RTEMS 4.11Annotated Report
Fri Jul 16 16:19:15 2010
00016bc4 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16bc4: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
16bc8: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16bcc: e1530002 cmp r3, r2
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
16bd0: e1a07000 mov r7, r0
16bd4: e1a05002 mov r5, r2
16bd8: e1a08001 mov r8, r1
16bdc: e59da020 ldr sl, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16be0: 3a000016 bcc 16c40 <_CORE_message_queue_Broadcast+0x7c>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
16be4: e5906048 ldr r6, [r0, #72] ; 0x48
16be8: e3560000 cmp r6, #0
*count = 0;
16bec: 13a00000 movne r0, #0
16bf0: 158a0000 strne r0, [sl]
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
16bf4: 18bd85f0 popne {r4, r5, r6, r7, r8, sl, pc}
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16bf8: e1a00007 mov r0, r7
16bfc: eb000a0e bl 1943c <_Thread_queue_Dequeue>
16c00: e2504000 subs r4, r0, #0
16c04: 0a00000a beq 16c34 <_CORE_message_queue_Broadcast+0x70>
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
16c08: e594002c ldr r0, [r4, #44] ; 0x2c
16c0c: e1a01008 mov r1, r8
16c10: e1a02005 mov r2, r5
16c14: eb002084 bl 1ee2c <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
16c18: e5943028 ldr r3, [r4, #40] ; 0x28
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16c1c: e1a00007 mov r0, r7
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
16c20: e5835000 str r5, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16c24: eb000a04 bl 1943c <_Thread_queue_Dequeue>
16c28: e2504000 subs r4, r0, #0
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
16c2c: e2866001 add r6, r6, #1
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16c30: 1afffff4 bne 16c08 <_CORE_message_queue_Broadcast+0x44>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
16c34: e58a6000 str r6, [sl]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
16c38: e1a00004 mov r0, r4
16c3c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
16c40: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
16c44: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
0000ab6c <_CORE_mutex_Seize_interrupt_trylock>:
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
ab6c: e59f215c ldr r2, [pc, #348] ; acd0 <_CORE_mutex_Seize_interrupt_trylock+0x164>
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
ab70: e590c050 ldr ip, [r0, #80] ; 0x50
#if defined(__RTEMS_DO_NOT_INLINE_CORE_MUTEX_SEIZE__)
int _CORE_mutex_Seize_interrupt_trylock(
CORE_mutex_Control *the_mutex,
ISR_Level *level_p
)
{
ab74: e1a03000 mov r3, r0
{
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
ab78: e5922004 ldr r2, [r2, #4]
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
ab7c: e3a00000 mov r0, #0
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
ab80: e15c0000 cmp ip, r0
ab84: e92d40f0 push {r4, r5, r6, r7, lr}
Thread_Control *executing;
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
ab88: e5820034 str r0, [r2, #52] ; 0x34
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
ab8c: 0a00000e beq abcc <_CORE_mutex_Seize_interrupt_trylock+0x60>
return _CORE_mutex_Seize_interrupt_trylock_body( the_mutex, level_p );
}
ab90: e593c048 ldr ip, [r3, #72] ; 0x48
the_mutex->lock = CORE_MUTEX_LOCKED;
the_mutex->holder = executing;
the_mutex->holder_id = executing->Object.id;
ab94: e5925008 ldr r5, [r2, #8]
the_mutex->nest_count = 1;
ab98: e3a04001 mov r4, #1
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
ab9c: e35c0002 cmp ip, #2
/* disabled when you get here */
executing = _Thread_Executing;
executing->Wait.return_code = CORE_MUTEX_STATUS_SUCCESSFUL;
if ( !_CORE_mutex_Is_locked( the_mutex ) ) {
the_mutex->lock = CORE_MUTEX_LOCKED;
aba0: e5830050 str r0, [r3, #80] ; 0x50
the_mutex->holder = executing;
aba4: e583205c str r2, [r3, #92] ; 0x5c
the_mutex->holder_id = executing->Object.id;
aba8: e5835060 str r5, [r3, #96] ; 0x60
the_mutex->nest_count = 1;
abac: e5834054 str r4, [r3, #84] ; 0x54
if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
abb0: 0a000013 beq ac04 <_CORE_mutex_Seize_interrupt_trylock+0x98>
abb4: e35c0003 cmp ip, #3
abb8: 0a000018 beq ac20 <_CORE_mutex_Seize_interrupt_trylock+0xb4>
abbc: e5913000 ldr r3, [r1]
abc0: e129f003 msr CPSR_fc, r3
executing->resource_count++;
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
abc4: e3a00000 mov r0, #0
abc8: e8bd80f0 pop {r4, r5, r6, r7, pc}
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
abcc: e593005c ldr r0, [r3, #92] ; 0x5c
abd0: e1520000 cmp r2, r0
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
abd4: 13a00001 movne r0, #1
/*
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
abd8: 18bd80f0 popne {r4, r5, r6, r7, pc}
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
abdc: e5930040 ldr r0, [r3, #64] ; 0x40
abe0: e3500000 cmp r0, #0
abe4: 1a00001e bne ac64 <_CORE_mutex_Seize_interrupt_trylock+0xf8>
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
abe8: e5932054 ldr r2, [r3, #84] ; 0x54
abec: e2822001 add r2, r2, #1
abf0: e5832054 str r2, [r3, #84] ; 0x54
abf4: e5913000 ldr r3, [r1]
abf8: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
abfc: e3a00000 mov r0, #0
ac00: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac04: e592301c ldr r3, [r2, #28]
ac08: e2833001 add r3, r3, #1
ac0c: e582301c str r3, [r2, #28]
ac10: e5913000 ldr r3, [r1]
ac14: e129f003 msr CPSR_fc, r3
}
if ( !_CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
_ISR_Enable( *level_p );
return 0;
ac18: e3a00000 mov r0, #0
ac1c: e8bd80f0 pop {r4, r5, r6, r7, pc}
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac20: e592c01c ldr ip, [r2, #28]
*/
{
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
ac24: e593704c ldr r7, [r3, #76] ; 0x4c
current = executing->current_priority;
ac28: e5926014 ldr r6, [r2, #20]
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac2c: e08c5004 add r5, ip, r4
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
ac30: e1570006 cmp r7, r6
_Chain_Prepend_unprotected( &executing->lock_mutex,
&the_mutex->queue.lock_queue );
the_mutex->queue.priority_before = executing->current_priority;
#endif
executing->resource_count++;
ac34: e582501c str r5, [r2, #28]
Priority_Control ceiling;
Priority_Control current;
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
ac38: 0a000020 beq acc0 <_CORE_mutex_Seize_interrupt_trylock+0x154>
_ISR_Enable( *level_p );
return 0;
}
if ( current > ceiling ) {
ac3c: 3a000012 bcc ac8c <_CORE_mutex_Seize_interrupt_trylock+0x120>
);
_Thread_Enable_dispatch();
return 0;
}
/* if ( current < ceiling ) */ {
executing->Wait.return_code = CORE_MUTEX_STATUS_CEILING_VIOLATED;
ac40: e3a05006 mov r5, #6
ac44: e5825034 str r5, [r2, #52] ; 0x34
the_mutex->lock = CORE_MUTEX_UNLOCKED;
ac48: e5834050 str r4, [r3, #80] ; 0x50
the_mutex->nest_count = 0; /* undo locking above */
ac4c: e5830054 str r0, [r3, #84] ; 0x54
executing->resource_count--; /* undo locking above */
ac50: e582c01c str ip, [r2, #28]
ac54: e5913000 ldr r3, [r1]
ac58: e129f003 msr CPSR_fc, r3
_ISR_Enable( *level_p );
return 0;
ac5c: e3a00000 mov r0, #0
ac60: e8bd80f0 pop {r4, r5, r6, r7, pc}
* At this point, we know the mutex was not available. If this thread
* is the thread that has locked the mutex, let's see if we are allowed
* to nest access.
*/
if ( _Thread_Is_executing( the_mutex->holder ) ) {
switch ( the_mutex->Attributes.lock_nesting_behavior ) {
ac64: e3500001 cmp r0, #1
ac68: 0a000001 beq ac74 <_CORE_mutex_Seize_interrupt_trylock+0x108>
/*
* The mutex is not available and the caller must deal with the possibility
* of blocking.
*/
return 1;
ac6c: e3a00001 mov r0, #1
ac70: e8bd80f0 pop {r4, r5, r6, r7, pc}
case CORE_MUTEX_NESTING_ACQUIRES:
the_mutex->nest_count++;
_ISR_Enable( *level_p );
return 0;
case CORE_MUTEX_NESTING_IS_ERROR:
executing->Wait.return_code = CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
ac74: e3a03002 mov r3, #2 <== NOT EXECUTED
ac78: e5823034 str r3, [r2, #52] ; 0x34 <== NOT EXECUTED
ac7c: e5913000 ldr r3, [r1] <== NOT EXECUTED
ac80: e129f003 msr CPSR_fc, r3 <== NOT EXECUTED
_ISR_Enable( *level_p );
return 0;
ac84: e3a00000 mov r0, #0 <== NOT EXECUTED
ac88: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
ac8c: e59f2040 ldr r2, [pc, #64] ; acd4 <_CORE_mutex_Seize_interrupt_trylock+0x168>
ac90: e5920000 ldr r0, [r2]
ac94: e2800001 add r0, r0, #1
ac98: e5820000 str r0, [r2]
ac9c: e5912000 ldr r2, [r1]
aca0: e129f002 msr CPSR_fc, r2
}
if ( current > ceiling ) {
_Thread_Disable_dispatch();
_ISR_Enable( *level_p );
_Thread_Change_priority(
aca4: e3a02000 mov r2, #0
aca8: e593005c ldr r0, [r3, #92] ; 0x5c
acac: e593104c ldr r1, [r3, #76] ; 0x4c
acb0: ebfff14d bl 71ec <_Thread_Change_priority>
the_mutex->holder,
the_mutex->Attributes.priority_ceiling,
false
);
_Thread_Enable_dispatch();
acb4: ebfff2a8 bl 775c <_Thread_Enable_dispatch>
return 0;
acb8: e3a00000 mov r0, #0
acbc: e8bd80f0 pop {r4, r5, r6, r7, pc}
acc0: e5913000 ldr r3, [r1]
acc4: e129f003 msr CPSR_fc, r3
ceiling = the_mutex->Attributes.priority_ceiling;
current = executing->current_priority;
if ( current == ceiling ) {
_ISR_Enable( *level_p );
return 0;
acc8: e3a00000 mov r0, #0
accc: e8bd80f0 pop {r4, r5, r6, r7, pc}
0000ab10 <_Chain_Initialize>:
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
ab10: e3520000 cmp r2, #0
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
ab14: e3a0c000 mov ip, #0
Chain_Control *the_chain,
void *starting_address,
size_t number_nodes,
size_t node_size
)
{
ab18: e92d0070 push {r4, r5, r6}
Chain_Node *current;
Chain_Node *next;
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
ab1c: e580c004 str ip, [r0, #4]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Head(
Chain_Control *the_chain
)
{
return (Chain_Node *) the_chain;
ab20: e1a04000 mov r4, r0
next = starting_address;
ab24: 11a05002 movne r5, r2
ab28: 11a0c001 movne ip, r1
while ( count-- ) {
ab2c: 1a000002 bne ab3c <_Chain_Initialize+0x2c>
ab30: ea000008 b ab58 <_Chain_Initialize+0x48> <== NOT EXECUTED
ab34: e1a0400c mov r4, ip
current->next = next;
next->previous = current;
current = next;
next = (Chain_Node *)
ab38: e1a0c006 mov ip, r6
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
ab3c: e2555001 subs r5, r5, #1
current->next = next;
ab40: e584c000 str ip, [r4]
next->previous = current;
ab44: e58c4004 str r4, [ip, #4]
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
ab48: e08c6003 add r6, ip, r3
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
ab4c: 1afffff8 bne ab34 <_Chain_Initialize+0x24>
* node_size - size of node in bytes
*
* Output parameters: NONE
*/
void _Chain_Initialize(
ab50: e2422001 sub r2, r2, #1
count = number_nodes;
current = _Chain_Head( the_chain );
the_chain->permanent_null = NULL;
next = starting_address;
while ( count-- ) {
ab54: e0241293 mla r4, r3, r2, r1
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
ab58: e2803004 add r3, r0, #4
next->previous = current;
current = next;
next = (Chain_Node *)
_Addresses_Add_offset( (void *) next, node_size );
}
current->next = _Chain_Tail( the_chain );
ab5c: e5843000 str r3, [r4]
the_chain->last = current;
ab60: e5804008 str r4, [r0, #8]
}
ab64: e8bd0070 pop {r4, r5, r6}
ab68: e12fff1e bx lr
0000ad4c <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad4c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
ad50: e1a08002 mov r8, r2
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
ad54: e5902010 ldr r2, [r0, #16]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad58: e24dd01c sub sp, sp, #28
ad5c: e1a05001 mov r5, r1
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
if ( block_size_floor < alloc_size ) {
ad60: e2911004 adds r1, r1, #4
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad64: e1a07000 mov r7, r0
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
if ( block_size_floor < alloc_size ) {
ad68: e58d1000 str r1, [sp]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
ad6c: e1a0b003 mov fp, r3
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
ad70: e5909008 ldr r9, [r0, #8]
Heap_Statistics *const stats = &heap->stats;
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
Heap_Block *block = _Heap_Free_list_first( heap );
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_BLOCK_SIZE_OFFSET;
uintptr_t const page_size = heap->page_size;
ad74: e58d200c str r2, [sp, #12]
