 00 15 bne 20063e4 <_Event_Timeout+0x6c> <== NEVER TAKEN
2006394: a0 10 00 08 mov %o0, %l0
*
* If it is not satisfied, then it is "nothing happened" and
* this is the "timeout" transition. After a request is satisfied,
* a timeout is not allowed to occur.
*/
_ISR_Disable( level );
2006398: 7f ff ef bf call 2002294 <sparc_disable_interrupts>
200639c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
20063a0: 03 00 80 58 sethi %hi(0x2016000), %g1
return;
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
20063a4: c2 00 60 58 ld [ %g1 + 0x58 ], %g1 ! 2016058 <_Per_CPU_Information+0xc>
20063a8: 80 a4 00 01 cmp %l0, %g1
20063ac: 02 80 00 10 be 20063ec <_Event_Timeout+0x74>
20063b0: c0 24 20 24 clr [ %l0 + 0x24 ]
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
20063b4: 82 10 20 06 mov 6, %g1
20063b8: c2 24 20 34 st %g1, [ %l0 + 0x34 ]
_ISR_Enable( level );
20063bc: 7f ff ef ba call 20022a4 <sparc_enable_interrupts>
20063c0: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
20063c4: 90 10 00 10 mov %l0, %o0
20063c8: 13 04 00 ff sethi %hi(0x1003fc00), %o1
20063cc: 40 00 08 dc call 200873c <_Thread_Clear_state>
20063d0: 92 12 63 f8 or %o1, 0x3f8, %o1 ! 1003fff8 <RAM_END+0xdc3fff8>
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
20063d4: 03 00 80 57 sethi %hi(0x2015c00), %g1
20063d8: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 2015de8 <_Thread_Dispatch_disable_level>
20063dc: 84 00 bf ff add %g2, -1, %g2
20063e0: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ]
20063e4: 81 c7 e0 08 ret
20063e8: 81 e8 00 00 restore
}
#endif
the_thread->Wait.count = 0;
if ( _Thread_Is_executing( the_thread ) ) {
if ( _Event_Sync_state == THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
20063ec: 03 00 80 58 sethi %hi(0x2016000), %g1
20063f0: c4 00 60 68 ld [ %g1 + 0x68 ], %g2 ! 2016068 <_Event_Sync_state>
20063f4: 80 a0 a0 01 cmp %g2, 1
20063f8: 32 bf ff f0 bne,a 20063b8 <_Event_Timeout+0x40>
20063fc: 82 10 20 06 mov 6, %g1
_Event_Sync_state = THREAD_BLOCKING_OPERATION_TIMEOUT;
2006400: 84 10 20 02 mov 2, %g2
2006404: c4 20 60 68 st %g2, [ %g1 + 0x68 ]
}
the_thread->Wait.return_code = RTEMS_TIMEOUT;
2006408: 10 bf ff ec b 20063b8 <_Event_Timeout+0x40>
200640c: 82 10 20 06 mov 6, %g1
0200c958 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
200c958: 9d e3 bf 98 save %sp, -104, %sp
200c95c: a0 10 00 18 mov %i0, %l0
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
200c960: a4 06 60 04 add %i1, 4, %l2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c964: e8 06 20 08 ld [ %i0 + 8 ], %l4
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
200c968: fa 06 20 10 ld [ %i0 + 0x10 ], %i5
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
if ( block_size_floor < alloc_size ) {
200c96c: 80 a6 40 12 cmp %i1, %l2
200c970: 18 80 00 62 bgu 200caf8 <_Heap_Allocate_aligned_with_boundary+0x1a0>
200c974: b0 10 20 00 clr %i0
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
200c978: 80 a6 e0 00 cmp %i3, 0
200c97c: 12 80 00 70 bne 200cb3c <_Heap_Allocate_aligned_with_boundary+0x1e4>
200c980: 80 a6 40 1b cmp %i1, %i3
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
200c984: 80 a4 00 14 cmp %l0, %l4
200c988: 02 80 00 5c be 200caf8 <_Heap_Allocate_aligned_with_boundary+0x1a0>
200c98c: b0 10 20 00 clr %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c990: 82 07 60 07 add %i5, 7, %g1
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
200c994: b8 10 20 04 mov 4, %i4
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
200c998: a2 10 20 00 clr %l1
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c99c: c2 27 bf fc st %g1, [ %fp + -4 ]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
200c9a0: b8 27 00 19 sub %i4, %i1, %i4
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
200c9a4: e6 05 20 04 ld [ %l4 + 4 ], %l3
200c9a8: 80 a4 80 13 cmp %l2, %l3
200c9ac: 1a 80 00 4a bcc 200cad4 <_Heap_Allocate_aligned_with_boundary+0x17c>
200c9b0: a2 04 60 01 inc %l1
if ( alignment == 0 ) {
200c9b4: 80 a6 a0 00 cmp %i2, 0
200c9b8: 02 80 00 44 be 200cac8 <_Heap_Allocate_aligned_with_boundary+0x170>
200c9bc: b0 05 20 08 add %l4, 8, %i0
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200c9c0: c4 07 bf fc ld [ %fp + -4 ], %g2
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200c9c4: ee 04 20 14 ld [ %l0 + 0x14 ], %l7
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200c9c8: a6 0c ff fe and %l3, -2, %l3
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
200c9cc: 82 20 80 17 sub %g2, %l7, %g1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
200c9d0: a6 05 00 13 add %l4, %l3, %l3
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200c9d4: 92 10 00 1a mov %i2, %o1
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
uintptr_t alloc_begin = alloc_end - alloc_size;
200c9d8: b0 07 00 13 add %i4, %l3, %i0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
200c9dc: a6 00 40 13 add %g1, %l3, %l3
200c9e0: 40 00 17 00 call 20125e0 <.urem>
200c9e4: 90 10 00 18 mov %i0, %o0
200c9e8: b0 26 00 08 sub %i0, %o0, %i0
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
200c9ec: 80 a4 c0 18 cmp %l3, %i0
200c9f0: 1a 80 00 06 bcc 200ca08 <_Heap_Allocate_aligned_with_boundary+0xb0>
200c9f4: ac 05 20 08 add %l4, 8, %l6
200c9f8: 90 10 00 13 mov %l3, %o0
200c9fc: 40 00 16 f9 call 20125e0 <.urem>
200ca00: 92 10 00 1a mov %i2, %o1
200ca04: b0 24 c0 08 sub %l3, %o0, %i0
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
200ca08: 80 a6 e0 00 cmp %i3, 0
200ca0c: 02 80 00 24 be 200ca9c <_Heap_Allocate_aligned_with_boundary+0x144>
200ca10: 80 a5 80 18 cmp %l6, %i0
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
200ca14: a6 06 00 19 add %i0, %i1, %l3
200ca18: 92 10 00 1b mov %i3, %o1
200ca1c: 40 00 16 f1 call 20125e0 <.urem>
200ca20: 90 10 00 13 mov %l3, %o0
200ca24: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200ca28: 80 a6 00 08 cmp %i0, %o0
200ca2c: 1a 80 00 1b bcc 200ca98 <_Heap_Allocate_aligned_with_boundary+0x140>
200ca30: 80 a2 00 13 cmp %o0, %l3
200ca34: 1a 80 00 1a bcc 200ca9c <_Heap_Allocate_aligned_with_boundary+0x144>
200ca38: 80 a5 80 18 cmp %l6, %i0
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
200ca3c: aa 05 80 19 add %l6, %i1, %l5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
200ca40: 80 a5 40 08 cmp %l5, %o0
200ca44: 28 80 00 09 bleu,a 200ca68 <_Heap_Allocate_aligned_with_boundary+0x110>
200ca48: b0 22 00 19 sub %o0, %i1, %i0
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
200ca4c: 10 80 00 23 b 200cad8 <_Heap_Allocate_aligned_with_boundary+0x180>
200ca50: e8 05 20 08 ld [ %l4 + 8 ], %l4
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200ca54: 1a 80 00 11 bcc 200ca98 <_Heap_Allocate_aligned_with_boundary+0x140>
200ca58: 80 a5 40 08 cmp %l5, %o0
if ( boundary_line < boundary_floor ) {
200ca5c: 38 80 00 1f bgu,a 200cad8 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
200ca60: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
return 0;
}
alloc_begin = boundary_line - alloc_size;
200ca64: b0 22 00 19 sub %o0, %i1, %i0
200ca68: 92 10 00 1a mov %i2, %o1
200ca6c: 40 00 16 dd call 20125e0 <.urem>
200ca70: 90 10 00 18 mov %i0, %o0
200ca74: 92 10 00 1b mov %i3, %o1
200ca78: b0 26 00 08 sub %i0, %o0, %i0
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
200ca7c: a6 06 00 19 add %i0, %i1, %l3
200ca80: 40 00 16 d8 call 20125e0 <.urem>
200ca84: 90 10 00 13 mov %l3, %o0
200ca88: 90 24 c0 08 sub %l3, %o0, %o0
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
200ca8c: 80 a2 00 13 cmp %o0, %l3
200ca90: 0a bf ff f1 bcs 200ca54 <_Heap_Allocate_aligned_with_boundary+0xfc>
200ca94: 80 a6 00 08 cmp %i0, %o0
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
200ca98: 80 a5 80 18 cmp %l6, %i0
200ca9c: 38 80 00 0f bgu,a 200cad8 <_Heap_Allocate_aligned_with_boundary+0x180>
200caa0: e8 05 20 08 ld [ %l4 + 8 ], %l4
200caa4: 82 10 3f f8 mov -8, %g1
200caa8: 90 10 00 18 mov %i0, %o0
200caac: a6 20 40 14 sub %g1, %l4, %l3
200cab0: 92 10 00 1d mov %i5, %o1
200cab4: 40 00 16 cb call 20125e0 <.urem>
200cab8: a6 04 c0 18 add %l3, %i0, %l3
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200cabc: 90 a4 c0 08 subcc %l3, %o0, %o0
200cac0: 12 80 00 10 bne 200cb00 <_Heap_Allocate_aligned_with_boundary+0x1a8>
200cac4: 80 a2 00 17 cmp %o0, %l7
boundary
);
}
}
if ( alloc_begin != 0 ) {
200cac8: 80 a6 20 00 cmp %i0, 0
200cacc: 32 80 00 13 bne,a 200cb18 <_Heap_Allocate_aligned_with_boundary+0x1c0><== ALWAYS TAKEN
200cad0: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
break;
}
block = block->next;
200cad4: e8 05 20 08 ld [ %l4 + 8 ], %l4
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
200cad8: 80 a4 00 14 cmp %l0, %l4
200cadc: 32 bf ff b3 bne,a 200c9a8 <_Heap_Allocate_aligned_with_boundary+0x50>
200cae0: e6 05 20 04 ld [ %l4 + 4 ], %l3
200cae4: b0 10 20 00 clr %i0
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200cae8: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
200caec: 80 a0 40 11 cmp %g1, %l1
200caf0: 2a 80 00 02 bcs,a 200caf8 <_Heap_Allocate_aligned_with_boundary+0x1a0>
200caf4: e2 24 20 44 st %l1, [ %l0 + 0x44 ]
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
200caf8: 81 c7 e0 08 ret
200cafc: 81 e8 00 00 restore
if ( alloc_begin >= alloc_begin_floor ) {
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
200cb00: 2a bf ff f6 bcs,a 200cad8 <_Heap_Allocate_aligned_with_boundary+0x180>
200cb04: e8 05 20 08 ld [ %l4 + 8 ], %l4
boundary
);
}
}
if ( alloc_begin != 0 ) {
200cb08: 80 a6 20 00 cmp %i0, 0
200cb0c: 22 bf ff f3 be,a 200cad8 <_Heap_Allocate_aligned_with_boundary+0x180><== NEVER TAKEN
200cb10: e8 05 20 08 ld [ %l4 + 8 ], %l4 <== NOT EXECUTED
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
200cb14: c2 04 20 4c ld [ %l0 + 0x4c ], %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200cb18: 90 10 00 10 mov %l0, %o0
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
200cb1c: 82 00 40 11 add %g1, %l1, %g1
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200cb20: 92 10 00 14 mov %l4, %o1
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
200cb24: c2 24 20 4c st %g1, [ %l0 + 0x4c ]
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
200cb28: 94 10 00 18 mov %i0, %o2
200cb2c: 7f ff eb b5 call 2007a00 <_Heap_Block_allocate>
200cb30: 96 10 00 19 mov %i1, %o3
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
200cb34: 10 bf ff ee b 200caec <_Heap_Allocate_aligned_with_boundary+0x194>
200cb38: c2 04 20 44 ld [ %l0 + 0x44 ], %g1
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
200cb3c: 18 bf ff ef bgu 200caf8 <_Heap_Allocate_aligned_with_boundary+0x1a0>
200cb40: 80 a6 a0 00 cmp %i2, 0
return NULL;
}
if ( alignment == 0 ) {
200cb44: 22 bf ff 90 be,a 200c984 <_Heap_Allocate_aligned_with_boundary+0x2c>
200cb48: b4 10 00 1d mov %i5, %i2
alignment = page_size;
}
}
while ( block != free_list_tail ) {
200cb4c: 10 bf ff 8f b 200c988 <_Heap_Allocate_aligned_with_boundary+0x30>
200cb50: 80 a4 00 14 cmp %l0, %l4
0200ce4c <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200ce4c: 9d e3 bf 98 save %sp, -104, %sp
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
200ce50: c0 27 bf fc clr [ %fp + -4 ]
Heap_Block *extend_last_block = NULL;
200ce54: c0 27 bf f8 clr [ %fp + -8 ]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
200ce58: a0 10 00 18 mov %i0, %l0
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
200ce5c: a2 06 40 1a add %i1, %i2, %l1
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
200ce60: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
200ce64: e6 06 20 10 ld [ %i0 + 0x10 ], %l3
uintptr_t const min_block_size = heap->min_block_size;
200ce68: d6 06 20 14 ld [ %i0 + 0x14 ], %o3
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
200ce6c: e8 06 20 30 ld [ %i0 + 0x30 ], %l4
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
200ce70: 80 a6 40 11 cmp %i1, %l1
200ce74: 18 80 00 86 bgu 200d08c <_Heap_Extend+0x240>
200ce78: b0 10 20 00 clr %i0
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
200ce7c: 90 10 00 19 mov %i1, %o0
200ce80: 92 10 00 1a mov %i2, %o1
200ce84: 94 10 00 13 mov %l3, %o2
200ce88: 98 07 bf fc add %fp, -4, %o4
200ce8c: 7f ff ea ee call 2007a44 <_Heap_Get_first_and_last_block>
200ce90: 9a 07 bf f8 add %fp, -8, %o5
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
200ce94: 80 8a 20 ff btst 0xff, %o0
200ce98: 02 80 00 7d be 200d08c <_Heap_Extend+0x240>
200ce9c: ba 10 20 00 clr %i5
200cea0: b0 10 00 12 mov %l2, %i0
200cea4: b8 10 20 00 clr %i4
200cea8: ac 10 20 00 clr %l6
200ceac: 10 80 00 14 b 200cefc <_Heap_Extend+0xb0>
200ceb0: ae 10 20 00 clr %l7
return false;
}
if ( extend_area_end == sub_area_begin ) {
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
200ceb4: 2a 80 00 02 bcs,a 200cebc <_Heap_Extend+0x70>
200ceb8: b8 10 00 18 mov %i0, %i4
200cebc: 90 10 00 15 mov %l5, %o0
200cec0: 40 00 17 17 call 2012b1c <.urem>
200cec4: 92 10 00 13 mov %l3, %o1
200cec8: 82 05 7f f8 add %l5, -8, %g1
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200cecc: 80 a5 40 19 cmp %l5, %i1
200ced0: 02 80 00 1c be 200cf40 <_Heap_Extend+0xf4>
200ced4: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
merge_above_block = end_block;
} else if ( sub_area_end < extend_area_begin ) {
200ced8: 80 a6 40 15 cmp %i1, %l5
200cedc: 38 80 00 02 bgu,a 200cee4 <_Heap_Extend+0x98>
200cee0: ba 10 00 01 mov %g1, %i5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cee4: f0 00 60 04 ld [ %g1 + 4 ], %i0
200cee8: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200ceec: b0 00 40 18 add %g1, %i0, %i0
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200cef0: 80 a4 80 18 cmp %l2, %i0
200cef4: 22 80 00 1b be,a 200cf60 <_Heap_Extend+0x114>
200cef8: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200cefc: 80 a6 00 12 cmp %i0, %l2
200cf00: 02 80 00 65 be 200d094 <_Heap_Extend+0x248>
200cf04: 82 10 00 18 mov %i0, %g1
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200cf08: 80 a0 40 11 cmp %g1, %l1
200cf0c: 0a 80 00 6f bcs 200d0c8 <_Heap_Extend+0x27c>
200cf10: ea 06 00 00 ld [ %i0 ], %l5
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
200cf14: 80 a0 40 11 cmp %g1, %l1
200cf18: 12 bf ff e7 bne 200ceb4 <_Heap_Extend+0x68>
200cf1c: 80 a4 40 15 cmp %l1, %l5
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cf20: 90 10 00 15 mov %l5, %o0
200cf24: 40 00 16 fe call 2012b1c <.urem>
200cf28: 92 10 00 13 mov %l3, %o1
200cf2c: 82 05 7f f8 add %l5, -8, %g1
200cf30: ae 10 00 18 mov %i0, %l7
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
200cf34: 80 a5 40 19 cmp %l5, %i1
200cf38: 12 bf ff e8 bne 200ced8 <_Heap_Extend+0x8c> <== ALWAYS TAKEN
200cf3c: 82 20 40 08 sub %g1, %o0, %g1
start_block->prev_size = extend_area_end;
200cf40: e2 26 00 00 st %l1, [ %i0 ]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cf44: f0 00 60 04 ld [ %g1 + 4 ], %i0
200cf48: b0 0e 3f fe and %i0, -2, %i0
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cf4c: b0 00 40 18 add %g1, %i0, %i0
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
200cf50: 80 a4 80 18 cmp %l2, %i0
200cf54: 12 bf ff ea bne 200cefc <_Heap_Extend+0xb0> <== NEVER TAKEN
200cf58: ac 10 00 01 mov %g1, %l6
if ( extend_area_begin < heap->area_begin ) {
200cf5c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
200cf60: 80 a6 40 01 cmp %i1, %g1
200cf64: 3a 80 00 54 bcc,a 200d0b4 <_Heap_Extend+0x268>
200cf68: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
heap->area_begin = extend_area_begin;
200cf6c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200cf70: c2 07 bf fc ld [ %fp + -4 ], %g1
200cf74: c4 07 bf f8 ld [ %fp + -8 ], %g2
extend_first_block_size | HEAP_PREV_BLOCK_USED;
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200cf78: c8 04 20 20 ld [ %l0 + 0x20 ], %g4
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
200cf7c: 86 20 80 01 sub %g2, %g1, %g3
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
200cf80: e2 20 40 00 st %l1, [ %g1 ]
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
200cf84: 9a 10 e0 01 or %g3, 1, %o5
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
200cf88: da 20 60 04 st %o5, [ %g1 + 4 ]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
extend_last_block->prev_size = extend_first_block_size;
200cf8c: c6 20 80 00 st %g3, [ %g2 ]
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
200cf90: 80 a1 00 01 cmp %g4, %g1
200cf94: 08 80 00 42 bleu 200d09c <_Heap_Extend+0x250>
200cf98: c0 20 a0 04 clr [ %g2 + 4 ]
heap->first_block = extend_first_block;
200cf9c: c2 24 20 20 st %g1, [ %l0 + 0x20 ]
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200cfa0: 80 a5 e0 00 cmp %l7, 0
200cfa4: 02 80 00 62 be 200d12c <_Heap_Extend+0x2e0>
200cfa8: b2 06 60 08 add %i1, 8, %i1
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
200cfac: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
200cfb0: 92 10 00 12 mov %l2, %o1
200cfb4: 40 00 16 da call 2012b1c <.urem>
200cfb8: 90 10 00 19 mov %i1, %o0
if ( remainder != 0 ) {
200cfbc: 80 a2 20 00 cmp %o0, 0
200cfc0: 02 80 00 04 be 200cfd0 <_Heap_Extend+0x184> <== ALWAYS TAKEN
200cfc4: c4 05 c0 00 ld [ %l7 ], %g2
return value - remainder + alignment;
200cfc8: b2 06 40 12 add %i1, %l2, %i1 <== NOT EXECUTED
200cfcc: b2 26 40 08 sub %i1, %o0, %i1 <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
200cfd0: 82 06 7f f8 add %i1, -8, %g1
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
200cfd4: c4 26 7f f8 st %g2, [ %i1 + -8 ]
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
200cfd8: 84 25 c0 01 sub %l7, %g1, %g2
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
200cfdc: 84 10 a0 01 or %g2, 1, %g2
_Heap_Free_block( heap, new_first_block );
200cfe0: 90 10 00 10 mov %l0, %o0
200cfe4: 92 10 00 01 mov %g1, %o1
200cfe8: 7f ff ff 8e call 200ce20 <_Heap_Free_block>
200cfec: c4 20 60 04 st %g2, [ %g1 + 4 ]
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
200cff0: 80 a5 a0 00 cmp %l6, 0
200cff4: 02 80 00 3a be 200d0dc <_Heap_Extend+0x290>
200cff8: a2 04 7f f8 add %l1, -8, %l1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cffc: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
200d000: a2 24 40 16 sub %l1, %l6, %l1
200d004: 40 00 16 c6 call 2012b1c <.urem>
200d008: 90 10 00 11 mov %l1, %o0
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
200d00c: c2 05 a0 04 ld [ %l6 + 4 ], %g1
200d010: a2 24 40 08 sub %l1, %o0, %l1
200d014: 82 20 40 11 sub %g1, %l1, %g1
| HEAP_PREV_BLOCK_USED;
200d018: 82 10 60 01 or %g1, 1, %g1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
200d01c: 84 04 40 16 add %l1, %l6, %g2
200d020: c2 20 a0 04 st %g1, [ %g2 + 4 ]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d024: c2 05 a0 04 ld [ %l6 + 4 ], %g1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
200d028: 90 10 00 10 mov %l0, %o0
200d02c: 82 08 60 01 and %g1, 1, %g1
200d030: 92 10 00 16 mov %l6, %o1
block->size_and_flag = size | flag;
200d034: a2 14 40 01 or %l1, %g1, %l1
200d038: 7f ff ff 7a call 200ce20 <_Heap_Free_block>
200d03c: e2 25 a0 04 st %l1, [ %l6 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d040: 80 a5 a0 00 cmp %l6, 0
200d044: 02 80 00 33 be 200d110 <_Heap_Extend+0x2c4>
200d048: 80 a5 e0 00 cmp %l7, 0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200d04c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d050: da 04 20 20 ld [ %l0 + 0x20 ], %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d054: c8 00 60 04 ld [ %g1 + 4 ], %g4
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
200d058: c4 04 20 2c ld [ %l0 + 0x2c ], %g2
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
200d05c: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
200d060: 9a 23 40 01 sub %o5, %g1, %o5
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d064: 88 09 20 01 and %g4, 1, %g4
block->size_and_flag = size | flag;
200d068: 88 13 40 04 or %o5, %g4, %g4
200d06c: c8 20 60 04 st %g4, [ %g1 + 4 ]
200d070: a8 20 c0 14 sub %g3, %l4, %l4
/* Statistics */
stats->size += extended_size;
200d074: 82 00 80 14 add %g2, %l4, %g1
200d078: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
if ( extended_size_ptr != NULL )
200d07c: 80 a6 e0 00 cmp %i3, 0
200d080: 02 80 00 03 be 200d08c <_Heap_Extend+0x240> <== NEVER TAKEN
200d084: b0 10 20 01 mov 1, %i0
*extended_size_ptr = extended_size;
200d088: e8 26 c0 00 st %l4, [ %i3 ]
200d08c: 81 c7 e0 08 ret
200d090: 81 e8 00 00 restore
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
200d094: 10 bf ff 9d b 200cf08 <_Heap_Extend+0xbc>
200d098: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
200d09c: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
200d0a0: 80 a0 40 02 cmp %g1, %g2
200d0a4: 2a bf ff bf bcs,a 200cfa0 <_Heap_Extend+0x154>
200d0a8: c4 24 20 24 st %g2, [ %l0 + 0x24 ]
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
200d0ac: 10 bf ff be b 200cfa4 <_Heap_Extend+0x158>
200d0b0: 80 a5 e0 00 cmp %l7, 0
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
200d0b4: 80 a4 40 01 cmp %l1, %g1
200d0b8: 38 bf ff ae bgu,a 200cf70 <_Heap_Extend+0x124>
200d0bc: e2 24 20 1c st %l1, [ %l0 + 0x1c ]
heap->area_end = extend_area_end;
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
200d0c0: 10 bf ff ad b 200cf74 <_Heap_Extend+0x128>
200d0c4: c2 07 bf fc ld [ %fp + -4 ], %g1
(uintptr_t) start_block : heap->area_begin;
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
200d0c8: 80 a6 40 15 cmp %i1, %l5
200d0cc: 1a bf ff 93 bcc 200cf18 <_Heap_Extend+0xcc>
200d0d0: 80 a0 40 11 cmp %g1, %l1
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200d0d4: 81 c7 e0 08 ret
200d0d8: 91 e8 20 00 restore %g0, 0, %o0
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
200d0dc: 80 a7 60 00 cmp %i5, 0
200d0e0: 02 bf ff d8 be 200d040 <_Heap_Extend+0x1f4>
200d0e4: c4 07 bf fc ld [ %fp + -4 ], %g2
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
200d0e8: c6 07 60 04 ld [ %i5 + 4 ], %g3
_Heap_Link_above(
200d0ec: c2 07 bf f8 ld [ %fp + -8 ], %g1
200d0f0: 86 08 e0 01 and %g3, 1, %g3
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
200d0f4: 84 20 80 1d sub %g2, %i5, %g2
block->size_and_flag = size | flag;
200d0f8: 84 10 80 03 or %g2, %g3, %g2
200d0fc: c4 27 60 04 st %g2, [ %i5 + 4 ]
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
200d100: c4 00 60 04 ld [ %g1 + 4 ], %g2
200d104: 84 10 a0 01 or %g2, 1, %g2
200d108: 10 bf ff ce b 200d040 <_Heap_Extend+0x1f4>
200d10c: c4 20 60 04 st %g2, [ %g1 + 4 ]
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
200d110: 32 bf ff d0 bne,a 200d050 <_Heap_Extend+0x204>
200d114: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
_Heap_Free_block( heap, extend_first_block );
200d118: d2 07 bf fc ld [ %fp + -4 ], %o1
200d11c: 7f ff ff 41 call 200ce20 <_Heap_Free_block>
200d120: 90 10 00 10 mov %l0, %o0
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
200d124: 10 bf ff cb b 200d050 <_Heap_Extend+0x204>
200d128: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
200d12c: 80 a7 20 00 cmp %i4, 0
200d130: 02 bf ff b1 be 200cff4 <_Heap_Extend+0x1a8>
200d134: 80 a5 a0 00 cmp %l6, 0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
200d138: b8 27 00 02 sub %i4, %g2, %i4
200d13c: b8 17 20 01 or %i4, 1, %i4
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
200d140: 10 bf ff ad b 200cff4 <_Heap_Extend+0x1a8>
200d144: f8 20 a0 04 st %i4, [ %g2 + 4 ]
0200cb54 <_Heap_Free>:
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
200cb54: 9d e3 bf a0 save %sp, -96, %sp
200cb58: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
200cb5c: 40 00 16 a1 call 20125e0 <.urem>
200cb60: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
200cb64: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
200cb68: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
200cb6c: a2 06 7f f8 add %i1, -8, %l1
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
200cb70: 90 24 40 08 sub %l1, %o0, %o0
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cb74: 80 a2 00 01 cmp %o0, %g1
200cb78: 0a 80 00 4d bcs 200ccac <_Heap_Free+0x158>
200cb7c: b0 10 20 00 clr %i0
200cb80: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
200cb84: 80 a2 00 03 cmp %o0, %g3
200cb88: 18 80 00 49 bgu 200ccac <_Heap_Free+0x158>
200cb8c: 01 00 00 00 nop
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cb90: da 02 20 04 ld [ %o0 + 4 ], %o5
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
200cb94: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cb98: 84 02 00 04 add %o0, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cb9c: 80 a0 40 02 cmp %g1, %g2
200cba0: 18 80 00 43 bgu 200ccac <_Heap_Free+0x158> <== NEVER TAKEN
200cba4: 80 a0 c0 02 cmp %g3, %g2
200cba8: 0a 80 00 41 bcs 200ccac <_Heap_Free+0x158> <== NEVER TAKEN
200cbac: 01 00 00 00 nop
200cbb0: d8 00 a0 04 ld [ %g2 + 4 ], %o4
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
200cbb4: 80 8b 20 01 btst 1, %o4
200cbb8: 02 80 00 3d be 200ccac <_Heap_Free+0x158> <== NEVER TAKEN
200cbbc: 96 0b 3f fe and %o4, -2, %o3
return false;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
200cbc0: 80 a0 c0 02 cmp %g3, %g2
200cbc4: 02 80 00 06 be 200cbdc <_Heap_Free+0x88>
200cbc8: 98 10 20 00 clr %o4
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cbcc: 98 00 80 0b add %g2, %o3, %o4
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cbd0: d8 03 20 04 ld [ %o4 + 4 ], %o4
200cbd4: 98 0b 20 01 and %o4, 1, %o4
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
200cbd8: 98 1b 20 01 xor %o4, 1, %o4
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
200cbdc: 80 8b 60 01 btst 1, %o5
200cbe0: 12 80 00 1d bne 200cc54 <_Heap_Free+0x100>
200cbe4: 80 8b 20 ff btst 0xff, %o4
uintptr_t const prev_size = block->prev_size;
200cbe8: d4 02 00 00 ld [ %o0 ], %o2
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
200cbec: 9a 22 00 0a sub %o0, %o2, %o5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
200cbf0: 80 a0 40 0d cmp %g1, %o5
200cbf4: 18 80 00 2e bgu 200ccac <_Heap_Free+0x158> <== NEVER TAKEN
200cbf8: b0 10 20 00 clr %i0
200cbfc: 80 a0 c0 0d cmp %g3, %o5
200cc00: 0a 80 00 2b bcs 200ccac <_Heap_Free+0x158> <== NEVER TAKEN
200cc04: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
200cc08: c2 03 60 04 ld [ %o5 + 4 ], %g1
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
200cc0c: 80 88 60 01 btst 1, %g1
200cc10: 02 80 00 27 be 200ccac <_Heap_Free+0x158> <== NEVER TAKEN
200cc14: 80 8b 20 ff btst 0xff, %o4
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
200cc18: 22 80 00 39 be,a 200ccfc <_Heap_Free+0x1a8>
200cc1c: 94 01 00 0a add %g4, %o2, %o2
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cc20: c2 00 a0 08 ld [ %g2 + 8 ], %g1
200cc24: c4 00 a0 0c ld [ %g2 + 0xc ], %g2
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
200cc28: c6 04 20 38 ld [ %l0 + 0x38 ], %g3
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
200cc2c: c2 20 a0 08 st %g1, [ %g2 + 8 ]
next->prev = prev;
200cc30: c4 20 60 0c st %g2, [ %g1 + 0xc ]
200cc34: 82 00 ff ff add %g3, -1, %g1
200cc38: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
200cc3c: 96 01 00 0b add %g4, %o3, %o3
200cc40: 94 02 c0 0a add %o3, %o2, %o2
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cc44: 82 12 a0 01 or %o2, 1, %g1
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
200cc48: d4 23 40 0a st %o2, [ %o5 + %o2 ]
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cc4c: 10 80 00 0e b 200cc84 <_Heap_Free+0x130>
200cc50: c2 23 60 04 st %g1, [ %o5 + 4 ]
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
200cc54: 22 80 00 18 be,a 200ccb4 <_Heap_Free+0x160>
200cc58: c6 04 20 08 ld [ %l0 + 8 ], %g3
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
200cc5c: c6 00 a0 08 ld [ %g2 + 8 ], %g3
200cc60: c2 00 a0 0c ld [ %g2 + 0xc ], %g1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
200cc64: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = prev;
200cc68: c2 22 20 0c st %g1, [ %o0 + 0xc ]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
200cc6c: 96 02 c0 04 add %o3, %g4, %o3
next->prev = new_block;
200cc70: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200cc74: 84 12 e0 01 or %o3, 1, %g2
prev->next = new_block;
200cc78: d0 20 60 08 st %o0, [ %g1 + 8 ]
200cc7c: c4 22 20 04 st %g2, [ %o0 + 4 ]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
200cc80: d6 22 00 0b st %o3, [ %o0 + %o3 ]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cc84: c4 04 20 40 ld [ %l0 + 0x40 ], %g2
++stats->frees;
200cc88: c2 04 20 50 ld [ %l0 + 0x50 ], %g1
stats->free_size += block_size;
200cc8c: c6 04 20 30 ld [ %l0 + 0x30 ], %g3
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cc90: 84 00 bf ff add %g2, -1, %g2
++stats->frees;
200cc94: 82 00 60 01 inc %g1
stats->free_size += block_size;
200cc98: 88 00 c0 04 add %g3, %g4, %g4
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
200cc9c: c4 24 20 40 st %g2, [ %l0 + 0x40 ]
++stats->frees;
200cca0: c2 24 20 50 st %g1, [ %l0 + 0x50 ]
stats->free_size += block_size;
200cca4: c8 24 20 30 st %g4, [ %l0 + 0x30 ]
return( true );
200cca8: b0 10 20 01 mov 1, %i0
}
200ccac: 81 c7 e0 08 ret
200ccb0: 81 e8 00 00 restore
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
200ccb4: 82 11 20 01 or %g4, 1, %g1
200ccb8: c2 22 20 04 st %g1, [ %o0 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ccbc: da 00 a0 04 ld [ %g2 + 4 ], %o5
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200ccc0: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
200ccc4: e0 22 20 0c st %l0, [ %o0 + 0xc ]
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
new_block->next = next;
200ccc8: c6 22 20 08 st %g3, [ %o0 + 8 ]
new_block->prev = block_before;
block_before->next = new_block;
next->prev = new_block;
200cccc: d0 20 e0 0c st %o0, [ %g3 + 0xc ]
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
200ccd0: c8 22 00 04 st %g4, [ %o0 + %g4 ]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200ccd4: 86 0b 7f fe and %o5, -2, %g3
200ccd8: c6 20 a0 04 st %g3, [ %g2 + 4 ]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
200ccdc: c4 04 20 3c ld [ %l0 + 0x3c ], %g2
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
200cce0: 82 00 60 01 inc %g1
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
200cce4: d0 24 20 08 st %o0, [ %l0 + 8 ]
if ( stats->max_free_blocks < stats->free_blocks ) {
200cce8: 80 a0 40 02 cmp %g1, %g2
200ccec: 08 bf ff e6 bleu 200cc84 <_Heap_Free+0x130>
200ccf0: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
stats->max_free_blocks = stats->free_blocks;
200ccf4: 10 bf ff e4 b 200cc84 <_Heap_Free+0x130>
200ccf8: c2 24 20 3c st %g1, [ %l0 + 0x3c ]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
200ccfc: 82 12 a0 01 or %o2, 1, %g1
200cd00: c2 23 60 04 st %g1, [ %o5 + 4 ]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cd04: c2 00 a0 04 ld [ %g2 + 4 ], %g1
next_block->prev_size = size;
200cd08: d4 22 00 04 st %o2, [ %o0 + %g4 ]
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
200cd0c: 82 08 7f fe and %g1, -2, %g1
200cd10: 10 bf ff dd b 200cc84 <_Heap_Free+0x130>
200cd14: c2 20 a0 04 st %g1, [ %g2 + 4 ]
02011cb4 <_Heap_Get_information>:
void _Heap_Get_information(
Heap_Control *the_heap,
Heap_Information_block *the_info
)
{
2011cb4: 9d e3 bf a0 save %sp, -96, %sp
Heap_Block *the_block = the_heap->first_block;
2011cb8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
Heap_Block *const end = the_heap->last_block;
2011cbc: c4 06 20 24 ld [ %i0 + 0x24 ], %g2
memset(the_info, 0, sizeof(*the_info));
2011cc0: c0 26 40 00 clr [ %i1 ]
2011cc4: c0 26 60 04 clr [ %i1 + 4 ]
2011cc8: c0 26 60 08 clr [ %i1 + 8 ]
2011ccc: c0 26 60 0c clr [ %i1 + 0xc ]
2011cd0: c0 26 60 10 clr [ %i1 + 0x10 ]
while ( the_block != end ) {
2011cd4: 80 a0 40 02 cmp %g1, %g2
2011cd8: 02 80 00 17 be 2011d34 <_Heap_Get_information+0x80> <== NEVER TAKEN
2011cdc: c0 26 60 14 clr [ %i1 + 0x14 ]
2011ce0: da 00 60 04 ld [ %g1 + 4 ], %o5
2011ce4: 88 0b 7f fe and %o5, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2011ce8: 82 00 40 04 add %g1, %g4, %g1
if ( info->largest < the_size )
info->largest = the_size;
the_block = next_block;
}
}
2011cec: da 00 60 04 ld [ %g1 + 4 ], %o5
while ( the_block != end ) {
uintptr_t const the_size = _Heap_Block_size(the_block);
Heap_Block *const next_block = _Heap_Block_at(the_block, the_size);
Heap_Information *info;
if ( _Heap_Is_prev_used(next_block) )
2011cf0: 80 8b 60 01 btst 1, %o5
2011cf4: 02 80 00 03 be 2011d00 <_Heap_Get_information+0x4c>
2011cf8: 86 10 00 19 mov %i1, %g3
info = &the_info->Used;
2011cfc: 86 06 60 0c add %i1, 0xc, %g3
else
info = &the_info->Free;
info->number++;
2011d00: d4 00 c0 00 ld [ %g3 ], %o2
info->total += the_size;
2011d04: d6 00 e0 08 ld [ %g3 + 8 ], %o3
if ( info->largest < the_size )
2011d08: d8 00 e0 04 ld [ %g3 + 4 ], %o4
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
2011d0c: 94 02 a0 01 inc %o2
info->total += the_size;
2011d10: 96 02 c0 04 add %o3, %g4, %o3
if ( _Heap_Is_prev_used(next_block) )
info = &the_info->Used;
else
info = &the_info->Free;
info->number++;
2011d14: d4 20 c0 00 st %o2, [ %g3 ]
info->total += the_size;
if ( info->largest < the_size )
2011d18: 80 a3 00 04 cmp %o4, %g4
2011d1c: 1a 80 00 03 bcc 2011d28 <_Heap_Get_information+0x74>
2011d20: d6 20 e0 08 st %o3, [ %g3 + 8 ]
info->largest = the_size;
2011d24: c8 20 e0 04 st %g4, [ %g3 + 4 ]
Heap_Block *the_block = the_heap->first_block;
Heap_Block *const end = the_heap->last_block;
memset(the_info, 0, sizeof(*the_info));
while ( the_block != end ) {
2011d28: 80 a0 80 01 cmp %g2, %g1
2011d2c: 12 bf ff ef bne 2011ce8 <_Heap_Get_information+0x34>
2011d30: 88 0b 7f fe and %o5, -2, %g4
2011d34: 81 c7 e0 08 ret
2011d38: 81 e8 00 00 restore
020140a8 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
20140a8: 9d e3 bf a0 save %sp, -96, %sp
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20140ac: d2 06 20 10 ld [ %i0 + 0x10 ], %o1
20140b0: 7f ff f9 4c call 20125e0 <.urem>
20140b4: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
20140b8: c2 06 20 20 ld [ %i0 + 0x20 ], %g1
20140bc: a0 10 00 18 mov %i0, %l0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
20140c0: 84 06 7f f8 add %i1, -8, %g2
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
20140c4: 84 20 80 08 sub %g2, %o0, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20140c8: 80 a0 80 01 cmp %g2, %g1
20140cc: 0a 80 00 15 bcs 2014120 <_Heap_Size_of_alloc_area+0x78>
20140d0: b0 10 20 00 clr %i0
20140d4: c6 04 20 24 ld [ %l0 + 0x24 ], %g3
20140d8: 80 a0 80 03 cmp %g2, %g3
20140dc: 18 80 00 11 bgu 2014120 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
20140e0: 01 00 00 00 nop
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
20140e4: c8 00 a0 04 ld [ %g2 + 4 ], %g4
20140e8: 88 09 3f fe and %g4, -2, %g4
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
20140ec: 84 00 80 04 add %g2, %g4, %g2
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
20140f0: 80 a0 40 02 cmp %g1, %g2
20140f4: 18 80 00 0b bgu 2014120 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
20140f8: 80 a0 c0 02 cmp %g3, %g2
20140fc: 0a 80 00 09 bcs 2014120 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2014100: 01 00 00 00 nop
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2014104: c2 00 a0 04 ld [ %g2 + 4 ], %g1
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
2014108: 80 88 60 01 btst 1, %g1
201410c: 02 80 00 05 be 2014120 <_Heap_Size_of_alloc_area+0x78> <== NEVER TAKEN
2014110: 84 20 80 19 sub %g2, %i1, %g2
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
return true;
2014114: b0 10 20 01 mov 1, %i0
|| !_Heap_Is_prev_used( next_block )
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
2014118: 84 00 a0 04 add %g2, 4, %g2
201411c: c4 26 80 00 st %g2, [ %i2 ]
return true;
}
2014120: 81 c7 e0 08 ret
2014124: 81 e8 00 00 restore
020089b4 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20089b4: 9d e3 bf 80 save %sp, -128, %sp
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20089b8: 23 00 80 22 sethi %hi(0x2008800), %l1
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
20089bc: a0 10 00 18 mov %i0, %l0
uintptr_t const page_size = heap->page_size;
20089c0: e8 06 20 10 ld [ %i0 + 0x10 ], %l4
uintptr_t const min_block_size = heap->min_block_size;
20089c4: e6 06 20 14 ld [ %i0 + 0x14 ], %l3
Heap_Block *const first_block = heap->first_block;
20089c8: e4 06 20 20 ld [ %i0 + 0x20 ], %l2
Heap_Block *const last_block = heap->last_block;
20089cc: ea 06 20 24 ld [ %i0 + 0x24 ], %l5
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
20089d0: 80 8e a0 ff btst 0xff, %i2
20089d4: 02 80 00 04 be 20089e4 <_Heap_Walk+0x30>
20089d8: a2 14 61 48 or %l1, 0x148, %l1
20089dc: 23 00 80 22 sethi %hi(0x2008800), %l1
20089e0: a2 14 61 50 or %l1, 0x150, %l1 ! 2008950 <_Heap_Walk_print>
if ( !_System_state_Is_up( _System_state_Get() ) ) {
20089e4: 03 00 80 61 sethi %hi(0x2018400), %g1
20089e8: c2 00 63 2c ld [ %g1 + 0x32c ], %g1 ! 201872c <_System_state_Current>
20089ec: 80 a0 60 03 cmp %g1, 3
20089f0: 12 80 00 33 bne 2008abc <_Heap_Walk+0x108>
20089f4: b0 10 20 01 mov 1, %i0
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
20089f8: da 04 20 18 ld [ %l0 + 0x18 ], %o5
20089fc: c6 04 20 1c ld [ %l0 + 0x1c ], %g3
2008a00: c4 04 20 08 ld [ %l0 + 8 ], %g2
2008a04: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2008a08: 90 10 00 19 mov %i1, %o0
2008a0c: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008a10: e4 23 a0 60 st %l2, [ %sp + 0x60 ]
2008a14: ea 23 a0 64 st %l5, [ %sp + 0x64 ]
2008a18: c4 23 a0 68 st %g2, [ %sp + 0x68 ]
2008a1c: c2 23 a0 6c st %g1, [ %sp + 0x6c ]
2008a20: 92 10 20 00 clr %o1
2008a24: 96 10 00 14 mov %l4, %o3
2008a28: 15 00 80 57 sethi %hi(0x2015c00), %o2
2008a2c: 98 10 00 13 mov %l3, %o4
2008a30: 9f c4 40 00 call %l1
2008a34: 94 12 a2 78 or %o2, 0x278, %o2
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
2008a38: 80 a5 20 00 cmp %l4, 0
2008a3c: 02 80 00 2a be 2008ae4 <_Heap_Walk+0x130>
2008a40: 80 8d 20 07 btst 7, %l4
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
2008a44: 12 80 00 30 bne 2008b04 <_Heap_Walk+0x150>
2008a48: 90 10 00 13 mov %l3, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008a4c: 7f ff e4 19 call 2001ab0 <.urem>
2008a50: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
2008a54: 80 a2 20 00 cmp %o0, 0
2008a58: 12 80 00 34 bne 2008b28 <_Heap_Walk+0x174>
2008a5c: 90 04 a0 08 add %l2, 8, %o0
2008a60: 7f ff e4 14 call 2001ab0 <.urem>
2008a64: 92 10 00 14 mov %l4, %o1
);
return false;
}
if (
2008a68: 80 a2 20 00 cmp %o0, 0
2008a6c: 32 80 00 38 bne,a 2008b4c <_Heap_Walk+0x198>
2008a70: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
2008a74: f8 04 a0 04 ld [ %l2 + 4 ], %i4
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
2008a78: 80 8f 20 01 btst 1, %i4
2008a7c: 22 80 00 4d be,a 2008bb0 <_Heap_Walk+0x1fc>
2008a80: 90 10 00 19 mov %i1, %o0
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008a84: c2 05 60 04 ld [ %l5 + 4 ], %g1
2008a88: 82 08 7f fe and %g1, -2, %g1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008a8c: 82 05 40 01 add %l5, %g1, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008a90: c4 00 60 04 ld [ %g1 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
2008a94: 80 88 a0 01 btst 1, %g2
2008a98: 02 80 00 0b be 2008ac4 <_Heap_Walk+0x110>
2008a9c: 80 a4 80 01 cmp %l2, %g1
);
return false;
}
if (
2008aa0: 02 80 00 33 be 2008b6c <_Heap_Walk+0x1b8> <== ALWAYS TAKEN
2008aa4: 90 10 00 19 mov %i1, %o0
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008aa8: 92 10 20 01 mov 1, %o1 <== NOT EXECUTED
2008aac: 15 00 80 57 sethi %hi(0x2015c00), %o2 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008ab0: b0 10 20 00 clr %i0 <== NOT EXECUTED
}
if (
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
2008ab4: 9f c4 40 00 call %l1 <== NOT EXECUTED
2008ab8: 94 12 a3 f0 or %o2, 0x3f0, %o2 <== NOT EXECUTED
2008abc: 81 c7 e0 08 ret
