RTEMS 4.11Annotated Report
Sat Nov 27 13:59:37 2010
00016b10 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16b10: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
16b14: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16b18: e1530002 cmp r3, r2
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
16b1c: e1a07000 mov r7, r0
16b20: e1a05002 mov r5, r2
16b24: e1a08001 mov r8, r1
16b28: e59da020 ldr sl, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16b2c: 3a000016 bcc 16b8c <_CORE_message_queue_Broadcast+0x7c>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
16b30: e5906048 ldr r6, [r0, #72] ; 0x48
16b34: e3560000 cmp r6, #0
*count = 0;
16b38: 13a00000 movne r0, #0
16b3c: 158a0000 strne r0, [sl]
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
16b40: 18bd85f0 popne {r4, r5, r6, r7, r8, sl, pc}
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16b44: e1a00007 mov r0, r7
16b48: eb000ac1 bl 19654 <_Thread_queue_Dequeue>
16b4c: e2504000 subs r4, r0, #0
16b50: 0a00000a beq 16b80 <_CORE_message_queue_Broadcast+0x70>
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
16b54: e594002c ldr r0, [r4, #44] ; 0x2c
16b58: e1a01008 mov r1, r8
16b5c: e1a02005 mov r2, r5
16b60: eb002047 bl 1ec84 <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
16b64: e5943028 ldr r3, [r4, #40] ; 0x28
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16b68: e1a00007 mov r0, r7
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
16b6c: e5835000 str r5, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16b70: eb000ab7 bl 19654 <_Thread_queue_Dequeue>
16b74: e2504000 subs r4, r0, #0
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
16b78: e2866001 add r6, r6, #1
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16b7c: 1afffff4 bne 16b54 <_CORE_message_queue_Broadcast+0x44>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
16b80: e58a6000 str r6, [sl]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
16b84: e1a00004 mov r0, r4
16b88: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
16b8c: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
16b90: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
0000aba4 <_CORE_mutex_Seize_interrupt_trylock>:
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
aba4: e59f215c ldr r2, [pc, #348] ; ad08 <_CORE_mutex_Seize_interrupt_trylock+0x164>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
aba8: e590c050 ldr ip, [r0, #80] ; 0x50
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
abac: e1a03000 mov r3, r0
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
abb0: e5922004 ldr r2, [r2, #4]
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
abb4: e3a00000 mov r0, #0
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
abb8: e15c0000 cmp ip, r0
abbc: e92d40f0 push {r4, r5, r6, r7, lr}
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
abc0: e5820034 str r0, [r2, #52] ; 0x34
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
abc4: 0a00000e beq ac04 <_CORE_mutex_Seize_interrupt_trylock+0x60>
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
abc8: e593c048 ldr ip, [r3, #72] ; 0x48
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
abcc: e5925008 ldr r5, [r2, #8]
the_mutex->nest_count = 1;
abd0: e3a04001 mov r4, #1
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
abd4: e35c0002 cmp ip, #2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
abd8: e5830050 str r0, [r3, #80] ; 0x50
the_mutex->holder = executing;
abdc: e583205c str r2, [r3, #92] ; 0x5c
the_mutex->holder_id = executing->Object.id;
abe0: e5835060 str r5, [r3, #96] ; 0x60
the_mutex->nest_count = 1;
abe4: e5834054 str r4, [r3, #84] ; 0x54
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
abe8: 0a000013 beq ac3c <_CORE_mutex_Seize_interrupt_trylock+0x98>
abec: e35c0003 cmp ip, #3
abf0: 0a000018 beq ac58 <_CORE_mutex_Seize_interrupt_trylock+0xb4>
abf4: e5913000 ldr r3, [r1]
abf8: e129f003 msr CPSR_fc, r3
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
abfc: e3a00000 mov r0, #0
ac00: e8bd80f0 pop {r4, r5, r6, r7, pc}
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
ac04: e593005c ldr r0, [r3, #92] ; 0x5c
ac08: e1520000 cmp r2, r0
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
ac0c: 13a00001 movne r0, #1
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
ac10: 18bd80f0 popne {r4, r5, r6, r7, pc}
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
ac14: e5930040 ldr r0, [r3, #64] ; 0x40
ac18: e3500000 cmp r0, #0
ac1c: 1a00001e bne ac9c <_CORE_mutex_Seize_interrupt_trylock+0xf8>
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
ac20: e5932054 ldr r2, [r3, #84] ; 0x54
ac24: e2822001 add r2, r2, #1
ac28: e5832054 str r2, [r3, #84] ; 0x54
ac2c: e5913000 ldr r3, [r1]
ac30: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
ac34: e3a00000 mov r0, #0
ac38: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac3c: e592301c ldr r3, [r2, #28]
ac40: e2833001 add r3, r3, #1
ac44: e582301c str r3, [r2, #28]
ac48: e5913000 ldr r3, [r1]
ac4c: e129f003 msr CPSR_fc, r3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
ac50: e3a00000 mov r0, #0
ac54: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac58: e592c01c ldr ip, [r2, #28]
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
ac5c: e593704c ldr r7, [r3, #76] ; 0x4c
current = executing->current_priority;
ac60: e5926014 ldr r6, [r2, #20]
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac64: e08c5004 add r5, ip, r4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
ac68: e1570006 cmp r7, r6
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac6c: e582501c str r5, [r2, #28]
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
ac70: 0a000020 beq acf8 <_CORE_mutex_Seize_interrupt_trylock+0x154>
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
ac74: 3a000012 bcc acc4 <_CORE_mutex_Seize_interrupt_trylock+0x120>
);
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
ac78: e3a05006 mov r5, #6
ac7c: e5825034 str r5, [r2, #52] ; 0x34
the_mutex->lock = CORE_MUTEX_UNLOCKED;
ac80: e5834050 str r4, [r3, #80] ; 0x50
the_mutex->nest_count = 0; /* undo locking above */
ac84: e5830054 str r0, [r3, #84] ; 0x54
executing->resource_count--; /* undo locking above */
ac88: e582c01c str ip, [r2, #28]
ac8c: e5913000 ldr r3, [r1]
ac90: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
ac94: e3a00000 mov r0, #0
ac98: e8bd80f0 pop {r4, r5, r6, r7, pc}
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
ac9c: e3500001 cmp r0, #1
aca0: 0a000001 beq acac <_CORE_mutex_Seize_interrupt_trylock+0x108>
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
aca4: e3a00001 mov r0, #1
aca8: e8bd80f0 pop {r4, r5, r6, r7, pc}
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
acac: e3a03002 mov r3, #2 <== NOT EXECUTED
acb0: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED
acb4: e5913000 ldr r3, [r1] <== NOT EXECUTED
acb8: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED
_ISR_Enable( *level_p );
return 0;
acbc: e3a00000 mov r0, #0 <== NOT EXECUTED
acc0: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
acc4: e59f2040 ldr r2, [pc, #64] ; ad0c <_CORE_mutex_Seize_interrupt_trylock+0x168>
acc8: e5920000 ldr r0, [r2]
accc: e2800001 add r0, r0, #1
acd0: e5820000 str r0, [r2]
acd4: e5912000 ldr r2, [r1]
acd8: e129f002 msr CPSR_fc, r2
}
if ( current > ceiling ) {
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
_Thread_Change_priority(
acdc: e3a02000 mov r2, #0
ace0: e593005c ldr r0, [r3, #92] ; 0x5c
ace4: e593104c ldr r1, [r3, #76] ; 0x4c
ace8: ebfff201 bl 74f4 <_Thread_Change_priority>
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
acec: ebfff33b bl 79e0 <_Thread_Enable_dispatch>
return 0;
acf0: e3a00000 mov r0, #0
acf4: e8bd80f0 pop {r4, r5, r6, r7, pc}
acf8: e5913000 ldr r3, [r1]
acfc: e129f003 msr CPSR_fc, r3
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
return 0;
ad00: e3a00000 mov r0, #0
ad04: e8bd80f0 pop {r4, r5, r6, r7, pc}
0000ad84 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad84: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
ad88: e1a08002 mov r8, r2
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
ad8c: e5902010 ldr r2, [r0, #16]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad90: e24dd01c sub sp, sp, #28
ad94: e1a05001 mov r5, r1
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
ad98: e2911004 adds r1, r1, #4
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad9c: e1a07000 mov r7, r0
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
ada0: e58d1000 str r1, [sp]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ada4: e1a0b003 mov fp, r3
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
ada8: e58d200c str r2, [sp, #12]
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
adac: 2a00007a bcs af9c <_Heap_Allocate_aligned_with_boundary+0x218>
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
adb0: e3530000 cmp r3, #0
adb4: 1a000076 bne af94 <_Heap_Allocate_aligned_with_boundary+0x210>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
adb8: e5979008 ldr r9, [r7, #8]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
adbc: e1570009 cmp r7, r9
adc0: 0a000075 beq af9c <_Heap_Allocate_aligned_with_boundary+0x218>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
adc4: e59d300c ldr r3, [sp, #12]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
adc8: e2651004 rsb r1, r5, #4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
adcc: e2833007 add r3, r3, #7
add0: e58d3010 str r3, [sp, #16]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
add4: e58d1014 str r1, [sp, #20]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
add8: e3a06001 mov r6, #1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
addc: e599a004 ldr sl, [r9, #4]
ade0: e59d2000 ldr r2, [sp]
ade4: e152000a cmp r2, sl
ade8: 2a000050 bcs af30 <_Heap_Allocate_aligned_with_boundary+0x1ac>
if ( alignment == 0 ) {
adec: e3580000 cmp r8, #0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
adf0: 02894008 addeq r4, r9, #8
adf4: 0a000053 beq af48 <_Heap_Allocate_aligned_with_boundary+0x1c4>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
adf8: e5973014 ldr r3, [r7, #20]
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
adfc: e59d1014 ldr r1, [sp, #20]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
ae00: e59d2010 ldr r2, [sp, #16]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
ae04: e3caa001 bic sl, sl, #1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
ae08: e089a00a add sl, r9, sl
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
ae0c: e081400a add r4, r1, sl
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
ae10: e58d3004 str r3, [sp, #4]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
ae14: e0633002 rsb r3, r3, r2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
ae18: e1a00004 mov r0, r4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
ae1c: e083a00a add sl, r3, sl
ae20: e1a01008 mov r1, r8
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
ae24: e2893008 add r3, r9, #8
ae28: e58d3008 str r3, [sp, #8]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
ae2c: eb001576 bl 1040c <__umodsi3>
ae30: e0604004 rsb r4, r0, r4
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
ae34: e15a0004 cmp sl, r4
ae38: 2a000003 bcs ae4c <_Heap_Allocate_aligned_with_boundary+0xc8>
ae3c: e1a0000a mov r0, sl
ae40: e1a01008 mov r1, r8
ae44: eb001570 bl 1040c <__umodsi3>
ae48: e060400a rsb r4, r0, sl
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
ae4c: e35b0000 cmp fp, #0
ae50: 0a000026 beq aef0 <_Heap_Allocate_aligned_with_boundary+0x16c>
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
ae54: e084a005 add sl, r4, r5
ae58: e1a0000a mov r0, sl
ae5c: e1a0100b mov r1, fp
ae60: eb001569 bl 1040c <__umodsi3>
ae64: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
ae68: e15a0000 cmp sl, r0
ae6c: 93a0a000 movls sl, #0
ae70: 83a0a001 movhi sl, #1
ae74: e1540000 cmp r4, r0
ae78: 23a0a000 movcs sl, #0
ae7c: e35a0000 cmp sl, #0
ae80: 0a00001a beq aef0 <_Heap_Allocate_aligned_with_boundary+0x16c>
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
ae84: e59d1008 ldr r1, [sp, #8]
ae88: e0813005 add r3, r1, r5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
ae8c: e1530000 cmp r3, r0
ae90: 958d9018 strls r9, [sp, #24]
ae94: 91a09003 movls r9, r3
ae98: 9a000002 bls aea8 <_Heap_Allocate_aligned_with_boundary+0x124>
ae9c: ea000023 b af30 <_Heap_Allocate_aligned_with_boundary+0x1ac>
aea0: e1590000 cmp r9, r0
aea4: 8a00003e bhi afa4 <_Heap_Allocate_aligned_with_boundary+0x220>
return 0;
}
alloc_begin = boundary_line - alloc_size;
aea8: e0654000 rsb r4, r5, r0
aeac: e1a01008 mov r1, r8
aeb0: e1a00004 mov r0, r4
aeb4: eb001554 bl 1040c <__umodsi3>
aeb8: e0604004 rsb r4, r0, r4
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
aebc: e084a005 add sl, r4, r5
aec0: e1a0000a mov r0, sl
aec4: e1a0100b mov r1, fp
aec8: eb00154f bl 1040c <__umodsi3>
aecc: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
aed0: e15a0000 cmp sl, r0
aed4: 93a0a000 movls sl, #0
aed8: 83a0a001 movhi sl, #1
aedc: e1540000 cmp r4, r0
aee0: 23a0a000 movcs sl, #0
aee4: e35a0000 cmp sl, #0
aee8: 1affffec bne aea0 <_Heap_Allocate_aligned_with_boundary+0x11c>
aeec: e59d9018 ldr r9, [sp, #24]
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
aef0: e59d2008 ldr r2, [sp, #8]
aef4: e1520004 cmp r2, r4
aef8: 8a00000c bhi af30 <_Heap_Allocate_aligned_with_boundary+0x1ac>
aefc: e59d100c ldr r1, [sp, #12]
af00: e1a00004 mov r0, r4
af04: eb001540 bl 1040c <__umodsi3>
af08: e269a4ff rsb sl, r9, #-16777216 ; 0xff000000
af0c: e28aa8ff add sl, sl, #16711680 ; 0xff0000
af10: e28aacff add sl, sl, #65280 ; 0xff00
af14: e28aa0f8 add sl, sl, #248 ; 0xf8
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
af18: e08aa004 add sl, sl, r4
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
af1c: e59d1004 ldr r1, [sp, #4]
af20: e060300a rsb r3, r0, sl
af24: e15a0000 cmp sl, r0
af28: 11510003 cmpne r1, r3
af2c: 9a000005 bls af48 <_Heap_Allocate_aligned_with_boundary+0x1c4>
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
af30: e5999008 ldr r9, [r9, #8]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
af34: e1570009 cmp r7, r9
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