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
if ( block_size_floor < alloc_size ) {
ad78: 2a000075 bcs af54 <_Heap_Allocate_aligned_with_boundary+0x208>
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
ad7c: e3530000 cmp r3, #0
ad80: 1a000071 bne af4c <_Heap_Allocate_aligned_with_boundary+0x200>
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
ad84: e1570009 cmp r7, r9
ad88: 0a000071 beq af54 <_Heap_Allocate_aligned_with_boundary+0x208>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
ad8c: e59d300c ldr r3, [sp, #12]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
ad90: e2651004 rsb r1, r5, #4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
ad94: e2833007 add r3, r3, #7
ad98: e58d3010 str r3, [sp, #16]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
ad9c: e58d1014 str r1, [sp, #20]
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
ada0: e3a06000 mov r6, #0
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
ada4: e599a004 ldr sl, [r9, #4]
ada8: e59d2000 ldr r2, [sp]
adac: e152000a cmp r2, sl
while ( block != free_list_tail ) {
_HAssert( _Heap_Is_prev_used( block ) );
/* Statistics */
++search_count;
adb0: e2866001 add r6, r6, #1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
adb4: 2a000051 bcs af00 <_Heap_Allocate_aligned_with_boundary+0x1b4>
if ( alignment == 0 ) {
adb8: e3580000 cmp r8, #0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
adbc: 02894008 addeq r4, r9, #8
adc0: 0a00004c beq aef8 <_Heap_Allocate_aligned_with_boundary+0x1ac>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
adc4: e5973014 ldr r3, [r7, #20]
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
uintptr_t alloc_begin = alloc_end - alloc_size;
adc8: e59d1014 ldr r1, [sp, #20]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
adcc: e59d2010 ldr r2, [sp, #16]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
add0: e3caa001 bic sl, sl, #1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
add4: e089a00a add sl, r9, sl
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_BLOCK_SIZE_OFFSET;
uintptr_t alloc_begin = alloc_end - alloc_size;
add8: e081400a add r4, r1, sl
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
addc: e58d3004 str r3, [sp, #4]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
ade0: e0633002 rsb r3, r3, r2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
ade4: e1a00004 mov r0, r4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
ade8: e083a00a add sl, r3, sl
adec: e1a01008 mov r1, r8
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
adf0: e2893008 add r3, r9, #8
adf4: e58d3008 str r3, [sp, #8]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
adf8: eb001588 bl 10420 <__umodsi3>
adfc: e0604004 rsb r4, r0, r4
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
ae00: e15a0004 cmp sl, r4
ae04: 2a000003 bcs ae18 <_Heap_Allocate_aligned_with_boundary+0xcc>
ae08: e1a0000a mov r0, sl
ae0c: e1a01008 mov r1, r8
ae10: eb001582 bl 10420 <__umodsi3>
ae14: e060400a rsb r4, r0, sl
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
ae18: e35b0000 cmp fp, #0
ae1c: 0a000025 beq aeb8 <_Heap_Allocate_aligned_with_boundary+0x16c>
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
ae20: e084a005 add sl, r4, r5
ae24: e1a0000a mov r0, sl
ae28: e1a0100b mov r1, fp
ae2c: eb00157b bl 10420 <__umodsi3>
ae30: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
ae34: e1540000 cmp r4, r0
ae38: 23a03000 movcs r3, #0
ae3c: 33a03001 movcc r3, #1
ae40: e15a0000 cmp sl, r0
ae44: 93a03000 movls r3, #0
ae48: e3530000 cmp r3, #0
ae4c: 0a000019 beq aeb8 <_Heap_Allocate_aligned_with_boundary+0x16c>
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
ae50: e59d1008 ldr r1, [sp, #8]
ae54: e081a005 add sl, r1, r5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
ae58: e15a0000 cmp sl, r0
ae5c: 958d6018 strls r6, [sp, #24]
ae60: 9a000002 bls ae70 <_Heap_Allocate_aligned_with_boundary+0x124>
ae64: ea000025 b af00 <_Heap_Allocate_aligned_with_boundary+0x1b4>
ae68: e15a0000 cmp sl, r0
ae6c: 8a00003a bhi af5c <_Heap_Allocate_aligned_with_boundary+0x210>
return 0;
}
alloc_begin = boundary_line - alloc_size;
ae70: e0654000 rsb r4, r5, r0
ae74: e1a01008 mov r1, r8
ae78: e1a00004 mov r0, r4
ae7c: eb001567 bl 10420 <__umodsi3>
ae80: e0604004 rsb r4, r0, r4
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
ae84: e0846005 add r6, r4, r5
ae88: e1a00006 mov r0, r6
ae8c: e1a0100b mov r1, fp
ae90: eb001562 bl 10420 <__umodsi3>
ae94: e0600006 rsb r0, r0, r6
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
ae98: e1560000 cmp r6, r0
ae9c: 93a06000 movls r6, #0
aea0: 83a06001 movhi r6, #1
aea4: e1540000 cmp r4, r0
aea8: 23a06000 movcs r6, #0
aeac: e3560000 cmp r6, #0
aeb0: 1affffec bne ae68 <_Heap_Allocate_aligned_with_boundary+0x11c>
aeb4: e59d6018 ldr r6, [sp, #24]
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
aeb8: e59d2008 ldr r2, [sp, #8]
aebc: e1520004 cmp r2, r4
aec0: 8a00000e bhi af00 <_Heap_Allocate_aligned_with_boundary+0x1b4>
aec4: e59d100c ldr r1, [sp, #12]
aec8: e1a00004 mov r0, r4
aecc: eb001553 bl 10420 <__umodsi3>
aed0: e269a4ff rsb sl, r9, #-16777216 ; 0xff000000
aed4: e28aa8ff add sl, sl, #16711680 ; 0xff0000
aed8: e28aacff add sl, sl, #65280 ; 0xff00
aedc: e28aa0f8 add sl, sl, #248 ; 0xf8
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
aee0: e08aa004 add sl, sl, r4
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
aee4: e59d1004 ldr r1, [sp, #4]
aee8: e060300a rsb r3, r0, sl
aeec: e15a0000 cmp sl, r0
aef0: 11510003 cmpne r1, r3
aef4: 8a000001 bhi af00 <_Heap_Allocate_aligned_with_boundary+0x1b4>
boundary
);
}
}
if ( alloc_begin != 0 ) {
aef8: e3540000 cmp r4, #0
aefc: 1a000004 bne af14 <_Heap_Allocate_aligned_with_boundary+0x1c8>
break;
}
block = block->next;
af00: e5999008 ldr r9, [r9, #8]
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
af04: e1570009 cmp r7, r9
af08: 1affffa5 bne ada4 <_Heap_Allocate_aligned_with_boundary+0x58>
af0c: e3a00000 mov r0, #0
af10: ea000008 b af38 <_Heap_Allocate_aligned_with_boundary+0x1ec>
block = block->next;
}
if ( alloc_begin != 0 ) {
/* Statistics */
stats->searches += search_count;
af14: e597304c ldr r3, [r7, #76] ; 0x4c
af18: e0833006 add r3, r3, r6
af1c: e587304c str r3, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
af20: e1a00007 mov r0, r7
af24: e1a01009 mov r1, r9
af28: e1a02004 mov r2, r4
af2c: e1a03005 mov r3, r5
af30: ebffee2d bl 67ec <_Heap_Block_allocate>
af34: e1a00004 mov r0, r4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
af38: e5973044 ldr r3, [r7, #68] ; 0x44
af3c: e1530006 cmp r3, r6
stats->max_search = search_count;
af40: 35876044 strcc r6, [r7, #68] ; 0x44
}
return (void *) alloc_begin;
}
af44: e28dd01c add sp, sp, #28
af48: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
af4c: e1550003 cmp r5, r3
af50: 9a000006 bls af70 <_Heap_Allocate_aligned_with_boundary+0x224>
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
af54: e3a00000 mov r0, #0
af58: eafffff9 b af44 <_Heap_Allocate_aligned_with_boundary+0x1f8>
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
af5c: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED
if ( alignment == 0 ) {
alignment = page_size;
}
}
while ( block != free_list_tail ) {
af60: e1570009 cmp r7, r9 <== NOT EXECUTED
af64: e59d6018 ldr r6, [sp, #24] <== NOT EXECUTED
af68: 1affff8d bne ada4 <_Heap_Allocate_aligned_with_boundary+0x58><== NOT EXECUTED
af6c: eaffffe6 b af0c <_Heap_Allocate_aligned_with_boundary+0x1c0><== NOT EXECUTED
if ( boundary < alloc_size ) {
return NULL;
}
if ( alignment == 0 ) {
alignment = page_size;
af70: e3580000 cmp r8, #0
af74: 01a08002 moveq r8, r2
af78: eaffff81 b ad84 <_Heap_Allocate_aligned_with_boundary+0x38>
0000af7c <_Heap_Free>:
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
af7c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
af80: e1a04000 mov r4, r0
af84: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
af88: e1a00001 mov r0, r1
af8c: e5941010 ldr r1, [r4, #16]
af90: eb001522 bl 10420 <__umodsi3>
af94: e2455008 sub r5, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
af98: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
af9c: e0605005 rsb r5, r0, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
afa0: e1550003 cmp r5, r3
afa4: 3a00002f bcc b068 <_Heap_Free+0xec>
afa8: e5941024 ldr r1, [r4, #36] ; 0x24
afac: e1550001 cmp r5, r1
afb0: 8a00002c bhi b068 <_Heap_Free+0xec>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
afb4: e595c004 ldr ip, [r5, #4]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
afb8: e3cc6001 bic r6, ip, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
afbc: e0852006 add r2, r5, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
afc0: e1530002 cmp r3, r2
afc4: 8a000027 bhi b068 <_Heap_Free+0xec>
afc8: e1510002 cmp r1, r2
afcc: 3a000027 bcc b070 <_Heap_Free+0xf4>
afd0: e5927004 ldr r7, [r2, #4]
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
afd4: e2170001 ands r0, r7, #1
afd8: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
return false;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
afdc: e1510002 cmp r1, r2
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
afe0: e3c77001 bic r7, r7, #1
afe4: 03a08000 moveq r8, #0
afe8: 0a000004 beq b000 <_Heap_Free+0x84>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
afec: e0820007 add r0, r2, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
aff0: e5900004 ldr r0, [r0, #4]
#include <rtems/system.h>
#include <rtems/score/sysstate.h>
#include <rtems/score/heap.h>
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
aff4: e3100001 tst r0, #1
aff8: 13a08000 movne r8, #0
affc: 03a08001 moveq r8, #1
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
b000: e21c0001 ands r0, ip, #1
b004: 1a00001b bne b078 <_Heap_Free+0xfc>
uintptr_t const prev_size = block->prev_size;
b008: e595c000 ldr ip, [r5]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
b00c: e06ca005 rsb sl, ip, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
b010: e153000a cmp r3, sl
b014: 88bd85f0 pophi {r4, r5, r6, r7, r8, sl, pc}
b018: e151000a cmp r1, sl
b01c: 38bd85f0 popcc {r4, r5, r6, r7, r8, sl, pc}
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
b020: e59a0004 ldr r0, [sl, #4]
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
b024: e2100001 ands r0, r0, #1
b028: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
b02c: e3580000 cmp r8, #0
b030: 0a000039 beq b11c <_Heap_Free+0x1a0>
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
b034: e5940038 ldr r0, [r4, #56] ; 0x38
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
b038: e0867007 add r7, r6, r7
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b03c: e5923008 ldr r3, [r2, #8]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
b040: e087c00c add ip, r7, ip
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b044: e592200c ldr r2, [r2, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
b048: e2400001 sub r0, r0, #1
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b04c: e38c1001 orr r1, ip, #1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
b050: e5823008 str r3, [r2, #8]
next->prev = prev;
b054: e583200c str r2, [r3, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
b058: e5840038 str r0, [r4, #56] ; 0x38
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b05c: e58a1004 str r1, [sl, #4]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
b060: e78ac00c str ip, [sl, ip]
b064: ea00000f b b0a8 <_Heap_Free+0x12c>
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
_HAssert( false );
return false;
b068: e3a00000 mov r0, #0
b06c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
b070: e3a00000 mov r0, #0 <== NOT EXECUTED
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b074: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
b078: e3580000 cmp r8, #0
b07c: 0a000014 beq b0d4 <_Heap_Free+0x158>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b080: e5923008 ldr r3, [r2, #8]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
b084: e0877006 add r7, r7, r6
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
b088: e592200c ldr r2, [r2, #12]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b08c: e3871001 orr r1, r7, #1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
b090: e5853008 str r3, [r5, #8]
new_block->prev = prev;
b094: e585200c str r2, [r5, #12]
next->prev = new_block;
prev->next = new_block;
