RTEMS 4.11Annotated Report
Fri Mar 11 12:18:10 2011
00016f68 <_CORE_message_queue_Broadcast>:
{
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16f68: e590304c ldr r3, [r0, #76] ; 0x4c
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
16f6c: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16f70: e1530002 cmp r3, r2
Objects_Id id __attribute__((unused)),
CORE_message_queue_API_mp_support_callout api_message_queue_mp_support __attribute__((unused)),
#endif
uint32_t *count
)
{
16f74: e1a07000 mov r7, r0
16f78: e1a05002 mov r5, r2
16f7c: e1a08001 mov r8, r1
16f80: e59da020 ldr sl, [sp, #32]
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
16f84: 3a000016 bcc 16fe4 <_CORE_message_queue_Broadcast+0x7c>
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
16f88: e5906048 ldr r6, [r0, #72] ; 0x48
16f8c: e3560000 cmp r6, #0
*count = 0;
16f90: 13a00000 movne r0, #0
16f94: 158a0000 strne r0, [sl]
* NOTE: This check is critical because threads can block on
* send and receive and this ensures that we are broadcasting
* the message to threads waiting to receive -- not to send.
*/
if ( the_message_queue->number_of_pending_messages != 0 ) {
16f98: 18bd85f0 popne {r4, r5, r6, r7, r8, sl, pc}
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16f9c: e1a00007 mov r0, r7
16fa0: eb000b5a bl 19d10 <_Thread_queue_Dequeue>
16fa4: e2504000 subs r4, r0, #0
16fa8: 0a00000a beq 16fd8 <_CORE_message_queue_Broadcast+0x70>
const void *source,
void *destination,
size_t size
)
{
memcpy(destination, source, size);
16fac: e594002c ldr r0, [r4, #44] ; 0x2c
16fb0: e1a01008 mov r1, r8
16fb4: e1a02005 mov r2, r5
16fb8: eb002449 bl 200e4 <memcpy>
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
16fbc: e5943028 ldr r3, [r4, #40] ; 0x28
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16fc0: e1a00007 mov r0, r7
buffer,
waitp->return_argument_second.mutable_object,
size
);
*(size_t *) the_thread->Wait.return_argument = size;
16fc4: e5835000 str r5, [r3]
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16fc8: eb000b50 bl 19d10 <_Thread_queue_Dequeue>
16fcc: e2504000 subs r4, r0, #0
_Thread_queue_Dequeue(&the_message_queue->Wait_queue))) {
waitp = &the_thread->Wait;
number_broadcasted += 1;
16fd0: e2866001 add r6, r6, #1
/*
* There must be no pending messages if there is a thread waiting to
* receive a message.
*/
number_broadcasted = 0;
while ((the_thread =
16fd4: 1afffff4 bne 16fac <_CORE_message_queue_Broadcast+0x44>
if ( !_Objects_Is_local_id( the_thread->Object.id ) )
(*api_message_queue_mp_support) ( the_thread, id );
#endif
}
*count = number_broadcasted;
16fd8: e58a6000 str r6, [sl]
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
16fdc: e1a00004 mov r0, r4
16fe0: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
Thread_Control *the_thread;
uint32_t number_broadcasted;
Thread_Wait_information *waitp;
if ( size > the_message_queue->maximum_message_size ) {
return CORE_MESSAGE_QUEUE_STATUS_INVALID_SIZE;
16fe4: e3a00001 mov r0, #1 <== NOT EXECUTED
#endif
}
*count = number_broadcasted;
return CORE_MESSAGE_QUEUE_STATUS_SUCCESSFUL;
}
16fe8: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
0000bc68 <_Heap_Allocate_aligned_with_boundary>:
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
bc68: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
bc6c: e1a08002 mov r8, r2
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
bc70: e5902010 ldr r2, [r0, #16]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
bc74: e24dd01c sub sp, sp, #28
bc78: e1a05001 mov r5, r1
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
bc7c: e2911004 adds r1, r1, #4
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
bc80: e1a07000 mov r7, r0
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
bc84: e58d1000 str r1, [sp]
Heap_Control *heap,
uintptr_t alloc_size,
uintptr_t alignment,
uintptr_t boundary
)
{
bc88: e1a0b003 mov fp, r3
Heap_Statistics *const stats = &heap->stats;
uintptr_t const block_size_floor = alloc_size + HEAP_BLOCK_HEADER_SIZE
- HEAP_ALLOC_BONUS;
uintptr_t const page_size = heap->page_size;
bc8c: e58d200c str r2, [sp, #12]
Heap_Block *block = NULL;
uintptr_t alloc_begin = 0;
uint32_t search_count = 0;
bool search_again = false;
if ( block_size_floor < alloc_size ) {
bc90: 2a00007a bcs be80 <_Heap_Allocate_aligned_with_boundary+0x218>
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
bc94: e3530000 cmp r3, #0
bc98: 1a000076 bne be78 <_Heap_Allocate_aligned_with_boundary+0x210>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
bc9c: e5979008 ldr r9, [r7, #8]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
bca0: e1570009 cmp r7, r9
bca4: 0a000075 beq be80 <_Heap_Allocate_aligned_with_boundary+0x218>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
bca8: e59d300c ldr r3, [sp, #12]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
bcac: e2651004 rsb r1, r5, #4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
bcb0: e2833007 add r3, r3, #7
bcb4: e58d3010 str r3, [sp, #16]
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
bcb8: e58d1014 str r1, [sp, #20]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
bcbc: e3a06001 mov r6, #1
/*
* The HEAP_PREV_BLOCK_USED flag is always set in the block size_and_flag
* field. Thus the value is about one unit larger than the real block
* size. The greater than operator takes this into account.
*/
if ( block->size_and_flag > block_size_floor ) {
bcc0: e599a004 ldr sl, [r9, #4]
bcc4: e59d2000 ldr r2, [sp]
bcc8: e152000a cmp r2, sl
bccc: 2a000050 bcs be14 <_Heap_Allocate_aligned_with_boundary+0x1ac>
if ( alignment == 0 ) {
bcd0: e3580000 cmp r8, #0
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
bcd4: 02894008 addeq r4, r9, #8
bcd8: 0a000053 beq be2c <_Heap_Allocate_aligned_with_boundary+0x1c4>
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
bcdc: e5973014 ldr r3, [r7, #20]
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
bce0: e59d1014 ldr r1, [sp, #20]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
bce4: e59d2010 ldr r2, [sp, #16]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
bce8: e3caa001 bic sl, sl, #1
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
bcec: e089a00a add sl, r9, sl
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
uintptr_t alloc_end = block_end + HEAP_ALLOC_BONUS;
uintptr_t alloc_begin = alloc_end - alloc_size;
bcf0: e081400a add r4, r1, sl
if ( stats->max_search < search_count ) {
stats->max_search = search_count;
}
return (void *) alloc_begin;
}
bcf4: e58d3004 str r3, [sp, #4]
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
+ HEAP_BLOCK_HEADER_SIZE + page_size - 1;
bcf8: e0633002 rsb r3, r3, r2
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
bcfc: e1a00004 mov r0, r4
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
uintptr_t const block_end = block_begin + block_size;
uintptr_t const alloc_begin_floor = _Heap_Alloc_area_of_block( block );
uintptr_t const alloc_begin_ceiling = block_end - min_block_size
bd00: e083a00a add sl, r3, sl
bd04: e1a01008 mov r1, r8
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Alloc_area_of_block(
const Heap_Block *block
)
{
return (uintptr_t) block + HEAP_BLOCK_HEADER_SIZE;
bd08: e2893008 add r3, r9, #8
bd0c: e58d3008 str r3, [sp, #8]
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
bd10: eb00168b bl 11744 <__umodsi3>
bd14: e0604004 rsb r4, r0, r4
uintptr_t alloc_begin = alloc_end - alloc_size;
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
bd18: e15a0004 cmp sl, r4
bd1c: 2a000003 bcs bd30 <_Heap_Allocate_aligned_with_boundary+0xc8>
bd20: e1a0000a mov r0, sl
bd24: e1a01008 mov r1, r8
bd28: eb001685 bl 11744 <__umodsi3>
bd2c: e060400a rsb r4, r0, sl
}
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
bd30: e35b0000 cmp fp, #0
bd34: 0a000026 beq bdd4 <_Heap_Allocate_aligned_with_boundary+0x16c>
/* Ensure that the we have a valid new block at the end */
if ( alloc_begin > alloc_begin_ceiling ) {
alloc_begin = _Heap_Align_down( alloc_begin_ceiling, alignment );
}
alloc_end = alloc_begin + alloc_size;
bd38: e084a005 add sl, r4, r5
bd3c: e1a0000a mov r0, sl
bd40: e1a0100b mov r1, fp
bd44: eb00167e bl 11744 <__umodsi3>
bd48: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
bd4c: e15a0000 cmp sl, r0
bd50: 93a0a000 movls sl, #0
bd54: 83a0a001 movhi sl, #1
bd58: e1540000 cmp r4, r0
bd5c: 23a0a000 movcs sl, #0
bd60: e35a0000 cmp sl, #0
bd64: 0a00001a beq bdd4 <_Heap_Allocate_aligned_with_boundary+0x16c>
alloc_end = alloc_begin + alloc_size;
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
bd68: e59d1008 ldr r1, [sp, #8]
bd6c: e0813005 add r3, r1, r5
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
if ( boundary_line < boundary_floor ) {
bd70: e1530000 cmp r3, r0
bd74: 958d9018 strls r9, [sp, #24]
bd78: 91a09003 movls r9, r3
bd7c: 9a000002 bls bd8c <_Heap_Allocate_aligned_with_boundary+0x124>
bd80: ea000023 b be14 <_Heap_Allocate_aligned_with_boundary+0x1ac>
bd84: e1590000 cmp r9, r0
bd88: 8a00003e bhi be88 <_Heap_Allocate_aligned_with_boundary+0x220>
return 0;
}
alloc_begin = boundary_line - alloc_size;
bd8c: e0654000 rsb r4, r5, r0
bd90: e1a01008 mov r1, r8
bd94: e1a00004 mov r0, r4
bd98: eb001669 bl 11744 <__umodsi3>
bd9c: e0604004 rsb r4, r0, r4
alloc_begin = _Heap_Align_down( alloc_begin, alignment );
alloc_end = alloc_begin + alloc_size;
bda0: e084a005 add sl, r4, r5
bda4: e1a0000a mov r0, sl
bda8: e1a0100b mov r1, fp
bdac: eb001664 bl 11744 <__umodsi3>
bdb0: e060000a rsb r0, r0, sl
/* Ensure boundary constaint */
if ( boundary != 0 ) {
uintptr_t const boundary_floor = alloc_begin_floor + alloc_size;
uintptr_t boundary_line = _Heap_Align_down( alloc_end, boundary );
while ( alloc_begin < boundary_line && boundary_line < alloc_end ) {
bdb4: e15a0000 cmp sl, r0
bdb8: 93a0a000 movls sl, #0
bdbc: 83a0a001 movhi sl, #1
bdc0: e1540000 cmp r4, r0
bdc4: 23a0a000 movcs sl, #0
bdc8: e35a0000 cmp sl, #0
bdcc: 1affffec bne bd84 <_Heap_Allocate_aligned_with_boundary+0x11c>
bdd0: e59d9018 ldr r9, [sp, #24]
boundary_line = _Heap_Align_down( alloc_end, boundary );
}
}
/* Ensure that the we have a valid new block at the beginning */
if ( alloc_begin >= alloc_begin_floor ) {
bdd4: e59d2008 ldr r2, [sp, #8]
bdd8: e1520004 cmp r2, r4
bddc: 8a00000c bhi be14 <_Heap_Allocate_aligned_with_boundary+0x1ac>
bde0: e59d100c ldr r1, [sp, #12]
bde4: e1a00004 mov r0, r4
bde8: eb001655 bl 11744 <__umodsi3>
bdec: e269a4ff rsb sl, r9, #-16777216 ; 0xff000000
bdf0: e28aa8ff add sl, sl, #16711680 ; 0xff0000
bdf4: e28aacff add sl, sl, #65280 ; 0xff00
bdf8: e28aa0f8 add sl, sl, #248 ; 0xf8
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
bdfc: e08aa004 add sl, sl, r4
uintptr_t const alloc_block_begin =
(uintptr_t) _Heap_Block_of_alloc_area( alloc_begin, page_size );
uintptr_t const free_size = alloc_block_begin - block_begin;
if ( free_size >= min_block_size || free_size == 0 ) {
be00: e59d1004 ldr r1, [sp, #4]
be04: e060300a rsb r3, r0, sl
be08: e15a0000 cmp sl, r0
be0c: 11510003 cmpne r1, r3
be10: 9a000005 bls be2c <_Heap_Allocate_aligned_with_boundary+0x1c4>
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
be14: e5999008 ldr r9, [r9, #8]
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
be18: e1570009 cmp r7, r9
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
be1c: e2863001 add r3, r6, #1
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
be20: 0a00001d beq be9c <_Heap_Allocate_aligned_with_boundary+0x234>
be24: e1a06003 mov r6, r3
be28: eaffffa4 b bcc0 <_Heap_Allocate_aligned_with_boundary+0x58>
}
/* Statistics */
++search_count;
if ( alloc_begin != 0 ) {
be2c: e3540000 cmp r4, #0
be30: 0afffff7 beq be14 <_Heap_Allocate_aligned_with_boundary+0x1ac>
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
be34: e2872048 add r2, r7, #72 ; 0x48
be38: e892000c ldm r2, {r2, r3}
be3c: e2822001 add r2, r2, #1
stats->searches += search_count;
be40: e0833006 add r3, r3, r6
search_again = _Heap_Protection_free_delayed_blocks( heap, alloc_begin );
} while ( search_again );
if ( alloc_begin != 0 ) {
/* Statistics */
++stats->allocs;
be44: e5872048 str r2, [r7, #72] ; 0x48
stats->searches += search_count;
be48: e587304c str r3, [r7, #76] ; 0x4c
block = _Heap_Block_allocate( heap, block, alloc_begin, alloc_size );
be4c: e1a00007 mov r0, r7
be50: e1a01009 mov r1, r9
be54: e1a02004 mov r2, r4
be58: e1a03005 mov r3, r5
be5c: ebffeb5f bl 6be0 <_Heap_Block_allocate>
be60: e1a00004 mov r0, r4
boundary
);
}
/* Statistics */
if ( stats->max_search < search_count ) {
be64: e5973044 ldr r3, [r7, #68] ; 0x44
be68: e1530006 cmp r3, r6
stats->max_search = search_count;
be6c: 35876044 strcc r6, [r7, #68] ; 0x44
}
return (void *) alloc_begin;
}
be70: e28dd01c add sp, sp, #28
be74: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
/* Integer overflow occured */
return NULL;
}
if ( boundary != 0 ) {
if ( boundary < alloc_size ) {
be78: e1550003 cmp r5, r3
be7c: 9a000008 bls bea4 <_Heap_Allocate_aligned_with_boundary+0x23c>
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
be80: e3a00000 mov r0, #0
be84: eafffff9 b be70 <_Heap_Allocate_aligned_with_boundary+0x208>
be88: e59d9018 ldr r9, [sp, #24] <== NOT EXECUTED
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
be8c: e5999008 ldr r9, [r9, #8] <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
be90: e1570009 cmp r7, r9 <== NOT EXECUTED
if ( alloc_begin != 0 ) {
break;
}
block = block->next;
be94: e2863001 add r3, r6, #1 <== NOT EXECUTED
do {
Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
block = _Heap_Free_list_first( heap );
while ( block != free_list_tail ) {
be98: 1affffe1 bne be24 <_Heap_Allocate_aligned_with_boundary+0x1bc><== NOT EXECUTED
be9c: e3a00000 mov r0, #0
bea0: eaffffef b be64 <_Heap_Allocate_aligned_with_boundary+0x1fc>
if ( boundary < alloc_size ) {
return NULL;
}
if ( alignment == 0 ) {
alignment = page_size;
bea4: e3580000 cmp r8, #0
bea8: 01a08002 moveq r8, r2
beac: eaffff7a b bc9c <_Heap_Allocate_aligned_with_boundary+0x34>
0000beb0 <_Heap_Free>:
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
beb0: e2513000 subs r3, r1, #0
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
{
beb4: e92d45f0 push {r4, r5, r6, r7, r8, sl, lr}
beb8: e1a04000 mov r4, r0
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
return true;
bebc: 03a00001 moveq r0, #1
/*
* If NULL return true so a free on NULL is considered a valid release. This
* is a special case that could be handled by the in heap check how-ever that
* would result in false being returned which is wrong.