2008ac0: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
2008ac4: 90 10 00 19 mov %i1, %o0
2008ac8: 92 10 20 01 mov 1, %o1
2008acc: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008ad0: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
2008ad4: 9f c4 40 00 call %l1
2008ad8: 94 12 a3 d8 or %o2, 0x3d8, %o2
2008adc: 81 c7 e0 08 ret
2008ae0: 81 e8 00 00 restore
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008ae4: 90 10 00 19 mov %i1, %o0
2008ae8: 92 10 20 01 mov 1, %o1
2008aec: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008af0: b0 10 20 00 clr %i0
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
2008af4: 9f c4 40 00 call %l1
2008af8: 94 12 a3 10 or %o2, 0x310, %o2
2008afc: 81 c7 e0 08 ret
2008b00: 81 e8 00 00 restore
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008b04: 90 10 00 19 mov %i1, %o0
2008b08: 92 10 20 01 mov 1, %o1
2008b0c: 96 10 00 14 mov %l4, %o3
2008b10: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008b14: b0 10 20 00 clr %i0
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
2008b18: 9f c4 40 00 call %l1
2008b1c: 94 12 a3 28 or %o2, 0x328, %o2
2008b20: 81 c7 e0 08 ret
2008b24: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008b28: 90 10 00 19 mov %i1, %o0
2008b2c: 92 10 20 01 mov 1, %o1
2008b30: 96 10 00 13 mov %l3, %o3
2008b34: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008b38: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
2008b3c: 9f c4 40 00 call %l1
2008b40: 94 12 a3 48 or %o2, 0x348, %o2
2008b44: 81 c7 e0 08 ret
2008b48: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008b4c: 92 10 20 01 mov 1, %o1
2008b50: 96 10 00 12 mov %l2, %o3
2008b54: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008b58: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
2008b5c: 9f c4 40 00 call %l1
2008b60: 94 12 a3 70 or %o2, 0x370, %o2
2008b64: 81 c7 e0 08 ret
2008b68: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
2008b6c: ec 04 20 08 ld [ %l0 + 8 ], %l6
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008b70: 80 a4 00 16 cmp %l0, %l6
2008b74: 02 80 01 18 be 2008fd4 <_Heap_Walk+0x620>
2008b78: f6 04 20 10 ld [ %l0 + 0x10 ], %i3
block = next_block;
} while ( block != first_block );
return true;
}
2008b7c: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008b80: 80 a0 40 16 cmp %g1, %l6
2008b84: 28 80 00 12 bleu,a 2008bcc <_Heap_Walk+0x218> <== ALWAYS TAKEN
2008b88: fa 04 20 24 ld [ %l0 + 0x24 ], %i5
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
2008b8c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008b90: 92 10 20 01 mov 1, %o1
2008b94: 96 10 00 16 mov %l6, %o3
2008b98: 15 00 80 58 sethi %hi(0x2016000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008b9c: b0 10 20 00 clr %i0
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
2008ba0: 9f c4 40 00 call %l1
2008ba4: 94 12 a0 20 or %o2, 0x20, %o2
2008ba8: 81 c7 e0 08 ret
2008bac: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
2008bb0: 92 10 20 01 mov 1, %o1
2008bb4: 15 00 80 57 sethi %hi(0x2015c00), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008bb8: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
2008bbc: 9f c4 40 00 call %l1
2008bc0: 94 12 a3 a8 or %o2, 0x3a8, %o2
2008bc4: 81 c7 e0 08 ret
2008bc8: 81 e8 00 00 restore
2008bcc: 80 a7 40 16 cmp %i5, %l6
2008bd0: 0a bf ff f0 bcs 2008b90 <_Heap_Walk+0x1dc> <== NEVER TAKEN
2008bd4: 90 10 00 19 mov %i1, %o0
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008bd8: c2 27 bf fc st %g1, [ %fp + -4 ]
2008bdc: 90 05 a0 08 add %l6, 8, %o0
2008be0: 7f ff e3 b4 call 2001ab0 <.urem>
2008be4: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2008be8: 80 a2 20 00 cmp %o0, 0
2008bec: 12 80 00 2e bne 2008ca4 <_Heap_Walk+0x2f0> <== NEVER TAKEN
2008bf0: c2 07 bf fc ld [ %fp + -4 ], %g1
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008bf4: c4 05 a0 04 ld [ %l6 + 4 ], %g2
2008bf8: 84 08 bf fe and %g2, -2, %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008bfc: 84 05 80 02 add %l6, %g2, %g2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008c00: c4 00 a0 04 ld [ %g2 + 4 ], %g2
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c04: 80 88 a0 01 btst 1, %g2
2008c08: 12 80 00 30 bne 2008cc8 <_Heap_Walk+0x314> <== NEVER TAKEN
2008c0c: 84 10 00 10 mov %l0, %g2
2008c10: ae 10 00 16 mov %l6, %l7
2008c14: 10 80 00 17 b 2008c70 <_Heap_Walk+0x2bc>
2008c18: b4 10 00 01 mov %g1, %i2
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008c1c: 80 a4 00 16 cmp %l0, %l6
2008c20: 02 80 00 33 be 2008cec <_Heap_Walk+0x338>
2008c24: 80 a6 80 16 cmp %i2, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008c28: 18 bf ff da bgu 2008b90 <_Heap_Walk+0x1dc>
2008c2c: 90 10 00 19 mov %i1, %o0
2008c30: 80 a5 80 1d cmp %l6, %i5
2008c34: 18 bf ff d8 bgu 2008b94 <_Heap_Walk+0x1e0> <== NEVER TAKEN
2008c38: 92 10 20 01 mov 1, %o1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008c3c: 90 05 a0 08 add %l6, 8, %o0
2008c40: 7f ff e3 9c call 2001ab0 <.urem>
2008c44: 92 10 00 1b mov %i3, %o1
);
return false;
}
if (
2008c48: 80 a2 20 00 cmp %o0, 0
2008c4c: 12 80 00 16 bne 2008ca4 <_Heap_Walk+0x2f0>
2008c50: 84 10 00 17 mov %l7, %g2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008c54: c2 05 a0 04 ld [ %l6 + 4 ], %g1
2008c58: 82 08 7f fe and %g1, -2, %g1
block = next_block;
} while ( block != first_block );
return true;
}
2008c5c: 82 00 40 16 add %g1, %l6, %g1
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008c60: c2 00 60 04 ld [ %g1 + 4 ], %g1
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008c64: 80 88 60 01 btst 1, %g1
2008c68: 12 80 00 18 bne 2008cc8 <_Heap_Walk+0x314>
2008c6c: ae 10 00 16 mov %l6, %l7
);
return false;
}
if ( free_block->prev != prev_block ) {
2008c70: d8 05 a0 0c ld [ %l6 + 0xc ], %o4
2008c74: 80 a3 00 02 cmp %o4, %g2
2008c78: 22 bf ff e9 be,a 2008c1c <_Heap_Walk+0x268>
2008c7c: ec 05 a0 08 ld [ %l6 + 8 ], %l6
(*printer)(
2008c80: 90 10 00 19 mov %i1, %o0
2008c84: 92 10 20 01 mov 1, %o1
2008c88: 96 10 00 16 mov %l6, %o3
2008c8c: 15 00 80 58 sethi %hi(0x2016000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008c90: b0 10 20 00 clr %i0
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
2008c94: 9f c4 40 00 call %l1
2008c98: 94 12 a0 90 or %o2, 0x90, %o2
2008c9c: 81 c7 e0 08 ret
2008ca0: 81 e8 00 00 restore
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008ca4: 90 10 00 19 mov %i1, %o0
2008ca8: 92 10 20 01 mov 1, %o1
2008cac: 96 10 00 16 mov %l6, %o3
2008cb0: 15 00 80 58 sethi %hi(0x2016000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008cb4: b0 10 20 00 clr %i0
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
2008cb8: 9f c4 40 00 call %l1
2008cbc: 94 12 a0 40 or %o2, 0x40, %o2
2008cc0: 81 c7 e0 08 ret
2008cc4: 81 e8 00 00 restore
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008cc8: 90 10 00 19 mov %i1, %o0
2008ccc: 92 10 20 01 mov 1, %o1
2008cd0: 96 10 00 16 mov %l6, %o3
2008cd4: 15 00 80 58 sethi %hi(0x2016000), %o2
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
2008cd8: b0 10 20 00 clr %i0
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
2008cdc: 9f c4 40 00 call %l1
2008ce0: 94 12 a0 70 or %o2, 0x70, %o2
2008ce4: 81 c7 e0 08 ret
2008ce8: 81 e8 00 00 restore
2008cec: 82 10 00 1a mov %i2, %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008cf0: 35 00 80 58 sethi %hi(0x2016000), %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008cf4: 31 00 80 58 sethi %hi(0x2016000), %i0
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
2008cf8: ae 10 00 12 mov %l2, %l7
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008cfc: b4 16 a2 50 or %i2, 0x250, %i2
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
(*printer)(
2008d00: b0 16 22 38 or %i0, 0x238, %i0
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008d04: 37 00 80 58 sethi %hi(0x2016000), %i3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
2008d08: ba 0f 3f fe and %i4, -2, %i5
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
2008d0c: ac 07 40 17 add %i5, %l7, %l6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
2008d10: 80 a0 40 16 cmp %g1, %l6
2008d14: 28 80 00 0c bleu,a 2008d44 <_Heap_Walk+0x390> <== ALWAYS TAKEN
2008d18: c2 04 20 24 ld [ %l0 + 0x24 ], %g1
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
2008d1c: 90 10 00 19 mov %i1, %o0 <== NOT EXECUTED
2008d20: 92 10 20 01 mov 1, %o1
2008d24: 96 10 00 17 mov %l7, %o3
2008d28: 15 00 80 58 sethi %hi(0x2016000), %o2
2008d2c: 98 10 00 16 mov %l6, %o4
2008d30: 94 12 a0 c8 or %o2, 0xc8, %o2
2008d34: 9f c4 40 00 call %l1
2008d38: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
2008d3c: 81 c7 e0 08 ret
2008d40: 81 e8 00 00 restore
2008d44: 80 a0 40 16 cmp %g1, %l6
2008d48: 0a bf ff f6 bcs 2008d20 <_Heap_Walk+0x36c>
2008d4c: 90 10 00 19 mov %i1, %o0
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
2008d50: 82 1d c0 15 xor %l7, %l5, %g1
2008d54: 80 a0 00 01 cmp %g0, %g1
2008d58: 82 40 20 00 addx %g0, 0, %g1
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
2008d5c: 90 10 00 1d mov %i5, %o0
2008d60: c2 27 bf fc st %g1, [ %fp + -4 ]
2008d64: 7f ff e3 53 call 2001ab0 <.urem>
2008d68: 92 10 00 14 mov %l4, %o1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
2008d6c: 80 a2 20 00 cmp %o0, 0
2008d70: 02 80 00 05 be 2008d84 <_Heap_Walk+0x3d0>
2008d74: c2 07 bf fc ld [ %fp + -4 ], %g1
2008d78: 80 88 60 ff btst 0xff, %g1
2008d7c: 12 80 00 79 bne 2008f60 <_Heap_Walk+0x5ac>
2008d80: 90 10 00 19 mov %i1, %o0
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
2008d84: 80 a4 c0 1d cmp %l3, %i5
2008d88: 08 80 00 05 bleu 2008d9c <_Heap_Walk+0x3e8>
2008d8c: 80 a5 c0 16 cmp %l7, %l6
2008d90: 80 88 60 ff btst 0xff, %g1
2008d94: 12 80 00 7c bne 2008f84 <_Heap_Walk+0x5d0> <== ALWAYS TAKEN
2008d98: 80 a5 c0 16 cmp %l7, %l6
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
2008d9c: 2a 80 00 06 bcs,a 2008db4 <_Heap_Walk+0x400>
2008da0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
2008da4: 80 88 60 ff btst 0xff, %g1
2008da8: 12 80 00 82 bne 2008fb0 <_Heap_Walk+0x5fc>
2008dac: 90 10 00 19 mov %i1, %o0
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
2008db0: c2 05 a0 04 ld [ %l6 + 4 ], %g1
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
2008db4: 80 88 60 01 btst 1, %g1
2008db8: 02 80 00 19 be 2008e1c <_Heap_Walk+0x468>
2008dbc: b8 0f 20 01 and %i4, 1, %i4
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
2008dc0: 80 a7 20 00 cmp %i4, 0
2008dc4: 22 80 00 0e be,a 2008dfc <_Heap_Walk+0x448>
2008dc8: da 05 c0 00 ld [ %l7 ], %o5
(*printer)(
2008dcc: 90 10 00 19 mov %i1, %o0
2008dd0: 92 10 20 00 clr %o1
2008dd4: 94 10 00 18 mov %i0, %o2
2008dd8: 96 10 00 17 mov %l7, %o3
2008ddc: 9f c4 40 00 call %l1
2008de0: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008de4: 80 a4 80 16 cmp %l2, %l6
2008de8: 02 80 00 43 be 2008ef4 <_Heap_Walk+0x540>
2008dec: ae 10 00 16 mov %l6, %l7
2008df0: f8 05 a0 04 ld [ %l6 + 4 ], %i4
2008df4: 10 bf ff c5 b 2008d08 <_Heap_Walk+0x354>
2008df8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
2008dfc: 96 10 00 17 mov %l7, %o3
2008e00: 90 10 00 19 mov %i1, %o0
2008e04: 92 10 20 00 clr %o1
2008e08: 94 10 00 1a mov %i2, %o2
2008e0c: 9f c4 40 00 call %l1
2008e10: 98 10 00 1d mov %i5, %o4
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
2008e14: 10 bf ff f5 b 2008de8 <_Heap_Walk+0x434>
2008e18: 80 a4 80 16 cmp %l2, %l6
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
2008e1c: da 05 e0 0c ld [ %l7 + 0xc ], %o5
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008e20: c2 04 20 08 ld [ %l0 + 8 ], %g1
2008e24: 05 00 80 57 sethi %hi(0x2015c00), %g2
block = next_block;
} while ( block != first_block );
return true;
}
2008e28: c8 04 20 0c ld [ %l0 + 0xc ], %g4
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008e2c: 80 a0 40 0d cmp %g1, %o5
2008e30: 02 80 00 05 be 2008e44 <_Heap_Walk+0x490>
2008e34: 86 10 a2 38 or %g2, 0x238, %g3
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008e38: 80 a4 00 0d cmp %l0, %o5
2008e3c: 02 80 00 3e be 2008f34 <_Heap_Walk+0x580>
2008e40: 86 16 e2 00 or %i3, 0x200, %g3
block->next,
block->next == last_free_block ?
2008e44: c2 05 e0 08 ld [ %l7 + 8 ], %g1
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008e48: 19 00 80 57 sethi %hi(0x2015c00), %o4
2008e4c: 80 a1 00 01 cmp %g4, %g1
2008e50: 02 80 00 05 be 2008e64 <_Heap_Walk+0x4b0>
2008e54: 84 13 22 58 or %o4, 0x258, %g2
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008e58: 80 a4 00 01 cmp %l0, %g1
2008e5c: 02 80 00 33 be 2008f28 <_Heap_Walk+0x574>
2008e60: 84 16 e2 00 or %i3, 0x200, %g2
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
2008e64: c6 23 a0 5c st %g3, [ %sp + 0x5c ]
2008e68: c2 23 a0 60 st %g1, [ %sp + 0x60 ]
2008e6c: c4 23 a0 64 st %g2, [ %sp + 0x64 ]
2008e70: 90 10 00 19 mov %i1, %o0
2008e74: 92 10 20 00 clr %o1
2008e78: 15 00 80 58 sethi %hi(0x2016000), %o2
2008e7c: 96 10 00 17 mov %l7, %o3
2008e80: 94 12 a1 90 or %o2, 0x190, %o2
2008e84: 9f c4 40 00 call %l1
2008e88: 98 10 00 1d mov %i5, %o4
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
2008e8c: da 05 80 00 ld [ %l6 ], %o5
2008e90: 80 a7 40 0d cmp %i5, %o5
2008e94: 12 80 00 1a bne 2008efc <_Heap_Walk+0x548>
2008e98: 80 a7 20 00 cmp %i4, 0
);
return false;
}
if ( !prev_used ) {
2008e9c: 02 80 00 29 be 2008f40 <_Heap_Walk+0x58c>
2008ea0: 90 10 00 19 mov %i1, %o0
block = next_block;
} while ( block != first_block );
return true;
}
2008ea4: c2 04 20 08 ld [ %l0 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008ea8: 80 a4 00 01 cmp %l0, %g1
2008eac: 02 80 00 0b be 2008ed8 <_Heap_Walk+0x524> <== NEVER TAKEN
2008eb0: 92 10 20 01 mov 1, %o1
if ( free_block == block ) {
2008eb4: 80 a5 c0 01 cmp %l7, %g1
2008eb8: 02 bf ff cc be 2008de8 <_Heap_Walk+0x434>
2008ebc: 80 a4 80 16 cmp %l2, %l6
return true;
}
free_block = free_block->next;
2008ec0: c2 00 60 08 ld [ %g1 + 8 ], %g1
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
2008ec4: 80 a4 00 01 cmp %l0, %g1
2008ec8: 12 bf ff fc bne 2008eb8 <_Heap_Walk+0x504>
2008ecc: 80 a5 c0 01 cmp %l7, %g1
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008ed0: 90 10 00 19 mov %i1, %o0
2008ed4: 92 10 20 01 mov 1, %o1
2008ed8: 96 10 00 17 mov %l7, %o3
2008edc: 15 00 80 58 sethi %hi(0x2016000), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008ee0: b0 10 20 00 clr %i0
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
2008ee4: 9f c4 40 00 call %l1
2008ee8: 94 12 a2 78 or %o2, 0x278, %o2
2008eec: 81 c7 e0 08 ret
2008ef0: 81 e8 00 00 restore
block = next_block;
} while ( block != first_block );
return true;
}
2008ef4: 81 c7 e0 08 ret
2008ef8: 91 e8 20 01 restore %g0, 1, %o0
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
2008efc: ec 23 a0 5c st %l6, [ %sp + 0x5c ]
2008f00: 90 10 00 19 mov %i1, %o0
2008f04: 92 10 20 01 mov 1, %o1
2008f08: 96 10 00 17 mov %l7, %o3
2008f0c: 15 00 80 58 sethi %hi(0x2016000), %o2
2008f10: 98 10 00 1d mov %i5, %o4
2008f14: 94 12 a1 c8 or %o2, 0x1c8, %o2
2008f18: 9f c4 40 00 call %l1
2008f1c: b0 10 20 00 clr %i0
2008f20: 81 c7 e0 08 ret
2008f24: 81 e8 00 00 restore
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
2008f28: 09 00 80 57 sethi %hi(0x2015c00), %g4
2008f2c: 10 bf ff ce b 2008e64 <_Heap_Walk+0x4b0>
2008f30: 84 11 22 68 or %g4, 0x268, %g2 ! 2015e68 <_Status_Object_name_errors_to_status+0x68>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
2008f34: 19 00 80 57 sethi %hi(0x2015c00), %o4
2008f38: 10 bf ff c3 b 2008e44 <_Heap_Walk+0x490>
2008f3c: 86 13 22 48 or %o4, 0x248, %g3 ! 2015e48 <_Status_Object_name_errors_to_status+0x48>
return false;
}
if ( !prev_used ) {
(*printer)(
2008f40: 92 10 20 01 mov 1, %o1
2008f44: 96 10 00 17 mov %l7, %o3
2008f48: 15 00 80 58 sethi %hi(0x2016000), %o2
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
2008f4c: b0 10 20 00 clr %i0
return false;
}
if ( !prev_used ) {
(*printer)(
2008f50: 9f c4 40 00 call %l1
2008f54: 94 12 a2 08 or %o2, 0x208, %o2
2008f58: 81 c7 e0 08 ret
2008f5c: 81 e8 00 00 restore
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
2008f60: 92 10 20 01 mov 1, %o1
2008f64: 96 10 00 17 mov %l7, %o3
2008f68: 15 00 80 58 sethi %hi(0x2016000), %o2
2008f6c: 98 10 00 1d mov %i5, %o4
2008f70: 94 12 a0 f8 or %o2, 0xf8, %o2
2008f74: 9f c4 40 00 call %l1
2008f78: b0 10 20 00 clr %i0
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
2008f7c: 81 c7 e0 08 ret
2008f80: 81 e8 00 00 restore
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
2008f84: 90 10 00 19 mov %i1, %o0
2008f88: 92 10 20 01 mov 1, %o1
2008f8c: 96 10 00 17 mov %l7, %o3
2008f90: 15 00 80 58 sethi %hi(0x2016000), %o2
2008f94: 98 10 00 1d mov %i5, %o4
2008f98: 94 12 a1 28 or %o2, 0x128, %o2
2008f9c: 9a 10 00 13 mov %l3, %o5
2008fa0: 9f c4 40 00 call %l1
2008fa4: b0 10 20 00 clr %i0
block,
block_size,
min_block_size
);
return false;
2008fa8: 81 c7 e0 08 ret
2008fac: 81 e8 00 00 restore
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
2008fb0: 92 10 20 01 mov 1, %o1
2008fb4: 96 10 00 17 mov %l7, %o3
2008fb8: 15 00 80 58 sethi %hi(0x2016000), %o2
2008fbc: 98 10 00 16 mov %l6, %o4
2008fc0: 94 12 a1 58 or %o2, 0x158, %o2
2008fc4: 9f c4 40 00 call %l1
2008fc8: b0 10 20 00 clr %i0
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
2008fcc: 81 c7 e0 08 ret
2008fd0: 81 e8 00 00 restore
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
2008fd4: 10 bf ff 47 b 2008cf0 <_Heap_Walk+0x33c>
2008fd8: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
02006ea4 <_IO_Initialize_all_drivers>:
*
* Output Parameters: NONE
*/
void _IO_Initialize_all_drivers( void )
{
2006ea4: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2006ea8: 23 00 80 58 sethi %hi(0x2016000), %l1
2006eac: c2 04 60 ac ld [ %l1 + 0xac ], %g1 ! 20160ac <_IO_Number_of_drivers>
2006eb0: 80 a0 60 00 cmp %g1, 0
2006eb4: 02 80 00 0c be 2006ee4 <_IO_Initialize_all_drivers+0x40> <== NEVER TAKEN
2006eb8: a0 10 20 00 clr %l0
2006ebc: a2 14 60 ac or %l1, 0xac, %l1
(void) rtems_io_initialize( major, 0, NULL );
2006ec0: 90 10 00 10 mov %l0, %o0
2006ec4: 92 10 20 00 clr %o1
2006ec8: 40 00 15 f4 call 200c698 <rtems_io_initialize>
2006ecc: 94 10 20 00 clr %o2
void _IO_Initialize_all_drivers( void )
{
rtems_device_major_number major;
for ( major=0 ; major < _IO_Number_of_drivers ; major ++ )
2006ed0: c2 04 40 00 ld [ %l1 ], %g1
2006ed4: a0 04 20 01 inc %l0
2006ed8: 80 a0 40 10 cmp %g1, %l0
2006edc: 18 bf ff fa bgu 2006ec4 <_IO_Initialize_all_drivers+0x20>
2006ee0: 90 10 00 10 mov %l0, %o0
2006ee4: 81 c7 e0 08 ret
2006ee8: 81 e8 00 00 restore
02006dd8 <_IO_Manager_initialization>:
* workspace.
*
*/
void _IO_Manager_initialization(void)
{
2006dd8: 9d e3 bf a0 save %sp, -96, %sp
uint32_t index;
rtems_driver_address_table *driver_table;
uint32_t drivers_in_table;
uint32_t number_of_drivers;
driver_table = Configuration.Device_driver_table;
2006ddc: 03 00 80 54 sethi %hi(0x2015000), %g1
2006de0: 82 10 63 48 or %g1, 0x348, %g1 ! 2015348 <Configuration>
drivers_in_table = Configuration.number_of_device_drivers;
2006de4: e2 00 60 30 ld [ %g1 + 0x30 ], %l1
number_of_drivers = Configuration.maximum_drivers;
2006de8: e8 00 60 2c ld [ %g1 + 0x2c ], %l4
/*
* If the user claims there are less drivers than are actually in
* the table, then let's just go with the table's count.
*/
if ( number_of_drivers <= drivers_in_table )
2006dec: 80 a4 40 14 cmp %l1, %l4
2006df0: 0a 80 00 08 bcs 2006e10 <_IO_Manager_initialization+0x38>
2006df4: e0 00 60 34 ld [ %g1 + 0x34 ], %l0
* If the maximum number of driver is the same as the number in the
* table, then we do not have to copy the driver table. They can't
* register any dynamically.
*/
if ( number_of_drivers == drivers_in_table ) {
_IO_Driver_address_table = driver_table;
2006df8: 03 00 80 58 sethi %hi(0x2016000), %g1
2006dfc: e0 20 60 b0 st %l0, [ %g1 + 0xb0 ] ! 20160b0 <_IO_Driver_address_table>
_IO_Number_of_drivers = number_of_drivers;
2006e00: 03 00 80 58 sethi %hi(0x2016000), %g1
2006e04: e2 20 60 ac st %l1, [ %g1 + 0xac ] ! 20160ac <_IO_Number_of_drivers>
return;
2006e08: 81 c7 e0 08 ret
2006e0c: 81 e8 00 00 restore
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
2006e10: 83 2d 20 03 sll %l4, 3, %g1
2006e14: a7 2d 20 05 sll %l4, 5, %l3
2006e18: a6 24 c0 01 sub %l3, %g1, %l3
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
_Workspace_Allocate_or_fatal_error(
2006e1c: 40 00 0c e5 call 200a1b0 <_Workspace_Allocate_or_fatal_error>
2006e20: 90 10 00 13 mov %l3, %o0
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2006e24: 03 00 80 58 sethi %hi(0x2016000), %g1
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2006e28: 25 00 80 58 sethi %hi(0x2016000), %l2
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
2006e2c: e8 20 60 ac st %l4, [ %g1 + 0xac ]
/*
* The application requested extra slots in the driver table, so we
* have to allocate a new driver table and copy theirs to it.
*/
_IO_Driver_address_table = (rtems_driver_address_table *)
2006e30: d0 24 a0 b0 st %o0, [ %l2 + 0xb0 ]
_Workspace_Allocate_or_fatal_error(
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
_IO_Number_of_drivers = number_of_drivers;
memset(
2006e34: 92 10 20 00 clr %o1
2006e38: 40 00 21 be call 200f530 <memset>
2006e3c: 94 10 00 13 mov %l3, %o2
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e40: 80 a4 60 00 cmp %l1, 0
2006e44: 02 bf ff f1 be 2006e08 <_IO_Manager_initialization+0x30> <== NEVER TAKEN
2006e48: da 04 a0 b0 ld [ %l2 + 0xb0 ], %o5
2006e4c: 82 10 20 00 clr %g1
2006e50: 88 10 20 00 clr %g4
_IO_Driver_address_table[index] = driver_table[index];
2006e54: c4 04 00 01 ld [ %l0 + %g1 ], %g2
2006e58: 86 04 00 01 add %l0, %g1, %g3
2006e5c: c4 23 40 01 st %g2, [ %o5 + %g1 ]
2006e60: d8 00 e0 04 ld [ %g3 + 4 ], %o4
2006e64: 84 03 40 01 add %o5, %g1, %g2
2006e68: d8 20 a0 04 st %o4, [ %g2 + 4 ]
2006e6c: d8 00 e0 08 ld [ %g3 + 8 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e70: 88 01 20 01 inc %g4
_IO_Driver_address_table[index] = driver_table[index];
2006e74: d8 20 a0 08 st %o4, [ %g2 + 8 ]
2006e78: d8 00 e0 0c ld [ %g3 + 0xc ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e7c: 82 00 60 18 add %g1, 0x18, %g1
_IO_Driver_address_table[index] = driver_table[index];
2006e80: d8 20 a0 0c st %o4, [ %g2 + 0xc ]
2006e84: d8 00 e0 10 ld [ %g3 + 0x10 ], %o4
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e88: 80 a4 40 04 cmp %l1, %g4
_IO_Driver_address_table[index] = driver_table[index];
2006e8c: d8 20 a0 10 st %o4, [ %g2 + 0x10 ]
2006e90: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
memset(
_IO_Driver_address_table, 0,
sizeof( rtems_driver_address_table ) * ( number_of_drivers )
);
for ( index = 0 ; index < drivers_in_table ; index++ )
2006e94: 18 bf ff f0 bgu 2006e54 <_IO_Manager_initialization+0x7c>
2006e98: c6 20 a0 14 st %g3, [ %g2 + 0x14 ]
2006e9c: 81 c7 e0 08 ret
2006ea0: 81 e8 00 00 restore
02007be4 <_Objects_Allocate>:
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007be4: 9d e3 bf a0 save %sp, -96, %sp
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007be8: c2 06 20 18 ld [ %i0 + 0x18 ], %g1
*/
Objects_Control *_Objects_Allocate(
Objects_Information *information
)
{
2007bec: a0 10 00 18 mov %i0, %l0
* If the application is using the optional manager stubs and
* still attempts to create the object, the information block
* should be all zeroed out because it is in the BSS. So let's
* check that code for this manager is even present.
*/
if ( information->size == 0 )
2007bf0: 80 a0 60 00 cmp %g1, 0
2007bf4: 02 80 00 19 be 2007c58 <_Objects_Allocate+0x74> <== NEVER TAKEN
2007bf8: b0 10 20 00 clr %i0
/*
* OK. The manager should be initialized and configured to have objects.
* With any luck, it is safe to attempt to allocate an object.
*/
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007bfc: a2 04 20 20 add %l0, 0x20, %l1
2007c00: 7f ff fd 57 call 200715c <_Chain_Get>
2007c04: 90 10 00 11 mov %l1, %o0
if ( information->auto_extend ) {
2007c08: c2 0c 20 12 ldub [ %l0 + 0x12 ], %g1
2007c0c: 80 a0 60 00 cmp %g1, 0
2007c10: 02 80 00 12 be 2007c58 <_Objects_Allocate+0x74>
2007c14: b0 10 00 08 mov %o0, %i0
/*
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
2007c18: 80 a2 20 00 cmp %o0, 0
2007c1c: 02 80 00 11 be 2007c60 <_Objects_Allocate+0x7c>
2007c20: 01 00 00 00 nop
}
if ( the_object ) {
uint32_t block;
block = (uint32_t) _Objects_Get_index( the_object->id ) -
2007c24: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
2007c28: d0 16 20 0a lduh [ %i0 + 0xa ], %o0
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
2007c2c: d2 14 20 14 lduh [ %l0 + 0x14 ], %o1
2007c30: 40 00 29 c0 call 2012330 <.udiv>
2007c34: 90 22 00 01 sub %o0, %g1, %o0
information->inactive_per_block[ block ]--;
2007c38: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2007c3c: 91 2a 20 02 sll %o0, 2, %o0
2007c40: c6 00 40 08 ld [ %g1 + %o0 ], %g3
information->inactive--;
2007c44: c4 14 20 2c lduh [ %l0 + 0x2c ], %g2
block = (uint32_t) _Objects_Get_index( the_object->id ) -
_Objects_Get_index( information->minimum_id );
block /= information->allocation_size;
information->inactive_per_block[ block ]--;
2007c48: 86 00 ff ff add %g3, -1, %g3
2007c4c: c6 20 40 08 st %g3, [ %g1 + %o0 ]
information->inactive--;
2007c50: 82 00 bf ff add %g2, -1, %g1
2007c54: c2 34 20 2c sth %g1, [ %l0 + 0x2c ]
);
}
#endif
return the_object;
}
2007c58: 81 c7 e0 08 ret
2007c5c: 81 e8 00 00 restore
* If the list is empty then we are out of objects and need to
* extend information base.
*/
if ( !the_object ) {
_Objects_Extend_information( information );
2007c60: 40 00 00 11 call 2007ca4 <_Objects_Extend_information>
2007c64: 90 10 00 10 mov %l0, %o0
the_object = (Objects_Control *) _Chain_Get( &information->Inactive );
2007c68: 7f ff fd 3d call 200715c <_Chain_Get>
2007c6c: 90 10 00 11 mov %l1, %o0
}
if ( the_object ) {
2007c70: b0 92 20 00 orcc %o0, 0, %i0
2007c74: 32 bf ff ed bne,a 2007c28 <_Objects_Allocate+0x44>
2007c78: c2 14 20 0a lduh [ %l0 + 0xa ], %g1
);
}
#endif
return the_object;
}
2007c7c: 81 c7 e0 08 ret
2007c80: 81 e8 00 00 restore
02007ca4 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
2007ca4: 9d e3 bf 90 save %sp, -112, %sp
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007ca8: e8 06 20 34 ld [ %i0 + 0x34 ], %l4
2007cac: 80 a5 20 00 cmp %l4, 0
2007cb0: 02 80 00 a9 be 2007f54 <_Objects_Extend_information+0x2b0>
2007cb4: e4 16 20 0a lduh [ %i0 + 0xa ], %l2
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
2007cb8: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
2007cbc: e6 16 20 14 lduh [ %i0 + 0x14 ], %l3
2007cc0: ab 2d 60 10 sll %l5, 0x10, %l5
2007cc4: 92 10 00 13 mov %l3, %o1
2007cc8: 40 00 29 9a call 2012330 <.udiv>
2007ccc: 91 35 60 10 srl %l5, 0x10, %o0
2007cd0: bb 2a 20 10 sll %o0, 0x10, %i5
2007cd4: bb 37 60 10 srl %i5, 0x10, %i5
for ( ; block < block_count; block++ ) {
2007cd8: 80 a7 60 00 cmp %i5, 0
2007cdc: 02 80 00 a6 be 2007f74 <_Objects_Extend_information+0x2d0><== NEVER TAKEN
2007ce0: 90 10 00 13 mov %l3, %o0
if ( information->object_blocks[ block ] == NULL ) {
2007ce4: c2 05 00 00 ld [ %l4 ], %g1
2007ce8: 80 a0 60 00 cmp %g1, 0
2007cec: 02 80 00 a6 be 2007f84 <_Objects_Extend_information+0x2e0><== NEVER TAKEN
2007cf0: a2 10 00 12 mov %l2, %l1
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007cf4: 10 80 00 06 b 2007d0c <_Objects_Extend_information+0x68>
2007cf8: a0 10 20 00 clr %l0
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
2007cfc: c2 05 00 01 ld [ %l4 + %g1 ], %g1
2007d00: 80 a0 60 00 cmp %g1, 0
2007d04: 22 80 00 08 be,a 2007d24 <_Objects_Extend_information+0x80>
2007d08: a8 10 20 00 clr %l4
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007d0c: a0 04 20 01 inc %l0
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
2007d10: a2 04 40 13 add %l1, %l3, %l1
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
2007d14: 80 a7 40 10 cmp %i5, %l0
2007d18: 18 bf ff f9 bgu 2007cfc <_Objects_Extend_information+0x58>
2007d1c: 83 2c 20 02 sll %l0, 2, %g1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007d20: a8 10 20 01 mov 1, %l4
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007d24: ab 35 60 10 srl %l5, 0x10, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007d28: 03 00 00 3f sethi %hi(0xfc00), %g1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
2007d2c: aa 05 40 08 add %l5, %o0, %l5
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
2007d30: 82 10 63 ff or %g1, 0x3ff, %g1
2007d34: 80 a5 40 01 cmp %l5, %g1
2007d38: 18 80 00 98 bgu 2007f98 <_Objects_Extend_information+0x2f4>
2007d3c: 01 00 00 00 nop
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
2007d40: 40 00 29 42 call 2012248 <.umul>
2007d44: d2 06 20 18 ld [ %i0 + 0x18 ], %o1
if ( information->auto_extend ) {
2007d48: c2 0e 20 12 ldub [ %i0 + 0x12 ], %g1
2007d4c: 80 a0 60 00 cmp %g1, 0
2007d50: 02 80 00 6d be 2007f04 <_Objects_Extend_information+0x260>
2007d54: 01 00 00 00 nop
new_object_block = _Workspace_Allocate( block_size );
2007d58: 40 00 09 06 call 200a170 <_Workspace_Allocate>
2007d5c: 01 00 00 00 nop
if ( !new_object_block )
2007d60: a6 92 20 00 orcc %o0, 0, %l3
2007d64: 02 80 00 8d be 2007f98 <_Objects_Extend_information+0x2f4>
2007d68: 01 00 00 00 nop
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
2007d6c: 80 8d 20 ff btst 0xff, %l4
2007d70: 22 80 00 42 be,a 2007e78 <_Objects_Extend_information+0x1d4>
2007d74: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
*/
/*
* Up the block count and maximum
*/
block_count++;
2007d78: a8 07 60 01 add %i5, 1, %l4
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007d7c: 91 2d 20 01 sll %l4, 1, %o0
2007d80: 90 02 00 14 add %o0, %l4, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
2007d84: 90 05 40 08 add %l5, %o0, %o0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
2007d88: 90 02 00 12 add %o0, %l2, %o0
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
2007d8c: 40 00 08 f9 call 200a170 <_Workspace_Allocate>
2007d90: 91 2a 20 02 sll %o0, 2, %o0
if ( !object_blocks ) {
2007d94: ac 92 20 00 orcc %o0, 0, %l6
2007d98: 02 80 00 7e be 2007f90 <_Objects_Extend_information+0x2ec>
2007d9c: a9 2d 20 02 sll %l4, 2, %l4
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
2007da0: c2 16 20 10 lduh [ %i0 + 0x10 ], %g1
2007da4: 80 a4 80 01 cmp %l2, %g1
2007da8: ae 05 80 14 add %l6, %l4, %l7
2007dac: 0a 80 00 5a bcs 2007f14 <_Objects_Extend_information+0x270>
2007db0: a8 05 c0 14 add %l7, %l4, %l4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2007db4: 80 a4 a0 00 cmp %l2, 0
2007db8: 02 80 00 07 be 2007dd4 <_Objects_Extend_information+0x130><== NEVER TAKEN
2007dbc: 82 10 20 00 clr %g1
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2007dc0: 85 28 60 02 sll %g1, 2, %g2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
2007dc4: 82 00 60 01 inc %g1
2007dc8: 80 a4 80 01 cmp %l2, %g1
2007dcc: 18 bf ff fd bgu 2007dc0 <_Objects_Extend_information+0x11c><== NEVER TAKEN
2007dd0: c0 20 80 14 clr [ %g2 + %l4 ]
2007dd4: bb 2f 60 02 sll %i5, 2, %i5
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007dd8: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
2007ddc: c0 25 80 1d clr [ %l6 + %i5 ]
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007de0: 86 04 40 03 add %l1, %g3, %g3
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007de4: 80 a4 40 03 cmp %l1, %g3
2007de8: 1a 80 00 0a bcc 2007e10 <_Objects_Extend_information+0x16c><== NEVER TAKEN
2007dec: c0 25 c0 1d clr [ %l7 + %i5 ]
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
2007df0: 83 2c 60 02 sll %l1, 2, %g1
2007df4: 84 10 00 11 mov %l1, %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007df8: 82 05 00 01 add %l4, %g1, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
2007dfc: c0 20 40 00 clr [ %g1 ]
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
2007e00: 84 00 a0 01 inc %g2
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
2007e04: 80 a0 80 03 cmp %g2, %g3
2007e08: 0a bf ff fd bcs 2007dfc <_Objects_Extend_information+0x158>
2007e0c: 82 00 60 04 add %g1, 4, %g1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
}
_ISR_Disable( level );
2007e10: 7f ff e9 21 call 2002294 <sparc_disable_interrupts>
2007e14: 01 00 00 00 nop
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007e18: c6 06 00 00 ld [ %i0 ], %g3
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2007e1c: c4 16 20 04 lduh [ %i0 + 4 ], %g2
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
2007e20: e4 06 20 34 ld [ %i0 + 0x34 ], %l2
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
2007e24: ea 36 20 10 sth %l5, [ %i0 + 0x10 ]
2007e28: 87 28 e0 18 sll %g3, 0x18, %g3
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007e2c: 85 28 a0 1b sll %g2, 0x1b, %g2
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
2007e30: ec 26 20 34 st %l6, [ %i0 + 0x34 ]
information->inactive_per_block = inactive_per_block;
2007e34: ee 26 20 30 st %l7, [ %i0 + 0x30 ]
information->local_table = local_table;
2007e38: e8 26 20 1c st %l4, [ %i0 + 0x1c ]
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
2007e3c: ab 2d 60 10 sll %l5, 0x10, %l5
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007e40: 03 00 00 40 sethi %hi(0x10000), %g1
2007e44: ab 35 60 10 srl %l5, 0x10, %l5
2007e48: 82 10 c0 01 or %g3, %g1, %g1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007e4c: 82 10 40 02 or %g1, %g2, %g1
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007e50: 82 10 40 15 or %g1, %l5, %g1
2007e54: c2 26 20 0c st %g1, [ %i0 + 0xc ]
information->the_class,
_Objects_Local_node,
information->maximum
);
_ISR_Enable( level );
2007e58: 7f ff e9 13 call 20022a4 <sparc_enable_interrupts>
2007e5c: 01 00 00 00 nop
if ( old_tables )
2007e60: 80 a4 a0 00 cmp %l2, 0
2007e64: 22 80 00 05 be,a 2007e78 <_Objects_Extend_information+0x1d4>
2007e68: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
_Workspace_Free( old_tables );
2007e6c: 40 00 08 ca call 200a194 <_Workspace_Free>
2007e70: 90 10 00 12 mov %l2, %o0
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007e74: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007e78: d4 16 20 14 lduh [ %i0 + 0x14 ], %o2
2007e7c: d6 06 20 18 ld [ %i0 + 0x18 ], %o3
2007e80: 92 10 00 13 mov %l3, %o1
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007e84: a1 2c 20 02 sll %l0, 2, %l0
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007e88: a4 07 bf f4 add %fp, -12, %l2
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
2007e8c: e6 20 40 10 st %l3, [ %g1 + %l0 ]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
2007e90: 90 10 00 12 mov %l2, %o0
2007e94: 40 00 12 18 call 200c6f4 <_Chain_Initialize>
2007e98: 29 00 00 40 sethi %hi(0x10000), %l4
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2007e9c: 10 80 00 0d b 2007ed0 <_Objects_Extend_information+0x22c>
2007ea0: a6 06 20 20 add %i0, 0x20, %l3
the_object->id = _Objects_Build_id(
2007ea4: c6 16 20 04 lduh [ %i0 + 4 ], %g3
2007ea8: 85 28 a0 18 sll %g2, 0x18, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007eac: 87 28 e0 1b sll %g3, 0x1b, %g3
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007eb0: 84 10 80 14 or %g2, %l4, %g2
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2007eb4: 84 10 80 03 or %g2, %g3, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2007eb8: 84 10 80 11 or %g2, %l1, %g2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2007ebc: 90 10 00 13 mov %l3, %o0
2007ec0: 92 10 00 01 mov %g1, %o1
index++;
2007ec4: a2 04 60 01 inc %l1
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
2007ec8: 7f ff fc 8f call 2007104 <_Chain_Append>
2007ecc: c4 20 60 08 st %g2, [ %g1 + 8 ]
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
2007ed0: 7f ff fc a3 call 200715c <_Chain_Get>
2007ed4: 90 10 00 12 mov %l2, %o0
2007ed8: 82 92 20 00 orcc %o0, 0, %g1
2007edc: 32 bf ff f2 bne,a 2007ea4 <_Objects_Extend_information+0x200>
2007ee0: c4 06 00 00 ld [ %i0 ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2007ee4: c8 16 20 14 lduh [ %i0 + 0x14 ], %g4
2007ee8: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2007eec: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
2007ef0: c8 20 c0 10 st %g4, [ %g3 + %l0 ]
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
2007ef4: 82 00 80 04 add %g2, %g4, %g1
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
2007ef8: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
2007efc: 81 c7 e0 08 ret
2007f00: 81 e8 00 00 restore
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
2007f04: 40 00 08 ab call 200a1b0 <_Workspace_Allocate_or_fatal_error>
2007f08: 01 00 00 00 nop
2007f0c: 10 bf ff 98 b 2007d6c <_Objects_Extend_information+0xc8>
2007f10: a6 10 00 08 mov %o0, %l3
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2007f14: d2 06 20 34 ld [ %i0 + 0x34 ], %o1
information->object_blocks,
block_count * sizeof(void*) );
2007f18: bb 2f 60 02 sll %i5, 2, %i5
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
2007f1c: 40 00 1d 46 call 200f434 <memcpy>
2007f20: 94 10 00 1d mov %i5, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
2007f24: d2 06 20 30 ld [ %i0 + 0x30 ], %o1
2007f28: 94 10 00 1d mov %i5, %o2
2007f2c: 40 00 1d 42 call 200f434 <memcpy>
2007f30: 90 10 00 17 mov %l7, %o0
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2007f34: d4 16 20 10 lduh [ %i0 + 0x10 ], %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2007f38: d2 06 20 1c ld [ %i0 + 0x1c ], %o1
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
2007f3c: 94 04 80 0a add %l2, %o2, %o2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
2007f40: 90 10 00 14 mov %l4, %o0
2007f44: 40 00 1d 3c call 200f434 <memcpy>
2007f48: 95 2a a0 02 sll %o2, 2, %o2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
2007f4c: 10 bf ff a4 b 2007ddc <_Objects_Extend_information+0x138>
2007f50: c6 16 20 14 lduh [ %i0 + 0x14 ], %g3
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
2007f54: ea 16 20 10 lduh [ %i0 + 0x10 ], %l5
2007f58: d0 16 20 14 lduh [ %i0 + 0x14 ], %o0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007f5c: a2 10 00 12 mov %l2, %l1
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007f60: a8 10 20 01 mov 1, %l4
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007f64: a0 10 20 00 clr %l0
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
2007f68: ba 10 20 00 clr %i5
2007f6c: 10 bf ff 6e b 2007d24 <_Objects_Extend_information+0x80>
2007f70: ab 2d 60 10 sll %l5, 0x10, %l5
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
2007f74: a2 10 00 12 mov %l2, %l1 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
2007f78: a8 10 20 01 mov 1, %l4 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007f7c: 10 bf ff 6a b 2007d24 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2007f80: a0 10 20 00 clr %l0 <== NOT EXECUTED
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
2007f84: a8 10 20 00 clr %l4 <== NOT EXECUTED
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
2007f88: 10 bf ff 67 b 2007d24 <_Objects_Extend_information+0x80> <== NOT EXECUTED
2007f8c: a0 10 20 00 clr %l0 <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
2007f90: 40 00 08 81 call 200a194 <_Workspace_Free>
2007f94: 90 10 00 13 mov %l3, %o0
return;
2007f98: 81 c7 e0 08 ret
2007f9c: 81 e8 00 00 restore
0200804c <_Objects_Get_information>:
Objects_Information *_Objects_Get_information(
Objects_APIs the_api,
uint32_t the_class
)
{
200804c: 9d e3 bf a0 save %sp, -96, %sp
Objects_Information *info;
int the_class_api_maximum;
if ( !the_class )
2008050: 80 a6 60 00 cmp %i1, 0
2008054: 12 80 00 04 bne 2008064 <_Objects_Get_information+0x18>
2008058: a0 10 20 00 clr %l0
if ( info->maximum == 0 )
return NULL;
#endif
return info;
}
200805c: 81 c7 e0 08 ret
2008060: 91 e8 00 10 restore %g0, %l0, %o0
/*
* This call implicitly validates the_api so we do not call
* _Objects_Is_api_valid above here.