b098: e5825008 str r5, [r2, #8]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
b09c: e583500c str r5, [r3, #12]
b0a0: e5851004 str r1, [r5, #4]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
b0a4: e7857007 str r7, [r5, r7]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
b0a8: e5942040 ldr r2, [r4, #64] ; 0x40
++stats->frees;
b0ac: e5943050 ldr r3, [r4, #80] ; 0x50
stats->free_size += block_size;
b0b0: e5941030 ldr r1, [r4, #48] ; 0x30
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
b0b4: e2422001 sub r2, r2, #1
++stats->frees;
b0b8: e2833001 add r3, r3, #1
stats->free_size += block_size;
b0bc: e0816006 add r6, r1, r6
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
b0c0: e5842040 str r2, [r4, #64] ; 0x40
++stats->frees;
b0c4: e5843050 str r3, [r4, #80] ; 0x50
stats->free_size += block_size;
b0c8: e5846030 str r6, [r4, #48] ; 0x30
return( true );
b0cc: e3a00001 mov r0, #1
b0d0: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
b0d4: e3863001 orr r3, r6, #1
b0d8: e5853004 str r3, [r5, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
b0dc: e2843038 add r3, r4, #56 ; 0x38
b0e0: e8931008 ldm r3, {r3, ip}
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b0e4: e5920004 ldr r0, [r2, #4]
RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after(
Heap_Block *block_before,
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
b0e8: e5941008 ldr r1, [r4, #8]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
b0ec: e2833001 add r3, r3, #1
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b0f0: e3c00001 bic r0, r0, #1
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
b0f4: e153000c cmp r3, ip
new_block->next = next;
b0f8: e5851008 str r1, [r5, #8]
new_block->prev = block_before;
b0fc: e585400c str r4, [r5, #12]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b100: e5820004 str r0, [r2, #4]
block_before->next = new_block;
next->prev = new_block;
b104: e581500c str r5, [r1, #12]
next_block->prev_size = block_size;
b108: e7856006 str r6, [r5, r6]
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
b10c: e5845008 str r5, [r4, #8]
/* Statistics */
++stats->free_blocks;
b110: e5843038 str r3, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
stats->max_free_blocks = stats->free_blocks;
b114: 8584303c strhi r3, [r4, #60] ; 0x3c
b118: eaffffe2 b b0a8 <_Heap_Free+0x12c>
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
b11c: e086c00c add ip, r6, ip
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
b120: e38c3001 orr r3, ip, #1
b124: e58a3004 str r3, [sl, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
b128: e5923004 ldr r3, [r2, #4]
b12c: e3c33001 bic r3, r3, #1
b130: e5823004 str r3, [r2, #4]
next_block->prev_size = size;
b134: e785c006 str ip, [r5, r6]
b138: eaffffda b b0a8 <_Heap_Free+0x12c>
000122a8 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
122a8: e92d40f0 push {r4, r5, r6, r7, lr}
122ac: e1a04000 mov r4, r0
122b0: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
122b4: e1a00001 mov r0, r1
122b8: e5941010 ldr r1, [r4, #16]
122bc: e1a07002 mov r7, r2
122c0: ebfff856 bl 10420 <__umodsi3>
122c4: e2456008 sub r6, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
122c8: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
122cc: e0600006 rsb r0, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
122d0: e1500003 cmp r0, r3
122d4: 3a000010 bcc 1231c <_Heap_Size_of_alloc_area+0x74>
122d8: e5942024 ldr r2, [r4, #36] ; 0x24
122dc: e1500002 cmp r0, r2
122e0: 8a00000d bhi 1231c <_Heap_Size_of_alloc_area+0x74>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
122e4: e5906004 ldr r6, [r0, #4]
122e8: e3c66001 bic r6, r6, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
122ec: e0806006 add r6, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
122f0: e1530006 cmp r3, r6
122f4: 8a000008 bhi 1231c <_Heap_Size_of_alloc_area+0x74>
122f8: e1520006 cmp r2, r6
122fc: 3a000008 bcc 12324 <_Heap_Size_of_alloc_area+0x7c>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
12300: e5960004 ldr r0, [r6, #4]
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
12304: e2100001 ands r0, r0, #1
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
12308: 12655004 rsbne r5, r5, #4
1230c: 10856006 addne r6, r5, r6
12310: 15876000 strne r6, [r7]
return true;
12314: 13a00001 movne r0, #1
12318: e8bd80f0 pop {r4, r5, r6, r7, pc}
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
) {
return false;
1231c: e3a00000 mov r0, #0
12320: e8bd80f0 pop {r4, r5, r6, r7, pc}
12324: e3a00000 mov r0, #0 <== NOT EXECUTED
}
*alloc_size = (uintptr_t) next_block + HEAP_BLOCK_SIZE_OFFSET - alloc_begin;
return true;
}
12328: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
00007544 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
7544: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7548: e59f35cc ldr r3, [pc, #1484] ; 7b1c <_Heap_Walk+0x5d8>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
754c: e31200ff tst r2, #255 ; 0xff
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7550: e5933000 ldr r3, [r3]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
7554: e59f25c4 ldr r2, [pc, #1476] ; 7b20 <_Heap_Walk+0x5dc>
7558: e59f95c4 ldr r9, [pc, #1476] ; 7b24 <_Heap_Walk+0x5e0>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
755c: e1a0a001 mov sl, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
7560: 11a09002 movne r9, r2
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
7564: e5901010 ldr r1, [r0, #16]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7568: e3530003 cmp r3, #3
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
756c: e5902014 ldr r2, [r0, #20]
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
7570: e5903024 ldr r3, [r0, #36] ; 0x24
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
7574: e24dd038 sub sp, sp, #56 ; 0x38
7578: e1a04000 mov r4, r0
uintptr_t const page_size = heap->page_size;
757c: e58d1024 str r1, [sp, #36] ; 0x24
uintptr_t const min_block_size = heap->min_block_size;
7580: e58d2028 str r2, [sp, #40] ; 0x28
Heap_Block *const first_block = heap->first_block;
7584: e5908020 ldr r8, [r0, #32]
Heap_Block *const last_block = heap->last_block;
7588: e58d302c str r3, [sp, #44] ; 0x2c
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
758c: 0a000002 beq 759c <_Heap_Walk+0x58>
}
block = next_block;
} while ( block != first_block );
return true;
7590: e3a00001 mov r0, #1
}
7594: e28dd038 add sp, sp, #56 ; 0x38
7598: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
759c: e594101c ldr r1, [r4, #28]
75a0: e5900018 ldr r0, [r0, #24]
75a4: e2842008 add r2, r4, #8
75a8: e892000c ldm r2, {r2, r3}
75ac: e59dc028 ldr ip, [sp, #40] ; 0x28
75b0: e58d1008 str r1, [sp, #8]
75b4: e59d102c ldr r1, [sp, #44] ; 0x2c
75b8: e58d0004 str r0, [sp, #4]
75bc: e58d1010 str r1, [sp, #16]
75c0: e58d2014 str r2, [sp, #20]
75c4: e58d3018 str r3, [sp, #24]
75c8: e59f2558 ldr r2, [pc, #1368] ; 7b28 <_Heap_Walk+0x5e4>
75cc: e58dc000 str ip, [sp]
75d0: e58d800c str r8, [sp, #12]
75d4: e1a0000a mov r0, sl
75d8: e3a01000 mov r1, #0
75dc: e59d3024 ldr r3, [sp, #36] ; 0x24
75e0: e1a0e00f mov lr, pc
75e4: e12fff19 bx r9
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
75e8: e59d2024 ldr r2, [sp, #36] ; 0x24
75ec: e3520000 cmp r2, #0
75f0: 0a000026 beq 7690 <_Heap_Walk+0x14c>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
75f4: e59d3024 ldr r3, [sp, #36] ; 0x24
75f8: e2135003 ands r5, r3, #3
75fc: 1a00002a bne 76ac <_Heap_Walk+0x168>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7600: e59d0028 ldr r0, [sp, #40] ; 0x28
7604: e59d1024 ldr r1, [sp, #36] ; 0x24
7608: ebffe564 bl ba0 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
760c: e250b000 subs fp, r0, #0
7610: 1a00002c bne 76c8 <_Heap_Walk+0x184>
7614: e2880008 add r0, r8, #8
7618: e59d1024 ldr r1, [sp, #36] ; 0x24
761c: ebffe55f bl ba0 <__umodsi3>
);
return false;
}
if (
7620: e2506000 subs r6, r0, #0
7624: 1a00002f bne 76e8 <_Heap_Walk+0x1a4>
block = next_block;
} while ( block != first_block );
return true;
}
7628: e598b004 ldr fp, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
762c: e21b5001 ands r5, fp, #1
7630: 0a0000cd beq 796c <_Heap_Walk+0x428>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7634: e59dc02c ldr ip, [sp, #44] ; 0x2c
7638: e59c3004 ldr r3, [ip, #4]
763c: e3c33001 bic r3, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
7640: e08c3003 add r3, ip, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
7644: e5935004 ldr r5, [r3, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
7648: e2155001 ands r5, r5, #1
764c: 0a000008 beq 7674 <_Heap_Walk+0x130>
);
return false;
}
if (
7650: e1580003 cmp r8, r3
7654: 0a00002b beq 7708 <_Heap_Walk+0x1c4>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
7658: e1a0000a mov r0, sl <== NOT EXECUTED
765c: e3a01001 mov r1, #1 <== NOT EXECUTED
7660: e59f24c4 ldr r2, [pc, #1220] ; 7b2c <_Heap_Walk+0x5e8> <== NOT EXECUTED
7664: e1a0e00f mov lr, pc <== NOT EXECUTED
7668: e12fff19 bx r9 <== NOT EXECUTED
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
766c: e1a00006 mov r0, r6 <== NOT EXECUTED
7670: eaffffc7 b 7594 <_Heap_Walk+0x50> <== NOT EXECUTED
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
7674: e1a0000a mov r0, sl
7678: e3a01001 mov r1, #1
767c: e59f24ac ldr r2, [pc, #1196] ; 7b30 <_Heap_Walk+0x5ec>
7680: e1a0e00f mov lr, pc
7684: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7688: e1a00005 mov r0, r5
768c: eaffffc0 b 7594 <_Heap_Walk+0x50>
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
7690: e1a0000a mov r0, sl
7694: e3a01001 mov r1, #1
7698: e59f2494 ldr r2, [pc, #1172] ; 7b34 <_Heap_Walk+0x5f0>
769c: e1a0e00f mov lr, pc
76a0: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
76a4: e59d0024 ldr r0, [sp, #36] ; 0x24
76a8: eaffffb9 b 7594 <_Heap_Walk+0x50>
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
76ac: e1a0000a mov r0, sl
76b0: e3a01001 mov r1, #1
76b4: e59f247c ldr r2, [pc, #1148] ; 7b38 <_Heap_Walk+0x5f4>
76b8: e1a0e00f mov lr, pc
76bc: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
76c0: e3a00000 mov r0, #0
76c4: eaffffb2 b 7594 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
76c8: e1a0000a mov r0, sl
76cc: e3a01001 mov r1, #1
76d0: e59f2464 ldr r2, [pc, #1124] ; 7b3c <_Heap_Walk+0x5f8>
76d4: e59d3028 ldr r3, [sp, #40] ; 0x28
76d8: e1a0e00f mov lr, pc
76dc: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
76e0: e1a00005 mov r0, r5
76e4: eaffffaa b 7594 <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
76e8: e1a0000a mov r0, sl
76ec: e3a01001 mov r1, #1
76f0: e59f2448 ldr r2, [pc, #1096] ; 7b40 <_Heap_Walk+0x5fc>
76f4: e1a03008 mov r3, r8
76f8: e1a0e00f mov lr, pc
76fc: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7700: e1a0000b mov r0, fp
7704: eaffffa2 b 7594 <_Heap_Walk+0x50>
block = next_block;
} while ( block != first_block );
return true;
}
7708: e5945008 ldr r5, [r4, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
770c: e1540005 cmp r4, r5
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
7710: e5947010 ldr r7, [r4, #16]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
7714: 05943020 ldreq r3, [r4, #32]
7718: 0a00000d beq 7754 <_Heap_Walk+0x210>
block = next_block;
} while ( block != first_block );
return true;
}
771c: e5943020 ldr r3, [r4, #32]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7720: e1530005 cmp r3, r5
7724: 9a000097 bls 7988 <_Heap_Walk+0x444>
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
7728: e1a0000a mov r0, sl
772c: e3a01001 mov r1, #1
7730: e59f240c ldr r2, [pc, #1036] ; 7b44 <_Heap_Walk+0x600>
7734: e1a03005 mov r3, r5
7738: e1a0e00f mov lr, pc
773c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7740: e3a00000 mov r0, #0
7744: eaffff92 b 7594 <_Heap_Walk+0x50>
7748: e1a03008 mov r3, r8
774c: e28d8030 add r8, sp, #48 ; 0x30
7750: e8980900 ldm r8, {r8, fp}
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7754: e1a06008 mov r6, r8
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7758: e3cb7001 bic r7, fp, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
775c: e0875006 add r5, r7, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7760: e1530005 cmp r3, r5
7764: 9a000008 bls 778c <_Heap_Walk+0x248>
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
7768: e1a0000a mov r0, sl
776c: e58d5000 str r5, [sp]
7770: e3a01001 mov r1, #1
7774: e59f23cc ldr r2, [pc, #972] ; 7b48 <_Heap_Walk+0x604>