af38: e2863001 add r3, r6, #1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
af3c: 0a00001d beq afb8 <_Heap_Allocate_aligned_with_boundary+0x234>
af40: e1a06003 mov r6, r3
af44: eaffffa4 b addc <_Heap_Allocate_aligned_with_boundary+0x58>
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
af48: e3540000 cmp r4, #0
af4c: 0afffff7 beq af30 <_Heap_Allocate_aligned_with_boundary+0x1ac>
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
af50: e2872048 add r2, r7, #72 ; 0x48
af54: e892000c ldm r2, {r2, r3}
af58: e2822001 add r2, r2, #1
stats->searches += search_count;
af5c: e0833006 add r3, r3, r6
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
af60: e5872048 str r2, [r7, #72] ; 0x48
stats->searches += search_count;
af64: e587304c str r3, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
af68: e1a00007 mov r0, r7
af6c: e1a01009 mov r1, r9
af70: e1a02004 mov r2, r4
af74: e1a03005 mov r3, r5
af78: ebffee07 bl 679c <_Heap_Block_allocate>
af7c: e1a00004 mov r0, r4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
af80: e5973044 ldr r3, [r7, #68] ; 0x44
af84: e1530006 cmp r3, r6
stats->max_search = search_count;
af88: 35876044 strcc r6, [r7, #68] ; 0x44
}
return (void *) alloc_begin;
}
af8c: e28dd01c add sp, sp, #28
af90: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
af94: e1550003 cmp r5, r3
af98: 9a000008 bls afc0 <_Heap_Allocate_aligned_with_boundary+0x23c>
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
af9c: e3a00000 mov r0, #0
afa0: eafffff9 b af8c <_Heap_Allocate_aligned_with_boundary+0x208>
afa4: e59d9018 ldr r9, [sp, #24] <== NOT EXECUTED
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
afa8: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
afac: e1570009 cmp r7, r9 <== NOT EXECUTED
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
afb0: e2863001 add r3, r6, #1 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
afb4: 1affffe1 bne af40 <_Heap_Allocate_aligned_with_boundary+0x1bc><== NOT EXECUTED
afb8: e3a00000 mov r0, #0
afbc: eaffffef b af80 <_Heap_Allocate_aligned_with_boundary+0x1fc>
if ( boundary < alloc_size ) {
return NULL;
}
if ( alignment == 0 ) {
alignment = page_size;
afc0: e3580000 cmp r8, #0
afc4: 01a08002 moveq r8, r2
afc8: eaffff7a b adb8 <_Heap_Allocate_aligned_with_boundary+0x34>
0000b314 <_Heap_Extend>:
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
b314: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
b318: e1a05000 mov r5, r0
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
b31c: e0916002 adds r6, r1, r2
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
b320: e1a04001 mov r4, r1
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const first_block = heap->first_block;
b324: e5908020 ldr r8, [r0, #32]
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
b328: e5951030 ldr r1, [r5, #48] ; 0x30
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
b32c: e5900010 ldr r0, [r0, #16]
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
b330: e24dd024 sub sp, sp, #36 ; 0x24
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
b334: e3a07000 mov r7, #0
Heap_Control *heap,
void *extend_area_begin_ptr,
uintptr_t extend_area_size,
uintptr_t *extended_size_ptr
)
{
b338: e58d3010 str r3, [sp, #16]
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
Heap_Block *extend_last_block = NULL;
uintptr_t const page_size = heap->page_size;
b33c: e58d0008 str r0, [sp, #8]
Heap_Block *start_block = first_block;
Heap_Block *merge_below_block = NULL;
Heap_Block *merge_above_block = NULL;
Heap_Block *link_below_block = NULL;
Heap_Block *link_above_block = NULL;
Heap_Block *extend_first_block = NULL;
b340: e58d7020 str r7, [sp, #32]
Heap_Block *extend_last_block = NULL;
b344: e58d701c str r7, [sp, #28]
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
b348: e5953014 ldr r3, [r5, #20]
uintptr_t const extend_area_begin = (uintptr_t) extend_area_begin_ptr;
uintptr_t const extend_area_end = extend_area_begin + extend_area_size;
uintptr_t const free_size = stats->free_size;
b34c: e58d1018 str r1, [sp, #24]
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
return false;
b350: 21a00007 movcs r0, r7
uintptr_t const free_size = stats->free_size;
uintptr_t extend_first_block_size = 0;
uintptr_t extended_size = 0;
bool extend_area_ok = false;
if ( extend_area_end < extend_area_begin ) {
b354: 3a000001 bcc b360 <_Heap_Extend+0x4c>
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
b358: e28dd024 add sp, sp, #36 ; 0x24
b35c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
if ( extend_area_end < extend_area_begin ) {
return false;
}
extend_area_ok = _Heap_Get_first_and_last_block(
b360: e28dc020 add ip, sp, #32
b364: e1a01002 mov r1, r2
b368: e58dc000 str ip, [sp]
b36c: e1a00004 mov r0, r4
b370: e28dc01c add ip, sp, #28
b374: e59d2008 ldr r2, [sp, #8]
b378: e58dc004 str ip, [sp, #4]
b37c: ebffed71 bl 6948 <_Heap_Get_first_and_last_block>
page_size,
min_block_size,
&extend_first_block,
&extend_last_block
);
if (!extend_area_ok ) {
b380: e3500000 cmp r0, #0
b384: 0afffff3 beq b358 <_Heap_Extend+0x44>
b388: e58d700c str r7, [sp, #12]
b38c: e58d7014 str r7, [sp, #20]
b390: e1a09008 mov r9, r8
b394: e1a0b007 mov fp, r7
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
b398: e1590008 cmp r9, r8
b39c: 05953018 ldreq r3, [r5, #24]
uintptr_t const sub_area_end = start_block->prev_size;
b3a0: e599a000 ldr sl, [r9]
return false;
}
do {
uintptr_t const sub_area_begin = (start_block != first_block) ?
(uintptr_t) start_block : heap->area_begin;
b3a4: 11a03009 movne r3, r9
uintptr_t const sub_area_end = start_block->prev_size;
Heap_Block *const end_block =
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
b3a8: e1530006 cmp r3, r6
b3ac: 3154000a cmpcc r4, sl
b3b0: 3a00006c bcc b568 <_Heap_Extend+0x254>
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
}
if ( extend_area_end == sub_area_begin ) {
b3b4: e1530006 cmp r3, r6
b3b8: 058d9014 streq r9, [sp, #20]
b3bc: 0a000001 beq b3c8 <_Heap_Extend+0xb4>
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
b3c0: e156000a cmp r6, sl
b3c4: 31a0b009 movcc fp, r9
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
b3c8: e1a0000a mov r0, sl
b3cc: e59d1008 ldr r1, [sp, #8]
b3d0: eb001561 bl 1095c <__umodsi3>
b3d4: e24a3008 sub r3, sl, #8
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
b3d8: e15a0004 cmp sl, r4
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
b3dc: e0603003 rsb r3, r0, r3
start_block->prev_size = extend_area_end;
b3e0: 05896000 streq r6, [r9]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_of_alloc_area(
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
b3e4: 058d300c streq r3, [sp, #12]
merge_below_block = start_block;
} else if ( extend_area_end < sub_area_end ) {
link_below_block = start_block;
}
if ( sub_area_end == extend_area_begin ) {
b3e8: 0a000001 beq b3f4 <_Heap_Extend+0xe0>
b3ec: e154000a cmp r4, sl
b3f0: 81a07003 movhi r7, r3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
b3f4: e5939004 ldr r9, [r3, #4]
b3f8: e3c99001 bic r9, r9, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
b3fc: e0839009 add r9, r3, r9
} else if ( sub_area_end < extend_area_begin ) {
link_above_block = end_block;
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
b400: e1580009 cmp r8, r9
b404: 1affffe3 bne b398 <_Heap_Extend+0x84>
if ( extend_area_begin < heap->area_begin ) {
b408: e5953018 ldr r3, [r5, #24]
b40c: e1540003 cmp r4, r3
heap->area_begin = extend_area_begin;
b410: 35854018 strcc r4, [r5, #24]
}
start_block = _Heap_Block_at( end_block, _Heap_Block_size( end_block ) );
} while ( start_block != first_block );
if ( extend_area_begin < heap->area_begin ) {
b414: 3a000002 bcc b424 <_Heap_Extend+0x110>
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
b418: e595301c ldr r3, [r5, #28]
b41c: e1560003 cmp r6, r3
heap->area_end = extend_area_end;
b420: 8585601c strhi r6, [r5, #28]
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
b424: e28d201c add r2, sp, #28
b428: e892000c ldm r2, {r2, r3}
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
b42c: e595c020 ldr ip, [r5, #32]
heap->area_begin = extend_area_begin;
} else if ( heap->area_end < extend_area_end ) {
heap->area_end = extend_area_end;
}
extend_first_block_size =
b430: e0631002 rsb r1, r3, r2
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
b434: e3810001 orr r0, r1, #1
}
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
b438: e5836000 str r6, [r3]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
b43c: e15c0003 cmp ip, r3
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
b440: e5821000 str r1, [r2]
extend_last_block->size_and_flag = 0;
b444: e3a01000 mov r1, #0
extend_first_block_size =
(uintptr_t) extend_last_block - (uintptr_t) extend_first_block;
extend_first_block->prev_size = extend_area_end;
extend_first_block->size_and_flag =
b448: e5830004 str r0, [r3, #4]
extend_first_block_size | HEAP_PREV_BLOCK_USED;
_Heap_Protection_block_initialize( heap, extend_first_block );
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
b44c: e5821004 str r1, [r2, #4]
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
heap->first_block = extend_first_block;
b450: 85853020 strhi r3, [r5, #32]
extend_last_block->prev_size = extend_first_block_size;
extend_last_block->size_and_flag = 0;
_Heap_Protection_block_initialize( heap, extend_last_block );
if ( (uintptr_t) extend_first_block < (uintptr_t) heap->first_block ) {
b454: 8a000002 bhi b464 <_Heap_Extend+0x150>
heap->first_block = extend_first_block;
} else if ( (uintptr_t) extend_last_block > (uintptr_t) heap->last_block ) {
b458: e5953024 ldr r3, [r5, #36] ; 0x24
b45c: e1530002 cmp r3, r2
heap->last_block = extend_last_block;
b460: 35852024 strcc r2, [r5, #36] ; 0x24
}
if ( merge_below_block != NULL ) {
b464: e59d3014 ldr r3, [sp, #20]
b468: e3530000 cmp r3, #0
b46c: 0a000050 beq b5b4 <_Heap_Extend+0x2a0>
Heap_Control *heap,
uintptr_t extend_area_begin,
Heap_Block *first_block
)
{
uintptr_t const page_size = heap->page_size;
b470: e5958010 ldr r8, [r5, #16] <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
b474: e2844008 add r4, r4, #8 <== NOT EXECUTED
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_up(
uintptr_t value,
uintptr_t alignment
)
{
uintptr_t remainder = value % alignment;
b478: e1a00004 mov r0, r4 <== NOT EXECUTED
b47c: e1a01008 mov r1, r8 <== NOT EXECUTED
b480: eb001535 bl 1095c <__umodsi3> <== NOT EXECUTED
if ( remainder != 0 ) {
b484: e3500000 cmp r0, #0 <== NOT EXECUTED
return value - remainder + alignment;
b488: 10844008 addne r4, r4, r8 <== NOT EXECUTED
b48c: 10604004 rsbne r4, r0, r4 <== NOT EXECUTED
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
b490: e59dc014 ldr ip, [sp, #20] <== NOT EXECUTED
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
b494: e2441008 sub r1, r4, #8 <== NOT EXECUTED
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
b498: e59c2000 ldr r2, [ip] <== NOT EXECUTED
uintptr_t const new_first_block_alloc_begin =
_Heap_Align_up( extend_area_begin + HEAP_BLOCK_HEADER_SIZE, page_size );
uintptr_t const new_first_block_begin =
new_first_block_alloc_begin - HEAP_BLOCK_HEADER_SIZE;
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
b49c: e061300c rsb r3, r1, ip <== NOT EXECUTED
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
b4a0: e3833001 orr r3, r3, #1 <== NOT EXECUTED
uintptr_t const first_block_begin = (uintptr_t) first_block;
uintptr_t const new_first_block_size =
first_block_begin - new_first_block_begin;
Heap_Block *const new_first_block = (Heap_Block *) new_first_block_begin;
new_first_block->prev_size = first_block->prev_size;
b4a4: e5042008 str r2, [r4, #-8] <== NOT EXECUTED
new_first_block->size_and_flag = new_first_block_size | HEAP_PREV_BLOCK_USED;
b4a8: e5813004 str r3, [r1, #4] <== NOT EXECUTED
_Heap_Free_block( heap, new_first_block );
b4ac: e1a00005 mov r0, r5 <== NOT EXECUTED
b4b0: ebffff8f bl b2f4 <_Heap_Free_block> <== NOT EXECUTED
link_below_block,
extend_last_block
);
}
if ( merge_above_block != NULL ) {
b4b4: e59d000c ldr r0, [sp, #12]
b4b8: e3500000 cmp r0, #0
b4bc: 0a00002b beq b570 <_Heap_Extend+0x25c>
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
extend_area_end - last_block_begin - HEAP_BLOCK_HEADER_SIZE,
b4c0: e2466008 sub r6, r6, #8
uintptr_t extend_area_end
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const last_block_new_size = _Heap_Align_down(
b4c4: e0606006 rsb r6, r0, r6
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
b4c8: e5951010 ldr r1, [r5, #16]
b4cc: e1a00006 mov r0, r6
b4d0: eb001521 bl 1095c <__umodsi3>
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
(last_block->size_and_flag - last_block_new_size)
b4d4: e59d100c ldr r1, [sp, #12]
b4d8: e5913004 ldr r3, [r1, #4]
b4dc: e0606006 rsb r6, r0, r6
b4e0: e0663003 rsb r3, r6, r3
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
b4e4: e0862001 add r2, r6, r1
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
b4e8: e3833001 orr r3, r3, #1
page_size
);
Heap_Block *const new_last_block =
_Heap_Block_at( last_block, last_block_new_size );
new_last_block->size_and_flag =
b4ec: e5823004 str r3, [r2, #4]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
b4f0: e5913004 ldr r3, [r1, #4]
b4f4: e2033001 and r3, r3, #1
block->size_and_flag = size | flag;
b4f8: e1866003 orr r6, r6, r3
b4fc: e5816004 str r6, [r1, #4]
(last_block->size_and_flag - last_block_new_size)
| HEAP_PREV_BLOCK_USED;
_Heap_Block_set_size( last_block, last_block_new_size );
_Heap_Free_block( heap, last_block );
b500: e1a00005 mov r0, r5
b504: ebffff7a bl b2f4 <_Heap_Free_block>
extend_first_block,
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
b508: e59d200c ldr r2, [sp, #12]
b50c: e59d3014 ldr r3, [sp, #20]
b510: e3520000 cmp r2, #0
b514: 03530000 cmpeq r3, #0
b518: 0a000021 beq b5a4 <_Heap_Extend+0x290>
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
}
b51c: e5953024 ldr r3, [r5, #36] ; 0x24
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
b520: e595c020 ldr ip, [r5, #32]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
b524: e5930004 ldr r0, [r3, #4]
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
b528: e5952030 ldr r2, [r5, #48] ; 0x30
* This feature will be used to terminate the scattered heap area list. See
* also _Heap_Extend().