*/
the_class_api_maximum = _Objects_API_maximum_class( the_api );
2008064: 40 00 13 2d call 200cd18 <_Objects_API_maximum_class>
2008068: 90 10 00 18 mov %i0, %o0
if ( the_class_api_maximum == 0 )
200806c: 80 a2 20 00 cmp %o0, 0
2008070: 02 bf ff fb be 200805c <_Objects_Get_information+0x10>
2008074: 80 a6 40 08 cmp %i1, %o0
return NULL;
if ( the_class > (uint32_t) the_class_api_maximum )
2008078: 18 bf ff f9 bgu 200805c <_Objects_Get_information+0x10>
200807c: 03 00 80 57 sethi %hi(0x2015c00), %g1
return NULL;
if ( !_Objects_Information_table[ the_api ] )
2008080: b1 2e 20 02 sll %i0, 2, %i0
2008084: 82 10 61 4c or %g1, 0x14c, %g1
2008088: c2 00 40 18 ld [ %g1 + %i0 ], %g1
200808c: 80 a0 60 00 cmp %g1, 0
2008090: 02 bf ff f3 be 200805c <_Objects_Get_information+0x10> <== NEVER TAKEN
2008094: b3 2e 60 02 sll %i1, 2, %i1
return NULL;
info = _Objects_Information_table[ the_api ][ the_class ];
2008098: e0 00 40 19 ld [ %g1 + %i1 ], %l0
if ( !info )
200809c: 80 a4 20 00 cmp %l0, 0
20080a0: 02 bf ff ef be 200805c <_Objects_Get_information+0x10> <== NEVER TAKEN
20080a4: 01 00 00 00 nop
* In a multprocessing configuration, we may access remote objects.
* Thus we may have 0 local instances and still have a valid object
* pointer.
*/
#if !defined(RTEMS_MULTIPROCESSING)
if ( info->maximum == 0 )
20080a8: c2 14 20 10 lduh [ %l0 + 0x10 ], %g1
return NULL;
20080ac: 80 a0 00 01 cmp %g0, %g1
20080b0: 82 60 20 00 subx %g0, 0, %g1
20080b4: 10 bf ff ea b 200805c <_Objects_Get_information+0x10>
20080b8: a0 0c 00 01 and %l0, %g1, %l0
02009dfc <_Objects_Get_name_as_string>:
char *_Objects_Get_name_as_string(
Objects_Id id,
size_t length,
char *name
)
{
2009dfc: 9d e3 bf 90 save %sp, -112, %sp
char lname[5];
Objects_Control *the_object;
Objects_Locations location;
Objects_Id tmpId;
if ( length == 0 )
2009e00: 80 a6 60 00 cmp %i1, 0
2009e04: 12 80 00 05 bne 2009e18 <_Objects_Get_name_as_string+0x1c>
2009e08: 80 a6 a0 00 cmp %i2, 0
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE:
/* not supported */
#endif
case OBJECTS_ERROR:
return NULL;
2009e0c: b4 10 20 00 clr %i2
_Thread_Enable_dispatch();
return name;
}
return NULL; /* unreachable path */
}
2009e10: 81 c7 e0 08 ret
2009e14: 91 e8 00 1a restore %g0, %i2, %o0
Objects_Id tmpId;
if ( length == 0 )
return NULL;
if ( name == NULL )
2009e18: 02 bf ff fe be 2009e10 <_Objects_Get_name_as_string+0x14>
2009e1c: 80 a6 20 00 cmp %i0, 0
return NULL;
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
2009e20: 12 80 00 04 bne 2009e30 <_Objects_Get_name_as_string+0x34>
2009e24: 03 00 80 9b sethi %hi(0x2026c00), %g1
2009e28: c2 00 62 a8 ld [ %g1 + 0x2a8 ], %g1 ! 2026ea8 <_Per_CPU_Information+0xc>
2009e2c: f0 00 60 08 ld [ %g1 + 8 ], %i0
information = _Objects_Get_information_id( tmpId );
2009e30: 7f ff ff b3 call 2009cfc <_Objects_Get_information_id>
2009e34: 90 10 00 18 mov %i0, %o0
if ( !information )
2009e38: 80 a2 20 00 cmp %o0, 0
2009e3c: 22 bf ff f5 be,a 2009e10 <_Objects_Get_name_as_string+0x14>
2009e40: b4 10 20 00 clr %i2
return NULL;
the_object = _Objects_Get( information, tmpId, &location );
2009e44: 92 10 00 18 mov %i0, %o1
2009e48: 40 00 00 2d call 2009efc <_Objects_Get>
2009e4c: 94 07 bf fc add %fp, -4, %o2
switch ( location ) {
2009e50: c2 07 bf fc ld [ %fp + -4 ], %g1
2009e54: 80 a0 60 00 cmp %g1, 0
2009e58: 32 bf ff ee bne,a 2009e10 <_Objects_Get_name_as_string+0x14>
2009e5c: b4 10 20 00 clr %i2
if ( information->is_string ) {
s = the_object->name.name_p;
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
2009e60: c2 02 20 0c ld [ %o0 + 0xc ], %g1
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
lname[ 4 ] = '\0';
2009e64: c0 2f bf f4 clrb [ %fp + -12 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009e68: 89 30 60 18 srl %g1, 0x18, %g4
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009e6c: 87 30 60 10 srl %g1, 0x10, %g3
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009e70: 85 30 60 08 srl %g1, 8, %g2
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
lname[ 1 ] = (u32_name >> 16) & 0xff;
2009e74: c6 2f bf f1 stb %g3, [ %fp + -15 ]
lname[ 2 ] = (u32_name >> 8) & 0xff;
2009e78: c4 2f bf f2 stb %g2, [ %fp + -14 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009e7c: c8 2f bf f0 stb %g4, [ %fp + -16 ]
lname[ 1 ] = (u32_name >> 16) & 0xff;
lname[ 2 ] = (u32_name >> 8) & 0xff;
lname[ 3 ] = (u32_name >> 0) & 0xff;
2009e80: c2 2f bf f3 stb %g1, [ %fp + -13 ]
} else
#endif
{
uint32_t u32_name = (uint32_t) the_object->name.name_u32;
lname[ 0 ] = (u32_name >> 24) & 0xff;
2009e84: 84 10 00 04 mov %g4, %g2
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009e88: b2 86 7f ff addcc %i1, -1, %i1
2009e8c: 02 80 00 19 be 2009ef0 <_Objects_Get_name_as_string+0xf4> <== NEVER TAKEN
2009e90: 86 10 00 1a mov %i2, %g3
2009e94: 80 a1 20 00 cmp %g4, 0
2009e98: 02 80 00 16 be 2009ef0 <_Objects_Get_name_as_string+0xf4>
2009e9c: 19 00 80 79 sethi %hi(0x201e400), %o4
2009ea0: 82 10 20 00 clr %g1
2009ea4: 10 80 00 06 b 2009ebc <_Objects_Get_name_as_string+0xc0>
2009ea8: 98 13 21 18 or %o4, 0x118, %o4
2009eac: da 49 00 01 ldsb [ %g4 + %g1 ], %o5
2009eb0: 80 a3 60 00 cmp %o5, 0
2009eb4: 02 80 00 0f be 2009ef0 <_Objects_Get_name_as_string+0xf4>
2009eb8: c4 09 00 01 ldub [ %g4 + %g1 ], %g2
*d = (isprint((unsigned char)*s)) ? *s : '*';
2009ebc: da 03 00 00 ld [ %o4 ], %o5
2009ec0: 88 08 a0 ff and %g2, 0xff, %g4
2009ec4: 88 03 40 04 add %o5, %g4, %g4
2009ec8: da 49 20 01 ldsb [ %g4 + 1 ], %o5
2009ecc: 80 8b 60 97 btst 0x97, %o5
2009ed0: 12 80 00 03 bne 2009edc <_Objects_Get_name_as_string+0xe0>
2009ed4: 88 07 bf f0 add %fp, -16, %g4
2009ed8: 84 10 20 2a mov 0x2a, %g2
2009edc: c4 28 c0 00 stb %g2, [ %g3 ]
s = lname;
}
d = name;
if ( s ) {
for ( i=0 ; i<(length-1) && *s ; i++, s++, d++ ) {
2009ee0: 82 00 60 01 inc %g1
2009ee4: 80 a0 40 19 cmp %g1, %i1
2009ee8: 0a bf ff f1 bcs 2009eac <_Objects_Get_name_as_string+0xb0>
2009eec: 86 00 e0 01 inc %g3
*d = (isprint((unsigned char)*s)) ? *s : '*';
}
}
*d = '\0';
_Thread_Enable_dispatch();
2009ef0: 40 00 02 67 call 200a88c <_Thread_Enable_dispatch>
2009ef4: c0 28 c0 00 clrb [ %g3 ]
return name;
2009ef8: 30 bf ff c6 b,a 2009e10 <_Objects_Get_name_as_string+0x14>
020194cc <_Objects_Get_no_protection>:
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
20194cc: c4 02 20 08 ld [ %o0 + 8 ], %g2
if ( information->maximum >= index ) {
20194d0: c2 12 20 10 lduh [ %o0 + 0x10 ], %g1
/*
* You can't just extract the index portion or you can get tricked
* by a value between 1 and maximum.
*/
index = id - information->minimum_id + 1;
20194d4: 84 22 40 02 sub %o1, %g2, %g2
20194d8: 84 00 a0 01 inc %g2
if ( information->maximum >= index ) {
20194dc: 80 a0 80 01 cmp %g2, %g1
20194e0: 18 80 00 09 bgu 2019504 <_Objects_Get_no_protection+0x38>
20194e4: 85 28 a0 02 sll %g2, 2, %g2
if ( (the_object = information->local_table[ index ]) != NULL ) {
20194e8: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
20194ec: d0 00 40 02 ld [ %g1 + %g2 ], %o0
20194f0: 80 a2 20 00 cmp %o0, 0
20194f4: 02 80 00 05 be 2019508 <_Objects_Get_no_protection+0x3c> <== NEVER TAKEN
20194f8: 82 10 20 01 mov 1, %g1
*location = OBJECTS_LOCAL;
return the_object;
20194fc: 81 c3 e0 08 retl
2019500: c0 22 80 00 clr [ %o2 ]
/*
* This isn't supported or required yet for Global objects so
* if it isn't local, we don't find it.
*/
*location = OBJECTS_ERROR;
2019504: 82 10 20 01 mov 1, %g1
return NULL;
2019508: 90 10 20 00 clr %o0
}
201950c: 81 c3 e0 08 retl
2019510: c2 22 80 00 st %g1, [ %o2 ]
020098dc <_Objects_Id_to_name>:
*/
Objects_Name_or_id_lookup_errors _Objects_Id_to_name (
Objects_Id id,
Objects_Name *name
)
{
20098dc: 9d e3 bf 98 save %sp, -104, %sp
/*
* Caller is trusted for name != NULL.
*/
tmpId = (id == OBJECTS_ID_OF_SELF) ? _Thread_Executing->Object.id : id;
20098e0: 80 a6 20 00 cmp %i0, 0
20098e4: 12 80 00 06 bne 20098fc <_Objects_Id_to_name+0x20>
20098e8: 83 36 20 18 srl %i0, 0x18, %g1
20098ec: 03 00 80 78 sethi %hi(0x201e000), %g1
20098f0: c2 00 60 f8 ld [ %g1 + 0xf8 ], %g1 ! 201e0f8 <_Per_CPU_Information+0xc>
20098f4: f0 00 60 08 ld [ %g1 + 8 ], %i0
20098f8: 83 36 20 18 srl %i0, 0x18, %g1
20098fc: 82 08 60 07 and %g1, 7, %g1
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2009900: 84 00 7f ff add %g1, -1, %g2
2009904: 80 a0 a0 02 cmp %g2, 2
2009908: 18 80 00 17 bgu 2009964 <_Objects_Id_to_name+0x88>
200990c: a0 10 20 03 mov 3, %l0
the_api = _Objects_Get_API( tmpId );
if ( !_Objects_Is_api_valid( the_api ) )
return OBJECTS_INVALID_ID;
if ( !_Objects_Information_table[ the_api ] )
2009910: 83 28 60 02 sll %g1, 2, %g1
2009914: 05 00 80 77 sethi %hi(0x201dc00), %g2
2009918: 84 10 a1 ec or %g2, 0x1ec, %g2 ! 201ddec <_Objects_Information_table>
200991c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
2009920: 80 a0 60 00 cmp %g1, 0
2009924: 02 80 00 10 be 2009964 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
2009928: 85 36 20 1b srl %i0, 0x1b, %g2
return OBJECTS_INVALID_ID;
the_class = _Objects_Get_class( tmpId );
information = _Objects_Information_table[ the_api ][ the_class ];
200992c: 85 28 a0 02 sll %g2, 2, %g2
2009930: d0 00 40 02 ld [ %g1 + %g2 ], %o0
if ( !information )
2009934: 80 a2 20 00 cmp %o0, 0
2009938: 02 80 00 0b be 2009964 <_Objects_Id_to_name+0x88> <== NEVER TAKEN
200993c: 92 10 00 18 mov %i0, %o1
#if defined(RTEMS_SCORE_OBJECT_ENABLE_STRING_NAMES)
if ( information->is_string )
return OBJECTS_INVALID_ID;
#endif
the_object = _Objects_Get( information, tmpId, &ignored_location );
2009940: 7f ff ff ca call 2009868 <_Objects_Get>
2009944: 94 07 bf fc add %fp, -4, %o2
if ( !the_object )
2009948: 80 a2 20 00 cmp %o0, 0
200994c: 02 80 00 06 be 2009964 <_Objects_Id_to_name+0x88>
2009950: 01 00 00 00 nop
return OBJECTS_INVALID_ID;
*name = the_object->name;
2009954: c2 02 20 0c ld [ %o0 + 0xc ], %g1
_Thread_Enable_dispatch();
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
2009958: a0 10 20 00 clr %l0
the_object = _Objects_Get( information, tmpId, &ignored_location );
if ( !the_object )
return OBJECTS_INVALID_ID;
*name = the_object->name;
_Thread_Enable_dispatch();
200995c: 40 00 02 77 call 200a338 <_Thread_Enable_dispatch>
2009960: c2 26 40 00 st %g1, [ %i1 ]
return OBJECTS_NAME_OR_ID_LOOKUP_SUCCESSFUL;
}
2009964: 81 c7 e0 08 ret
2009968: 91 e8 00 10 restore %g0, %l0, %o0
020081a4 <_Objects_Initialize_information>:
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
20081a4: 9d e3 bf a0 save %sp, -96, %sp
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
20081a8: 05 00 80 57 sethi %hi(0x2015c00), %g2
20081ac: 83 2e 60 02 sll %i1, 2, %g1
20081b0: 84 10 a1 4c or %g2, 0x14c, %g2
20081b4: c2 00 80 01 ld [ %g2 + %g1 ], %g1
uint32_t maximum_per_allocation;
#if defined(RTEMS_MULTIPROCESSING)
uint32_t index;
#endif
information->the_api = the_api;
20081b8: f2 26 00 00 st %i1, [ %i0 ]
information->the_class = the_class;
20081bc: f4 36 20 04 sth %i2, [ %i0 + 4 ]
information->size = size;
20081c0: 85 2f 20 10 sll %i4, 0x10, %g2
information->local_table = 0;
20081c4: c0 26 20 1c clr [ %i0 + 0x1c ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
20081c8: 85 30 a0 10 srl %g2, 0x10, %g2
information->local_table = 0;
information->inactive_per_block = 0;
20081cc: c0 26 20 30 clr [ %i0 + 0x30 ]
uint32_t index;
#endif
information->the_api = the_api;
information->the_class = the_class;
information->size = size;
20081d0: c4 26 20 18 st %g2, [ %i0 + 0x18 ]
information->local_table = 0;
information->inactive_per_block = 0;
information->object_blocks = 0;
20081d4: c0 26 20 34 clr [ %i0 + 0x34 ]
information->inactive = 0;
20081d8: c0 36 20 2c clrh [ %i0 + 0x2c ]
/*
* Set the maximum value to 0. It will be updated when objects are
* added to the inactive set from _Objects_Extend_information()
*/
information->maximum = 0;
20081dc: c0 36 20 10 clrh [ %i0 + 0x10 ]
,
bool supports_global,
Objects_Thread_queue_Extract_callout extract
#endif
)
{
20081e0: c6 07 a0 5c ld [ %fp + 0x5c ], %g3
information->maximum = 0;
/*
* Register this Object Class in the Object Information Table.
*/
_Objects_Information_table[ the_api ][ the_class ] = information;
20081e4: 85 2e a0 02 sll %i2, 2, %g2
20081e8: f0 20 40 02 st %i0, [ %g1 + %g2 ]
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
20081ec: 83 36 e0 1f srl %i3, 0x1f, %g1
_Objects_Information_table[ the_api ][ the_class ] = information;
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
20081f0: c2 2e 20 12 stb %g1, [ %i0 + 0x12 ]
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
20081f4: 80 a0 60 00 cmp %g1, 0
/*
* Are we operating in limited or unlimited (e.g. auto-extend) mode.
*/
information->auto_extend =
(maximum & OBJECTS_UNLIMITED_OBJECTS) ? true : false;
maximum_per_allocation = maximum & ~OBJECTS_UNLIMITED_OBJECTS;
20081f8: 03 20 00 00 sethi %hi(0x80000000), %g1
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
20081fc: 02 80 00 05 be 2008210 <_Objects_Initialize_information+0x6c>
2008200: b6 2e c0 01 andn %i3, %g1, %i3
2008204: 80 a6 e0 00 cmp %i3, 0
2008208: 02 80 00 27 be 20082a4 <_Objects_Initialize_information+0x100>
200820c: 90 10 20 00 clr %o0
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2008210: 05 00 00 40 sethi %hi(0x10000), %g2
information->local_table = &null_local_table;
/*
* Calculate minimum and maximum Id's
*/
minimum_index = (maximum_per_allocation == 0) ? 0 : 1;
2008214: 80 a0 00 1b cmp %g0, %i3
2008218: b3 2e 60 18 sll %i1, 0x18, %i1
200821c: 82 40 20 00 addx %g0, 0, %g1
2008220: b2 16 40 02 or %i1, %g2, %i1
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
2008224: b5 2e a0 1b sll %i2, 0x1b, %i2
information->allocation_size = maximum_per_allocation;
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
2008228: 05 00 80 56 sethi %hi(0x2015800), %g2
200822c: b4 16 40 1a or %i1, %i2, %i2
2008230: 84 10 a2 94 or %g2, 0x294, %g2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
2008234: b4 16 80 01 or %i2, %g1, %i2
}
/*
* The allocation unit is the maximum value
*/
information->allocation_size = maximum_per_allocation;
2008238: f6 36 20 14 sth %i3, [ %i0 + 0x14 ]
/*
* Provide a null local table entry for the case of any empty table.
*/
information->local_table = &null_local_table;
200823c: c4 26 20 1c st %g2, [ %i0 + 0x1c ]
/*
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
2008240: 80 88 e0 03 btst 3, %g3
2008244: 12 80 00 0c bne 2008274 <_Objects_Initialize_information+0xd0><== NEVER TAKEN
2008248: f4 26 20 08 st %i2, [ %i0 + 8 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200824c: 84 06 20 24 add %i0, 0x24, %g2
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
_Chain_Initialize_empty( &information->Inactive );
2008250: 82 06 20 20 add %i0, 0x20, %g1
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
2008254: c6 36 20 38 sth %g3, [ %i0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2008258: c4 26 20 20 st %g2, [ %i0 + 0x20 ]
the_chain->permanent_null = NULL;
200825c: c0 26 20 24 clr [ %i0 + 0x24 ]
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
2008260: 80 a6 e0 00 cmp %i3, 0
2008264: 12 80 00 0e bne 200829c <_Objects_Initialize_information+0xf8>
2008268: c2 26 20 28 st %g1, [ %i0 + 0x28 ]
200826c: 81 c7 e0 08 ret
2008270: 81 e8 00 00 restore
* Calculate the maximum name length
*/
name_length = maximum_name_length;
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
2008274: 86 00 e0 04 add %g3, 4, %g3 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2008278: 84 06 20 24 add %i0, 0x24, %g2 <== NOT EXECUTED
200827c: 86 08 ff fc and %g3, -4, %g3 <== NOT EXECUTED
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
_Chain_Initialize_empty( &information->Inactive );
2008280: 82 06 20 20 add %i0, 0x20, %g1 <== NOT EXECUTED
if ( name_length & (OBJECTS_NAME_ALIGNMENT-1) )
name_length = (name_length + OBJECTS_NAME_ALIGNMENT) &
~(OBJECTS_NAME_ALIGNMENT-1);
information->name_length = name_length;
2008284: c6 36 20 38 sth %g3, [ %i0 + 0x38 ] <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2008288: c4 26 20 20 st %g2, [ %i0 + 0x20 ] <== NOT EXECUTED
the_chain->permanent_null = NULL;
200828c: c0 26 20 24 clr [ %i0 + 0x24 ] <== NOT EXECUTED
_Chain_Initialize_empty( &information->Inactive );
/*
* Initialize objects .. if there are any
*/
if ( maximum_per_allocation ) {
2008290: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
2008294: 02 bf ff f6 be 200826c <_Objects_Initialize_information+0xc8><== NOT EXECUTED
2008298: c2 26 20 28 st %g1, [ %i0 + 0x28 ] <== NOT EXECUTED
/*
* Always have the maximum size available so the current performance
* figures are create are met. If the user moves past the maximum
* number then a performance hit is taken.
*/
_Objects_Extend_information( information );
200829c: 7f ff fe 82 call 2007ca4 <_Objects_Extend_information>
20082a0: 81 e8 00 00 restore
/*
* Unlimited and maximum of zero is illogical.
*/
if ( information->auto_extend && maximum_per_allocation == 0) {
_Internal_error_Occurred(
20082a4: 92 10 20 01 mov 1, %o1
20082a8: 7f ff fe 22 call 2007b30 <_Internal_error_Occurred>
20082ac: 94 10 20 13 mov 0x13, %o2
0200836c <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
200836c: 9d e3 bf a0 save %sp, -96, %sp
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
2008370: e0 16 20 0a lduh [ %i0 + 0xa ], %l0
block_count = (information->maximum - index_base) /
2008374: e2 16 20 14 lduh [ %i0 + 0x14 ], %l1
2008378: d0 16 20 10 lduh [ %i0 + 0x10 ], %o0
200837c: 92 10 00 11 mov %l1, %o1
2008380: 40 00 27 ec call 2012330 <.udiv>
2008384: 90 22 00 10 sub %o0, %l0, %o0
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
2008388: 80 a2 20 00 cmp %o0, 0
200838c: 02 80 00 34 be 200845c <_Objects_Shrink_information+0xf0> <== NEVER TAKEN
2008390: 01 00 00 00 nop
if ( information->inactive_per_block[ block ] ==
2008394: c8 06 20 30 ld [ %i0 + 0x30 ], %g4
2008398: c2 01 00 00 ld [ %g4 ], %g1
200839c: 80 a4 40 01 cmp %l1, %g1
20083a0: 02 80 00 0f be 20083dc <_Objects_Shrink_information+0x70> <== NEVER TAKEN
20083a4: 82 10 20 00 clr %g1
20083a8: 10 80 00 07 b 20083c4 <_Objects_Shrink_information+0x58>
20083ac: a4 10 20 04 mov 4, %l2
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
20083b0: 86 04 a0 04 add %l2, 4, %g3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
20083b4: 80 a4 40 02 cmp %l1, %g2
20083b8: 02 80 00 0a be 20083e0 <_Objects_Shrink_information+0x74>
20083bc: a0 04 00 11 add %l0, %l1, %l0
20083c0: a4 10 00 03 mov %g3, %l2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
20083c4: 82 00 60 01 inc %g1
20083c8: 80 a2 00 01 cmp %o0, %g1
20083cc: 38 bf ff f9 bgu,a 20083b0 <_Objects_Shrink_information+0x44>
20083d0: c4 01 00 12 ld [ %g4 + %l2 ], %g2
20083d4: 81 c7 e0 08 ret
20083d8: 81 e8 00 00 restore
if ( information->inactive_per_block[ block ] ==
20083dc: a4 10 20 00 clr %l2 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
20083e0: 10 80 00 06 b 20083f8 <_Objects_Shrink_information+0x8c>
20083e4: d0 06 20 20 ld [ %i0 + 0x20 ], %o0
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
20083e8: 80 a4 60 00 cmp %l1, 0
20083ec: 22 80 00 12 be,a 2008434 <_Objects_Shrink_information+0xc8>
20083f0: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
20083f4: 90 10 00 11 mov %l1, %o0
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
do {
index = _Objects_Get_index( the_object->id );
20083f8: c2 12 20 0a lduh [ %o0 + 0xa ], %g1
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
20083fc: 80 a0 40 10 cmp %g1, %l0
2008400: 0a bf ff fa bcs 20083e8 <_Objects_Shrink_information+0x7c>
2008404: e2 02 00 00 ld [ %o0 ], %l1
(index < (index_base + information->allocation_size))) {
2008408: c4 16 20 14 lduh [ %i0 + 0x14 ], %g2
200840c: 84 04 00 02 add %l0, %g2, %g2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
2008410: 80 a0 40 02 cmp %g1, %g2
2008414: 1a bf ff f6 bcc 20083ec <_Objects_Shrink_information+0x80>
2008418: 80 a4 60 00 cmp %l1, 0
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
200841c: 7f ff fb 46 call 2007134 <_Chain_Extract>
2008420: 01 00 00 00 nop
}
}
while ( the_object );
2008424: 80 a4 60 00 cmp %l1, 0
2008428: 12 bf ff f4 bne 20083f8 <_Objects_Shrink_information+0x8c><== ALWAYS TAKEN
200842c: 90 10 00 11 mov %l1, %o0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
2008430: c2 06 20 34 ld [ %i0 + 0x34 ], %g1 <== NOT EXECUTED
2008434: 40 00 07 58 call 200a194 <_Workspace_Free>
2008438: d0 00 40 12 ld [ %g1 + %l2 ], %o0
information->object_blocks[ block ] = NULL;
200843c: c2 06 20 34 ld [ %i0 + 0x34 ], %g1
information->inactive_per_block[ block ] = 0;
2008440: c6 06 20 30 ld [ %i0 + 0x30 ], %g3
information->inactive -= information->allocation_size;
2008444: c4 16 20 2c lduh [ %i0 + 0x2c ], %g2
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
2008448: c0 20 40 12 clr [ %g1 + %l2 ]
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
200844c: c2 16 20 14 lduh [ %i0 + 0x14 ], %g1
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
2008450: c0 20 c0 12 clr [ %g3 + %l2 ]
information->inactive -= information->allocation_size;
2008454: 82 20 80 01 sub %g2, %g1, %g1
2008458: c2 36 20 2c sth %g1, [ %i0 + 0x2c ]
return;
200845c: 81 c7 e0 08 ret
2008460: 81 e8 00 00 restore
02006ae0 <_RTEMS_tasks_Initialize_user_tasks_body>:
*
* Output parameters: NONE
*/
void _RTEMS_tasks_Initialize_user_tasks_body( void )
{
2006ae0: 9d e3 bf 98 save %sp, -104, %sp
rtems_initialization_tasks_table *user_tasks;
/*
* Move information into local variables
*/
user_tasks = Configuration_RTEMS_API.User_initialization_tasks_table;
2006ae4: 03 00 80 54 sethi %hi(0x2015000), %g1
2006ae8: 82 10 63 10 or %g1, 0x310, %g1 ! 2015310 <Configuration_RTEMS_API>
2006aec: e0 00 60 2c ld [ %g1 + 0x2c ], %l0
maximum = Configuration_RTEMS_API.number_of_initialization_tasks;
/*
* Verify that we have a set of user tasks to iterate
*/
if ( !user_tasks )
2006af0: 80 a4 20 00 cmp %l0, 0
2006af4: 02 80 00 19 be 2006b58 <_RTEMS_tasks_Initialize_user_tasks_body+0x78>
2006af8: e4 00 60 28 ld [ %g1 + 0x28 ], %l2
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006afc: 80 a4 a0 00 cmp %l2, 0
2006b00: 02 80 00 16 be 2006b58 <_RTEMS_tasks_Initialize_user_tasks_body+0x78><== NEVER TAKEN
2006b04: a2 10 20 00 clr %l1
2006b08: a6 07 bf fc add %fp, -4, %l3
return_value = rtems_task_create(
2006b0c: d4 04 20 04 ld [ %l0 + 4 ], %o2
2006b10: d0 04 00 00 ld [ %l0 ], %o0
2006b14: d2 04 20 08 ld [ %l0 + 8 ], %o1
2006b18: d6 04 20 14 ld [ %l0 + 0x14 ], %o3
2006b1c: d8 04 20 0c ld [ %l0 + 0xc ], %o4
2006b20: 7f ff ff 6d call 20068d4 <rtems_task_create>
2006b24: 9a 10 00 13 mov %l3, %o5
user_tasks[ index ].stack_size,
user_tasks[ index ].mode_set,
user_tasks[ index ].attribute_set,
&id
);
if ( !rtems_is_status_successful( return_value ) )
2006b28: 94 92 20 00 orcc %o0, 0, %o2
2006b2c: 12 80 00 0d bne 2006b60 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
2006b30: d0 07 bf fc ld [ %fp + -4 ], %o0
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
return_value = rtems_task_start(
2006b34: d4 04 20 18 ld [ %l0 + 0x18 ], %o2
2006b38: 40 00 00 0e call 2006b70 <rtems_task_start>
2006b3c: d2 04 20 10 ld [ %l0 + 0x10 ], %o1
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
2006b40: 94 92 20 00 orcc %o0, 0, %o2
2006b44: 12 80 00 07 bne 2006b60 <_RTEMS_tasks_Initialize_user_tasks_body+0x80>
2006b48: a2 04 60 01 inc %l1
return;
/*
* Now iterate over the initialization tasks and create/start them.
*/
for ( index=0 ; index < maximum ; index++ ) {
2006b4c: 80 a4 80 11 cmp %l2, %l1
2006b50: 18 bf ff ef bgu 2006b0c <_RTEMS_tasks_Initialize_user_tasks_body+0x2c><== NEVER TAKEN
2006b54: a0 04 20 1c add %l0, 0x1c, %l0
2006b58: 81 c7 e0 08 ret
2006b5c: 81 e8 00 00 restore
id,
user_tasks[ index ].entry_point,
user_tasks[ index ].argument
);
if ( !rtems_is_status_successful( return_value ) )
_Internal_error_Occurred( INTERNAL_ERROR_RTEMS_API, true, return_value );
2006b60: 90 10 20 01 mov 1, %o0
2006b64: 40 00 03 f3 call 2007b30 <_Internal_error_Occurred>
2006b68: 92 10 20 01 mov 1, %o1
0200c454 <_RTEMS_tasks_Post_switch_extension>:
*/
void _RTEMS_tasks_Post_switch_extension(
Thread_Control *executing
)
{
200c454: 9d e3 bf 98 save %sp, -104, %sp
RTEMS_API_Control *api;
ASR_Information *asr;
rtems_signal_set signal_set;
Modes_Control prev_mode;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200c458: e0 06 21 60 ld [ %i0 + 0x160 ], %l0
if ( !api )
200c45c: 80 a4 20 00 cmp %l0, 0
200c460: 02 80 00 1f be 200c4dc <_RTEMS_tasks_Post_switch_extension+0x88><== NEVER TAKEN
200c464: 01 00 00 00 nop
* Signal Processing
*/
asr = &api->Signal;
_ISR_Disable( level );
200c468: 7f ff d7 8b call 2002294 <sparc_disable_interrupts>
200c46c: 01 00 00 00 nop
signal_set = asr->signals_posted;
200c470: e2 04 20 14 ld [ %l0 + 0x14 ], %l1
asr->signals_posted = 0;
200c474: c0 24 20 14 clr [ %l0 + 0x14 ]
_ISR_Enable( level );
200c478: 7f ff d7 8b call 20022a4 <sparc_enable_interrupts>
200c47c: 01 00 00 00 nop
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
200c480: 80 a4 60 00 cmp %l1, 0
200c484: 32 80 00 04 bne,a 200c494 <_RTEMS_tasks_Post_switch_extension+0x40>
200c488: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200c48c: 81 c7 e0 08 ret
200c490: 81 e8 00 00 restore
return;
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c494: d0 04 20 10 ld [ %l0 + 0x10 ], %o0
if ( !signal_set ) /* similar to _ASR_Are_signals_pending( asr ) */
return;
asr->nest_level += 1;
200c498: 82 00 60 01 inc %g1
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c49c: a4 07 bf fc add %fp, -4, %l2
200c4a0: 27 00 00 3f sethi %hi(0xfc00), %l3
200c4a4: 94 10 00 12 mov %l2, %o2
200c4a8: 92 14 e3 ff or %l3, 0x3ff, %o1
200c4ac: 40 00 08 2c call 200e55c <rtems_task_mode>
200c4b0: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
(*asr->handler)( signal_set );
200c4b4: c2 04 20 0c ld [ %l0 + 0xc ], %g1
200c4b8: 9f c0 40 00 call %g1
200c4bc: 90 10 00 11 mov %l1, %o0
asr->nest_level -= 1;
200c4c0: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c4c4: d0 07 bf fc ld [ %fp + -4 ], %o0
asr->nest_level += 1;
rtems_task_mode( asr->mode_set, RTEMS_ALL_MODE_MASKS, &prev_mode );
(*asr->handler)( signal_set );
asr->nest_level -= 1;
200c4c8: 82 00 7f ff add %g1, -1, %g1
rtems_task_mode( prev_mode, RTEMS_ALL_MODE_MASKS, &prev_mode );
200c4cc: 92 14 e3 ff or %l3, 0x3ff, %o1
200c4d0: 94 10 00 12 mov %l2, %o2
200c4d4: 40 00 08 22 call 200e55c <rtems_task_mode>
200c4d8: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
200c4dc: 81 c7 e0 08 ret
200c4e0: 81 e8 00 00 restore
0200c3c4 <_RTEMS_tasks_Switch_extension>:
/*
* Per Task Variables
*/
tvp = executing->task_variables;
200c3c4: c2 02 21 6c ld [ %o0 + 0x16c ], %g1
while (tvp) {
200c3c8: 80 a0 60 00 cmp %g1, 0
200c3cc: 22 80 00 0b be,a 200c3f8 <_RTEMS_tasks_Switch_extension+0x34>
200c3d0: c2 02 61 6c ld [ %o1 + 0x16c ], %g1
tvp->tval = *tvp->ptr;
200c3d4: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->gval;
200c3d8: c6 00 60 08 ld [ %g1 + 8 ], %g3
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
tvp->tval = *tvp->ptr;
200c3dc: c8 00 80 00 ld [ %g2 ], %g4
200c3e0: c8 20 60 0c st %g4, [ %g1 + 0xc ]
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
200c3e4: c2 00 40 00 ld [ %g1 ], %g1
/*
* Per Task Variables
*/
tvp = executing->task_variables;
while (tvp) {
200c3e8: 80 a0 60 00 cmp %g1, 0
200c3ec: 12 bf ff fa bne 200c3d4 <_RTEMS_tasks_Switch_extension+0x10><== NEVER TAKEN
200c3f0: c6 20 80 00 st %g3, [ %g2 ]
tvp->tval = *tvp->ptr;
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
200c3f4: c2 02 61 6c ld [ %o1 + 0x16c ], %g1
while (tvp) {
200c3f8: 80 a0 60 00 cmp %g1, 0
200c3fc: 02 80 00 0a be 200c424 <_RTEMS_tasks_Switch_extension+0x60>
200c400: 01 00 00 00 nop
tvp->gval = *tvp->ptr;
200c404: c4 00 60 04 ld [ %g1 + 4 ], %g2
*tvp->ptr = tvp->tval;
200c408: c6 00 60 0c ld [ %g1 + 0xc ], %g3
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
tvp->gval = *tvp->ptr;
200c40c: c8 00 80 00 ld [ %g2 ], %g4
200c410: c8 20 60 08 st %g4, [ %g1 + 8 ]
*tvp->ptr = tvp->tval;
tvp = (rtems_task_variable_t *)tvp->next;
200c414: c2 00 40 00 ld [ %g1 ], %g1
*tvp->ptr = tvp->gval;
tvp = (rtems_task_variable_t *)tvp->next;
}
tvp = heir->task_variables;
while (tvp) {
200c418: 80 a0 60 00 cmp %g1, 0
200c41c: 12 bf ff fa bne 200c404 <_RTEMS_tasks_Switch_extension+0x40><== NEVER TAKEN
200c420: c6 20 80 00 st %g3, [ %g2 ]
200c424: 81 c3 e0 08 retl
02007dfc <_Rate_monotonic_Timeout>:
void _Rate_monotonic_Timeout(
Objects_Id id,
void *ignored
)
{
2007dfc: 9d e3 bf 98 save %sp, -104, %sp
2007e00: 11 00 80 78 sethi %hi(0x201e000), %o0
2007e04: 92 10 00 18 mov %i0, %o1
2007e08: 90 12 23 e4 or %o0, 0x3e4, %o0
2007e0c: 40 00 08 43 call 2009f18 <_Objects_Get>
2007e10: 94 07 bf fc add %fp, -4, %o2
/*
* When we get here, the Timer is already off the chain so we do not
* have to worry about that -- hence no _Watchdog_Remove().