7778: e1a03006 mov r3, r6
777c: e1a0e00f mov lr, pc
7780: e12fff19 bx r9
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
7784: e3a00000 mov r0, #0
7788: eaffff81 b 7594 <_Heap_Walk+0x50>
778c: e5943024 ldr r3, [r4, #36] ; 0x24
7790: e1530005 cmp r3, r5
7794: 3afffff3 bcc 7768 <_Heap_Walk+0x224>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7798: e59d1024 ldr r1, [sp, #36] ; 0x24
779c: e1a00007 mov r0, r7
77a0: ebffe4fe bl ba0 <__umodsi3>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
77a4: e59d102c ldr r1, [sp, #44] ; 0x2c
77a8: e0563001 subs r3, r6, r1
77ac: 13a03001 movne r3, #1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
77b0: e3500000 cmp r0, #0
77b4: 0a000001 beq 77c0 <_Heap_Walk+0x27c>
77b8: e3530000 cmp r3, #0
77bc: 1a0000aa bne 7a6c <_Heap_Walk+0x528>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
77c0: e59d2028 ldr r2, [sp, #40] ; 0x28
77c4: e1520007 cmp r2, r7
77c8: 9a000001 bls 77d4 <_Heap_Walk+0x290>
77cc: e3530000 cmp r3, #0
77d0: 1a0000ae bne 7a90 <_Heap_Walk+0x54c>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
77d4: e1560005 cmp r6, r5
77d8: 3a000001 bcc 77e4 <_Heap_Walk+0x2a0>
77dc: e3530000 cmp r3, #0
77e0: 1a0000b4 bne 7ab8 <_Heap_Walk+0x574>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
77e4: e5953004 ldr r3, [r5, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
77e8: e3130001 tst r3, #1
77ec: e20bb001 and fp, fp, #1
77f0: 0a000018 beq 7858 <_Heap_Walk+0x314>
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
77f4: e35b0000 cmp fp, #0
77f8: 0a00000c beq 7830 <_Heap_Walk+0x2ec>
(*printer)(
77fc: e58d7000 str r7, [sp]
7800: e1a0000a mov r0, sl
7804: e3a01000 mov r1, #0
7808: e59f233c ldr r2, [pc, #828] ; 7b4c <_Heap_Walk+0x608>
780c: e1a03006 mov r3, r6
7810: e1a0e00f mov lr, pc
7814: e12fff19 bx r9
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
7818: e1580005 cmp r8, r5
781c: 0affff5b beq 7590 <_Heap_Walk+0x4c>
7820: e595b004 ldr fp, [r5, #4]
7824: e5943020 ldr r3, [r4, #32]
7828: e1a06005 mov r6, r5
782c: eaffffc9 b 7758 <_Heap_Walk+0x214>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
7830: e58d7000 str r7, [sp]
7834: e5963000 ldr r3, [r6]
7838: e1a0000a mov r0, sl
783c: e58d3004 str r3, [sp, #4]
7840: e1a0100b mov r1, fp
7844: e59f2304 ldr r2, [pc, #772] ; 7b50 <_Heap_Walk+0x60c>
7848: e1a03006 mov r3, r6
784c: e1a0e00f mov lr, pc
7850: e12fff19 bx r9
7854: eaffffef b 7818 <_Heap_Walk+0x2d4>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
7858: e596200c ldr r2, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
785c: e5943008 ldr r3, [r4, #8]
7860: e1530002 cmp r3, r2
block = next_block;
} while ( block != first_block );
return true;
}
7864: e594100c ldr r1, [r4, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7868: 059f02e4 ldreq r0, [pc, #740] ; 7b54 <_Heap_Walk+0x610>
786c: 0a000003 beq 7880 <_Heap_Walk+0x33c>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
7870: e59f32e0 ldr r3, [pc, #736] ; 7b58 <_Heap_Walk+0x614>
7874: e1540002 cmp r4, r2
7878: e59f02dc ldr r0, [pc, #732] ; 7b5c <_Heap_Walk+0x618>
787c: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
7880: e5963008 ldr r3, [r6, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7884: e1510003 cmp r1, r3
7888: 059f12d0 ldreq r1, [pc, #720] ; 7b60 <_Heap_Walk+0x61c>
788c: 0a000003 beq 78a0 <_Heap_Walk+0x35c>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
7890: e59fc2cc ldr ip, [pc, #716] ; 7b64 <_Heap_Walk+0x620>
7894: e1540003 cmp r4, r3
7898: e59f12bc ldr r1, [pc, #700] ; 7b5c <_Heap_Walk+0x618>
789c: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
78a0: e58d2004 str r2, [sp, #4]
78a4: e58d0008 str r0, [sp, #8]
78a8: e58d300c str r3, [sp, #12]
78ac: e58d1010 str r1, [sp, #16]
78b0: e1a03006 mov r3, r6
78b4: e58d7000 str r7, [sp]
78b8: e1a0000a mov r0, sl
78bc: e3a01000 mov r1, #0
78c0: e59f22a0 ldr r2, [pc, #672] ; 7b68 <_Heap_Walk+0x624>
78c4: e1a0e00f mov lr, pc
78c8: e12fff19 bx r9
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
78cc: e5953000 ldr r3, [r5]
78d0: e1570003 cmp r7, r3
78d4: 1a000011 bne 7920 <_Heap_Walk+0x3dc>
);
return false;
}
if ( !prev_used ) {
78d8: e35b0000 cmp fp, #0
78dc: 0a00001a beq 794c <_Heap_Walk+0x408>
block = next_block;
} while ( block != first_block );
return true;
}
78e0: e5943008 ldr r3, [r4, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
78e4: e1540003 cmp r4, r3
78e8: 0a000004 beq 7900 <_Heap_Walk+0x3bc>
if ( free_block == block ) {
78ec: e1560003 cmp r6, r3
78f0: 0affffc8 beq 7818 <_Heap_Walk+0x2d4>
return true;
}
free_block = free_block->next;
78f4: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
78f8: e1540003 cmp r4, r3
78fc: 1afffffa bne 78ec <_Heap_Walk+0x3a8>
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
7900: e1a0000a mov r0, sl
7904: e3a01001 mov r1, #1
7908: e59f225c ldr r2, [pc, #604] ; 7b6c <_Heap_Walk+0x628>
790c: e1a03006 mov r3, r6
7910: e1a0e00f mov lr, pc
7914: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
7918: e3a00000 mov r0, #0
791c: eaffff1c b 7594 <_Heap_Walk+0x50>
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
7920: e58d3004 str r3, [sp, #4]
7924: e1a0000a mov r0, sl
7928: e58d7000 str r7, [sp]
792c: e58d5008 str r5, [sp, #8]
7930: e3a01001 mov r1, #1
7934: e59f2234 ldr r2, [pc, #564] ; 7b70 <_Heap_Walk+0x62c>
7938: e1a03006 mov r3, r6
793c: e1a0e00f mov lr, pc
7940: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
7944: e3a00000 mov r0, #0
7948: eaffff11 b 7594 <_Heap_Walk+0x50>
return false;
}
if ( !prev_used ) {
(*printer)(
794c: e1a0000a mov r0, sl
7950: e3a01001 mov r1, #1
7954: e59f2218 ldr r2, [pc, #536] ; 7b74 <_Heap_Walk+0x630>
7958: e1a03006 mov r3, r6
795c: e1a0e00f mov lr, pc
7960: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
7964: e1a0000b mov r0, fp
7968: eaffff09 b 7594 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
796c: e1a0000a mov r0, sl
7970: e3a01001 mov r1, #1
7974: e59f21fc ldr r2, [pc, #508] ; 7b78 <_Heap_Walk+0x634>
7978: e1a0e00f mov lr, pc
797c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7980: e1a00005 mov r0, r5
7984: eaffff02 b 7594 <_Heap_Walk+0x50>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7988: e594c024 ldr ip, [r4, #36] ; 0x24
798c: e15c0005 cmp ip, r5
7990: 3affff64 bcc 7728 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7994: e2850008 add r0, r5, #8
7998: e1a01007 mov r1, r7
799c: e58d301c str r3, [sp, #28]
79a0: e58dc020 str ip, [sp, #32]
79a4: ebffe47d bl ba0 <__umodsi3>
);
return false;
}
if (
79a8: e3500000 cmp r0, #0
79ac: e28d301c add r3, sp, #28
79b0: e8931008 ldm r3, {r3, ip}
79b4: 1a000048 bne 7adc <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
79b8: e5952004 ldr r2, [r5, #4]
79bc: e3c22001 bic r2, r2, #1
block = next_block;
} while ( block != first_block );
return true;
}
79c0: e0852002 add r2, r5, r2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
79c4: e5922004 ldr r2, [r2, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
79c8: e3120001 tst r2, #1
79cc: 1a00004a bne 7afc <_Heap_Walk+0x5b8>
79d0: e58d8030 str r8, [sp, #48] ; 0x30
79d4: e58db034 str fp, [sp, #52] ; 0x34
79d8: e1a01004 mov r1, r4
79dc: e1a06005 mov r6, r5
79e0: e1a0b00c mov fp, ip
79e4: e1a08003 mov r8, r3
79e8: ea000013 b 7a3c <_Heap_Walk+0x4f8>
return false;
}
prev_block = free_block;
free_block = free_block->next;
79ec: e5955008 ldr r5, [r5, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
79f0: e1540005 cmp r4, r5
79f4: 0affff53 beq 7748 <_Heap_Walk+0x204>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
79f8: e1580005 cmp r8, r5
79fc: 8affff49 bhi 7728 <_Heap_Walk+0x1e4>
7a00: e155000b cmp r5, fp
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7a04: e2850008 add r0, r5, #8
7a08: e1a01007 mov r1, r7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7a0c: 8affff45 bhi 7728 <_Heap_Walk+0x1e4>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7a10: ebffe462 bl ba0 <__umodsi3>
);
return false;
}
if (
7a14: e3500000 cmp r0, #0
7a18: 1a00002f bne 7adc <_Heap_Walk+0x598>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7a1c: e5953004 ldr r3, [r5, #4]
7a20: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
7a24: e0833005 add r3, r3, r5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
7a28: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7a2c: e3130001 tst r3, #1
7a30: 1a000031 bne 7afc <_Heap_Walk+0x5b8>
7a34: e1a01006 mov r1, r6
7a38: e1a06005 mov r6, r5
);
return false;
}
if ( free_block->prev != prev_block ) {
7a3c: e595200c ldr r2, [r5, #12]
7a40: e1520001 cmp r2, r1
7a44: 0affffe8 beq 79ec <_Heap_Walk+0x4a8>
(*printer)(
7a48: e58d2000 str r2, [sp]
7a4c: e1a0000a mov r0, sl
7a50: e3a01001 mov r1, #1
7a54: e59f2120 ldr r2, [pc, #288] ; 7b7c <_Heap_Walk+0x638>
7a58: e1a03005 mov r3, r5
7a5c: e1a0e00f mov lr, pc
7a60: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7a64: e3a00000 mov r0, #0
7a68: eafffec9 b 7594 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
7a6c: e1a0000a mov r0, sl
7a70: e58d7000 str r7, [sp]
7a74: e3a01001 mov r1, #1
7a78: e59f2100 ldr r2, [pc, #256] ; 7b80 <_Heap_Walk+0x63c>
7a7c: e1a03006 mov r3, r6
7a80: e1a0e00f mov lr, pc
7a84: e12fff19 bx r9
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
7a88: e3a00000 mov r0, #0
7a8c: eafffec0 b 7594 <_Heap_Walk+0x50>
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
7a90: e58d2004 str r2, [sp, #4]
7a94: e1a0000a mov r0, sl
7a98: e58d7000 str r7, [sp]
7a9c: e3a01001 mov r1, #1
7aa0: e59f20dc ldr r2, [pc, #220] ; 7b84 <_Heap_Walk+0x640>
7aa4: e1a03006 mov r3, r6
7aa8: e1a0e00f mov lr, pc
7aac: e12fff19 bx r9
block,
block_size,
min_block_size
);
return false;
7ab0: e3a00000 mov r0, #0
7ab4: eafffeb6 b 7594 <_Heap_Walk+0x50>
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
7ab8: e1a0000a mov r0, sl
7abc: e58d5000 str r5, [sp]
7ac0: e3a01001 mov r1, #1
7ac4: e59f20bc ldr r2, [pc, #188] ; 7b88 <_Heap_Walk+0x644>
7ac8: e1a03006 mov r3, r6
7acc: e1a0e00f mov lr, pc
7ad0: e12fff19 bx r9
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
7ad4: e3a00000 mov r0, #0
7ad8: eafffead b 7594 <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
7adc: e1a0000a mov r0, sl
7ae0: e3a01001 mov r1, #1
7ae4: e59f20a0 ldr r2, [pc, #160] ; 7b8c <_Heap_Walk+0x648>
7ae8: e1a03005 mov r3, r5
7aec: e1a0e00f mov lr, pc
7af0: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7af4: e3a00000 mov r0, #0
7af8: eafffea5 b 7594 <_Heap_Walk+0x50>
return false;
}
if ( _Heap_Is_used( free_block ) ) {
(*printer)(
7afc: e1a0000a mov r0, sl
7b00: e3a01001 mov r1, #1
7b04: e59f2084 ldr r2, [pc, #132] ; 7b90 <_Heap_Walk+0x64c>
7b08: e1a03005 mov r3, r5
7b0c: e1a0e00f mov lr, pc
7b10: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7b14: e3a00000 mov r0, #0
7b18: eafffe9d b 7594 <_Heap_Walk+0x50>
00006a38 <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
6a38: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6a3c: e5904034 ldr r4, [r0, #52] ; 0x34
6a40: e3540000 cmp r4, #0
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
6a44: e24dd014 sub sp, sp, #20
6a48: e1a05000 mov r5, r0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6a4c: e1d070b8 ldrh r7, [r0, #8]
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6a50: 0a00009b beq 6cc4 <_Objects_Extend_information+0x28c>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
6a54: e1d081b4 ldrh r8, [r0, #20]
6a58: e1d0a1b0 ldrh sl, [r0, #16]
6a5c: e1a01008 mov r1, r8
6a60: e1a0000a mov r0, sl
6a64: eb002627 bl 10308 <__aeabi_uidiv>
6a68: e1a03800 lsl r3, r0, #16
for ( ; block < block_count; block++ ) {
6a6c: e1b03823 lsrs r3, r3, #16
6a70: 0a000099 beq 6cdc <_Objects_Extend_information+0x2a4>
if ( information->object_blocks[ block ] == NULL ) {
6a74: e5949000 ldr r9, [r4]
6a78: e3590000 cmp r9, #0
6a7c: 01a01008 moveq r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6a80: 01a06007 moveq r6, r7
index_base = minimum_index;
block = 0;
6a84: 01a04009 moveq r4, r9
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
6a88: 0a00000c beq 6ac0 <_Objects_Extend_information+0x88>
6a8c: e1a02004 mov r2, r4
6a90: e1a01008 mov r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6a94: e1a06007 mov r6, r7
index_base = minimum_index;
block = 0;
6a98: e3a04000 mov r4, #0
6a9c: ea000002 b 6aac <_Objects_Extend_information+0x74>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
6aa0: e5b29004 ldr r9, [r2, #4]!