*/
if ( alloc_begin_ptr == NULL ) {
bec0: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
bec4: e1a00003 mov r0, r3
bec8: e5941010 ldr r1, [r4, #16]
becc: e2435008 sub r5, r3, #8
bed0: eb00161b bl 11744 <__umodsi3>
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
bed4: e5942020 ldr r2, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
bed8: e0605005 rsb r5, r0, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
bedc: e1550002 cmp r5, r2
bee0: 3a00002f bcc bfa4 <_Heap_Free+0xf4>
bee4: e5941024 ldr r1, [r4, #36] ; 0x24
bee8: e1550001 cmp r5, r1
beec: 8a00002c bhi bfa4 <_Heap_Free+0xf4>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bef0: e595c004 ldr ip, [r5, #4]
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
bef4: e3cc6001 bic r6, ip, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
bef8: e0853006 add r3, r5, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
befc: e1520003 cmp r2, r3
bf00: 8a000027 bhi bfa4 <_Heap_Free+0xf4>
bf04: e1510003 cmp r1, r3
bf08: 3a000027 bcc bfac <_Heap_Free+0xfc>
bf0c: e5937004 ldr r7, [r3, #4]
return false;
}
_Heap_Protection_block_check( heap, next_block );
if ( !_Heap_Is_prev_used( next_block ) ) {
bf10: e2170001 ands r0, r7, #1
bf14: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
return true;
}
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
bf18: e1510003 cmp r1, r3
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
bf1c: e3c77001 bic r7, r7, #1
bf20: 03a08000 moveq r8, #0
bf24: 0a000004 beq bf3c <_Heap_Free+0x8c>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bf28: e0830007 add r0, r3, r7
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
bf2c: e5900004 ldr r0, [r0, #4]
return do_free;
}
#endif
bool _Heap_Free( Heap_Control *heap, void *alloc_begin_ptr )
bf30: e3100001 tst r0, #1
bf34: 13a08000 movne r8, #0
bf38: 03a08001 moveq r8, #1
next_block_size = _Heap_Block_size( next_block );
next_is_free = next_block != heap->last_block
&& !_Heap_Is_prev_used( _Heap_Block_at( next_block, next_block_size ));
if ( !_Heap_Is_prev_used( block ) ) {
bf3c: e21c0001 ands r0, ip, #1
bf40: 1a00001b bne bfb4 <_Heap_Free+0x104>
uintptr_t const prev_size = block->prev_size;
bf44: e595c000 ldr ip, [r5]
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
bf48: e06ca005 rsb sl, ip, r5
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
bf4c: e152000a cmp r2, sl
bf50: 88bd85f0 pophi {r4, r5, r6, r7, r8, sl, pc}
bf54: e151000a cmp r1, sl
bf58: 38bd85f0 popcc {r4, r5, r6, r7, r8, sl, pc}
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
bf5c: e59a0004 ldr r0, [sl, #4]
return( false );
}
/* As we always coalesce free blocks, the block that preceedes prev_block
must have been used. */
if ( !_Heap_Is_prev_used ( prev_block) ) {
bf60: e2100001 ands r0, r0, #1
bf64: 08bd85f0 popeq {r4, r5, r6, r7, r8, sl, pc}
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
bf68: e3580000 cmp r8, #0
bf6c: 0a000039 beq c058 <_Heap_Free+0x1a8>
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
bf70: e5940038 ldr r0, [r4, #56] ; 0x38
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
bf74: e0867007 add r7, r6, r7
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bf78: e5932008 ldr r2, [r3, #8]
_HAssert( false );
return( false );
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
bf7c: e087c00c add ip, r7, ip
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bf80: e593300c ldr r3, [r3, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
bf84: e2400001 sub r0, r0, #1
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
bf88: e38c1001 orr r1, ip, #1
RTEMS_INLINE_ROUTINE void _Heap_Free_list_remove( Heap_Block *block )
{
Heap_Block *next = block->next;
Heap_Block *prev = block->prev;
prev->next = next;
bf8c: e5832008 str r2, [r3, #8]
next->prev = prev;
bf90: e582300c str r3, [r2, #12]
}
if ( next_is_free ) { /* coalesce both */
uintptr_t const size = block_size + prev_size + next_block_size;
_Heap_Free_list_remove( next_block );
stats->free_blocks -= 1;
bf94: e5840038 str r0, [r4, #56] ; 0x38
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
bf98: e58a1004 str r1, [sl, #4]
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
bf9c: e78ac00c str ip, [sl, ip]
bfa0: ea00000f b bfe4 <_Heap_Free+0x134>
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
return false;
bfa4: e3a00000 mov r0, #0
bfa8: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
bfac: e3a00000 mov r0, #0 <== NOT EXECUTED
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bfb0: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc} <== NOT EXECUTED
uintptr_t const size = block_size + prev_size;
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
bfb4: e3580000 cmp r8, #0
bfb8: 0a000014 beq c010 <_Heap_Free+0x160>
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bfbc: e5932008 ldr r2, [r3, #8]
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
bfc0: e0877006 add r7, r7, r6
--stats->used_blocks;
++stats->frees;
stats->free_size += block_size;
return( true );
}
bfc4: e593300c ldr r3, [r3, #12]
next_block->prev_size = size;
}
} else if ( next_is_free ) { /* coalesce next */
uintptr_t const size = block_size + next_block_size;
_Heap_Free_list_replace( next_block, block );
block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
bfc8: e3871001 orr r1, r7, #1
)
{
Heap_Block *next = old_block->next;
Heap_Block *prev = old_block->prev;
new_block->next = next;
bfcc: e5852008 str r2, [r5, #8]
new_block->prev = prev;
bfd0: e585300c str r3, [r5, #12]
next->prev = new_block;
prev->next = new_block;
bfd4: e5835008 str r5, [r3, #8]
Heap_Block *prev = old_block->prev;
new_block->next = next;
new_block->prev = prev;
next->prev = new_block;
bfd8: e582500c str r5, [r2, #12]
bfdc: e5851004 str r1, [r5, #4]
next_block = _Heap_Block_at( block, size );
next_block->prev_size = size;
bfe0: e7857007 str r7, [r5, r7]
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
bfe4: e5942040 ldr r2, [r4, #64] ; 0x40
++stats->frees;
bfe8: e5943050 ldr r3, [r4, #80] ; 0x50
stats->free_size += block_size;
bfec: e5941030 ldr r1, [r4, #48] ; 0x30
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
bff0: e2422001 sub r2, r2, #1
++stats->frees;
bff4: e2833001 add r3, r3, #1
stats->free_size += block_size;
bff8: e0816006 add r6, r1, r6
stats->max_free_blocks = stats->free_blocks;
}
}
/* Statistics */
--stats->used_blocks;
bffc: e5842040 str r2, [r4, #64] ; 0x40
++stats->frees;
c000: e5843050 str r3, [r4, #80] ; 0x50
stats->free_size += block_size;
c004: e5846030 str r6, [r4, #48] ; 0x30
return( true );
c008: e3a00001 mov r0, #1
c00c: e8bd85f0 pop {r4, r5, r6, r7, r8, sl, pc}
next_block->prev_size = size;
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
c010: e3862001 orr r2, r6, #1
c014: e5852004 str r2, [r5, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
c018: e2842038 add r2, r4, #56 ; 0x38
c01c: e8921004 ldm r2, {r2, ip}
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
c020: e5930004 ldr r0, [r3, #4]
RTEMS_INLINE_ROUTINE void _Heap_Free_list_insert_after(
Heap_Block *block_before,
Heap_Block *new_block
)
{
Heap_Block *next = block_before->next;
c024: e5941008 ldr r1, [r4, #8]
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
c028: e2822001 add r2, r2, #1
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
c02c: e3c00001 bic r0, r0, #1
next_block->prev_size = block_size;
/* Statistics */
++stats->free_blocks;
if ( stats->max_free_blocks < stats->free_blocks ) {
c030: e152000c cmp r2, ip
new_block->next = next;
c034: e5851008 str r1, [r5, #8]
new_block->prev = block_before;
c038: e585400c str r4, [r5, #12]
} else { /* no coalesce */
/* Add 'block' to the head of the free blocks list as it tends to
produce less fragmentation than adding to the tail. */
_Heap_Free_list_insert_after( _Heap_Free_list_head( heap), block );
block->size_and_flag = block_size | HEAP_PREV_BLOCK_USED;
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
c03c: e5830004 str r0, [r3, #4]
block_before->next = new_block;
next->prev = new_block;
c040: e581500c str r5, [r1, #12]
next_block->prev_size = block_size;
c044: e7856006 str r6, [r5, r6]
{
Heap_Block *next = block_before->next;
new_block->next = next;
new_block->prev = block_before;
block_before->next = new_block;
c048: e5845008 str r5, [r4, #8]
/* Statistics */
++stats->free_blocks;
c04c: e5842038 str r2, [r4, #56] ; 0x38
if ( stats->max_free_blocks < stats->free_blocks ) {
stats->max_free_blocks = stats->free_blocks;
c050: 8584203c strhi r2, [r4, #60] ; 0x3c
c054: eaffffe2 b bfe4 <_Heap_Free+0x134>
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
next_block = _Heap_Block_at( prev_block, size );
_HAssert(!_Heap_Is_prev_used( next_block));
next_block->prev_size = size;
} else { /* coalesce prev */
uintptr_t const size = block_size + prev_size;
c058: e086c00c add ip, r6, ip
prev_block->size_and_flag = size | HEAP_PREV_BLOCK_USED;
c05c: e38c2001 orr r2, ip, #1
c060: e58a2004 str r2, [sl, #4]
next_block->size_and_flag &= ~HEAP_PREV_BLOCK_USED;
c064: e5932004 ldr r2, [r3, #4]
c068: e3c22001 bic r2, r2, #1
c06c: e5832004 str r2, [r3, #4]
next_block->prev_size = size;
c070: e785c006 str ip, [r5, r6]
c074: eaffffda b bfe4 <_Heap_Free+0x134>
00013574 <_Heap_Size_of_alloc_area>:
bool _Heap_Size_of_alloc_area(
Heap_Control *heap,
void *alloc_begin_ptr,
uintptr_t *alloc_size
)
{
13574: e92d40f0 push {r4, r5, r6, r7, lr}
13578: e1a04000 mov r4, r0
1357c: e1a05001 mov r5, r1
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Align_down(
uintptr_t value,
uintptr_t alignment
)
{
return value - (value % alignment);
13580: e1a00001 mov r0, r1
13584: e5941010 ldr r1, [r4, #16]
13588: e1a07002 mov r7, r2
1358c: ebfff86c bl 11744 <__umodsi3>
13590: e2456008 sub r6, r5, #8
RTEMS_INLINE_ROUTINE bool _Heap_Is_block_in_heap(
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
13594: e5943020 ldr r3, [r4, #32]
uintptr_t alloc_begin,
uintptr_t page_size
)
{
return (Heap_Block *) (_Heap_Align_down( alloc_begin, page_size )
- HEAP_BLOCK_HEADER_SIZE);
13598: e0600006 rsb r0, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
1359c: e1500003 cmp r0, r3
135a0: 3a000010 bcc 135e8 <_Heap_Size_of_alloc_area+0x74>
135a4: e5942024 ldr r2, [r4, #36] ; 0x24
135a8: e1500002 cmp r0, r2
135ac: 8a00000d bhi 135e8 <_Heap_Size_of_alloc_area+0x74>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
135b0: e5906004 ldr r6, [r0, #4]
135b4: e3c66001 bic r6, r6, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
135b8: e0806006 add r6, r0, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
135bc: e1530006 cmp r3, r6
135c0: 8a000008 bhi 135e8 <_Heap_Size_of_alloc_area+0x74>
135c4: e1520006 cmp r2, r6
135c8: 3a000008 bcc 135f0 <_Heap_Size_of_alloc_area+0x7c>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
135cc: e5960004 ldr r0, [r6, #4]
block_size = _Heap_Block_size( block );
next_block = _Heap_Block_at( block, block_size );
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
135d0: e2100001 ands r0, r0, #1
) {
return false;
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
135d4: 12655004 rsbne r5, r5, #4
135d8: 10856006 addne r6, r5, r6
135dc: 15876000 strne r6, [r7]
return true;
135e0: 13a00001 movne r0, #1
135e4: e8bd80f0 pop {r4, r5, r6, r7, pc}
if (
!_Heap_Is_block_in_heap( heap, next_block )
|| !_Heap_Is_prev_used( next_block )
) {
return false;
135e8: e3a00000 mov r0, #0
135ec: e8bd80f0 pop {r4, r5, r6, r7, pc}
135f0: e3a00000 mov r0, #0 <== NOT EXECUTED
}
*alloc_size = (uintptr_t) next_block + HEAP_ALLOC_BONUS - alloc_begin;
return true;
}
135f4: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
00007988 <_Heap_Walk>:
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
7988: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
798c: e59f35d8 ldr r3, [pc, #1496] ; 7f6c <_Heap_Walk+0x5e4>
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
7990: e31200ff tst r2, #255 ; 0xff
if ( !_System_state_Is_up( _System_state_Get() ) ) {
7994: e5933000 ldr r3, [r3]
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
7998: e59f25d0 ldr r2, [pc, #1488] ; 7f70 <_Heap_Walk+0x5e8>
799c: e59f95d0 ldr r9, [pc, #1488] ; 7f74 <_Heap_Walk+0x5ec>
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
79a0: e1a0a001 mov sl, r1
uintptr_t const min_block_size = heap->min_block_size;
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
79a4: 11a09002 movne r9, r2
Heap_Control *heap,
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
79a8: e5901010 ldr r1, [r0, #16]
Heap_Block *const last_block = heap->last_block;
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
79ac: e3530003 cmp r3, #3
int source,
bool dump
)
{
uintptr_t const page_size = heap->page_size;
uintptr_t const min_block_size = heap->min_block_size;
79b0: e5902014 ldr r2, [r0, #20]
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
79b4: e5903024 ldr r3, [r0, #36] ; 0x24
bool _Heap_Walk(
Heap_Control *heap,
int source,
bool dump
)
{
79b8: e24dd038 sub sp, sp, #56 ; 0x38
79bc: e1a04000 mov r4, r0
uintptr_t const page_size = heap->page_size;
79c0: e58d1024 str r1, [sp, #36] ; 0x24
uintptr_t const min_block_size = heap->min_block_size;
79c4: e58d2028 str r2, [sp, #40] ; 0x28
Heap_Block *const first_block = heap->first_block;
79c8: e5908020 ldr r8, [r0, #32]
Heap_Block *const last_block = heap->last_block;
79cc: e58d302c str r3, [sp, #44] ; 0x2c
Heap_Block *block = first_block;
Heap_Walk_printer printer = dump ?
_Heap_Walk_print : _Heap_Walk_print_nothing;
if ( !_System_state_Is_up( _System_state_Get() ) ) {
79d0: 0a000002 beq 79e0 <_Heap_Walk+0x58>
}
block = next_block;
} while ( block != first_block );
return true;
79d4: e3a00001 mov r0, #1
}
79d8: e28dd038 add sp, sp, #56 ; 0x38
79dc: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
Heap_Block *const first_block = heap->first_block;
Heap_Block *const last_block = heap->last_block;
(*printer)(
79e0: e594101c ldr r1, [r4, #28]
79e4: e5900018 ldr r0, [r0, #24]
79e8: e2842008 add r2, r4, #8
79ec: e892000c ldm r2, {r2, r3}
79f0: e59dc028 ldr ip, [sp, #40] ; 0x28
79f4: e58d1008 str r1, [sp, #8]
79f8: e59d102c ldr r1, [sp, #44] ; 0x2c
79fc: e58d0004 str r0, [sp, #4]
7a00: e58d1010 str r1, [sp, #16]
7a04: e58d2014 str r2, [sp, #20]
7a08: e58d3018 str r3, [sp, #24]
7a0c: e59f2564 ldr r2, [pc, #1380] ; 7f78 <_Heap_Walk+0x5f0>
7a10: e58dc000 str ip, [sp]
7a14: e58d800c str r8, [sp, #12]
7a18: e1a0000a mov r0, sl
7a1c: e3a01000 mov r1, #0
7a20: e59d3024 ldr r3, [sp, #36] ; 0x24
7a24: e1a0e00f mov lr, pc
7a28: e12fff19 bx r9
heap->area_begin, heap->area_end,
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
7a2c: e59d2024 ldr r2, [sp, #36] ; 0x24
7a30: e3520000 cmp r2, #0
7a34: 0a000026 beq 7ad4 <_Heap_Walk+0x14c>
(*printer)( source, true, "page size is zero\n" );
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
7a38: e59d3024 ldr r3, [sp, #36] ; 0x24
7a3c: e2135007 ands r5, r3, #7
7a40: 1a00002a bne 7af0 <_Heap_Walk+0x168>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7a44: e59d0028 ldr r0, [sp, #40] ; 0x28
7a48: e59d1024 ldr r1, [sp, #36] ; 0x24
7a4c: ebffe56c bl 1004 <__umodsi3>
);
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
7a50: e250b000 subs fp, r0, #0
7a54: 1a00002c bne 7b0c <_Heap_Walk+0x184>
7a58: e2880008 add r0, r8, #8
7a5c: e59d1024 ldr r1, [sp, #36] ; 0x24
7a60: ebffe567 bl 1004 <__umodsi3>
);
return false;
}
if (
7a64: e2506000 subs r6, r0, #0
7a68: 1a00002f bne 7b2c <_Heap_Walk+0x1a4>
block = next_block;
} while ( block != first_block );
return true;
}
7a6c: e598b004 ldr fp, [r8, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
7a70: e21b5001 ands r5, fp, #1
7a74: 0a0000fc beq 7e6c <_Heap_Walk+0x4e4>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7a78: e59dc02c ldr ip, [sp, #44] ; 0x2c
7a7c: e59c3004 ldr r3, [ip, #4]
7a80: e3c33001 bic r3, r3, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
7a84: e08c3003 add r3, ip, r3
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
7a88: e5935004 ldr r5, [r3, #4]
);
return false;
}
if ( _Heap_Is_free( last_block ) ) {
7a8c: e2155001 ands r5, r5, #1
7a90: 0a000008 beq 7ab8 <_Heap_Walk+0x130>
);
return false;
}
if (
7a94: e1580003 cmp r8, r3
7a98: 0a00002b beq 7b4c <_Heap_Walk+0x1c4>
_Heap_Block_at( last_block, _Heap_Block_size( last_block ) ) != first_block
) {
(*printer)(
7a9c: e1a0000a mov r0, sl
7aa0: e3a01001 mov r1, #1
7aa4: e59f24d0 ldr r2, [pc, #1232] ; 7f7c <_Heap_Walk+0x5f4>
7aa8: e1a0e00f mov lr, pc
7aac: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7ab0: e1a00006 mov r0, r6
7ab4: eaffffc7 b 79d8 <_Heap_Walk+0x50>
return false;
}
if ( _Heap_Is_free( last_block ) ) {
(*printer)(
7ab8: e1a0000a mov r0, sl
7abc: e3a01001 mov r1, #1
7ac0: e59f24b8 ldr r2, [pc, #1208] ; 7f80 <_Heap_Walk+0x5f8>
7ac4: e1a0e00f mov lr, pc
7ac8: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7acc: e1a00005 mov r0, r5
7ad0: eaffffc0 b 79d8 <_Heap_Walk+0x50>
first_block, last_block,
first_free_block, last_free_block
);
if ( page_size == 0 ) {
(*printer)( source, true, "page size is zero\n" );
7ad4: e1a0000a mov r0, sl
7ad8: e3a01001 mov r1, #1
7adc: e59f24a0 ldr r2, [pc, #1184] ; 7f84 <_Heap_Walk+0x5fc>
7ae0: e1a0e00f mov lr, pc
7ae4: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7ae8: e59d0024 ldr r0, [sp, #36] ; 0x24
7aec: eaffffb9 b 79d8 <_Heap_Walk+0x50>
return false;
}
if ( !_Addresses_Is_aligned( (void *) page_size ) ) {
(*printer)(
7af0: e1a0000a mov r0, sl
7af4: e3a01001 mov r1, #1
7af8: e59f2488 ldr r2, [pc, #1160] ; 7f88 <_Heap_Walk+0x600>
7afc: e1a0e00f mov lr, pc
7b00: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7b04: e3a00000 mov r0, #0
7b08: eaffffb2 b 79d8 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_aligned( min_block_size, page_size ) ) {