*/
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007e14: c2 07 bf fc ld [ %fp + -4 ], %g1
2007e18: 80 a0 60 00 cmp %g1, 0
2007e1c: 12 80 00 16 bne 2007e74 <_Rate_monotonic_Timeout+0x78> <== NEVER TAKEN
2007e20: a0 10 00 08 mov %o0, %l0
case OBJECTS_LOCAL:
the_thread = the_period->owner;
2007e24: d0 02 20 40 ld [ %o0 + 0x40 ], %o0
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
2007e28: 03 00 00 10 sethi %hi(0x4000), %g1
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_for_period (
States_Control the_states
)
{
return (the_states & STATES_WAITING_FOR_PERIOD);
2007e2c: c4 02 20 10 ld [ %o0 + 0x10 ], %g2
2007e30: 80 88 80 01 btst %g2, %g1
2007e34: 22 80 00 08 be,a 2007e54 <_Rate_monotonic_Timeout+0x58>
2007e38: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007e3c: c4 02 20 20 ld [ %o0 + 0x20 ], %g2
2007e40: c2 04 20 08 ld [ %l0 + 8 ], %g1
2007e44: 80 a0 80 01 cmp %g2, %g1
2007e48: 02 80 00 19 be 2007eac <_Rate_monotonic_Timeout+0xb0>
2007e4c: 13 04 00 ff sethi %hi(0x1003fc00), %o1
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
2007e50: c2 04 20 38 ld [ %l0 + 0x38 ], %g1
2007e54: 80 a0 60 01 cmp %g1, 1
2007e58: 02 80 00 09 be 2007e7c <_Rate_monotonic_Timeout+0x80>
2007e5c: 82 10 20 04 mov 4, %g1
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else
the_period->state = RATE_MONOTONIC_EXPIRED;
2007e60: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2007e64: 03 00 80 79 sethi %hi(0x201e400), %g1
2007e68: c4 00 61 58 ld [ %g1 + 0x158 ], %g2 ! 201e558 <_Thread_Dispatch_disable_level>
2007e6c: 84 00 bf ff add %g2, -1, %g2
2007e70: c4 20 61 58 st %g2, [ %g1 + 0x158 ]
2007e74: 81 c7 e0 08 ret
2007e78: 81 e8 00 00 restore
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007e7c: 82 10 20 03 mov 3, %g1
_Rate_monotonic_Initiate_statistics( the_period );
2007e80: 90 10 00 10 mov %l0, %o0
_Rate_monotonic_Initiate_statistics( the_period );
_Watchdog_Insert_ticks( &the_period->Timer, the_period->next_length );
} else if ( the_period->state == RATE_MONOTONIC_OWNER_IS_BLOCKING ) {
the_period->state = RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING;
2007e84: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
_Rate_monotonic_Initiate_statistics( the_period );
2007e88: 7f ff fe 4a call 20077b0 <_Rate_monotonic_Initiate_statistics>
2007e8c: 01 00 00 00 nop
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007e90: c2 04 20 3c ld [ %l0 + 0x3c ], %g1
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007e94: 11 00 80 79 sethi %hi(0x201e400), %o0
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007e98: c2 24 20 1c st %g1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007e9c: 90 12 22 20 or %o0, 0x220, %o0
2007ea0: 40 00 10 0f call 200bedc <_Watchdog_Insert>
2007ea4: 92 04 20 10 add %l0, 0x10, %o1
2007ea8: 30 bf ff ef b,a 2007e64 <_Rate_monotonic_Timeout+0x68>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
2007eac: 40 00 09 9e call 200a524 <_Thread_Clear_state>
2007eb0: 92 12 63 f8 or %o1, 0x3f8, %o1
the_thread = the_period->owner;
if ( _States_Is_waiting_for_period( the_thread->current_state ) &&
the_thread->Wait.id == the_period->Object.id ) {
_Thread_Unblock( the_thread );
_Rate_monotonic_Initiate_statistics( the_period );
2007eb4: 10 bf ff f5 b 2007e88 <_Rate_monotonic_Timeout+0x8c>
2007eb8: 90 10 00 10 mov %l0, %o0
02007678 <_TOD_Tickle_ticks>:
*
* Output parameters: NONE
*/
void _TOD_Tickle_ticks( void )
{
2007678: 9d e3 bf 98 save %sp, -104, %sp
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
200767c: 05 00 80 57 sethi %hi(0x2015c00), %g2
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007680: 03 00 80 54 sethi %hi(0x2015000), %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
2007684: c6 00 a3 24 ld [ %g2 + 0x324 ], %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007688: c2 00 63 54 ld [ %g1 + 0x354 ], %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
200768c: 86 00 e0 01 inc %g3
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
2007690: 9b 28 60 07 sll %g1, 7, %o5
2007694: 89 28 60 02 sll %g1, 2, %g4
2007698: 88 23 40 04 sub %o5, %g4, %g4
200769c: 82 01 00 01 add %g4, %g1, %g1
20076a0: 83 28 60 03 sll %g1, 3, %g1
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
20076a4: a0 07 bf f8 add %fp, -8, %l0
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
20076a8: c6 20 a3 24 st %g3, [ %g2 + 0x324 ]
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
20076ac: 92 10 00 10 mov %l0, %o1
{
Timestamp_Control tick;
uint32_t seconds;
/* Convert the tick quantum to a timestamp */
_Timestamp_Set( &tick, 0, rtems_configuration_get_nanoseconds_per_tick() );
20076b0: c2 27 bf fc st %g1, [ %fp + -4 ]
20076b4: c0 27 bf f8 clr [ %fp + -8 ]
/* Update the counter of ticks since boot */
_Watchdog_Ticks_since_boot += 1;
/* Update the timespec format uptime */
_Timestamp_Add_to( &_TOD_Uptime, &tick );
20076b8: 11 00 80 57 sethi %hi(0x2015c00), %o0
20076bc: 40 00 08 d8 call 2009a1c <_Timespec_Add_to>
20076c0: 90 12 22 64 or %o0, 0x264, %o0 ! 2015e64 <_TOD_Uptime>
/* we do not care how much the uptime changed */
/* Update the timespec format TOD */
seconds = _Timestamp_Add_to_at_tick( &_TOD_Now, &tick );
20076c4: 92 10 00 10 mov %l0, %o1
20076c8: 11 00 80 57 sethi %hi(0x2015c00), %o0
20076cc: 40 00 08 d4 call 2009a1c <_Timespec_Add_to>
20076d0: 90 12 22 74 or %o0, 0x274, %o0 ! 2015e74 <_TOD_Now>
while ( seconds ) {
20076d4: a0 92 20 00 orcc %o0, 0, %l0
20076d8: 02 80 00 08 be 20076f8 <_TOD_Tickle_ticks+0x80>
20076dc: 23 00 80 57 sethi %hi(0x2015c00), %l1
*/
RTEMS_INLINE_ROUTINE void _Watchdog_Tickle_seconds( void )
{
_Watchdog_Tickle( &_Watchdog_Seconds_chain );
20076e0: a2 14 62 a4 or %l1, 0x2a4, %l1 ! 2015ea4 <_Watchdog_Seconds_chain>
20076e4: 40 00 0a 5d call 200a058 <_Watchdog_Tickle>
20076e8: 90 10 00 11 mov %l1, %o0
20076ec: a0 84 3f ff addcc %l0, -1, %l0
20076f0: 12 bf ff fd bne 20076e4 <_TOD_Tickle_ticks+0x6c> <== NEVER TAKEN
20076f4: 01 00 00 00 nop
20076f8: 81 c7 e0 08 ret
20076fc: 81 e8 00 00 restore
02007778 <_TOD_Validate>:
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007778: 9d e3 bf a0 save %sp, -96, %sp
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
200777c: 03 00 80 78 sethi %hi(0x201e000), %g1
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
2007780: a0 10 00 18 mov %i0, %l0
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
2007784: d2 00 63 74 ld [ %g1 + 0x374 ], %o1
if ((!the_tod) ||
2007788: 80 a4 20 00 cmp %l0, 0
200778c: 02 80 00 2c be 200783c <_TOD_Validate+0xc4> <== NEVER TAKEN
2007790: b0 10 20 00 clr %i0
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
2007794: 11 00 03 d0 sethi %hi(0xf4000), %o0
2007798: 40 00 4a 2b call 201a044 <.udiv>
200779c: 90 12 22 40 or %o0, 0x240, %o0 ! f4240 <PROM_START+0xf4240>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
20077a0: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
20077a4: 80 a2 00 01 cmp %o0, %g1
20077a8: 08 80 00 25 bleu 200783c <_TOD_Validate+0xc4>
20077ac: 01 00 00 00 nop
(the_tod->ticks >= ticks_per_second) ||
20077b0: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
20077b4: 80 a0 60 3b cmp %g1, 0x3b
20077b8: 18 80 00 21 bgu 200783c <_TOD_Validate+0xc4>
20077bc: 01 00 00 00 nop
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
20077c0: c2 04 20 10 ld [ %l0 + 0x10 ], %g1
20077c4: 80 a0 60 3b cmp %g1, 0x3b
20077c8: 18 80 00 1d bgu 200783c <_TOD_Validate+0xc4>
20077cc: 01 00 00 00 nop
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
20077d0: c2 04 20 0c ld [ %l0 + 0xc ], %g1
20077d4: 80 a0 60 17 cmp %g1, 0x17
20077d8: 18 80 00 19 bgu 200783c <_TOD_Validate+0xc4>
20077dc: 01 00 00 00 nop
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
20077e0: c2 04 20 04 ld [ %l0 + 4 ], %g1
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
20077e4: 80 a0 60 00 cmp %g1, 0
20077e8: 02 80 00 15 be 200783c <_TOD_Validate+0xc4> <== NEVER TAKEN
20077ec: 80 a0 60 0c cmp %g1, 0xc
(the_tod->month == 0) ||
20077f0: 18 80 00 13 bgu 200783c <_TOD_Validate+0xc4>
20077f4: 01 00 00 00 nop
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
20077f8: c4 04 00 00 ld [ %l0 ], %g2
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
20077fc: 80 a0 a7 c3 cmp %g2, 0x7c3
2007800: 08 80 00 0f bleu 200783c <_TOD_Validate+0xc4>
2007804: 01 00 00 00 nop
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
2007808: c6 04 20 08 ld [ %l0 + 8 ], %g3
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
200780c: 80 a0 e0 00 cmp %g3, 0
2007810: 02 80 00 0b be 200783c <_TOD_Validate+0xc4> <== NEVER TAKEN
2007814: 80 88 a0 03 btst 3, %g2
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
2007818: 32 80 00 0b bne,a 2007844 <_TOD_Validate+0xcc>
200781c: 83 28 60 02 sll %g1, 2, %g1
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
2007820: 82 00 60 0d add %g1, 0xd, %g1
2007824: 05 00 80 74 sethi %hi(0x201d000), %g2
2007828: 83 28 60 02 sll %g1, 2, %g1
200782c: 84 10 a0 60 or %g2, 0x60, %g2
2007830: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2007834: 80 a0 40 03 cmp %g1, %g3
2007838: b0 60 3f ff subx %g0, -1, %i0
if ( the_tod->day > days_in_month )
return false;
return true;
}
200783c: 81 c7 e0 08 ret
2007840: 81 e8 00 00 restore
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
2007844: 05 00 80 74 sethi %hi(0x201d000), %g2
2007848: 84 10 a0 60 or %g2, 0x60, %g2 ! 201d060 <_TOD_Days_per_month>
200784c: c2 00 80 01 ld [ %g2 + %g1 ], %g1
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
2007850: 80 a0 40 03 cmp %g1, %g3
2007854: b0 60 3f ff subx %g0, -1, %i0
2007858: 81 c7 e0 08 ret
200785c: 81 e8 00 00 restore
02008530 <_Thread_Change_priority>:
void _Thread_Change_priority(
Thread_Control *the_thread,
Priority_Control new_priority,
bool prepend_it
)
{
2008530: 9d e3 bf a0 save %sp, -96, %sp
*/
/*
* Save original state
*/
original_state = the_thread->current_state;
2008534: e2 06 20 10 ld [ %i0 + 0x10 ], %l1
/*
* Set a transient state for the thread so it is pulled off the Ready chains.
* This will prevent it from being scheduled no matter what happens in an
* ISR.
*/
_Thread_Set_transient( the_thread );
2008538: 40 00 04 81 call 200973c <_Thread_Set_transient>
200853c: 90 10 00 18 mov %i0, %o0
/*
* Do not bother recomputing all the priority related information if
* we are not REALLY changing priority.
*/
if ( the_thread->current_priority != new_priority )
2008540: c2 06 20 14 ld [ %i0 + 0x14 ], %g1
2008544: 80 a0 40 19 cmp %g1, %i1
2008548: 02 80 00 05 be 200855c <_Thread_Change_priority+0x2c>
200854c: a0 10 00 18 mov %i0, %l0
_Thread_Set_priority( the_thread, new_priority );
2008550: 90 10 00 18 mov %i0, %o0
2008554: 40 00 03 fe call 200954c <_Thread_Set_priority>
2008558: 92 10 00 19 mov %i1, %o1
_ISR_Disable( level );
200855c: 7f ff e7 4e call 2002294 <sparc_disable_interrupts>
2008560: 01 00 00 00 nop
2008564: b0 10 00 08 mov %o0, %i0
/*
* If the thread has more than STATES_TRANSIENT set, then it is blocked,
* If it is blocked on a thread queue, then we need to requeue it.
*/
state = the_thread->current_state;
2008568: e4 04 20 10 ld [ %l0 + 0x10 ], %l2
if ( state != STATES_TRANSIENT ) {
200856c: 80 a4 a0 04 cmp %l2, 4
2008570: 02 80 00 18 be 20085d0 <_Thread_Change_priority+0xa0>
2008574: 80 8c 60 04 btst 4, %l1
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
2008578: 02 80 00 0b be 20085a4 <_Thread_Change_priority+0x74> <== ALWAYS TAKEN
200857c: 82 0c bf fb and %l2, -5, %g1
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
_ISR_Enable( level );
2008580: 7f ff e7 49 call 20022a4 <sparc_enable_interrupts> <== NOT EXECUTED
2008584: 90 10 00 18 mov %i0, %o0 <== NOT EXECUTED
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
2008588: 03 00 00 ef sethi %hi(0x3bc00), %g1 <== NOT EXECUTED
200858c: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0><== NOT EXECUTED
if ( _States_Is_waiting_on_thread_queue( state ) ) {
2008590: 80 8c 80 01 btst %l2, %g1 <== NOT EXECUTED
2008594: 32 80 00 0d bne,a 20085c8 <_Thread_Change_priority+0x98> <== NOT EXECUTED
2008598: f0 04 20 44 ld [ %l0 + 0x44 ], %i0 <== NOT EXECUTED
200859c: 81 c7 e0 08 ret
20085a0: 81 e8 00 00 restore
*/
state = the_thread->current_state;
if ( state != STATES_TRANSIENT ) {
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) )
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20085a4: c2 24 20 10 st %g1, [ %l0 + 0x10 ]
_ISR_Enable( level );
20085a8: 7f ff e7 3f call 20022a4 <sparc_enable_interrupts>
20085ac: 90 10 00 18 mov %i0, %o0
20085b0: 03 00 00 ef sethi %hi(0x3bc00), %g1
20085b4: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( state ) ) {
20085b8: 80 8c 80 01 btst %l2, %g1
20085bc: 02 bf ff f8 be 200859c <_Thread_Change_priority+0x6c>
20085c0: 01 00 00 00 nop
_Thread_queue_Requeue( the_thread->Wait.queue, the_thread );
20085c4: f0 04 20 44 ld [ %l0 + 0x44 ], %i0
20085c8: 40 00 03 b1 call 200948c <_Thread_queue_Requeue>
20085cc: 93 e8 00 10 restore %g0, %l0, %o1
}
return;
}
/* Only clear the transient state if it wasn't set already */
if ( ! _States_Is_transient( original_state ) ) {
20085d0: 12 80 00 14 bne 2008620 <_Thread_Change_priority+0xf0> <== NEVER TAKEN
20085d4: 25 00 80 57 sethi %hi(0x2015c00), %l2
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
20085d8: c2 04 20 90 ld [ %l0 + 0x90 ], %g1
20085dc: c4 14 20 96 lduh [ %l0 + 0x96 ], %g2
20085e0: c6 10 40 00 lduh [ %g1 ], %g3
* Interrupts are STILL disabled.
* We now know the thread will be in the READY state when we remove
* the TRANSIENT state. So we have to place it on the appropriate
* Ready Queue with interrupts off.
*/
the_thread->current_state = _States_Clear( STATES_TRANSIENT, state );
20085e4: c0 24 20 10 clr [ %l0 + 0x10 ]
20085e8: 84 10 c0 02 or %g3, %g2, %g2
20085ec: c4 30 40 00 sth %g2, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
20085f0: c4 14 a2 8c lduh [ %l2 + 0x28c ], %g2
20085f4: c2 14 20 94 lduh [ %l0 + 0x94 ], %g1
_Priority_Add_to_bit_map( &the_thread->Priority_map );
if ( prepend_it )
20085f8: 80 8e a0 ff btst 0xff, %i2
20085fc: 82 10 80 01 or %g2, %g1, %g1
2008600: c2 34 a2 8c sth %g1, [ %l2 + 0x28c ]
2008604: 02 80 00 47 be 2008720 <_Thread_Change_priority+0x1f0>
2008608: c2 04 20 8c ld [ %l0 + 0x8c ], %g1
)
{
Chain_Node *before_node;
the_node->previous = after_node;
before_node = after_node->next;
200860c: c4 00 40 00 ld [ %g1 ], %g2
Chain_Node *the_node
)
{
Chain_Node *before_node;
the_node->previous = after_node;
2008610: c2 24 20 04 st %g1, [ %l0 + 4 ]
before_node = after_node->next;
after_node->next = the_node;
2008614: e0 20 40 00 st %l0, [ %g1 ]
the_node->next = before_node;
2008618: c4 24 00 00 st %g2, [ %l0 ]
before_node->previous = the_node;
200861c: e0 20 a0 04 st %l0, [ %g2 + 4 ]
_Chain_Prepend_unprotected( the_thread->ready, &the_thread->Object.Node );
else
_Chain_Append_unprotected( the_thread->ready, &the_thread->Object.Node );
}
_ISR_Flash( level );
2008620: 7f ff e7 21 call 20022a4 <sparc_enable_interrupts>
2008624: 90 10 00 18 mov %i0, %o0
2008628: 7f ff e7 1b call 2002294 <sparc_disable_interrupts>
200862c: 01 00 00 00 nop
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
2008630: c2 14 a2 8c lduh [ %l2 + 0x28c ], %g1
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
_Thread_Ready_chain[ _Priority_Get_highest() ].first;
2008634: 05 00 80 57 sethi %hi(0x2015c00), %g2
2008638: 83 28 60 10 sll %g1, 0x10, %g1
200863c: da 00 a1 44 ld [ %g2 + 0x144 ], %o5
2008640: 85 30 60 10 srl %g1, 0x10, %g2
2008644: 80 a0 a0 ff cmp %g2, 0xff
2008648: 08 80 00 26 bleu 20086e0 <_Thread_Change_priority+0x1b0>
200864c: 07 00 80 52 sethi %hi(0x2014800), %g3
2008650: 83 30 60 18 srl %g1, 0x18, %g1
2008654: 86 10 e2 00 or %g3, 0x200, %g3
2008658: c4 08 c0 01 ldub [ %g3 + %g1 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
200865c: 09 00 80 57 sethi %hi(0x2015c00), %g4
2008660: 85 28 a0 10 sll %g2, 0x10, %g2
2008664: 88 11 23 00 or %g4, 0x300, %g4
2008668: 83 30 a0 0f srl %g2, 0xf, %g1
200866c: c2 11 00 01 lduh [ %g4 + %g1 ], %g1
2008670: 83 28 60 10 sll %g1, 0x10, %g1
2008674: 89 30 60 10 srl %g1, 0x10, %g4
2008678: 80 a1 20 ff cmp %g4, 0xff
200867c: 18 80 00 27 bgu 2008718 <_Thread_Change_priority+0x1e8>
2008680: 83 30 60 18 srl %g1, 0x18, %g1
2008684: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1
2008688: 82 00 60 08 add %g1, 8, %g1
return (_Priority_Bits_index( major ) << 4) +
200868c: 85 30 a0 0c srl %g2, 0xc, %g2
_Priority_Bits_index( minor );
2008690: 83 28 60 10 sll %g1, 0x10, %g1
2008694: 83 30 60 10 srl %g1, 0x10, %g1
2008698: 82 00 40 02 add %g1, %g2, %g1
200869c: 85 28 60 02 sll %g1, 2, %g2
20086a0: 83 28 60 04 sll %g1, 4, %g1
20086a4: 82 20 40 02 sub %g1, %g2, %g1
* ready thread.
*/
RTEMS_INLINE_ROUTINE void _Thread_Calculate_heir( void )
{
_Thread_Heir = (Thread_Control *)
20086a8: c4 03 40 01 ld [ %o5 + %g1 ], %g2
20086ac: 03 00 80 58 sethi %hi(0x2016000), %g1
20086b0: 82 10 60 4c or %g1, 0x4c, %g1 ! 201604c <_Per_CPU_Information>
* is also the heir thread, and false otherwise.
*/
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing_also_the_heir( void )
{
return ( _Thread_Executing == _Thread_Heir );
20086b4: c6 00 60 0c ld [ %g1 + 0xc ], %g3
* We altered the set of thread priorities. So let's figure out
* who is the heir and if we need to switch to them.
*/
_Thread_Calculate_heir();
if ( !_Thread_Is_executing_also_the_heir() &&
20086b8: 80 a0 80 03 cmp %g2, %g3
20086bc: 02 80 00 07 be 20086d8 <_Thread_Change_priority+0x1a8>
20086c0: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
20086c4: c4 08 e0 74 ldub [ %g3 + 0x74 ], %g2
20086c8: 80 a0 a0 00 cmp %g2, 0
20086cc: 02 80 00 03 be 20086d8 <_Thread_Change_priority+0x1a8>
20086d0: 84 10 20 01 mov 1, %g2
_Thread_Executing->is_preemptible )
_Context_Switch_necessary = true;
20086d4: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
_ISR_Enable( level );
20086d8: 7f ff e6 f3 call 20022a4 <sparc_enable_interrupts>
20086dc: 81 e8 00 00 restore
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
20086e0: 86 10 e2 00 or %g3, 0x200, %g3
20086e4: c4 08 c0 02 ldub [ %g3 + %g2 ], %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
20086e8: 09 00 80 57 sethi %hi(0x2015c00), %g4
RTEMS_INLINE_ROUTINE Priority_Control _Priority_Get_highest( void )
{
Priority_Bit_map_control minor;
Priority_Bit_map_control major;
_Bitfield_Find_first_bit( _Priority_Major_bit_map, major );
20086ec: 84 00 a0 08 add %g2, 8, %g2
_Bitfield_Find_first_bit( _Priority_Bit_map[major], minor );
20086f0: 88 11 23 00 or %g4, 0x300, %g4
20086f4: 85 28 a0 10 sll %g2, 0x10, %g2
20086f8: 83 30 a0 0f srl %g2, 0xf, %g1
20086fc: c2 11 00 01 lduh [ %g4 + %g1 ], %g1
2008700: 83 28 60 10 sll %g1, 0x10, %g1
2008704: 89 30 60 10 srl %g1, 0x10, %g4
2008708: 80 a1 20 ff cmp %g4, 0xff
200870c: 28 bf ff df bleu,a 2008688 <_Thread_Change_priority+0x158>
2008710: c2 08 c0 04 ldub [ %g3 + %g4 ], %g1
2008714: 83 30 60 18 srl %g1, 0x18, %g1
2008718: 10 bf ff dd b 200868c <_Thread_Change_priority+0x15c>
200871c: c2 08 c0 01 ldub [ %g3 + %g1 ], %g1
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
2008720: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2008724: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
2008728: c6 24 00 00 st %g3, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
200872c: e0 20 60 08 st %l0, [ %g1 + 8 ]
old_last_node->next = the_node;
2008730: e0 20 80 00 st %l0, [ %g2 ]
the_node->previous = old_last_node;
2008734: 10 bf ff bb b 2008620 <_Thread_Change_priority+0xf0>
2008738: c4 24 20 04 st %g2, [ %l0 + 4 ]
0200873c <_Thread_Clear_state>:
void _Thread_Clear_state(
Thread_Control *the_thread,
States_Control state
)
{
200873c: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
2008740: 7f ff e6 d5 call 2002294 <sparc_disable_interrupts>
2008744: 01 00 00 00 nop
2008748: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
200874c: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & state ) {
2008750: 80 8e 40 01 btst %i1, %g1
2008754: 02 80 00 05 be 2008768 <_Thread_Clear_state+0x2c>
2008758: 82 28 40 19 andn %g1, %i1, %g1
current_state =
the_thread->current_state = _States_Clear( state, current_state );
if ( _States_Is_ready( current_state ) ) {
200875c: 80 a0 60 00 cmp %g1, 0
2008760: 02 80 00 04 be 2008770 <_Thread_Clear_state+0x34>
2008764: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
}
}
}
_ISR_Enable( level );
2008768: 7f ff e6 cf call 20022a4 <sparc_enable_interrupts>
200876c: 91 e8 00 10 restore %g0, %l0, %o0
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2008770: c2 06 20 90 ld [ %i0 + 0x90 ], %g1
2008774: c6 16 20 96 lduh [ %i0 + 0x96 ], %g3
2008778: c8 10 40 00 lduh [ %g1 ], %g4
_Priority_Major_bit_map |= the_priority_map->ready_major;
200877c: 05 00 80 57 sethi %hi(0x2015c00), %g2
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
2008780: 86 11 00 03 or %g4, %g3, %g3
2008784: c6 30 40 00 sth %g3, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
2008788: c8 10 a2 8c lduh [ %g2 + 0x28c ], %g4
200878c: c6 16 20 94 lduh [ %i0 + 0x94 ], %g3
if ( _States_Is_ready( current_state ) ) {
_Priority_Add_to_bit_map( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
2008790: c2 06 20 8c ld [ %i0 + 0x8c ], %g1
2008794: 86 11 00 03 or %g4, %g3, %g3
2008798: c6 30 a2 8c sth %g3, [ %g2 + 0x28c ]
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
200879c: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
20087a0: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
20087a4: c6 26 00 00 st %g3, [ %i0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
20087a8: f0 20 60 08 st %i0, [ %g1 + 8 ]
old_last_node->next = the_node;
20087ac: f0 20 80 00 st %i0, [ %g2 ]
the_node->previous = old_last_node;
20087b0: c4 26 20 04 st %g2, [ %i0 + 4 ]
_ISR_Flash( level );
20087b4: 7f ff e6 bc call 20022a4 <sparc_enable_interrupts>
20087b8: 01 00 00 00 nop
20087bc: 7f ff e6 b6 call 2002294 <sparc_disable_interrupts>
20087c0: 01 00 00 00 nop
* a context switch.
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
20087c4: 03 00 80 58 sethi %hi(0x2016000), %g1
20087c8: 82 10 60 4c or %g1, 0x4c, %g1 ! 201604c <_Per_CPU_Information>
20087cc: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
20087d0: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
20087d4: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
20087d8: 80 a0 80 03 cmp %g2, %g3
20087dc: 1a bf ff e3 bcc 2008768 <_Thread_Clear_state+0x2c>
20087e0: 01 00 00 00 nop
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
20087e4: c6 00 60 0c ld [ %g1 + 0xc ], %g3
* Pseudo-ISR case:
* Even if the thread isn't preemptible, if the new heir is
* a pseudo-ISR system task, we need to do a context switch.
*/
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
_Thread_Heir = the_thread;
20087e8: f0 20 60 10 st %i0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
20087ec: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3
20087f0: 80 a0 e0 00 cmp %g3, 0
20087f4: 32 80 00 05 bne,a 2008808 <_Thread_Clear_state+0xcc>
20087f8: 84 10 20 01 mov 1, %g2
20087fc: 80 a0 a0 00 cmp %g2, 0
2008800: 12 bf ff da bne 2008768 <_Thread_Clear_state+0x2c> <== ALWAYS TAKEN
2008804: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
2008808: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
200880c: 7f ff e6 a6 call 20022a4 <sparc_enable_interrupts>
2008810: 91 e8 00 10 restore %g0, %l0, %o0
020089b8 <_Thread_Delay_ended>:
void _Thread_Delay_ended(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
20089b8: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
20089bc: 90 10 00 18 mov %i0, %o0
20089c0: 40 00 00 7a call 2008ba8 <_Thread_Get>
20089c4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
20089c8: c2 07 bf fc ld [ %fp + -4 ], %g1
20089cc: 80 a0 60 00 cmp %g1, 0
20089d0: 12 80 00 08 bne 20089f0 <_Thread_Delay_ended+0x38> <== NEVER TAKEN
20089d4: 13 04 00 00 sethi %hi(0x10000000), %o1
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_Clear_state(
20089d8: 7f ff ff 59 call 200873c <_Thread_Clear_state>
20089dc: 92 12 60 18 or %o1, 0x18, %o1 ! 10000018 <RAM_END+0xdc00018>
20089e0: 03 00 80 57 sethi %hi(0x2015c00), %g1
20089e4: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 2015de8 <_Thread_Dispatch_disable_level>
20089e8: 84 00 bf ff add %g2, -1, %g2
20089ec: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ]
20089f0: 81 c7 e0 08 ret
20089f4: 81 e8 00 00 restore
020089f8 <_Thread_Dispatch>:
* dispatch thread
* no dispatch thread
*/
void _Thread_Dispatch( void )
{
20089f8: 9d e3 bf 90 save %sp, -112, %sp
Thread_Control *executing;
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
20089fc: 25 00 80 58 sethi %hi(0x2016000), %l2
2008a00: a4 14 a0 4c or %l2, 0x4c, %l2 ! 201604c <_Per_CPU_Information>
_ISR_Disable( level );
2008a04: 7f ff e6 24 call 2002294 <sparc_disable_interrupts>
2008a08: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
while ( _Context_Switch_necessary == true ) {
2008a0c: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
2008a10: 80 a0 60 00 cmp %g1, 0
2008a14: 02 80 00 50 be 2008b54 <_Thread_Dispatch+0x15c>
2008a18: 2f 00 80 57 sethi %hi(0x2015c00), %l7
heir = _Thread_Heir;
2008a1c: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1
_Thread_Dispatch_disable_level = 1;
2008a20: 82 10 20 01 mov 1, %g1
2008a24: c2 25 e1 e8 st %g1, [ %l7 + 0x1e8 ]
_Context_Switch_necessary = false;
2008a28: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008a2c: 80 a4 00 11 cmp %l0, %l1
2008a30: 02 80 00 49 be 2008b54 <_Thread_Dispatch+0x15c>
2008a34: e2 24 a0 0c st %l1, [ %l2 + 0xc ]
2008a38: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008a3c: 39 00 80 57 sethi %hi(0x2015c00), %i4
2008a40: a6 14 e2 9c or %l3, 0x29c, %l3
2008a44: aa 07 bf f8 add %fp, -8, %l5
2008a48: a8 07 bf f0 add %fp, -16, %l4
2008a4c: b8 17 22 70 or %i4, 0x270, %i4
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008a50: 35 00 80 57 sethi %hi(0x2015c00), %i2
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
_Timestamp_Subtract(
2008a54: ba 10 00 13 mov %l3, %i5
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
2008a58: 2d 00 80 57 sethi %hi(0x2015c00), %l6
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
heir = _Thread_Heir;
_Thread_Dispatch_disable_level = 1;
2008a5c: 10 80 00 38 b 2008b3c <_Thread_Dispatch+0x144>
2008a60: b6 10 20 01 mov 1, %i3
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
_ISR_Enable( level );
2008a64: 7f ff e6 10 call 20022a4 <sparc_enable_interrupts>
2008a68: 01 00 00 00 nop
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
{
Timestamp_Control uptime, ran;
_TOD_Get_uptime( &uptime );
2008a6c: 40 00 0f 9c call 200c8dc <_TOD_Get_uptime>
2008a70: 90 10 00 15 mov %l5, %o0
_Timestamp_Subtract(
2008a74: 90 10 00 1d mov %i5, %o0
2008a78: 92 10 00 15 mov %l5, %o1
2008a7c: 40 00 04 01 call 2009a80 <_Timespec_Subtract>
2008a80: 94 10 00 14 mov %l4, %o2
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
2008a84: 90 04 20 84 add %l0, 0x84, %o0
2008a88: 40 00 03 e5 call 2009a1c <_Timespec_Add_to>
2008a8c: 92 10 00 14 mov %l4, %o1
_Thread_Time_of_last_context_switch = uptime;
2008a90: c4 07 bf f8 ld [ %fp + -8 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008a94: c2 07 00 00 ld [ %i4 ], %g1
&_Thread_Time_of_last_context_switch,
&uptime,
&ran
);
_Timestamp_Add_to( &executing->cpu_time_used, &ran );
_Thread_Time_of_last_context_switch = uptime;
2008a98: c4 24 c0 00 st %g2, [ %l3 ]
2008a9c: c4 07 bf fc ld [ %fp + -4 ], %g2
#endif
/*
* Switch libc's task specific data.
*/
if ( _Thread_libc_reent ) {
2008aa0: 80 a0 60 00 cmp %g1, 0
2008aa4: 02 80 00 06 be 2008abc <_Thread_Dispatch+0xc4> <== NEVER TAKEN
2008aa8: c4 24 e0 04 st %g2, [ %l3 + 4 ]
executing->libc_reent = *_Thread_libc_reent;
2008aac: c4 00 40 00 ld [ %g1 ], %g2
2008ab0: c4 24 21 5c st %g2, [ %l0 + 0x15c ]
*_Thread_libc_reent = heir->libc_reent;
2008ab4: c4 04 61 5c ld [ %l1 + 0x15c ], %g2
2008ab8: c4 20 40 00 st %g2, [ %g1 ]
}
_User_extensions_Thread_switch( executing, heir );
2008abc: 90 10 00 10 mov %l0, %o0
2008ac0: 40 00 04 b4 call 2009d90 <_User_extensions_Thread_switch>
2008ac4: 92 10 00 11 mov %l1, %o1
if ( executing->fp_context != NULL )
_Context_Save_fp( &executing->fp_context );
#endif
#endif
_Context_Switch( &executing->Registers, &heir->Registers );
2008ac8: 90 04 20 d0 add %l0, 0xd0, %o0
2008acc: 40 00 06 02 call 200a2d4 <_CPU_Context_switch>
2008ad0: 92 04 60 d0 add %l1, 0xd0, %o1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
2008ad4: c2 04 21 58 ld [ %l0 + 0x158 ], %g1
2008ad8: 80 a0 60 00 cmp %g1, 0
2008adc: 02 80 00 0c be 2008b0c <_Thread_Dispatch+0x114>
2008ae0: d0 05 a2 6c ld [ %l6 + 0x26c ], %o0
2008ae4: 80 a4 00 08 cmp %l0, %o0
2008ae8: 02 80 00 09 be 2008b0c <_Thread_Dispatch+0x114>
2008aec: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
2008af0: 02 80 00 04 be 2008b00 <_Thread_Dispatch+0x108>
2008af4: 01 00 00 00 nop
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
2008af8: 40 00 05 bd call 200a1ec <_CPU_Context_save_fp>
2008afc: 90 02 21 58 add %o0, 0x158, %o0
_Context_Restore_fp( &executing->fp_context );
2008b00: 40 00 05 d8 call 200a260 <_CPU_Context_restore_fp>
2008b04: 90 04 21 58 add %l0, 0x158, %o0
_Thread_Allocated_fp = executing;
2008b08: e0 25 a2 6c st %l0, [ %l6 + 0x26c ]
#endif
#endif
executing = _Thread_Executing;
_ISR_Disable( level );
2008b0c: 7f ff e5 e2 call 2002294 <sparc_disable_interrupts>
2008b10: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
Thread_Control *heir;
ISR_Level level;
executing = _Thread_Executing;
_ISR_Disable( level );
while ( _Context_Switch_necessary == true ) {
2008b14: c2 0c a0 18 ldub [ %l2 + 0x18 ], %g1
2008b18: 80 a0 60 00 cmp %g1, 0
2008b1c: 02 80 00 0e be 2008b54 <_Thread_Dispatch+0x15c>
2008b20: 01 00 00 00 nop
heir = _Thread_Heir;
2008b24: e2 04 a0 10 ld [ %l2 + 0x10 ], %l1
_Thread_Dispatch_disable_level = 1;
2008b28: f6 25 e1 e8 st %i3, [ %l7 + 0x1e8 ]
_Context_Switch_necessary = false;
2008b2c: c0 2c a0 18 clrb [ %l2 + 0x18 ]
/*
* When the heir and executing are the same, then we are being
* requested to do the post switch dispatching. This is normally
* done to dispatch signals.
*/
if ( heir == executing )
2008b30: 80 a4 40 10 cmp %l1, %l0
2008b34: 02 80 00 08 be 2008b54 <_Thread_Dispatch+0x15c> <== NEVER TAKEN
2008b38: e2 24 a0 0c st %l1, [ %l2 + 0xc ]
*/
#if __RTEMS_ADA__
executing->rtems_ada_self = rtems_ada_self;
rtems_ada_self = heir->rtems_ada_self;
#endif
if ( heir->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE )
2008b3c: c2 04 60 7c ld [ %l1 + 0x7c ], %g1
2008b40: 80 a0 60 01 cmp %g1, 1
2008b44: 12 bf ff c8 bne 2008a64 <_Thread_Dispatch+0x6c>
2008b48: c2 06 a1 48 ld [ %i2 + 0x148 ], %g1
heir->cpu_time_budget = _Thread_Ticks_per_timeslice;
2008b4c: 10 bf ff c6 b 2008a64 <_Thread_Dispatch+0x6c>
2008b50: c2 24 60 78 st %g1, [ %l1 + 0x78 ]
_ISR_Disable( level );
}
post_switch:
_Thread_Dispatch_disable_level = 0;
2008b54: c0 25 e1 e8 clr [ %l7 + 0x1e8 ]
_ISR_Enable( level );
2008b58: 7f ff e5 d3 call 20022a4 <sparc_enable_interrupts>
2008b5c: 01 00 00 00 nop
_API_extensions_Run_postswitch();
2008b60: 7f ff f9 1d call 2006fd4 <_API_extensions_Run_postswitch>
2008b64: 01 00 00 00 nop
}
2008b68: 81 c7 e0 08 ret
2008b6c: 81 e8 00 00 restore
02008ba8 <_Thread_Get>:
Thread_Control *_Thread_Get (
Objects_Id id,
Objects_Locations *location
)
{
2008ba8: 82 10 00 08 mov %o0, %g1
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
2008bac: 80 a2 20 00 cmp %o0, 0
2008bb0: 02 80 00 1d be 2008c24 <_Thread_Get+0x7c>
2008bb4: 94 10 00 09 mov %o1, %o2
*/
RTEMS_INLINE_ROUTINE Objects_APIs _Objects_Get_API(
Objects_Id id
)
{
return (Objects_APIs) ((id >> OBJECTS_API_START_BIT) & OBJECTS_API_VALID_BITS);
2008bb8: 85 32 20 18 srl %o0, 0x18, %g2
2008bbc: 84 08 a0 07 and %g2, 7, %g2
*/
RTEMS_INLINE_ROUTINE bool _Objects_Is_api_valid(
uint32_t the_api
)
{
if ( !the_api || the_api > OBJECTS_APIS_LAST )
2008bc0: 86 00 bf ff add %g2, -1, %g3
2008bc4: 80 a0 e0 02 cmp %g3, 2
2008bc8: 38 80 00 14 bgu,a 2008c18 <_Thread_Get+0x70>
2008bcc: 82 10 20 01 mov 1, %g1
*/
RTEMS_INLINE_ROUTINE uint32_t _Objects_Get_class(
Objects_Id id
)
{
return (uint32_t)
2008bd0: 89 32 20 1b srl %o0, 0x1b, %g4
*location = OBJECTS_ERROR;
goto done;
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
2008bd4: 80 a1 20 01 cmp %g4, 1
2008bd8: 32 80 00 10 bne,a 2008c18 <_Thread_Get+0x70>
2008bdc: 82 10 20 01 mov 1, %g1
*location = OBJECTS_ERROR;
goto done;
}
api_information = _Objects_Information_table[ the_api ];
2008be0: 85 28 a0 02 sll %g2, 2, %g2
2008be4: 07 00 80 57 sethi %hi(0x2015c00), %g3
2008be8: 86 10 e1 4c or %g3, 0x14c, %g3 ! 2015d4c <_Objects_Information_table>
2008bec: c4 00 c0 02 ld [ %g3 + %g2 ], %g2
if ( !api_information ) {
2008bf0: 80 a0 a0 00 cmp %g2, 0
2008bf4: 22 80 00 16 be,a 2008c4c <_Thread_Get+0xa4> <== NEVER TAKEN
2008bf8: c8 22 80 00 st %g4, [ %o2 ] <== NOT EXECUTED
*location = OBJECTS_ERROR;
goto done;
}
information = api_information[ the_class ];
2008bfc: d0 00 a0 04 ld [ %g2 + 4 ], %o0
if ( !information ) {
2008c00: 80 a2 20 00 cmp %o0, 0
2008c04: 02 80 00 10 be 2008c44 <_Thread_Get+0x9c>
2008c08: 92 10 00 01 mov %g1, %o1
*location = OBJECTS_ERROR;
goto done;
}
tp = (Thread_Control *) _Objects_Get( information, id, location );
2008c0c: 82 13 c0 00 mov %o7, %g1
2008c10: 7f ff fd 48 call 2008130 <_Objects_Get>
2008c14: 9e 10 40 00 mov %g1, %o7
{
uint32_t the_api;
uint32_t the_class;
Objects_Information **api_information;
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
2008c18: 90 10 20 00 clr %o0
}
the_class = _Objects_Get_class( id );
if ( the_class != 1 ) { /* threads are always first class :) */
*location = OBJECTS_ERROR;
goto done;
2008c1c: 81 c3 e0 08 retl
2008c20: c2 22 80 00 st %g1, [ %o2 ]
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2008c24: 03 00 80 57 sethi %hi(0x2015c00), %g1
2008c28: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 2015de8 <_Thread_Dispatch_disable_level>
2008c2c: 84 00 a0 01 inc %g2
2008c30: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ]
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
tp = _Thread_Executing;
2008c34: 03 00 80 58 sethi %hi(0x2016000), %g1
Objects_Information *information;
Thread_Control *tp = (Thread_Control *) 0;
if ( _Objects_Are_ids_equal( id, OBJECTS_ID_OF_SELF ) ) {
_Thread_Disable_dispatch();
*location = OBJECTS_LOCAL;
2008c38: c0 22 40 00 clr [ %o1 ]
tp = _Thread_Executing;
goto done;
2008c3c: 81 c3 e0 08 retl
2008c40: d0 00 60 58 ld [ %g1 + 0x58 ], %o0
}
information = api_information[ the_class ];
if ( !information ) {
*location = OBJECTS_ERROR;
goto done;
2008c44: 81 c3 e0 08 retl
2008c48: c8 22 80 00 st %g4, [ %o2 ]
}
api_information = _Objects_Information_table[ the_api ];
if ( !api_information ) {
*location = OBJECTS_ERROR;
goto done;
2008c4c: 81 c3 e0 08 retl <== NOT EXECUTED
2008c50: 90 10 20 00 clr %o0 <== NOT EXECUTED
0200e8fc <_Thread_Handler>:
*
* Output parameters: NONE
*/
void _Thread_Handler( void )
{
200e8fc: 9d e3 bf a0 save %sp, -96, %sp
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
static char doneConstructors;
char doneCons;
#endif
executing = _Thread_Executing;
200e900: 03 00 80 58 sethi %hi(0x2016000), %g1
200e904: e0 00 60 58 ld [ %g1 + 0x58 ], %l0 ! 2016058 <_Per_CPU_Information+0xc>
/*
* Some CPUs need to tinker with the call frame or registers when the
* thread actually begins to execute for the first time. This is a
* hook point where the port gets a shot at doing whatever it requires.
*/
_Context_Initialization_at_thread_begin();
200e908: 3f 00 80 3a sethi %hi(0x200e800), %i7
200e90c: be 17 e0 fc or %i7, 0xfc, %i7 ! 200e8fc <_Thread_Handler>
/*
* have to put level into a register for those cpu's that use
* inline asm here
*/
level = executing->Start.isr_level;
200e910: d0 04 20 b8 ld [ %l0 + 0xb8 ], %o0
_ISR_Set_level(level);
200e914: 7f ff ce 64 call 20022a4 <sparc_enable_interrupts>
200e918: 91 2a 20 08 sll %o0, 8, %o0
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e91c: 03 00 80 56 sethi %hi(0x2015800), %g1
doneConstructors = 1;
200e920: 84 10 20 01 mov 1, %g2
level = executing->Start.isr_level;
_ISR_Set_level(level);
#if defined(EXECUTE_GLOBAL_CONSTRUCTORS)
doneCons = doneConstructors;
200e924: e4 08 62 9c ldub [ %g1 + 0x29c ], %l2
doneConstructors = 1;
200e928: c4 28 62 9c stb %g2, [ %g1 + 0x29c ]
#endif
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
#if ( CPU_USE_DEFERRED_FP_SWITCH == TRUE )
if ( (executing->fp_context != NULL) &&
200e92c: c2 04 21 58 ld [ %l0 + 0x158 ], %g1
200e930: 80 a0 60 00 cmp %g1, 0
200e934: 02 80 00 0b be 200e960 <_Thread_Handler+0x64>
200e938: 23 00 80 57 sethi %hi(0x2015c00), %l1
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
RTEMS_INLINE_ROUTINE bool _Thread_Is_allocated_fp (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Allocated_fp );
200e93c: d0 04 62 6c ld [ %l1 + 0x26c ], %o0 ! 2015e6c <_Thread_Allocated_fp>
200e940: 80 a4 00 08 cmp %l0, %o0
200e944: 02 80 00 07 be 200e960 <_Thread_Handler+0x64>
200e948: 80 a2 20 00 cmp %o0, 0
!_Thread_Is_allocated_fp( executing ) ) {
if ( _Thread_Allocated_fp != NULL )
200e94c: 22 80 00 05 be,a 200e960 <_Thread_Handler+0x64>
200e950: e0 24 62 6c st %l0, [ %l1 + 0x26c ]
_Context_Save_fp( &_Thread_Allocated_fp->fp_context );
200e954: 7f ff ee 26 call 200a1ec <_CPU_Context_save_fp>
200e958: 90 02 21 58 add %o0, 0x158, %o0
_Thread_Allocated_fp = executing;
200e95c: e0 24 62 6c st %l0, [ %l1 + 0x26c ]
/*
* Take care that 'begin' extensions get to complete before
* 'switch' extensions can run. This means must keep dispatch
* disabled until all 'begin' extensions complete.