*/
RTEMS_INLINE_ROUTINE void _Heap_Set_last_block_size( Heap_Control *heap )
{
_Heap_Block_set_size(
b52c: e063c00c rsb ip, r3, ip
b530: e59d4018 ldr r4, [sp, #24]
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
b534: e2000001 and r0, r0, #1
/* Statistics */
stats->size += extended_size;
b538: e595102c ldr r1, [r5, #44] ; 0x2c
block->size_and_flag = size | flag;
b53c: e18c0000 orr r0, ip, r0
if ( extended_size_ptr != NULL )
b540: e59dc010 ldr ip, [sp, #16]
_Heap_Free_block( heap, extend_first_block );
}
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
b544: e0642002 rsb r2, r4, r2
/* Statistics */
stats->size += extended_size;
if ( extended_size_ptr != NULL )
b548: e35c0000 cmp ip, #0
_Heap_Set_last_block_size( heap );
extended_size = stats->free_size - free_size;
/* Statistics */
stats->size += extended_size;
b54c: e0811002 add r1, r1, r2
b550: e5830004 str r0, [r3, #4]
b554: e585102c str r1, [r5, #44] ; 0x2c
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
return true;
b558: 13a00001 movne r0, #1
/* Statistics */
stats->size += extended_size;
if ( extended_size_ptr != NULL )
*extended_size_ptr = extended_size;
b55c: 158c2000 strne r2, [ip]
return true;
b560: 03a00001 moveq r0, #1
b564: eaffff7b b b358 <_Heap_Extend+0x44>
_Heap_Block_of_alloc_area( sub_area_end, page_size );
if (
sub_area_end > extend_area_begin && extend_area_end > sub_area_begin
) {
return false;
b568: e3a00000 mov r0, #0
b56c: eaffff79 b b358 <_Heap_Extend+0x44>
);
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
b570: e3570000 cmp r7, #0
b574: 0affffe3 beq b508 <_Heap_Extend+0x1f4>
RTEMS_INLINE_ROUTINE void _Heap_Block_set_size(
Heap_Block *block,
uintptr_t size
)
{
uintptr_t flag = block->size_and_flag & HEAP_PREV_BLOCK_USED;
b578: e5973004 ldr r3, [r7, #4]
)
{
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
b57c: e59d2020 ldr r2, [sp, #32]
b580: e2033001 and r3, r3, #1
b584: e0672002 rsb r2, r7, r2
block->size_and_flag = size | flag;
b588: e1822003 orr r2, r2, r3
b58c: e5872004 str r2, [r7, #4]
}
if ( merge_above_block != NULL ) {
_Heap_Merge_above( heap, merge_above_block, extend_area_end );
} else if ( link_above_block != NULL ) {
_Heap_Link_above(
b590: e59d301c ldr r3, [sp, #28]
uintptr_t const link_begin = (uintptr_t) link;
uintptr_t const first_block_begin = (uintptr_t) first_block;
_Heap_Block_set_size( link, first_block_begin - link_begin );
last_block->size_and_flag |= HEAP_PREV_BLOCK_USED;
b594: e5932004 ldr r2, [r3, #4]
b598: e3822001 orr r2, r2, #1
b59c: e5832004 str r2, [r3, #4]
b5a0: eaffffd8 b b508 <_Heap_Extend+0x1f4>
extend_last_block
);
}
if ( merge_below_block == NULL && merge_above_block == NULL ) {
_Heap_Free_block( heap, extend_first_block );
b5a4: e1a00005 mov r0, r5
b5a8: e59d1020 ldr r1, [sp, #32]
b5ac: ebffff50 bl b2f4 <_Heap_Free_block>
b5b0: eaffffd9 b b51c <_Heap_Extend+0x208>
heap->last_block = extend_last_block;
}
if ( merge_below_block != NULL ) {
_Heap_Merge_below( heap, extend_area_begin, merge_below_block );
} else if ( link_below_block != NULL ) {
b5b4: e35b0000 cmp fp, #0
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
(link_begin - last_block_begin) | HEAP_PREV_BLOCK_USED;
b5b8: 1062b00b rsbne fp, r2, fp
b5bc: 138bb001 orrne fp, fp, #1
)
{
uintptr_t const last_block_begin = (uintptr_t) last_block;
uintptr_t const link_begin = (uintptr_t) link;
last_block->size_and_flag =
b5c0: 1582b004 strne fp, [r2, #4]
b5c4: eaffffba b b4b4 <_Heap_Extend+0x1a0>
0000afcc <_Heap_Free>:
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
afcc: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
afd0: e1a04000 mov r4, r0
afd4: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
afd8: e1a00001 mov r0, r1
afdc: e5941010 ldr r1, [r4, #16]
afe0: eb001509 bl 1040c <__umodsi3>
afe4: e2455008 sub r5, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
afe8: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
afec: e0605005 rsb r5, r0, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
aff0: e1550003 cmp r5, r3
aff4: 3a00002f bcc b0b8 <_Heap_Free+0xec>
aff8: e5941024 ldr r1, [r4, #36] ; 0x24
affc: e1550001 cmp r5, r1
b000: 8a00002c bhi b0b8 <_Heap_Free+0xec>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b004: e595c004 ldr ip, [r5, #4]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
b008: e3cc6001 bic r6, ip, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
b00c: e0852006 add r2, r5, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
b010: e1530002 cmp r3, r2
b014: 8a000027 bhi b0b8 <_Heap_Free+0xec>
b018: e1510002 cmp r1, r2
b01c: 3a000027 bcc b0c0 <_Heap_Free+0xf4>
b020: e5927004 ldr r7, [r2, #4]
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
b024: e2170001 ands r0, r7, #1
b028: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
b02c: e1510002 cmp r1, r2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
b030: e3c77001 bic r7, r7, #1
b034: 03a08000 moveq r8, #0
b038: 0a000004 beq b050 <_Heap_Free+0x84>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b03c: e0820007 add r0, r2, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
b040: e5900004 ldr r0, [r0, #4]
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
b044: e3100001 tst r0, #1
b048: 13a08000 movne r8, #0
b04c: 03a08001 moveq r8, #1
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
b050: e21c0001 ands r0, ip, #1
b054: 1a00001b bne b0c8 <_Heap_Free+0xfc>
uintptr_t const prev_size = block->prev_size;
b058: e595c000 ldr ip, [r5]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
b05c: e06ca005 rsb sl, ip, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
b060: e153000a cmp r3, sl
b064: 88bd85f0 pophi {r4, r5, r6, r7, r8, sl, pc}
b068: e151000a cmp r1, sl
b06c: 38bd85f0 popcc {r4, r5, r6, r7, r8, sl, pc}
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
b070: e59a0004 ldr r0, [sl, #4]
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
b074: e2100001 ands r0, r0, #1
b078: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
b07c: e3580000 cmp r8, #0
b080: 0a000039 beq b16c <_Heap_Free+0x1a0>
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
b084: e5940038 ldr r0, [r4, #56] ; 0x38
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
b088: e0867007 add r7, r6, r7
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b08c: e5923008 ldr r3, [r2, #8]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
b090: e087c00c add ip, r7, ip
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b094: e592200c ldr r2, [r2, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
b098: e2400001 sub r0, r0, #1
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b09c: e38c1001 orr r1, ip, #1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
b0a0: e5823008 str r3, [r2, #8]
next->prev = prev;
b0a4: e583200c str r2, [r3, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
b0a8: e5840038 str r0, [r4, #56] ; 0x38
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b0ac: e58a1004 str r1, [sl, #4]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
b0b0: e78ac00c str ip, [sl, ip]
b0b4: ea00000f b b0f8 <_Heap_Free+0x12c>
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
b0b8: e3a00000 mov r0, #0
b0bc: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
b0c0: e3a00000 mov r0, #0 <== NOT EXECUTED
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b0c4: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
b0c8: e3580000 cmp r8, #0
b0cc: 0a000014 beq b124 <_Heap_Free+0x158>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b0d0: e5923008 ldr r3, [r2, #8]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
b0d4: e0877006 add r7, r7, r6
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b0d8: e592200c ldr r2, [r2, #12]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b0dc: e3871001 orr r1, r7, #1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
b0e0: e5853008 str r3, [r5, #8]
new_block->prev = prev;
b0e4: e585200c str r2, [r5, #12]
next->prev = new_block;
prev->next = new_block;
b0e8: e5825008 str r5, [r2, #8]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
b0ec: e583500c str r5, [r3, #12]
b0f0: e5851004 str r1, [r5, #4]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
b0f4: e7857007 str r7, [r5, r7]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
b0f8: e5942040 ldr r2, [r4, #64] ; 0x40
++stats->frees;
b0fc: e5943050 ldr r3, [r4, #80] ; 0x50
stats->free_size += block_size;
b100: e5941030 ldr r1, [r4, #48] ; 0x30
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
b104: e2422001 sub r2, r2, #1
++stats->frees;
b108: e2833001 add r3, r3, #1
stats->free_size += block_size;
b10c: e0816006 add r6, r1, r6
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
b110: e5842040 str r2, [r4, #64] ; 0x40
++stats->frees;
b114: e5843050 str r3, [r4, #80] ; 0x50
stats->free_size += block_size;
b118: e5846030 str r6, [r4, #48] ; 0x30
return( true );
b11c: e3a00001 mov r0, #1
b120: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
b124: e3863001 orr r3, r6, #1
b128: e5853004 str r3, [r5, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
b12c: e2843038 add r3, r4, #56 ; 0x38
b130: e8931008 ldm r3, {r3, ip}
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b134: e5920004 ldr r0, [r2, #4]
RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after(
Heap_Block *block_before,
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
b138: e5941008 ldr r1, [r4, #8]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
b13c: e2833001 add r3, r3, #1
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b140: e3c00001 bic r0, r0, #1
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
b144: e153000c cmp r3, ip
new_block->next = next;
b148: e5851008 str r1, [r5, #8]
new_block->prev = block_before;
b14c: e585400c str r4, [r5, #12]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b150: e5820004 str r0, [r2, #4]
block_before->next = new_block;
next->prev = new_block;
b154: e581500c str r5, [r1, #12]
next_block->prev_size = block_size;
b158: e7856006 str r6, [r5, r6]
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
b15c: e5845008 str r5, [r4, #8]
/* Statistics */
++stats->free_blocks;
b160: e5843038 str r3, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
stats->max_free_blocks = stats->free_blocks;
b164: 8584303c strhi r3, [r4, #60] ; 0x3c
b168: eaffffe2 b b0f8 <_Heap_Free+0x12c>
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
b16c: e086c00c add ip, r6, ip
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b170: e38c3001 orr r3, ip, #1
b174: e58a3004 str r3, [sl, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b178: e5923004 ldr r3, [r2, #4]
b17c: e3c33001 bic r3, r3, #1
b180: e5823004 str r3, [r2, #4]
next_block->prev_size = size;
b184: e785c006 str ip, [r5, r6]
b188: eaffffda b b0f8 <_Heap_Free+0x12c>
00012238 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
12238: e92d40f0 push {r4, r5, r6, r7, lr}