6aa4: e3590000 cmp r9, #0
6aa8: 0a000004 beq 6ac0 <_Objects_Extend_information+0x88>
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6aac: e2844001 add r4, r4, #1
6ab0: e1530004 cmp r3, r4
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
6ab4: e0866008 add r6, r6, r8
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6ab8: 8afffff8 bhi 6aa0 <_Objects_Extend_information+0x68>
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6abc: e3a09001 mov r9, #1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
6ac0: e08aa001 add sl, sl, r1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
6ac4: e35a0801 cmp sl, #65536 ; 0x10000
6ac8: 2a000063 bcs 6c5c <_Objects_Extend_information+0x224>
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
6acc: e5d52012 ldrb r2, [r5, #18]
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
6ad0: e5950018 ldr r0, [r5, #24]
if ( information->auto_extend ) {
6ad4: e3520000 cmp r2, #0
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
6ad8: e0000091 mul r0, r1, r0
if ( information->auto_extend ) {
6adc: 1a000060 bne 6c64 <_Objects_Extend_information+0x22c>
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
6ae0: e58d3000 str r3, [sp]
6ae4: eb00080e bl 8b24 <_Workspace_Allocate_or_fatal_error>
6ae8: e59d3000 ldr r3, [sp]
6aec: e1a08000 mov r8, r0
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
6af0: e3590000 cmp r9, #0
6af4: 0a000039 beq 6be0 <_Objects_Extend_information+0x1a8>
*/
/*
* Up the block count and maximum
*/
block_count++;
6af8: e283b001 add fp, r3, #1
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
6afc: e08b008b add r0, fp, fp, lsl #1
((maximum + minimum_index) * sizeof(Objects_Control *));
6b00: e08a0000 add r0, sl, r0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
6b04: e0800007 add r0, r0, r7
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
6b08: e1a00100 lsl r0, r0, #2
6b0c: e58d3000 str r3, [sp]
6b10: eb0007f9 bl 8afc <_Workspace_Allocate>
if ( !object_blocks ) {
6b14: e2509000 subs r9, r0, #0
6b18: e59d3000 ldr r3, [sp]
6b1c: 0a000073 beq 6cf0 <_Objects_Extend_information+0x2b8>
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
6b20: e1d521b0 ldrh r2, [r5, #16]
6b24: e1570002 cmp r7, r2
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
6b28: e089c10b add ip, r9, fp, lsl #2
6b2c: e089b18b add fp, r9, fp, lsl #3
6b30: 3a000051 bcc 6c7c <_Objects_Extend_information+0x244>
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6b34: e3570000 cmp r7, #0
6b38: 13a02000 movne r2, #0
6b3c: 11a0100b movne r1, fp
local_table[ index ] = NULL;
6b40: 11a00002 movne r0, r2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6b44: 0a000003 beq 6b58 <_Objects_Extend_information+0x120>
6b48: e2822001 add r2, r2, #1
6b4c: e1570002 cmp r7, r2
local_table[ index ] = NULL;
6b50: e4810004 str r0, [r1], #4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6b54: 8afffffb bhi 6b48 <_Objects_Extend_information+0x110>
6b58: e1a03103 lsl r3, r3, #2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
6b5c: e1d511b4 ldrh r1, [r5, #20]
6b60: e0861001 add r1, r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
6b64: e3a00000 mov r0, #0
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6b68: e1560001 cmp r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
6b6c: e7890003 str r0, [r9, r3]
inactive_per_block[block_count] = 0;
6b70: e78c0003 str r0, [ip, r3]
for ( index=index_base ;
6b74: 2a000005 bcs 6b90 <_Objects_Extend_information+0x158>
6b78: e08b2106 add r2, fp, r6, lsl #2
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
6b7c: e1a03006 mov r3, r6
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
6b80: e2833001 add r3, r3, #1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6b84: e1530001 cmp r3, r1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
6b88: e4820004 str r0, [r2], #4
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6b8c: 3afffffb bcc 6b80 <_Objects_Extend_information+0x148>
6b90: e10f3000 mrs r3, CPSR
6b94: e3832080 orr r2, r3, #128 ; 0x80
6b98: e129f002 msr CPSR_fc, r2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6b9c: e5952000 ldr r2, [r5]
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
6ba0: e1d510b4 ldrh r1, [r5, #4]
6ba4: e1a02c02 lsl r2, r2, #24
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
6ba8: e1a0a80a lsl sl, sl, #16
6bac: e3822801 orr r2, r2, #65536 ; 0x10000
6bb0: e1a0a82a lsr sl, sl, #16
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
6bb4: e1822d81 orr r2, r2, r1, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6bb8: e182200a orr r2, r2, sl
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
6bbc: e5950034 ldr r0, [r5, #52] ; 0x34
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
6bc0: e585c030 str ip, [r5, #48] ; 0x30
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
6bc4: e5859034 str r9, [r5, #52] ; 0x34
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
6bc8: e585b01c str fp, [r5, #28]
information->maximum = (Objects_Maximum) maximum;
6bcc: e1c5a1b0 strh sl, [r5, #16]
information->maximum_id = _Objects_Build_id(
6bd0: e585200c str r2, [r5, #12]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
6bd4: e129f003 msr CPSR_fc, r3
information->maximum
);
_ISR_Enable( level );
if ( old_tables )
6bd8: e3500000 cmp r0, #0
_Workspace_Free( old_tables );
6bdc: 1b0007cc blne 8b14 <_Workspace_Free>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6be0: e5953034 ldr r3, [r5, #52] ; 0x34
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
6be4: e28d7008 add r7, sp, #8
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6be8: e7838104 str r8, [r3, r4, lsl #2]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
6bec: e1a01008 mov r1, r8
6bf0: e1a00007 mov r0, r7
6bf4: e1d521b4 ldrh r2, [r5, #20]
6bf8: e5953018 ldr r3, [r5, #24]
6bfc: eb000fc3 bl ab10 <_Chain_Initialize>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6c00: e1a04104 lsl r4, r4, #2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
6c04: e2858020 add r8, r5, #32
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
6c08: ea000009 b 6c34 <_Objects_Extend_information+0x1fc>
6c0c: e5953000 ldr r3, [r5]
the_object->id = _Objects_Build_id(
6c10: e1d520b4 ldrh r2, [r5, #4]
6c14: e1a03c03 lsl r3, r3, #24
6c18: e3833801 orr r3, r3, #65536 ; 0x10000
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
6c1c: e1833d82 orr r3, r3, r2, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6c20: e1833006 orr r3, r3, r6
6c24: e5813008 str r3, [r1, #8]
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
6c28: e1a00008 mov r0, r8
6c2c: ebfffce3 bl 5fc0 <_Chain_Append>
index++;
6c30: e2866001 add r6, r6, #1
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
6c34: e1a00007 mov r0, r7
6c38: ebfffcf3 bl 600c <_Chain_Get>
6c3c: e2501000 subs r1, r0, #0
6c40: 1afffff1 bne 6c0c <_Objects_Extend_information+0x1d4>
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
6c44: e1d522bc ldrh r2, [r5, #44] ; 0x2c
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
6c48: e1d531b4 ldrh r3, [r5, #20]
6c4c: e5951030 ldr r1, [r5, #48] ; 0x30
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
6c50: e0832002 add r2, r3, r2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
6c54: e7813004 str r3, [r1, r4]
information->inactive =
6c58: e1c522bc strh r2, [r5, #44] ; 0x2c
(Objects_Maximum)(information->inactive + information->allocation_size);
}
6c5c: e28dd014 add sp, sp, #20
6c60: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
6c64: e58d3000 str r3, [sp]
6c68: eb0007a3 bl 8afc <_Workspace_Allocate>
if ( !new_object_block )
6c6c: e2508000 subs r8, r0, #0
6c70: e59d3000 ldr r3, [sp]
6c74: 1affff9d bne 6af0 <_Objects_Extend_information+0xb8>
6c78: eafffff7 b 6c5c <_Objects_Extend_information+0x224>
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
6c7c: e1a03103 lsl r3, r3, #2
6c80: e5951034 ldr r1, [r5, #52] ; 0x34
6c84: e1a02003 mov r2, r3
6c88: e88d1008 stm sp, {r3, ip}
6c8c: eb001a1c bl d504 <memcpy>
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
6c90: e89d1008 ldm sp, {r3, ip}
6c94: e1a0000c mov r0, ip
6c98: e1a02003 mov r2, r3
6c9c: e5951030 ldr r1, [r5, #48] ; 0x30
6ca0: eb001a17 bl d504 <memcpy>
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
6ca4: e1d521b0 ldrh r2, [r5, #16]
6ca8: e0872002 add r2, r7, r2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
6cac: e1a0000b mov r0, fp
6cb0: e595101c ldr r1, [r5, #28]
6cb4: e1a02102 lsl r2, r2, #2
6cb8: eb001a11 bl d504 <memcpy>
6cbc: e89d1008 ldm sp, {r3, ip}
6cc0: eaffffa5 b 6b5c <_Objects_Extend_information+0x124>
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6cc4: e1d0a1b0 ldrh sl, [r0, #16]
6cc8: e1d011b4 ldrh r1, [r0, #20]
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6ccc: e1a06007 mov r6, r7
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6cd0: e3a09001 mov r9, #1
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
6cd4: e1a03004 mov r3, r4
6cd8: eaffff78 b 6ac0 <_Objects_Extend_information+0x88>
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6cdc: e1a01008 mov r1, r8 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6ce0: e1a06007 mov r6, r7 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6ce4: e3a09001 mov r9, #1 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
6ce8: e1a04003 mov r4, r3 <== NOT EXECUTED
6cec: eaffff73 b 6ac0 <_Objects_Extend_information+0x88> <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
6cf0: e1a00008 mov r0, r8
6cf4: eb000786 bl 8b14 <_Workspace_Free>
return;
6cf8: eaffffd7 b 6c5c <_Objects_Extend_information+0x224>
00007034 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
7034: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
7038: e1d040b8 ldrh r4, [r0, #8]
block_count = (information->maximum - index_base) /
703c: e1d051b4 ldrh r5, [r0, #20]
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
7040: e1a06000 mov r6, r0
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
7044: e1d001b0 ldrh r0, [r0, #16]
7048: e1a01005 mov r1, r5
704c: e0640000 rsb r0, r4, r0
7050: eb0024ac bl 10308 <__aeabi_uidiv>
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7054: e3500000 cmp r0, #0
7058: 08bd80f0 popeq {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
705c: e5962030 ldr r2, [r6, #48] ; 0x30
7060: e5923000 ldr r3, [r2]
7064: e1550003 cmp r5, r3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7068: 13a03000 movne r3, #0
if ( information->inactive_per_block[ block ] ==
706c: 1a000005 bne 7088 <_Objects_Shrink_information+0x54>
7070: ea000008 b 7098 <_Objects_Shrink_information+0x64> <== NOT EXECUTED
7074: e5b21004 ldr r1, [r2, #4]!