*/
_User_extensions_Thread_begin( executing );
200e960: 7f ff ec 8c call 2009b90 <_User_extensions_Thread_begin>
200e964: 90 10 00 10 mov %l0, %o0
/*
* At this point, the dispatch disable level BETTER be 1.
*/
_Thread_Enable_dispatch();
200e968: 7f ff e8 82 call 2008b70 <_Thread_Enable_dispatch>
200e96c: a5 2c a0 18 sll %l2, 0x18, %l2
/*
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
200e970: 80 a4 a0 00 cmp %l2, 0
200e974: 02 80 00 0c be 200e9a4 <_Thread_Handler+0xa8>
200e978: 01 00 00 00 nop
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e97c: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
200e980: 80 a0 60 00 cmp %g1, 0
200e984: 22 80 00 0f be,a 200e9c0 <_Thread_Handler+0xc4> <== ALWAYS TAKEN
200e988: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
* was placed in return_argument. This assumed that if it returned
* anything (which is not supporting in all APIs), then it would be
* able to fit in a (void *).
*/
_User_extensions_Thread_exitted( executing );
200e98c: 7f ff ec 95 call 2009be0 <_User_extensions_Thread_exitted>
200e990: 90 10 00 10 mov %l0, %o0
_Internal_error_Occurred(
200e994: 90 10 20 00 clr %o0
200e998: 92 10 20 01 mov 1, %o1
200e99c: 7f ff e4 65 call 2007b30 <_Internal_error_Occurred>
200e9a0: 94 10 20 05 mov 5, %o2
* _init could be a weak symbol and we SHOULD test it but it isn't
* in any configuration I know of and it generates a warning on every
* RTEMS target configuration. --joel (12 May 2007)
*/
if (!doneCons) /* && (volatile void *)_init) */ {
INIT_NAME ();
200e9a4: 40 00 1a 29 call 2015248 <_init>
200e9a8: 01 00 00 00 nop
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
200e9ac: c2 04 20 a0 ld [ %l0 + 0xa0 ], %g1
200e9b0: 80 a0 60 00 cmp %g1, 0
200e9b4: 12 bf ff f6 bne 200e98c <_Thread_Handler+0x90> <== NEVER TAKEN
200e9b8: 01 00 00 00 nop
executing->Wait.return_argument =
(*(Thread_Entry_numeric) executing->Start.entry_point)(
200e9bc: c2 04 20 9c ld [ %l0 + 0x9c ], %g1
200e9c0: 9f c0 40 00 call %g1
200e9c4: d0 04 20 a8 ld [ %l0 + 0xa8 ], %o0
INIT_NAME ();
}
#endif
if ( executing->Start.prototype == THREAD_START_NUMERIC ) {
executing->Wait.return_argument =
200e9c8: 10 bf ff f1 b 200e98c <_Thread_Handler+0x90>
200e9cc: d0 24 20 28 st %o0, [ %l0 + 0x28 ]
02008c54 <_Thread_Initialize>:
Thread_CPU_budget_algorithms budget_algorithm,
Thread_CPU_budget_algorithm_callout budget_callout,
uint32_t isr_level,
Objects_Name name
)
{
2008c54: 9d e3 bf a0 save %sp, -96, %sp
2008c58: c2 07 a0 6c ld [ %fp + 0x6c ], %g1
2008c5c: e0 0f a0 5f ldub [ %fp + 0x5f ], %l0
2008c60: e2 00 40 00 ld [ %g1 ], %l1
/*
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
2008c64: c0 26 61 60 clr [ %i1 + 0x160 ]
2008c68: c0 26 61 64 clr [ %i1 + 0x164 ]
extensions_area = NULL;
the_thread->libc_reent = NULL;
2008c6c: c0 26 61 5c clr [ %i1 + 0x15c ]
/*
* Allocate and Initialize the stack for this thread.
*/
#if !defined(RTEMS_SCORE_THREAD_ENABLE_USER_PROVIDED_STACK_VIA_API)
actual_stack_size = _Thread_Stack_Allocate( the_thread, stack_size );
2008c70: 90 10 00 19 mov %i1, %o0
2008c74: 40 00 02 d6 call 20097cc <_Thread_Stack_Allocate>
2008c78: 92 10 00 1b mov %i3, %o1
if ( !actual_stack_size || actual_stack_size < stack_size )
2008c7c: 80 a2 00 1b cmp %o0, %i3
2008c80: 0a 80 00 54 bcs 2008dd0 <_Thread_Initialize+0x17c>
2008c84: 80 a2 20 00 cmp %o0, 0
2008c88: 02 80 00 52 be 2008dd0 <_Thread_Initialize+0x17c> <== NEVER TAKEN
2008c8c: a4 10 20 00 clr %l2
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008c90: c2 06 60 cc ld [ %i1 + 0xcc ], %g1
the_stack->size = size;
2008c94: d0 26 60 c0 st %o0, [ %i1 + 0xc0 ]
Stack_Control *the_stack,
void *starting_address,
size_t size
)
{
the_stack->area = starting_address;
2008c98: c2 26 60 c4 st %g1, [ %i1 + 0xc4 ]
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
2008c9c: 80 8f 20 ff btst 0xff, %i4
2008ca0: 12 80 00 50 bne 2008de0 <_Thread_Initialize+0x18c>
2008ca4: 82 10 20 00 clr %g1
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008ca8: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008cac: c4 04 e2 7c ld [ %l3 + 0x27c ], %g2 ! 2015e7c <_Thread_Maximum_extensions>
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008cb0: c2 26 61 58 st %g1, [ %i1 + 0x158 ]
the_thread->Start.fp_context = fp_area;
2008cb4: c2 26 60 c8 st %g1, [ %i1 + 0xc8 ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2008cb8: c0 26 60 50 clr [ %i1 + 0x50 ]
the_watchdog->routine = routine;
2008cbc: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008cc0: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008cc4: 80 a0 a0 00 cmp %g2, 0
2008cc8: 12 80 00 55 bne 2008e1c <_Thread_Initialize+0x1c8>
2008ccc: c0 26 60 6c clr [ %i1 + 0x6c ]
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2008cd0: c0 26 61 68 clr [ %i1 + 0x168 ]
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
2008cd4: b6 10 20 00 clr %i3
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008cd8: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
2008cdc: 90 10 00 19 mov %i1, %o0
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008ce0: c2 26 60 b0 st %g1, [ %i1 + 0xb0 ]
the_thread->Start.budget_callout = budget_callout;
2008ce4: c2 07 a0 64 ld [ %fp + 0x64 ], %g1
the_thread->current_state = STATES_DORMANT;
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
the_thread->real_priority = priority;
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
2008ce8: 92 10 00 1d mov %i5, %o1
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
the_thread->Start.budget_callout = budget_callout;
2008cec: c2 26 60 b4 st %g1, [ %i1 + 0xb4 ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008cf0: c2 07 a0 68 ld [ %fp + 0x68 ], %g1
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
2008cf4: e0 2e 60 ac stb %l0, [ %i1 + 0xac ]
case THREAD_CPU_BUDGET_ALGORITHM_CALLOUT:
break;
#endif
}
the_thread->Start.isr_level = isr_level;
2008cf8: c2 26 60 b8 st %g1, [ %i1 + 0xb8 ]
the_thread->current_state = STATES_DORMANT;
2008cfc: 82 10 20 01 mov 1, %g1
the_thread->Wait.queue = NULL;
2008d00: c0 26 60 44 clr [ %i1 + 0x44 ]
#endif
}
the_thread->Start.isr_level = isr_level;
the_thread->current_state = STATES_DORMANT;
2008d04: c2 26 60 10 st %g1, [ %i1 + 0x10 ]
the_thread->Wait.queue = NULL;
the_thread->resource_count = 0;
2008d08: c0 26 60 1c clr [ %i1 + 0x1c ]
the_thread->real_priority = priority;
2008d0c: fa 26 60 18 st %i5, [ %i1 + 0x18 ]
the_thread->Start.initial_priority = priority;
_Thread_Set_priority( the_thread, priority );
2008d10: 40 00 02 0f call 200954c <_Thread_Set_priority>
2008d14: fa 26 60 bc st %i5, [ %i1 + 0xbc ]
_Thread_Stack_Free( the_thread );
return false;
}
2008d18: c4 06 20 1c ld [ %i0 + 0x1c ], %g2
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2008d1c: c2 16 60 0a lduh [ %i1 + 0xa ], %g1
/*
* Initialize the CPU usage statistics
*/
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
_Timestamp_Set_to_zero( &the_thread->cpu_time_used );
2008d20: c0 26 60 84 clr [ %i1 + 0x84 ]
2008d24: c0 26 60 88 clr [ %i1 + 0x88 ]
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2008d28: 83 28 60 02 sll %g1, 2, %g1
2008d2c: f2 20 80 01 st %i1, [ %g2 + %g1 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2008d30: e2 26 60 0c st %l1, [ %i1 + 0xc ]
* enabled when we get here. We want to be able to run the
* user extensions with dispatching enabled. The Allocator
* Mutex provides sufficient protection to let the user extensions
* run safely.
*/
extension_status = _User_extensions_Thread_create( the_thread );
2008d34: 90 10 00 19 mov %i1, %o0
2008d38: 40 00 03 d1 call 2009c7c <_User_extensions_Thread_create>
2008d3c: b0 10 20 01 mov 1, %i0
if ( extension_status )
2008d40: 80 8a 20 ff btst 0xff, %o0
2008d44: 12 80 00 25 bne 2008dd8 <_Thread_Initialize+0x184>
2008d48: 01 00 00 00 nop
return true;
failed:
if ( the_thread->libc_reent )
2008d4c: d0 06 61 5c ld [ %i1 + 0x15c ], %o0
2008d50: 80 a2 20 00 cmp %o0, 0
2008d54: 22 80 00 05 be,a 2008d68 <_Thread_Initialize+0x114>
2008d58: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
_Workspace_Free( the_thread->libc_reent );
2008d5c: 40 00 05 0e call 200a194 <_Workspace_Free>
2008d60: 01 00 00 00 nop
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
2008d64: d0 06 61 60 ld [ %i1 + 0x160 ], %o0
2008d68: 80 a2 20 00 cmp %o0, 0
2008d6c: 22 80 00 05 be,a 2008d80 <_Thread_Initialize+0x12c>
2008d70: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
_Workspace_Free( the_thread->API_Extensions[i] );
2008d74: 40 00 05 08 call 200a194 <_Workspace_Free>
2008d78: 01 00 00 00 nop
failed:
if ( the_thread->libc_reent )
_Workspace_Free( the_thread->libc_reent );
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
if ( the_thread->API_Extensions[i] )
2008d7c: d0 06 61 64 ld [ %i1 + 0x164 ], %o0
2008d80: 80 a2 20 00 cmp %o0, 0
2008d84: 02 80 00 05 be 2008d98 <_Thread_Initialize+0x144> <== ALWAYS TAKEN
2008d88: 80 a6 e0 00 cmp %i3, 0
_Workspace_Free( the_thread->API_Extensions[i] );
2008d8c: 40 00 05 02 call 200a194 <_Workspace_Free> <== NOT EXECUTED
2008d90: 01 00 00 00 nop <== NOT EXECUTED
if ( extensions_area )
2008d94: 80 a6 e0 00 cmp %i3, 0 <== NOT EXECUTED
2008d98: 02 80 00 05 be 2008dac <_Thread_Initialize+0x158>
2008d9c: 80 a4 a0 00 cmp %l2, 0
(void) _Workspace_Free( extensions_area );
2008da0: 40 00 04 fd call 200a194 <_Workspace_Free>
2008da4: 90 10 00 1b mov %i3, %o0
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( fp_area )
2008da8: 80 a4 a0 00 cmp %l2, 0
2008dac: 02 80 00 05 be 2008dc0 <_Thread_Initialize+0x16c>
2008db0: 90 10 00 19 mov %i1, %o0
(void) _Workspace_Free( fp_area );
2008db4: 40 00 04 f8 call 200a194 <_Workspace_Free>
2008db8: 90 10 00 12 mov %l2, %o0
#endif
_Thread_Stack_Free( the_thread );
2008dbc: 90 10 00 19 mov %i1, %o0
2008dc0: 40 00 02 9e call 2009838 <_Thread_Stack_Free>
2008dc4: b0 10 20 00 clr %i0
return false;
2008dc8: 81 c7 e0 08 ret
2008dcc: 81 e8 00 00 restore
}
2008dd0: 81 c7 e0 08 ret
2008dd4: 91 e8 20 00 restore %g0, 0, %o0
2008dd8: 81 c7 e0 08 ret
2008ddc: 81 e8 00 00 restore
/*
* Allocate the floating point area for this thread
*/
#if ( CPU_HARDWARE_FP == TRUE ) || ( CPU_SOFTWARE_FP == TRUE )
if ( is_fp ) {
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
2008de0: 40 00 04 e4 call 200a170 <_Workspace_Allocate>
2008de4: 90 10 20 88 mov 0x88, %o0
if ( !fp_area )
2008de8: a4 92 20 00 orcc %o0, 0, %l2
2008dec: 02 80 00 1d be 2008e60 <_Thread_Initialize+0x20c>
2008df0: 82 10 00 12 mov %l2, %g1
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008df4: 27 00 80 57 sethi %hi(0x2015c00), %l3
2008df8: c4 04 e2 7c ld [ %l3 + 0x27c ], %g2 ! 2015e7c <_Thread_Maximum_extensions>
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2008dfc: c0 26 60 50 clr [ %i1 + 0x50 ]
fp_area = _Workspace_Allocate( CONTEXT_FP_SIZE );
if ( !fp_area )
goto failed;
fp_area = _Context_Fp_start( fp_area, 0 );
}
the_thread->fp_context = fp_area;
2008e00: c2 26 61 58 st %g1, [ %i1 + 0x158 ]
the_thread->Start.fp_context = fp_area;
2008e04: c2 26 60 c8 st %g1, [ %i1 + 0xc8 ]
the_watchdog->routine = routine;
2008e08: c0 26 60 64 clr [ %i1 + 0x64 ]
the_watchdog->id = id;
2008e0c: c0 26 60 68 clr [ %i1 + 0x68 ]
#endif
/*
* Allocate the extensions area for this thread
*/
if ( _Thread_Maximum_extensions ) {
2008e10: 80 a0 a0 00 cmp %g2, 0
2008e14: 02 bf ff af be 2008cd0 <_Thread_Initialize+0x7c>
2008e18: c0 26 60 6c clr [ %i1 + 0x6c ]
extensions_area = _Workspace_Allocate(
2008e1c: 84 00 a0 01 inc %g2
2008e20: 40 00 04 d4 call 200a170 <_Workspace_Allocate>
2008e24: 91 28 a0 02 sll %g2, 2, %o0
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
2008e28: b6 92 20 00 orcc %o0, 0, %i3
2008e2c: 02 bf ff c8 be 2008d4c <_Thread_Initialize+0xf8>
2008e30: c6 04 e2 7c ld [ %l3 + 0x27c ], %g3
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2008e34: f6 26 61 68 st %i3, [ %i1 + 0x168 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008e38: 84 10 20 00 clr %g2
(_Thread_Maximum_extensions + 1) * sizeof( void * )
);
if ( !extensions_area )
goto failed;
}
the_thread->extensions = (void **) extensions_area;
2008e3c: 82 10 20 00 clr %g1
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
the_thread->extensions[i] = NULL;
2008e40: 85 28 a0 02 sll %g2, 2, %g2
2008e44: c0 26 c0 02 clr [ %i3 + %g2 ]
* create the extension long after tasks have been created
* so they cannot rely on the thread create user extension
* call.
*/
if ( the_thread->extensions ) {
for ( i = 0; i <= _Thread_Maximum_extensions ; i++ )
2008e48: 82 00 60 01 inc %g1
2008e4c: 80 a0 c0 01 cmp %g3, %g1
2008e50: 1a bf ff fc bcc 2008e40 <_Thread_Initialize+0x1ec>
2008e54: 84 10 00 01 mov %g1, %g2
/*
* General initialization
*/
the_thread->Start.is_preemptible = is_preemptible;
the_thread->Start.budget_algorithm = budget_algorithm;
2008e58: 10 bf ff a1 b 2008cdc <_Thread_Initialize+0x88>
2008e5c: c2 07 a0 60 ld [ %fp + 0x60 ], %g1
* Zero out all the allocated memory fields
*/
for ( i=0 ; i <= THREAD_API_LAST ; i++ )
the_thread->API_Extensions[i] = NULL;
extensions_area = NULL;
2008e60: 10 bf ff bb b 2008d4c <_Thread_Initialize+0xf8>
2008e64: b6 10 20 00 clr %i3
0200cedc <_Thread_Resume>:
void _Thread_Resume(
Thread_Control *the_thread,
bool force
)
{
200cedc: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
States_Control current_state;
_ISR_Disable( level );
200cee0: 7f ff d5 5c call 2002450 <sparc_disable_interrupts>
200cee4: 01 00 00 00 nop
200cee8: a0 10 00 08 mov %o0, %l0
current_state = the_thread->current_state;
200ceec: c2 06 20 10 ld [ %i0 + 0x10 ], %g1
if ( current_state & STATES_SUSPENDED ) {
200cef0: 80 88 60 02 btst 2, %g1
200cef4: 02 80 00 05 be 200cf08 <_Thread_Resume+0x2c> <== NEVER TAKEN
200cef8: 82 08 7f fd and %g1, -3, %g1
current_state =
the_thread->current_state = _States_Clear(STATES_SUSPENDED, current_state);
if ( _States_Is_ready( current_state ) ) {
200cefc: 80 a0 60 00 cmp %g1, 0
200cf00: 02 80 00 04 be 200cf10 <_Thread_Resume+0x34>
200cf04: c2 26 20 10 st %g1, [ %i0 + 0x10 ]
_Context_Switch_necessary = true;
}
}
}
_ISR_Enable( level );
200cf08: 7f ff d5 56 call 2002460 <sparc_enable_interrupts>
200cf0c: 91 e8 00 10 restore %g0, %l0, %o0
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
200cf10: c2 06 20 90 ld [ %i0 + 0x90 ], %g1
200cf14: c6 16 20 96 lduh [ %i0 + 0x96 ], %g3
200cf18: c8 10 40 00 lduh [ %g1 ], %g4
_Priority_Major_bit_map |= the_priority_map->ready_major;
200cf1c: 05 00 80 67 sethi %hi(0x2019c00), %g2
RTEMS_INLINE_ROUTINE void _Priority_Add_to_bit_map (
Priority_Information *the_priority_map
)
{
*the_priority_map->minor |= the_priority_map->ready_minor;
200cf20: 86 11 00 03 or %g4, %g3, %g3
200cf24: c6 30 40 00 sth %g3, [ %g1 ]
_Priority_Major_bit_map |= the_priority_map->ready_major;
200cf28: c8 10 a2 fc lduh [ %g2 + 0x2fc ], %g4
200cf2c: c6 16 20 94 lduh [ %i0 + 0x94 ], %g3
if ( _States_Is_ready( current_state ) ) {
_Priority_Add_to_bit_map( &the_thread->Priority_map );
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
200cf30: c2 06 20 8c ld [ %i0 + 0x8c ], %g1
200cf34: 86 11 00 03 or %g4, %g3, %g3
200cf38: c6 30 a2 fc sth %g3, [ %g2 + 0x2fc ]
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
old_last_node = the_chain->last;
200cf3c: c4 00 60 08 ld [ %g1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200cf40: 86 00 60 04 add %g1, 4, %g3
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
200cf44: c6 26 00 00 st %g3, [ %i0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
200cf48: f0 20 60 08 st %i0, [ %g1 + 8 ]
old_last_node->next = the_node;
200cf4c: f0 20 80 00 st %i0, [ %g2 ]
the_node->previous = old_last_node;
200cf50: c4 26 20 04 st %g2, [ %i0 + 4 ]
_ISR_Flash( level );
200cf54: 7f ff d5 43 call 2002460 <sparc_enable_interrupts>
200cf58: 01 00 00 00 nop
200cf5c: 7f ff d5 3d call 2002450 <sparc_disable_interrupts>
200cf60: 01 00 00 00 nop
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
200cf64: 03 00 80 68 sethi %hi(0x201a000), %g1
200cf68: 82 10 60 bc or %g1, 0xbc, %g1 ! 201a0bc <_Per_CPU_Information>
200cf6c: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
200cf70: c4 06 20 14 ld [ %i0 + 0x14 ], %g2
200cf74: c6 00 e0 14 ld [ %g3 + 0x14 ], %g3
200cf78: 80 a0 80 03 cmp %g2, %g3
200cf7c: 1a bf ff e3 bcc 200cf08 <_Thread_Resume+0x2c>
200cf80: 01 00 00 00 nop
_Thread_Heir = the_thread;
if ( _Thread_Executing->is_preemptible ||
200cf84: c6 00 60 0c ld [ %g1 + 0xc ], %g3
_Chain_Append_unprotected(the_thread->ready, &the_thread->Object.Node);
_ISR_Flash( level );
if ( the_thread->current_priority < _Thread_Heir->current_priority ) {
_Thread_Heir = the_thread;
200cf88: f0 20 60 10 st %i0, [ %g1 + 0x10 ]
if ( _Thread_Executing->is_preemptible ||
200cf8c: c6 08 e0 74 ldub [ %g3 + 0x74 ], %g3
200cf90: 80 a0 e0 00 cmp %g3, 0
200cf94: 32 80 00 05 bne,a 200cfa8 <_Thread_Resume+0xcc>
200cf98: 84 10 20 01 mov 1, %g2
200cf9c: 80 a0 a0 00 cmp %g2, 0
200cfa0: 12 bf ff da bne 200cf08 <_Thread_Resume+0x2c> <== ALWAYS TAKEN
200cfa4: 84 10 20 01 mov 1, %g2
the_thread->current_priority == 0 )
_Context_Switch_necessary = true;
200cfa8: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
}
}
}
_ISR_Enable( level );
200cfac: 7f ff d5 2d call 2002460 <sparc_enable_interrupts>
200cfb0: 91 e8 00 10 restore %g0, %l0, %o0
02009978 <_Thread_Yield_processor>:
* ready chain
* select heir
*/
void _Thread_Yield_processor( void )
{
2009978: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Thread_Control *executing;
Chain_Control *ready;
executing = _Thread_Executing;
200997c: 25 00 80 58 sethi %hi(0x2016000), %l2
2009980: a4 14 a0 4c or %l2, 0x4c, %l2 ! 201604c <_Per_CPU_Information>
2009984: e0 04 a0 0c ld [ %l2 + 0xc ], %l0
ready = executing->ready;
_ISR_Disable( level );
2009988: 7f ff e2 43 call 2002294 <sparc_disable_interrupts>
200998c: e2 04 20 8c ld [ %l0 + 0x8c ], %l1
2009990: b0 10 00 08 mov %o0, %i0
}
else if ( !_Thread_Is_heir( executing ) )
_Context_Switch_necessary = true;
_ISR_Enable( level );
}
2009994: c2 04 60 08 ld [ %l1 + 8 ], %g1
Chain_Control *ready;
executing = _Thread_Executing;
ready = executing->ready;
_ISR_Disable( level );
if ( !_Chain_Has_only_one_node( ready ) ) {
2009998: c4 04 40 00 ld [ %l1 ], %g2
200999c: 80 a0 80 01 cmp %g2, %g1
20099a0: 02 80 00 14 be 20099f0 <_Thread_Yield_processor+0x78>
20099a4: 88 04 60 04 add %l1, 4, %g4
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
20099a8: c4 1c 00 00 ldd [ %l0 ], %g2
next->previous = previous;
previous->next = next;
20099ac: c4 20 c0 00 st %g2, [ %g3 ]
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
next->previous = previous;
20099b0: c6 20 a0 04 st %g3, [ %g2 + 4 ]
Chain_Node *the_node
)
{
Chain_Node *old_last_node;
the_node->next = _Chain_Tail(the_chain);
20099b4: c8 24 00 00 st %g4, [ %l0 ]
old_last_node = the_chain->last;
the_chain->last = the_node;
20099b8: e0 24 60 08 st %l0, [ %l1 + 8 ]
old_last_node->next = the_node;
20099bc: e0 20 40 00 st %l0, [ %g1 ]
the_node->previous = old_last_node;
20099c0: c2 24 20 04 st %g1, [ %l0 + 4 ]
_Chain_Extract_unprotected( &executing->Object.Node );
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
20099c4: 7f ff e2 38 call 20022a4 <sparc_enable_interrupts>
20099c8: 01 00 00 00 nop
20099cc: 7f ff e2 32 call 2002294 <sparc_disable_interrupts>
20099d0: 01 00 00 00 nop
if ( _Thread_Is_heir( executing ) )
20099d4: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
20099d8: 80 a4 00 01 cmp %l0, %g1
20099dc: 02 80 00 0b be 2009a08 <_Thread_Yield_processor+0x90> <== ALWAYS TAKEN
20099e0: 82 10 20 01 mov 1, %g1
_Thread_Heir = (Thread_Control *) ready->first;
_Context_Switch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Context_Switch_necessary = true;
20099e4: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
_ISR_Enable( level );
20099e8: 7f ff e2 2f call 20022a4 <sparc_enable_interrupts>
20099ec: 81 e8 00 00 restore
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) ready->first;
_Context_Switch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
20099f0: c2 04 a0 10 ld [ %l2 + 0x10 ], %g1
20099f4: 80 a4 00 01 cmp %l0, %g1
20099f8: 02 bf ff fc be 20099e8 <_Thread_Yield_processor+0x70> <== ALWAYS TAKEN
20099fc: 82 10 20 01 mov 1, %g1
_Context_Switch_necessary = true;
2009a00: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ] <== NOT EXECUTED
2009a04: 30 bf ff f9 b,a 20099e8 <_Thread_Yield_processor+0x70> <== NOT EXECUTED
_Chain_Append_unprotected( ready, &executing->Object.Node );
_ISR_Flash( level );
if ( _Thread_Is_heir( executing ) )
_Thread_Heir = (Thread_Control *) ready->first;
2009a08: c2 04 40 00 ld [ %l1 ], %g1
2009a0c: c2 24 a0 10 st %g1, [ %l2 + 0x10 ]
_Context_Switch_necessary = true;
}
else if ( !_Thread_Is_heir( executing ) )
_Context_Switch_necessary = true;
2009a10: 82 10 20 01 mov 1, %g1
2009a14: c2 2c a0 18 stb %g1, [ %l2 + 0x18 ]
2009a18: 30 bf ff f4 b,a 20099e8 <_Thread_Yield_processor+0x70>
0200cec8 <_Thread_queue_Extract_priority_helper>:
void _Thread_queue_Extract_priority_helper(
Thread_queue_Control *the_thread_queue __attribute__((unused)),
Thread_Control *the_thread,
bool requeuing
)
{
200cec8: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *new_first_node;
Chain_Node *new_second_node;
Chain_Node *last_node;
the_node = (Chain_Node *) the_thread;
_ISR_Disable( level );
200cecc: 7f ff d4 f2 call 2002294 <sparc_disable_interrupts>
200ced0: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
200ced4: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
200ced8: 03 00 00 ef sethi %hi(0x3bc00), %g1
200cedc: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
200cee0: 80 88 80 01 btst %g2, %g1
200cee4: 02 80 00 22 be 200cf6c <_Thread_queue_Extract_priority_helper+0xa4>
200cee8: 84 06 60 3c add %i1, 0x3c, %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200ceec: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
/*
* The thread was actually waiting on a thread queue so let's remove it.
*/
next_node = the_node->next;
200cef0: c6 06 40 00 ld [ %i1 ], %g3
previous_node = the_node->previous;
if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
200cef4: 80 a0 40 02 cmp %g1, %g2
200cef8: 02 80 00 2a be 200cfa0 <_Thread_queue_Extract_priority_helper+0xd8>
200cefc: c8 06 60 04 ld [ %i1 + 4 ], %g4
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
200cf00: c4 06 60 40 ld [ %i1 + 0x40 ], %g2
new_second_node = new_first_node->next;
200cf04: da 00 40 00 ld [ %g1 ], %o5
previous_node->next = new_first_node;
next_node->previous = new_first_node;
200cf08: c2 20 e0 04 st %g1, [ %g3 + 4 ]
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
new_second_node = new_first_node->next;
previous_node->next = new_first_node;
200cf0c: c2 21 00 00 st %g1, [ %g4 ]
next_node->previous = new_first_node;
new_first_node->next = next_node;
200cf10: c6 20 40 00 st %g3, [ %g1 ]
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
200cf14: 80 a0 80 01 cmp %g2, %g1
200cf18: 02 80 00 08 be 200cf38 <_Thread_queue_Extract_priority_helper+0x70>
200cf1c: c8 20 60 04 st %g4, [ %g1 + 4 ]
/* > two threads on 2-n */
new_second_node->previous =
_Chain_Head( &new_first_thread->Wait.Block2n );
200cf20: 86 00 60 38 add %g1, 0x38, %g3
new_first_node->next = next_node;
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
/* > two threads on 2-n */
new_second_node->previous =
200cf24: c6 23 60 04 st %g3, [ %o5 + 4 ]
_Chain_Head( &new_first_thread->Wait.Block2n );
new_first_thread->Wait.Block2n.first = new_second_node;
200cf28: da 20 60 38 st %o5, [ %g1 + 0x38 ]
new_first_thread->Wait.Block2n.last = last_node;
200cf2c: c4 20 60 40 st %g2, [ %g1 + 0x40 ]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200cf30: 82 00 60 3c add %g1, 0x3c, %g1
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
200cf34: c2 20 80 00 st %g1, [ %g2 ]
/*
* If we are not supposed to touch timers or the thread's state, return.
*/
if ( requeuing ) {
200cf38: 80 8e a0 ff btst 0xff, %i2
200cf3c: 12 80 00 17 bne 200cf98 <_Thread_queue_Extract_priority_helper+0xd0>
200cf40: 01 00 00 00 nop
_ISR_Enable( level );
return;
}
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
200cf44: c2 06 60 50 ld [ %i1 + 0x50 ], %g1
200cf48: 80 a0 60 02 cmp %g1, 2
200cf4c: 02 80 00 0a be 200cf74 <_Thread_queue_Extract_priority_helper+0xac><== NEVER TAKEN
200cf50: 82 10 20 03 mov 3, %g1
_ISR_Enable( level );
200cf54: 7f ff d4 d4 call 20022a4 <sparc_enable_interrupts>
200cf58: b0 10 00 19 mov %i1, %i0
200cf5c: 33 04 00 ff sethi %hi(0x1003fc00), %i1
200cf60: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8>
200cf64: 7f ff ed f6 call 200873c <_Thread_Clear_state>
200cf68: 81 e8 00 00 restore
Chain_Node *last_node;
the_node = (Chain_Node *) the_thread;
_ISR_Disable( level );
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_ISR_Enable( level );
200cf6c: 7f ff d4 ce call 20022a4 <sparc_enable_interrupts>
200cf70: 91 e8 00 08 restore %g0, %o0, %o0
200cf74: c2 26 60 50 st %g1, [ %i1 + 0x50 ] <== NOT EXECUTED
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
200cf78: 7f ff d4 cb call 20022a4 <sparc_enable_interrupts> <== NOT EXECUTED
200cf7c: b0 10 00 19 mov %i1, %i0 <== NOT EXECUTED
(void) _Watchdog_Remove( &the_thread->Timer );
200cf80: 7f ff f4 00 call 2009f80 <_Watchdog_Remove> <== NOT EXECUTED
200cf84: 90 06 60 48 add %i1, 0x48, %o0 <== NOT EXECUTED
200cf88: 33 04 00 ff sethi %hi(0x1003fc00), %i1 <== NOT EXECUTED
200cf8c: b2 16 63 f8 or %i1, 0x3f8, %i1 ! 1003fff8 <RAM_END+0xdc3fff8><== NOT EXECUTED
200cf90: 7f ff ed eb call 200873c <_Thread_Clear_state> <== NOT EXECUTED
200cf94: 81 e8 00 00 restore <== NOT EXECUTED
/*
* If we are not supposed to touch timers or the thread's state, return.
*/
if ( requeuing ) {
_ISR_Enable( level );
200cf98: 7f ff d4 c3 call 20022a4 <sparc_enable_interrupts>
200cf9c: 91 e8 00 08 restore %g0, %o0, %o0
new_first_thread->Wait.Block2n.last = last_node;
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
}
} else {
previous_node->next = next_node;
200cfa0: c6 21 00 00 st %g3, [ %g4 ]
next_node->previous = previous_node;
200cfa4: 10 bf ff e5 b 200cf38 <_Thread_queue_Extract_priority_helper+0x70>
200cfa8: c8 20 e0 04 st %g4, [ %g3 + 4 ]
0200948c <_Thread_queue_Requeue>:
void _Thread_queue_Requeue(
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread
)
{
200948c: 9d e3 bf 98 save %sp, -104, %sp
/*
* Just in case the thread really wasn't blocked on a thread queue
* when we get here.
*/
if ( !the_thread_queue )
2009490: 80 a6 20 00 cmp %i0, 0
2009494: 02 80 00 13 be 20094e0 <_Thread_queue_Requeue+0x54> <== NEVER TAKEN
2009498: 01 00 00 00 nop
/*
* If queueing by FIFO, there is nothing to do. This only applies to
* priority blocking discipline.
*/
if ( the_thread_queue->discipline == THREAD_QUEUE_DISCIPLINE_PRIORITY ) {
200949c: e2 06 20 34 ld [ %i0 + 0x34 ], %l1
20094a0: 80 a4 60 01 cmp %l1, 1
20094a4: 02 80 00 04 be 20094b4 <_Thread_queue_Requeue+0x28> <== ALWAYS TAKEN
20094a8: 01 00 00 00 nop
20094ac: 81 c7 e0 08 ret <== NOT EXECUTED
20094b0: 81 e8 00 00 restore <== NOT EXECUTED
Thread_queue_Control *tq = the_thread_queue;
ISR_Level level;
ISR_Level level_ignored;
_ISR_Disable( level );
20094b4: 7f ff e3 78 call 2002294 <sparc_disable_interrupts>
20094b8: 01 00 00 00 nop
20094bc: a0 10 00 08 mov %o0, %l0
20094c0: c4 06 60 10 ld [ %i1 + 0x10 ], %g2
20094c4: 03 00 00 ef sethi %hi(0x3bc00), %g1
20094c8: 82 10 62 e0 or %g1, 0x2e0, %g1 ! 3bee0 <PROM_START+0x3bee0>
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
20094cc: 80 88 80 01 btst %g2, %g1
20094d0: 12 80 00 06 bne 20094e8 <_Thread_queue_Requeue+0x5c> <== ALWAYS TAKEN
20094d4: 90 10 00 18 mov %i0, %o0
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
}
_ISR_Enable( level );
20094d8: 7f ff e3 73 call 20022a4 <sparc_enable_interrupts>
20094dc: 90 10 00 10 mov %l0, %o0
20094e0: 81 c7 e0 08 ret
20094e4: 81 e8 00 00 restore
ISR_Level level_ignored;
_ISR_Disable( level );
if ( _States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
_Thread_queue_Enter_critical_section( tq );
_Thread_queue_Extract_priority_helper( tq, the_thread, true );
20094e8: 92 10 00 19 mov %i1, %o1
20094ec: 94 10 20 01 mov 1, %o2
20094f0: 40 00 0e 76 call 200cec8 <_Thread_queue_Extract_priority_helper>
20094f4: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
(void) _Thread_queue_Enqueue_priority( tq, the_thread, &level_ignored );
20094f8: 90 10 00 18 mov %i0, %o0
20094fc: 92 10 00 19 mov %i1, %o1
2009500: 7f ff ff 2b call 20091ac <_Thread_queue_Enqueue_priority>
2009504: 94 07 bf fc add %fp, -4, %o2
2009508: 30 bf ff f4 b,a 20094d8 <_Thread_queue_Requeue+0x4c>
0200950c <_Thread_queue_Timeout>:
void _Thread_queue_Timeout(
Objects_Id id,
void *ignored __attribute__((unused))
)
{
200950c: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
the_thread = _Thread_Get( id, &location );
2009510: 90 10 00 18 mov %i0, %o0
2009514: 7f ff fd a5 call 2008ba8 <_Thread_Get>
2009518: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200951c: c2 07 bf fc ld [ %fp + -4 ], %g1
2009520: 80 a0 60 00 cmp %g1, 0
2009524: 12 80 00 08 bne 2009544 <_Thread_queue_Timeout+0x38> <== NEVER TAKEN
2009528: 01 00 00 00 nop
#if defined(RTEMS_MULTIPROCESSING)
case OBJECTS_REMOTE: /* impossible */
#endif
break;
case OBJECTS_LOCAL:
_Thread_queue_Process_timeout( the_thread );
200952c: 40 00 0e a0 call 200cfac <_Thread_queue_Process_timeout>
2009530: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE void _Thread_Unnest_dispatch( void )
{
RTEMS_COMPILER_MEMORY_BARRIER();
_Thread_Dispatch_disable_level -= 1;
2009534: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009538: c4 00 61 e8 ld [ %g1 + 0x1e8 ], %g2 ! 2015de8 <_Thread_Dispatch_disable_level>
200953c: 84 00 bf ff add %g2, -1, %g2
2009540: c4 20 61 e8 st %g2, [ %g1 + 0x1e8 ]
2009544: 81 c7 e0 08 ret
2009548: 81 e8 00 00 restore
020169f8 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
20169f8: 9d e3 bf 88 save %sp, -120, %sp
20169fc: 2d 00 80 f2 sethi %hi(0x203c800), %l6
2016a00: ba 07 bf f4 add %fp, -12, %i5
2016a04: a8 07 bf f8 add %fp, -8, %l4
2016a08: a4 07 bf e8 add %fp, -24, %l2
2016a0c: ae 07 bf ec add %fp, -20, %l7
2016a10: 2b 00 80 f2 sethi %hi(0x203c800), %l5
2016a14: 39 00 80 f2 sethi %hi(0x203c800), %i4
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2016a18: e8 27 bf f4 st %l4, [ %fp + -12 ]
the_chain->permanent_null = NULL;
2016a1c: c0 27 bf f8 clr [ %fp + -8 ]
the_chain->last = _Chain_Head(the_chain);
2016a20: fa 27 bf fc st %i5, [ %fp + -4 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2016a24: ee 27 bf e8 st %l7, [ %fp + -24 ]
the_chain->permanent_null = NULL;
2016a28: c0 27 bf ec clr [ %fp + -20 ]
the_chain->last = _Chain_Head(the_chain);
2016a2c: e4 27 bf f0 st %l2, [ %fp + -16 ]
2016a30: ac 15 a2 c4 or %l6, 0x2c4, %l6
2016a34: a2 06 20 30 add %i0, 0x30, %l1
2016a38: aa 15 62 14 or %l5, 0x214, %l5
2016a3c: a6 06 20 68 add %i0, 0x68, %l3
2016a40: b8 17 21 88 or %i4, 0x188, %i4
2016a44: b2 06 20 08 add %i0, 8, %i1
2016a48: b4 06 20 40 add %i0, 0x40, %i2
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016a4c: b6 10 20 01 mov 1, %i3
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
2016a50: fa 26 20 78 st %i5, [ %i0 + 0x78 ]
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016a54: c2 05 80 00 ld [ %l6 ], %g1
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2016a58: d2 06 20 3c ld [ %i0 + 0x3c ], %o1
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016a5c: 94 10 00 12 mov %l2, %o2
2016a60: 90 10 00 11 mov %l1, %o0
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016a64: c2 26 20 3c st %g1, [ %i0 + 0x3c ]
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016a68: 40 00 12 fa call 201b650 <_Watchdog_Adjust_to_chain>
2016a6c: 92 20 40 09 sub %g1, %o1, %o1
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016a70: d4 06 20 74 ld [ %i0 + 0x74 ], %o2
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016a74: e0 05 40 00 ld [ %l5 ], %l0
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2016a78: 80 a4 00 0a cmp %l0, %o2
2016a7c: 18 80 00 2e bgu 2016b34 <_Timer_server_Body+0x13c>
2016a80: 92 24 00 0a sub %l0, %o2, %o1
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
2016a84: 80 a4 00 0a cmp %l0, %o2
2016a88: 0a 80 00 2f bcs 2016b44 <_Timer_server_Body+0x14c>
2016a8c: 90 10 00 13 mov %l3, %o0
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
2016a90: e0 26 20 74 st %l0, [ %i0 + 0x74 ]
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016a94: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016a98: 40 00 02 f8 call 2017678 <_Chain_Get>
2016a9c: 01 00 00 00 nop
if ( timer == NULL ) {
2016aa0: 92 92 20 00 orcc %o0, 0, %o1
2016aa4: 02 80 00 10 be 2016ae4 <_Timer_server_Body+0xec>
2016aa8: 01 00 00 00 nop
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016aac: c2 02 60 38 ld [ %o1 + 0x38 ], %g1
2016ab0: 80 a0 60 01 cmp %g1, 1
2016ab4: 02 80 00 28 be 2016b54 <_Timer_server_Body+0x15c>
2016ab8: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016abc: 12 bf ff f6 bne 2016a94 <_Timer_server_Body+0x9c> <== NEVER TAKEN
2016ac0: 92 02 60 10 add %o1, 0x10, %o1
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016ac4: 40 00 13 16 call 201b71c <_Watchdog_Insert>
2016ac8: 90 10 00 13 mov %l3, %o0
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
2016acc: d0 06 20 78 ld [ %i0 + 0x78 ], %o0
2016ad0: 40 00 02 ea call 2017678 <_Chain_Get>
2016ad4: 01 00 00 00 nop
if ( timer == NULL ) {
2016ad8: 92 92 20 00 orcc %o0, 0, %o1
2016adc: 32 bf ff f5 bne,a 2016ab0 <_Timer_server_Body+0xb8> <== NEVER TAKEN
2016ae0: c2 02 60 38 ld [ %o1 + 0x38 ], %g1 <== NOT EXECUTED
* of zero it will be processed in the next iteration of the timer server
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
2016ae4: 7f ff e2 0f call 200f320 <sparc_disable_interrupts>
2016ae8: 01 00 00 00 nop
if ( _Chain_Is_empty( insert_chain ) ) {
2016aec: c2 07 bf f4 ld [ %fp + -12 ], %g1
2016af0: 80 a5 00 01 cmp %l4, %g1
2016af4: 02 80 00 1c be 2016b64 <_Timer_server_Body+0x16c> <== ALWAYS TAKEN
2016af8: 01 00 00 00 nop
ts->insert_chain = NULL;
_ISR_Enable( level );
break;
} else {
_ISR_Enable( level );
2016afc: 7f ff e2 0d call 200f330 <sparc_enable_interrupts> <== NOT EXECUTED
2016b00: 01 00 00 00 nop <== NOT EXECUTED
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
2016b04: c2 05 80 00 ld [ %l6 ], %g1 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
2016b08: d2 06 20 3c ld [ %i0 + 0x3c ], %o1 <== NOT EXECUTED
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016b0c: 94 10 00 12 mov %l2, %o2 <== NOT EXECUTED
2016b10: 90 10 00 11 mov %l1, %o0 <== NOT EXECUTED
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
2016b14: c2 26 20 3c st %g1, [ %i0 + 0x3c ] <== NOT EXECUTED
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016b18: 40 00 12 ce call 201b650 <_Watchdog_Adjust_to_chain> <== NOT EXECUTED
2016b1c: 92 20 40 09 sub %g1, %o1, %o1 <== NOT EXECUTED
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
2016b20: d4 06 20 74 ld [ %i0 + 0x74 ], %o2 <== NOT EXECUTED
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016b24: e0 05 40 00 ld [ %l5 ], %l0 <== NOT EXECUTED
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
2016b28: 80 a4 00 0a cmp %l0, %o2 <== NOT EXECUTED
2016b2c: 08 bf ff d7 bleu 2016a88 <_Timer_server_Body+0x90> <== NOT EXECUTED
2016b30: 92 24 00 0a sub %l0, %o2, %o1 <== NOT EXECUTED
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
2016b34: 90 10 00 13 mov %l3, %o0
2016b38: 40 00 12 c6 call 201b650 <_Watchdog_Adjust_to_chain>
2016b3c: 94 10 00 12 mov %l2, %o2
2016b40: 30 bf ff d4 b,a 2016a90 <_Timer_server_Body+0x98>
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
2016b44: 92 10 20 01 mov 1, %o1
2016b48: 40 00 12 92 call 201b590 <_Watchdog_Adjust>
2016b4c: 94 22 80 10 sub %o2, %l0, %o2
2016b50: 30 bf ff d0 b,a 2016a90 <_Timer_server_Body+0x98>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016b54: 90 10 00 11 mov %l1, %o0
2016b58: 40 00 12 f1 call 201b71c <_Watchdog_Insert>
2016b5c: 92 02 60 10 add %o1, 0x10, %o1
2016b60: 30 bf ff cd b,a 2016a94 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
2016b64: c0 26 20 78 clr [ %i0 + 0x78 ]
_ISR_Enable( level );
2016b68: 7f ff e1 f2 call 200f330 <sparc_enable_interrupts>
2016b6c: 01 00 00 00 nop
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
2016b70: c2 07 bf e8 ld [ %fp + -24 ], %g1
2016b74: 80 a5 c0 01 cmp %l7, %g1
2016b78: 12 80 00 0c bne 2016ba8 <_Timer_server_Body+0x1b0>
2016b7c: 01 00 00 00 nop
2016b80: 30 80 00 13 b,a 2016bcc <_Timer_server_Body+0x1d4>
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
new_first->previous = _Chain_Head(the_chain);
2016b84: e4 20 60 04 st %l2, [ %g1 + 4 ]
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
2016b88: c2 27 bf e8 st %g1, [ %fp + -24 ]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
2016b8c: c0 24 20 08 clr [ %l0 + 8 ]
_ISR_Enable( level );
2016b90: 7f ff e1 e8 call 200f330 <sparc_enable_interrupts>
2016b94: 01 00 00 00 nop
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
2016b98: d0 04 20 20 ld [ %l0 + 0x20 ], %o0
2016b9c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
2016ba0: 9f c0 40 00 call %g1
2016ba4: d2 04 20 24 ld [ %l0 + 0x24 ], %o1
/*
* It is essential that interrupts are disable here since an interrupt
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
2016ba8: 7f ff e1 de call 200f320 <sparc_disable_interrupts>
2016bac: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016bb0: e0 07 bf e8 ld [ %fp + -24 ], %l0
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
2016bb4: 80 a5 c0 10 cmp %l7, %l0
2016bb8: 32 bf ff f3 bne,a 2016b84 <_Timer_server_Body+0x18c>
2016bbc: c2 04 00 00 ld [ %l0 ], %g1
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
_ISR_Enable( level );
} else {
_ISR_Enable( level );
2016bc0: 7f ff e1 dc call 200f330 <sparc_enable_interrupts>
2016bc4: 01 00 00 00 nop
2016bc8: 30 bf ff a2 b,a 2016a50 <_Timer_server_Body+0x58>
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
}
} else {
ts->active = false;
2016bcc: c0 2e 20 7c clrb [ %i0 + 0x7c ]
2016bd0: c2 07 00 00 ld [ %i4 ], %g1
2016bd4: 82 00 60 01 inc %g1
2016bd8: c2 27 00 00 st %g1, [ %i4 ]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
2016bdc: d0 06 00 00 ld [ %i0 ], %o0
2016be0: 40 00 0f cb call 201ab0c <_Thread_Set_state>
2016be4: 92 10 20 08 mov 8, %o1
_Timer_server_Reset_interval_system_watchdog( ts );
2016be8: 7f ff ff 5a call 2016950 <_Timer_server_Reset_interval_system_watchdog>
2016bec: 90 10 00 18 mov %i0, %o0
_Timer_server_Reset_tod_system_watchdog( ts );
2016bf0: 7f ff ff 6d call 20169a4 <_Timer_server_Reset_tod_system_watchdog>
2016bf4: 90 10 00 18 mov %i0, %o0
_Thread_Enable_dispatch();
2016bf8: 40 00 0c d7 call 2019f54 <_Thread_Enable_dispatch>
2016bfc: 01 00 00 00 nop
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016c00: 90 10 00 19 mov %i1, %o0
_Thread_Set_state( ts->thread, STATES_DELAYING );
_Timer_server_Reset_interval_system_watchdog( ts );
_Timer_server_Reset_tod_system_watchdog( ts );
_Thread_Enable_dispatch();
ts->active = true;
2016c04: f6 2e 20 7c stb %i3, [ %i0 + 0x7c ]
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
2016c08: 40 00 13 2f call 201b8c4 <_Watchdog_Remove>
2016c0c: 01 00 00 00 nop
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
2016c10: 40 00 13 2d call 201b8c4 <_Watchdog_Remove>
2016c14: 90 10 00 1a mov %i2, %o0
2016c18: 30 bf ff 8e b,a 2016a50 <_Timer_server_Body+0x58>
02016c1c <_Timer_server_Schedule_operation_method>:
static void _Timer_server_Schedule_operation_method(
Timer_server_Control *ts,
Timer_Control *timer
)
{
2016c1c: 9d e3 bf a0 save %sp, -96, %sp
if ( ts->insert_chain == NULL ) {
2016c20: c2 06 20 78 ld [ %i0 + 0x78 ], %g1
2016c24: 80 a0 60 00 cmp %g1, 0
2016c28: 02 80 00 05 be 2016c3c <_Timer_server_Schedule_operation_method+0x20>
2016c2c: a0 10 00 19 mov %i1, %l0
* server is not preemptible, so we must be in interrupt context here. No
* thread dispatch will happen until the timer server finishes its
* critical section. We have to use the protected chain methods because
* we may be interrupted by a higher priority interrupt.