(*printer)(
7b0c: e1a0000a mov r0, sl
7b10: e3a01001 mov r1, #1
7b14: e59f2470 ldr r2, [pc, #1136] ; 7f8c <_Heap_Walk+0x604>
7b18: e59d3028 ldr r3, [sp, #40] ; 0x28
7b1c: e1a0e00f mov lr, pc
7b20: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7b24: e1a00005 mov r0, r5
7b28: eaffffaa b 79d8 <_Heap_Walk+0x50>
}
if (
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( first_block ), page_size )
) {
(*printer)(
7b2c: e1a0000a mov r0, sl
7b30: e3a01001 mov r1, #1
7b34: e59f2454 ldr r2, [pc, #1108] ; 7f90 <_Heap_Walk+0x608>
7b38: e1a03008 mov r3, r8
7b3c: e1a0e00f mov lr, pc
7b40: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7b44: e1a0000b mov r0, fp
7b48: eaffffa2 b 79d8 <_Heap_Walk+0x50>
block = next_block;
} while ( block != first_block );
return true;
}
7b4c: e5946008 ldr r6, [r4, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
7b50: e1540006 cmp r4, r6
int source,
Heap_Walk_printer printer,
Heap_Control *heap
)
{
uintptr_t const page_size = heap->page_size;
7b54: e5947010 ldr r7, [r4, #16]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
7b58: 05943020 ldreq r3, [r4, #32]
7b5c: 0a00002c beq 7c14 <_Heap_Walk+0x28c>
block = next_block;
} while ( block != first_block );
return true;
}
7b60: e5943020 ldr r3, [r4, #32]
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7b64: e1530006 cmp r3, r6
7b68: 8a0000c6 bhi 7e88 <_Heap_Walk+0x500>
7b6c: e594c024 ldr ip, [r4, #36] ; 0x24
7b70: e15c0006 cmp ip, r6
7b74: 3a0000c3 bcc 7e88 <_Heap_Walk+0x500>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7b78: e2860008 add r0, r6, #8
7b7c: e1a01007 mov r1, r7
7b80: e58d3020 str r3, [sp, #32]
7b84: e58dc01c str ip, [sp, #28]
7b88: ebffe51d bl 1004 <__umodsi3>
);
return false;
}
if (
7b8c: e3500000 cmp r0, #0
7b90: e59d3020 ldr r3, [sp, #32]
7b94: e59dc01c ldr ip, [sp, #28]
7b98: 1a0000d8 bne 7f00 <_Heap_Walk+0x578>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7b9c: e5962004 ldr r2, [r6, #4]
7ba0: e3c22001 bic r2, r2, #1
block = next_block;
} while ( block != first_block );
return true;
}
7ba4: e0862002 add r2, r6, r2
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
7ba8: e5922004 ldr r2, [r2, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7bac: e3120001 tst r2, #1
7bb0: 1a0000db bne 7f24 <_Heap_Walk+0x59c>
7bb4: e58d8030 str r8, [sp, #48] ; 0x30
7bb8: e58db034 str fp, [sp, #52] ; 0x34
7bbc: e1a02004 mov r2, r4
7bc0: e1a08003 mov r8, r3
7bc4: e1a0b00c mov fp, ip
);
return false;
}
if ( free_block->prev != prev_block ) {
7bc8: e596100c ldr r1, [r6, #12]
7bcc: e1510002 cmp r1, r2
7bd0: 1a0000dc bne 7f48 <_Heap_Walk+0x5c0>
return false;
}
prev_block = free_block;
free_block = free_block->next;
7bd4: e5965008 ldr r5, [r6, #8]
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *const first_free_block = _Heap_Free_list_first( heap );
const Heap_Block *prev_block = free_list_tail;
const Heap_Block *free_block = first_free_block;
while ( free_block != free_list_tail ) {
7bd8: e1540005 cmp r4, r5
7bdc: 0a000009 beq 7c08 <_Heap_Walk+0x280>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7be0: e1580005 cmp r8, r5
7be4: 9a00007d bls 7de0 <_Heap_Walk+0x458>
if ( !_Heap_Is_block_in_heap( heap, free_block ) ) {
(*printer)(
7be8: e1a0000a mov r0, sl
7bec: e3a01001 mov r1, #1
7bf0: e59f239c ldr r2, [pc, #924] ; 7f94 <_Heap_Walk+0x60c>
7bf4: e1a03005 mov r3, r5
7bf8: e1a0e00f mov lr, pc
7bfc: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7c00: e3a00000 mov r0, #0
7c04: eaffff73 b 79d8 <_Heap_Walk+0x50>
7c08: e1a03008 mov r3, r8
7c0c: e28d8030 add r8, sp, #48 ; 0x30
7c10: e8980900 ldm r8, {r8, fp}
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7c14: e1a06008 mov r6, r8
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7c18: e3cb7001 bic r7, fp, #1
RTEMS_INLINE_ROUTINE Heap_Block *_Heap_Block_at(
const Heap_Block *block,
uintptr_t offset
)
{
return (Heap_Block *) ((uintptr_t) block + offset);
7c1c: e0875006 add r5, r7, r6
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7c20: e1530005 cmp r3, r5
7c24: 9a000008 bls 7c4c <_Heap_Walk+0x2c4>
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
if ( !_Heap_Is_block_in_heap( heap, next_block ) ) {
(*printer)(
7c28: e1a0000a mov r0, sl
7c2c: e58d5000 str r5, [sp]
7c30: e3a01001 mov r1, #1
7c34: e59f235c ldr r2, [pc, #860] ; 7f98 <_Heap_Walk+0x610>
7c38: e1a03006 mov r3, r6
7c3c: e1a0e00f mov lr, pc
7c40: e12fff19 bx r9
"block 0x%08x: next block 0x%08x not in heap\n",
block,
next_block
);
return false;
7c44: e3a00000 mov r0, #0
7c48: eaffff62 b 79d8 <_Heap_Walk+0x50>
7c4c: e5943024 ldr r3, [r4, #36] ; 0x24
7c50: e1530005 cmp r3, r5
7c54: 3afffff3 bcc 7c28 <_Heap_Walk+0x2a0>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7c58: e59d1024 ldr r1, [sp, #36] ; 0x24
7c5c: e1a00007 mov r0, r7
7c60: ebffe4e7 bl 1004 <__umodsi3>
uintptr_t const block_begin = (uintptr_t) block;
uintptr_t const block_size = _Heap_Block_size( block );
bool const prev_used = _Heap_Is_prev_used( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
uintptr_t const next_block_begin = (uintptr_t) next_block;
bool const is_not_last_block = block != last_block;
7c64: e59d102c ldr r1, [sp, #44] ; 0x2c
7c68: e0563001 subs r3, r6, r1
7c6c: 13a03001 movne r3, #1
);
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
7c70: e3500000 cmp r0, #0
7c74: 0a000001 beq 7c80 <_Heap_Walk+0x2f8>
7c78: e3530000 cmp r3, #0
7c7c: 1a000083 bne 7e90 <_Heap_Walk+0x508>
);
return false;
}
if ( block_size < min_block_size && is_not_last_block ) {
7c80: e59d2028 ldr r2, [sp, #40] ; 0x28
7c84: e1520007 cmp r2, r7
7c88: 9a000001 bls 7c94 <_Heap_Walk+0x30c>
7c8c: e3530000 cmp r3, #0
7c90: 1a000087 bne 7eb4 <_Heap_Walk+0x52c>
);
return false;
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
7c94: e1560005 cmp r6, r5
7c98: 3a000001 bcc 7ca4 <_Heap_Walk+0x31c>
7c9c: e3530000 cmp r3, #0
7ca0: 1a00008d bne 7edc <_Heap_Walk+0x554>
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
7ca4: e5953004 ldr r3, [r5, #4]
);
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
7ca8: e3130001 tst r3, #1
7cac: e20bb001 and fp, fp, #1
7cb0: 0a000018 beq 7d18 <_Heap_Walk+0x390>
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
}
} else if (prev_used) {
7cb4: e35b0000 cmp fp, #0
7cb8: 0a00000c beq 7cf0 <_Heap_Walk+0x368>
(*printer)(
7cbc: e58d7000 str r7, [sp]
7cc0: e1a0000a mov r0, sl
7cc4: e3a01000 mov r1, #0
7cc8: e59f22cc ldr r2, [pc, #716] ; 7f9c <_Heap_Walk+0x614>
7ccc: e1a03006 mov r3, r6
7cd0: e1a0e00f mov lr, pc
7cd4: e12fff19 bx r9
block->prev_size
);
}
block = next_block;
} while ( block != first_block );
7cd8: e1580005 cmp r8, r5
7cdc: 0affff3c beq 79d4 <_Heap_Walk+0x4c>
7ce0: e595b004 ldr fp, [r5, #4]
7ce4: e5943020 ldr r3, [r4, #32]
7ce8: e1a06005 mov r6, r5
7cec: eaffffc9 b 7c18 <_Heap_Walk+0x290>
"block 0x%08x: size %u\n",
block,
block_size
);
} else {
(*printer)(
7cf0: e58d7000 str r7, [sp]
7cf4: e5963000 ldr r3, [r6]
7cf8: e1a0000a mov r0, sl
7cfc: e58d3004 str r3, [sp, #4]
7d00: e1a0100b mov r1, fp
7d04: e59f2294 ldr r2, [pc, #660] ; 7fa0 <_Heap_Walk+0x618>
7d08: e1a03006 mov r3, r6
7d0c: e1a0e00f mov lr, pc
7d10: e12fff19 bx r9
7d14: eaffffef b 7cd8 <_Heap_Walk+0x350>
false,
"block 0x%08x: size %u, prev 0x%08x%s, next 0x%08x%s\n",
block,
block_size,
block->prev,
block->prev == first_free_block ?
7d18: e596200c ldr r2, [r6, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7d1c: e5943008 ldr r3, [r4, #8]
7d20: e1530002 cmp r3, r2
block = next_block;
} while ( block != first_block );
return true;
}
7d24: e594100c ldr r1, [r4, #12]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7d28: 059f0274 ldreq r0, [pc, #628] ; 7fa4 <_Heap_Walk+0x61c>
7d2c: 0a000003 beq 7d40 <_Heap_Walk+0x3b8>
block,
block_size,
block->prev,
block->prev == first_free_block ?
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
7d30: e59f3270 ldr r3, [pc, #624] ; 7fa8 <_Heap_Walk+0x620>
7d34: e1540002 cmp r4, r2
7d38: e59f026c ldr r0, [pc, #620] ; 7fac <_Heap_Walk+0x624>
7d3c: 01a00003 moveq r0, r3
block->next,
block->next == last_free_block ?
7d40: e5963008 ldr r3, [r6, #8]
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7d44: e1510003 cmp r1, r3
7d48: 059f1260 ldreq r1, [pc, #608] ; 7fb0 <_Heap_Walk+0x628>
7d4c: 0a000003 beq 7d60 <_Heap_Walk+0x3d8>
" (= first free)"
: (block->prev == free_list_head ? " (= head)" : ""),
block->next,
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
7d50: e59fc25c ldr ip, [pc, #604] ; 7fb4 <_Heap_Walk+0x62c>
7d54: e1540003 cmp r4, r3
7d58: e59f124c ldr r1, [pc, #588] ; 7fac <_Heap_Walk+0x624>
7d5c: 01a0100c moveq r1, ip
Heap_Block *const last_free_block = _Heap_Free_list_last( heap );
bool const prev_used = _Heap_Is_prev_used( block );
uintptr_t const block_size = _Heap_Block_size( block );
Heap_Block *const next_block = _Heap_Block_at( block, block_size );
(*printer)(
7d60: e58d2004 str r2, [sp, #4]
7d64: e58d0008 str r0, [sp, #8]
7d68: e58d300c str r3, [sp, #12]
7d6c: e58d1010 str r1, [sp, #16]
7d70: e1a03006 mov r3, r6
7d74: e58d7000 str r7, [sp]
7d78: e1a0000a mov r0, sl
7d7c: e3a01000 mov r1, #0
7d80: e59f2230 ldr r2, [pc, #560] ; 7fb8 <_Heap_Walk+0x630>
7d84: e1a0e00f mov lr, pc
7d88: e12fff19 bx r9
block->next == last_free_block ?
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
7d8c: e5953000 ldr r3, [r5]
7d90: e1570003 cmp r7, r3
7d94: 1a000021 bne 7e20 <_Heap_Walk+0x498>
);
return false;
}
if ( !prev_used ) {
7d98: e35b0000 cmp fp, #0
7d9c: 0a00002a beq 7e4c <_Heap_Walk+0x4c4>
block = next_block;
} while ( block != first_block );
return true;
}
7da0: e5943008 ldr r3, [r4, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
7da4: e1540003 cmp r4, r3
7da8: 0a000004 beq 7dc0 <_Heap_Walk+0x438>
if ( free_block == block ) {
7dac: e1560003 cmp r6, r3
7db0: 0affffc8 beq 7cd8 <_Heap_Walk+0x350>
return true;
}
free_block = free_block->next;
7db4: e5933008 ldr r3, [r3, #8]
)
{
const Heap_Block *const free_list_tail = _Heap_Free_list_tail( heap );
const Heap_Block *free_block = _Heap_Free_list_first( heap );
while ( free_block != free_list_tail ) {
7db8: e1540003 cmp r4, r3
7dbc: 1afffffa bne 7dac <_Heap_Walk+0x424>
return false;
}
if ( !_Heap_Walk_is_in_free_list( heap, block ) ) {
(*printer)(
7dc0: e1a0000a mov r0, sl
7dc4: e3a01001 mov r1, #1
7dc8: e59f21ec ldr r2, [pc, #492] ; 7fbc <_Heap_Walk+0x634>
7dcc: e1a03006 mov r3, r6
7dd0: e1a0e00f mov lr, pc
7dd4: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
7dd8: e3a00000 mov r0, #0
7ddc: eafffefd b 79d8 <_Heap_Walk+0x50>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7de0: e155000b cmp r5, fp
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7de4: e2850008 add r0, r5, #8
7de8: e1a01007 mov r1, r7
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7dec: 8affff7d bhi 7be8 <_Heap_Walk+0x260>
RTEMS_INLINE_ROUTINE bool _Heap_Is_aligned(
uintptr_t value,
uintptr_t alignment
)
{
return (value % alignment) == 0;
7df0: ebffe483 bl 1004 <__umodsi3>
);
return false;
}
if (
7df4: e3500000 cmp r0, #0
7df8: 1a000041 bne 7f04 <_Heap_Walk+0x57c>
- HEAP_BLOCK_HEADER_SIZE);
}
RTEMS_INLINE_ROUTINE uintptr_t _Heap_Block_size( const Heap_Block *block )
{
return block->size_and_flag & ~HEAP_PREV_BLOCK_USED;
7dfc: e5953004 ldr r3, [r5, #4]
7e00: e3c33001 bic r3, r3, #1
block = next_block;
} while ( block != first_block );
return true;
}
7e04: e0833005 add r3, r3, r5
block->size_and_flag = size | flag;
}
RTEMS_INLINE_ROUTINE bool _Heap_Is_prev_used( const Heap_Block *block )
{
return block->size_and_flag & HEAP_PREV_BLOCK_USED;
7e08: e5933004 ldr r3, [r3, #4]
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7e0c: e3130001 tst r3, #1
7e10: 1a000044 bne 7f28 <_Heap_Walk+0x5a0>
7e14: e1a02006 mov r2, r6
7e18: e1a06005 mov r6, r5
7e1c: eaffff69 b 7bc8 <_Heap_Walk+0x240>
" (= last free)"
: (block->next == free_list_tail ? " (= tail)" : "")
);
if ( block_size != next_block->prev_size ) {
(*printer)(
7e20: e58d3004 str r3, [sp, #4]
7e24: e1a0000a mov r0, sl
7e28: e58d7000 str r7, [sp]
7e2c: e58d5008 str r5, [sp, #8]
7e30: e3a01001 mov r1, #1
7e34: e59f2184 ldr r2, [pc, #388] ; 7fc0 <_Heap_Walk+0x638>
7e38: e1a03006 mov r3, r6
7e3c: e1a0e00f mov lr, pc
7e40: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
7e44: e3a00000 mov r0, #0
7e48: eafffee2 b 79d8 <_Heap_Walk+0x50>
return false;
}
if ( !prev_used ) {
(*printer)(
7e4c: e1a0000a mov r0, sl
7e50: e3a01001 mov r1, #1
7e54: e59f2168 ldr r2, [pc, #360] ; 7fc4 <_Heap_Walk+0x63c>
7e58: e1a03006 mov r3, r6
7e5c: e1a0e00f mov lr, pc
7e60: e12fff19 bx r9
return false;
}
if ( !_Heap_Is_prev_used( next_block ) ) {
if ( !_Heap_Walk_check_free_block( source, printer, heap, block ) ) {
return false;
7e64: e1a0000b mov r0, fp
7e68: eafffeda b 79d8 <_Heap_Walk+0x50>
return false;
}
if ( !_Heap_Is_prev_used( first_block ) ) {
(*printer)(
7e6c: e1a0000a mov r0, sl
7e70: e3a01001 mov r1, #1
7e74: e59f214c ldr r2, [pc, #332] ; 7fc8 <_Heap_Walk+0x640>
7e78: e1a0e00f mov lr, pc
7e7c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7e80: e1a00005 mov r0, r5
7e84: eafffed3 b 79d8 <_Heap_Walk+0x50>
const Heap_Control *heap,
const Heap_Block *block
)
{
return (uintptr_t) block >= (uintptr_t) heap->first_block
&& (uintptr_t) block <= (uintptr_t) heap->last_block;
7e88: e1a05006 mov r5, r6 <== NOT EXECUTED
7e8c: eaffff55 b 7be8 <_Heap_Walk+0x260> <== NOT EXECUTED
return false;
}
if ( !_Heap_Is_aligned( block_size, page_size ) && is_not_last_block ) {
(*printer)(
7e90: e1a0000a mov r0, sl
7e94: e58d7000 str r7, [sp]
7e98: e3a01001 mov r1, #1
7e9c: e59f2128 ldr r2, [pc, #296] ; 7fcc <_Heap_Walk+0x644>
7ea0: e1a03006 mov r3, r6
7ea4: e1a0e00f mov lr, pc
7ea8: e12fff19 bx r9
"block 0x%08x: block size %u not page aligned\n",
block,
block_size
);
return false;
7eac: e3a00000 mov r0, #0
7eb0: eafffec8 b 79d8 <_Heap_Walk+0x50>
}
if ( block_size < min_block_size && is_not_last_block ) {
(*printer)(
7eb4: e58d2004 str r2, [sp, #4]
7eb8: e1a0000a mov r0, sl
7ebc: e58d7000 str r7, [sp]
7ec0: e3a01001 mov r1, #1
7ec4: e59f2104 ldr r2, [pc, #260] ; 7fd0 <_Heap_Walk+0x648>
7ec8: e1a03006 mov r3, r6
7ecc: e1a0e00f mov lr, pc
7ed0: e12fff19 bx r9
block,
block_size,
min_block_size
);
return false;
7ed4: e3a00000 mov r0, #0
7ed8: eafffebe b 79d8 <_Heap_Walk+0x50>
}
if ( next_block_begin <= block_begin && is_not_last_block ) {
(*printer)(
7edc: e1a0000a mov r0, sl
7ee0: e58d5000 str r5, [sp]
7ee4: e3a01001 mov r1, #1
7ee8: e59f20e4 ldr r2, [pc, #228] ; 7fd4 <_Heap_Walk+0x64c>
7eec: e1a03006 mov r3, r6
7ef0: e1a0e00f mov lr, pc
7ef4: e12fff19 bx r9
"block 0x%08x: next block 0x%08x is not a successor\n",
block,
next_block
);
return false;
7ef8: e3a00000 mov r0, #0
7efc: eafffeb5 b 79d8 <_Heap_Walk+0x50>
);
return false;
}
if (
7f00: e1a05006 mov r5, r6 <== NOT EXECUTED
!_Heap_Is_aligned( _Heap_Alloc_area_of_block( free_block ), page_size )
) {
(*printer)(
7f04: e1a0000a mov r0, sl
7f08: e3a01001 mov r1, #1
7f0c: e59f20c4 ldr r2, [pc, #196] ; 7fd8 <_Heap_Walk+0x650>
7f10: e1a03005 mov r3, r5
7f14: e1a0e00f mov lr, pc
7f18: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7f1c: e3a00000 mov r0, #0
7f20: eafffeac b 79d8 <_Heap_Walk+0x50>
);
return false;
}
if ( _Heap_Is_used( free_block ) ) {
7f24: e1a05006 mov r5, r6 <== NOT EXECUTED
(*printer)(
7f28: e1a0000a mov r0, sl
7f2c: e3a01001 mov r1, #1
7f30: e59f20a4 ldr r2, [pc, #164] ; 7fdc <_Heap_Walk+0x654>
7f34: e1a03005 mov r3, r5
7f38: e1a0e00f mov lr, pc
7f3c: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7f40: e3a00000 mov r0, #0
7f44: eafffea3 b 79d8 <_Heap_Walk+0x50>
return false;
}
if ( free_block->prev != prev_block ) {
(*printer)(
7f48: e58d1000 str r1, [sp]
7f4c: e1a0000a mov r0, sl
7f50: e3a01001 mov r1, #1
7f54: e59f2084 ldr r2, [pc, #132] ; 7fe0 <_Heap_Walk+0x658>
7f58: e1a03006 mov r3, r6
7f5c: e1a0e00f mov lr, pc
7f60: e12fff19 bx r9
if ( !_System_state_Is_up( _System_state_Get() ) ) {
return true;
}
if ( !_Heap_Walk_check_control( source, printer, heap ) ) {
return false;
7f64: e3a00000 mov r0, #0
7f68: eafffe9a b 79d8 <_Heap_Walk+0x50>
00006e2c <_Objects_Extend_information>:
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
6e2c: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6e30: e5904034 ldr r4, [r0, #52] ; 0x34
6e34: e3540000 cmp r4, #0
*/
void _Objects_Extend_information(
Objects_Information *information
)
{
6e38: e24dd014 sub sp, sp, #20
6e3c: e1a05000 mov r5, r0
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6e40: e1d070b8 ldrh r7, [r0, #8]
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
6e44: 0a00009a beq 70b4 <_Objects_Extend_information+0x288>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
6e48: e1d081b4 ldrh r8, [r0, #20]
6e4c: e1d0a1b0 ldrh sl, [r0, #16]
6e50: e1a01008 mov r1, r8
6e54: e1a0000a mov r0, sl
6e58: eb0029f3 bl 1162c <__aeabi_uidiv>
6e5c: e1a03800 lsl r3, r0, #16
for ( ; block < block_count; block++ ) {
6e60: e1b03823 lsrs r3, r3, #16
6e64: 0a000098 beq 70cc <_Objects_Extend_information+0x2a0>
if ( information->object_blocks[ block ] == NULL ) {
6e68: e5949000 ldr r9, [r4]
6e6c: e3590000 cmp r9, #0
6e70: 01a01008 moveq r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6e74: 01a06007 moveq r6, r7
index_base = minimum_index;
block = 0;
6e78: 01a04009 moveq r4, r9
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
6e7c: 0a00000c beq 6eb4 <_Objects_Extend_information+0x88>
6e80: e1a02004 mov r2, r4
6e84: e1a01008 mov r1, r8
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
6e88: e1a06007 mov r6, r7
index_base = minimum_index;
block = 0;
6e8c: e3a04000 mov r4, #0
6e90: ea000002 b 6ea0 <_Objects_Extend_information+0x74>
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
if ( information->object_blocks[ block ] == NULL ) {
6e94: e5b29004 ldr r9, [r2, #4]!