1223c: e1a04000 mov r4, r0
12240: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
12244: e1a00001 mov r0, r1
12248: e5941010 ldr r1, [r4, #16]
1224c: e1a07002 mov r7, r2
12250: ebfff86d bl 1040c <__umodsi3>
12254: e2456008 sub r6, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
12258: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
1225c: e0600006 rsb r0, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
12260: e1500003 cmp r0, r3
12264: 3a000010 bcc 122ac <_Heap_Size_of_alloc_area+0x74>
12268: e5942024 ldr r2, [r4, #36] ; 0x24
1226c: e1500002 cmp r0, r2
12270: 8a00000d bhi 122ac <_Heap_Size_of_alloc_area+0x74>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
12274: e5906004 ldr r6, [r0, #4]
12278: e3c66001 bic r6, r6, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
1227c: e0806006 add r6, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
12280: e1530006 cmp r3, r6
12284: 8a000008 bhi 122ac <_Heap_Size_of_alloc_area+0x74>
12288: e1520006 cmp r2, r6
1228c: 3a000008 bcc 122b4 <_Heap_Size_of_alloc_area+0x7c>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
12290: e5960004 ldr r0, [r6, #4]
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
12294: e2100001 ands r0, r0, #1
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
12298: 12655004 rsbne r5, r5, #4
1229c: 10856006 addne r6, r5, r6
122a0: 15876000 strne r6, [r7]
return true;
122a4: 13a00001 movne r0, #1
122a8: e8bd80f0 pop {r4, r5, r6, r7, pc}
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
) {
return false;
122ac: e3a00000 mov r0, #0
122b0: e8bd80f0 pop {r4, r5, r6, r7, pc}
122b4: e3a00000 mov r0, #0 <== NOT EXECUTED
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
}
122b8: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
0000750c <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
750c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7510: e59f35cc ldr r3, [pc, #1484] ; 7ae4 <_Heap_Walk+0x5d8>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
7514: e31200ff tst r2, #255 ; 0xff
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7518: e5933000 ldr r3, [r3]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
751c: e59f25c4 ldr r2, [pc, #1476] ; 7ae8 <_Heap_Walk+0x5dc>
7520: e59f95c4 ldr r9, [pc, #1476] ; 7aec <_Heap_Walk+0x5e0>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
7524: e1a0a001 mov sl, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
7528: 11a09002 movne r9, r2
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
752c: e5901010 ldr r1, [r0, #16]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7530: e3530003 cmp r3, #3
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
7534: e5902014 ldr r2, [r0, #20]
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
7538: e5903024 ldr r3, [r0, #36] ; 0x24
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
753c: e24dd038 sub sp, sp, #56 ; 0x38
7540: e1a04000 mov r4, r0
uintptr_t const page_size = heap->page_size;
7544: e58d1024 str r1, [sp, #36] ; 0x24
uintptr_t const min_block_size = heap->min_block_size;
7548: e58d2028 str r2, [sp, #40] ; 0x28
Heap_Block *const first_block = heap->first_block;
754c: e5908020 ldr r8, [r0, #32]
Heap_Block *const last_block = heap->last_block;
7550: e58d302c str r3, [sp, #44] ; 0x2c
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7554: 0a000002 beq 7564 <_Heap_Walk+0x58>
}
block = next_block;
} while ( block != first_block );
return true;
7558: e3a00001 mov r0, #1
}
755c: e28dd038 add sp, sp, #56 ; 0x38
7560: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
7564: e594101c ldr r1, [r4, #28]
7568: e5900018 ldr r0, [r0, #24]
756c: e2842008 add r2, r4, #8
7570: e892000c ldm r2, {r2, r3}
7574: e59dc028 ldr ip, [sp, #40] ; 0x28
7578: e58d1008 str r1, [sp, #8]
757c: e59d102c ldr r1, [sp, #44] ; 0x2c
7580: e58d0004 str r0, [sp, #4]
7584: e58d1010 str r1, [sp, #16]
7588: e58d2014 str r2, [sp, #20]
758c: e58d3018 str r3, [sp, #24]
7590: e59f2558 ldr r2, [pc, #1368] ; 7af0 <_Heap_Walk+0x5e4>
7594: e58dc000 str ip, [sp]
7598: e58d800c str r8, [sp, #12]
759c: e1a0000a mov r0, sl
75a0: e3a01000 mov r1, #0
75a4: e59d3024 ldr r3, [sp, #36] ; 0x24
75a8: e1a0e00f mov lr, pc
75ac: e12fff19 bx r9
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
75b0: e59d2024 ldr r2, [sp, #36] ; 0x24
75b4: e3520000 cmp r2, #0
75b8: 0a000026 beq 7658 <_Heap_Walk+0x14c>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
75bc: e59d3024 ldr r3, [sp, #36] ; 0x24
75c0: e2135007 ands r5, r3, #7
75c4: 1a00002a bne 7674 <_Heap_Walk+0x168>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
75c8: e59d0028 ldr r0, [sp, #40] ; 0x28
75cc: e59d1024 ldr r1, [sp, #36] ; 0x24
75d0: ebffe572 bl ba0 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
75d4: e250b000 subs fp, r0, #0
75d8: 1a00002c bne 7690 <_Heap_Walk+0x184>
75dc: e2880008 add r0, r8, #8
75e0: e59d1024 ldr r1, [sp, #36] ; 0x24
75e4: ebffe56d bl ba0 <__umodsi3>
);
return false;
}
if (
75e8: e2506000 subs r6, r0, #0
75ec: 1a00002f bne 76b0 <_Heap_Walk+0x1a4>
block = next_block;
} while ( block != first_block );
return true;
}
75f0: e598b004 ldr fp, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
75f4: e21b5001 ands r5, fp, #1
75f8: 0a0000cd beq 7934 <_Heap_Walk+0x428>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
75fc: e59dc02c ldr ip, [sp, #44] ; 0x2c
7600: e59c3004 ldr r3, [ip, #4]
7604: e3c33001 bic r3, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
7608: e08c3003 add r3, ip, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
760c: e5935004 ldr r5, [r3, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
7610: e2155001 ands r5, r5, #1
7614: 0a000008 beq 763c <_Heap_Walk+0x130>
);
return false;
}
if (
7618: e1580003 cmp r8, r3
761c: 0a00002b beq 76d0 <_Heap_Walk+0x1c4>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
7620: e1a0000a mov r0, sl <== NOT EXECUTED
7624: e3a01001 mov r1, #1 <== NOT EXECUTED
7628: e59f24c4 ldr r2, [pc, #1220] ; 7af4 <_Heap_Walk+0x5e8> <== NOT EXECUTED
762c: e1a0e00f mov lr, pc <== NOT EXECUTED
7630: e12fff19 bx r9 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7634: e1a00006 mov r0, r6 <== NOT EXECUTED
7638: eaffffc7 b 755c <_Heap_Walk+0x50> <== NOT EXECUTED
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
763c: e1a0000a mov r0, sl
7640: e3a01001 mov r1, #1
7644: e59f24ac ldr r2, [pc, #1196] ; 7af8 <_Heap_Walk+0x5ec>
7648: e1a0e00f mov lr, pc
764c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7650: e1a00005 mov r0, r5
7654: eaffffc0 b 755c <_Heap_Walk+0x50>
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
7658: e1a0000a mov r0, sl
765c: e3a01001 mov r1, #1
7660: e59f2494 ldr r2, [pc, #1172] ; 7afc <_Heap_Walk+0x5f0>
7664: e1a0e00f mov lr, pc
7668: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
766c: e59d0024 ldr r0, [sp, #36] ; 0x24
7670: eaffffb9 b 755c <_Heap_Walk+0x50>
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
7674: e1a0000a mov r0, sl
7678: e3a01001 mov r1, #1
767c: e59f247c ldr r2, [pc, #1148] ; 7b00 <_Heap_Walk+0x5f4>
7680: e1a0e00f mov lr, pc
7684: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7688: e3a00000 mov r0, #0
768c: eaffffb2 b 755c <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
7690: e1a0000a mov r0, sl
7694: e3a01001 mov r1, #1
7698: e59f2464 ldr r2, [pc, #1124] ; 7b04 <_Heap_Walk+0x5f8>
769c: e59d3028 ldr r3, [sp, #40] ; 0x28
76a0: e1a0e00f mov lr, pc
76a4: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
76a8: e1a00005 mov r0, r5
76ac: eaffffaa b 755c <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
76b0: e1a0000a mov r0, sl
76b4: e3a01001 mov r1, #1
76b8: e59f2448 ldr r2, [pc, #1096] ; 7b08 <_Heap_Walk+0x5fc>
76bc: e1a03008 mov r3, r8
76c0: e1a0e00f mov lr, pc
76c4: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
76c8: e1a0000b mov r0, fp
76cc: eaffffa2 b 755c <_Heap_Walk+0x50>
block = next_block;
} while ( block != first_block );
return true;
}
76d0: e5945008 ldr r5, [r4, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
76d4: e1540005 cmp r4, r5
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
76d8: e5947010 ldr r7, [r4, #16]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
76dc: 05943020 ldreq r3, [r4, #32]
76e0: 0a00000d beq 771c <_Heap_Walk+0x210>
block = next_block;
} while ( block != first_block );
return true;
}
76e4: e5943020 ldr r3, [r4, #32]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
76e8: e1530005 cmp r3, r5
76ec: 9a000097 bls 7950 <_Heap_Walk+0x444>
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
76f0: e1a0000a mov r0, sl
76f4: e3a01001 mov r1, #1
76f8: e59f240c ldr r2, [pc, #1036] ; 7b0c <_Heap_Walk+0x600>
76fc: e1a03005 mov r3, r5
7700: e1a0e00f mov lr, pc
7704: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7708: e3a00000 mov r0, #0
770c: eaffff92 b 755c <_Heap_Walk+0x50>
7710: e1a03008 mov r3, r8
7714: e28d8030 add r8, sp, #48 ; 0x30
7718: e8980900 ldm r8, {r8, fp}
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
771c: e1a06008 mov r6, r8
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7720: e3cb7001 bic r7, fp, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
7724: e0875006 add r5, r7, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7728: e1530005 cmp r3, r5
772c: 9a000008 bls 7754 <_Heap_Walk+0x248>
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
7730: e1a0000a mov r0, sl
7734: e58d5000 str r5, [sp]
7738: e3a01001 mov r1, #1
773c: e59f23cc ldr r2, [pc, #972] ; 7b10 <_Heap_Walk+0x604>
7740: e1a03006 mov r3, r6
7744: e1a0e00f mov lr, pc
7748: e12fff19 bx r9
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
774c: e3a00000 mov r0, #0
7750: eaffff81 b 755c <_Heap_Walk+0x50>
7754: e5943024 ldr r3, [r4, #36] ; 0x24
7758: e1530005 cmp r3, r5
775c: 3afffff3 bcc 7730 <_Heap_Walk+0x224>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7760: e59d1024 ldr r1, [sp, #36] ; 0x24
7764: e1a00007 mov r0, r7
7768: ebffe50c bl ba0 <__umodsi3>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
776c: e59d102c ldr r1, [sp, #44] ; 0x2c
7770: e0563001 subs r3, r6, r1
7774: 13a03001 movne r3, #1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
7778: e3500000 cmp r0, #0
777c: 0a000001 beq 7788 <_Heap_Walk+0x27c>
7780: e3530000 cmp r3, #0
7784: 1a0000aa bne 7a34 <_Heap_Walk+0x528>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
7788: e59d2028 ldr r2, [sp, #40] ; 0x28
778c: e1520007 cmp r2, r7
7790: 9a000001 bls 779c <_Heap_Walk+0x290>
7794: e3530000 cmp r3, #0
7798: 1a0000ae bne 7a58 <_Heap_Walk+0x54c>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
779c: e1560005 cmp r6, r5
77a0: 3a000001 bcc 77ac <_Heap_Walk+0x2a0>
77a4: e3530000 cmp r3, #0
77a8: 1a0000b4 bne 7a80 <_Heap_Walk+0x574>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
77ac: e5953004 ldr r3, [r5, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
77b0: e3130001 tst r3, #1
77b4: e20bb001 and fp, fp, #1
77b8: 0a000018 beq 7820 <_Heap_Walk+0x314>