*/
_Chain_Append( ts->insert_chain, &timer->Object.Node );
2016c30: f0 06 20 78 ld [ %i0 + 0x78 ], %i0
2016c34: 40 00 02 7b call 2017620 <_Chain_Append>
2016c38: 81 e8 00 00 restore
2016c3c: 03 00 80 f2 sethi %hi(0x203c800), %g1
2016c40: c4 00 61 88 ld [ %g1 + 0x188 ], %g2 ! 203c988 <_Thread_Dispatch_disable_level>
2016c44: 84 00 a0 01 inc %g2
2016c48: c4 20 61 88 st %g2, [ %g1 + 0x188 ]
* being inserted. This could result in an integer overflow.
*/
_Thread_Disable_dispatch();
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
2016c4c: c2 06 60 38 ld [ %i1 + 0x38 ], %g1
2016c50: 80 a0 60 01 cmp %g1, 1
2016c54: 02 80 00 28 be 2016cf4 <_Timer_server_Schedule_operation_method+0xd8>
2016c58: 80 a0 60 03 cmp %g1, 3
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
if ( !ts->active ) {
_Timer_server_Reset_interval_system_watchdog( ts );
}
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
2016c5c: 02 80 00 04 be 2016c6c <_Timer_server_Schedule_operation_method+0x50><== ALWAYS TAKEN
2016c60: 01 00 00 00 nop
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016c64: 40 00 0c bc call 2019f54 <_Thread_Enable_dispatch>
2016c68: 81 e8 00 00 restore
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016c6c: 7f ff e1 ad call 200f320 <sparc_disable_interrupts>
2016c70: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016c74: c4 06 20 68 ld [ %i0 + 0x68 ], %g2
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
2016c78: c6 06 20 74 ld [ %i0 + 0x74 ], %g3
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2016c7c: 88 06 20 6c add %i0, 0x6c, %g4
/*
* We have to advance the last known seconds value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
2016c80: 03 00 80 f2 sethi %hi(0x203c800), %g1
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
2016c84: 80 a0 80 04 cmp %g2, %g4
2016c88: 02 80 00 0d be 2016cbc <_Timer_server_Schedule_operation_method+0xa0>
2016c8c: c2 00 62 14 ld [ %g1 + 0x214 ], %g1
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
2016c90: da 00 a0 10 ld [ %g2 + 0x10 ], %o5
if ( snapshot > last_snapshot ) {
2016c94: 80 a0 40 03 cmp %g1, %g3
}
} else {
/*
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
2016c98: 88 03 40 03 add %o5, %g3, %g4
snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
last_snapshot = ts->TOD_watchdogs.last_snapshot;
if ( !_Chain_Is_empty( &ts->TOD_watchdogs.Chain ) ) {
first_watchdog = _Watchdog_First( &ts->TOD_watchdogs.Chain );
delta_interval = first_watchdog->delta_interval;
if ( snapshot > last_snapshot ) {
2016c9c: 08 80 00 07 bleu 2016cb8 <_Timer_server_Schedule_operation_method+0x9c>
2016ca0: 88 21 00 01 sub %g4, %g1, %g4
/*
* We advanced in time.
*/
delta = snapshot - last_snapshot;
2016ca4: 86 20 40 03 sub %g1, %g3, %g3
if (delta_interval > delta) {
2016ca8: 80 a3 40 03 cmp %o5, %g3
2016cac: 08 80 00 03 bleu 2016cb8 <_Timer_server_Schedule_operation_method+0x9c><== NEVER TAKEN
2016cb0: 88 10 20 00 clr %g4
delta_interval -= delta;
2016cb4: 88 23 40 03 sub %o5, %g3, %g4
* Someone put us in the past.
*/
delta = last_snapshot - snapshot;
delta_interval += delta;
}
first_watchdog->delta_interval = delta_interval;
2016cb8: c8 20 a0 10 st %g4, [ %g2 + 0x10 ]
}
ts->TOD_watchdogs.last_snapshot = snapshot;
2016cbc: c2 26 20 74 st %g1, [ %i0 + 0x74 ]
_ISR_Enable( level );
2016cc0: 7f ff e1 9c call 200f330 <sparc_enable_interrupts>
2016cc4: 01 00 00 00 nop
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
2016cc8: 90 06 20 68 add %i0, 0x68, %o0
2016ccc: 40 00 12 94 call 201b71c <_Watchdog_Insert>
2016cd0: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016cd4: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016cd8: 80 a0 60 00 cmp %g1, 0
2016cdc: 12 bf ff e2 bne 2016c64 <_Timer_server_Schedule_operation_method+0x48>
2016ce0: 01 00 00 00 nop
_Timer_server_Reset_tod_system_watchdog( ts );
2016ce4: 7f ff ff 30 call 20169a4 <_Timer_server_Reset_tod_system_watchdog>
2016ce8: 90 10 00 18 mov %i0, %o0
}
}
_Thread_Enable_dispatch();
2016cec: 40 00 0c 9a call 2019f54 <_Thread_Enable_dispatch>
2016cf0: 81 e8 00 00 restore
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
/*
* We have to advance the last known ticks value of the server and update
* the watchdog chain accordingly.
*/
_ISR_Disable( level );
2016cf4: 7f ff e1 8b call 200f320 <sparc_disable_interrupts>
2016cf8: 01 00 00 00 nop
snapshot = _Watchdog_Ticks_since_boot;
2016cfc: 05 00 80 f2 sethi %hi(0x203c800), %g2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
2016d00: c2 06 20 30 ld [ %i0 + 0x30 ], %g1
2016d04: c4 00 a2 c4 ld [ %g2 + 0x2c4 ], %g2
last_snapshot = ts->Interval_watchdogs.last_snapshot;
2016d08: c8 06 20 3c ld [ %i0 + 0x3c ], %g4
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2016d0c: 86 06 20 34 add %i0, 0x34, %g3
if ( !_Chain_Is_empty( &ts->Interval_watchdogs.Chain ) ) {
2016d10: 80 a0 40 03 cmp %g1, %g3
2016d14: 02 80 00 08 be 2016d34 <_Timer_server_Schedule_operation_method+0x118>
2016d18: 88 20 80 04 sub %g2, %g4, %g4
/*
* We assume adequate unsigned arithmetic here.
*/
delta = snapshot - last_snapshot;
delta_interval = first_watchdog->delta_interval;
2016d1c: da 00 60 10 ld [ %g1 + 0x10 ], %o5
if (delta_interval > delta) {
2016d20: 80 a1 00 0d cmp %g4, %o5
2016d24: 1a 80 00 03 bcc 2016d30 <_Timer_server_Schedule_operation_method+0x114>
2016d28: 86 10 20 00 clr %g3
delta_interval -= delta;
2016d2c: 86 23 40 04 sub %o5, %g4, %g3
} else {
delta_interval = 0;
}
first_watchdog->delta_interval = delta_interval;
2016d30: c6 20 60 10 st %g3, [ %g1 + 0x10 ]
}
ts->Interval_watchdogs.last_snapshot = snapshot;
2016d34: c4 26 20 3c st %g2, [ %i0 + 0x3c ]
_ISR_Enable( level );
2016d38: 7f ff e1 7e call 200f330 <sparc_enable_interrupts>
2016d3c: 01 00 00 00 nop
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
2016d40: 90 06 20 30 add %i0, 0x30, %o0
2016d44: 40 00 12 76 call 201b71c <_Watchdog_Insert>
2016d48: 92 04 20 10 add %l0, 0x10, %o1
if ( !ts->active ) {
2016d4c: c2 0e 20 7c ldub [ %i0 + 0x7c ], %g1
2016d50: 80 a0 60 00 cmp %g1, 0
2016d54: 12 bf ff c4 bne 2016c64 <_Timer_server_Schedule_operation_method+0x48>
2016d58: 01 00 00 00 nop
_Timer_server_Reset_interval_system_watchdog( ts );
2016d5c: 7f ff fe fd call 2016950 <_Timer_server_Reset_interval_system_watchdog>
2016d60: 90 10 00 18 mov %i0, %o0
if ( !ts->active ) {
_Timer_server_Reset_tod_system_watchdog( ts );
}
}
_Thread_Enable_dispatch();
2016d64: 40 00 0c 7c call 2019f54 <_Thread_Enable_dispatch>
2016d68: 81 e8 00 00 restore
02009a1c <_Timespec_Add_to>:
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
2009a1c: 9d e3 bf a0 save %sp, -96, %sp
2009a20: 82 10 00 18 mov %i0, %g1
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009a24: c6 06 00 00 ld [ %i0 ], %g3
time->tv_nsec += add->tv_nsec;
2009a28: c8 06 60 04 ld [ %i1 + 4 ], %g4
uint32_t _Timespec_Add_to(
struct timespec *time,
const struct timespec *add
)
{
uint32_t seconds = add->tv_sec;
2009a2c: f0 06 40 00 ld [ %i1 ], %i0
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
2009a30: c4 00 60 04 ld [ %g1 + 4 ], %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009a34: 86 00 c0 18 add %g3, %i0, %g3
time->tv_nsec += add->tv_nsec;
2009a38: 84 01 00 02 add %g4, %g2, %g2
)
{
uint32_t seconds = add->tv_sec;
/* Add the basics */
time->tv_sec += add->tv_sec;
2009a3c: c6 20 40 00 st %g3, [ %g1 ]
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009a40: 09 0e e6 b2 sethi %hi(0x3b9ac800), %g4
2009a44: 88 11 21 ff or %g4, 0x1ff, %g4 ! 3b9ac9ff <RAM_END+0x395ac9ff>
2009a48: 80 a0 80 04 cmp %g2, %g4
2009a4c: 08 80 00 0b bleu 2009a78 <_Timespec_Add_to+0x5c>
2009a50: c4 20 60 04 st %g2, [ %g1 + 4 ]
time->tv_nsec -= TOD_NANOSECONDS_PER_SECOND;
2009a54: 1b 31 19 4d sethi %hi(0xc4653400), %o5
2009a58: 9a 13 62 00 or %o5, 0x200, %o5 ! c4653600 <RAM_END+0xc2253600>
2009a5c: 84 00 80 0d add %g2, %o5, %g2
*
* This routines adds two timespecs. The second argument is added
* to the first.
*/
uint32_t _Timespec_Add_to(
2009a60: 86 00 e0 01 inc %g3
/* Add the basics */
time->tv_sec += add->tv_sec;
time->tv_nsec += add->tv_nsec;
/* Now adjust it so nanoseconds is in range */
while ( time->tv_nsec >= TOD_NANOSECONDS_PER_SECOND ) {
2009a64: 80 a0 80 04 cmp %g2, %g4
2009a68: 18 bf ff fd bgu 2009a5c <_Timespec_Add_to+0x40> <== NEVER TAKEN
2009a6c: b0 06 20 01 inc %i0
2009a70: c4 20 60 04 st %g2, [ %g1 + 4 ]
2009a74: c6 20 40 00 st %g3, [ %g1 ]
time->tv_sec++;
seconds++;
}
return seconds;
}
2009a78: 81 c7 e0 08 ret
2009a7c: 81 e8 00 00 restore
0200baf4 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
200baf4: c6 02 00 00 ld [ %o0 ], %g3
200baf8: c4 02 40 00 ld [ %o1 ], %g2
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
200bafc: 82 10 00 08 mov %o0, %g1
if ( lhs->tv_sec > rhs->tv_sec )
200bb00: 80 a0 c0 02 cmp %g3, %g2
200bb04: 14 80 00 0a bg 200bb2c <_Timespec_Greater_than+0x38>
200bb08: 90 10 20 01 mov 1, %o0
return true;
if ( lhs->tv_sec < rhs->tv_sec )
200bb0c: 80 a0 c0 02 cmp %g3, %g2
200bb10: 06 80 00 07 bl 200bb2c <_Timespec_Greater_than+0x38> <== NEVER TAKEN
200bb14: 90 10 20 00 clr %o0
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
200bb18: c4 00 60 04 ld [ %g1 + 4 ], %g2
200bb1c: c2 02 60 04 ld [ %o1 + 4 ], %g1
200bb20: 80 a0 80 01 cmp %g2, %g1
200bb24: 04 80 00 04 ble 200bb34 <_Timespec_Greater_than+0x40>
200bb28: 90 10 20 01 mov 1, %o0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
200bb2c: 81 c3 e0 08 retl
200bb30: 01 00 00 00 nop
200bb34: 81 c3 e0 08 retl
200bb38: 90 10 20 00 clr %o0 ! 0 <PROM_START>
02009c2c <_User_extensions_Fatal>:
void _User_extensions_Fatal (
Internal_errors_Source the_source,
bool is_internal,
Internal_errors_t the_error
)
{
2009c2c: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009c30: 23 00 80 58 sethi %hi(0x2016000), %l1
2009c34: a2 14 60 08 or %l1, 8, %l1 ! 2016008 <_User_extensions_List>
2009c38: e0 04 60 08 ld [ %l1 + 8 ], %l0
2009c3c: 80 a4 00 11 cmp %l0, %l1
2009c40: 02 80 00 0d be 2009c74 <_User_extensions_Fatal+0x48> <== NEVER TAKEN
2009c44: b2 0e 60 ff and %i1, 0xff, %i1
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.fatal != NULL )
2009c48: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2009c4c: 80 a0 60 00 cmp %g1, 0
2009c50: 02 80 00 05 be 2009c64 <_User_extensions_Fatal+0x38>
2009c54: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.fatal)( the_source, is_internal, the_error );
2009c58: 92 10 00 19 mov %i1, %o1
2009c5c: 9f c0 40 00 call %g1
2009c60: 94 10 00 1a mov %i2, %o2
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009c64: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009c68: 80 a4 00 11 cmp %l0, %l1
2009c6c: 32 bf ff f8 bne,a 2009c4c <_User_extensions_Fatal+0x20>
2009c70: c2 04 20 30 ld [ %l0 + 0x30 ], %g1
2009c74: 81 c7 e0 08 ret
2009c78: 81 e8 00 00 restore
02009ad8 <_User_extensions_Handler_initialization>:
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
{
2009ad8: 9d e3 bf a0 save %sp, -96, %sp
User_extensions_Control *extension;
uint32_t i;
uint32_t number_of_extensions;
User_extensions_Table *initial_extensions;
number_of_extensions = Configuration.number_of_initial_extensions;
2009adc: 07 00 80 54 sethi %hi(0x2015000), %g3
2009ae0: 86 10 e3 48 or %g3, 0x348, %g3 ! 2015348 <Configuration>
initial_extensions = Configuration.User_extension_table;
2009ae4: e6 00 e0 3c ld [ %g3 + 0x3c ], %l3
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2009ae8: 1b 00 80 58 sethi %hi(0x2016000), %o5
2009aec: 09 00 80 57 sethi %hi(0x2015c00), %g4
2009af0: 84 13 60 08 or %o5, 8, %g2
2009af4: 82 11 21 ec or %g4, 0x1ec, %g1
2009af8: 96 00 a0 04 add %g2, 4, %o3
2009afc: 98 00 60 04 add %g1, 4, %o4
2009b00: d6 23 60 08 st %o3, [ %o5 + 8 ]
the_chain->permanent_null = NULL;
2009b04: c0 20 a0 04 clr [ %g2 + 4 ]
the_chain->last = _Chain_Head(the_chain);
2009b08: c4 20 a0 08 st %g2, [ %g2 + 8 ]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
2009b0c: d8 21 21 ec st %o4, [ %g4 + 0x1ec ]
the_chain->permanent_null = NULL;
2009b10: c0 20 60 04 clr [ %g1 + 4 ]
the_chain->last = _Chain_Head(the_chain);
2009b14: c2 20 60 08 st %g1, [ %g1 + 8 ]
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
2009b18: 80 a4 e0 00 cmp %l3, 0
2009b1c: 02 80 00 1b be 2009b88 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009b20: e4 00 e0 38 ld [ %g3 + 0x38 ], %l2
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
number_of_extensions * sizeof( User_extensions_Control )
2009b24: 83 2c a0 02 sll %l2, 2, %g1
2009b28: a3 2c a0 04 sll %l2, 4, %l1
2009b2c: a2 24 40 01 sub %l1, %g1, %l1
2009b30: a2 04 40 12 add %l1, %l2, %l1
2009b34: a3 2c 60 02 sll %l1, 2, %l1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009b38: 40 00 01 9e call 200a1b0 <_Workspace_Allocate_or_fatal_error>
2009b3c: 90 10 00 11 mov %l1, %o0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009b40: 92 10 20 00 clr %o1
_Chain_Initialize_empty( &_User_extensions_List );
_Chain_Initialize_empty( &_User_extensions_Switches_list );
if ( initial_extensions ) {
extension = (User_extensions_Control *)
_Workspace_Allocate_or_fatal_error(
2009b44: a0 10 00 08 mov %o0, %l0
number_of_extensions * sizeof( User_extensions_Control )
);
memset (
2009b48: 40 00 16 7a call 200f530 <memset>
2009b4c: 94 10 00 11 mov %l1, %o2
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009b50: 80 a4 a0 00 cmp %l2, 0
2009b54: 02 80 00 0d be 2009b88 <_User_extensions_Handler_initialization+0xb0><== NEVER TAKEN
2009b58: a2 10 20 00 clr %l1
#include <rtems/config.h>
#include <rtems/score/userext.h>
#include <rtems/score/wkspace.h>
#include <string.h>
void _User_extensions_Handler_initialization(void)
2009b5c: 93 2c 60 05 sll %l1, 5, %o1
RTEMS_INLINE_ROUTINE void _User_extensions_Add_set_with_table(
User_extensions_Control *extension,
const User_extensions_Table *extension_table
)
{
extension->Callouts = *extension_table;
2009b60: 94 10 20 20 mov 0x20, %o2
2009b64: 92 04 c0 09 add %l3, %o1, %o1
2009b68: 40 00 16 33 call 200f434 <memcpy>
2009b6c: 90 04 20 14 add %l0, 0x14, %o0
_User_extensions_Add_set( extension );
2009b70: 40 00 0d 74 call 200d140 <_User_extensions_Add_set>
2009b74: 90 10 00 10 mov %l0, %o0
extension,
0,
number_of_extensions * sizeof( User_extensions_Control )
);
for ( i = 0 ; i < number_of_extensions ; i++ ) {
2009b78: a2 04 60 01 inc %l1
2009b7c: 80 a4 80 11 cmp %l2, %l1
2009b80: 18 bf ff f7 bgu 2009b5c <_User_extensions_Handler_initialization+0x84>
2009b84: a0 04 20 34 add %l0, 0x34, %l0
2009b88: 81 c7 e0 08 ret
2009b8c: 81 e8 00 00 restore
02009b90 <_User_extensions_Thread_begin>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_begin (
Thread_Control *executing
)
{
2009b90: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
2009b94: 23 00 80 58 sethi %hi(0x2016000), %l1
2009b98: e0 04 60 08 ld [ %l1 + 8 ], %l0 ! 2016008 <_User_extensions_List>
2009b9c: a2 14 60 08 or %l1, 8, %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
2009ba0: a2 04 60 04 add %l1, 4, %l1
2009ba4: 80 a4 00 11 cmp %l0, %l1
2009ba8: 02 80 00 0c be 2009bd8 <_User_extensions_Thread_begin+0x48><== NEVER TAKEN
2009bac: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_begin != NULL )
2009bb0: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
2009bb4: 80 a0 60 00 cmp %g1, 0
2009bb8: 02 80 00 04 be 2009bc8 <_User_extensions_Thread_begin+0x38>
2009bbc: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_begin)( executing );
2009bc0: 9f c0 40 00 call %g1
2009bc4: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009bc8: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
2009bcc: 80 a4 00 11 cmp %l0, %l1
2009bd0: 32 bf ff f9 bne,a 2009bb4 <_User_extensions_Thread_begin+0x24>
2009bd4: c2 04 20 28 ld [ %l0 + 0x28 ], %g1
2009bd8: 81 c7 e0 08 ret
2009bdc: 81 e8 00 00 restore
02009c7c <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
2009c7c: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
2009c80: 23 00 80 58 sethi %hi(0x2016000), %l1
2009c84: e0 04 60 08 ld [ %l1 + 8 ], %l0 ! 2016008 <_User_extensions_List>
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
2009c88: a6 10 00 18 mov %i0, %l3
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
2009c8c: a2 14 60 08 or %l1, 8, %l1
2009c90: a2 04 60 04 add %l1, 4, %l1
2009c94: 80 a4 00 11 cmp %l0, %l1
2009c98: 02 80 00 13 be 2009ce4 <_User_extensions_Thread_create+0x68><== NEVER TAKEN
2009c9c: b0 10 20 01 mov 1, %i0
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
2009ca0: 25 00 80 58 sethi %hi(0x2016000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
2009ca4: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
2009ca8: 80 a0 60 00 cmp %g1, 0
2009cac: 02 80 00 08 be 2009ccc <_User_extensions_Thread_create+0x50>
2009cb0: 84 14 a0 4c or %l2, 0x4c, %g2
status = (*the_extension->Callouts.thread_create)(
2009cb4: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009cb8: 9f c0 40 00 call %g1
2009cbc: 92 10 00 13 mov %l3, %o1
_Thread_Executing,
the_thread
);
if ( !status )
2009cc0: 80 8a 20 ff btst 0xff, %o0
2009cc4: 22 80 00 08 be,a 2009ce4 <_User_extensions_Thread_create+0x68>
2009cc8: b0 10 20 00 clr %i0
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009ccc: e0 04 00 00 ld [ %l0 ], %l0
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
2009cd0: 80 a4 00 11 cmp %l0, %l1
2009cd4: 32 bf ff f5 bne,a 2009ca8 <_User_extensions_Thread_create+0x2c>
2009cd8: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
if ( !status )
return false;
}
}
return true;
2009cdc: 81 c7 e0 08 ret
2009ce0: 91 e8 20 01 restore %g0, 1, %o0
}
2009ce4: 81 c7 e0 08 ret
2009ce8: 81 e8 00 00 restore
02009cec <_User_extensions_Thread_delete>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_delete (
Thread_Control *the_thread
)
{
2009cec: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009cf0: 23 00 80 58 sethi %hi(0x2016000), %l1
2009cf4: a2 14 60 08 or %l1, 8, %l1 ! 2016008 <_User_extensions_List>
2009cf8: e0 04 60 08 ld [ %l1 + 8 ], %l0
2009cfc: 80 a4 00 11 cmp %l0, %l1
2009d00: 02 80 00 0d be 2009d34 <_User_extensions_Thread_delete+0x48><== NEVER TAKEN
2009d04: 25 00 80 58 sethi %hi(0x2016000), %l2
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_delete != NULL )
2009d08: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
2009d0c: 80 a0 60 00 cmp %g1, 0
2009d10: 02 80 00 05 be 2009d24 <_User_extensions_Thread_delete+0x38>
2009d14: 84 14 a0 4c or %l2, 0x4c, %g2
(*the_extension->Callouts.thread_delete)(
2009d18: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009d1c: 9f c0 40 00 call %g1
2009d20: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009d24: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009d28: 80 a4 00 11 cmp %l0, %l1
2009d2c: 32 bf ff f8 bne,a 2009d0c <_User_extensions_Thread_delete+0x20>
2009d30: c2 04 20 20 ld [ %l0 + 0x20 ], %g1
2009d34: 81 c7 e0 08 ret
2009d38: 81 e8 00 00 restore
02009be0 <_User_extensions_Thread_exitted>:
}
void _User_extensions_Thread_exitted (
Thread_Control *executing
)
{
2009be0: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009be4: 23 00 80 58 sethi %hi(0x2016000), %l1
2009be8: a2 14 60 08 or %l1, 8, %l1 ! 2016008 <_User_extensions_List>
2009bec: e0 04 60 08 ld [ %l1 + 8 ], %l0
2009bf0: 80 a4 00 11 cmp %l0, %l1
2009bf4: 02 80 00 0c be 2009c24 <_User_extensions_Thread_exitted+0x44><== NEVER TAKEN
2009bf8: 01 00 00 00 nop
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_exitted != NULL )
2009bfc: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
2009c00: 80 a0 60 00 cmp %g1, 0
2009c04: 02 80 00 04 be 2009c14 <_User_extensions_Thread_exitted+0x34>
2009c08: 90 10 00 18 mov %i0, %o0
(*the_extension->Callouts.thread_exitted)( executing );
2009c0c: 9f c0 40 00 call %g1
2009c10: 01 00 00 00 nop
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
!_Chain_Is_head( &_User_extensions_List, the_node ) ;
the_node = the_node->previous ) {
2009c14: e0 04 20 04 ld [ %l0 + 4 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.last ;
2009c18: 80 a4 00 11 cmp %l0, %l1
2009c1c: 32 bf ff f9 bne,a 2009c00 <_User_extensions_Thread_exitted+0x20>
2009c20: c2 04 20 2c ld [ %l0 + 0x2c ], %g1
2009c24: 81 c7 e0 08 ret
2009c28: 81 e8 00 00 restore
0200aa7c <_User_extensions_Thread_restart>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_restart (
Thread_Control *the_thread
)
{
200aa7c: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
200aa80: 23 00 80 74 sethi %hi(0x201d000), %l1
200aa84: e0 04 62 08 ld [ %l1 + 0x208 ], %l0 ! 201d208 <_User_extensions_List>
200aa88: a2 14 62 08 or %l1, 0x208, %l1
200aa8c: a2 04 60 04 add %l1, 4, %l1
200aa90: 80 a4 00 11 cmp %l0, %l1
200aa94: 02 80 00 0d be 200aac8 <_User_extensions_Thread_restart+0x4c><== NEVER TAKEN
200aa98: 25 00 80 74 sethi %hi(0x201d000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_restart != NULL )
200aa9c: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200aaa0: 80 a0 60 00 cmp %g1, 0
200aaa4: 02 80 00 05 be 200aab8 <_User_extensions_Thread_restart+0x3c>
200aaa8: 84 14 a2 4c or %l2, 0x24c, %g2
(*the_extension->Callouts.thread_restart)(
200aaac: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
200aab0: 9f c0 40 00 call %g1
200aab4: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
200aab8: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
200aabc: 80 a4 00 11 cmp %l0, %l1
200aac0: 32 bf ff f8 bne,a 200aaa0 <_User_extensions_Thread_restart+0x24>
200aac4: c2 04 20 1c ld [ %l0 + 0x1c ], %g1
200aac8: 81 c7 e0 08 ret
200aacc: 81 e8 00 00 restore
02009d3c <_User_extensions_Thread_start>:
#include <rtems/score/userext.h>
void _User_extensions_Thread_start (
Thread_Control *the_thread
)
{
2009d3c: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
2009d40: 23 00 80 58 sethi %hi(0x2016000), %l1
2009d44: e0 04 60 08 ld [ %l1 + 8 ], %l0 ! 2016008 <_User_extensions_List>
2009d48: a2 14 60 08 or %l1, 8, %l1
2009d4c: a2 04 60 04 add %l1, 4, %l1
2009d50: 80 a4 00 11 cmp %l0, %l1
2009d54: 02 80 00 0d be 2009d88 <_User_extensions_Thread_start+0x4c><== NEVER TAKEN
2009d58: 25 00 80 58 sethi %hi(0x2016000), %l2
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_start != NULL )
2009d5c: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2009d60: 80 a0 60 00 cmp %g1, 0
2009d64: 02 80 00 05 be 2009d78 <_User_extensions_Thread_start+0x3c>
2009d68: 84 14 a0 4c or %l2, 0x4c, %g2
(*the_extension->Callouts.thread_start)(
2009d6c: d0 00 a0 0c ld [ %g2 + 0xc ], %o0
2009d70: 9f c0 40 00 call %g1
2009d74: 92 10 00 18 mov %i0, %o1
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
2009d78: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
for ( the_node = _User_extensions_List.first ;
2009d7c: 80 a4 00 11 cmp %l0, %l1
2009d80: 32 bf ff f8 bne,a 2009d60 <_User_extensions_Thread_start+0x24>
2009d84: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2009d88: 81 c7 e0 08 ret
2009d8c: 81 e8 00 00 restore
02009d90 <_User_extensions_Thread_switch>:
void _User_extensions_Thread_switch (
Thread_Control *executing,
Thread_Control *heir
)
{
2009d90: 9d e3 bf a0 save %sp, -96, %sp
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
2009d94: 23 00 80 57 sethi %hi(0x2015c00), %l1
2009d98: e0 04 61 ec ld [ %l1 + 0x1ec ], %l0 ! 2015dec <_User_extensions_Switches_list>
2009d9c: a2 14 61 ec or %l1, 0x1ec, %l1
2009da0: a2 04 60 04 add %l1, 4, %l1
2009da4: 80 a4 00 11 cmp %l0, %l1
2009da8: 02 80 00 0a be 2009dd0 <_User_extensions_Thread_switch+0x40><== NEVER TAKEN
2009dac: 01 00 00 00 nop
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
the_extension_switch = (User_extensions_Switch_control *) the_node;
(*the_extension_switch->thread_switch)( executing, heir );
2009db0: c2 04 20 08 ld [ %l0 + 8 ], %g1
2009db4: 90 10 00 18 mov %i0, %o0
2009db8: 9f c0 40 00 call %g1
2009dbc: 92 10 00 19 mov %i1, %o1
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
!_Chain_Is_tail( &_User_extensions_Switches_list, the_node ) ;
the_node = the_node->next ) {
2009dc0: e0 04 00 00 ld [ %l0 ], %l0
)
{
Chain_Node *the_node;
User_extensions_Switch_control *the_extension_switch;
for ( the_node = _User_extensions_Switches_list.first ;
2009dc4: 80 a4 00 11 cmp %l0, %l1
2009dc8: 32 bf ff fb bne,a 2009db4 <_User_extensions_Thread_switch+0x24>
2009dcc: c2 04 20 08 ld [ %l0 + 8 ], %g1
2009dd0: 81 c7 e0 08 ret
2009dd4: 81 e8 00 00 restore
0200bff0 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
200bff0: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
_ISR_Disable( level );
200bff4: 7f ff dc 87 call 2003210 <sparc_disable_interrupts>
200bff8: a0 10 00 18 mov %i0, %l0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200bffc: c2 06 00 00 ld [ %i0 ], %g1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200c000: a4 06 20 04 add %i0, 4, %l2
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
200c004: 80 a0 40 12 cmp %g1, %l2
200c008: 02 80 00 1f be 200c084 <_Watchdog_Adjust+0x94>
200c00c: 80 a6 60 00 cmp %i1, 0
switch ( direction ) {
200c010: 12 80 00 1f bne 200c08c <_Watchdog_Adjust+0x9c>
200c014: 80 a6 60 01 cmp %i1, 1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200c018: 80 a6 a0 00 cmp %i2, 0
200c01c: 02 80 00 1a be 200c084 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200c020: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200c024: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
200c028: 80 a6 80 11 cmp %i2, %l1
200c02c: 1a 80 00 0b bcc 200c058 <_Watchdog_Adjust+0x68> <== ALWAYS TAKEN
200c030: a6 10 20 01 mov 1, %l3
_Watchdog_First( header )->delta_interval -= units;
200c034: 10 80 00 1d b 200c0a8 <_Watchdog_Adjust+0xb8> <== NOT EXECUTED
200c038: a2 24 40 1a sub %l1, %i2, %l1 <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
200c03c: b4 a6 80 11 subcc %i2, %l1, %i2
200c040: 02 80 00 11 be 200c084 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200c044: 01 00 00 00 nop
if ( units < _Watchdog_First( header )->delta_interval ) {
200c048: e2 00 60 10 ld [ %g1 + 0x10 ], %l1
200c04c: 80 a4 40 1a cmp %l1, %i2
200c050: 38 80 00 16 bgu,a 200c0a8 <_Watchdog_Adjust+0xb8>
200c054: a2 24 40 1a sub %l1, %i2, %l1
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
200c058: e6 20 60 10 st %l3, [ %g1 + 0x10 ]
_ISR_Enable( level );
200c05c: 7f ff dc 71 call 2003220 <sparc_enable_interrupts>
200c060: 01 00 00 00 nop
_Watchdog_Tickle( header );
200c064: 40 00 00 b3 call 200c330 <_Watchdog_Tickle>
200c068: 90 10 00 10 mov %l0, %o0
_ISR_Disable( level );
200c06c: 7f ff dc 69 call 2003210 <sparc_disable_interrupts>
200c070: 01 00 00 00 nop
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200c074: c4 04 00 00 ld [ %l0 ], %g2
if ( _Chain_Is_empty( header ) )
200c078: 80 a4 80 02 cmp %l2, %g2
200c07c: 12 bf ff f0 bne 200c03c <_Watchdog_Adjust+0x4c>
200c080: 82 10 00 02 mov %g2, %g1
}
break;
}
}
_ISR_Enable( level );
200c084: 7f ff dc 67 call 2003220 <sparc_enable_interrupts>
200c088: 91 e8 00 08 restore %g0, %o0, %o0
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
200c08c: 12 bf ff fe bne 200c084 <_Watchdog_Adjust+0x94> <== NEVER TAKEN
200c090: 01 00 00 00 nop
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
200c094: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200c098: b4 00 80 1a add %g2, %i2, %i2
200c09c: f4 20 60 10 st %i2, [ %g1 + 0x10 ]
}
break;
}
}
_ISR_Enable( level );
200c0a0: 7f ff dc 60 call 2003220 <sparc_enable_interrupts>
200c0a4: 91 e8 00 08 restore %g0, %o0, %o0
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
break;
200c0a8: 10 bf ff f7 b 200c084 <_Watchdog_Adjust+0x94>
200c0ac: e2 20 60 10 st %l1, [ %g1 + 0x10 ]
02009f80 <_Watchdog_Remove>:
*/
Watchdog_States _Watchdog_Remove(
Watchdog_Control *the_watchdog
)
{
2009f80: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
2009f84: 7f ff e0 c4 call 2002294 <sparc_disable_interrupts>
2009f88: 01 00 00 00 nop
previous_state = the_watchdog->state;
2009f8c: e0 06 20 08 ld [ %i0 + 8 ], %l0
switch ( previous_state ) {
2009f90: 80 a4 20 01 cmp %l0, 1
2009f94: 02 80 00 2a be 200a03c <_Watchdog_Remove+0xbc>
2009f98: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009f9c: 1a 80 00 09 bcc 2009fc0 <_Watchdog_Remove+0x40>
2009fa0: 80 a4 20 03 cmp %l0, 3
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
2009fa4: 03 00 80 57 sethi %hi(0x2015c00), %g1
2009fa8: c2 00 63 24 ld [ %g1 + 0x324 ], %g1 ! 2015f24 <_Watchdog_Ticks_since_boot>
2009fac: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
2009fb0: 7f ff e0 bd call 20022a4 <sparc_enable_interrupts>
2009fb4: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
2009fb8: 81 c7 e0 08 ret
2009fbc: 81 e8 00 00 restore
Watchdog_States previous_state;
Watchdog_Control *next_watchdog;
_ISR_Disable( level );
previous_state = the_watchdog->state;
switch ( previous_state ) {
2009fc0: 18 bf ff fa bgu 2009fa8 <_Watchdog_Remove+0x28> <== NEVER TAKEN
2009fc4: 03 00 80 57 sethi %hi(0x2015c00), %g1
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
_ISR_Enable( level );
return( previous_state );
}
2009fc8: c2 06 00 00 ld [ %i0 ], %g1
break;
case WATCHDOG_ACTIVE:
case WATCHDOG_REMOVE_IT:
the_watchdog->state = WATCHDOG_INACTIVE;
2009fcc: c0 26 20 08 clr [ %i0 + 8 ]
next_watchdog = _Watchdog_Next( the_watchdog );
if ( _Watchdog_Next(next_watchdog) )
2009fd0: c4 00 40 00 ld [ %g1 ], %g2
2009fd4: 80 a0 a0 00 cmp %g2, 0
2009fd8: 02 80 00 07 be 2009ff4 <_Watchdog_Remove+0x74>
2009fdc: 05 00 80 57 sethi %hi(0x2015c00), %g2
next_watchdog->delta_interval += the_watchdog->delta_interval;
2009fe0: c6 00 60 10 ld [ %g1 + 0x10 ], %g3
2009fe4: c4 06 20 10 ld [ %i0 + 0x10 ], %g2
2009fe8: 84 00 c0 02 add %g3, %g2, %g2
2009fec: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
if ( _Watchdog_Sync_count )
2009ff0: 05 00 80 57 sethi %hi(0x2015c00), %g2
2009ff4: c4 00 a3 20 ld [ %g2 + 0x320 ], %g2 ! 2015f20 <_Watchdog_Sync_count>
2009ff8: 80 a0 a0 00 cmp %g2, 0
2009ffc: 22 80 00 07 be,a 200a018 <_Watchdog_Remove+0x98>
200a000: c4 06 20 04 ld [ %i0 + 4 ], %g2
_Watchdog_Sync_level = _ISR_Nest_level;
200a004: 05 00 80 58 sethi %hi(0x2016000), %g2
200a008: c6 00 a0 54 ld [ %g2 + 0x54 ], %g3 ! 2016054 <_Per_CPU_Information+0x8>
200a00c: 05 00 80 57 sethi %hi(0x2015c00), %g2
200a010: c6 20 a2 94 st %g3, [ %g2 + 0x294 ] ! 2015e94 <_Watchdog_Sync_level>
{
Chain_Node *next;
Chain_Node *previous;
next = the_node->next;
previous = the_node->previous;
200a014: c4 06 20 04 ld [ %i0 + 4 ], %g2
next->previous = previous;
200a018: c4 20 60 04 st %g2, [ %g1 + 4 ]
previous->next = next;
200a01c: c2 20 80 00 st %g1, [ %g2 ]
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a020: 03 00 80 57 sethi %hi(0x2015c00), %g1
200a024: c2 00 63 24 ld [ %g1 + 0x324 ], %g1 ! 2015f24 <_Watchdog_Ticks_since_boot>
200a028: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a02c: 7f ff e0 9e call 20022a4 <sparc_enable_interrupts>
200a030: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
200a034: 81 c7 e0 08 ret
200a038: 81 e8 00 00 restore
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a03c: c2 00 63 24 ld [ %g1 + 0x324 ], %g1
/*
* It is not actually on the chain so just change the state and
* the Insert operation we interrupted will be aborted.