6e98: e3590000 cmp r9, #0
6e9c: 0a000004 beq 6eb4 <_Objects_Extend_information+0x88>
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6ea0: e2844001 add r4, r4, #1
6ea4: e1530004 cmp r3, r4
if ( information->object_blocks[ block ] == NULL ) {
do_extend = false;
break;
} else
index_base += information->allocation_size;
6ea8: e0866008 add r6, r6, r8
if ( information->object_blocks == NULL )
block_count = 0;
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
6eac: 8afffff8 bhi 6e94 <_Objects_Extend_information+0x68>
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
6eb0: e3a09001 mov r9, #1
} else
index_base += information->allocation_size;
}
}
maximum = (uint32_t) information->maximum + information->allocation_size;
6eb4: e08aa001 add sl, sl, r1
/*
* We need to limit the number of objects to the maximum number
* representable in the index portion of the object Id. In the
* case of 16-bit Ids, this is only 256 object instances.
*/
if ( maximum > OBJECTS_ID_FINAL_INDEX ) {
6eb8: e35a0801 cmp sl, #65536 ; 0x10000
6ebc: 2a000062 bcs 704c <_Objects_Extend_information+0x220>
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
6ec0: e5d52012 ldrb r2, [r5, #18]
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
6ec4: e5950018 ldr r0, [r5, #24]
if ( information->auto_extend ) {
6ec8: e3520000 cmp r2, #0
/*
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
6ecc: e0000091 mul r0, r1, r0
if ( information->auto_extend ) {
6ed0: 1a00005f bne 7054 <_Objects_Extend_information+0x228>
new_object_block = _Workspace_Allocate( block_size );
if ( !new_object_block )
return;
} else {
new_object_block = _Workspace_Allocate_or_fatal_error( block_size );
6ed4: e58d3000 str r3, [sp]
6ed8: eb0008a8 bl 9180 <_Workspace_Allocate_or_fatal_error>
6edc: e59d3000 ldr r3, [sp]
6ee0: e1a08000 mov r8, r0
}
/*
* Do we need to grow the tables?
*/
if ( do_extend ) {
6ee4: e3590000 cmp r9, #0
6ee8: 0a000038 beq 6fd0 <_Objects_Extend_information+0x1a4>
*/
/*
* Up the block count and maximum
*/
block_count++;
6eec: e283b001 add fp, r3, #1
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
6ef0: e08b008b add r0, fp, fp, lsl #1
((maximum + minimum_index) * sizeof(Objects_Control *));
6ef4: e08a0000 add r0, sl, r0
/*
* Allocate the tables and break it up.
*/
block_size = block_count *
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
6ef8: e0800007 add r0, r0, r7
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
6efc: e1a00100 lsl r0, r0, #2
6f00: e58d3000 str r3, [sp]
6f04: eb000893 bl 9158 <_Workspace_Allocate>
if ( !object_blocks ) {
6f08: e2509000 subs r9, r0, #0
6f0c: e59d3000 ldr r3, [sp]
6f10: 0a000072 beq 70e0 <_Objects_Extend_information+0x2b4>
* Take the block count down. Saves all the (block_count - 1)
* in the copies.
*/
block_count--;
if ( information->maximum > minimum_index ) {
6f14: e1d521b0 ldrh r2, [r5, #16]
6f18: e1570002 cmp r7, r2
RTEMS_INLINE_ROUTINE void *_Addresses_Add_offset (
const void *base,
uintptr_t offset
)
{
return (void *)((uintptr_t)base + offset);
6f1c: e089c10b add ip, r9, fp, lsl #2
6f20: e089b18b add fp, r9, fp, lsl #3
6f24: 3a000050 bcc 706c <_Objects_Extend_information+0x240>
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6f28: e3570000 cmp r7, #0
6f2c: 13a02000 movne r2, #0
6f30: 11a0100b movne r1, fp
local_table[ index ] = NULL;
6f34: 11a00002 movne r0, r2
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6f38: 0a000003 beq 6f4c <_Objects_Extend_information+0x120>
6f3c: e2822001 add r2, r2, #1
6f40: e1570002 cmp r7, r2
local_table[ index ] = NULL;
6f44: e4810004 str r0, [r1], #4
} else {
/*
* Deal with the special case of the 0 to minimum_index
*/
for ( index = 0; index < minimum_index; index++ ) {
6f48: 8afffffb bhi 6f3c <_Objects_Extend_information+0x110>
6f4c: e1a03103 lsl r3, r3, #2
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
6f50: e1d511b4 ldrh r1, [r5, #20]
6f54: e0861001 add r1, r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
6f58: e3a00000 mov r0, #0
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6f5c: e1560001 cmp r6, r1
}
/*
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
6f60: e7890003 str r0, [r9, r3]
inactive_per_block[block_count] = 0;
6f64: e78c0003 str r0, [ip, r3]
for ( index=index_base ;
6f68: 2a000005 bcs 6f84 <_Objects_Extend_information+0x158>
6f6c: e08b2106 add r2, fp, r6, lsl #2
* information - object information table
*
* Output parameters: NONE
*/
void _Objects_Extend_information(
6f70: e1a03006 mov r3, r6
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
index < ( information->allocation_size + index_base );
index++ ) {
6f74: e2833001 add r3, r3, #1
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6f78: e1530001 cmp r3, r1
index < ( information->allocation_size + index_base );
index++ ) {
local_table[ index ] = NULL;
6f7c: e4820004 str r0, [r2], #4
* Initialise the new entries in the table.
*/
object_blocks[block_count] = NULL;
inactive_per_block[block_count] = 0;
for ( index=index_base ;
6f80: 3afffffb bcc 6f74 <_Objects_Extend_information+0x148>
6f84: e10f3000 mrs r3, CPSR
6f88: e3832080 orr r2, r3, #128 ; 0x80
6f8c: e129f002 msr CPSR_fc, r2
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6f90: e5952000 ldr r2, [r5]
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
information->maximum_id = _Objects_Build_id(
6f94: e1d510b4 ldrh r1, [r5, #4]
6f98: e1a02c02 lsl r2, r2, #24
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
information->maximum = (Objects_Maximum) maximum;
6f9c: e1a0a80a lsl sl, sl, #16
6fa0: e3822801 orr r2, r2, #65536 ; 0x10000
6fa4: e1a0a82a lsr sl, sl, #16
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
6fa8: e1822d81 orr r2, r2, r1, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
6fac: e182200a orr r2, r2, sl
local_table[ index ] = NULL;
}
_ISR_Disable( level );
old_tables = information->object_blocks;
6fb0: e5950034 ldr r0, [r5, #52] ; 0x34
information->object_blocks = object_blocks;
information->inactive_per_block = inactive_per_block;
6fb4: e585c030 str ip, [r5, #48] ; 0x30
_ISR_Disable( level );
old_tables = information->object_blocks;
information->object_blocks = object_blocks;
6fb8: e5859034 str r9, [r5, #52] ; 0x34
information->inactive_per_block = inactive_per_block;
information->local_table = local_table;
6fbc: e585b01c str fp, [r5, #28]
information->maximum = (Objects_Maximum) maximum;
6fc0: e1c5a1b0 strh sl, [r5, #16]
information->maximum_id = _Objects_Build_id(
6fc4: e585200c str r2, [r5, #12]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
6fc8: e129f003 msr CPSR_fc, r3
information->maximum
);
_ISR_Enable( level );
_Workspace_Free( old_tables );
6fcc: eb000867 bl 9170 <_Workspace_Free>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6fd0: e5953034 ldr r3, [r5, #52] ; 0x34
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
6fd4: e28d7008 add r7, sp, #8
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6fd8: e7838104 str r8, [r3, r4, lsl #2]
/*
* Initialize objects .. add to a local chain first.
*/
_Chain_Initialize(
6fdc: e1a01008 mov r1, r8
6fe0: e1a00007 mov r0, r7
6fe4: e1d521b4 ldrh r2, [r5, #20]
6fe8: e5953018 ldr r3, [r5, #24]
6fec: eb00128f bl ba30 <_Chain_Initialize>
}
/*
* Assign the new object block to the object block table.
*/
information->object_blocks[ block ] = new_object_block;
6ff0: e1a04104 lsl r4, r4, #2
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
6ff4: e2858020 add r8, r5, #32
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
6ff8: ea000009 b 7024 <_Objects_Extend_information+0x1f8>
6ffc: e5953000 ldr r3, [r5]
the_object->id = _Objects_Build_id(
7000: e1d520b4 ldrh r2, [r5, #4]
7004: e1a03c03 lsl r3, r3, #24
7008: e3833801 orr r3, r3, #65536 ; 0x10000
(( (Objects_Id) the_class ) << OBJECTS_CLASS_START_BIT) |
700c: e1833d82 orr r3, r3, r2, lsl #27
uint32_t the_class,
uint32_t node,
uint32_t index
)
{
return (( (Objects_Id) the_api ) << OBJECTS_API_START_BIT) |
7010: e1833006 orr r3, r3, r6
7014: e5813008 str r3, [r1, #8]
information->the_class,
_Objects_Local_node,
index
);
_Chain_Append( &information->Inactive, &the_object->Node );
7018: e1a00008 mov r0, r8
701c: ebfffcea bl 63cc <_Chain_Append>
index++;
7020: e2866001 add r6, r6, #1
/*
* Move from the local chain, initialise, then append to the inactive chain
*/
index = index_base;
while ((the_object = (Objects_Control *) _Chain_Get( &Inactive )) != NULL ) {
7024: e1a00007 mov r0, r7
7028: ebfffcfa bl 6418 <_Chain_Get>
702c: e2501000 subs r1, r0, #0
7030: 1afffff1 bne 6ffc <_Objects_Extend_information+0x1d0>
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
7034: e1d522bc ldrh r2, [r5, #44] ; 0x2c
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
7038: e1d531b4 ldrh r3, [r5, #20]
703c: e5951030 ldr r1, [r5, #48] ; 0x30
information->inactive =
(Objects_Maximum)(information->inactive + information->allocation_size);
7040: e0832002 add r2, r3, r2
_Chain_Append( &information->Inactive, &the_object->Node );
index++;
}
information->inactive_per_block[ block ] = information->allocation_size;
7044: e7813004 str r3, [r1, r4]
information->inactive =
7048: e1c522bc strh r2, [r5, #44] ; 0x2c
(Objects_Maximum)(information->inactive + information->allocation_size);
}
704c: e28dd014 add sp, sp, #20
7050: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* Allocate the name table, and the objects and if it fails either return or
* generate a fatal error depending on auto-extending being active.
*/
block_size = information->allocation_size * information->size;
if ( information->auto_extend ) {
new_object_block = _Workspace_Allocate( block_size );
7054: e58d3000 str r3, [sp]
7058: eb00083e bl 9158 <_Workspace_Allocate>
if ( !new_object_block )
705c: e2508000 subs r8, r0, #0
7060: e59d3000 ldr r3, [sp]
7064: 1affff9e bne 6ee4 <_Objects_Extend_information+0xb8>
7068: eafffff7 b 704c <_Objects_Extend_information+0x220>
/*
* Copy each section of the table over. This has to be performed as
* separate parts as size of each block has changed.
*/
memcpy( object_blocks,
706c: e1a03103 lsl r3, r3, #2
7070: e5951034 ldr r1, [r5, #52] ; 0x34
7074: e1a02003 mov r2, r3
7078: e88d1008 stm sp, {r3, ip}
707c: eb001dd5 bl e7d8 <memcpy>
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
7080: e89d1008 ldm sp, {r3, ip}
7084: e1a0000c mov r0, ip
7088: e1a02003 mov r2, r3
708c: e5951030 ldr r1, [r5, #48] ; 0x30
7090: eb001dd0 bl e7d8 <memcpy>
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
information->local_table,
(information->maximum + minimum_index) * sizeof(Objects_Control *) );
7094: e1d521b0 ldrh r2, [r5, #16]
7098: e0872002 add r2, r7, r2
information->object_blocks,
block_count * sizeof(void*) );
memcpy( inactive_per_block,
information->inactive_per_block,
block_count * sizeof(uint32_t) );
memcpy( local_table,
709c: e1a0000b mov r0, fp
70a0: e595101c ldr r1, [r5, #28]
70a4: e1a02102 lsl r2, r2, #2
70a8: eb001dca bl e7d8 <memcpy>
70ac: e89d1008 ldm sp, {r3, ip}
70b0: eaffffa6 b 6f50 <_Objects_Extend_information+0x124>
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
70b4: e1d0a1b0 ldrh sl, [r0, #16]
70b8: e1d011b4 ldrh r1, [r0, #20]
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
70bc: e1a06007 mov r6, r7
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
70c0: e3a09001 mov r9, #1
index_base = minimum_index;
block = 0;
/* if ( information->maximum < minimum_index ) */
if ( information->object_blocks == NULL )
block_count = 0;
70c4: e1a03004 mov r3, r4
70c8: eaffff79 b 6eb4 <_Objects_Extend_information+0x88>
else {
block_count = information->maximum / information->allocation_size;
for ( ; block < block_count; block++ ) {
70cc: e1a01008 mov r1, r8 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
minimum_index = _Objects_Get_index( information->minimum_id );
70d0: e1a06007 mov r6, r7 <== NOT EXECUTED
/*
* Search for a free block of indexes. If we do NOT need to allocate or
* extend the block table, then we will change do_extend.
*/
do_extend = true;
70d4: e3a09001 mov r9, #1 <== NOT EXECUTED
minimum_index = _Objects_Get_index( information->minimum_id );
index_base = minimum_index;
block = 0;
70d8: e1a04003 mov r4, r3 <== NOT EXECUTED
70dc: eaffff74 b 6eb4 <_Objects_Extend_information+0x88> <== NOT EXECUTED
(sizeof(void *) + sizeof(uint32_t) + sizeof(Objects_Name *)) +
((maximum + minimum_index) * sizeof(Objects_Control *));
object_blocks = (void**) _Workspace_Allocate( block_size );
if ( !object_blocks ) {
_Workspace_Free( new_object_block );
70e0: e1a00008 mov r0, r8
70e4: eb000821 bl 9170 <_Workspace_Free>
return;
70e8: eaffffd7 b 704c <_Objects_Extend_information+0x220>
00007450 <_Objects_Shrink_information>:
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
7450: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
7454: e1d040b8 ldrh r4, [r0, #8]
block_count = (information->maximum - index_base) /
7458: e1d051b4 ldrh r5, [r0, #20]
*/
void _Objects_Shrink_information(
Objects_Information *information
)
{
745c: e1a06000 mov r6, r0
/*
* Search the list to find block or chunk with all objects inactive.
*/
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
7460: e1d001b0 ldrh r0, [r0, #16]
7464: e1a01005 mov r1, r5
7468: e0640000 rsb r0, r4, r0
746c: eb00286e bl 1162c <__aeabi_uidiv>
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7470: e3500000 cmp r0, #0
7474: 08bd80f0 popeq {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
7478: e5962030 ldr r2, [r6, #48] ; 0x30
747c: e5923000 ldr r3, [r2]
7480: e1550003 cmp r5, r3
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
7484: 13a03000 movne r3, #0
if ( information->inactive_per_block[ block ] ==
7488: 1a000005 bne 74a4 <_Objects_Shrink_information+0x54>
748c: ea000008 b 74b4 <_Objects_Shrink_information+0x64> <== NOT EXECUTED
7490: e5b21004 ldr r1, [r2, #4]!