7078: e1550001 cmp r5, r1
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
707c: e0844005 add r4, r4, r5
7080: e1a07103 lsl r7, r3, #2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
7084: 0a000004 beq 709c <_Objects_Shrink_information+0x68>
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7088: e2833001 add r3, r3, #1
708c: e1500003 cmp r0, r3
7090: 8afffff7 bhi 7074 <_Objects_Shrink_information+0x40>
7094: e8bd80f0 pop {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
7098: e3a07000 mov r7, #0 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
709c: e5960020 ldr r0, [r6, #32]
70a0: ea000002 b 70b0 <_Objects_Shrink_information+0x7c>
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
70a4: e3550000 cmp r5, #0
70a8: 0a00000b beq 70dc <_Objects_Shrink_information+0xa8>
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
70ac: e1a00005 mov r0, r5
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) information->Inactive.first;
do {
index = _Objects_Get_index( the_object->id );
70b0: e1d030b8 ldrh r3, [r0, #8]
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
70b4: e1530004 cmp r3, r4
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
70b8: e5905000 ldr r5, [r0]
if ((index >= index_base) &&
70bc: 3afffff8 bcc 70a4 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
70c0: e1d621b4 ldrh r2, [r6, #20]
70c4: e0842002 add r2, r4, r2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
70c8: e1530002 cmp r3, r2
70cc: 2afffff4 bcs 70a4 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
70d0: ebfffbc5 bl 5fec <_Chain_Extract>
}
}
while ( the_object );
70d4: e3550000 cmp r5, #0
70d8: 1afffff3 bne 70ac <_Objects_Shrink_information+0x78>
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
70dc: e5963034 ldr r3, [r6, #52] ; 0x34
70e0: e7930007 ldr r0, [r3, r7]
70e4: eb00068a bl 8b14 <_Workspace_Free>
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
70e8: e1d602bc ldrh r0, [r6, #44] ; 0x2c
70ec: e1d631b4 ldrh r3, [r6, #20]
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
70f0: e5961034 ldr r1, [r6, #52] ; 0x34
information->inactive_per_block[ block ] = 0;
70f4: e5962030 ldr r2, [r6, #48] ; 0x30
information->inactive -= information->allocation_size;
70f8: e0633000 rsb r3, r3, r0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
70fc: e7815007 str r5, [r1, r7]
information->inactive_per_block[ block ] = 0;
7100: e7825007 str r5, [r2, r7]
information->inactive -= information->allocation_size;
7104: e1c632bc strh r3, [r6, #44] ; 0x2c
return;
7108: e8bd80f0 pop {r4, r5, r6, r7, pc}
000066a8 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
66a8: e59f30b8 ldr r3, [pc, #184] ; 6768 <_TOD_Validate+0xc0>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
66ac: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
66b0: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
66b4: e593100c ldr r1, [r3, #12]
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
66b8: 01a00004 moveq r0, r4
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
66bc: 08bd8010 popeq {r4, pc}
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
66c0: e3a0093d mov r0, #999424 ; 0xf4000
66c4: e2800d09 add r0, r0, #576 ; 0x240
66c8: eb00454f bl 17c0c <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
66cc: e5943018 ldr r3, [r4, #24]
66d0: e1500003 cmp r0, r3
66d4: 9a00001f bls 6758 <_TOD_Validate+0xb0>
(the_tod->ticks >= ticks_per_second) ||
66d8: e5943014 ldr r3, [r4, #20]
66dc: e353003b cmp r3, #59 ; 0x3b
66e0: 8a00001c bhi 6758 <_TOD_Validate+0xb0>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
66e4: e5943010 ldr r3, [r4, #16]
66e8: e353003b cmp r3, #59 ; 0x3b
66ec: 8a000019 bhi 6758 <_TOD_Validate+0xb0>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
66f0: e594300c ldr r3, [r4, #12]
66f4: e3530017 cmp r3, #23
66f8: 8a000016 bhi 6758 <_TOD_Validate+0xb0>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
66fc: e5940004 ldr r0, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
6700: e3500000 cmp r0, #0
6704: 08bd8010 popeq {r4, pc}
(the_tod->month == 0) ||
6708: e350000c cmp r0, #12
670c: 8a000011 bhi 6758 <_TOD_Validate+0xb0>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
6710: e5942000 ldr r2, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
6714: e3a03d1f mov r3, #1984 ; 0x7c0
6718: e2833003 add r3, r3, #3
671c: e1520003 cmp r2, r3
6720: 9a00000c bls 6758 <_TOD_Validate+0xb0>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
6724: e5944008 ldr r4, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
6728: e3540000 cmp r4, #0
672c: 0a00000b beq 6760 <_TOD_Validate+0xb8>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
6730: e3120003 tst r2, #3
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
6734: 059f3030 ldreq r3, [pc, #48] ; 676c <_TOD_Validate+0xc4>
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
6738: 159f302c ldrne r3, [pc, #44] ; 676c <_TOD_Validate+0xc4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
673c: 0280000d addeq r0, r0, #13
6740: 07930100 ldreq r0, [r3, r0, lsl #2]
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
6744: 17930100 ldrne r0, [r3, r0, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
6748: e1500004 cmp r0, r4
674c: 33a00000 movcc r0, #0
6750: 23a00001 movcs r0, #1
6754: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
6758: e3a00000 mov r0, #0
675c: e8bd8010 pop {r4, pc}
6760: e1a00004 mov r0, r4 <== NOT EXECUTED
if ( the_tod->day > days_in_month )
return false;
return true;
}
6764: e8bd8010 pop {r4, pc} <== NOT EXECUTED
00007ca8 <_Thread_queue_Enqueue_priority>:
Priority_Control priority;
States_Control block_state;
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
7ca8: e5913014 ldr r3, [r1, #20]
Thread_blocking_operation_States _Thread_queue_Enqueue_priority (
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread,
ISR_Level *level_p
)
{
7cac: e92d0ff0 push {r4, r5, r6, r7, r8, r9, sl, fp}
7cb0: e281403c add r4, r1, #60 ; 0x3c
Chain_Node *previous_node;
Chain_Node *search_node;
Priority_Control priority;
States_Control block_state;
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
7cb4: e281c038 add ip, r1, #56 ; 0x38
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
7cb8: e5814038 str r4, [r1, #56] ; 0x38
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
if ( _Thread_queue_Is_reverse_search( priority ) )
7cbc: e3130020 tst r3, #32
the_chain->permanent_null = NULL;
7cc0: e3a04000 mov r4, #0
7cc4: e581403c str r4, [r1, #60] ; 0x3c
the_chain->last = _Chain_Head(the_chain);
7cc8: e581c040 str ip, [r1, #64] ; 0x40
RTEMS_INLINE_ROUTINE uint32_t _Thread_queue_Header_number (
Priority_Control the_priority
)
{
return (the_priority / TASK_QUEUE_DATA_PRIORITIES_PER_HEADER);
7ccc: e1a08323 lsr r8, r3, #6
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
7cd0: e5905038 ldr r5, [r0, #56] ; 0x38
if ( _Thread_queue_Is_reverse_search( priority ) )
7cd4: 1a00001f bne 7d58 <_Thread_queue_Enqueue_priority+0xb0>
goto restart_reverse_search;
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->first;
7cd8: e0888088 add r8, r8, r8, lsl #1
7cdc: e1a09108 lsl r9, r8, #2
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
7ce0: e2898004 add r8, r9, #4
7ce4: e0808008 add r8, r0, r8
7ce8: e0809009 add r9, r0, r9
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
7cec: e10f7000 mrs r7, CPSR
7cf0: e387c080 orr ip, r7, #128 ; 0x80
7cf4: e129f00c msr CPSR_fc, ip
7cf8: e1a0a007 mov sl, r7
7cfc: e599c000 ldr ip, [r9]
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
7d00: e15c0008 cmp ip, r8
7d04: 1a000009 bne 7d30 <_Thread_queue_Enqueue_priority+0x88>
7d08: ea000054 b 7e60 <_Thread_queue_Enqueue_priority+0x1b8>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
asm volatile (
7d0c: e10f6000 mrs r6, CPSR
7d10: e129f007 msr CPSR_fc, r7
7d14: e129f006 msr CPSR_fc, r6
RTEMS_INLINE_ROUTINE bool _States_Are_set (
States_Control the_states,
States_Control mask
)
{
return ( (the_states & mask) != STATES_READY);
7d18: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority <= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
7d1c: e1150006 tst r5, r6
7d20: 0a000036 beq 7e00 <_Thread_queue_Enqueue_priority+0x158>
_ISR_Enable( level );
goto restart_forward_search;
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
7d24: e59cc000 ldr ip, [ip]
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->first;
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
7d28: e15c0008 cmp ip, r8
7d2c: 0a000002 beq 7d3c <_Thread_queue_Enqueue_priority+0x94>
search_priority = search_thread->current_priority;
7d30: e59c4014 ldr r4, [ip, #20]
if ( priority <= search_priority )
7d34: e1530004 cmp r3, r4
7d38: 8afffff3 bhi 7d0c <_Thread_queue_Enqueue_priority+0x64>
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
}
if ( the_thread_queue->sync_state !=
7d3c: e5905030 ldr r5, [r0, #48] ; 0x30
7d40: e3550001 cmp r5, #1
7d44: 0a00002f beq 7e08 <_Thread_queue_Enqueue_priority+0x160>
* For example, the blocking thread could have been given
* the mutex by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
7d48: e582a000 str sl, [r2]
return the_thread_queue->sync_state;
}
7d4c: e1a00005 mov r0, r5
7d50: e8bd0ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp}
7d54: e12fff1e bx lr
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
7d58: e0888088 add r8, r8, r8, lsl #1
7d5c: e0808108 add r8, r0, r8, lsl #2
7d60: e59f9100 ldr r9, [pc, #256] ; 7e68 <_Thread_queue_Enqueue_priority+0x1c0>
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->last;
7d64: e1a0b008 mov fp, r8
the_thread->Wait.queue = the_thread_queue;
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
7d68: e5d94000 ldrb r4, [r9]
7d6c: e2844001 add r4, r4, #1
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
7d70: e10f7000 mrs r7, CPSR
7d74: e387c080 orr ip, r7, #128 ; 0x80
7d78: e129f00c msr CPSR_fc, ip
7d7c: e1a0a007 mov sl, r7
_ISR_Disable( level );
search_thread = (Thread_Control *) header->last;
7d80: e59bc008 ldr ip, [fp, #8]
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
7d84: e15c0008 cmp ip, r8
7d88: 1a000009 bne 7db4 <_Thread_queue_Enqueue_priority+0x10c>
7d8c: ea00000b b 7dc0 <_Thread_queue_Enqueue_priority+0x118>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
asm volatile (
7d90: e10f6000 mrs r6, CPSR
7d94: e129f007 msr CPSR_fc, r7
7d98: e129f006 msr CPSR_fc, r6
7d9c: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority >= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
7da0: e1150006 tst r5, r6
7da4: 0a000013 beq 7df8 <_Thread_queue_Enqueue_priority+0x150>
_ISR_Enable( level );
goto restart_reverse_search;
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
7da8: e59cc004 ldr ip, [ip, #4]
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) header->last;
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
7dac: e15c0008 cmp ip, r8
7db0: 0a000002 beq 7dc0 <_Thread_queue_Enqueue_priority+0x118>
search_priority = search_thread->current_priority;
7db4: e59c4014 ldr r4, [ip, #20]
if ( priority >= search_priority )
7db8: e1530004 cmp r3, r4
7dbc: 3afffff3 bcc 7d90 <_Thread_queue_Enqueue_priority+0xe8>
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
}
if ( the_thread_queue->sync_state !=
7dc0: e5905030 ldr r5, [r0, #48] ; 0x30
7dc4: e3550001 cmp r5, #1
7dc8: 1affffde bne 7d48 <_Thread_queue_Enqueue_priority+0xa0>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
7dcc: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
7dd0: e3a03000 mov r3, #0
7dd4: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
7dd8: 0a000016 beq 7e38 <_Thread_queue_Enqueue_priority+0x190>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
next_node = search_node->next;
7ddc: e59c3000 ldr r3, [ip]
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
7de0: e8811008 stm r1, {r3, ip}
search_node->next = the_node;
next_node->previous = the_node;
7de4: e5831004 str r1, [r3, #4]
next_node = search_node->next;
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
search_node->next = the_node;
7de8: e58c1000 str r1, [ip]
next_node->previous = the_node;
the_thread->Wait.queue = the_thread_queue;
7dec: e5810044 str r0, [r1, #68] ; 0x44
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
7df0: e129f007 msr CPSR_fc, r7
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
7df4: eaffffd4 b 7d4c <_Thread_queue_Enqueue_priority+0xa4>
7df8: e129f007 msr CPSR_fc, r7 <== NOT EXECUTED
7dfc: eaffffd9 b 7d68 <_Thread_queue_Enqueue_priority+0xc0> <== NOT EXECUTED
7e00: e129f007 msr CPSR_fc, r7 <== NOT EXECUTED
7e04: eaffffb8 b 7cec <_Thread_queue_Enqueue_priority+0x44> <== NOT EXECUTED
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
7e08: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
7e0c: e3a03000 mov r3, #0
7e10: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
7e14: 0a000007 beq 7e38 <_Thread_queue_Enqueue_priority+0x190>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
previous_node = search_node->previous;
7e18: e59c3004 ldr r3, [ip, #4]
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
7e1c: e581c000 str ip, [r1]
the_node->previous = previous_node;
7e20: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
7e24: e5831000 str r1, [r3]
search_node->previous = the_node;
7e28: e58c1004 str r1, [ip, #4]
the_thread->Wait.queue = the_thread_queue;
7e2c: e5810044 str r0, [r1, #68] ; 0x44
7e30: e129f007 msr CPSR_fc, r7
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
7e34: eaffffc4 b 7d4c <_Thread_queue_Enqueue_priority+0xa4>
7e38: e28cc03c add ip, ip, #60 ; 0x3c
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
equal_priority: /* add at end of priority group */
search_node = _Chain_Tail( &search_thread->Wait.Block2n );
previous_node = search_node->previous;
7e3c: e59c3004 ldr r3, [ip, #4]
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
7e40: e581c000 str ip, [r1]
the_node->previous = previous_node;
7e44: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
7e48: e5831000 str r1, [r3]
search_node->previous = the_node;
7e4c: e58c1004 str r1, [ip, #4]
the_thread->Wait.queue = the_thread_queue;
7e50: e5810044 str r0, [r1, #68] ; 0x44
7e54: e129f00a msr CPSR_fc, sl
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
7e58: e3a05001 mov r5, #1
7e5c: eaffffba b 7d4c <_Thread_queue_Enqueue_priority+0xa4>
if ( _Thread_queue_Is_reverse_search( priority ) )
goto restart_reverse_search;
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
7e60: e3e04000 mvn r4, #0
7e64: eaffffb4 b 7d3c <_Thread_queue_Enqueue_priority+0x94>
0000b2b8 <_Thread_queue_Extract_priority_helper>:
void _Thread_queue_Extract_priority_helper(
Thread_queue_Control *the_thread_queue __attribute__((unused)),
Thread_Control *the_thread,
bool requeuing
)
{
b2b8: e92d4070 push {r4, r5, r6, lr}
b2bc: e20220ff and r2, r2, #255 ; 0xff
b2c0: e1a04001 mov r4, r1
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
b2c4: e10f1000 mrs r1, CPSR
b2c8: e3813080 orr r3, r1, #128 ; 0x80
b2cc: e129f003 msr CPSR_fc, r3
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
b2d0: e5943010 ldr r3, [r4, #16]
b2d4: e3c334ff bic r3, r3, #-16777216 ; 0xff000000
b2d8: e3c3373f bic r3, r3, #16515072 ; 0xfc0000
b2dc: e3c33c41 bic r3, r3, #16640 ; 0x4100
b2e0: e3c3301f bic r3, r3, #31
Chain_Node *new_second_node;
Chain_Node *last_node;
the_node = (Chain_Node *) the_thread;
_ISR_Disable( level );
if ( !_States_Is_waiting_on_thread_queue( the_thread->current_state ) ) {
b2e4: e3530000 cmp r3, #0
b2e8: 0a000023 beq b37c <_Thread_queue_Extract_priority_helper+0xc4>
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
b2ec: e5943038 ldr r3, [r4, #56] ; 0x38
/*
* The thread was actually waiting on a thread queue so let's remove it.