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
77bc: e35b0000 cmp fp, #0
77c0: 0a00000c beq 77f8 <_Heap_Walk+0x2ec>
(*printer)(
77c4: e58d7000 str r7, [sp]
77c8: e1a0000a mov r0, sl
77cc: e3a01000 mov r1, #0
77d0: e59f233c ldr r2, [pc, #828] ; 7b14 <_Heap_Walk+0x608>
77d4: e1a03006 mov r3, r6
77d8: e1a0e00f mov lr, pc
77dc: e12fff19 bx r9
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
77e0: e1580005 cmp r8, r5
77e4: 0affff5b beq 7558 <_Heap_Walk+0x4c>
77e8: e595b004 ldr fp, [r5, #4]
77ec: e5943020 ldr r3, [r4, #32]
77f0: e1a06005 mov r6, r5
77f4: eaffffc9 b 7720 <_Heap_Walk+0x214>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
77f8: e58d7000 str r7, [sp]
77fc: e5963000 ldr r3, [r6]
7800: e1a0000a mov r0, sl
7804: e58d3004 str r3, [sp, #4]
7808: e1a0100b mov r1, fp
780c: e59f2304 ldr r2, [pc, #772] ; 7b18 <_Heap_Walk+0x60c>
7810: e1a03006 mov r3, r6
7814: e1a0e00f mov lr, pc
7818: e12fff19 bx r9
781c: eaffffef b 77e0 <_Heap_Walk+0x2d4>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
7820: e596200c ldr r2, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7824: e5943008 ldr r3, [r4, #8]
7828: e1530002 cmp r3, r2
block = next_block;
} while ( block != first_block );
return true;
}
782c: e594100c ldr r1, [r4, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7830: 059f02e4 ldreq r0, [pc, #740] ; 7b1c <_Heap_Walk+0x610>
7834: 0a000003 beq 7848 <_Heap_Walk+0x33c>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
7838: e59f32e0 ldr r3, [pc, #736] ; 7b20 <_Heap_Walk+0x614>
783c: e1540002 cmp r4, r2
7840: e59f02dc ldr r0, [pc, #732] ; 7b24 <_Heap_Walk+0x618>
7844: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
7848: e5963008 ldr r3, [r6, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
784c: e1510003 cmp r1, r3
7850: 059f12d0 ldreq r1, [pc, #720] ; 7b28 <_Heap_Walk+0x61c>
7854: 0a000003 beq 7868 <_Heap_Walk+0x35c>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
7858: e59fc2cc ldr ip, [pc, #716] ; 7b2c <_Heap_Walk+0x620>
785c: e1540003 cmp r4, r3
7860: e59f12bc ldr r1, [pc, #700] ; 7b24 <_Heap_Walk+0x618>
7864: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7868: e58d2004 str r2, [sp, #4]
786c: e58d0008 str r0, [sp, #8]
7870: e58d300c str r3, [sp, #12]
7874: e58d1010 str r1, [sp, #16]
7878: e1a03006 mov r3, r6
787c: e58d7000 str r7, [sp]
7880: e1a0000a mov r0, sl
7884: e3a01000 mov r1, #0
7888: e59f22a0 ldr r2, [pc, #672] ; 7b30 <_Heap_Walk+0x624>
788c: e1a0e00f mov lr, pc
7890: e12fff19 bx r9
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
7894: e5953000 ldr r3, [r5]
7898: e1570003 cmp r7, r3
789c: 1a000011 bne 78e8 <_Heap_Walk+0x3dc>
);
return false;
}
if ( !prev_used ) {
78a0: e35b0000 cmp fp, #0
78a4: 0a00001a beq 7914 <_Heap_Walk+0x408>
block = next_block;
} while ( block != first_block );
return true;
}
78a8: e5943008 ldr r3, [r4, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
78ac: e1540003 cmp r4, r3
78b0: 0a000004 beq 78c8 <_Heap_Walk+0x3bc>
if ( free_block == block ) {
78b4: e1560003 cmp r6, r3
78b8: 0affffc8 beq 77e0 <_Heap_Walk+0x2d4>
return true;
}
free_block = free_block->next;
78bc: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
78c0: e1540003 cmp r4, r3
78c4: 1afffffa bne 78b4 <_Heap_Walk+0x3a8>
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
78c8: e1a0000a mov r0, sl
78cc: e3a01001 mov r1, #1
78d0: e59f225c ldr r2, [pc, #604] ; 7b34 <_Heap_Walk+0x628>
78d4: e1a03006 mov r3, r6
78d8: e1a0e00f mov lr, pc
78dc: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
78e0: e3a00000 mov r0, #0
78e4: eaffff1c b 755c <_Heap_Walk+0x50>
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
78e8: e58d3004 str r3, [sp, #4]
78ec: e1a0000a mov r0, sl
78f0: e58d7000 str r7, [sp]
78f4: e58d5008 str r5, [sp, #8]
78f8: e3a01001 mov r1, #1
78fc: e59f2234 ldr r2, [pc, #564] ; 7b38 <_Heap_Walk+0x62c>
7900: e1a03006 mov r3, r6
7904: e1a0e00f mov lr, pc
7908: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
790c: e3a00000 mov r0, #0
7910: eaffff11 b 755c <_Heap_Walk+0x50>
return false;
}
if ( !prev_used ) {
(*printer)(
7914: e1a0000a mov r0, sl
7918: e3a01001 mov r1, #1
791c: e59f2218 ldr r2, [pc, #536] ; 7b3c <_Heap_Walk+0x630>
7920: e1a03006 mov r3, r6
7924: e1a0e00f mov lr, pc
7928: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
792c: e1a0000b mov r0, fp
7930: eaffff09 b 755c <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
7934: e1a0000a mov r0, sl
7938: e3a01001 mov r1, #1
793c: e59f21fc ldr r2, [pc, #508] ; 7b40 <_Heap_Walk+0x634>
7940: e1a0e00f mov lr, pc
7944: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7948: e1a00005 mov r0, r5
794c: eaffff02 b 755c <_Heap_Walk+0x50>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7950: e594c024 ldr ip, [r4, #36] ; 0x24
7954: e15c0005 cmp ip, r5
7958: 3affff64 bcc 76f0 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
795c: e2850008 add r0, r5, #8
7960: e1a01007 mov r1, r7
7964: e58d3020 str r3, [sp, #32]
7968: e58dc01c str ip, [sp, #28]
796c: ebffe48b bl ba0 <__umodsi3>
);
return false;
}
if (
7970: e3500000 cmp r0, #0
7974: e59d3020 ldr r3, [sp, #32]
7978: e59dc01c ldr ip, [sp, #28]
797c: 1a000048 bne 7aa4 <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7980: e5952004 ldr r2, [r5, #4]
7984: e3c22001 bic r2, r2, #1
block = next_block;
} while ( block != first_block );
return true;
}
7988: e0852002 add r2, r5, r2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
798c: e5922004 ldr r2, [r2, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7990: e3120001 tst r2, #1
7994: 1a00004a bne 7ac4 <_Heap_Walk+0x5b8>
7998: e58d8030 str r8, [sp, #48] ; 0x30
799c: e58db034 str fp, [sp, #52] ; 0x34
79a0: e1a01004 mov r1, r4
79a4: e1a06005 mov r6, r5
79a8: e1a08003 mov r8, r3
79ac: e1a0b00c mov fp, ip
79b0: ea000013 b 7a04 <_Heap_Walk+0x4f8>
return false;
}
prev_block = free_block;
free_block = free_block->next;
79b4: e5955008 ldr r5, [r5, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
79b8: e1540005 cmp r4, r5
79bc: 0affff53 beq 7710 <_Heap_Walk+0x204>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
79c0: e1580005 cmp r8, r5
79c4: 8affff49 bhi 76f0 <_Heap_Walk+0x1e4>
79c8: e155000b cmp r5, fp
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
79cc: e2850008 add r0, r5, #8
79d0: e1a01007 mov r1, r7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
79d4: 8affff45 bhi 76f0 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
79d8: ebffe470 bl ba0 <__umodsi3>
);
return false;
}
if (
79dc: e3500000 cmp r0, #0
79e0: 1a00002f bne 7aa4 <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
79e4: e5953004 ldr r3, [r5, #4]
79e8: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
79ec: e0833005 add r3, r3, r5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
79f0: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
79f4: e3130001 tst r3, #1
79f8: 1a000031 bne 7ac4 <_Heap_Walk+0x5b8>
79fc: e1a01006 mov r1, r6
7a00: e1a06005 mov r6, r5
);
return false;
}
if ( free_block->prev != prev_block ) {
7a04: e595200c ldr r2, [r5, #12]
7a08: e1520001 cmp r2, r1
7a0c: 0affffe8 beq 79b4 <_Heap_Walk+0x4a8>
(*printer)(
7a10: e58d2000 str r2, [sp]
7a14: e1a0000a mov r0, sl
7a18: e3a01001 mov r1, #1
7a1c: e59f2120 ldr r2, [pc, #288] ; 7b44 <_Heap_Walk+0x638>
7a20: e1a03005 mov r3, r5
7a24: e1a0e00f mov lr, pc
7a28: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7a2c: e3a00000 mov r0, #0
7a30: eafffec9 b 755c <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
7a34: e1a0000a mov r0, sl
7a38: e58d7000 str r7, [sp]
7a3c: e3a01001 mov r1, #1
7a40: e59f2100 ldr r2, [pc, #256] ; 7b48 <_Heap_Walk+0x63c>
7a44: e1a03006 mov r3, r6
7a48: e1a0e00f mov lr, pc
7a4c: e12fff19 bx r9
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
7a50: e3a00000 mov r0, #0
7a54: eafffec0 b 755c <_Heap_Walk+0x50>
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
7a58: e58d2004 str r2, [sp, #4]
7a5c: e1a0000a mov r0, sl
7a60: e58d7000 str r7, [sp]
7a64: e3a01001 mov r1, #1
7a68: e59f20dc ldr r2, [pc, #220] ; 7b4c <_Heap_Walk+0x640>
7a6c: e1a03006 mov r3, r6
7a70: e1a0e00f mov lr, pc
7a74: e12fff19 bx r9
block,
block_size,
min_block_size
);
return false;
7a78: e3a00000 mov r0, #0
7a7c: eafffeb6 b 755c <_Heap_Walk+0x50>
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
7a80: e1a0000a mov r0, sl
7a84: e58d5000 str r5, [sp]
7a88: e3a01001 mov r1, #1
7a8c: e59f20bc ldr r2, [pc, #188] ; 7b50 <_Heap_Walk+0x644>
7a90: e1a03006 mov r3, r6
7a94: e1a0e00f mov lr, pc
7a98: e12fff19 bx r9
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
7a9c: e3a00000 mov r0, #0
7aa0: eafffead b 755c <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
7aa4: e1a0000a mov r0, sl
7aa8: e3a01001 mov r1, #1
7aac: e59f20a0 ldr r2, [pc, #160] ; 7b54 <_Heap_Walk+0x648>
7ab0: e1a03005 mov r3, r5
7ab4: e1a0e00f mov lr, pc
7ab8: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7abc: e3a00000 mov r0, #0
7ac0: eafffea5 b 755c <_Heap_Walk+0x50>
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
7ac4: e1a0000a mov r0, sl
7ac8: e3a01001 mov r1, #1
7acc: e59f2084 ldr r2, [pc, #132] ; 7b58 <_Heap_Walk+0x64c>
7ad0: e1a03005 mov r3, r5
7ad4: e1a0e00f mov lr, pc
7ad8: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7adc: e3a00000 mov r0, #0
7ae0: eafffe9d b 755c <_Heap_Walk+0x50>
000069e8 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
69e8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
69ec: e5904034 ldr r4, [r0, #52] ; 0x34
69f0: e3540000 cmp r4, #0
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
69f4: e24dd014 sub sp, sp, #20
69f8: e1a05000 mov r5, r0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
69fc: e1d070b8 ldrh r7, [r0, #8]
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6a00: 0a00009b beq 6c74 <_Objects_Extend_information+0x28c>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
6a04: e1d081b4 ldrh r8, [r0, #20]
6a08: e1d0a1b0 ldrh sl, [r0, #16]
6a0c: e1a01008 mov r1, r8
6a10: e1a0000a mov r0, sl
6a14: eb002636 bl 102f4 <__aeabi_uidiv>
6a18: e1a03800 lsl r3, r0, #16
for ( ; block < block_count; block++ ) {
6a1c: e1b03823 lsrs r3, r3, #16
6a20: 0a000099 beq 6c8c <_Objects_Extend_information+0x2a4>
if ( information->object_blocks[ block ] == NULL ) {
6a24: e5949000 ldr r9, [r4]
6a28: e3590000 cmp r9, #0
6a2c: 01a01008 moveq r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6a30: 01a06007 moveq r6, r7
index_base = minimum_index;
block = 0;
6a34: 01a04009 moveq r4, r9
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
6a38: 0a00000c beq 6a70 <_Objects_Extend_information+0x88>
6a3c: e1a02004 mov r2, r4
6a40: e1a01008 mov r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6a44: e1a06007 mov r6, r7
index_base = minimum_index;
block = 0;
6a48: e3a04000 mov r4, #0
6a4c: ea000002 b 6a5c <_Objects_Extend_information+0x74>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
6a50: e5b29004 ldr r9, [r2, #4]!