7494: e1550001 cmp r5, r1
information->inactive -= information->allocation_size;
return;
}
index_base += information->allocation_size;
7498: e0844005 add r4, r4, r5
749c: e1a07103 lsl r7, r3, #2
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
if ( information->inactive_per_block[ block ] ==
74a0: 0a000004 beq 74b8 <_Objects_Shrink_information+0x68>
index_base = _Objects_Get_index( information->minimum_id );
block_count = (information->maximum - index_base) /
information->allocation_size;
for ( block = 0; block < block_count; block++ ) {
74a4: e2833001 add r3, r3, #1
74a8: e1500003 cmp r0, r3
74ac: 8afffff7 bhi 7490 <_Objects_Shrink_information+0x40>
74b0: e8bd80f0 pop {r4, r5, r6, r7, pc}
if ( information->inactive_per_block[ block ] ==
74b4: e3a07000 mov r7, #0 <== NOT EXECUTED
information->allocation_size ) {
/*
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
74b8: e5960020 ldr r0, [r6, #32]
74bc: ea000002 b 74cc <_Objects_Shrink_information+0x7c>
if ((index >= index_base) &&
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
}
}
while ( the_object );
74c0: e3550000 cmp r5, #0
74c4: 0a00000b beq 74f8 <_Objects_Shrink_information+0xa8>
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
74c8: e1a00005 mov r0, r5
* Assume the Inactive chain is never empty at this point
*/
the_object = (Objects_Control *) _Chain_First( &information->Inactive );
do {
index = _Objects_Get_index( the_object->id );
74cc: e1d030b8 ldrh r3, [r0, #8]
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
74d0: e1530004 cmp r3, r4
index = _Objects_Get_index( the_object->id );
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
74d4: e5905000 ldr r5, [r0]
if ((index >= index_base) &&
74d8: 3afffff8 bcc 74c0 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
74dc: e1d621b4 ldrh r2, [r6, #20]
74e0: e0842002 add r2, r4, r2
/*
* Get the next node before the node is extracted
*/
extract_me = the_object;
the_object = (Objects_Control *) the_object->Node.next;
if ((index >= index_base) &&
74e4: e1530002 cmp r3, r2
74e8: 2afffff4 bcs 74c0 <_Objects_Shrink_information+0x70>
(index < (index_base + information->allocation_size))) {
_Chain_Extract( &extract_me->Node );
74ec: ebfffbc1 bl 63f8 <_Chain_Extract>
}
}
while ( the_object );
74f0: e3550000 cmp r5, #0
74f4: 1afffff3 bne 74c8 <_Objects_Shrink_information+0x78>
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
74f8: e5963034 ldr r3, [r6, #52] ; 0x34
74fc: e7930007 ldr r0, [r3, r7]
7500: eb00071a bl 9170 <_Workspace_Free>
information->object_blocks[ block ] = NULL;
information->inactive_per_block[ block ] = 0;
information->inactive -= information->allocation_size;
7504: e1d602bc ldrh r0, [r6, #44] ; 0x2c
7508: e1d631b4 ldrh r3, [r6, #20]
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
750c: e5961034 ldr r1, [r6, #52] ; 0x34
information->inactive_per_block[ block ] = 0;
7510: e5962030 ldr r2, [r6, #48] ; 0x30
information->inactive -= information->allocation_size;
7514: e0633000 rsb r3, r3, r0
/*
* Free the memory and reset the structures in the object' information
*/
_Workspace_Free( information->object_blocks[ block ] );
information->object_blocks[ block ] = NULL;
7518: e7815007 str r5, [r1, r7]
information->inactive_per_block[ block ] = 0;
751c: e7825007 str r5, [r2, r7]
information->inactive -= information->allocation_size;
7520: e1c632bc strh r3, [r6, #44] ; 0x2c
return;
7524: e8bd80f0 pop {r4, r5, r6, r7, pc}
0000de9c <_POSIX_signals_Clear_process_signals>:
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
de9c: e10f2000 mrs r2, CPSR
dea0: e3823080 orr r3, r2, #128 ; 0x80
dea4: e129f003 msr CPSR_fc, r3
mask = signo_to_mask( signo );
ISR_Level level;
_ISR_Disable( level );
if ( _POSIX_signals_Vectors[ signo ].sa_flags == SA_SIGINFO ) {
dea8: e59f1050 ldr r1, [pc, #80] ; df00 <_POSIX_signals_Clear_process_signals+0x64>
deac: e0803080 add r3, r0, r0, lsl #1
deb0: e1a03103 lsl r3, r3, #2
deb4: e7911003 ldr r1, [r1, r3]
deb8: e3510002 cmp r1, #2
debc: 0a000007 beq dee0 <_POSIX_signals_Clear_process_signals+0x44>
if ( !_Chain_Is_empty( &_POSIX_signals_Siginfo[ signo ] ) )
clear_signal = false;
}
if ( clear_signal ) {
_POSIX_signals_Pending &= ~mask;
dec0: e59f303c ldr r3, [pc, #60] ; df04 <_POSIX_signals_Clear_process_signals+0x68>
dec4: e5931000 ldr r1, [r3]
dec8: e3a0c001 mov ip, #1
decc: e2400001 sub r0, r0, #1
ded0: e1c1001c bic r0, r1, ip, lsl r0
ded4: e5830000 str r0, [r3]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
ded8: e129f002 msr CPSR_fc, r2
}
_ISR_Enable( level );
}
dedc: e12fff1e bx lr
dee0: e59f1020 ldr r1, [pc, #32] ; df08 <_POSIX_signals_Clear_process_signals+0x6c>
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
dee4: e283c004 add ip, r3, #4
ISR_Level level;
_ISR_Disable( level );
if ( _POSIX_signals_Vectors[ signo ].sa_flags == SA_SIGINFO ) {
if ( !_Chain_Is_empty( &_POSIX_signals_Siginfo[ signo ] ) )
dee8: e7913003 ldr r3, [r1, r3]
deec: e08c1001 add r1, ip, r1
def0: e1530001 cmp r3, r1
def4: 0afffff1 beq dec0 <_POSIX_signals_Clear_process_signals+0x24>
def8: e129f002 msr CPSR_fc, r2 <== NOT EXECUTED
}
if ( clear_signal ) {
_POSIX_signals_Pending &= ~mask;
}
_ISR_Enable( level );
}
defc: e12fff1e bx lr <== NOT EXECUTED
00023000 <_POSIX_signals_Unblock_thread>:
bool _POSIX_signals_Unblock_thread(
Thread_Control *the_thread,
int signo,
siginfo_t *info
)
{
23000: e92d40f0 push {r4, r5, r6, r7, lr}
/*
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
23004: e5905010 ldr r5, [r0, #16]
23008: e3c534ef bic r3, r5, #-285212672 ; 0xef000000
2300c: e3c338ff bic r3, r3, #16711680 ; 0xff0000
23010: e3c33c7f bic r3, r3, #32512 ; 0x7f00
23014: e3a0c201 mov ip, #268435456 ; 0x10000000
23018: e3c330ff bic r3, r3, #255 ; 0xff
2301c: e28cc902 add ip, ip, #32768 ; 0x8000
23020: e2417001 sub r7, r1, #1
23024: e3a06001 mov r6, #1
23028: e153000c cmp r3, ip
bool _POSIX_signals_Unblock_thread(
Thread_Control *the_thread,
int signo,
siginfo_t *info
)
{
2302c: e1a04000 mov r4, r0
POSIX_API_Control *api;
sigset_t mask;
siginfo_t *the_info = NULL;
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
23030: e59030fc ldr r3, [r0, #252] ; 0xfc
23034: e1a07716 lsl r7, r6, r7
/*
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
23038: 0a00001b beq 230ac <_POSIX_signals_Unblock_thread+0xac>
}
/*
* Thread is not waiting due to a sigwait.
*/
if ( ~api->signals_blocked & mask ) {
2303c: e59330d0 ldr r3, [r3, #208] ; 0xd0
23040: e1d77003 bics r7, r7, r3
23044: 0a000016 beq 230a4 <_POSIX_signals_Unblock_thread+0xa4>
* it is not blocked, THEN
* we need to dispatch at the end of this ISR.
* + Any other combination, do nothing.
*/
if ( _States_Is_interruptible_by_signal( the_thread->current_state ) ) {
23048: e2157201 ands r7, r5, #268435456 ; 0x10000000
2304c: 0a000012 beq 2309c <_POSIX_signals_Unblock_thread+0x9c>
*/
RTEMS_INLINE_ROUTINE bool _States_Is_waiting_on_thread_queue (
States_Control the_states
)
{
return (the_states & STATES_WAITING_ON_THREAD_QUEUE);
23050: e3c564ff bic r6, r5, #-16777216 ; 0xff000000
23054: e3c6673f bic r6, r6, #16515072 ; 0xfc0000
23058: e3c66c41 bic r6, r6, #16640 ; 0x4100
2305c: e3c6601f bic r6, r6, #31
the_thread->Wait.return_code = EINTR;
23060: e3a03004 mov r3, #4
/*
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
23064: e3560000 cmp r6, #0
* we need to dispatch at the end of this ISR.
* + Any other combination, do nothing.
*/
if ( _States_Is_interruptible_by_signal( the_thread->current_state ) ) {
the_thread->Wait.return_code = EINTR;
23068: e5803034 str r3, [r0, #52] ; 0x34
/*
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
2306c: 1a00002e bne 2312c <_POSIX_signals_Unblock_thread+0x12c>
_Thread_queue_Extract_with_proxy( the_thread );
else if ( _States_Is_delaying(the_thread->current_state) ) {
23070: e2150008 ands r0, r5, #8
23074: 08bd80f0 popeq {r4, r5, r6, r7, pc}
(void) _Watchdog_Remove( &the_thread->Timer );
23078: e2840048 add r0, r4, #72 ; 0x48
2307c: ebffad5d bl e5f8 <_Watchdog_Remove>
RTEMS_INLINE_ROUTINE void _Thread_Unblock (
Thread_Control *the_thread
)
{
_Thread_Clear_state( the_thread, STATES_BLOCKED );
23080: e3a01201 mov r1, #268435456 ; 0x10000000
23084: e2811bff add r1, r1, #261120 ; 0x3fc00
23088: e1a00004 mov r0, r4
2308c: e2811ffe add r1, r1, #1016 ; 0x3f8
23090: ebffa87a bl d280 <_Thread_Clear_state>
} else if ( the_thread->current_state == STATES_READY ) {
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
}
return false;
23094: e1a00006 mov r0, r6
23098: e8bd80f0 pop {r4, r5, r6, r7, pc}
else if ( _States_Is_delaying(the_thread->current_state) ) {
(void) _Watchdog_Remove( &the_thread->Timer );
_Thread_Unblock( the_thread );
}
} else if ( the_thread->current_state == STATES_READY ) {
2309c: e3550000 cmp r5, #0
230a0: 0a000016 beq 23100 <_POSIX_signals_Unblock_thread+0x100>
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
}
return false;
230a4: e1a00007 mov r0, r7
230a8: e8bd80f0 pop {r4, r5, r6, r7, pc}
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
if ( (the_thread->Wait.option & mask) || (~api->signals_blocked & mask) ) {
230ac: e5900030 ldr r0, [r0, #48] ; 0x30
230b0: e1170000 tst r7, r0
230b4: 0a00000d beq 230f0 <_POSIX_signals_Unblock_thread+0xf0>
the_thread->Wait.return_code = EINTR;
230b8: e3a03004 mov r3, #4
the_info = (siginfo_t *) the_thread->Wait.return_argument;
if ( !info ) {
230bc: e3520000 cmp r2, #0
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
if ( (the_thread->Wait.option & mask) || (~api->signals_blocked & mask) ) {
the_thread->Wait.return_code = EINTR;
230c0: e5843034 str r3, [r4, #52] ; 0x34
the_info = (siginfo_t *) the_thread->Wait.return_argument;
230c4: e5943028 ldr r3, [r4, #40] ; 0x28
if ( !info ) {
the_info->si_signo = signo;
the_info->si_code = SI_USER;
the_info->si_value.sival_int = 0;
} else {
*the_info = *info;
230c8: 18920007 ldmne r2, {r0, r1, r2}
the_thread->Wait.return_code = EINTR;
the_info = (siginfo_t *) the_thread->Wait.return_argument;
if ( !info ) {
the_info->si_signo = signo;
230cc: 05831000 streq r1, [r3]
the_info->si_code = SI_USER;
230d0: 03a01001 moveq r1, #1
the_info->si_value.sival_int = 0;
} else {
*the_info = *info;
230d4: 18830007 stmne r3, {r0, r1, r2}
the_info = (siginfo_t *) the_thread->Wait.return_argument;
if ( !info ) {
the_info->si_signo = signo;
the_info->si_code = SI_USER;
230d8: 05831004 streq r1, [r3, #4]
the_info->si_value.sival_int = 0;
230dc: 05832008 streq r2, [r3, #8]
} else {
*the_info = *info;
}
_Thread_queue_Extract_with_proxy( the_thread );
230e0: e1a00004 mov r0, r4
230e4: ebffab05 bl dd00 <_Thread_queue_Extract_with_proxy>
return true;
230e8: e3a00001 mov r0, #1
230ec: e8bd80f0 pop {r4, r5, r6, r7, pc}
* Is the thread is specifically waiting for a signal?
*/
if ( _States_Is_interruptible_signal( the_thread->current_state ) ) {
if ( (the_thread->Wait.option & mask) || (~api->signals_blocked & mask) ) {
230f0: e59300d0 ldr r0, [r3, #208] ; 0xd0
230f4: e1d70000 bics r0, r7, r0
230f8: 1affffee bne 230b8 <_POSIX_signals_Unblock_thread+0xb8>
230fc: e8bd80f0 pop {r4, r5, r6, r7, pc}
(void) _Watchdog_Remove( &the_thread->Timer );
_Thread_Unblock( the_thread );
}
} else if ( the_thread->current_state == STATES_READY ) {
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
23100: e59f2030 ldr r2, [pc, #48] ; 23138 <_POSIX_signals_Unblock_thread+0x138>
23104: e5920000 ldr r0, [r2]
23108: e3500000 cmp r0, #0
2310c: 08bd80f0 popeq {r4, r5, r6, r7, pc}
23110: e5923004 ldr r3, [r2, #4]
23114: e1540003 cmp r4, r3
_Thread_Dispatch_necessary = true;
23118: 05c26010 strbeq r6, [r2, #16]
}
}
return false;
2311c: 01a00005 moveq r0, r5
(void) _Watchdog_Remove( &the_thread->Timer );
_Thread_Unblock( the_thread );
}
} else if ( the_thread->current_state == STATES_READY ) {
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
23120: 08bd80f0 popeq {r4, r5, r6, r7, pc}
_Thread_Dispatch_necessary = true;
}
}
return false;
23124: e1a00005 mov r0, r5 <== NOT EXECUTED
}
23128: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
/*
* In pthread_cond_wait, a thread will be blocking on a thread
* queue, but is also interruptible by a POSIX signal.
*/
if ( _States_Is_waiting_on_thread_queue(the_thread->current_state) )
_Thread_queue_Extract_with_proxy( the_thread );
2312c: ebffaaf3 bl dd00 <_Thread_queue_Extract_with_proxy>
} else if ( the_thread->current_state == STATES_READY ) {
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
_Thread_Dispatch_necessary = true;
}
}
return false;
23130: e3a00000 mov r0, #0
23134: e8bd80f0 pop {r4, r5, r6, r7, pc}
00006a84 <_TOD_Validate>:
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
6a84: e59f30b8 ldr r3, [pc, #184] ; 6b44 <_TOD_Validate+0xc0>
*/
bool _TOD_Validate(
const rtems_time_of_day *the_tod
)
{
6a88: e92d4010 push {r4, lr}
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
6a8c: e2504000 subs r4, r0, #0
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
6a90: e593100c ldr r1, [r3, #12]
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
6a94: 01a00004 moveq r0, r4
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
6a98: 08bd8010 popeq {r4, pc}
)
{
uint32_t days_in_month;
uint32_t ticks_per_second;
ticks_per_second = TOD_MICROSECONDS_PER_SECOND /
6a9c: e3a0093d mov r0, #999424 ; 0xf4000
6aa0: e2800d09 add r0, r0, #576 ; 0x240
6aa4: eb004a58 bl 1940c <__aeabi_uidiv>
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
6aa8: e5943018 ldr r3, [r4, #24]
6aac: e1500003 cmp r0, r3
6ab0: 9a00001f bls 6b34 <_TOD_Validate+0xb0>
(the_tod->ticks >= ticks_per_second) ||
6ab4: e5943014 ldr r3, [r4, #20]
6ab8: e353003b cmp r3, #59 ; 0x3b
6abc: 8a00001c bhi 6b34 <_TOD_Validate+0xb0>
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
6ac0: e5943010 ldr r3, [r4, #16]
6ac4: e353003b cmp r3, #59 ; 0x3b
6ac8: 8a000019 bhi 6b34 <_TOD_Validate+0xb0>
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
6acc: e594300c ldr r3, [r4, #12]
6ad0: e3530017 cmp r3, #23
6ad4: 8a000016 bhi 6b34 <_TOD_Validate+0xb0>
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
6ad8: e5940004 ldr r0, [r4, #4]
rtems_configuration_get_microseconds_per_tick();
if ((!the_tod) ||
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
6adc: e3500000 cmp r0, #0
6ae0: 08bd8010 popeq {r4, pc}
(the_tod->month == 0) ||
6ae4: e350000c cmp r0, #12
6ae8: 8a000011 bhi 6b34 <_TOD_Validate+0xb0>
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
6aec: e5942000 ldr r2, [r4]
(the_tod->ticks >= ticks_per_second) ||
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
6af0: e3a03d1f mov r3, #1984 ; 0x7c0
6af4: e2833003 add r3, r3, #3
6af8: e1520003 cmp r2, r3
6afc: 9a00000c bls 6b34 <_TOD_Validate+0xb0>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
6b00: e5944008 ldr r4, [r4, #8]
(the_tod->second >= TOD_SECONDS_PER_MINUTE) ||
(the_tod->minute >= TOD_MINUTES_PER_HOUR) ||
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
6b04: e3540000 cmp r4, #0
6b08: 0a00000b beq 6b3c <_TOD_Validate+0xb8>
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
6b0c: e3120003 tst r2, #3
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
6b10: 059f3030 ldreq r3, [pc, #48] ; 6b48 <_TOD_Validate+0xc4>
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
6b14: 159f302c ldrne r3, [pc, #44] ; 6b48 <_TOD_Validate+0xc4>
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
if ( (the_tod->year % 4) == 0 )
days_in_month = _TOD_Days_per_month[ 1 ][ the_tod->month ];
6b18: 0280000d addeq r0, r0, #13
6b1c: 07930100 ldreq r0, [r3, r0, lsl #2]
else
days_in_month = _TOD_Days_per_month[ 0 ][ the_tod->month ];
6b20: 17930100 ldrne r0, [r3, r0, lsl #2]
* false - if the the_tod is invalid
*
* NOTE: This routine only works for leap-years through 2099.
*/
bool _TOD_Validate(
6b24: e1500004 cmp r0, r4
6b28: 33a00000 movcc r0, #0
6b2c: 23a00001 movcs r0, #1
6b30: e8bd8010 pop {r4, pc}
(the_tod->hour >= TOD_HOURS_PER_DAY) ||
(the_tod->month == 0) ||
(the_tod->month > TOD_MONTHS_PER_YEAR) ||
(the_tod->year < TOD_BASE_YEAR) ||
(the_tod->day == 0) )
return false;
6b34: e3a00000 mov r0, #0
6b38: e8bd8010 pop {r4, pc}
6b3c: e1a00004 mov r0, r4 <== NOT EXECUTED
if ( the_tod->day > days_in_month )
return false;
return true;
}
6b40: e8bd8010 pop {r4, pc} <== NOT EXECUTED
00008504 <_Thread_queue_Enqueue_priority>:
Priority_Control priority;
States_Control block_state;
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
8504: e5913014 ldr r3, [r1, #20]
Thread_blocking_operation_States _Thread_queue_Enqueue_priority (
Thread_queue_Control *the_thread_queue,
Thread_Control *the_thread,
ISR_Level *level_p
)
{
8508: e92d05f0 push {r4, r5, r6, r7, r8, sl}
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
850c: e281403c add r4, r1, #60 ; 0x3c
*/
RTEMS_INLINE_ROUTINE void _Chain_Initialize_empty(
Chain_Control *the_chain
)
{
Chain_Node *head = _Chain_Head( the_chain );
8510: e281c038 add ip, r1, #56 ; 0x38
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
8514: e5814038 str r4, [r1, #56] ; 0x38
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
if ( _Thread_queue_Is_reverse_search( priority ) )
8518: e3130020 tst r3, #32
head->previous = NULL;
851c: e3a04000 mov r4, #0
8520: e581403c str r4, [r1, #60] ; 0x3c
tail->previous = head;
8524: e581c040 str ip, [r1, #64] ; 0x40
RTEMS_INLINE_ROUTINE uint32_t _Thread_queue_Header_number (
Priority_Control the_priority
)
{
return (the_priority / TASK_QUEUE_DATA_PRIORITIES_PER_HEADER);
8528: e1a07323 lsr r7, r3, #6
_Chain_Initialize_empty( &the_thread->Wait.Block2n );
priority = the_thread->current_priority;
header_index = _Thread_queue_Header_number( priority );
header = &the_thread_queue->Queues.Priority[ header_index ];
block_state = the_thread_queue->state;
852c: e5905038 ldr r5, [r0, #56] ; 0x38
if ( _Thread_queue_Is_reverse_search( priority ) )
8530: 1a00001e bne 85b0 <_Thread_queue_Enqueue_priority+0xac>
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
return the_thread_queue->sync_state;
}
8534: e0877087 add r7, r7, r7, lsl #1
8538: e1a0c107 lsl ip, r7, #2
RTEMS_INLINE_ROUTINE bool _Chain_Is_tail(
Chain_Control *the_chain,
const Chain_Node *the_node
)
{
return (the_node == _Chain_Tail(the_chain));
853c: e28c7004 add r7, ip, #4
8540: e080a00c add sl, r0, ip
8544: e0807007 add r7, r0, r7
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
8548: e10f8000 mrs r8, CPSR
854c: e388c080 orr ip, r8, #128 ; 0x80
8550: e129f00c msr CPSR_fc, ip
8554: e59ac000 ldr ip, [sl]
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_First( header );
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
8558: e15c0007 cmp ip, r7
855c: 1a000009 bne 8588 <_Thread_queue_Enqueue_priority+0x84>
8560: ea000051 b 86ac <_Thread_queue_Enqueue_priority+0x1a8>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
__asm__ volatile (
8564: e10f6000 mrs r6, CPSR
8568: e129f008 msr CPSR_fc, r8
856c: e129f006 msr CPSR_fc, r6
RTEMS_INLINE_ROUTINE bool _States_Are_set (
States_Control the_states,
States_Control mask
)
{
return ( (the_states & mask) != STATES_READY);
8570: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority <= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
8574: e1150006 tst r5, r6
8578: 0a000034 beq 8650 <_Thread_queue_Enqueue_priority+0x14c>
_ISR_Enable( level );
goto restart_forward_search;
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
857c: e59cc000 ldr ip, [ip]
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_First( header );
while ( !_Chain_Is_tail( header, (Chain_Node *)search_thread ) ) {
8580: e15c0007 cmp ip, r7
8584: 0a000002 beq 8594 <_Thread_queue_Enqueue_priority+0x90>
search_priority = search_thread->current_priority;
8588: e59c4014 ldr r4, [ip, #20]
if ( priority <= search_priority )
858c: e1530004 cmp r3, r4
8590: 8afffff3 bhi 8564 <_Thread_queue_Enqueue_priority+0x60>
}
search_thread =
(Thread_Control *)search_thread->Object.Node.next;
}
if ( the_thread_queue->sync_state !=
8594: e5905030 ldr r5, [r0, #48] ; 0x30
8598: e3550001 cmp r5, #1
859c: 0a00002d beq 8658 <_Thread_queue_Enqueue_priority+0x154>
* For example, the blocking thread could have been given
* the mutex by an ISR or timed out.