*/
the_watchdog->state = WATCHDOG_INACTIVE;
200a040: c0 26 20 08 clr [ %i0 + 8 ]
_Watchdog_Sync_level = _ISR_Nest_level;
_Chain_Extract_unprotected( &the_watchdog->Node );
break;
}
the_watchdog->stop_time = _Watchdog_Ticks_since_boot;
200a044: c2 26 20 18 st %g1, [ %i0 + 0x18 ]
_ISR_Enable( level );
200a048: 7f ff e0 97 call 20022a4 <sparc_enable_interrupts>
200a04c: b0 10 00 10 mov %l0, %i0
return( previous_state );
}
200a050: 81 c7 e0 08 ret
200a054: 81 e8 00 00 restore
0200b820 <_Watchdog_Report_chain>:
void _Watchdog_Report_chain(
const char *name,
Chain_Control *header
)
{
200b820: 9d e3 bf a0 save %sp, -96, %sp
ISR_Level level;
Chain_Node *node;
_ISR_Disable( level );
200b824: 7f ff dd 4d call 2002d58 <sparc_disable_interrupts>
200b828: 01 00 00 00 nop
200b82c: a0 10 00 08 mov %o0, %l0
printk( "Watchdog Chain: %s %p\n", name, header );
200b830: 11 00 80 72 sethi %hi(0x201c800), %o0
200b834: 94 10 00 19 mov %i1, %o2
200b838: 92 10 00 18 mov %i0, %o1
200b83c: 7f ff e4 36 call 2004914 <printk>
200b840: 90 12 21 38 or %o0, 0x138, %o0
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
200b844: e2 06 40 00 ld [ %i1 ], %l1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
200b848: b2 06 60 04 add %i1, 4, %i1
if ( !_Chain_Is_empty( header ) ) {
200b84c: 80 a4 40 19 cmp %l1, %i1
200b850: 02 80 00 0f be 200b88c <_Watchdog_Report_chain+0x6c>
200b854: 11 00 80 72 sethi %hi(0x201c800), %o0
node != _Chain_Tail(header) ;
node = node->next )
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
200b858: 92 10 00 11 mov %l1, %o1
200b85c: 40 00 00 0f call 200b898 <_Watchdog_Report>
200b860: 90 10 20 00 clr %o0
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
node != _Chain_Tail(header) ;
node = node->next )
200b864: e2 04 40 00 ld [ %l1 ], %l1
Chain_Node *node;
_ISR_Disable( level );
printk( "Watchdog Chain: %s %p\n", name, header );
if ( !_Chain_Is_empty( header ) ) {
for ( node = header->first ;
200b868: 80 a4 40 19 cmp %l1, %i1
200b86c: 12 bf ff fc bne 200b85c <_Watchdog_Report_chain+0x3c> <== NEVER TAKEN
200b870: 92 10 00 11 mov %l1, %o1
{
Watchdog_Control *watch = (Watchdog_Control *) node;
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
200b874: 11 00 80 72 sethi %hi(0x201c800), %o0
200b878: 92 10 00 18 mov %i0, %o1
200b87c: 7f ff e4 26 call 2004914 <printk>
200b880: 90 12 21 50 or %o0, 0x150, %o0
} else {
printk( "Chain is empty\n" );
}
_ISR_Enable( level );
200b884: 7f ff dd 39 call 2002d68 <sparc_enable_interrupts>
200b888: 91 e8 00 10 restore %g0, %l0, %o0
_Watchdog_Report( NULL, watch );
}
printk( "== end of %s \n", name );
} else {
printk( "Chain is empty\n" );
200b88c: 7f ff e4 22 call 2004914 <printk>
200b890: 90 12 21 60 or %o0, 0x160, %o0
200b894: 30 bf ff fc b,a 200b884 <_Watchdog_Report_chain+0x64>
0200eb84 <rtems_barrier_create>:
rtems_name name,
rtems_attribute attribute_set,
uint32_t maximum_waiters,
rtems_id *id
)
{
200eb84: 9d e3 bf 98 save %sp, -104, %sp
200eb88: a0 10 00 18 mov %i0, %l0
Barrier_Control *the_barrier;
CORE_barrier_Attributes the_attributes;
if ( !rtems_is_name_valid( name ) )
200eb8c: 80 a4 20 00 cmp %l0, 0
200eb90: 02 80 00 23 be 200ec1c <rtems_barrier_create+0x98>
200eb94: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !id )
200eb98: 80 a6 e0 00 cmp %i3, 0
200eb9c: 02 80 00 20 be 200ec1c <rtems_barrier_create+0x98>
200eba0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
/* Initialize core barrier attributes */
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
200eba4: 80 8e 60 10 btst 0x10, %i1
200eba8: 02 80 00 1f be 200ec24 <rtems_barrier_create+0xa0>
200ebac: 80 a6 a0 00 cmp %i2, 0
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
200ebb0: c0 27 bf f8 clr [ %fp + -8 ]
if ( maximum_waiters == 0 )
200ebb4: 02 80 00 1a be 200ec1c <rtems_barrier_create+0x98>
200ebb8: b0 10 20 0a mov 0xa, %i0
200ebbc: 03 00 80 76 sethi %hi(0x201d800), %g1
200ebc0: c4 00 61 f8 ld [ %g1 + 0x1f8 ], %g2 ! 201d9f8 <_Thread_Dispatch_disable_level>
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
the_attributes.maximum_count = maximum_waiters;
200ebc4: f4 27 bf fc st %i2, [ %fp + -4 ]
200ebc8: 84 00 a0 01 inc %g2
200ebcc: c4 20 61 f8 st %g2, [ %g1 + 0x1f8 ]
* This function allocates a barrier control block from
* the inactive chain of free barrier control blocks.
*/
RTEMS_INLINE_ROUTINE Barrier_Control *_Barrier_Allocate( void )
{
return (Barrier_Control *) _Objects_Allocate( &_Barrier_Information );
200ebd0: 25 00 80 77 sethi %hi(0x201dc00), %l2
200ebd4: 7f ff ea 5c call 2009544 <_Objects_Allocate>
200ebd8: 90 14 a0 78 or %l2, 0x78, %o0 ! 201dc78 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
200ebdc: a2 92 20 00 orcc %o0, 0, %l1
200ebe0: 02 80 00 1e be 200ec58 <rtems_barrier_create+0xd4> <== NEVER TAKEN
200ebe4: 90 04 60 14 add %l1, 0x14, %o0
return RTEMS_TOO_MANY;
}
the_barrier->attribute_set = attribute_set;
_CORE_barrier_Initialize( &the_barrier->Barrier, &the_attributes );
200ebe8: 92 07 bf f8 add %fp, -8, %o1
200ebec: 40 00 02 42 call 200f4f4 <_CORE_barrier_Initialize>
200ebf0: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
200ebf4: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
*id = the_barrier->Object.id;
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
200ebf8: a4 14 a0 78 or %l2, 0x78, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200ebfc: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
200ec00: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
200ec04: 85 28 a0 02 sll %g2, 2, %g2
200ec08: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
200ec0c: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Barrier_Information,
&the_barrier->Object,
(Objects_Name) name
);
*id = the_barrier->Object.id;
200ec10: c2 26 c0 00 st %g1, [ %i3 ]
_Thread_Enable_dispatch();
200ec14: 7f ff ee 03 call 200a420 <_Thread_Enable_dispatch>
200ec18: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
}
200ec1c: 81 c7 e0 08 ret
200ec20: 81 e8 00 00 restore
if ( _Attributes_Is_barrier_automatic( attribute_set ) ) {
the_attributes.discipline = CORE_BARRIER_AUTOMATIC_RELEASE;
if ( maximum_waiters == 0 )
return RTEMS_INVALID_NUMBER;
} else
the_attributes.discipline = CORE_BARRIER_MANUAL_RELEASE;
200ec24: 82 10 20 01 mov 1, %g1
200ec28: c2 27 bf f8 st %g1, [ %fp + -8 ]
200ec2c: 03 00 80 76 sethi %hi(0x201d800), %g1
200ec30: c4 00 61 f8 ld [ %g1 + 0x1f8 ], %g2 ! 201d9f8 <_Thread_Dispatch_disable_level>
the_attributes.maximum_count = maximum_waiters;
200ec34: f4 27 bf fc st %i2, [ %fp + -4 ]
200ec38: 84 00 a0 01 inc %g2
200ec3c: c4 20 61 f8 st %g2, [ %g1 + 0x1f8 ]
200ec40: 25 00 80 77 sethi %hi(0x201dc00), %l2
200ec44: 7f ff ea 40 call 2009544 <_Objects_Allocate>
200ec48: 90 14 a0 78 or %l2, 0x78, %o0 ! 201dc78 <_Barrier_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_barrier = _Barrier_Allocate();
if ( !the_barrier ) {
200ec4c: a2 92 20 00 orcc %o0, 0, %l1
200ec50: 12 bf ff e6 bne 200ebe8 <rtems_barrier_create+0x64>
200ec54: 90 04 60 14 add %l1, 0x14, %o0
_Thread_Enable_dispatch();
200ec58: 7f ff ed f2 call 200a420 <_Thread_Enable_dispatch>
200ec5c: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
200ec60: 81 c7 e0 08 ret
200ec64: 81 e8 00 00 restore
0200810c <rtems_io_register_driver>:
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
200810c: 9d e3 bf a0 save %sp, -96, %sp
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
2008110: 03 00 80 68 sethi %hi(0x201a000), %g1
2008114: c4 00 62 b4 ld [ %g1 + 0x2b4 ], %g2 ! 201a2b4 <_Per_CPU_Information+0x8>
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
2008118: 86 10 00 19 mov %i1, %g3
rtems_device_major_number major_limit = _IO_Number_of_drivers;
200811c: 03 00 80 68 sethi %hi(0x201a000), %g1
if ( rtems_interrupt_is_in_progress() )
2008120: 80 a0 a0 00 cmp %g2, 0
2008124: 12 80 00 42 bne 200822c <rtems_io_register_driver+0x120>
2008128: c8 00 63 0c ld [ %g1 + 0x30c ], %g4
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
200812c: 80 a6 a0 00 cmp %i2, 0
2008130: 02 80 00 50 be 2008270 <rtems_io_register_driver+0x164>
2008134: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
2008138: 80 a6 60 00 cmp %i1, 0
200813c: 02 80 00 4d be 2008270 <rtems_io_register_driver+0x164>
2008140: c8 26 80 00 st %g4, [ %i2 ]
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008144: c4 06 40 00 ld [ %i1 ], %g2
2008148: 80 a0 a0 00 cmp %g2, 0
200814c: 22 80 00 46 be,a 2008264 <rtems_io_register_driver+0x158>
2008150: c4 06 60 04 ld [ %i1 + 4 ], %g2
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
2008154: 80 a1 00 18 cmp %g4, %i0
2008158: 08 80 00 33 bleu 2008224 <rtems_io_register_driver+0x118>
200815c: 01 00 00 00 nop
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2008160: 05 00 80 68 sethi %hi(0x201a000), %g2
2008164: c8 00 a0 48 ld [ %g2 + 0x48 ], %g4 ! 201a048 <_Thread_Dispatch_disable_level>
2008168: 88 01 20 01 inc %g4
200816c: c8 20 a0 48 st %g4, [ %g2 + 0x48 ]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
2008170: 80 a6 20 00 cmp %i0, 0
2008174: 12 80 00 30 bne 2008234 <rtems_io_register_driver+0x128>
2008178: 1b 00 80 68 sethi %hi(0x201a000), %o5
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
200817c: c8 00 63 0c ld [ %g1 + 0x30c ], %g4
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
2008180: 80 a1 20 00 cmp %g4, 0
2008184: 22 80 00 3d be,a 2008278 <rtems_io_register_driver+0x16c><== NEVER TAKEN
2008188: c0 26 80 00 clr [ %i2 ] <== NOT EXECUTED
200818c: 10 80 00 05 b 20081a0 <rtems_io_register_driver+0x94>
2008190: c2 03 63 10 ld [ %o5 + 0x310 ], %g1
2008194: 80 a1 00 18 cmp %g4, %i0
2008198: 08 80 00 0a bleu 20081c0 <rtems_io_register_driver+0xb4>
200819c: 82 00 60 18 add %g1, 0x18, %g1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
20081a0: c4 00 40 00 ld [ %g1 ], %g2
20081a4: 80 a0 a0 00 cmp %g2, 0
20081a8: 32 bf ff fb bne,a 2008194 <rtems_io_register_driver+0x88>
20081ac: b0 06 20 01 inc %i0
20081b0: c4 00 60 04 ld [ %g1 + 4 ], %g2
20081b4: 80 a0 a0 00 cmp %g2, 0
20081b8: 32 bf ff f7 bne,a 2008194 <rtems_io_register_driver+0x88>
20081bc: b0 06 20 01 inc %i0
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
20081c0: 80 a1 00 18 cmp %g4, %i0
20081c4: 02 80 00 2d be 2008278 <rtems_io_register_driver+0x16c>
20081c8: f0 26 80 00 st %i0, [ %i2 ]
20081cc: 83 2e 20 03 sll %i0, 3, %g1
20081d0: 85 2e 20 05 sll %i0, 5, %g2
20081d4: 84 20 80 01 sub %g2, %g1, %g2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20081d8: c8 03 63 10 ld [ %o5 + 0x310 ], %g4
20081dc: da 00 c0 00 ld [ %g3 ], %o5
20081e0: 82 01 00 02 add %g4, %g2, %g1
20081e4: da 21 00 02 st %o5, [ %g4 + %g2 ]
20081e8: c4 00 e0 04 ld [ %g3 + 4 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
20081ec: b2 10 20 00 clr %i1
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20081f0: c4 20 60 04 st %g2, [ %g1 + 4 ]
20081f4: c4 00 e0 08 ld [ %g3 + 8 ], %g2
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
20081f8: b4 10 20 00 clr %i2
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
20081fc: c4 20 60 08 st %g2, [ %g1 + 8 ]
2008200: c4 00 e0 0c ld [ %g3 + 0xc ], %g2
2008204: c4 20 60 0c st %g2, [ %g1 + 0xc ]
2008208: c4 00 e0 10 ld [ %g3 + 0x10 ], %g2
200820c: c4 20 60 10 st %g2, [ %g1 + 0x10 ]
2008210: c4 00 e0 14 ld [ %g3 + 0x14 ], %g2
_Thread_Enable_dispatch();
2008214: 40 00 07 33 call 2009ee0 <_Thread_Enable_dispatch>
2008218: c4 20 60 14 st %g2, [ %g1 + 0x14 ]
return rtems_io_initialize( major, 0, NULL );
200821c: 40 00 22 4b call 2010b48 <rtems_io_initialize>
2008220: 81 e8 00 00 restore
}
2008224: 81 c7 e0 08 ret
2008228: 91 e8 20 0a restore %g0, 0xa, %o0
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
200822c: 81 c7 e0 08 ret
2008230: 91 e8 20 12 restore %g0, 0x12, %o0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
2008234: c2 03 63 10 ld [ %o5 + 0x310 ], %g1
2008238: 89 2e 20 05 sll %i0, 5, %g4
200823c: 85 2e 20 03 sll %i0, 3, %g2
2008240: 84 21 00 02 sub %g4, %g2, %g2
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008244: c8 00 40 02 ld [ %g1 + %g2 ], %g4
2008248: 80 a1 20 00 cmp %g4, 0
200824c: 02 80 00 0f be 2008288 <rtems_io_register_driver+0x17c>
2008250: 82 00 40 02 add %g1, %g2, %g1
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
2008254: 40 00 07 23 call 2009ee0 <_Thread_Enable_dispatch>
2008258: b0 10 20 0c mov 0xc, %i0
return RTEMS_RESOURCE_IN_USE;
200825c: 81 c7 e0 08 ret
2008260: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008264: 80 a0 a0 00 cmp %g2, 0
2008268: 32 bf ff bc bne,a 2008158 <rtems_io_register_driver+0x4c>
200826c: 80 a1 00 18 cmp %g4, %i0
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
2008270: 81 c7 e0 08 ret
2008274: 91 e8 20 09 restore %g0, 9, %o0
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
2008278: 40 00 07 1a call 2009ee0 <_Thread_Enable_dispatch>
200827c: b0 10 20 05 mov 5, %i0
return sc;
2008280: 81 c7 e0 08 ret
2008284: 81 e8 00 00 restore
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
2008288: c2 00 60 04 ld [ %g1 + 4 ], %g1
200828c: 80 a0 60 00 cmp %g1, 0
2008290: 12 bf ff f1 bne 2008254 <rtems_io_register_driver+0x148>
2008294: 01 00 00 00 nop
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
2008298: 10 bf ff d0 b 20081d8 <rtems_io_register_driver+0xcc>
200829c: f0 26 80 00 st %i0, [ %i2 ]
02009814 <rtems_iterate_over_all_threads>:
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
{
2009814: 9d e3 bf a0 save %sp, -96, %sp
uint32_t i;
uint32_t api_index;
Thread_Control *the_thread;
Objects_Information *information;
if ( !routine )
2009818: 80 a6 20 00 cmp %i0, 0
200981c: 02 80 00 23 be 20098a8 <rtems_iterate_over_all_threads+0x94><== NEVER TAKEN
2009820: 25 00 80 9a sethi %hi(0x2026800), %l2
2009824: a4 14 a3 60 or %l2, 0x360, %l2 ! 2026b60 <_Objects_Information_table+0x4>
#endif
#include <rtems/system.h>
#include <rtems/score/thread.h>
void rtems_iterate_over_all_threads(rtems_per_thread_routine routine)
2009828: a6 04 a0 0c add %l2, 0xc, %l3
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
if ( !_Objects_Information_table[ api_index ] )
200982c: c2 04 80 00 ld [ %l2 ], %g1
2009830: 80 a0 60 00 cmp %g1, 0
2009834: 22 80 00 1a be,a 200989c <rtems_iterate_over_all_threads+0x88>
2009838: a4 04 a0 04 add %l2, 4, %l2
continue;
information = _Objects_Information_table[ api_index ][ 1 ];
200983c: e2 00 60 04 ld [ %g1 + 4 ], %l1
if ( !information )
2009840: 80 a4 60 00 cmp %l1, 0
2009844: 22 80 00 16 be,a 200989c <rtems_iterate_over_all_threads+0x88>
2009848: a4 04 a0 04 add %l2, 4, %l2
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
200984c: c2 14 60 10 lduh [ %l1 + 0x10 ], %g1
2009850: 84 90 60 00 orcc %g1, 0, %g2
2009854: 22 80 00 12 be,a 200989c <rtems_iterate_over_all_threads+0x88><== NEVER TAKEN
2009858: a4 04 a0 04 add %l2, 4, %l2 <== NOT EXECUTED
200985c: a0 10 20 01 mov 1, %l0
the_thread = (Thread_Control *)information->local_table[ i ];
2009860: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
2009864: 83 2c 20 02 sll %l0, 2, %g1
2009868: c2 00 c0 01 ld [ %g3 + %g1 ], %g1
if ( !the_thread )
200986c: 90 90 60 00 orcc %g1, 0, %o0
2009870: 02 80 00 05 be 2009884 <rtems_iterate_over_all_threads+0x70>
2009874: a0 04 20 01 inc %l0
continue;
(*routine)(the_thread);
2009878: 9f c6 00 00 call %i0
200987c: 01 00 00 00 nop
2009880: c4 14 60 10 lduh [ %l1 + 0x10 ], %g2
information = _Objects_Information_table[ api_index ][ 1 ];
if ( !information )
continue;
for ( i=1 ; i <= information->maximum ; i++ ) {
2009884: 83 28 a0 10 sll %g2, 0x10, %g1
2009888: 83 30 60 10 srl %g1, 0x10, %g1
200988c: 80 a0 40 10 cmp %g1, %l0
2009890: 3a bf ff f5 bcc,a 2009864 <rtems_iterate_over_all_threads+0x50>
2009894: c6 04 60 1c ld [ %l1 + 0x1c ], %g3
2009898: a4 04 a0 04 add %l2, 4, %l2
Objects_Information *information;
if ( !routine )
return;
for ( api_index = 1 ; api_index <= OBJECTS_APIS_LAST ; api_index++ ) {
200989c: 80 a4 80 13 cmp %l2, %l3
20098a0: 32 bf ff e4 bne,a 2009830 <rtems_iterate_over_all_threads+0x1c>
20098a4: c2 04 80 00 ld [ %l2 ], %g1
20098a8: 81 c7 e0 08 ret
20098ac: 81 e8 00 00 restore
020082cc <rtems_object_get_class_information>:
rtems_status_code rtems_object_get_class_information(
int the_api,
int the_class,
rtems_object_api_class_information *info
)
{
20082cc: 9d e3 bf a0 save %sp, -96, %sp
20082d0: 90 10 00 18 mov %i0, %o0
int i;
/*
* Validate parameters and look up information structure.
*/
if ( !info )
20082d4: 80 a6 a0 00 cmp %i2, 0
20082d8: 02 80 00 20 be 2008358 <rtems_object_get_class_information+0x8c>
20082dc: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
obj_info = _Objects_Get_information( the_api, the_class );
20082e0: 92 10 00 19 mov %i1, %o1
20082e4: 40 00 07 77 call 200a0c0 <_Objects_Get_information>
20082e8: b0 10 20 0a mov 0xa, %i0
if ( !obj_info )
20082ec: 80 a2 20 00 cmp %o0, 0
20082f0: 02 80 00 1a be 2008358 <rtems_object_get_class_information+0x8c>
20082f4: 01 00 00 00 nop
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
20082f8: c4 02 20 0c ld [ %o0 + 0xc ], %g2
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
20082fc: c8 12 20 10 lduh [ %o0 + 0x10 ], %g4
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
2008300: c6 02 20 08 ld [ %o0 + 8 ], %g3
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
2008304: c2 0a 20 12 ldub [ %o0 + 0x12 ], %g1
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
2008308: c4 26 a0 04 st %g2, [ %i2 + 4 ]
return RTEMS_INVALID_NUMBER;
/*
* Return information about this object class to the user.
*/
info->minimum_id = obj_info->minimum_id;
200830c: c6 26 80 00 st %g3, [ %i2 ]
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
2008310: c2 2e a0 0c stb %g1, [ %i2 + 0xc ]
info->maximum = obj_info->maximum;
2008314: c8 26 a0 08 st %g4, [ %i2 + 8 ]
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008318: 80 a1 20 00 cmp %g4, 0
200831c: 02 80 00 0d be 2008350 <rtems_object_get_class_information+0x84><== NEVER TAKEN
2008320: 84 10 20 00 clr %g2
2008324: da 02 20 1c ld [ %o0 + 0x1c ], %o5
2008328: 86 10 20 01 mov 1, %g3
200832c: 82 10 20 01 mov 1, %g1
if ( !obj_info->local_table[i] )
2008330: 87 28 e0 02 sll %g3, 2, %g3
2008334: c6 03 40 03 ld [ %o5 + %g3 ], %g3
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008338: 82 00 60 01 inc %g1
if ( !obj_info->local_table[i] )
unallocated++;
200833c: 80 a0 00 03 cmp %g0, %g3
2008340: 84 60 bf ff subx %g2, -1, %g2
info->minimum_id = obj_info->minimum_id;
info->maximum_id = obj_info->maximum_id;
info->auto_extend = obj_info->auto_extend;
info->maximum = obj_info->maximum;
for ( unallocated=0, i=1 ; i <= info->maximum ; i++ )
2008344: 80 a1 00 01 cmp %g4, %g1
2008348: 1a bf ff fa bcc 2008330 <rtems_object_get_class_information+0x64>
200834c: 86 10 00 01 mov %g1, %g3
if ( !obj_info->local_table[i] )
unallocated++;
info->unallocated = unallocated;
2008350: c4 26 a0 10 st %g2, [ %i2 + 0x10 ]
return RTEMS_SUCCESSFUL;
2008354: b0 10 20 00 clr %i0
}
2008358: 81 c7 e0 08 ret
200835c: 81 e8 00 00 restore
020142b4 <rtems_partition_create>:
uint32_t length,
uint32_t buffer_size,
rtems_attribute attribute_set,
rtems_id *id
)
{
20142b4: 9d e3 bf a0 save %sp, -96, %sp
20142b8: a0 10 00 18 mov %i0, %l0
register Partition_Control *the_partition;
if ( !rtems_is_name_valid( name ) )
20142bc: 80 a4 20 00 cmp %l0, 0
20142c0: 02 80 00 34 be 2014390 <rtems_partition_create+0xdc>
20142c4: b0 10 20 03 mov 3, %i0
return RTEMS_INVALID_NAME;
if ( !starting_address )
20142c8: 80 a6 60 00 cmp %i1, 0
20142cc: 02 80 00 31 be 2014390 <rtems_partition_create+0xdc>
20142d0: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !id )
20142d4: 80 a7 60 00 cmp %i5, 0
20142d8: 02 80 00 2e be 2014390 <rtems_partition_create+0xdc> <== NEVER TAKEN
20142dc: 80 a6 e0 00 cmp %i3, 0
return RTEMS_INVALID_ADDRESS;
if ( length == 0 || buffer_size == 0 || length < buffer_size ||
20142e0: 02 80 00 2e be 2014398 <rtems_partition_create+0xe4>
20142e4: 80 a6 a0 00 cmp %i2, 0
20142e8: 02 80 00 2c be 2014398 <rtems_partition_create+0xe4>
20142ec: 80 a6 80 1b cmp %i2, %i3
20142f0: 0a 80 00 28 bcs 2014390 <rtems_partition_create+0xdc>
20142f4: b0 10 20 08 mov 8, %i0
20142f8: 80 8e e0 07 btst 7, %i3
20142fc: 12 80 00 25 bne 2014390 <rtems_partition_create+0xdc>
2014300: 80 8e 60 07 btst 7, %i1
!_Partition_Is_buffer_size_aligned( buffer_size ) )
return RTEMS_INVALID_SIZE;
if ( !_Addresses_Is_aligned( starting_address ) )
2014304: 12 80 00 23 bne 2014390 <rtems_partition_create+0xdc>
2014308: b0 10 20 09 mov 9, %i0
201430c: 03 00 80 f2 sethi %hi(0x203c800), %g1
2014310: c4 00 61 88 ld [ %g1 + 0x188 ], %g2 ! 203c988 <_Thread_Dispatch_disable_level>
2014314: 84 00 a0 01 inc %g2
2014318: c4 20 61 88 st %g2, [ %g1 + 0x188 ]
* This function allocates a partition control block from
* the inactive chain of free partition control blocks.
*/
RTEMS_INLINE_ROUTINE Partition_Control *_Partition_Allocate ( void )
{
return (Partition_Control *) _Objects_Allocate( &_Partition_Information );
201431c: 25 00 80 f1 sethi %hi(0x203c400), %l2
2014320: 40 00 13 18 call 2018f80 <_Objects_Allocate>
2014324: 90 14 a3 94 or %l2, 0x394, %o0 ! 203c794 <_Partition_Information>
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
2014328: a2 92 20 00 orcc %o0, 0, %l1
201432c: 02 80 00 1d be 20143a0 <rtems_partition_create+0xec>
2014330: 92 10 00 1b mov %i3, %o1
#endif
the_partition->starting_address = starting_address;
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
2014334: f8 24 60 1c st %i4, [ %l1 + 0x1c ]
_Thread_Enable_dispatch();
return RTEMS_TOO_MANY;
}
#endif
the_partition->starting_address = starting_address;
2014338: f2 24 60 10 st %i1, [ %l1 + 0x10 ]
the_partition->length = length;
201433c: f4 24 60 14 st %i2, [ %l1 + 0x14 ]
the_partition->buffer_size = buffer_size;
2014340: f6 24 60 18 st %i3, [ %l1 + 0x18 ]
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
2014344: c0 24 60 20 clr [ %l1 + 0x20 ]
_Chain_Initialize( &the_partition->Memory, starting_address,
length / buffer_size, buffer_size );
2014348: 40 00 62 5e call 202ccc0 <.udiv>
201434c: 90 10 00 1a mov %i2, %o0
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014350: 92 10 00 19 mov %i1, %o1
length / buffer_size, buffer_size );
2014354: 94 10 00 08 mov %o0, %o2
the_partition->length = length;
the_partition->buffer_size = buffer_size;
the_partition->attribute_set = attribute_set;
the_partition->number_of_used_blocks = 0;
_Chain_Initialize( &the_partition->Memory, starting_address,
2014358: 96 10 00 1b mov %i3, %o3
201435c: b8 04 60 24 add %l1, 0x24, %i4
2014360: 40 00 0c d9 call 20176c4 <_Chain_Initialize>
2014364: 90 10 00 1c mov %i4, %o0
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014368: c4 14 60 0a lduh [ %l1 + 0xa ], %g2
);
#endif
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
201436c: a4 14 a3 94 or %l2, 0x394, %l2
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014370: c6 04 a0 1c ld [ %l2 + 0x1c ], %g3
Objects_Information *information,
Objects_Control *the_object,
Objects_Name name
)
{
_Objects_Set_local_object(
2014374: c2 04 60 08 ld [ %l1 + 8 ], %g1
#if defined(RTEMS_DEBUG)
if ( index > information->maximum )
return;
#endif
information->local_table[ index ] = the_object;
2014378: 85 28 a0 02 sll %g2, 2, %g2
201437c: e2 20 c0 02 st %l1, [ %g3 + %g2 ]
information,
_Objects_Get_index( the_object->id ),
the_object
);
the_object->name = name;
2014380: e0 24 60 0c st %l0, [ %l1 + 0xc ]
&_Partition_Information,
&the_partition->Object,
(Objects_Name) name
);
*id = the_partition->Object.id;
2014384: c2 27 40 00 st %g1, [ %i5 ]
name,
0 /* Not used */
);
#endif
_Thread_Enable_dispatch();
2014388: 40 00 16 f3 call 2019f54 <_Thread_Enable_dispatch>
201438c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2014390: 81 c7 e0 08 ret
2014394: 81 e8 00 00 restore
}
2014398: 81 c7 e0 08 ret
201439c: 91 e8 20 08 restore %g0, 8, %o0
_Thread_Disable_dispatch(); /* prevents deletion */
the_partition = _Partition_Allocate();
if ( !the_partition ) {
_Thread_Enable_dispatch();
20143a0: 40 00 16 ed call 2019f54 <_Thread_Enable_dispatch>
20143a4: b0 10 20 05 mov 5, %i0
return RTEMS_TOO_MANY;
20143a8: 81 c7 e0 08 ret
20143ac: 81 e8 00 00 restore
02007920 <rtems_rate_monotonic_period>:
rtems_status_code rtems_rate_monotonic_period(
rtems_id id,
rtems_interval length
)
{
2007920: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Rate_monotonic_Control *)
_Objects_Get( &_Rate_monotonic_Information, id, location );
2007924: 11 00 80 78 sethi %hi(0x201e000), %o0
2007928: 92 10 00 18 mov %i0, %o1
200792c: 90 12 23 e4 or %o0, 0x3e4, %o0
2007930: 40 00 09 7a call 2009f18 <_Objects_Get>
2007934: 94 07 bf fc add %fp, -4, %o2
rtems_rate_monotonic_period_states local_state;
ISR_Level level;
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
2007938: c2 07 bf fc ld [ %fp + -4 ], %g1
200793c: 80 a0 60 00 cmp %g1, 0
2007940: 02 80 00 04 be 2007950 <rtems_rate_monotonic_period+0x30>
2007944: a0 10 00 08 mov %o0, %l0
#endif
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2007948: 81 c7 e0 08 ret
200794c: 91 e8 20 04 restore %g0, 4, %o0
the_period = _Rate_monotonic_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Thread_Is_executing( the_period->owner ) ) {
2007950: c4 02 20 40 ld [ %o0 + 0x40 ], %g2
RTEMS_INLINE_ROUTINE bool _Thread_Is_executing (
const Thread_Control *the_thread
)
{
return ( the_thread == _Thread_Executing );
2007954: 23 00 80 79 sethi %hi(0x201e400), %l1
2007958: a2 14 63 bc or %l1, 0x3bc, %l1 ! 201e7bc <_Per_CPU_Information>
200795c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007960: 80 a0 80 01 cmp %g2, %g1
2007964: 02 80 00 06 be 200797c <rtems_rate_monotonic_period+0x5c>
2007968: 80 a6 60 00 cmp %i1, 0
_Thread_Enable_dispatch();
200796c: 40 00 0b fb call 200a958 <_Thread_Enable_dispatch>
2007970: b0 10 20 17 mov 0x17, %i0
return RTEMS_NOT_OWNER_OF_RESOURCE;
2007974: 81 c7 e0 08 ret
2007978: 81 e8 00 00 restore
}
if ( length == RTEMS_PERIOD_STATUS ) {
200797c: 12 80 00 0f bne 20079b8 <rtems_rate_monotonic_period+0x98>
2007980: 01 00 00 00 nop
switch ( the_period->state ) {
2007984: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
2007988: 80 a0 60 04 cmp %g1, 4
200798c: 08 80 00 06 bleu 20079a4 <rtems_rate_monotonic_period+0x84><== ALWAYS TAKEN
2007990: b0 10 20 00 clr %i0
the_period->state = RATE_MONOTONIC_ACTIVE;
the_period->next_length = length;
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007994: 40 00 0b f1 call 200a958 <_Thread_Enable_dispatch>
2007998: 01 00 00 00 nop
return RTEMS_TIMEOUT;
200799c: 81 c7 e0 08 ret
20079a0: 81 e8 00 00 restore
_Thread_Enable_dispatch();
return RTEMS_NOT_OWNER_OF_RESOURCE;
}
if ( length == RTEMS_PERIOD_STATUS ) {
switch ( the_period->state ) {
20079a4: 83 28 60 02 sll %g1, 2, %g1
20079a8: 05 00 80 71 sethi %hi(0x201c400), %g2
20079ac: 84 10 a1 fc or %g2, 0x1fc, %g2 ! 201c5fc <CSWTCH.2>
20079b0: 10 bf ff f9 b 2007994 <rtems_rate_monotonic_period+0x74>
20079b4: f0 00 80 01 ld [ %g2 + %g1 ], %i0
}
_Thread_Enable_dispatch();
return( return_value );
}
_ISR_Disable( level );
20079b8: 7f ff ed df call 2003134 <sparc_disable_interrupts>
20079bc: 01 00 00 00 nop
20079c0: a6 10 00 08 mov %o0, %l3
switch ( the_period->state ) {
20079c4: e4 04 20 38 ld [ %l0 + 0x38 ], %l2
20079c8: 80 a4 a0 02 cmp %l2, 2
20079cc: 02 80 00 1d be 2007a40 <rtems_rate_monotonic_period+0x120>
20079d0: 80 a4 a0 04 cmp %l2, 4
20079d4: 02 80 00 37 be 2007ab0 <rtems_rate_monotonic_period+0x190>
20079d8: 80 a4 a0 00 cmp %l2, 0
20079dc: 12 80 00 33 bne 2007aa8 <rtems_rate_monotonic_period+0x188><== NEVER TAKEN
20079e0: 01 00 00 00 nop
case RATE_MONOTONIC_INACTIVE: {
_ISR_Enable( level );
20079e4: 7f ff ed d8 call 2003144 <sparc_enable_interrupts>
20079e8: 01 00 00 00 nop
/*
* Baseline statistics information for the beginning of a period.
*/
_Rate_monotonic_Initiate_statistics( the_period );
20079ec: 7f ff ff 71 call 20077b0 <_Rate_monotonic_Initiate_statistics>
20079f0: 90 10 00 10 mov %l0, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
20079f4: 82 10 20 02 mov 2, %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
20079f8: 92 04 20 10 add %l0, 0x10, %o1
20079fc: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
2007a00: 11 00 80 79 sethi %hi(0x201e400), %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007a04: 03 00 80 1f sethi %hi(0x2007c00), %g1
)
{
the_watchdog->initial = units;
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007a08: 90 12 22 20 or %o0, 0x220, %o0
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007a0c: 82 10 61 fc or %g1, 0x1fc, %g1
the_watchdog->id = id;
2007a10: f0 24 20 30 st %i0, [ %l0 + 0x30 ]
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2007a14: c2 24 20 2c st %g1, [ %l0 + 0x2c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
2007a18: c0 24 20 18 clr [ %l0 + 0x18 ]
the_watchdog->routine = routine;
the_watchdog->id = id;
the_watchdog->user_data = user_data;
2007a1c: c0 24 20 34 clr [ %l0 + 0x34 ]
_Rate_monotonic_Timeout,
id,
NULL
);
the_period->next_length = length;
2007a20: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007a24: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007a28: 40 00 11 2d call 200bedc <_Watchdog_Insert>
2007a2c: b0 10 20 00 clr %i0
_Watchdog_Insert_ticks( &the_period->Timer, length );
_Thread_Enable_dispatch();
2007a30: 40 00 0b ca call 200a958 <_Thread_Enable_dispatch>
2007a34: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2007a38: 81 c7 e0 08 ret
2007a3c: 81 e8 00 00 restore
case RATE_MONOTONIC_ACTIVE:
/*
* Update statistics from the concluding period.
*/
_Rate_monotonic_Update_statistics( the_period );
2007a40: 7f ff ff 78 call 2007820 <_Rate_monotonic_Update_statistics>
2007a44: 90 10 00 10 mov %l0, %o0
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007a48: 82 10 20 01 mov 1, %g1
the_period->next_length = length;
2007a4c: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
/*
* This tells the _Rate_monotonic_Timeout that this task is
* in the process of blocking on the period and that we
* may be changing the length of the next period.
*/
the_period->state = RATE_MONOTONIC_OWNER_IS_BLOCKING;
2007a50: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
the_period->next_length = length;
_ISR_Enable( level );
2007a54: 7f ff ed bc call 2003144 <sparc_enable_interrupts>
2007a58: 90 10 00 13 mov %l3, %o0
_Thread_Executing->Wait.id = the_period->Object.id;
2007a5c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007a60: c4 04 20 08 ld [ %l0 + 8 ], %g2
_Thread_Set_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007a64: 90 10 00 01 mov %g1, %o0
2007a68: 13 00 00 10 sethi %hi(0x4000), %o1
2007a6c: 40 00 0e 4e call 200b3a4 <_Thread_Set_state>
2007a70: c4 20 60 20 st %g2, [ %g1 + 0x20 ]
/*
* Did the watchdog timer expire while we were actually blocking
* on it?
*/
_ISR_Disable( level );
2007a74: 7f ff ed b0 call 2003134 <sparc_disable_interrupts>
2007a78: 01 00 00 00 nop
local_state = the_period->state;
2007a7c: e6 04 20 38 ld [ %l0 + 0x38 ], %l3
the_period->state = RATE_MONOTONIC_ACTIVE;
2007a80: e4 24 20 38 st %l2, [ %l0 + 0x38 ]
_ISR_Enable( level );
2007a84: 7f ff ed b0 call 2003144 <sparc_enable_interrupts>
2007a88: 01 00 00 00 nop
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
2007a8c: 80 a4 e0 03 cmp %l3, 3
2007a90: 22 80 00 16 be,a 2007ae8 <rtems_rate_monotonic_period+0x1c8>
2007a94: d0 04 60 0c ld [ %l1 + 0xc ], %o0
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
_Thread_Enable_dispatch();
2007a98: 40 00 0b b0 call 200a958 <_Thread_Enable_dispatch>
2007a9c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2007aa0: 81 c7 e0 08 ret
2007aa4: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007aa8: 81 c7 e0 08 ret <== NOT EXECUTED
2007aac: 91 e8 20 04 restore %g0, 4, %o0 <== NOT EXECUTED
case RATE_MONOTONIC_EXPIRED:
/*
* Update statistics from the concluding period
*/
_Rate_monotonic_Update_statistics( the_period );
2007ab0: 7f ff ff 5c call 2007820 <_Rate_monotonic_Update_statistics>
2007ab4: 90 10 00 10 mov %l0, %o0
_ISR_Enable( level );
2007ab8: 7f ff ed a3 call 2003144 <sparc_enable_interrupts>
2007abc: 90 10 00 13 mov %l3, %o0
the_period->state = RATE_MONOTONIC_ACTIVE;
2007ac0: 82 10 20 02 mov 2, %g1
2007ac4: 92 04 20 10 add %l0, 0x10, %o1
2007ac8: 11 00 80 79 sethi %hi(0x201e400), %o0
the_period->next_length = length;
2007acc: f2 24 20 3c st %i1, [ %l0 + 0x3c ]
2007ad0: 90 12 22 20 or %o0, 0x220, %o0
*/
_Rate_monotonic_Update_statistics( the_period );
_ISR_Enable( level );
the_period->state = RATE_MONOTONIC_ACTIVE;
2007ad4: c2 24 20 38 st %g1, [ %l0 + 0x38 ]
Watchdog_Control *the_watchdog,
Watchdog_Interval units
)
{
the_watchdog->initial = units;
2007ad8: f2 24 20 1c st %i1, [ %l0 + 0x1c ]
_Watchdog_Insert( &_Watchdog_Ticks_chain, the_watchdog );
2007adc: 40 00 11 00 call 200bedc <_Watchdog_Insert>
2007ae0: b0 10 20 06 mov 6, %i0
2007ae4: 30 bf ff ac b,a 2007994 <rtems_rate_monotonic_period+0x74>
/*
* If it did, then we want to unblock ourself and continue as
* if nothing happen. The period was reset in the timeout routine.
*/
if ( local_state == RATE_MONOTONIC_EXPIRED_WHILE_BLOCKING )
_Thread_Clear_state( _Thread_Executing, STATES_WAITING_FOR_PERIOD );
2007ae8: 40 00 0a 8f call 200a524 <_Thread_Clear_state>
2007aec: 13 00 00 10 sethi %hi(0x4000), %o1
2007af0: 30 bf ff ea b,a 2007a98 <rtems_rate_monotonic_period+0x178>
02007af4 <rtems_rate_monotonic_report_statistics_with_plugin>:
*/
void rtems_rate_monotonic_report_statistics_with_plugin(
void *context,
rtems_printk_plugin_t print
)
{
2007af4: 9d e3 bf 30 save %sp, -208, %sp
rtems_id id;
rtems_rate_monotonic_period_statistics the_stats;
rtems_rate_monotonic_period_status the_status;
char name[5];
if ( !print )
2007af8: 80 a6 60 00 cmp %i1, 0
2007afc: 02 80 00 4c be 2007c2c <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
2007b00: 90 10 00 18 mov %i0, %o0
return;
(*print)( context, "Period information by period\n" );
2007b04: 13 00 80 71 sethi %hi(0x201c400), %o1
2007b08: 9f c6 40 00 call %i1
2007b0c: 92 12 62 10 or %o1, 0x210, %o1 ! 201c610 <CSWTCH.2+0x14>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
(*print)( context, "--- CPU times are in seconds ---\n" );
2007b10: 90 10 00 18 mov %i0, %o0
2007b14: 13 00 80 71 sethi %hi(0x201c400), %o1
2007b18: 9f c6 40 00 call %i1
2007b1c: 92 12 62 30 or %o1, 0x230, %o1 ! 201c630 <CSWTCH.2+0x34>
(*print)( context, "--- Wall times are in seconds ---\n" );
2007b20: 90 10 00 18 mov %i0, %o0
2007b24: 13 00 80 71 sethi %hi(0x201c400), %o1
2007b28: 9f c6 40 00 call %i1
2007b2c: 92 12 62 58 or %o1, 0x258, %o1 ! 201c658 <CSWTCH.2+0x5c>
Be sure to test the various cases.