*/
next_node = the_node->next;
b2f0: e594c000 ldr ip, [r4]
previous_node = the_node->previous;
b2f4: e5945004 ldr r5, [r4, #4]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Tail(
Chain_Control *the_chain
)
{
return (Chain_Node *) &the_chain->permanent_null;
b2f8: e284003c add r0, r4, #60 ; 0x3c
if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
b2fc: e1530000 cmp r3, r0
new_first_thread->Wait.Block2n.last = last_node;
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
}
} else {
previous_node->next = next_node;
b300: 0585c000 streq ip, [r5]
next_node->previous = previous_node;
b304: 058c5004 streq r5, [ip, #4]
*/
next_node = the_node->next;
previous_node = the_node->previous;
if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
b308: 0a00000d beq b344 <_Thread_queue_Extract_priority_helper+0x8c>
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
b30c: e5940040 ldr r0, [r4, #64] ; 0x40
previous_node->next = new_first_node;
next_node->previous = new_first_node;
new_first_node->next = next_node;
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
b310: e1500003 cmp r0, r3
if ( !_Chain_Is_empty( &the_thread->Wait.Block2n ) ) {
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
new_second_node = new_first_node->next;
b314: e5936000 ldr r6, [r3]
previous_node->next = new_first_node;
next_node->previous = new_first_node;
b318: e58c3004 str r3, [ip, #4]
new_first_node = the_thread->Wait.Block2n.first;
new_first_thread = (Thread_Control *) new_first_node;
last_node = the_thread->Wait.Block2n.last;
new_second_node = new_first_node->next;
previous_node->next = new_first_node;
b31c: e5853000 str r3, [r5]
next_node->previous = new_first_node;
new_first_node->next = next_node;
new_first_node->previous = previous_node;
b320: e5835004 str r5, [r3, #4]
last_node = the_thread->Wait.Block2n.last;
new_second_node = new_first_node->next;
previous_node->next = new_first_node;
next_node->previous = new_first_node;
new_first_node->next = next_node;
b324: e583c000 str ip, [r3]
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
b328: 0a000005 beq b344 <_Thread_queue_Extract_priority_helper+0x8c>
/* > two threads on 2-n */
new_second_node->previous =
_Chain_Head( &new_first_thread->Wait.Block2n );
b32c: e2835038 add r5, r3, #56 ; 0x38
b330: e283c03c add ip, r3, #60 ; 0x3c
new_first_node->next = next_node;
new_first_node->previous = previous_node;
if ( !_Chain_Has_only_one_node( &the_thread->Wait.Block2n ) ) {
/* > two threads on 2-n */
new_second_node->previous =
b334: e5865004 str r5, [r6, #4]
_Chain_Head( &new_first_thread->Wait.Block2n );
new_first_thread->Wait.Block2n.first = new_second_node;
b338: e5836038 str r6, [r3, #56] ; 0x38
new_first_thread->Wait.Block2n.last = last_node;
b33c: e5830040 str r0, [r3, #64] ; 0x40
last_node->next = _Chain_Tail( &new_first_thread->Wait.Block2n );
b340: e580c000 str ip, [r0]
/*
* If we are not supposed to touch timers or the thread's state, return.
*/
if ( requeuing ) {
b344: e3520000 cmp r2, #0
b348: 1a000009 bne b374 <_Thread_queue_Extract_priority_helper+0xbc>
_ISR_Enable( level );
return;
}
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
b34c: e5943050 ldr r3, [r4, #80] ; 0x50
b350: e3530002 cmp r3, #2
b354: 0a00000a beq b384 <_Thread_queue_Extract_priority_helper+0xcc>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
b358: e129f001 msr CPSR_fc, r1
b35c: e3a01201 mov r1, #268435456 ; 0x10000000
b360: e2811bff add r1, r1, #261120 ; 0x3fc00
b364: e1a00004 mov r0, r4
b368: e2811ffe add r1, r1, #1016 ; 0x3f8
#if defined(RTEMS_MULTIPROCESSING)
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
_Thread_MP_Free_proxy( the_thread );
#endif
}
b36c: e8bd4070 pop {r4, r5, r6, lr}
b370: eafff002 b 7380 <_Thread_Clear_state>
b374: e129f001 msr CPSR_fc, r1
b378: e8bd8070 pop {r4, r5, r6, pc}
b37c: e129f001 msr CPSR_fc, r1
b380: e8bd8070 pop {r4, r5, r6, pc}
b384: e3a03003 mov r3, #3 <== NOT EXECUTED
b388: e5843050 str r3, [r4, #80] ; 0x50 <== NOT EXECUTED
b38c: e129f001 msr CPSR_fc, r1 <== NOT EXECUTED
if ( !_Watchdog_Is_active( &the_thread->Timer ) ) {
_ISR_Enable( level );
} else {
_Watchdog_Deactivate( &the_thread->Timer );
_ISR_Enable( level );
(void) _Watchdog_Remove( &the_thread->Timer );
b390: e2840048 add r0, r4, #72 ; 0x48 <== NOT EXECUTED
b394: ebfff56f bl 8958 <_Watchdog_Remove> <== NOT EXECUTED
b398: eaffffef b b35c <_Thread_queue_Extract_priority_helper+0xa4><== NOT EXECUTED
00015f94 <_Timer_server_Body>:
* @a arg points to the corresponding timer server control block.
*/
static rtems_task _Timer_server_Body(
rtems_task_argument arg
)
{
15f94: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
15f98: e24dd024 sub sp, sp, #36 ; 0x24
15f9c: e28d700c add r7, sp, #12
15fa0: e28d2018 add r2, sp, #24
15fa4: e282a004 add sl, r2, #4
15fa8: e2872004 add r2, r7, #4
15fac: e58d2000 str r2, [sp]
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
the_chain->permanent_null = NULL;
the_chain->last = _Chain_Head(the_chain);
15fb0: e28d2018 add r2, sp, #24
15fb4: e58d2020 str r2, [sp, #32]
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
15fb8: e59d2000 ldr r2, [sp]
15fbc: e58d200c str r2, [sp, #12]
15fc0: e2802008 add r2, r0, #8
the_chain->permanent_null = NULL;
15fc4: e3a03000 mov r3, #0
15fc8: e58d2004 str r2, [sp, #4]
15fcc: e2802040 add r2, r0, #64 ; 0x40
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
the_chain->first = _Chain_Tail(the_chain);
15fd0: e58da018 str sl, [sp, #24]
the_chain->permanent_null = NULL;
15fd4: e58d301c str r3, [sp, #28]
15fd8: e58d3010 str r3, [sp, #16]
the_chain->last = _Chain_Head(the_chain);
15fdc: e58d7014 str r7, [sp, #20]
15fe0: e59f91a8 ldr r9, [pc, #424] ; 16190 <_Timer_server_Body+0x1fc>
15fe4: e59fb1a8 ldr fp, [pc, #424] ; 16194 <_Timer_server_Body+0x200>
15fe8: e58d2008 str r2, [sp, #8]
15fec: e1a04000 mov r4, r0
15ff0: e2806030 add r6, r0, #48 ; 0x30
15ff4: e2808068 add r8, r0, #104 ; 0x68
{
/*
* Afterwards all timer inserts are directed to this chain and the interval
* and TOD chains will be no more modified by other parties.
*/
ts->insert_chain = insert_chain;
15ff8: e28d3018 add r3, sp, #24
15ffc: e5843078 str r3, [r4, #120] ; 0x78
static void _Timer_server_Process_interval_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = _Watchdog_Ticks_since_boot;
16000: e5993000 ldr r3, [r9]
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
16004: e594103c ldr r1, [r4, #60] ; 0x3c
watchdogs->last_snapshot = snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
16008: e1a02007 mov r2, r7
1600c: e1a00006 mov r0, r6
/*
* We assume adequate unsigned arithmetic here.
*/
Watchdog_Interval delta = snapshot - watchdogs->last_snapshot;
watchdogs->last_snapshot = snapshot;
16010: e584303c str r3, [r4, #60] ; 0x3c
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
16014: e0611003 rsb r1, r1, r3
16018: eb001158 bl 1a580 <_Watchdog_Adjust_to_chain>
static void _Timer_server_Process_tod_watchdogs(
Timer_server_Watchdogs *watchdogs,
Chain_Control *fire_chain
)
{
Watchdog_Interval snapshot = (Watchdog_Interval) _TOD_Seconds_since_epoch();
1601c: e59b5000 ldr r5, [fp]
Watchdog_Interval last_snapshot = watchdogs->last_snapshot;
16020: e5942074 ldr r2, [r4, #116] ; 0x74
/*
* Process the seconds chain. Start by checking that the Time
* of Day (TOD) has not been set backwards. If it has then
* we want to adjust the watchdogs->Chain to indicate this.
*/
if ( snapshot > last_snapshot ) {
16024: e1550002 cmp r5, r2
16028: 8a000022 bhi 160b8 <_Timer_server_Body+0x124>
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
} else if ( snapshot < last_snapshot ) {
1602c: 3a000018 bcc 16094 <_Timer_server_Body+0x100>
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
}
watchdogs->last_snapshot = snapshot;
16030: e5845074 str r5, [r4, #116] ; 0x74
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
16034: e5940078 ldr r0, [r4, #120] ; 0x78
16038: eb0002bd bl 16b34 <_Chain_Get>
if ( timer == NULL ) {
1603c: e2501000 subs r1, r0, #0
16040: 0a00000b beq 16074 <_Timer_server_Body+0xe0>
static void _Timer_server_Insert_timer(
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
16044: e5913038 ldr r3, [r1, #56] ; 0x38
16048: e3530001 cmp r3, #1
1604c: 0a000015 beq 160a8 <_Timer_server_Body+0x114>
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
} else if ( timer->the_class == TIMER_TIME_OF_DAY_ON_TASK ) {
16050: e3530003 cmp r3, #3
16054: 1afffff6 bne 16034 <_Timer_server_Body+0xa0>
_Watchdog_Insert( &ts->TOD_watchdogs.Chain, &timer->Ticker );
16058: e2811010 add r1, r1, #16
1605c: e1a00008 mov r0, r8
16060: eb001170 bl 1a628 <_Watchdog_Insert>
}
static void _Timer_server_Process_insertions( Timer_server_Control *ts )
{
while ( true ) {
Timer_Control *timer = (Timer_Control *) _Chain_Get( ts->insert_chain );
16064: e5940078 ldr r0, [r4, #120] ; 0x78
16068: eb0002b1 bl 16b34 <_Chain_Get>
if ( timer == NULL ) {
1606c: e2501000 subs r1, r0, #0
16070: 1afffff3 bne 16044 <_Timer_server_Body+0xb0>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
16074: e10f2000 mrs r2, CPSR
16078: e3823080 orr r3, r2, #128 ; 0x80
1607c: e129f003 msr CPSR_fc, r3
* body loop.
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
16080: e59d3018 ldr r3, [sp, #24]
16084: e15a0003 cmp sl, r3
16088: 0a00000f beq 160cc <_Timer_server_Body+0x138>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
1608c: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED
16090: eaffffda b 16000 <_Timer_server_Body+0x6c> <== NOT EXECUTED
/*
* The current TOD is before the last TOD which indicates that
* TOD has been set backwards.
*/
delta = last_snapshot - snapshot;
_Watchdog_Adjust( &watchdogs->Chain, WATCHDOG_BACKWARD, delta );
16094: e1a00008 mov r0, r8
16098: e3a01001 mov r1, #1
1609c: e0652002 rsb r2, r5, r2
160a0: eb001107 bl 1a4c4 <_Watchdog_Adjust>
160a4: eaffffe1 b 16030 <_Timer_server_Body+0x9c>
Timer_server_Control *ts,
Timer_Control *timer
)
{
if ( timer->the_class == TIMER_INTERVAL_ON_TASK ) {
_Watchdog_Insert( &ts->Interval_watchdogs.Chain, &timer->Ticker );
160a8: e1a00006 mov r0, r6
160ac: e2811010 add r1, r1, #16
160b0: eb00115c bl 1a628 <_Watchdog_Insert>
160b4: eaffffde b 16034 <_Timer_server_Body+0xa0>
/*
* This path is for normal forward movement and cases where the
* TOD has been set forward.
*/
delta = snapshot - last_snapshot;
_Watchdog_Adjust_to_chain( &watchdogs->Chain, delta, fire_chain );
160b8: e0621005 rsb r1, r2, r5
160bc: e1a00008 mov r0, r8
160c0: e1a02007 mov r2, r7
160c4: eb00112d bl 1a580 <_Watchdog_Adjust_to_chain>
160c8: eaffffd8 b 16030 <_Timer_server_Body+0x9c>
*/
_Timer_server_Process_insertions( ts );
_ISR_Disable( level );
if ( _Chain_Is_empty( insert_chain ) ) {
ts->insert_chain = NULL;
160cc: e5841078 str r1, [r4, #120] ; 0x78
160d0: e129f002 msr CPSR_fc, r2
_Chain_Initialize_empty( &fire_chain );
while ( true ) {
_Timer_server_Get_watchdogs_that_fire_now( ts, &insert_chain, &fire_chain );
if ( !_Chain_Is_empty( &fire_chain ) ) {
160d4: e59d300c ldr r3, [sp, #12]
160d8: e59d2000 ldr r2, [sp]
160dc: e1520003 cmp r2, r3
160e0: 0a000015 beq 1613c <_Timer_server_Body+0x1a8>
160e4: e1a05004 mov r5, r4
160e8: e59d4000 ldr r4, [sp]
160ec: ea000009 b 16118 <_Timer_server_Body+0x184>
{
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
160f0: e5932000 ldr r2, [r3]
the_chain->first = new_first;
new_first->previous = _Chain_Head(the_chain);
160f4: e5827004 str r7, [r2, #4]
Chain_Node *return_node;
Chain_Node *new_first;
return_node = the_chain->first;
new_first = return_node->next;
the_chain->first = new_first;
160f8: e58d200c str r2, [sp, #12]
* service routine may remove a watchdog from the chain.
*/
_ISR_Disable( level );
watchdog = (Watchdog_Control *) _Chain_Get_unprotected( &fire_chain );
if ( watchdog != NULL ) {
watchdog->state = WATCHDOG_INACTIVE;
160fc: e3a02000 mov r2, #0
16100: e5832008 str r2, [r3, #8]
16104: e129f001 msr CPSR_fc, r1
/*
* The timer server may block here and wait for resources or time.
* The system watchdogs are inactive and will remain inactive since
* the active flag of the timer server is true.
*/
(*watchdog->routine)( watchdog->id, watchdog->user_data );
16108: e2830020 add r0, r3, #32
1610c: e8900003 ldm r0, {r0, r1}
16110: e1a0e00f mov lr, pc
16114: e593f01c ldr pc, [r3, #28]
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
16118: e10f1000 mrs r1, CPSR
1611c: e3813080 orr r3, r1, #128 ; 0x80
16120: e129f003 msr CPSR_fc, r3
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
16124: e59d300c ldr r3, [sp, #12]
*/
RTEMS_INLINE_ROUTINE Chain_Node *_Chain_Get_unprotected(
Chain_Control *the_chain
)
{
if ( !_Chain_Is_empty(the_chain))
16128: e1540003 cmp r4, r3
1612c: 1affffef bne 160f0 <_Timer_server_Body+0x15c>
16130: e1a04005 mov r4, r5
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
16134: e129f001 msr CPSR_fc, r1
16138: eaffffae b 15ff8 <_Timer_server_Body+0x64>
}
} else {
ts->active = false;
1613c: e3a03000 mov r3, #0
16140: e5c4307c strb r3, [r4, #124] ; 0x7c
16144: e59f204c ldr r2, [pc, #76] ; 16198 <_Timer_server_Body+0x204>
16148: e5923000 ldr r3, [r2]
1614c: e2833001 add r3, r3, #1
16150: e5823000 str r3, [r2]
/*
* Block until there is something to do.