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
85a0: e5828000 str r8, [r2]
return the_thread_queue->sync_state;
}
85a4: e1a00005 mov r0, r5
85a8: e8bd05f0 pop {r4, r5, r6, r7, r8, sl}
85ac: e12fff1e bx lr
85b0: e0877087 add r7, r7, r7, lsl #1
85b4: e59fa0f8 ldr sl, [pc, #248] ; 86b4 <_Thread_queue_Enqueue_priority+0x1b0>
85b8: e0807107 add r7, r0, r7, lsl #2
the_thread->Wait.queue = the_thread_queue;
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
85bc: e5da4000 ldrb r4, [sl]
85c0: e2844001 add r4, r4, #1
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
85c4: e10f8000 mrs r8, CPSR
85c8: e388c080 orr ip, r8, #128 ; 0x80
85cc: e129f00c msr CPSR_fc, ip
*
* WARNING! Returning with interrupts disabled!
*/
*level_p = level;
return the_thread_queue->sync_state;
}
85d0: e597c008 ldr ip, [r7, #8]
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_Last( header );
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
85d4: e15c0007 cmp ip, r7
85d8: 1a000009 bne 8604 <_Thread_queue_Enqueue_priority+0x100>
85dc: ea00000b b 8610 <_Thread_queue_Enqueue_priority+0x10c>
static inline void arm_interrupt_flash( uint32_t level )
{
uint32_t arm_switch_reg;
__asm__ volatile (
85e0: e10f6000 mrs r6, CPSR
85e4: e129f008 msr CPSR_fc, r8
85e8: e129f006 msr CPSR_fc, r6
85ec: e59c6010 ldr r6, [ip, #16]
search_priority = search_thread->current_priority;
if ( priority >= search_priority )
break;
#endif
_ISR_Flash( level );
if ( !_States_Are_set( search_thread->current_state, block_state) ) {
85f0: e1150006 tst r5, r6
85f4: 0a000013 beq 8648 <_Thread_queue_Enqueue_priority+0x144>
_ISR_Enable( level );
goto restart_reverse_search;
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
85f8: e59cc004 ldr ip, [ip, #4]
restart_reverse_search:
search_priority = PRIORITY_MAXIMUM + 1;
_ISR_Disable( level );
search_thread = (Thread_Control *) _Chain_Last( header );
while ( !_Chain_Is_head( header, (Chain_Node *)search_thread ) ) {
85fc: e15c0007 cmp ip, r7
8600: 0a000002 beq 8610 <_Thread_queue_Enqueue_priority+0x10c>
search_priority = search_thread->current_priority;
8604: e59c4014 ldr r4, [ip, #20]
if ( priority >= search_priority )
8608: e1530004 cmp r3, r4
860c: 3afffff3 bcc 85e0 <_Thread_queue_Enqueue_priority+0xdc>
}
search_thread = (Thread_Control *)
search_thread->Object.Node.previous;
}
if ( the_thread_queue->sync_state !=
8610: e5905030 ldr r5, [r0, #48] ; 0x30
8614: e3550001 cmp r5, #1
8618: 1affffe0 bne 85a0 <_Thread_queue_Enqueue_priority+0x9c>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
861c: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
8620: e3a03000 mov r3, #0
8624: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
8628: 0a000016 beq 8688 <_Thread_queue_Enqueue_priority+0x184>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
next_node = search_node->next;
862c: e59c3000 ldr r3, [ip]
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
8630: e8811008 stm r1, {r3, ip}
search_node->next = the_node;
next_node->previous = the_node;
8634: e5831004 str r1, [r3, #4]
next_node = search_node->next;
the_node = (Chain_Node *) the_thread;
the_node->next = next_node;
the_node->previous = search_node;
search_node->next = the_node;
8638: e58c1000 str r1, [ip]
next_node->previous = the_node;
the_thread->Wait.queue = the_thread_queue;
863c: e5810044 str r0, [r1, #68] ; 0x44
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
8640: e129f008 msr CPSR_fc, r8
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
8644: eaffffd6 b 85a4 <_Thread_queue_Enqueue_priority+0xa0>
8648: e129f008 msr CPSR_fc, r8 <== NOT EXECUTED
864c: eaffffda b 85bc <_Thread_queue_Enqueue_priority+0xb8> <== NOT EXECUTED
8650: e129f008 msr CPSR_fc, r8
8654: eaffffbb b 8548 <_Thread_queue_Enqueue_priority+0x44>
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
if ( priority == search_priority )
8658: e1530004 cmp r3, r4
if ( the_thread_queue->sync_state !=
THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED )
goto synchronize;
the_thread_queue->sync_state = THREAD_BLOCKING_OPERATION_SYNCHRONIZED;
865c: e3a03000 mov r3, #0
8660: e5803030 str r3, [r0, #48] ; 0x30
if ( priority == search_priority )
8664: 0a000007 beq 8688 <_Thread_queue_Enqueue_priority+0x184>
goto equal_priority;
search_node = (Chain_Node *) search_thread;
previous_node = search_node->previous;
8668: e59c3004 ldr r3, [ip, #4]
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
866c: e581c000 str ip, [r1]
the_node->previous = previous_node;
8670: e5813004 str r3, [r1, #4]
previous_node->next = the_node;
8674: e5831000 str r1, [r3]
search_node->previous = the_node;
8678: e58c1004 str r1, [ip, #4]
the_thread->Wait.queue = the_thread_queue;
867c: e5810044 str r0, [r1, #68] ; 0x44
8680: e129f008 msr CPSR_fc, r8
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
8684: eaffffc6 b 85a4 <_Thread_queue_Enqueue_priority+0xa0>
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
equal_priority: /* add at end of priority group */
search_node = _Chain_Tail( &search_thread->Wait.Block2n );
previous_node = search_node->previous;
8688: e59c3040 ldr r3, [ip, #64] ; 0x40
the_thread->Wait.queue = the_thread_queue;
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
equal_priority: /* add at end of priority group */
search_node = _Chain_Tail( &search_thread->Wait.Block2n );
868c: e28c203c add r2, ip, #60 ; 0x3c
previous_node = search_node->previous;
the_node = (Chain_Node *) the_thread;
the_node->next = search_node;
8690: e881000c stm r1, {r2, r3}
the_node->previous = previous_node;
previous_node->next = the_node;
8694: e5831000 str r1, [r3]
search_node->previous = the_node;
8698: e58c1040 str r1, [ip, #64] ; 0x40
the_thread->Wait.queue = the_thread_queue;
869c: e5810044 str r0, [r1, #68] ; 0x44
86a0: e129f008 msr CPSR_fc, r8
_ISR_Enable( level );
return THREAD_BLOCKING_OPERATION_NOTHING_HAPPENED;
86a4: e3a05001 mov r5, #1
86a8: eaffffbd b 85a4 <_Thread_queue_Enqueue_priority+0xa0>
if ( _Thread_queue_Is_reverse_search( priority ) )
goto restart_reverse_search;
restart_forward_search:
search_priority = PRIORITY_MINIMUM - 1;
86ac: e3e04000 mvn r4, #0
86b0: eaffffb7 b 8594 <_Thread_queue_Enqueue_priority+0x90>
00008ce0 <_User_extensions_Thread_create>:
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
8ce0: e92d40f0 push {r4, r5, r6, r7, lr}
return false;
}
}
return true;
}
8ce4: e59f5050 ldr r5, [pc, #80] ; 8d3c <_User_extensions_Thread_create+0x5c>
8ce8: e4954004 ldr r4, [r5], #4
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
8cec: e1540005 cmp r4, r5
#include <rtems/score/userext.h>
bool _User_extensions_Thread_create (
Thread_Control *the_thread
)
{
8cf0: e1a06000 mov r6, r0
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
8cf4: 0a00000e beq 8d34 <_User_extensions_Thread_create+0x54>
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
status = (*the_extension->Callouts.thread_create)(
8cf8: e59f7040 ldr r7, [pc, #64] ; 8d40 <_User_extensions_Thread_create+0x60>
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
8cfc: e5943014 ldr r3, [r4, #20]
8d00: e3530000 cmp r3, #0
status = (*the_extension->Callouts.thread_create)(
8d04: e1a01006 mov r1, r6
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
the_extension = (User_extensions_Control *) the_node;
if ( the_extension->Callouts.thread_create != NULL ) {
8d08: 0a000004 beq 8d20 <_User_extensions_Thread_create+0x40>
status = (*the_extension->Callouts.thread_create)(
8d0c: e5970004 ldr r0, [r7, #4]
8d10: e1a0e00f mov lr, pc
8d14: e12fff13 bx r3
_Thread_Executing,
the_thread
);
if ( !status )
8d18: e3500000 cmp r0, #0
8d1c: 08bd80f0 popeq {r4, r5, r6, r7, pc}
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
!_Chain_Is_tail( &_User_extensions_List, the_node ) ;
the_node = the_node->next ) {
8d20: e5944000 ldr r4, [r4]
{
Chain_Node *the_node;
User_extensions_Control *the_extension;
bool status;
for ( the_node = _Chain_First( &_User_extensions_List );
8d24: e1540005 cmp r4, r5
8d28: 1afffff3 bne 8cfc <_User_extensions_Thread_create+0x1c>
if ( !status )
return false;
}
}
return true;
8d2c: e3a00001 mov r0, #1
8d30: e8bd80f0 pop {r4, r5, r6, r7, pc}
8d34: e3a00001 mov r0, #1 <== NOT EXECUTED
}
8d38: e8bd80f0 pop {r4, r5, r6, r7, pc} <== NOT EXECUTED
0000ab80 <_Watchdog_Adjust>:
void _Watchdog_Adjust(
Chain_Control *header,
Watchdog_Adjust_directions direction,
Watchdog_Interval units
)
{
ab80: e92d41f0 push {r4, r5, r6, r7, r8, lr}
ab84: e1a04000 mov r4, r0
ab88: e1a05002 mov r5, r2
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
ab8c: e10f2000 mrs r2, CPSR
ab90: e3823080 orr r3, r2, #128 ; 0x80
ab94: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
ab98: e1a07000 mov r7, r0
ab9c: e4973004 ldr r3, [r7], #4
* hence the compiler must not assume *header to remain
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
aba0: e1530007 cmp r3, r7
aba4: 0a00001a beq ac14 <_Watchdog_Adjust+0x94>
switch ( direction ) {
aba8: e3510000 cmp r1, #0
abac: 1a00001a bne ac1c <_Watchdog_Adjust+0x9c>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
abb0: e3550000 cmp r5, #0
abb4: 0a000016 beq ac14 <_Watchdog_Adjust+0x94>
if ( units < _Watchdog_First( header )->delta_interval ) {
abb8: e5936010 ldr r6, [r3, #16]
abbc: e1550006 cmp r5, r6
abc0: 21a01002 movcs r1, r2
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
abc4: 23a08001 movcs r8, #1
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
abc8: 2a000005 bcs abe4 <_Watchdog_Adjust+0x64>
abcc: ea00001a b ac3c <_Watchdog_Adjust+0xbc> <== NOT EXECUTED
switch ( direction ) {
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
abd0: e0555006 subs r5, r5, r6
abd4: 0a00000d beq ac10 <_Watchdog_Adjust+0x90>
if ( units < _Watchdog_First( header )->delta_interval ) {
abd8: e5936010 ldr r6, [r3, #16]
abdc: e1560005 cmp r6, r5
abe0: 8a000014 bhi ac38 <_Watchdog_Adjust+0xb8>
_Watchdog_First( header )->delta_interval -= units;
break;
} else {
units -= _Watchdog_First( header )->delta_interval;
_Watchdog_First( header )->delta_interval = 1;
abe4: e5838010 str r8, [r3, #16]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
abe8: e129f001 msr CPSR_fc, r1
_ISR_Enable( level );
_Watchdog_Tickle( header );
abec: e1a00004 mov r0, r4
abf0: eb0000a4 bl ae88 <_Watchdog_Tickle>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
abf4: e10f1000 mrs r1, CPSR
abf8: e3813080 orr r3, r1, #128 ; 0x80
abfc: e129f003 msr CPSR_fc, r3
}
}
_ISR_Enable( level );
}
ac00: e5942000 ldr r2, [r4]
_Watchdog_Tickle( header );
_ISR_Disable( level );
if ( _Chain_Is_empty( header ) )
ac04: e1570002 cmp r7, r2
RTEMS_INLINE_ROUTINE Watchdog_Control *_Watchdog_First(
Chain_Control *header
)
{
return ( (Watchdog_Control *) _Chain_First( header ) );
ac08: e1a03002 mov r3, r2
ac0c: 1affffef bne abd0 <_Watchdog_Adjust+0x50>
ac10: e1a02001 mov r2, r1
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
ac14: e129f002 msr CPSR_fc, r2
}
}
_ISR_Enable( level );
}
ac18: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
* unmodified across that call.
*
* Till Straumann, 7/2003
*/
if ( !_Chain_Is_empty( header ) ) {
switch ( direction ) {
ac1c: e3510001 cmp r1, #1
ac20: 1afffffb bne ac14 <_Watchdog_Adjust+0x94>
case WATCHDOG_BACKWARD:
_Watchdog_First( header )->delta_interval += units;
ac24: e5931010 ldr r1, [r3, #16]
ac28: e0815005 add r5, r1, r5
ac2c: e5835010 str r5, [r3, #16]
ac30: e129f002 msr CPSR_fc, r2
}
}
_ISR_Enable( level );
}
ac34: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
ac38: e1a02001 mov r2, r1
_Watchdog_First( header )->delta_interval += units;
break;
case WATCHDOG_FORWARD:
while ( units ) {
if ( units < _Watchdog_First( header )->delta_interval ) {
_Watchdog_First( header )->delta_interval -= units;
ac3c: e0655006 rsb r5, r5, r6
ac40: e5835010 str r5, [r3, #16]
break;
ac44: eafffff2 b ac14 <_Watchdog_Adjust+0x94>
000066a4 <aio_fsync>:
)
{
rtems_aio_request *req;
int mode;
if (op != O_SYNC)
66a4: e3500a02 cmp r0, #8192 ; 0x2000
int aio_fsync(
int op,
struct aiocb *aiocbp
)
{
66a8: e92d4030 push {r4, r5, lr}
66ac: e1a04001 mov r4, r1
rtems_aio_request *req;
int mode;
if (op != O_SYNC)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
66b0: 13a05016 movne r5, #22
)
{
rtems_aio_request *req;
int mode;
if (op != O_SYNC)
66b4: 1a000011 bne 6700 <aio_fsync+0x5c>
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
66b8: e5910000 ldr r0, [r1]
66bc: e3a01003 mov r1, #3
66c0: eb001b5f bl d444 <fcntl>
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
66c4: e2000003 and r0, r0, #3
66c8: e2400001 sub r0, r0, #1
66cc: e3500001 cmp r0, #1
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
66d0: 83a05009 movhi r5, #9
if (op != O_SYNC)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
66d4: 8a000009 bhi 6700 <aio_fsync+0x5c>
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
req = malloc (sizeof (rtems_aio_request));
66d8: e3a00018 mov r0, #24
66dc: ebfff3f0 bl 36a4 <malloc>
if (req == NULL)
66e0: e2503000 subs r3, r0, #0
66e4: 0a000004 beq 66fc <aio_fsync+0x58>
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
66e8: e5834014 str r4, [r3, #20]
req->aiocbp->aio_lio_opcode = LIO_SYNC;
66ec: e3a03003 mov r3, #3
66f0: e584302c str r3, [r4, #44] ; 0x2c
return rtems_aio_enqueue (req);
}
66f4: e8bd4030 pop {r4, r5, lr}
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_SYNC;
return rtems_aio_enqueue (req);
66f8: ea000172 b 6cc8 <rtems_aio_enqueue>
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
req = malloc (sizeof (rtems_aio_request));
if (req == NULL)
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
66fc: e3a0500b mov r5, #11 <== NOT EXECUTED
6700: e3e03000 mvn r3, #0
6704: e5845030 str r5, [r4, #48] ; 0x30
6708: e5843034 str r3, [r4, #52] ; 0x34
670c: eb002924 bl 10ba4 <__errno>
6710: e5805000 str r5, [r0]
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_SYNC;
return rtems_aio_enqueue (req);
}
6714: e3e00000 mvn r0, #0
6718: e8bd8030 pop {r4, r5, pc}
00006eac <aio_read>:
* 0 - otherwise
*/
int
aio_read (struct aiocb *aiocbp)
{
6eac: e92d4030 push {r4, r5, lr}
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
6eb0: e3a01003 mov r1, #3
* 0 - otherwise
*/
int
aio_read (struct aiocb *aiocbp)
{
6eb4: e1a04000 mov r4, r0
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
6eb8: e5900000 ldr r0, [r0]
6ebc: eb001960 bl d444 <fcntl>
if (!(((mode & O_ACCMODE) == O_RDONLY) || ((mode & O_ACCMODE) == O_RDWR)))
6ec0: e2000003 and r0, r0, #3
6ec4: e3500002 cmp r0, #2
6ec8: 13500000 cmpne r0, #0
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
6ecc: 13a05009 movne r5, #9
{
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
if (!(((mode & O_ACCMODE) == O_RDONLY) || ((mode & O_ACCMODE) == O_RDWR)))
6ed0: 1a00000f bne 6f14 <aio_read+0x68>
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
if (aiocbp->aio_reqprio < 0 || aiocbp->aio_reqprio > AIO_PRIO_DELTA_MAX)
6ed4: e5943014 ldr r3, [r4, #20]
6ed8: e3530000 cmp r3, #0
6edc: 1a000013 bne 6f30 <aio_read+0x84>
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
if (aiocbp->aio_offset < 0)
6ee0: e5943008 ldr r3, [r4, #8]
6ee4: e3530000 cmp r3, #0
6ee8: ba000010 blt 6f30 <aio_read+0x84>
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
req = malloc (sizeof (rtems_aio_request));
6eec: e3a00018 mov r0, #24
6ef0: ebfff1eb bl 36a4 <malloc>
if (req == NULL)
6ef4: e2503000 subs r3, r0, #0
6ef8: 0a000004 beq 6f10 <aio_read+0x64>
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
6efc: e5834014 str r4, [r3, #20]
req->aiocbp->aio_lio_opcode = LIO_READ;
6f00: e3a03001 mov r3, #1
6f04: e584302c str r3, [r4, #44] ; 0x2c
return rtems_aio_enqueue (req);
}
6f08: e8bd4030 pop {r4, r5, lr}
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_READ;
return rtems_aio_enqueue (req);
6f0c: eaffff6d b 6cc8 <rtems_aio_enqueue>
if (aiocbp->aio_offset < 0)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
req = malloc (sizeof (rtems_aio_request));
if (req == NULL)
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
6f10: e3a0500b mov r5, #11 <== NOT EXECUTED
6f14: e3e03000 mvn r3, #0
6f18: e5845030 str r5, [r4, #48] ; 0x30
6f1c: e5843034 str r3, [r4, #52] ; 0x34
6f20: eb00271f bl 10ba4 <__errno>
6f24: e5805000 str r5, [r0]
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_READ;
return rtems_aio_enqueue (req);
}
6f28: e3e00000 mvn r0, #0
6f2c: e8bd8030 pop {r4, r5, pc}
if (aiocbp->aio_reqprio < 0 || aiocbp->aio_reqprio > AIO_PRIO_DELTA_MAX)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
if (aiocbp->aio_offset < 0)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
6f30: e3a05016 mov r5, #22
6f34: eafffff6 b 6f14 <aio_read+0x68>
00006f40 <aio_write>:
* 0 - otherwise
*/
int
aio_write (struct aiocb *aiocbp)
{
6f40: e92d4030 push {r4, r5, lr}
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
6f44: e3a01003 mov r1, #3
* 0 - otherwise
*/
int
aio_write (struct aiocb *aiocbp)
{
6f48: e1a04000 mov r4, r0
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
6f4c: e5900000 ldr r0, [r0]
6f50: eb00193b bl d444 <fcntl>
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
6f54: e2000003 and r0, r0, #3
6f58: e2400001 sub r0, r0, #1
6f5c: e3500001 cmp r0, #1
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
6f60: 83a05009 movhi r5, #9
{
rtems_aio_request *req;
int mode;
mode = fcntl (aiocbp->aio_fildes, F_GETFL);
if (!(((mode & O_ACCMODE) == O_WRONLY) || ((mode & O_ACCMODE) == O_RDWR)))
6f64: 8a00000f bhi 6fa8 <aio_write+0x68>
rtems_aio_set_errno_return_minus_one (EBADF, aiocbp);
if (aiocbp->aio_reqprio < 0 || aiocbp->aio_reqprio > AIO_PRIO_DELTA_MAX)
6f68: e5943014 ldr r3, [r4, #20]
6f6c: e3530000 cmp r3, #0
6f70: 1a000013 bne 6fc4 <aio_write+0x84>
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
if (aiocbp->aio_offset < 0)
6f74: e5943008 ldr r3, [r4, #8]
6f78: e3530000 cmp r3, #0
6f7c: ba000010 blt 6fc4 <aio_write+0x84>
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
req = malloc (sizeof (rtems_aio_request));
6f80: e3a00018 mov r0, #24
6f84: ebfff1c6 bl 36a4 <malloc>
if (req == NULL)
6f88: e2503000 subs r3, r0, #0
6f8c: 0a000004 beq 6fa4 <aio_write+0x64>
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
6f90: e5834014 str r4, [r3, #20]
req->aiocbp->aio_lio_opcode = LIO_WRITE;
6f94: e3a03002 mov r3, #2
6f98: e584302c str r3, [r4, #44] ; 0x2c
return rtems_aio_enqueue (req);
}
6f9c: e8bd4030 pop {r4, r5, lr}
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_WRITE;
return rtems_aio_enqueue (req);
6fa0: eaffff48 b 6cc8 <rtems_aio_enqueue>
if (aiocbp->aio_offset < 0)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
req = malloc (sizeof (rtems_aio_request));
if (req == NULL)
rtems_aio_set_errno_return_minus_one (EAGAIN, aiocbp);
6fa4: e3a0500b mov r5, #11 <== NOT EXECUTED
6fa8: e3e03000 mvn r3, #0
6fac: e5845030 str r5, [r4, #48] ; 0x30
6fb0: e5843034 str r3, [r4, #52] ; 0x34
6fb4: eb0026fa bl 10ba4 <__errno>
6fb8: e5805000 str r5, [r0]
req->aiocbp = aiocbp;
req->aiocbp->aio_lio_opcode = LIO_WRITE;
return rtems_aio_enqueue (req);
}
6fbc: e3e00000 mvn r0, #0
6fc0: e8bd8030 pop {r4, r5, pc}
if (aiocbp->aio_reqprio < 0 || aiocbp->aio_reqprio > AIO_PRIO_DELTA_MAX)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
if (aiocbp->aio_offset < 0)
rtems_aio_set_errno_return_minus_one (EINVAL, aiocbp);
6fc4: e3a05016 mov r5, #22
6fc8: eafffff6 b 6fa8 <aio_write+0x68>
00022cf8 <killinfo>:
int killinfo(
pid_t pid,
int sig,
const union sigval *value
)
{
22cf8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
22cfc: e24dd00c sub sp, sp, #12
22d00: e1a04000 mov r4, r0
22d04: e1a05001 mov r5, r1
22d08: e1a08002 mov r8, r2
POSIX_signals_Siginfo_node *psiginfo;
/*
* Only supported for the "calling process" (i.e. this node).