6a54: e3590000 cmp r9, #0
6a58: 0a000004 beq 6a70 <_Objects_Extend_information+0x88>
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6a5c: e2844001 add r4, r4, #1
6a60: e1530004 cmp r3, r4
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
6a64: e0866008 add r6, r6, r8
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6a68: 8afffff8 bhi 6a50 <_Objects_Extend_information+0x68>
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6a6c: e3a09001 mov r9, #1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
6a70: e08aa001 add sl, sl, r1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
6a74: e35a0801 cmp sl, #65536 ; 0x10000
6a78: 2a000063 bcs 6c0c <_Objects_Extend_information+0x224>
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
6a7c: e5d52012 ldrb r2, [r5, #18]
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
6a80: e5950018 ldr r0, [r5, #24]
if ( information->auto_extend ) {
6a84: e3520000 cmp r2, #0
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
6a88: e0000091 mul r0, r1, r0
if ( information->auto_extend ) {
6a8c: 1a000060 bne 6c14 <_Objects_Extend_information+0x22c>
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
6a90: e58d3000 str r3, [sp]
6a94: eb000850 bl 8bdc <_Workspace_Allocate_or_fatal_error>
6a98: e59d3000 ldr r3, [sp]
6a9c: e1a08000 mov r8, r0
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
6aa0: e3590000 cmp r9, #0
6aa4: 0a000039 beq 6b90 <_Objects_Extend_information+0x1a8>
*/
/*
* Up the block count and maximum
*/
block_count++;
6aa8: e283b001 add fp, r3, #1
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
6aac: e08b008b add r0, fp, fp, lsl #1
((maximum + minimum_index) * sizeof(Objects_Control *));
6ab0: e08a0000 add r0, sl, r0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
6ab4: e0800007 add r0, r0, r7
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
6ab8: e1a00100 lsl r0, r0, #2
6abc: e58d3000 str r3, [sp]
6ac0: eb00083b bl 8bb4 <_Workspace_Allocate>
if ( !object_blocks ) {
6ac4: e2509000 subs r9, r0, #0
6ac8: e59d3000 ldr r3, [sp]
6acc: 0a000073 beq 6ca0 <_Objects_Extend_information+0x2b8>
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
6ad0: e1d521b0 ldrh r2, [r5, #16]
6ad4: e1570002 cmp r7, r2
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
6ad8: e089c10b add ip, r9, fp, lsl #2
6adc: e089b18b add fp, r9, fp, lsl #3
6ae0: 3a000051 bcc 6c2c <_Objects_Extend_information+0x244>
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6ae4: e3570000 cmp r7, #0
6ae8: 13a02000 movne r2, #0
6aec: 11a0100b movne r1, fp
local_table[ index ] = NULL;
6af0: 11a00002 movne r0, r2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6af4: 0a000003 beq 6b08 <_Objects_Extend_information+0x120>
6af8: e2822001 add r2, r2, #1
6afc: e1570002 cmp r7, r2
local_table[ index ] = NULL;
6b00: e4810004 str r0, [r1], #4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6b04: 8afffffb bhi 6af8 <_Objects_Extend_information+0x110>
6b08: e1a03103 lsl r3, r3, #2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
6b0c: e1d511b4 ldrh r1, [r5, #20]
6b10: e0861001 add r1, r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
6b14: e3a00000 mov r0, #0
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6b18: e1560001 cmp r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
6b1c: e7890003 str r0, [r9, r3]
inactive_per_block[block_count] = 0;
6b20: e78c0003 str r0, [ip, r3]
for ( index=index_base ;
6b24: 2a000005 bcs 6b40 <_Objects_Extend_information+0x158>
6b28: e08b2106 add r2, fp, r6, lsl #2
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
6b2c: e1a03006 mov r3, r6
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
6b30: e2833001 add r3, r3, #1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6b34: e1530001 cmp r3, r1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
6b38: e4820004 str r0, [r2], #4
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6b3c: 3afffffb bcc 6b30 <_Objects_Extend_information+0x148>
6b40: e10f3000 mrs r3, CPSR
6b44: e3832080 orr r2, r3, #128 ; 0x80
6b48: e129f002 msr CPSR_fc, r2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6b4c: e5952000 ldr r2, [r5]
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
6b50: e1d510b4 ldrh r1, [r5, #4]
6b54: e1a02c02 lsl r2, r2, #24
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
6b58: e1a0a80a lsl sl, sl, #16
6b5c: e3822801 orr r2, r2, #65536 ; 0x10000
6b60: e1a0a82a lsr sl, sl, #16
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
6b64: e1822d81 orr r2, r2, r1, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6b68: e182200a orr r2, r2, sl
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
6b6c: e5950034 ldr r0, [r5, #52] ; 0x34
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
6b70: e585c030 str ip, [r5, #48] ; 0x30
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
6b74: e5859034 str r9, [r5, #52] ; 0x34
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
6b78: e585b01c str fp, [r5, #28]
information->maximum = (Objects_Maximum) maximum;
6b7c: e1c5a1b0 strh sl, [r5, #16]
information->maximum_id = _Objects_Build_id(
6b80: e585200c str r2, [r5, #12]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
6b84: e129f003 msr CPSR_fc, r3
information->maximum
);
_ISR_Enable( level );
if ( old_tables )
6b88: e3500000 cmp r0, #0
_Workspace_Free( old_tables );
6b8c: 1b00080e blne 8bcc <_Workspace_Free>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6b90: e5953034 ldr r3, [r5, #52] ; 0x34
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
6b94: e28d7008 add r7, sp, #8
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6b98: e7838104 str r8, [r3, r4, lsl #2]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
6b9c: e1a01008 mov r1, r8
6ba0: e1a00007 mov r0, r7
6ba4: e1d521b4 ldrh r2, [r5, #20]
6ba8: e5953018 ldr r3, [r5, #24]
6bac: eb000fe3 bl ab40 <_Chain_Initialize>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6bb0: e1a04104 lsl r4, r4, #2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
6bb4: e2858020 add r8, r5, #32
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
6bb8: ea000009 b 6be4 <_Objects_Extend_information+0x1fc>
6bbc: e5953000 ldr r3, [r5]
the_object->id = _Objects_Build_id(
6bc0: e1d520b4 ldrh r2, [r5, #4]
6bc4: e1a03c03 lsl r3, r3, #24
6bc8: e3833801 orr r3, r3, #65536 ; 0x10000
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
6bcc: e1833d82 orr r3, r3, r2, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6bd0: e1833006 orr r3, r3, r6
6bd4: e5813008 str r3, [r1, #8]
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
6bd8: e1a00008 mov r0, r8
6bdc: ebfffce6 bl 5f7c <_Chain_Append>
index++;
6be0: e2866001 add r6, r6, #1
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
6be4: e1a00007 mov r0, r7
6be8: ebfffcf6 bl 5fc8 <_Chain_Get>
6bec: e2501000 subs r1, r0, #0
6bf0: 1afffff1 bne 6bbc <_Objects_Extend_information+0x1d4>
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
6bf4: e1d522bc ldrh r2, [r5, #44] ; 0x2c
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
6bf8: e1d531b4 ldrh r3, [r5, #20]
6bfc: e5951030 ldr r1, [r5, #48] ; 0x30
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
6c00: e0832002 add r2, r3, r2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
6c04: e7813004 str r3, [r1, r4]
information->inactive =
6c08: e1c522bc strh r2, [r5, #44] ; 0x2c
(Objects_Maximum)(information->inactive + information->allocation_size);
}
6c0c: e28dd014 add sp, sp, #20
6c10: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
6c14: e58d3000 str r3, [sp]
6c18: eb0007e5 bl 8bb4 <_Workspace_Allocate>
if ( !new_object_block )
6c1c: e2508000 subs r8, r0, #0
6c20: e59d3000 ldr r3, [sp]
6c24: 1affff9d bne 6aa0 <_Objects_Extend_information+0xb8>
6c28: eafffff7 b 6c0c <_Objects_Extend_information+0x224>
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
6c2c: e1a03103 lsl r3, r3, #2
6c30: e5951034 ldr r1, [r5, #52] ; 0x34
6c34: e1a02003 mov r2, r3
6c38: e88d1008 stm sp, {r3, ip}
6c3c: eb001a3b bl d530 <memcpy>
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
6c40: e89d1008 ldm sp, {r3, ip}
6c44: e1a0000c mov r0, ip
6c48: e1a02003 mov r2, r3
6c4c: e5951030 ldr r1, [r5, #48] ; 0x30
6c50: eb001a36 bl d530 <memcpy>
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
6c54: e1d521b0 ldrh r2, [r5, #16]
6c58: e0872002 add r2, r7, r2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
6c5c: e1a0000b mov r0, fp
6c60: e595101c ldr r1, [r5, #28]
6c64: e1a02102 lsl r2, r2, #2
6c68: eb001a30 bl d530 <memcpy>
6c6c: e89d1008 ldm sp, {r3, ip}
6c70: eaffffa5 b 6b0c <_Objects_Extend_information+0x124>
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6c74: e1d0a1b0 ldrh sl, [r0, #16]
6c78: e1d011b4 ldrh r1, [r0, #20]
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6c7c: e1a06007 mov r6, r7
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6c80: e3a09001 mov r9, #1
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
6c84: e1a03004 mov r3, r4
6c88: eaffff78 b 6a70 <_Objects_Extend_information+0x88>
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6c8c: e1a01008 mov r1, r8 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6c90: e1a06007 mov r6, r7 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6c94: e3a09001 mov r9, #1 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
6c98: e1a04003 mov r4, r3 <== NOT EXECUTED
6c9c: eaffff73 b 6a70 <_Objects_Extend_information+0x88> <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
6ca0: e1a00008 mov r0, r8
6ca4: eb0007c8 bl 8bcc <_Workspace_Free>
return;
6ca8: eaffffd7 b 6c0c <_Objects_Extend_information+0x224>
00006ff0 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
6ff0: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
6ff4: e1d040b8 ldrh r4, [r0, #8]
block_count = (information->maximum - index_base) /
6ff8: e1d051b4 ldrh r5, [r0, #20]
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
6ffc: e1a06000 mov r6, r0
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
7000: e1d001b0 ldrh r0, [r0, #16]
7004: e1a01005 mov r1, r5
7008: e0640000 rsb r0, r4, r0
700c: eb0024b8 bl 102f4 <__aeabi_uidiv>
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7010: e3500000 cmp r0, #0
7014: 08bd80f0 popeq {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
7018: e5962030 ldr r2, [r6, #48] ; 0x30
701c: e5923000 ldr r3, [r2]
7020: e1550003 cmp r5, r3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7024: 13a03000 movne r3, #0
if ( information->inactive_per_block[ block ] ==
7028: 1a000005 bne 7044 <_Objects_Shrink_information+0x54>
702c: ea000008 b 7054 <_Objects_Shrink_information+0x64> <== NOT EXECUTED
7030: e5b21004 ldr r1, [r2, #4]!
7034: e1550001 cmp r5, r1
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
7038: e0844005 add r4, r4, r5
703c: e1a07103 lsl r7, r3, #2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
7040: 0a000004 beq 7058 <_Objects_Shrink_information+0x68>
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7044: e2833001 add r3, r3, #1
7048: e1500003 cmp r0, r3
704c: 8afffff7 bhi 7030 <_Objects_Shrink_information+0x40>
7050: e8bd80f0 pop {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
7054: e3a07000 mov r7, #0 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
7058: e5960020 ldr r0, [r6, #32]
705c: ea000002 b 706c <_Objects_Shrink_information+0x7c>
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
7060: e3550000 cmp r5, #0
7064: 0a00000b beq 7098 <_Objects_Shrink_information+0xa8>
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
7068: e1a00005 mov r0, r5
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
706c: e1d030b8 ldrh r3, [r0, #8]
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
7070: e1530004 cmp r3, r4
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
7074: e5905000 ldr r5, [r0]
if ((index >= index_base) &&
7078: 3afffff8 bcc 7060 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
707c: e1d621b4 ldrh r2, [r6, #20]
7080: e0842002 add r2, r4, r2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
7084: e1530002 cmp r3, r2
7088: 2afffff4 bcs 7060 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
708c: ebfffbc5 bl 5fa8 <_Chain_Extract>
}
}
while ( the_object );
7090: e3550000 cmp r5, #0
7094: 1afffff3 bne 7068 <_Objects_Shrink_information+0x78>
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
7098: e5963034 ldr r3, [r6, #52] ; 0x34
709c: e7930007 ldr r0, [r3, r7]
70a0: eb0006c9 bl 8bcc <_Workspace_Free>
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
70a4: e1d602bc ldrh r0, [r6, #44] ; 0x2c
70a8: e1d631b4 ldrh r3, [r6, #20]
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
70ac: e5961034 ldr r1, [r6, #52] ; 0x34
information->inactive_per_block[ block ] = 0;
70b0: e5962030 ldr r2, [r6, #48] ; 0x30
information->inactive -= information->allocation_size;
70b4: e0633000 rsb r3, r3, r0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
70b8: e7815007 str r5, [r1, r7]
information->inactive_per_block[ block ] = 0;
70bc: e7825007 str r5, [r2, r7]
information->inactive -= information->allocation_size;
70c0: e1c632bc strh r3, [r6, #44] ; 0x2c
return;
70c4: e8bd80f0 pop {r4, r5, r6, r7, pc}
00006648 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
6648: e59f30b8 ldr r3, [pc, #184] ; 6708 <_TOD_Validate+0xc0>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
664c: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
6650: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
6654: e593100c ldr r1, [r3, #12]
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
6658: 01a00004 moveq r0, r4
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
665c: 08bd8010 popeq {r4, pc}
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
6660: e3a0093d mov r0, #999424 ; 0xf4000
6664: e2800d09 add r0, r0, #576 ; 0x240
6668: eb004507 bl 17a8c <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
666c: e5943018 ldr r3, [r4, #24]
6670: e1500003 cmp r0, r3
6674: 9a00001f bls 66f8 <_TOD_Validate+0xb0>
(the_tod->ticks >= ticks_per_second) ||
6678: e5943014 ldr r3, [r4, #20]
667c: e353003b cmp r3, #59 ; 0x3b