*/
_Thread_Disable_dispatch();
_Thread_Set_state( ts->thread, STATES_DELAYING );
16154: e3a01008 mov r1, #8
16158: e5940000 ldr r0, [r4]
1615c: eb000e7e bl 19b5c <_Thread_Set_state>
_Timer_server_Reset_interval_system_watchdog( ts );
16160: e1a00004 mov r0, r4
16164: ebffff5e bl 15ee4 <_Timer_server_Reset_interval_system_watchdog>
_Timer_server_Reset_tod_system_watchdog( ts );
16168: e1a00004 mov r0, r4
1616c: ebffff72 bl 15f3c <_Timer_server_Reset_tod_system_watchdog>
_Thread_Enable_dispatch();
16170: eb000be8 bl 19118 <_Thread_Enable_dispatch>
ts->active = true;
16174: e3a03001 mov r3, #1
16178: e5c4307c strb r3, [r4, #124] ; 0x7c
static void _Timer_server_Stop_interval_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->Interval_watchdogs.System_watchdog );
1617c: e59d0004 ldr r0, [sp, #4]
16180: eb00118b bl 1a7b4 <_Watchdog_Remove>
static void _Timer_server_Stop_tod_system_watchdog(
Timer_server_Control *ts
)
{
_Watchdog_Remove( &ts->TOD_watchdogs.System_watchdog );
16184: e59d0008 ldr r0, [sp, #8]
16188: eb001189 bl 1a7b4 <_Watchdog_Remove>
1618c: eaffff99 b 15ff8 <_Timer_server_Body+0x64>
0000a2cc <_Timespec_Greater_than>:
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
a2cc: e5902000 ldr r2, [r0]
a2d0: e5913000 ldr r3, [r1]
a2d4: e1520003 cmp r2, r3
return true;
a2d8: c3a00001 movgt r0, #1
bool _Timespec_Greater_than(
const struct timespec *lhs,
const struct timespec *rhs
)
{
if ( lhs->tv_sec > rhs->tv_sec )
a2dc: c12fff1e bxgt lr
return true;
if ( lhs->tv_sec < rhs->tv_sec )
a2e0: ba000005 blt a2fc <_Timespec_Greater_than+0x30>
#include <rtems/system.h>
#include <rtems/score/timespec.h>
#include <rtems/score/tod.h>
bool _Timespec_Greater_than(
a2e4: e5900004 ldr r0, [r0, #4]
a2e8: e5913004 ldr r3, [r1, #4]
a2ec: e1500003 cmp r0, r3
a2f0: d3a00000 movle r0, #0
a2f4: c3a00001 movgt r0, #1
a2f8: e12fff1e bx lr
{
if ( lhs->tv_sec > rhs->tv_sec )
return true;
if ( lhs->tv_sec < rhs->tv_sec )
return false;
a2fc: e3a00000 mov r0, #0 <== NOT EXECUTED
/* ASSERT: lhs->tv_sec == rhs->tv_sec */
if ( lhs->tv_nsec > rhs->tv_nsec )
return true;
return false;
}
a300: e12fff1e bx lr <== NOT EXECUTED
00008690 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
8690: e92d40f0 push {r4, r5, r6, r7, lr}
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
8694: e59f5050 ldr r5, [pc, #80] ; 86ec <_User_extensions_Thread_create+0x5c>
8698: e4954004 ldr r4, [r5], #4
869c: e1540005 cmp r4, r5
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
86a0: e1a06000 mov r6, r0
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
86a4: 0a00000e beq 86e4 <_User_extensions_Thread_create+0x54>
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
86a8: e59f7040 ldr r7, [pc, #64] ; 86f0 <_User_extensions_Thread_create+0x60>
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
86ac: e5943014 ldr r3, [r4, #20]
86b0: e3530000 cmp r3, #0
status = (*the_extension->Callouts.thread_create)(
86b4: e1a01006 mov r1, r6
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
86b8: 0a000004 beq 86d0 <_User_extensions_Thread_create+0x40>
status = (*the_extension->Callouts.thread_create)(
86bc: e5970004 ldr r0, [r7, #4]
86c0: e1a0e00f mov lr, pc
86c4: e12fff13 bx r3
_Thread_Executing,
the_thread
);
if ( !status )
86c8: e3500000 cmp r0, #0
86cc: 08bd80f0 popeq {r4, r5, r6, r7, pc}
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
86d0: e5944000 ldr r4, [r4]
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _User_extensions_List.first ;
86d4: e1540005 cmp r4, r5
86d8: 1afffff3 bne 86ac <_User_extensions_Thread_create+0x1c>
if ( !status )
return false;
}
}
return true;
86dc: e3a00001 mov r0, #1
86e0: e8bd80f0 pop {r4, r5, r6, r7, pc}
86e4: e3a00001 mov r0, #1 <== NOT EXECUTED
}
86e8: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
0000a660 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
a660: e92d41f0 push {r4, r5, r6, r7, r8, lr}
a664: e1a04000 mov r4, r0
a668: e1a05002 mov r5, r2
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
a66c: e10f3000 mrs r3, CPSR
a670: e3832080 orr r2, r3, #128 ; 0x80
a674: e129f002 msr CPSR_fc, r2
*/
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
Chain_Control *the_chain
)
{
return (the_chain->first == _Chain_Tail(the_chain));
a678: e1a07000 mov r7, r0
a67c: e4972004 ldr r2, [r7], #4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
a680: e1520007 cmp r2, r7
a684: 0a000018 beq a6ec <_Watchdog_Adjust+0x8c>
switch ( direction ) {
a688: e3510000 cmp r1, #0
a68c: 1a000018 bne a6f4 <_Watchdog_Adjust+0x94>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
a690: e3550000 cmp r5, #0
a694: 0a000014 beq a6ec <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
a698: e5926010 ldr r6, [r2, #16]
a69c: e1550006 cmp r5, r6
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
a6a0: 23a08001 movcs r8, #1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
a6a4: 2a000005 bcs a6c0 <_Watchdog_Adjust+0x60>
a6a8: ea000018 b a710 <_Watchdog_Adjust+0xb0> <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
a6ac: e0555006 subs r5, r5, r6
a6b0: 0a00000d beq a6ec <_Watchdog_Adjust+0x8c>
if ( units < _Watchdog_First( header )->delta_interval ) {
a6b4: e5926010 ldr r6, [r2, #16]
a6b8: e1560005 cmp r6, r5
a6bc: 8a000013 bhi a710 <_Watchdog_Adjust+0xb0>
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
a6c0: e5828010 str r8, [r2, #16]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
a6c4: e129f003 msr CPSR_fc, r3
_ISR_Enable( level );
_Watchdog_Tickle( header );
a6c8: e1a00004 mov r0, r4
a6cc: eb0000a0 bl a954 <_Watchdog_Tickle>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
asm volatile (
a6d0: e10f3000 mrs r3, CPSR
a6d4: e3832080 orr r2, r3, #128 ; 0x80
a6d8: e129f002 msr CPSR_fc, r2
a6dc: e5941000 ldr r1, [r4]
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
a6e0: e1570001 cmp r7, r1
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First(
Chain_Control *header
)
{
return ( (Watchdog_Control *) header->first );
a6e4: e1a02001 mov r2, r1
a6e8: 1affffef bne a6ac <_Watchdog_Adjust+0x4c>
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
asm volatile (
a6ec: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
a6f0: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
a6f4: e3510001 cmp r1, #1
a6f8: 1afffffb bne a6ec <_Watchdog_Adjust+0x8c>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
a6fc: e5921010 ldr r1, [r2, #16]
a700: e0815005 add r5, r1, r5
a704: e5825010 str r5, [r2, #16]
a708: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
a70c: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
a710: e0655006 rsb r5, r5, r6
a714: e5825010 str r5, [r2, #16]
break;
a718: eafffff3 b a6ec <_Watchdog_Adjust+0x8c>
00007000 <rtems_io_register_driver>:
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
7000: e59f3150 ldr r3, [pc, #336] ; 7158 <rtems_io_register_driver+0x158>
7004: e593c000 ldr ip, [r3]
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
7008: e59f314c ldr r3, [pc, #332] ; 715c <rtems_io_register_driver+0x15c>
if ( rtems_interrupt_is_in_progress() )
700c: e35c0000 cmp ip, #0
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
7010: e92d4030 push {r4, r5, lr}
7014: e1a04000 mov r4, r0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
7018: e5930000 ldr r0, [r3]
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
701c: 13a00012 movne r0, #18
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
7020: 18bd8030 popne {r4, r5, pc}
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
7024: e3520000 cmp r2, #0
7028: 0a00003f beq 712c <rtems_io_register_driver+0x12c>
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
702c: e3510000 cmp r1, #0
if ( registered_major == NULL )
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
7030: e5820000 str r0, [r2]
if ( driver_table == NULL )
7034: 0a00003c beq 712c <rtems_io_register_driver+0x12c>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7038: e591c000 ldr ip, [r1]
703c: e35c0000 cmp ip, #0
7040: 0a000036 beq 7120 <rtems_io_register_driver+0x120>
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
7044: e1500004 cmp r0, r4
7048: 9a000027 bls 70ec <rtems_io_register_driver+0xec>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
704c: e59f010c ldr r0, [pc, #268] ; 7160 <rtems_io_register_driver+0x160>
7050: e590c000 ldr ip, [r0]
7054: e28cc001 add ip, ip, #1
7058: e580c000 str ip, [r0]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
705c: e3540000 cmp r4, #0
7060: 1a000023 bne 70f4 <rtems_io_register_driver+0xf4>
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
7064: e593c000 ldr ip, [r3]
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
7068: e35c0000 cmp ip, #0
706c: 0a000030 beq 7134 <rtems_io_register_driver+0x134>
7070: e59fe0ec ldr lr, [pc, #236] ; 7164 <rtems_io_register_driver+0x164>
7074: e59e3000 ldr r3, [lr]
7078: ea000003 b 708c <rtems_io_register_driver+0x8c>
707c: e2844001 add r4, r4, #1
7080: e15c0004 cmp ip, r4
7084: e2833018 add r3, r3, #24
7088: 9a000005 bls 70a4 <rtems_io_register_driver+0xa4>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
708c: e5930000 ldr r0, [r3]
7090: e3500000 cmp r0, #0
7094: 1afffff8 bne 707c <rtems_io_register_driver+0x7c>
7098: e5930004 ldr r0, [r3, #4]
709c: e3500000 cmp r0, #0
70a0: 1afffff5 bne 707c <rtems_io_register_driver+0x7c>
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
70a4: e15c0004 cmp ip, r4
70a8: 1084c084 addne ip, r4, r4, lsl #1
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
70ac: e5824000 str r4, [r2]
if ( m != n )
70b0: 11a0c18c lslne ip, ip, #3
70b4: 0a00001f beq 7138 <rtems_io_register_driver+0x138>
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
70b8: e59e5000 ldr r5, [lr]
70bc: e1a0e001 mov lr, r1
70c0: e8be000f ldm lr!, {r0, r1, r2, r3}
70c4: e085c00c add ip, r5, ip
70c8: e8ac000f stmia ip!, {r0, r1, r2, r3}
70cc: e89e0003 ldm lr, {r0, r1}
70d0: e88c0003 stm ip, {r0, r1}
_Thread_Enable_dispatch();
70d4: eb000687 bl 8af8 <_Thread_Enable_dispatch>
return rtems_io_initialize( major, 0, NULL );
70d8: e3a01000 mov r1, #0
70dc: e1a00004 mov r0, r4
70e0: e1a02001 mov r2, r1
}
70e4: e8bd4030 pop {r4, r5, lr}
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
70e8: ea001eb0 b ebb0 <rtems_io_initialize>
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
return RTEMS_INVALID_NUMBER;
70ec: e3a0000a mov r0, #10
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
70f0: e8bd8030 pop {r4, r5, pc}
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
70f4: e59fe068 ldr lr, [pc, #104] ; 7164 <rtems_io_register_driver+0x164>
70f8: e59e3000 ldr r3, [lr]
70fc: e084c084 add ip, r4, r4, lsl #1
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7100: e793018c ldr r0, [r3, ip, lsl #3]
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
7104: e1a0c18c lsl ip, ip, #3
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7108: e3500000 cmp r0, #0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
710c: e083300c add r3, r3, ip
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7110: 0a00000b beq 7144 <rtems_io_register_driver+0x144>
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
7114: eb000677 bl 8af8 <_Thread_Enable_dispatch>
return RTEMS_RESOURCE_IN_USE;
7118: e3a0000c mov r0, #12
711c: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7120: e591c004 ldr ip, [r1, #4]
7124: e35c0000 cmp ip, #0
7128: 1affffc5 bne 7044 <rtems_io_register_driver+0x44>
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
712c: e3a00009 mov r0, #9
7130: e8bd8030 pop {r4, r5, pc}
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
7134: e5824000 str r4, [r2] <== NOT EXECUTED
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
7138: eb00066e bl 8af8 <_Thread_Enable_dispatch>
*major = m;
if ( m != n )
return RTEMS_SUCCESSFUL;
return RTEMS_TOO_MANY;
713c: e3a00005 mov r0, #5
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
return sc;
7140: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7144: e5933004 ldr r3, [r3, #4]
7148: e3530000 cmp r3, #0
714c: 1afffff0 bne 7114 <rtems_io_register_driver+0x114>
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
7150: e5824000 str r4, [r2]
7154: eaffffd7 b 70b8 <rtems_io_register_driver+0xb8>