*/
if ( pid != getpid() )
22d0c: ebffff40 bl 22a14 <getpid>
22d10: e1500004 cmp r0, r4
22d14: 1a000096 bne 22f74 <killinfo+0x27c>
rtems_set_errno_and_return_minus_one( ESRCH );
/*
* Validate the signal passed.
*/
if ( !sig )
22d18: e3550000 cmp r5, #0
22d1c: 0a000099 beq 22f88 <killinfo+0x290>
static inline bool is_valid_signo(
int signo
)
{
return ((signo) >= 1 && (signo) <= 32 );
22d20: e2454001 sub r4, r5, #1
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
22d24: e354001f cmp r4, #31
22d28: 8a000096 bhi 22f88 <killinfo+0x290>
rtems_set_errno_and_return_minus_one( EINVAL );
/*
* If the signal is being ignored, then we are out of here.
*/
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN )
22d2c: e59f6280 ldr r6, [pc, #640] ; 22fb4 <killinfo+0x2bc>
22d30: e1a07085 lsl r7, r5, #1
22d34: e0873005 add r3, r7, r5
22d38: e0863103 add r3, r6, r3, lsl #2
22d3c: e5933008 ldr r3, [r3, #8]
22d40: e3530001 cmp r3, #1
return 0;
22d44: 03a00000 moveq r0, #0
rtems_set_errno_and_return_minus_one( EINVAL );
/*
* If the signal is being ignored, then we are out of here.
*/
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN )
22d48: 0a000039 beq 22e34 <killinfo+0x13c>
/*
* P1003.1c/Draft 10, p. 33 says that certain signals should always
* be directed to the executing thread such as those caused by hardware
* faults.
*/
if ( (sig == SIGFPE) || (sig == SIGILL) || (sig == SIGSEGV ) )
22d4c: e3550008 cmp r5, #8
22d50: 13550004 cmpne r5, #4
22d54: 0a000038 beq 22e3c <killinfo+0x144>
22d58: e355000b cmp r5, #11
22d5c: 0a000036 beq 22e3c <killinfo+0x144>
static inline sigset_t signo_to_mask(
uint32_t sig
)
{
return 1u << (sig - 1);
22d60: e3a03001 mov r3, #1
/*
* Build up a siginfo structure
*/
siginfo = &siginfo_struct;
siginfo->si_signo = sig;
siginfo->si_code = SI_USER;
22d64: e58d3004 str r3, [sp, #4]
/*
* Build up a siginfo structure
*/
siginfo = &siginfo_struct;
siginfo->si_signo = sig;
22d68: e58d5000 str r5, [sp]
siginfo->si_code = SI_USER;
if ( !value ) {
22d6c: e3580000 cmp r8, #0
22d70: e1a04413 lsl r4, r3, r4
siginfo->si_value.sival_int = 0;
} else {
siginfo->si_value = *value;
22d74: 15983000 ldrne r3, [r8]
22d78: 158d3008 strne r3, [sp, #8]
22d7c: e59f3234 ldr r3, [pc, #564] ; 22fb8 <killinfo+0x2c0>
22d80: e5932000 ldr r2, [r3]
22d84: e2822001 add r2, r2, #1
*/
siginfo = &siginfo_struct;
siginfo->si_signo = sig;
siginfo->si_code = SI_USER;
if ( !value ) {
siginfo->si_value.sival_int = 0;
22d88: 058d8008 streq r8, [sp, #8]
22d8c: e5832000 str r2, [r3]
/*
* Is the currently executing thread interested? If so then it will
* get it an execute it as soon as the dispatcher executes.
*/
the_thread = _Thread_Executing;
22d90: e59f3224 ldr r3, [pc, #548] ; 22fbc <killinfo+0x2c4>
22d94: e5930004 ldr r0, [r3, #4]
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
if ( _POSIX_signals_Is_interested( api, mask ) ) {
22d98: e59030fc ldr r3, [r0, #252] ; 0xfc
22d9c: e59330d0 ldr r3, [r3, #208] ; 0xd0
22da0: e1d43003 bics r3, r4, r3
22da4: 1a000014 bne 22dfc <killinfo+0x104>
}
DEBUG_STEP("\n");
_Thread_Enable_dispatch();
return 0;
}
22da8: e59f1210 ldr r1, [pc, #528] ; 22fc0 <killinfo+0x2c8>
22dac: e4913004 ldr r3, [r1], #4
/* XXX violation of visibility -- need to define thread queue support */
the_chain = &_POSIX_signals_Wait_queue.Queues.Fifo;
for ( the_node = _Chain_First( the_chain );
22db0: e1530001 cmp r3, r1
22db4: 0a000031 beq 22e80 <killinfo+0x188>
#endif
/*
* Is this thread is actually blocked waiting for the signal?
*/
if (the_thread->Wait.option & mask)
22db8: e5932030 ldr r2, [r3, #48] ; 0x30
22dbc: e1140002 tst r4, r2
for ( the_node = _Chain_First( the_chain );
!_Chain_Is_tail( the_chain, the_node ) ;
the_node = the_node->next ) {
the_thread = (Thread_Control *)the_node;
22dc0: e1a00003 mov r0, r3
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
22dc4: e59320fc ldr r2, [r3, #252] ; 0xfc
#endif
/*
* Is this thread is actually blocked waiting for the signal?
*/
if (the_thread->Wait.option & mask)
22dc8: 0a000008 beq 22df0 <killinfo+0xf8>
22dcc: ea00000a b 22dfc <killinfo+0x104>
the_chain = &_POSIX_signals_Wait_queue.Queues.Fifo;
for ( the_node = _Chain_First( the_chain );
!_Chain_Is_tail( the_chain, the_node ) ;
the_node = the_node->next ) {
22dd0: e5933000 ldr r3, [r3]
/* XXX violation of visibility -- need to define thread queue support */
the_chain = &_POSIX_signals_Wait_queue.Queues.Fifo;
for ( the_node = _Chain_First( the_chain );
22dd4: e1530001 cmp r3, r1
22dd8: 0a000028 beq 22e80 <killinfo+0x188>
#endif
/*
* Is this thread is actually blocked waiting for the signal?
*/
if (the_thread->Wait.option & mask)
22ddc: e5932030 ldr r2, [r3, #48] ; 0x30 <== NOT EXECUTED
22de0: e1140002 tst r4, r2 <== NOT EXECUTED
for ( the_node = _Chain_First( the_chain );
!_Chain_Is_tail( the_chain, the_node ) ;
the_node = the_node->next ) {
the_thread = (Thread_Control *)the_node;
22de4: e1a00003 mov r0, r3 <== NOT EXECUTED
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
22de8: e59320fc ldr r2, [r3, #252] ; 0xfc <== NOT EXECUTED
#endif
/*
* Is this thread is actually blocked waiting for the signal?
*/
if (the_thread->Wait.option & mask)
22dec: 1a000002 bne 22dfc <killinfo+0x104> <== NOT EXECUTED
/*
* Is this thread is blocked waiting for another signal but has
* not blocked this one?
*/
if (~api->signals_blocked & mask)
22df0: e59220d0 ldr r2, [r2, #208] ; 0xd0
22df4: e1d42002 bics r2, r4, r2
22df8: 0afffff4 beq 22dd0 <killinfo+0xd8>
/*
* Returns true if the signal was synchronously given to a thread
* blocked waiting for the signal.
*/
if ( _POSIX_signals_Unblock_thread( the_thread, sig, siginfo ) ) {
22dfc: e1a01005 mov r1, r5
22e00: e1a0200d mov r2, sp
22e04: eb00007d bl 23000 <_POSIX_signals_Unblock_thread>
22e08: e3500000 cmp r0, #0
22e0c: 1a000006 bne 22e2c <killinfo+0x134>
* We may have woken up a thread but we definitely need to post the
* signal to the process wide information set.
*/
_POSIX_signals_Set_process_signals( mask );
if ( _POSIX_signals_Vectors[ sig ].sa_flags == SA_SIGINFO ) {
22e10: e0875005 add r5, r7, r5
/*
* We may have woken up a thread but we definitely need to post the
* signal to the process wide information set.
*/
_POSIX_signals_Set_process_signals( mask );
22e14: e1a00004 mov r0, r4
if ( _POSIX_signals_Vectors[ sig ].sa_flags == SA_SIGINFO ) {
22e18: e1a05105 lsl r5, r5, #2
/*
* We may have woken up a thread but we definitely need to post the
* signal to the process wide information set.
*/
_POSIX_signals_Set_process_signals( mask );
22e1c: eb00006d bl 22fd8 <_POSIX_signals_Set_process_signals>
if ( _POSIX_signals_Vectors[ sig ].sa_flags == SA_SIGINFO ) {
22e20: e7963005 ldr r3, [r6, r5]
22e24: e3530002 cmp r3, #2
22e28: 0a000007 beq 22e4c <killinfo+0x154>
_Chain_Append( &_POSIX_signals_Siginfo[ sig ], &psiginfo->Node );
}
DEBUG_STEP("\n");
_Thread_Enable_dispatch();
22e2c: ebffa9ec bl d5e4 <_Thread_Enable_dispatch>
return 0;
22e30: e3a00000 mov r0, #0
}
22e34: e28dd00c add sp, sp, #12
22e38: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
* P1003.1c/Draft 10, p. 33 says that certain signals should always
* be directed to the executing thread such as those caused by hardware
* faults.
*/
if ( (sig == SIGFPE) || (sig == SIGILL) || (sig == SIGSEGV ) )
return pthread_kill( pthread_self(), sig );
22e3c: eb0000f4 bl 23214 <pthread_self>
22e40: e1a01005 mov r1, r5
22e44: eb0000bc bl 2313c <pthread_kill>
22e48: eafffff9 b 22e34 <killinfo+0x13c>
_POSIX_signals_Set_process_signals( mask );
if ( _POSIX_signals_Vectors[ sig ].sa_flags == SA_SIGINFO ) {
psiginfo = (POSIX_signals_Siginfo_node *)
_Chain_Get( &_POSIX_signals_Inactive_siginfo );
22e4c: e59f0170 ldr r0, [pc, #368] ; 22fc4 <killinfo+0x2cc>
22e50: ebffa2ec bl ba08 <_Chain_Get>
if ( !psiginfo ) {
22e54: e250c000 subs ip, r0, #0
22e58: 0a00004f beq 22f9c <killinfo+0x2a4>
_Thread_Enable_dispatch();
rtems_set_errno_and_return_minus_one( EAGAIN );
}
psiginfo->Info = *siginfo;
22e5c: e1a0300d mov r3, sp
22e60: e8930007 ldm r3, {r0, r1, r2}
22e64: e28c3008 add r3, ip, #8
22e68: e8830007 stm r3, {r0, r1, r2}
_Chain_Append( &_POSIX_signals_Siginfo[ sig ], &psiginfo->Node );
22e6c: e59f0154 ldr r0, [pc, #340] ; 22fc8 <killinfo+0x2d0>
22e70: e1a0100c mov r1, ip
22e74: e0800005 add r0, r0, r5
22e78: ebffa2cf bl b9bc <_Chain_Append>
22e7c: eaffffea b 22e2c <killinfo+0x134>
* NOTES:
*
* + rtems internal threads do not receive signals.
*/
interested = NULL;
interested_priority = PRIORITY_MAXIMUM + 1;
22e80: e59f3144 ldr r3, [pc, #324] ; 22fcc <killinfo+0x2d4>
22e84: e5d3e000 ldrb lr, [r3]
22e88: e59fa140 ldr sl, [pc, #320] ; 22fd0 <killinfo+0x2d8>
22e8c: e28ee001 add lr, lr, #1
*
* NOTES:
*
* + rtems internal threads do not receive signals.
*/
interested = NULL;
22e90: e3a08000 mov r8, #0
for (the_api = OBJECTS_CLASSIC_API; the_api <= OBJECTS_APIS_LAST; the_api++) {
/*
* This can occur when no one is interested and an API is not configured.
*/
if ( !_Objects_Information_table[ the_api ] )
22e94: e5ba3004 ldr r3, [sl, #4]!
22e98: e3530000 cmp r3, #0
22e9c: 0a000022 beq 22f2c <killinfo+0x234>
continue;
the_info = _Objects_Information_table[ the_api ][ 1 ];
22ea0: e5933004 ldr r3, [r3, #4]
*/
if ( !the_info )
continue;
#endif
maximum = the_info->maximum;
22ea4: e1d3c1b0 ldrh ip, [r3, #16]
object_table = the_info->local_table;
for ( index = 1 ; index <= maximum ; index++ ) {
22ea8: e35c0000 cmp ip, #0
if ( !the_info )
continue;
#endif
maximum = the_info->maximum;
object_table = the_info->local_table;
22eac: e593101c ldr r1, [r3, #28]
for ( index = 1 ; index <= maximum ; index++ ) {
22eb0: 0a00001d beq 22f2c <killinfo+0x234>
22eb4: e3a02001 mov r2, #1
the_thread = (Thread_Control *) object_table[ index ];
22eb8: e5b13004 ldr r3, [r1, #4]!
if ( !the_thread )
22ebc: e3530000 cmp r3, #0
22ec0: 0a000016 beq 22f20 <killinfo+0x228>
/*
* If this thread is of lower priority than the interested thread,
* go on to the next thread.
*/
if ( the_thread->current_priority > interested_priority )
22ec4: e5930014 ldr r0, [r3, #20]
22ec8: e150000e cmp r0, lr
22ecc: 8a000013 bhi 22f20 <killinfo+0x228>
#if defined(RTEMS_DEBUG)
if ( !api )
continue;
#endif
if ( !_POSIX_signals_Is_interested( api, mask ) )
22ed0: e59390fc ldr r9, [r3, #252] ; 0xfc
22ed4: e59990d0 ldr r9, [r9, #208] ; 0xd0
22ed8: e1d49009 bics r9, r4, r9
22edc: 0a00000f beq 22f20 <killinfo+0x228>
*
* NOTE: We initialized interested_priority to PRIORITY_MAXIMUM + 1
* so we never have to worry about deferencing a NULL
* interested thread.
*/
if ( the_thread->current_priority < interested_priority ) {
22ee0: e150000e cmp r0, lr
22ee4: 3a00001c bcc 22f5c <killinfo+0x264>
* and blocking interruptibutable by signal.
*
* If the interested thread is ready, don't think about changing.