6680: 8a00001c bhi 66f8 <_TOD_Validate+0xb0>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
6684: e5943010 ldr r3, [r4, #16]
6688: e353003b cmp r3, #59 ; 0x3b
668c: 8a000019 bhi 66f8 <_TOD_Validate+0xb0>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
6690: e594300c ldr r3, [r4, #12]
6694: e3530017 cmp r3, #23
6698: 8a000016 bhi 66f8 <_TOD_Validate+0xb0>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
669c: e5940004 ldr r0, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
66a0: e3500000 cmp r0, #0
66a4: 08bd8010 popeq {r4, pc}
(the_tod->month == 0) ||
66a8: e350000c cmp r0, #12
66ac: 8a000011 bhi 66f8 <_TOD_Validate+0xb0>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
66b0: e5942000 ldr r2, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
66b4: e3a03d1f mov r3, #1984 ; 0x7c0
66b8: e2833003 add r3, r3, #3
66bc: e1520003 cmp r2, r3
66c0: 9a00000c bls 66f8 <_TOD_Validate+0xb0>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
66c4: e5944008 ldr r4, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
66c8: e3540000 cmp r4, #0
66cc: 0a00000b beq 6700 <_TOD_Validate+0xb8>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
66d0: e3120003 tst r2, #3
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
66d4: 059f3030 ldreq r3, [pc, #48] ; 670c <_TOD_Validate+0xc4>
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
66d8: 159f302c ldrne r3, [pc, #44] ; 670c <_TOD_Validate+0xc4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
66dc: 0280000d addeq r0, r0, #13
66e0: 07930100 ldreq r0, [r3, r0, lsl #2]
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
66e4: 17930100 ldrne r0, [r3, r0, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
66e8: e1500004 cmp r0, r4
66ec: 33a00000 movcc r0, #0
66f0: 23a00001 movcs r0, #1
66f4: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
66f8: e3a00000 mov r0, #0
66fc: e8bd8010 pop {r4, pc}
6700: e1a00004 mov r0, r4 <== NOT EXECUTED
if ( the_tod->day > days_in_month )
return false;
return true;
}
6704: e8bd8010 pop {r4, pc} <== NOT EXECUTED
00007f20 <_Thread_queue_Enqueue_priority>:
Priority_Control priority;
States_Control block_state;
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
7f20: e5913014 ldr r3, [r1, #20]
Thread_blocking_operation_States _Thread_queue_Enqueue_priority (
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread,
ISR_Level *level_p
)
{
7f24: e92d07f0 push {r4, r5, r6, r7, r8, r9, sl}
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
7f28: e281403c add r4, r1, #60 ; 0x3c
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
7f2c: e281c038 add ip, r1, #56 ; 0x38
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
7f30: e5814038 str r4, [r1, #56] ; 0x38
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
if ( _Thread_queue_Is_reverse_search( priority ) )
7f34: e3130020 tst r3, #32
head->previous = NULL;
7f38: e3a04000 mov r4, #0
7f3c: e581403c str r4, [r1, #60] ; 0x3c
tail->previous = head;
7f40: e581c040 str ip, [r1, #64] ; 0x40
RTEMS_INLINE_ROUTINE uint32_t _Thread_queue_Header_number (
Priority_Control the_priority
)
{
return (the_priority / TASK_QUEUE_DATA_PRIORITIES_PER_HEADER);
7f44: e1a0a323 lsr sl, r3, #6
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
7f48: e5905038 ldr r5, [r0, #56] ; 0x38
if ( _Thread_queue_Is_reverse_search( priority ) )
7f4c: 1a00001f bne 7fd0 <_Thread_queue_Enqueue_priority+0xb0>
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
return the_thread_queue->sync_state;
}
7f50: e08aa08a add sl, sl, sl, lsl #1
7f54: e1a0910a lsl r9, sl, #2
RTEMS_INLINE_ROUTINE bool _Chain_Is_tail(
Chain_Control *the_chain,
const Chain_Node *the_node
)
{
return (the_node == _Chain_Tail(the_chain));
7f58: e289a004 add sl, r9, #4
7f5c: e080a00a add sl, r0, sl
7f60: e0809009 add r9, r0, r9
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
7f64: e10f7000 mrs r7, CPSR
7f68: e387c080 orr ip, r7, #128 ; 0x80
7f6c: e129f00c msr CPSR_fc, ip
7f70: e1a08007 mov r8, r7
7f74: e599c000 ldr ip, [r9]
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_First( header );
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
7f78: e15c000a cmp ip, sl
7f7c: 1a000009 bne 7fa8 <_Thread_queue_Enqueue_priority+0x88>
7f80: ea000052 b 80d0 <_Thread_queue_Enqueue_priority+0x1b0>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
asm volatile (
7f84: e10f6000 mrs r6, CPSR
7f88: e129f007 msr CPSR_fc, r7
7f8c: e129f006 msr CPSR_fc, r6
RTEMS_INLINE_ROUTINE bool _States_Are_set (
States_Control the_states,
States_Control mask
)
{
return ( (the_states & mask) != STATES_READY);
7f90: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority <= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
7f94: e1150006 tst r5, r6
7f98: 0a000035 beq 8074 <_Thread_queue_Enqueue_priority+0x154>
_ISR_Enable( level );
goto restart_forward_search;
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
7f9c: e59cc000 ldr ip, [ip]
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_First( header );
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
7fa0: e15c000a cmp ip, sl
7fa4: 0a000002 beq 7fb4 <_Thread_queue_Enqueue_priority+0x94>
search_priority = search_thread->current_priority;
7fa8: e59c4014 ldr r4, [ip, #20]
if ( priority <= search_priority )
7fac: e1530004 cmp r3, r4
7fb0: 8afffff3 bhi 7f84 <_Thread_queue_Enqueue_priority+0x64>
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
}
if ( the_thread_queue->sync_state !=
7fb4: e5905030 ldr r5, [r0, #48] ; 0x30
7fb8: e3550001 cmp r5, #1
7fbc: 0a00002e beq 807c <_Thread_queue_Enqueue_priority+0x15c>
* For example, the blocking thread could have been given
* the mutex by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
7fc0: e5828000 str r8, [r2]
return the_thread_queue->sync_state;
}
7fc4: e1a00005 mov r0, r5
7fc8: e8bd07f0 pop {r4, r5, r6, r7, r8, r9, sl}
7fcc: e12fff1e bx lr
7fd0: e08aa08a add sl, sl, sl, lsl #1
7fd4: e59f90fc ldr r9, [pc, #252] ; 80d8 <_Thread_queue_Enqueue_priority+0x1b8>
7fd8: e080a10a add sl, r0, sl, lsl #2
the_thread->Wait.queue = the_thread_queue;
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
7fdc: e5d94000 ldrb r4, [r9]
7fe0: e2844001 add r4, r4, #1
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
7fe4: e10f7000 mrs r7, CPSR
7fe8: e387c080 orr ip, r7, #128 ; 0x80
7fec: e129f00c msr CPSR_fc, ip
7ff0: e1a08007 mov r8, r7
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
return the_thread_queue->sync_state;
}
7ff4: e59ac008 ldr ip, [sl, #8]
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_Last( header );
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
7ff8: e15c000a cmp ip, sl
7ffc: 1a000009 bne 8028 <_Thread_queue_Enqueue_priority+0x108>
8000: ea00000b b 8034 <_Thread_queue_Enqueue_priority+0x114>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
asm volatile (
8004: e10f6000 mrs r6, CPSR
8008: e129f007 msr CPSR_fc, r7
800c: e129f006 msr CPSR_fc, r6
8010: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority >= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
8014: e1150006 tst r5, r6
8018: 0a000013 beq 806c <_Thread_queue_Enqueue_priority+0x14c>
_ISR_Enable( level );
goto restart_reverse_search;
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
801c: e59cc004 ldr ip, [ip, #4]
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_Last( header );
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
8020: e15c000a cmp ip, sl
8024: 0a000002 beq 8034 <_Thread_queue_Enqueue_priority+0x114>
search_priority = search_thread->current_priority;
8028: e59c4014 ldr r4, [ip, #20]
if ( priority >= search_priority )
802c: e1530004 cmp r3, r4
8030: 3afffff3 bcc 8004 <_Thread_queue_Enqueue_priority+0xe4>
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
}
if ( the_thread_queue->sync_state !=
8034: e5905030 ldr r5, [r0, #48] ; 0x30
8038: e3550001 cmp r5, #1
803c: 1affffdf bne 7fc0 <_Thread_queue_Enqueue_priority+0xa0>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
8040: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
8044: e3a03000 mov r3, #0
8048: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
804c: 0a000016 beq 80ac <_Thread_queue_Enqueue_priority+0x18c>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
next_node = search_node->next;
8050: e59c3000 ldr r3, [ip]
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
8054: e8811008 stm r1, {r3, ip}
search_node->next = the_node;
next_node->previous = the_node;
8058: e5831004 str r1, [r3, #4]
next_node = search_node->next;
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
search_node->next = the_node;
805c: e58c1000 str r1, [ip]
next_node->previous = the_node;
the_thread->Wait.queue = the_thread_queue;
8060: e5810044 str r0, [r1, #68] ; 0x44
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
8064: e129f007 msr CPSR_fc, r7
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
8068: eaffffd5 b 7fc4 <_Thread_queue_Enqueue_priority+0xa4>
806c: e129f007 msr CPSR_fc, r7 <== NOT EXECUTED
8070: eaffffd9 b 7fdc <_Thread_queue_Enqueue_priority+0xbc> <== NOT EXECUTED
8074: e129f007 msr CPSR_fc, r7
8078: eaffffb9 b 7f64 <_Thread_queue_Enqueue_priority+0x44>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
807c: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
8080: e3a03000 mov r3, #0
8084: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
8088: 0a000007 beq 80ac <_Thread_queue_Enqueue_priority+0x18c>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
previous_node = search_node->previous;
808c: e59c3004 ldr r3, [ip, #4]
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
8090: e581c000 str ip, [r1]
the_node->previous = previous_node;
8094: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
8098: e5831000 str r1, [r3]
search_node->previous = the_node;
809c: e58c1004 str r1, [ip, #4]
the_thread->Wait.queue = the_thread_queue;
80a0: e5810044 str r0, [r1, #68] ; 0x44
80a4: e129f007 msr CPSR_fc, r7
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
80a8: eaffffc5 b 7fc4 <_Thread_queue_Enqueue_priority+0xa4>
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
equal_priority: /* add at end of priority group */
search_node = _Chain_Tail( &search_thread->Wait.Block2n );
previous_node = search_node->previous;
80ac: e59c3040 ldr r3, [ip, #64] ; 0x40
the_thread->Wait.queue = the_thread_queue;
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
equal_priority: /* add at end of priority group */
search_node = _Chain_Tail( &search_thread->Wait.Block2n );
80b0: e28c203c add r2, ip, #60 ; 0x3c
previous_node = search_node->previous;
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
80b4: e881000c stm r1, {r2, r3}
the_node->previous = previous_node;
previous_node->next = the_node;
80b8: e5831000 str r1, [r3]
search_node->previous = the_node;
80bc: e58c1040 str r1, [ip, #64] ; 0x40
the_thread->Wait.queue = the_thread_queue;
80c0: e5810044 str r0, [r1, #68] ; 0x44
80c4: e129f008 msr CPSR_fc, r8
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
80c8: e3a05001 mov r5, #1
80cc: eaffffbc b 7fc4 <_Thread_queue_Enqueue_priority+0xa4>
if ( _Thread_queue_Is_reverse_search( priority ) )
goto restart_reverse_search;
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
80d0: e3e04000 mvn r4, #0
80d4: eaffffb6 b 7fb4 <_Thread_queue_Enqueue_priority+0x94>
0000a294 <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
a294: e5902000 ldr r2, [r0]
a298: e5913000 ldr r3, [r1]
a29c: e1520003 cmp r2, r3
return true;
a2a0: c3a00001 movgt r0, #1
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
a2a4: c12fff1e bxgt lr
return true;
if ( lhs->tv_sec < rhs->tv_sec )
a2a8: ba000005 blt a2c4 <_Timespec_Greater_than+0x30>
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
a2ac: e5900004 ldr r0, [r0, #4]
a2b0: e5913004 ldr r3, [r1, #4]
a2b4: e1500003 cmp r0, r3
a2b8: d3a00000 movle r0, #0
a2bc: c3a00001 movgt r0, #1
a2c0: e12fff1e bx lr
{
if ( lhs->tv_sec > rhs->tv_sec )
return true;
if ( lhs->tv_sec < rhs->tv_sec )
return false;
a2c4: e3a00000 mov r0, #0
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
a2c8: e12fff1e bx lr <== NOT EXECUTED
00008748 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
8748: e92d40f0 push {r4, r5, r6, r7, lr}
return false;
}
}
return true;
}
874c: e59f5050 ldr r5, [pc, #80] ; 87a4 <_User_extensions_Thread_create+0x5c>
8750: e4954004 ldr r4, [r5], #4
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
8754: e1540005 cmp r4, r5
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
8758: e1a06000 mov r6, r0
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
875c: 0a00000e beq 879c <_User_extensions_Thread_create+0x54>
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
8760: e59f7040 ldr r7, [pc, #64] ; 87a8 <_User_extensions_Thread_create+0x60>
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
8764: e5943014 ldr r3, [r4, #20]
8768: e3530000 cmp r3, #0
status = (*the_extension->Callouts.thread_create)(
876c: e1a01006 mov r1, r6
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
8770: 0a000004 beq 8788 <_User_extensions_Thread_create+0x40>
status = (*the_extension->Callouts.thread_create)(
8774: e5970004 ldr r0, [r7, #4]
8778: e1a0e00f mov lr, pc
877c: e12fff13 bx r3
_Thread_Executing,
the_thread
);
if ( !status )
8780: e3500000 cmp r0, #0
8784: 08bd80f0 popeq {r4, r5, r6, r7, pc}
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
8788: e5944000 ldr r4, [r4]
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
878c: e1540005 cmp r4, r5
8790: 1afffff3 bne 8764 <_User_extensions_Thread_create+0x1c>
if ( !status )
return false;
}
}
return true;
8794: e3a00001 mov r0, #1
8798: e8bd80f0 pop {r4, r5, r6, r7, pc}
879c: e3a00001 mov r0, #1 <== NOT EXECUTED
}
87a0: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
0000a5ac <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
a5ac: e92d41f0 push {r4, r5, r6, r7, r8, lr}
a5b0: e1a04000 mov r4, r0
a5b4: e1a05002 mov r5, r2
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
a5b8: e10f3000 mrs r3, CPSR
a5bc: e3832080 orr r2, r3, #128 ; 0x80
a5c0: e129f002 msr CPSR_fc, r2
}
}
_ISR_Enable( level );
}
a5c4: e1a07000 mov r7, r0