(*print)( context,"\
1234567890123456789012345678901234567890123456789012345678901234567890123456789\
\n");
*/
(*print)( context, " ID OWNER COUNT MISSED "
2007b30: 90 10 00 18 mov %i0, %o0
2007b34: 13 00 80 71 sethi %hi(0x201c400), %o1
2007b38: 9f c6 40 00 call %i1
2007b3c: 92 12 62 80 or %o1, 0x280, %o1 ! 201c680 <CSWTCH.2+0x84>
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
" "
#endif
" WALL TIME\n"
);
(*print)( context, " "
2007b40: 90 10 00 18 mov %i0, %o0
2007b44: 13 00 80 71 sethi %hi(0x201c400), %o1
2007b48: 9f c6 40 00 call %i1
2007b4c: 92 12 62 d0 or %o1, 0x2d0, %o1 ! 201c6d0 <CSWTCH.2+0xd4>
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007b50: 23 00 80 78 sethi %hi(0x201e000), %l1
2007b54: a2 14 63 e4 or %l1, 0x3e4, %l1 ! 201e3e4 <_Rate_monotonic_Information>
2007b58: e0 04 60 08 ld [ %l1 + 8 ], %l0
2007b5c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007b60: 80 a4 00 01 cmp %l0, %g1
2007b64: 18 80 00 32 bgu 2007c2c <rtems_rate_monotonic_report_statistics_with_plugin+0x138><== NEVER TAKEN
2007b68: 2f 00 80 71 sethi %hi(0x201c400), %l7
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
(*print)( context,
2007b6c: 39 00 80 71 sethi %hi(0x201c400), %i4
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007b70: 2b 00 80 6e sethi %hi(0x201b800), %l5
2007b74: a4 07 bf a0 add %fp, -96, %l2
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
if ( status != RTEMS_SUCCESSFUL )
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
2007b78: ba 07 bf d8 add %fp, -40, %i5
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007b7c: a6 07 bf f8 add %fp, -8, %l3
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007b80: ae 15 e3 20 or %l7, 0x320, %l7
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
2007b84: ac 07 bf b8 add %fp, -72, %l6
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007b88: a8 07 bf f0 add %fp, -16, %l4
(*print)( context,
2007b8c: b8 17 23 38 or %i4, 0x338, %i4
{
#ifndef __RTEMS_USE_TICKS_FOR_STATISTICS__
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
2007b90: b4 07 bf d0 add %fp, -48, %i2
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
(*print)( context, "\n" );
2007b94: 10 80 00 06 b 2007bac <rtems_rate_monotonic_report_statistics_with_plugin+0xb8>
2007b98: aa 15 61 28 or %l5, 0x128, %l5
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007b9c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007ba0: 80 a0 40 10 cmp %g1, %l0
2007ba4: 0a 80 00 22 bcs 2007c2c <rtems_rate_monotonic_report_statistics_with_plugin+0x138>
2007ba8: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_get_statistics( id, &the_stats );
2007bac: 90 10 00 10 mov %l0, %o0
2007bb0: 40 00 1a 44 call 200e4c0 <rtems_rate_monotonic_get_statistics>
2007bb4: 92 10 00 12 mov %l2, %o1
if ( status != RTEMS_SUCCESSFUL )
2007bb8: 80 a2 20 00 cmp %o0, 0
2007bbc: 32 bf ff f8 bne,a 2007b9c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2007bc0: c2 04 60 0c ld [ %l1 + 0xc ], %g1
continue;
/* If the above passed, so should this but check it anyway */
status = rtems_rate_monotonic_get_status( id, &the_status );
2007bc4: 92 10 00 1d mov %i5, %o1
2007bc8: 40 00 1a 6d call 200e57c <rtems_rate_monotonic_get_status>
2007bcc: 90 10 00 10 mov %l0, %o0
#if defined(RTEMS_DEBUG)
if ( status != RTEMS_SUCCESSFUL )
continue;
#endif
rtems_object_get_name( the_status.owner, sizeof(name), name );
2007bd0: d0 07 bf d8 ld [ %fp + -40 ], %o0
2007bd4: 94 10 00 13 mov %l3, %o2
2007bd8: 40 00 00 b9 call 2007ebc <rtems_object_get_name>
2007bdc: 92 10 20 05 mov 5, %o1
/*
* Print part of report line that is not dependent on granularity
*/
(*print)( context,
2007be0: d8 1f bf a0 ldd [ %fp + -96 ], %o4
2007be4: 92 10 00 17 mov %l7, %o1
2007be8: 94 10 00 10 mov %l0, %o2
2007bec: 90 10 00 18 mov %i0, %o0
2007bf0: 9f c6 40 00 call %i1
2007bf4: 96 10 00 13 mov %l3, %o3
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007bf8: c2 07 bf a0 ld [ %fp + -96 ], %g1
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007bfc: 94 10 00 14 mov %l4, %o2
2007c00: 90 10 00 16 mov %l6, %o0
);
/*
* If the count is zero, don't print statistics
*/
if (the_stats.count == 0) {
2007c04: 80 a0 60 00 cmp %g1, 0
2007c08: 12 80 00 0b bne 2007c34 <rtems_rate_monotonic_report_statistics_with_plugin+0x140>
2007c0c: 92 10 00 15 mov %l5, %o1
(*print)( context, "\n" );
2007c10: 9f c6 40 00 call %i1
2007c14: 90 10 00 18 mov %i0, %o0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007c18: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007c1c: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007c20: 80 a0 40 10 cmp %g1, %l0
2007c24: 1a bf ff e3 bcc 2007bb0 <rtems_rate_monotonic_report_statistics_with_plugin+0xbc><== ALWAYS TAKEN
2007c28: 90 10 00 10 mov %l0, %o0
2007c2c: 81 c7 e0 08 ret
2007c30: 81 e8 00 00 restore
struct timespec cpu_average;
struct timespec *min_cpu = &the_stats.min_cpu_time;
struct timespec *max_cpu = &the_stats.max_cpu_time;
struct timespec *total_cpu = &the_stats.total_cpu_time;
_Timespec_Divide_by_integer( total_cpu, the_stats.count, &cpu_average );
2007c34: 40 00 0f 6e call 200b9ec <_Timespec_Divide_by_integer>
2007c38: 92 10 00 01 mov %g1, %o1
(*print)( context,
2007c3c: d0 07 bf ac ld [ %fp + -84 ], %o0
2007c40: 40 00 47 2f call 20198fc <.div>
2007c44: 92 10 23 e8 mov 0x3e8, %o1
2007c48: 96 10 00 08 mov %o0, %o3
2007c4c: d0 07 bf b4 ld [ %fp + -76 ], %o0
2007c50: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007c54: 40 00 47 2a call 20198fc <.div>
2007c58: 92 10 23 e8 mov 0x3e8, %o1
2007c5c: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007c60: b6 10 00 08 mov %o0, %i3
2007c64: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007c68: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007c6c: 40 00 47 24 call 20198fc <.div>
2007c70: 92 10 23 e8 mov 0x3e8, %o1
2007c74: d8 07 bf b0 ld [ %fp + -80 ], %o4
2007c78: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007c7c: d4 07 bf a8 ld [ %fp + -88 ], %o2
2007c80: 9a 10 00 1b mov %i3, %o5
2007c84: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007c88: 92 10 00 1c mov %i4, %o1
2007c8c: 9f c6 40 00 call %i1
2007c90: 90 10 00 18 mov %i0, %o0
struct timespec wall_average;
struct timespec *min_wall = &the_stats.min_wall_time;
struct timespec *max_wall = &the_stats.max_wall_time;
struct timespec *total_wall = &the_stats.total_wall_time;
_Timespec_Divide_by_integer(total_wall, the_stats.count, &wall_average);
2007c94: d2 07 bf a0 ld [ %fp + -96 ], %o1
2007c98: 94 10 00 14 mov %l4, %o2
2007c9c: 40 00 0f 54 call 200b9ec <_Timespec_Divide_by_integer>
2007ca0: 90 10 00 1a mov %i2, %o0
(*print)( context,
2007ca4: d0 07 bf c4 ld [ %fp + -60 ], %o0
2007ca8: 40 00 47 15 call 20198fc <.div>
2007cac: 92 10 23 e8 mov 0x3e8, %o1
2007cb0: 96 10 00 08 mov %o0, %o3
2007cb4: d0 07 bf cc ld [ %fp + -52 ], %o0
2007cb8: d6 27 bf 9c st %o3, [ %fp + -100 ]
2007cbc: 40 00 47 10 call 20198fc <.div>
2007cc0: 92 10 23 e8 mov 0x3e8, %o1
2007cc4: c2 07 bf f0 ld [ %fp + -16 ], %g1
2007cc8: b6 10 00 08 mov %o0, %i3
2007ccc: d0 07 bf f4 ld [ %fp + -12 ], %o0
2007cd0: 92 10 23 e8 mov 0x3e8, %o1
2007cd4: 40 00 47 0a call 20198fc <.div>
2007cd8: c2 23 a0 5c st %g1, [ %sp + 0x5c ]
2007cdc: d4 07 bf c0 ld [ %fp + -64 ], %o2
2007ce0: d6 07 bf 9c ld [ %fp + -100 ], %o3
2007ce4: d8 07 bf c8 ld [ %fp + -56 ], %o4
2007ce8: d0 23 a0 60 st %o0, [ %sp + 0x60 ]
2007cec: 13 00 80 71 sethi %hi(0x201c400), %o1
2007cf0: 90 10 00 18 mov %i0, %o0
2007cf4: 92 12 63 58 or %o1, 0x358, %o1
2007cf8: 9f c6 40 00 call %i1
2007cfc: 9a 10 00 1b mov %i3, %o5
/*
* Cycle through all possible ids and try to report on each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007d00: 10 bf ff a7 b 2007b9c <rtems_rate_monotonic_report_statistics_with_plugin+0xa8>
2007d04: c2 04 60 0c ld [ %l1 + 0xc ], %g1
02007d24 <rtems_rate_monotonic_reset_all_statistics>:
/*
* rtems_rate_monotonic_reset_all_statistics
*/
void rtems_rate_monotonic_reset_all_statistics( void )
{
2007d24: 9d e3 bf a0 save %sp, -96, %sp
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
2007d28: 03 00 80 79 sethi %hi(0x201e400), %g1
2007d2c: c4 00 61 58 ld [ %g1 + 0x158 ], %g2 ! 201e558 <_Thread_Dispatch_disable_level>
2007d30: 84 00 a0 01 inc %g2
2007d34: c4 20 61 58 st %g2, [ %g1 + 0x158 ]
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007d38: 23 00 80 78 sethi %hi(0x201e000), %l1
2007d3c: a2 14 63 e4 or %l1, 0x3e4, %l1 ! 201e3e4 <_Rate_monotonic_Information>
2007d40: e0 04 60 08 ld [ %l1 + 8 ], %l0
2007d44: c2 04 60 0c ld [ %l1 + 0xc ], %g1
2007d48: 80 a4 00 01 cmp %l0, %g1
2007d4c: 18 80 00 09 bgu 2007d70 <rtems_rate_monotonic_reset_all_statistics+0x4c><== NEVER TAKEN
2007d50: 01 00 00 00 nop
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
status = rtems_rate_monotonic_reset_statistics( id );
2007d54: 40 00 00 0a call 2007d7c <rtems_rate_monotonic_reset_statistics>
2007d58: 90 10 00 10 mov %l0, %o0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007d5c: c2 04 60 0c ld [ %l1 + 0xc ], %g1
id <= _Rate_monotonic_Information.maximum_id ;
id++ ) {
2007d60: a0 04 20 01 inc %l0
/*
* Cycle through all possible ids and try to reset each one. If it
* is a period that is inactive, we just get an error back. No big deal.
*/
for ( id=_Rate_monotonic_Information.minimum_id ;
2007d64: 80 a0 40 10 cmp %g1, %l0
2007d68: 1a bf ff fb bcc 2007d54 <rtems_rate_monotonic_reset_all_statistics+0x30>
2007d6c: 01 00 00 00 nop
}
/*
* Done so exit thread dispatching disabled critical section.
*/
_Thread_Enable_dispatch();
2007d70: 40 00 0a fa call 200a958 <_Thread_Enable_dispatch>
2007d74: 81 e8 00 00 restore
020158dc <rtems_signal_send>:
rtems_status_code rtems_signal_send(
rtems_id id,
rtems_signal_set signal_set
)
{
20158dc: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
RTEMS_API_Control *api;
ASR_Information *asr;
if ( !signal_set )
20158e0: 80 a6 60 00 cmp %i1, 0
20158e4: 12 80 00 04 bne 20158f4 <rtems_signal_send+0x18>
20158e8: 82 10 20 0a mov 0xa, %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20158ec: 81 c7 e0 08 ret
20158f0: 91 e8 00 01 restore %g0, %g1, %o0
ASR_Information *asr;
if ( !signal_set )
return RTEMS_INVALID_NUMBER;
the_thread = _Thread_Get( id, &location );
20158f4: 90 10 00 18 mov %i0, %o0
20158f8: 40 00 11 a5 call 2019f8c <_Thread_Get>
20158fc: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
2015900: c2 07 bf fc ld [ %fp + -4 ], %g1
2015904: 80 a0 60 00 cmp %g1, 0
2015908: 02 80 00 05 be 201591c <rtems_signal_send+0x40>
201590c: a2 10 00 08 mov %o0, %l1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
2015910: 82 10 20 04 mov 4, %g1
}
2015914: 81 c7 e0 08 ret
2015918: 91 e8 00 01 restore %g0, %g1, %o0
the_thread = _Thread_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
api = the_thread->API_Extensions[ THREAD_API_RTEMS ];
201591c: e0 02 21 60 ld [ %o0 + 0x160 ], %l0
asr = &api->Signal;
if ( ! _ASR_Is_null_handler( asr->handler ) ) {
2015920: c2 04 20 0c ld [ %l0 + 0xc ], %g1
2015924: 80 a0 60 00 cmp %g1, 0
2015928: 02 80 00 25 be 20159bc <rtems_signal_send+0xe0>
201592c: 01 00 00 00 nop
if ( asr->is_enabled ) {
2015930: c2 0c 20 08 ldub [ %l0 + 8 ], %g1
2015934: 80 a0 60 00 cmp %g1, 0
2015938: 02 80 00 15 be 201598c <rtems_signal_send+0xb0>
201593c: 01 00 00 00 nop
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
2015940: 7f ff e6 78 call 200f320 <sparc_disable_interrupts>
2015944: 01 00 00 00 nop
*signal_set |= signals;
2015948: c2 04 20 14 ld [ %l0 + 0x14 ], %g1
201594c: b2 10 40 19 or %g1, %i1, %i1
2015950: f2 24 20 14 st %i1, [ %l0 + 0x14 ]
_ISR_Enable( _level );
2015954: 7f ff e6 77 call 200f330 <sparc_enable_interrupts>
2015958: 01 00 00 00 nop
_ASR_Post_signals( signal_set, &asr->signals_posted );
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
201595c: 03 00 80 f2 sethi %hi(0x203c800), %g1
2015960: 82 10 63 f4 or %g1, 0x3f4, %g1 ! 203cbf4 <_Per_CPU_Information>
2015964: c4 00 60 08 ld [ %g1 + 8 ], %g2
2015968: 80 a0 a0 00 cmp %g2, 0
201596c: 02 80 00 0f be 20159a8 <rtems_signal_send+0xcc>
2015970: 01 00 00 00 nop
2015974: c4 00 60 0c ld [ %g1 + 0xc ], %g2
2015978: 80 a4 40 02 cmp %l1, %g2
201597c: 12 80 00 0b bne 20159a8 <rtems_signal_send+0xcc> <== NEVER TAKEN
2015980: 84 10 20 01 mov 1, %g2
_Context_Switch_necessary = true;
2015984: c4 28 60 18 stb %g2, [ %g1 + 0x18 ]
2015988: 30 80 00 08 b,a 20159a8 <rtems_signal_send+0xcc>
rtems_signal_set *signal_set
)
{
ISR_Level _level;
_ISR_Disable( _level );
201598c: 7f ff e6 65 call 200f320 <sparc_disable_interrupts>
2015990: 01 00 00 00 nop
*signal_set |= signals;
2015994: c2 04 20 18 ld [ %l0 + 0x18 ], %g1
2015998: b2 10 40 19 or %g1, %i1, %i1
201599c: f2 24 20 18 st %i1, [ %l0 + 0x18 ]
_ISR_Enable( _level );
20159a0: 7f ff e6 64 call 200f330 <sparc_enable_interrupts>
20159a4: 01 00 00 00 nop
} else {
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
20159a8: 40 00 11 6b call 2019f54 <_Thread_Enable_dispatch>
20159ac: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
20159b0: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20159b4: 81 c7 e0 08 ret
20159b8: 91 e8 00 01 restore %g0, %g1, %o0
_ASR_Post_signals( signal_set, &asr->signals_pending );
}
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
_Thread_Enable_dispatch();
20159bc: 40 00 11 66 call 2019f54 <_Thread_Enable_dispatch>
20159c0: 01 00 00 00 nop
return RTEMS_NOT_DEFINED;
20159c4: 10 bf ff ca b 20158ec <rtems_signal_send+0x10>
20159c8: 82 10 20 0b mov 0xb, %g1 ! b <PROM_START+0xb>
0200e55c <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
200e55c: 9d e3 bf a0 save %sp, -96, %sp
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
200e560: 80 a6 a0 00 cmp %i2, 0
200e564: 02 80 00 43 be 200e670 <rtems_task_mode+0x114>
200e568: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
200e56c: 27 00 80 58 sethi %hi(0x2016000), %l3
200e570: a6 14 e0 4c or %l3, 0x4c, %l3 ! 201604c <_Per_CPU_Information>
200e574: e0 04 e0 0c ld [ %l3 + 0xc ], %l0
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e578: c4 0c 20 74 ldub [ %l0 + 0x74 ], %g2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e57c: c2 04 20 7c ld [ %l0 + 0x7c ], %g1
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e580: 80 a0 00 02 cmp %g0, %g2
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
200e584: e2 04 21 60 ld [ %l0 + 0x160 ], %l1
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
200e588: a4 60 3f ff subx %g0, -1, %l2
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
200e58c: 80 a0 60 00 cmp %g1, 0
200e590: 12 80 00 3a bne 200e678 <rtems_task_mode+0x11c>
200e594: a5 2c a0 08 sll %l2, 8, %l2
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e598: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
200e59c: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e5a0: 7f ff f0 57 call 200a6fc <_CPU_ISR_Get_level>
200e5a4: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e5a8: a9 2d 20 0a sll %l4, 0xa, %l4
200e5ac: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
200e5b0: a4 15 00 12 or %l4, %l2, %l2
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e5b4: 80 8e 61 00 btst 0x100, %i1
200e5b8: 02 80 00 06 be 200e5d0 <rtems_task_mode+0x74>
200e5bc: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e5c0: 82 0e 21 00 and %i0, 0x100, %g1
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
200e5c4: 80 a0 00 01 cmp %g0, %g1
200e5c8: 82 60 3f ff subx %g0, -1, %g1
200e5cc: c2 2c 20 74 stb %g1, [ %l0 + 0x74 ]
if ( mask & RTEMS_TIMESLICE_MASK ) {
200e5d0: 80 8e 62 00 btst 0x200, %i1
200e5d4: 02 80 00 0b be 200e600 <rtems_task_mode+0xa4>
200e5d8: 80 8e 60 0f btst 0xf, %i1
if ( _Modes_Is_timeslice(mode_set) ) {
200e5dc: 80 8e 22 00 btst 0x200, %i0
200e5e0: 22 80 00 07 be,a 200e5fc <rtems_task_mode+0xa0>
200e5e4: c0 24 20 7c clr [ %l0 + 0x7c ]
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
200e5e8: 03 00 80 57 sethi %hi(0x2015c00), %g1
200e5ec: c2 00 61 48 ld [ %g1 + 0x148 ], %g1 ! 2015d48 <_Thread_Ticks_per_timeslice>
200e5f0: c2 24 20 78 st %g1, [ %l0 + 0x78 ]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
200e5f4: 82 10 20 01 mov 1, %g1
200e5f8: c2 24 20 7c st %g1, [ %l0 + 0x7c ]
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
200e5fc: 80 8e 60 0f btst 0xf, %i1
200e600: 12 80 00 42 bne 200e708 <rtems_task_mode+0x1ac>
200e604: 01 00 00 00 nop
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e608: 80 8e 64 00 btst 0x400, %i1
200e60c: 02 80 00 14 be 200e65c <rtems_task_mode+0x100>
200e610: 86 10 20 00 clr %g3
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e614: c4 0c 60 08 ldub [ %l1 + 8 ], %g2
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_asr_disabled (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_ASR_MASK) == RTEMS_NO_ASR;
200e618: b0 0e 24 00 and %i0, 0x400, %i0
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
200e61c: 80 a0 00 18 cmp %g0, %i0
200e620: 82 60 3f ff subx %g0, -1, %g1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
200e624: 80 a0 80 01 cmp %g2, %g1
200e628: 22 80 00 0e be,a 200e660 <rtems_task_mode+0x104>
200e62c: 03 00 80 57 sethi %hi(0x2015c00), %g1
)
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
200e630: 7f ff cf 19 call 2002294 <sparc_disable_interrupts>
200e634: c2 2c 60 08 stb %g1, [ %l1 + 8 ]
_signals = information->signals_pending;
200e638: c4 04 60 18 ld [ %l1 + 0x18 ], %g2
information->signals_pending = information->signals_posted;
200e63c: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
information->signals_posted = _signals;
200e640: c4 24 60 14 st %g2, [ %l1 + 0x14 ]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
200e644: c2 24 60 18 st %g1, [ %l1 + 0x18 ]
information->signals_posted = _signals;
_ISR_Enable( _level );
200e648: 7f ff cf 17 call 20022a4 <sparc_enable_interrupts>
200e64c: 01 00 00 00 nop
asr->is_enabled = is_asr_enabled;
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
200e650: c2 04 60 14 ld [ %l1 + 0x14 ], %g1
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
200e654: 80 a0 00 01 cmp %g0, %g1
200e658: 86 40 20 00 addx %g0, 0, %g3
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) )
200e65c: 03 00 80 57 sethi %hi(0x2015c00), %g1
200e660: c4 00 63 6c ld [ %g1 + 0x36c ], %g2 ! 2015f6c <_System_state_Current>
200e664: 80 a0 a0 03 cmp %g2, 3
200e668: 02 80 00 11 be 200e6ac <rtems_task_mode+0x150> <== ALWAYS TAKEN
200e66c: 82 10 20 00 clr %g1
if ( _Thread_Evaluate_mode() || needs_asr_dispatching )
_Thread_Dispatch();
return RTEMS_SUCCESSFUL;
}
200e670: 81 c7 e0 08 ret
200e674: 91 e8 00 01 restore %g0, %g1, %o0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e678: c2 0c 60 08 ldub [ %l1 + 8 ], %g1
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
200e67c: a4 14 a2 00 or %l2, 0x200, %l2
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e680: 80 a0 00 01 cmp %g0, %g1
old_mode |= _ISR_Get_level();
200e684: 7f ff f0 1e call 200a6fc <_CPU_ISR_Get_level>
200e688: a8 60 3f ff subx %g0, -1, %l4
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
200e68c: a9 2d 20 0a sll %l4, 0xa, %l4
200e690: a8 15 00 08 or %l4, %o0, %l4
old_mode |= _ISR_Get_level();
200e694: a4 15 00 12 or %l4, %l2, %l2
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
200e698: 80 8e 61 00 btst 0x100, %i1
200e69c: 02 bf ff cd be 200e5d0 <rtems_task_mode+0x74>
200e6a0: e4 26 80 00 st %l2, [ %i2 ]
*/
RTEMS_INLINE_ROUTINE bool _Modes_Is_preempt (
Modes_Control mode_set
)
{
return (mode_set & RTEMS_PREEMPT_MASK) == RTEMS_PREEMPT;
200e6a4: 10 bf ff c8 b 200e5c4 <rtems_task_mode+0x68>
200e6a8: 82 0e 21 00 and %i0, 0x100, %g1
*/
RTEMS_INLINE_ROUTINE bool _Thread_Evaluate_mode( void )
{
Thread_Control *executing;
executing = _Thread_Executing;
200e6ac: c2 04 e0 0c ld [ %l3 + 0xc ], %g1
if ( !_States_Is_ready( executing->current_state ) ||
200e6b0: c4 00 60 10 ld [ %g1 + 0x10 ], %g2
200e6b4: 80 a0 a0 00 cmp %g2, 0
200e6b8: 32 80 00 0e bne,a 200e6f0 <rtems_task_mode+0x194> <== NEVER TAKEN
200e6bc: 82 10 20 01 mov 1, %g1 <== NOT EXECUTED
200e6c0: c4 04 e0 10 ld [ %l3 + 0x10 ], %g2
200e6c4: 80 a0 40 02 cmp %g1, %g2
200e6c8: 02 80 00 07 be 200e6e4 <rtems_task_mode+0x188>
200e6cc: 80 88 e0 ff btst 0xff, %g3
( !_Thread_Is_heir( executing ) && executing->is_preemptible ) ) {
200e6d0: c2 08 60 74 ldub [ %g1 + 0x74 ], %g1
200e6d4: 80 a0 60 00 cmp %g1, 0
200e6d8: 12 80 00 06 bne 200e6f0 <rtems_task_mode+0x194> <== ALWAYS TAKEN
200e6dc: 82 10 20 01 mov 1, %g1
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) )
if ( _Thread_Evaluate_mode() || needs_asr_dispatching )
200e6e0: 80 88 e0 ff btst 0xff, %g3 <== NOT EXECUTED
200e6e4: 12 80 00 04 bne 200e6f4 <rtems_task_mode+0x198>
200e6e8: 82 10 20 00 clr %g1
200e6ec: 30 bf ff e1 b,a 200e670 <rtems_task_mode+0x114>
_Context_Switch_necessary = true;
200e6f0: c2 2c e0 18 stb %g1, [ %l3 + 0x18 ]
_Thread_Dispatch();
200e6f4: 7f ff e8 c1 call 20089f8 <_Thread_Dispatch>
200e6f8: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
200e6fc: 82 10 20 00 clr %g1 ! 0 <PROM_START>
}
200e700: 81 c7 e0 08 ret
200e704: 91 e8 00 01 restore %g0, %g1, %o0
*/
RTEMS_INLINE_ROUTINE ISR_Level _Modes_Get_interrupt_level (
Modes_Control mode_set
)
{
return ( mode_set & RTEMS_INTERRUPT_MASK );
200e708: 90 0e 20 0f and %i0, 0xf, %o0
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
200e70c: 7f ff ce e6 call 20022a4 <sparc_enable_interrupts>
200e710: 91 2a 20 08 sll %o0, 8, %o0
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
200e714: 10 bf ff be b 200e60c <rtems_task_mode+0xb0>
200e718: 80 8e 64 00 btst 0x400, %i1
0200b5c0 <rtems_task_set_priority>:
rtems_status_code rtems_task_set_priority(
rtems_id id,
rtems_task_priority new_priority,
rtems_task_priority *old_priority
)
{
200b5c0: 9d e3 bf 98 save %sp, -104, %sp
register Thread_Control *the_thread;
Objects_Locations location;
if ( new_priority != RTEMS_CURRENT_PRIORITY &&
200b5c4: 80 a6 60 00 cmp %i1, 0
200b5c8: 02 80 00 07 be 200b5e4 <rtems_task_set_priority+0x24>
200b5cc: 90 10 00 18 mov %i0, %o0
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
( the_priority <= RTEMS_MAXIMUM_PRIORITY ) );
200b5d0: 03 00 80 68 sethi %hi(0x201a000), %g1
200b5d4: c2 08 60 84 ldub [ %g1 + 0x84 ], %g1 ! 201a084 <rtems_maximum_priority>
*/
RTEMS_INLINE_ROUTINE bool _RTEMS_tasks_Priority_is_valid (
rtems_task_priority the_priority
)
{
return ( ( the_priority >= RTEMS_MINIMUM_PRIORITY ) &&
200b5d8: 80 a6 40 01 cmp %i1, %g1
200b5dc: 18 80 00 1c bgu 200b64c <rtems_task_set_priority+0x8c>
200b5e0: b0 10 20 13 mov 0x13, %i0
!_RTEMS_tasks_Priority_is_valid( new_priority ) )
return RTEMS_INVALID_PRIORITY;
if ( !old_priority )
200b5e4: 80 a6 a0 00 cmp %i2, 0
200b5e8: 02 80 00 19 be 200b64c <rtems_task_set_priority+0x8c>
200b5ec: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get( id, &location );
200b5f0: 40 00 08 a0 call 200d870 <_Thread_Get>
200b5f4: 92 07 bf fc add %fp, -4, %o1
switch ( location ) {
200b5f8: c2 07 bf fc ld [ %fp + -4 ], %g1
200b5fc: 80 a0 60 00 cmp %g1, 0
200b600: 12 80 00 13 bne 200b64c <rtems_task_set_priority+0x8c>
200b604: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/* XXX need helper to "convert" from core priority */
*old_priority = the_thread->current_priority;
200b608: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
if ( new_priority != RTEMS_CURRENT_PRIORITY ) {
200b60c: 80 a6 60 00 cmp %i1, 0
200b610: 02 80 00 0d be 200b644 <rtems_task_set_priority+0x84>
200b614: c2 26 80 00 st %g1, [ %i2 ]
the_thread->real_priority = new_priority;
if ( the_thread->resource_count == 0 ||
200b618: c2 02 20 1c ld [ %o0 + 0x1c ], %g1
200b61c: 80 a0 60 00 cmp %g1, 0
200b620: 02 80 00 06 be 200b638 <rtems_task_set_priority+0x78>
200b624: f2 22 20 18 st %i1, [ %o0 + 0x18 ]
200b628: c2 02 20 14 ld [ %o0 + 0x14 ], %g1
200b62c: 80 a6 40 01 cmp %i1, %g1
200b630: 1a 80 00 05 bcc 200b644 <rtems_task_set_priority+0x84> <== ALWAYS TAKEN
200b634: 01 00 00 00 nop
the_thread->current_priority > new_priority )
_Thread_Change_priority( the_thread, new_priority, false );
200b638: 92 10 00 19 mov %i1, %o1
200b63c: 40 00 06 ef call 200d1f8 <_Thread_Change_priority>
200b640: 94 10 20 00 clr %o2
}
_Thread_Enable_dispatch();
200b644: 40 00 08 7d call 200d838 <_Thread_Enable_dispatch>
200b648: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
200b64c: 81 c7 e0 08 ret
200b650: 81 e8 00 00 restore
020076ec <rtems_task_variable_delete>:
rtems_status_code rtems_task_variable_delete(
rtems_id tid,
void **ptr
)
{
20076ec: 9d e3 bf 98 save %sp, -104, %sp
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp, *prev;
if ( !ptr )
20076f0: 80 a6 60 00 cmp %i1, 0
20076f4: 02 80 00 1e be 200776c <rtems_task_variable_delete+0x80>
20076f8: 82 10 20 09 mov 9, %g1
return RTEMS_INVALID_ADDRESS;
prev = NULL;
the_thread = _Thread_Get (tid, &location);
20076fc: 90 10 00 18 mov %i0, %o0
2007700: 40 00 08 28 call 20097a0 <_Thread_Get>
2007704: 92 07 bf fc add %fp, -4, %o1
switch (location) {
2007708: c2 07 bf fc ld [ %fp + -4 ], %g1
200770c: 80 a0 60 00 cmp %g1, 0
2007710: 12 80 00 19 bne 2007774 <rtems_task_variable_delete+0x88>
2007714: 82 10 20 04 mov 4, %g1
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
2007718: c2 02 21 6c ld [ %o0 + 0x16c ], %g1
while (tvp) {
200771c: 80 a0 60 00 cmp %g1, 0
2007720: 02 80 00 10 be 2007760 <rtems_task_variable_delete+0x74>
2007724: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007728: c4 00 60 04 ld [ %g1 + 4 ], %g2
200772c: 80 a0 80 19 cmp %g2, %i1
2007730: 32 80 00 09 bne,a 2007754 <rtems_task_variable_delete+0x68>
2007734: d2 00 40 00 ld [ %g1 ], %o1
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
2007738: 10 80 00 19 b 200779c <rtems_task_variable_delete+0xb0>
200773c: c4 00 40 00 ld [ %g1 ], %g2
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
2007740: 80 a0 80 19 cmp %g2, %i1
2007744: 22 80 00 0e be,a 200777c <rtems_task_variable_delete+0x90>
2007748: c4 02 40 00 ld [ %o1 ], %g2
200774c: 82 10 00 09 mov %o1, %g1
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
2007750: d2 00 40 00 ld [ %g1 ], %o1
the_thread = _Thread_Get (tid, &location);
switch (location) {
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
2007754: 80 a2 60 00 cmp %o1, 0
2007758: 32 bf ff fa bne,a 2007740 <rtems_task_variable_delete+0x54><== ALWAYS TAKEN
200775c: c4 02 60 04 ld [ %o1 + 4 ], %g2
return RTEMS_SUCCESSFUL;
}
prev = tvp;
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2007760: 40 00 08 02 call 2009768 <_Thread_Enable_dispatch>
2007764: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
2007768: 82 10 20 09 mov 9, %g1 ! 9 <PROM_START+0x9>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
200776c: 81 c7 e0 08 ret
2007770: 91 e8 00 01 restore %g0, %g1, %o0
2007774: 81 c7 e0 08 ret
2007778: 91 e8 00 01 restore %g0, %g1, %o0
case OBJECTS_LOCAL:
tvp = the_thread->task_variables;
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
200777c: c4 20 40 00 st %g2, [ %g1 ]
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
_RTEMS_Tasks_Invoke_task_variable_dtor( the_thread, tvp );
2007780: 40 00 00 2e call 2007838 <_RTEMS_Tasks_Invoke_task_variable_dtor>
2007784: 01 00 00 00 nop
_Thread_Enable_dispatch();
2007788: 40 00 07 f8 call 2009768 <_Thread_Enable_dispatch>
200778c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2007790: 82 10 20 00 clr %g1 ! 0 <PROM_START>
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2007794: 81 c7 e0 08 ret
2007798: 91 e8 00 01 restore %g0, %g1, %o0
while (tvp) {
if (tvp->ptr == ptr) {
if (prev)
prev->next = tvp->next;
else
the_thread->task_variables = (rtems_task_variable_t *)tvp->next;
200779c: 92 10 00 01 mov %g1, %o1
20077a0: 10 bf ff f8 b 2007780 <rtems_task_variable_delete+0x94>
20077a4: c4 22 21 6c st %g2, [ %o0 + 0x16c ]
020077a8 <rtems_task_variable_get>:
rtems_status_code rtems_task_variable_get(
rtems_id tid,
void **ptr,
void **result
)
{
20077a8: 9d e3 bf 98 save %sp, -104, %sp
20077ac: 90 10 00 18 mov %i0, %o0
Thread_Control *the_thread;
Objects_Locations location;
rtems_task_variable_t *tvp;
if ( !ptr )
20077b0: 80 a6 60 00 cmp %i1, 0
20077b4: 02 80 00 1b be 2007820 <rtems_task_variable_get+0x78>
20077b8: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !result )
20077bc: 80 a6 a0 00 cmp %i2, 0
20077c0: 02 80 00 1c be 2007830 <rtems_task_variable_get+0x88>
20077c4: 01 00 00 00 nop
return RTEMS_INVALID_ADDRESS;
the_thread = _Thread_Get (tid, &location);
20077c8: 40 00 07 f6 call 20097a0 <_Thread_Get>
20077cc: 92 07 bf fc add %fp, -4, %o1
switch (location) {
20077d0: c2 07 bf fc ld [ %fp + -4 ], %g1
20077d4: 80 a0 60 00 cmp %g1, 0
20077d8: 12 80 00 12 bne 2007820 <rtems_task_variable_get+0x78>
20077dc: b0 10 20 04 mov 4, %i0
case OBJECTS_LOCAL:
/*
* Figure out if the variable is in this task's list.
*/
tvp = the_thread->task_variables;
20077e0: c2 02 21 6c ld [ %o0 + 0x16c ], %g1
while (tvp) {
20077e4: 80 a0 60 00 cmp %g1, 0
20077e8: 32 80 00 07 bne,a 2007804 <rtems_task_variable_get+0x5c>
20077ec: c4 00 60 04 ld [ %g1 + 4 ], %g2
20077f0: 30 80 00 0e b,a 2007828 <rtems_task_variable_get+0x80>
20077f4: 80 a0 60 00 cmp %g1, 0
20077f8: 02 80 00 0c be 2007828 <rtems_task_variable_get+0x80> <== NEVER TAKEN
20077fc: 01 00 00 00 nop
if (tvp->ptr == ptr) {
2007800: c4 00 60 04 ld [ %g1 + 4 ], %g2
2007804: 80 a0 80 19 cmp %g2, %i1
2007808: 32 bf ff fb bne,a 20077f4 <rtems_task_variable_get+0x4c>
200780c: c2 00 40 00 ld [ %g1 ], %g1
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
2007810: c2 00 60 0c ld [ %g1 + 0xc ], %g1
_Thread_Enable_dispatch();
return RTEMS_SUCCESSFUL;
2007814: b0 10 20 00 clr %i0
/*
* Should this return the current (i.e not the
* saved) value if `tid' is the current task?
*/
*result = tvp->tval;
_Thread_Enable_dispatch();
2007818: 40 00 07 d4 call 2009768 <_Thread_Enable_dispatch>
200781c: c2 26 80 00 st %g1, [ %i2 ]
return RTEMS_SUCCESSFUL;
2007820: 81 c7 e0 08 ret
2007824: 81 e8 00 00 restore
}
tvp = (rtems_task_variable_t *)tvp->next;
}
_Thread_Enable_dispatch();
2007828: 40 00 07 d0 call 2009768 <_Thread_Enable_dispatch>
200782c: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
2007830: 81 c7 e0 08 ret
2007834: 81 e8 00 00 restore
02016344 <rtems_timer_cancel>:
*/
rtems_status_code rtems_timer_cancel(
rtems_id id
)
{
2016344: 9d e3 bf 98 save %sp, -104, %sp
Objects_Id id,
Objects_Locations *location
)
{
return (Timer_Control *)
_Objects_Get( &_Timer_Information, id, location );
2016348: 11 00 80 f3 sethi %hi(0x203cc00), %o0
201634c: 92 10 00 18 mov %i0, %o1
2016350: 90 12 20 54 or %o0, 0x54, %o0
2016354: 40 00 0c 70 call 2019514 <_Objects_Get>
2016358: 94 07 bf fc add %fp, -4, %o2
Timer_Control *the_timer;
Objects_Locations location;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
201635c: c2 07 bf fc ld [ %fp + -4 ], %g1
2016360: 80 a0 60 00 cmp %g1, 0
2016364: 22 80 00 04 be,a 2016374 <rtems_timer_cancel+0x30>
2016368: c2 02 20 38 ld [ %o0 + 0x38 ], %g1
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
201636c: 81 c7 e0 08 ret
2016370: 91 e8 20 04 restore %g0, 4, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
if ( !_Timer_Is_dormant_class( the_timer->the_class ) )
2016374: 80 a0 60 04 cmp %g1, 4
2016378: 02 80 00 04 be 2016388 <rtems_timer_cancel+0x44> <== NEVER TAKEN
201637c: 01 00 00 00 nop
(void) _Watchdog_Remove( &the_timer->Ticker );
2016380: 40 00 15 51 call 201b8c4 <_Watchdog_Remove>
2016384: 90 02 20 10 add %o0, 0x10, %o0
_Thread_Enable_dispatch();
2016388: 40 00 0e f3 call 2019f54 <_Thread_Enable_dispatch>
201638c: b0 10 20 00 clr %i0
return RTEMS_SUCCESSFUL;
2016390: 81 c7 e0 08 ret
2016394: 81 e8 00 00 restore
0201685c <rtems_timer_server_fire_when>:
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
201685c: 9d e3 bf 98 save %sp, -104, %sp
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
2016860: 03 00 80 f3 sethi %hi(0x203cc00), %g1
2016864: e0 00 60 94 ld [ %g1 + 0x94 ], %l0 ! 203cc94 <_Timer_server>
rtems_id id,
rtems_time_of_day *wall_time,
rtems_timer_service_routine_entry routine,
void *user_data
)
{
2016868: a2 10 00 18 mov %i0, %l1
Timer_Control *the_timer;
Objects_Locations location;
rtems_interval seconds;
Timer_server_Control *timer_server = _Timer_server;
if ( !timer_server )
201686c: 80 a4 20 00 cmp %l0, 0
2016870: 02 80 00 10 be 20168b0 <rtems_timer_server_fire_when+0x54>
2016874: b0 10 20 0e mov 0xe, %i0
return RTEMS_INCORRECT_STATE;
if ( !_TOD_Is_set )
2016878: 03 00 80 f2 sethi %hi(0x203c800), %g1
201687c: c2 08 61 98 ldub [ %g1 + 0x198 ], %g1 ! 203c998 <_TOD_Is_set>
2016880: 80 a0 60 00 cmp %g1, 0
2016884: 02 80 00 0b be 20168b0 <rtems_timer_server_fire_when+0x54><== NEVER TAKEN
2016888: b0 10 20 0b mov 0xb, %i0
return RTEMS_NOT_DEFINED;
if ( !routine )
201688c: 80 a6 a0 00 cmp %i2, 0
2016890: 02 80 00 08 be 20168b0 <rtems_timer_server_fire_when+0x54>
2016894: b0 10 20 09 mov 9, %i0
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
2016898: 90 10 00 19 mov %i1, %o0
201689c: 7f ff f3 ae call 2013754 <_TOD_Validate>
20168a0: b0 10 20 14 mov 0x14, %i0
20168a4: 80 8a 20 ff btst 0xff, %o0
20168a8: 12 80 00 04 bne 20168b8 <rtems_timer_server_fire_when+0x5c>
20168ac: 01 00 00 00 nop
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
20168b0: 81 c7 e0 08 ret
20168b4: 81 e8 00 00 restore
return RTEMS_INVALID_ADDRESS;
if ( !_TOD_Validate( wall_time ) )
return RTEMS_INVALID_CLOCK;
seconds = _TOD_To_seconds( wall_time );
20168b8: 7f ff f3 71 call 201367c <_TOD_To_seconds>
20168bc: 90 10 00 19 mov %i1, %o0
if ( seconds <= _TOD_Seconds_since_epoch() )
20168c0: 25 00 80 f2 sethi %hi(0x203c800), %l2
20168c4: c2 04 a2 14 ld [ %l2 + 0x214 ], %g1 ! 203ca14 <_TOD_Now>
20168c8: 80 a2 00 01 cmp %o0, %g1
20168cc: 08 bf ff f9 bleu 20168b0 <rtems_timer_server_fire_when+0x54>
20168d0: b2 10 00 08 mov %o0, %i1
20168d4: 92 10 00 11 mov %l1, %o1
20168d8: 11 00 80 f3 sethi %hi(0x203cc00), %o0
20168dc: 94 07 bf fc add %fp, -4, %o2
20168e0: 40 00 0b 0d call 2019514 <_Objects_Get>
20168e4: 90 12 20 54 or %o0, 0x54, %o0
return RTEMS_INVALID_CLOCK;
the_timer = _Timer_Get( id, &location );
switch ( location ) {
20168e8: c2 07 bf fc ld [ %fp + -4 ], %g1
20168ec: 80 a0 60 00 cmp %g1, 0
20168f0: 12 80 00 16 bne 2016948 <rtems_timer_server_fire_when+0xec>
20168f4: b0 10 00 08 mov %o0, %i0
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
20168f8: 40 00 13 f3 call 201b8c4 <_Watchdog_Remove>
20168fc: 90 02 20 10 add %o0, 0x10, %o0
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016900: c4 04 a2 14 ld [ %l2 + 0x214 ], %g2
(*timer_server->schedule_operation)( timer_server, the_timer );
2016904: c2 04 20 04 ld [ %l0 + 4 ], %g1
2016908: 92 10 00 18 mov %i0, %o1
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
201690c: b2 26 40 02 sub %i1, %g2, %i1
(*timer_server->schedule_operation)( timer_server, the_timer );
2016910: 90 10 00 10 mov %l0, %o0
the_timer = _Timer_Get( id, &location );
switch ( location ) {
case OBJECTS_LOCAL:
(void) _Watchdog_Remove( &the_timer->Ticker );
the_timer->the_class = TIMER_TIME_OF_DAY_ON_TASK;
2016914: 84 10 20 03 mov 3, %g2
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
the_watchdog->routine = routine;
2016918: f4 26 20 2c st %i2, [ %i0 + 0x2c ]
201691c: c4 26 20 38 st %g2, [ %i0 + 0x38 ]
the_watchdog->id = id;
2016920: e2 26 20 30 st %l1, [ %i0 + 0x30 ]
the_watchdog->user_data = user_data;
2016924: f6 26 20 34 st %i3, [ %i0 + 0x34 ]
_Watchdog_Initialize( &the_timer->Ticker, routine, id, user_data );
the_timer->Ticker.initial = seconds - _TOD_Seconds_since_epoch();
2016928: f2 26 20 1c st %i1, [ %i0 + 0x1c ]
Watchdog_Service_routine_entry routine,
Objects_Id id,
void *user_data
)
{
the_watchdog->state = WATCHDOG_INACTIVE;
201692c: c0 26 20 18 clr [ %i0 + 0x18 ]
(*timer_server->schedule_operation)( timer_server, the_timer );
2016930: 9f c0 40 00 call %g1
2016934: b0 10 20 00 clr %i0
_Thread_Enable_dispatch();
2016938: 40 00 0d 87 call 2019f54 <_Thread_Enable_dispatch>
201693c: 01 00 00 00 nop
return RTEMS_SUCCESSFUL;
2016940: 81 c7 e0 08 ret
2016944: 81 e8 00 00 restore
case OBJECTS_ERROR:
break;
}
return RTEMS_INVALID_ID;
}
2016948: 81 c7 e0 08 ret
201694c: 91 e8 20 04 restore %g0, 4, %o0