a5c8: e4972004 ldr r2, [r7], #4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
a5cc: e1520007 cmp r2, r7
a5d0: 0a000018 beq a638 <_Watchdog_Adjust+0x8c>
switch ( direction ) {
a5d4: e3510000 cmp r1, #0
a5d8: 1a000018 bne a640 <_Watchdog_Adjust+0x94>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
a5dc: e3550000 cmp r5, #0
a5e0: 0a000014 beq a638 <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
a5e4: e5926010 ldr r6, [r2, #16]
a5e8: e1550006 cmp r5, r6
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
a5ec: 23a08001 movcs r8, #1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
a5f0: 2a000005 bcs a60c <_Watchdog_Adjust+0x60>
a5f4: ea000018 b a65c <_Watchdog_Adjust+0xb0> <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
a5f8: e0555006 subs r5, r5, r6
a5fc: 0a00000d beq a638 <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
a600: e5926010 ldr r6, [r2, #16]
a604: e1560005 cmp r6, r5
a608: 8a000013 bhi a65c <_Watchdog_Adjust+0xb0>
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
a60c: e5828010 str r8, [r2, #16]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
a610: e129f003 msr CPSR_fc, r3
_ISR_Enable( level );
_Watchdog_Tickle( header );
a614: e1a00004 mov r0, r4
a618: eb0000a0 bl a8a0 <_Watchdog_Tickle>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
a61c: e10f3000 mrs r3, CPSR
a620: e3832080 orr r2, r3, #128 ; 0x80
a624: e129f002 msr CPSR_fc, r2
}
}
_ISR_Enable( level );
}
a628: e5941000 ldr r1, [r4]
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
a62c: e1570001 cmp r7, r1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First(
Chain_Control *header
)
{
return ( (Watchdog_Control *) _Chain_First( header ) );
a630: e1a02001 mov r2, r1
a634: 1affffef bne a5f8 <_Watchdog_Adjust+0x4c>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
a638: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
a63c: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
a640: e3510001 cmp r1, #1
a644: 1afffffb bne a638 <_Watchdog_Adjust+0x8c>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
a648: e5921010 ldr r1, [r2, #16]
a64c: e0815005 add r5, r1, r5
a650: e5825010 str r5, [r2, #16]
a654: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
a658: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
a65c: e0655006 rsb r5, r5, r6
a660: e5825010 str r5, [r2, #16]
break;
a664: eafffff3 b a638 <_Watchdog_Adjust+0x8c>
00006fbc <rtems_io_register_driver>:
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
6fbc: e59f3150 ldr r3, [pc, #336] ; 7114 <rtems_io_register_driver+0x158>
6fc0: e593c000 ldr ip, [r3]
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
6fc4: e59f314c ldr r3, [pc, #332] ; 7118 <rtems_io_register_driver+0x15c>
if ( rtems_interrupt_is_in_progress() )
6fc8: e35c0000 cmp ip, #0
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
6fcc: e92d4030 push {r4, r5, lr}
6fd0: e1a04000 mov r4, r0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
6fd4: e5930000 ldr r0, [r3]
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
6fd8: 13a00012 movne r0, #18
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
6fdc: 18bd8030 popne {r4, r5, pc}
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
6fe0: e3520000 cmp r2, #0
6fe4: 0a00003f beq 70e8 <rtems_io_register_driver+0x12c>
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
6fe8: e3510000 cmp r1, #0
if ( registered_major == NULL )
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
6fec: e5820000 str r0, [r2]
if ( driver_table == NULL )
6ff0: 0a00003c beq 70e8 <rtems_io_register_driver+0x12c>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
6ff4: e591c000 ldr ip, [r1]
6ff8: e35c0000 cmp ip, #0
6ffc: 0a000036 beq 70dc <rtems_io_register_driver+0x120>
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
7000: e1500004 cmp r0, r4
7004: 9a000027 bls 70a8 <rtems_io_register_driver+0xec>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
7008: e59f010c ldr r0, [pc, #268] ; 711c <rtems_io_register_driver+0x160>
700c: e590c000 ldr ip, [r0]
7010: e28cc001 add ip, ip, #1
7014: e580c000 str ip, [r0]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
7018: e3540000 cmp r4, #0
701c: 1a000023 bne 70b0 <rtems_io_register_driver+0xf4>
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
7020: e593c000 ldr ip, [r3]
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
7024: e35c0000 cmp ip, #0
7028: 0a000030 beq 70f0 <rtems_io_register_driver+0x134>
702c: e59fe0ec ldr lr, [pc, #236] ; 7120 <rtems_io_register_driver+0x164>
7030: e59e3000 ldr r3, [lr]
7034: ea000003 b 7048 <rtems_io_register_driver+0x8c>
7038: e2844001 add r4, r4, #1
703c: e15c0004 cmp ip, r4
7040: e2833018 add r3, r3, #24
7044: 9a000005 bls 7060 <rtems_io_register_driver+0xa4>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7048: e5930000 ldr r0, [r3]
704c: e3500000 cmp r0, #0
7050: 1afffff8 bne 7038 <rtems_io_register_driver+0x7c>
7054: e5930004 ldr r0, [r3, #4]
7058: e3500000 cmp r0, #0
705c: 1afffff5 bne 7038 <rtems_io_register_driver+0x7c>
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
7060: e15c0004 cmp ip, r4
7064: 1084c084 addne ip, r4, r4, lsl #1
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
7068: e5824000 str r4, [r2]
if ( m != n )
706c: 11a0c18c lslne ip, ip, #3
7070: 0a00001f beq 70f4 <rtems_io_register_driver+0x138>
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
7074: e59e5000 ldr r5, [lr]
7078: e1a0e001 mov lr, r1
707c: e8be000f ldm lr!, {r0, r1, r2, r3}
7080: e085c00c add ip, r5, ip
7084: e8ac000f stmia ip!, {r0, r1, r2, r3}
7088: e89e0003 ldm lr, {r0, r1}
708c: e88c0003 stm ip, {r0, r1}
_Thread_Enable_dispatch();
7090: eb000739 bl 8d7c <_Thread_Enable_dispatch>
return rtems_io_initialize( major, 0, NULL );
7094: e3a01000 mov r1, #0
7098: e1a00004 mov r0, r4
709c: e1a02001 mov r2, r1
}
70a0: e8bd4030 pop {r4, r5, lr}
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
70a4: ea001ec1 b ebb0 <rtems_io_initialize>
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
return RTEMS_INVALID_NUMBER;
70a8: e3a0000a mov r0, #10
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
70ac: e8bd8030 pop {r4, r5, pc}
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
70b0: e59fe068 ldr lr, [pc, #104] ; 7120 <rtems_io_register_driver+0x164>
70b4: e59e3000 ldr r3, [lr]
70b8: e084c084 add ip, r4, r4, lsl #1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
70bc: e793018c ldr r0, [r3, ip, lsl #3]
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
70c0: e1a0c18c lsl ip, ip, #3
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
70c4: e3500000 cmp r0, #0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
70c8: e083300c add r3, r3, ip
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
70cc: 0a00000b beq 7100 <rtems_io_register_driver+0x144>
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
70d0: eb000729 bl 8d7c <_Thread_Enable_dispatch>
return RTEMS_RESOURCE_IN_USE;
70d4: e3a0000c mov r0, #12
70d8: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
70dc: e591c004 ldr ip, [r1, #4]
70e0: e35c0000 cmp ip, #0
70e4: 1affffc5 bne 7000 <rtems_io_register_driver+0x44>
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
70e8: e3a00009 mov r0, #9
70ec: e8bd8030 pop {r4, r5, pc}
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
70f0: e5824000 str r4, [r2] <== NOT EXECUTED
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
70f4: eb000720 bl 8d7c <_Thread_Enable_dispatch>
*major = m;
if ( m != n )
return RTEMS_SUCCESSFUL;
return RTEMS_TOO_MANY;
70f8: e3a00005 mov r0, #5
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
return sc;
70fc: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7100: e5933004 ldr r3, [r3, #4]
7104: e3530000 cmp r3, #0
7108: 1afffff0 bne 70d0 <rtems_io_register_driver+0x114>
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
710c: e5824000 str r4, [r2]
7110: eaffffd7 b 7074 <rtems_io_register_driver+0xb8>
0000c7fc <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
c7fc: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
c800: e2525000 subs r5, r2, #0
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
c804: e1a04000 mov r4, r0
c808: e1a06001 mov r6, r1
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
c80c: 03a00009 moveq r0, #9
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
c810: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
c814: e59f9148 ldr r9, [pc, #328] ; c964 <rtems_task_mode+0x168>
c818: e5997004 ldr r7, [r9, #4]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
c81c: e5d7a074 ldrb sl, [r7, #116] ; 0x74
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
c820: e59780f4 ldr r8, [r7, #244] ; 0xf4
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
c824: e597307c ldr r3, [r7, #124] ; 0x7c
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
c828: e35a0000 cmp sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
c82c: e5d8b008 ldrb fp, [r8, #8]
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
c830: 03a0ac01 moveq sl, #256 ; 0x100
c834: 13a0a000 movne sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
c838: e3530000 cmp r3, #0
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
c83c: 138aac02 orrne sl, sl, #512 ; 0x200
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
c840: e35b0000 cmp fp, #0
c844: 03a0bb01 moveq fp, #1024 ; 0x400
c848: 13a0b000 movne fp, #0
old_mode |= _ISR_Get_level();
c84c: ebfff1d4 bl 8fa4 <_CPU_ISR_Get_level>
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
c850: e18bb000 orr fp, fp, r0
old_mode |= _ISR_Get_level();
c854: e18ba00a orr sl, fp, sl
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
c858: e3160c01 tst r6, #256 ; 0x100
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
old_mode |= _ISR_Get_level();
*previous_mode_set = old_mode;
c85c: e585a000 str sl, [r5]
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
c860: 0a000003 beq c874 <rtems_task_mode+0x78>
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
c864: e3140c01 tst r4, #256 ; 0x100
c868: 13a03000 movne r3, #0
c86c: 03a03001 moveq r3, #1
c870: e5c73074 strb r3, [r7, #116] ; 0x74
if ( mask & RTEMS_TIMESLICE_MASK ) {
c874: e3160c02 tst r6, #512 ; 0x200
c878: 1a000028 bne c920 <rtems_task_mode+0x124>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
c87c: e3160080 tst r6, #128 ; 0x80
c880: 1a00002f bne c944 <rtems_task_mode+0x148>
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
c884: e2166b01 ands r6, r6, #1024 ; 0x400
c888: 0a000012 beq c8d8 <rtems_task_mode+0xdc>
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
c88c: e3140b01 tst r4, #1024 ; 0x400
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
c890: e5d82008 ldrb r2, [r8, #8]
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
c894: 13a03000 movne r3, #0
c898: 03a03001 moveq r3, #1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
c89c: e1520003 cmp r2, r3
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
c8a0: 03a06000 moveq r6, #0
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
c8a4: 0a00000b beq c8d8 <rtems_task_mode+0xdc>
asr->is_enabled = is_asr_enabled;
c8a8: e5c83008 strb r3, [r8, #8]
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
c8ac: e10f3000 mrs r3, CPSR
c8b0: e3832080 orr r2, r3, #128 ; 0x80
c8b4: e129f002 msr CPSR_fc, r2
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
c8b8: e5981018 ldr r1, [r8, #24]
information->signals_pending = information->signals_posted;
c8bc: e5982014 ldr r2, [r8, #20]
information->signals_posted = _signals;
c8c0: e5881014 str r1, [r8, #20]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
c8c4: e5882018 str r2, [r8, #24]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
c8c8: e129f003 msr CPSR_fc, r3
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
c8cc: e5986014 ldr r6, [r8, #20]
c8d0: e3560000 cmp r6, #0
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
c8d4: 13a06001 movne r6, #1
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
c8d8: e59f3088 ldr r3, [pc, #136] ; c968 <rtems_task_mode+0x16c>
c8dc: e5933000 ldr r3, [r3]
c8e0: e3530003 cmp r3, #3
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
c8e4: 13a00000 movne r0, #0
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
c8e8: 18bd8ff0 popne {r4, r5, r6, r7, r8, r9, sl, fp, pc}
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
c8ec: e3560000 cmp r6, #0
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
c8f0: e5993004 ldr r3, [r9, #4]
if ( are_signals_pending ||
c8f4: 1a000015 bne c950 <rtems_task_mode+0x154>
c8f8: e59f2064 ldr r2, [pc, #100] ; c964 <rtems_task_mode+0x168>
c8fc: e5922008 ldr r2, [r2, #8]
c900: e1530002 cmp r3, r2
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
c904: 01a00006 moveq r0, r6
c908: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
c90c: e5d33074 ldrb r3, [r3, #116] ; 0x74
c910: e3530000 cmp r3, #0
c914: 1a00000d bne c950 <rtems_task_mode+0x154>
c918: e1a00006 mov r0, r6 <== NOT EXECUTED
}
c91c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
c920: e2143c02 ands r3, r4, #512 ; 0x200
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
c924: 159f3040 ldrne r3, [pc, #64] ; c96c <rtems_task_mode+0x170>
c928: 15933000 ldrne r3, [r3]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
c92c: 13a02001 movne r2, #1
c930: 1587207c strne r2, [r7, #124] ; 0x7c
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
c934: 15873078 strne r3, [r7, #120] ; 0x78
} else
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE;
c938: 0587307c streq r3, [r7, #124] ; 0x7c
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
c93c: e3160080 tst r6, #128 ; 0x80
c940: 0affffcf beq c884 <rtems_task_mode+0x88>
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
c944: e2040080 and r0, r4, #128 ; 0x80
c948: ebfff190 bl 8f90 <_CPU_ISR_Set_level>
c94c: eaffffcc b c884 <rtems_task_mode+0x88>
_Thread_Dispatch_necessary = true;
c950: e3a03001 mov r3, #1
c954: e5c93010 strb r3, [r9, #16]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
c958: ebffebce bl 7898 <_Thread_Dispatch>
}
return RTEMS_SUCCESSFUL;
c95c: e3a00000 mov r0, #0
c960: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}