*/
if ( interested && !_States_Is_ready( interested->current_state ) ) {
22ee8: e3580000 cmp r8, #0
22eec: 0a00000b beq 22f20 <killinfo+0x228>
22ef0: e5989010 ldr r9, [r8, #16]
22ef4: e3590000 cmp r9, #0
22ef8: 0a000008 beq 22f20 <killinfo+0x228>
/* preferred ready over blocked */
DEBUG_STEP("5");
if ( _States_Is_ready( the_thread->current_state ) ) {
22efc: e593b010 ldr fp, [r3, #16]
22f00: e35b0000 cmp fp, #0
22f04: 0a000014 beq 22f5c <killinfo+0x264>
continue;
}
DEBUG_STEP("6");
/* prefer blocked/interruptible over blocked/not interruptible */
if ( !_States_Is_interruptible_by_signal(interested->current_state) ) {
22f08: e3190201 tst r9, #268435456 ; 0x10000000
22f0c: 1a000003 bne 22f20 <killinfo+0x228>
*/
RTEMS_INLINE_ROUTINE bool _States_Is_interruptible_by_signal (
States_Control the_states
)
{
return (the_states & STATES_INTERRUPTIBLE_BY_SIGNAL);
22f10: e20bb201 and fp, fp, #268435456 ; 0x10000000
DEBUG_STEP("7");
if ( _States_Is_interruptible_by_signal(the_thread->current_state) ) {
22f14: e35b0000 cmp fp, #0
22f18: 11a0e000 movne lr, r0
22f1c: 11a08003 movne r8, r3
#endif
maximum = the_info->maximum;
object_table = the_info->local_table;
for ( index = 1 ; index <= maximum ; index++ ) {
22f20: e2822001 add r2, r2, #1
22f24: e15c0002 cmp ip, r2
22f28: 2affffe2 bcs 22eb8 <killinfo+0x1c0>
* + rtems internal threads do not receive signals.
*/
interested = NULL;
interested_priority = PRIORITY_MAXIMUM + 1;
for (the_api = OBJECTS_CLASSIC_API; the_api <= OBJECTS_APIS_LAST; the_api++) {
22f2c: e59f30a0 ldr r3, [pc, #160] ; 22fd4 <killinfo+0x2dc>
22f30: e15a0003 cmp sl, r3
22f34: 1affffd6 bne 22e94 <killinfo+0x19c>
}
}
}
}
if ( interested ) {
22f38: e3580000 cmp r8, #0
22f3c: 0affffb3 beq 22e10 <killinfo+0x118>
22f40: e1a00008 mov r0, r8
/*
* Returns true if the signal was synchronously given to a thread
* blocked waiting for the signal.
*/
if ( _POSIX_signals_Unblock_thread( the_thread, sig, siginfo ) ) {
22f44: e1a01005 mov r1, r5
22f48: e1a0200d mov r2, sp
22f4c: eb00002b bl 23000 <_POSIX_signals_Unblock_thread>
22f50: e3500000 cmp r0, #0
22f54: 0affffad beq 22e10 <killinfo+0x118>
22f58: eaffffb3 b 22e2c <killinfo+0x134> <== NOT EXECUTED
#endif
maximum = the_info->maximum;
object_table = the_info->local_table;
for ( index = 1 ; index <= maximum ; index++ ) {
22f5c: e2822001 add r2, r2, #1
22f60: e15c0002 cmp ip, r2
*/
if ( interested && !_States_Is_ready( interested->current_state ) ) {
/* preferred ready over blocked */
DEBUG_STEP("5");
if ( _States_Is_ready( the_thread->current_state ) ) {
22f64: e1a0e000 mov lr, r0
22f68: e1a08003 mov r8, r3
#endif
maximum = the_info->maximum;
object_table = the_info->local_table;
for ( index = 1 ; index <= maximum ; index++ ) {
22f6c: 2affffd1 bcs 22eb8 <killinfo+0x1c0>
22f70: eaffffed b 22f2c <killinfo+0x234>
/*
* Only supported for the "calling process" (i.e. this node).
*/
if ( pid != getpid() )
rtems_set_errno_and_return_minus_one( ESRCH );
22f74: ebffc1bd bl 13670 <__errno>
22f78: e3a03003 mov r3, #3
22f7c: e5803000 str r3, [r0]
22f80: e3e00000 mvn r0, #0
22f84: eaffffaa b 22e34 <killinfo+0x13c>
*/
if ( !sig )
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
rtems_set_errno_and_return_minus_one( EINVAL );
22f88: ebffc1b8 bl 13670 <__errno>
22f8c: e3a03016 mov r3, #22
22f90: e5803000 str r3, [r0]
22f94: e3e00000 mvn r0, #0
22f98: eaffffa5 b 22e34 <killinfo+0x13c>
if ( _POSIX_signals_Vectors[ sig ].sa_flags == SA_SIGINFO ) {
psiginfo = (POSIX_signals_Siginfo_node *)
_Chain_Get( &_POSIX_signals_Inactive_siginfo );
if ( !psiginfo ) {
_Thread_Enable_dispatch();
22f9c: ebffa990 bl d5e4 <_Thread_Enable_dispatch>
rtems_set_errno_and_return_minus_one( EAGAIN );
22fa0: ebffc1b2 bl 13670 <__errno>
22fa4: e3a0300b mov r3, #11
22fa8: e5803000 str r3, [r0]
22fac: e3e00000 mvn r0, #0
22fb0: eaffff9f b 22e34 <killinfo+0x13c>
0000ac74 <pthread_attr_setschedpolicy>:
int pthread_attr_setschedpolicy(
pthread_attr_t *attr,
int policy
)
{
if ( !attr || !attr->is_initialized )
ac74: e3500000 cmp r0, #0
ac78: 0a00000e beq acb8 <pthread_attr_setschedpolicy+0x44>
ac7c: e5903000 ldr r3, [r0]
ac80: e3530000 cmp r3, #0
ac84: 0a00000b beq acb8 <pthread_attr_setschedpolicy+0x44>
return EINVAL;
switch ( policy ) {
ac88: e3510004 cmp r1, #4
ac8c: 9a000001 bls ac98 <pthread_attr_setschedpolicy+0x24>
case SCHED_SPORADIC:
attr->schedpolicy = policy;
return 0;
default:
return ENOTSUP;
ac90: e3a00086 mov r0, #134 ; 0x86
}
}
ac94: e12fff1e bx lr
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
switch ( policy ) {
ac98: e3a03001 mov r3, #1
ac9c: e1a03113 lsl r3, r3, r1
aca0: e3130017 tst r3, #23
case SCHED_OTHER:
case SCHED_FIFO:
case SCHED_RR:
case SCHED_SPORADIC:
attr->schedpolicy = policy;
aca4: 15801014 strne r1, [r0, #20]
return 0;
aca8: 13a00000 movne r0, #0
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
switch ( policy ) {
acac: 112fff1e bxne lr
case SCHED_SPORADIC:
attr->schedpolicy = policy;
return 0;
default:
return ENOTSUP;
acb0: e3a00086 mov r0, #134 ; 0x86 <== NOT EXECUTED
}
}
acb4: e12fff1e bx lr <== NOT EXECUTED
pthread_attr_t *attr,
int policy
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
acb8: e3a00016 mov r0, #22
acbc: e12fff1e bx lr
0002313c <pthread_kill>:
int pthread_kill(
pthread_t thread,
int sig
)
{
2313c: e92d40f0 push {r4, r5, r6, r7, lr}
POSIX_API_Control *api;
Thread_Control *the_thread;
Objects_Locations location;
if ( !sig )
23140: e2516000 subs r6, r1, #0
int pthread_kill(
pthread_t thread,
int sig
)
{
23144: e24dd008 sub sp, sp, #8
POSIX_API_Control *api;
Thread_Control *the_thread;
Objects_Locations location;
if ( !sig )
23148: 0a000025 beq 231e4 <pthread_kill+0xa8>
static inline bool is_valid_signo(
int signo
)
{
return ((signo) >= 1 && (signo) <= 32 );
2314c: e2467001 sub r7, r6, #1
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
23150: e357001f cmp r7, #31
23154: 8a000022 bhi 231e4 <pthread_kill+0xa8>
rtems_set_errno_and_return_minus_one( EINVAL );
the_thread = _Thread_Get( thread, &location );
23158: e28d1004 add r1, sp, #4
2315c: ebffa929 bl d608 <_Thread_Get>
switch ( location ) {
23160: e59d2004 ldr r2, [sp, #4]
23164: e3520000 cmp r2, #0
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
rtems_set_errno_and_return_minus_one( EINVAL );
the_thread = _Thread_Get( thread, &location );
23168: e1a04000 mov r4, r0
switch ( location ) {
2316c: 1a000021 bne 231f8 <pthread_kill+0xbc>
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
if ( sig ) {
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN ) {
23170: e59f3094 ldr r3, [pc, #148] ; 2320c <pthread_kill+0xd0>
23174: e0861086 add r1, r6, r6, lsl #1
23178: e0833101 add r3, r3, r1, lsl #2
2317c: e5933008 ldr r3, [r3, #8]
23180: e3530001 cmp r3, #1
case OBJECTS_LOCAL:
/*
* If sig == 0 then just validate arguments
*/
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
23184: e59030fc ldr r3, [r0, #252] ; 0xfc
if ( sig ) {
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN ) {
23188: 0a000010 beq 231d0 <pthread_kill+0x94>
return 0;
}
/* XXX critical section */
api->signals_pending |= signo_to_mask( sig );
2318c: e59310d4 ldr r1, [r3, #212] ; 0xd4
static inline sigset_t signo_to_mask(
uint32_t sig
)
{
return 1u << (sig - 1);
23190: e3a05001 mov r5, #1
23194: e1817715 orr r7, r1, r5, lsl r7
(void) _POSIX_signals_Unblock_thread( the_thread, sig, NULL );
23198: e1a01006 mov r1, r6
return 0;
}
/* XXX critical section */
api->signals_pending |= signo_to_mask( sig );
2319c: e58370d4 str r7, [r3, #212] ; 0xd4
(void) _POSIX_signals_Unblock_thread( the_thread, sig, NULL );
231a0: ebffff96 bl 23000 <_POSIX_signals_Unblock_thread>
if ( _ISR_Is_in_progress() && _Thread_Is_executing( the_thread ) )
231a4: e59f3064 ldr r3, [pc, #100] ; 23210 <pthread_kill+0xd4>
231a8: e5932000 ldr r2, [r3]
231ac: e3520000 cmp r2, #0
231b0: 0a000002 beq 231c0 <pthread_kill+0x84>
231b4: e5932004 ldr r2, [r3, #4]
231b8: e1540002 cmp r4, r2
_Thread_Dispatch_necessary = true;
231bc: 05c35010 strbeq r5, [r3, #16]
}
_Thread_Enable_dispatch();
231c0: ebffa907 bl d5e4 <_Thread_Enable_dispatch>
return 0;
231c4: e3a00000 mov r0, #0
case OBJECTS_ERROR:
break;
}
rtems_set_errno_and_return_minus_one( ESRCH );
}
231c8: e28dd008 add sp, sp, #8
231cc: e8bd80f0 pop {r4, r5, r6, r7, pc}
api = the_thread->API_Extensions[ THREAD_API_POSIX ];
if ( sig ) {
if ( _POSIX_signals_Vectors[ sig ].sa_handler == SIG_IGN ) {
_Thread_Enable_dispatch();
231d0: e58d2000 str r2, [sp]
231d4: ebffa902 bl d5e4 <_Thread_Enable_dispatch>
return 0;
231d8: e59d2000 ldr r2, [sp]
231dc: e1a00002 mov r0, r2
231e0: eafffff8 b 231c8 <pthread_kill+0x8c>
if ( !sig )
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
rtems_set_errno_and_return_minus_one( EINVAL );
231e4: ebffc121 bl 13670 <__errno>
231e8: e3a03016 mov r3, #22
231ec: e5803000 str r3, [r0]
231f0: e3e00000 mvn r0, #0
231f4: eafffff3 b 231c8 <pthread_kill+0x8c>
#endif
case OBJECTS_ERROR:
break;
}
rtems_set_errno_and_return_minus_one( ESRCH );
231f8: ebffc11c bl 13670 <__errno> <== NOT EXECUTED
231fc: e3a03003 mov r3, #3 <== NOT EXECUTED
23200: e5803000 str r3, [r0] <== NOT EXECUTED
23204: e3e00000 mvn r0, #0 <== NOT EXECUTED
23208: eaffffee b 231c8 <pthread_kill+0x8c> <== NOT EXECUTED
00007b28 <pthread_mutexattr_setpshared>:
int pthread_mutexattr_setpshared(
pthread_mutexattr_t *attr,
int pshared
)
{
if ( !attr || !attr->is_initialized )
7b28: e3500000 cmp r0, #0
7b2c: 0a000008 beq 7b54 <pthread_mutexattr_setpshared+0x2c>
7b30: e5903000 ldr r3, [r0]
7b34: e3530000 cmp r3, #0
7b38: 0a000005 beq 7b54 <pthread_mutexattr_setpshared+0x2c>
return EINVAL;
switch ( pshared ) {
7b3c: e3510001 cmp r1, #1
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
7b40: 95801004 strls r1, [r0, #4]
return 0;
7b44: 93a00000 movls r0, #0
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
switch ( pshared ) {
7b48: 912fff1e bxls lr
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
return 0;
default:
return EINVAL;
7b4c: e3a00016 mov r0, #22 <== NOT EXECUTED
}
}
7b50: e12fff1e bx lr <== NOT EXECUTED
pthread_mutexattr_t *attr,
int pshared
)
{
if ( !attr || !attr->is_initialized )
return EINVAL;
7b54: e3a00016 mov r0, #22
7b58: e12fff1e bx lr
00006f80 <pthread_rwlock_timedrdlock>:
int pthread_rwlock_timedrdlock(
pthread_rwlock_t *rwlock,
const struct timespec *abstime
)
{
6f80: e92d4030 push {r4, r5, lr}
Objects_Locations location;
Watchdog_Interval ticks;
bool do_wait = true;
POSIX_Absolute_timeout_conversion_results_t status;
if ( !rwlock )
6f84: e2505000 subs r5, r0, #0
int pthread_rwlock_timedrdlock(
pthread_rwlock_t *rwlock,
const struct timespec *abstime
)
{
6f88: e24dd00c sub sp, sp, #12
Objects_Locations location;
Watchdog_Interval ticks;
bool do_wait = true;
POSIX_Absolute_timeout_conversion_results_t status;
if ( !rwlock )
6f8c: 0a00001d beq 7008 <pthread_rwlock_timedrdlock+0x88>
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
6f90: e1a00001 mov r0, r1
6f94: e28d1004 add r1, sp, #4
6f98: eb001a2f bl d85c <_POSIX_Absolute_timeout_to_ticks>
6f9c: e5951000 ldr r1, [r5]
6fa0: e1a04000 mov r4, r0
6fa4: e28d2008 add r2, sp, #8
6fa8: e59f0098 ldr r0, [pc, #152] ; 7048 <pthread_rwlock_timedrdlock+0xc8>
6fac: eb000aad bl 9a68 <_Objects_Get>
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
the_rwlock = _POSIX_RWLock_Get( rwlock, &location );
switch ( location ) {
6fb0: e59d3008 ldr r3, [sp, #8]
6fb4: e3530000 cmp r3, #0
6fb8: 1a000012 bne 7008 <pthread_rwlock_timedrdlock+0x88>
case OBJECTS_LOCAL:
_CORE_RWLock_Obtain_for_reading(
6fbc: e5951000 ldr r1, [r5]
int _EXFUN(pthread_rwlock_init,
(pthread_rwlock_t *__rwlock, _CONST pthread_rwlockattr_t *__attr));
int _EXFUN(pthread_rwlock_destroy, (pthread_rwlock_t *__rwlock));
int _EXFUN(pthread_rwlock_rdlock,(pthread_rwlock_t *__rwlock));
int _EXFUN(pthread_rwlock_tryrdlock,(pthread_rwlock_t *__rwlock));
int _EXFUN(pthread_rwlock_timedrdlock,
6fc0: e3540003 cmp r4, #3
6fc4: 13a05000 movne r5, #0
6fc8: 03a05001 moveq r5, #1
6fcc: e58d3000 str r3, [sp]
6fd0: e2800010 add r0, r0, #16
6fd4: e1a02005 mov r2, r5
6fd8: e59d3004 ldr r3, [sp, #4]
6fdc: eb00073d bl 8cd8 <_CORE_RWLock_Obtain_for_reading>
do_wait,
ticks,
NULL
);
_Thread_Enable_dispatch();
6fe0: eb000dd3 bl a734 <_Thread_Enable_dispatch>
if ( !do_wait ) {
6fe4: e3550000 cmp r5, #0
6fe8: 1a000011 bne 7034 <pthread_rwlock_timedrdlock+0xb4>
if ( _Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE ) {
6fec: e59f3058 ldr r3, [pc, #88] ; 704c <pthread_rwlock_timedrdlock+0xcc>
6ff0: e5933004 ldr r3, [r3, #4]
6ff4: e5930034 ldr r0, [r3, #52] ; 0x34
6ff8: e3500002 cmp r0, #2
6ffc: 0a000004 beq 7014 <pthread_rwlock_timedrdlock+0x94>
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
7000: eb000046 bl 7120 <_POSIX_RWLock_Translate_core_RWLock_return_code>
7004: ea000000 b 700c <pthread_rwlock_timedrdlock+0x8c>
_Thread_Enable_dispatch();
if ( !do_wait ) {
if ( _Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
return EINVAL;
7008: e3a00016 mov r0, #22
case OBJECTS_ERROR:
break;
}
return EINVAL;
}
700c: e28dd00c add sp, sp, #12
7010: e8bd8030 pop {r4, r5, pc}
);
_Thread_Enable_dispatch();
if ( !do_wait ) {
if ( _Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
7014: e3540000 cmp r4, #0
7018: 0afffffa beq 7008 <pthread_rwlock_timedrdlock+0x88>
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
701c: e2444001 sub r4, r4, #1
7020: e3540001 cmp r4, #1
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
7024: 93a00074 movls r0, #116 ; 0x74
_Thread_Enable_dispatch();
if ( !do_wait ) {
if ( _Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
7028: 9afffff7 bls 700c <pthread_rwlock_timedrdlock+0x8c>
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
702c: eb00003b bl 7120 <_POSIX_RWLock_Translate_core_RWLock_return_code><== NOT EXECUTED
7030: eafffff5 b 700c <pthread_rwlock_timedrdlock+0x8c> <== NOT EXECUTED
ticks,
NULL
);
_Thread_Enable_dispatch();
if ( !do_wait ) {
7034: e59f3010 ldr r3, [pc, #16] ; 704c <pthread_rwlock_timedrdlock+0xcc>
7038: e5933004 ldr r3, [r3, #4]
703c: e5930034 ldr r0, [r3, #52] ; 0x34
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
7040: eb000036 bl 7120 <_POSIX_RWLock_Translate_core_RWLock_return_code>
7044: eafffff0 b 700c <pthread_rwlock_timedrdlock+0x8c>
00007050 <pthread_rwlock_timedwrlock>:
int pthread_rwlock_timedwrlock(
pthread_rwlock_t *rwlock,
const struct timespec *abstime
)
{
7050: e92d4030 push {r4, r5, lr}
Objects_Locations location;
Watchdog_Interval ticks;
bool do_wait = true;
POSIX_Absolute_timeout_conversion_results_t status;
if ( !rwlock )
7054: e2505000 subs r5, r0, #0
int pthread_rwlock_timedwrlock(
pthread_rwlock_t *rwlock,
const struct timespec *abstime
)
{
7058: e24dd00c sub sp, sp, #12
Objects_Locations location;
Watchdog_Interval ticks;
bool do_wait = true;
POSIX_Absolute_timeout_conversion_results_t status;
if ( !rwlock )
705c: 0a00001d beq 70d8 <pthread_rwlock_timedwrlock+0x88>
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
7060: e1a00001 mov r0, r1
7064: e28d1004 add r1, sp, #4
7068: eb0019fb bl d85c <_POSIX_Absolute_timeout_to_ticks>
706c: e5951000 ldr r1, [r5]
7070: e1a04000 mov r4, r0
7074: e28d2008 add r2, sp, #8
7078: e59f0098 ldr r0, [pc, #152] ; 7118 <pthread_rwlock_timedwrlock+0xc8>
707c: eb000a79 bl 9a68 <_Objects_Get>
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
the_rwlock = _POSIX_RWLock_Get( rwlock, &location );
switch ( location ) {
7080: e59d3008 ldr r3, [sp, #8]
7084: e3530000 cmp r3, #0
7088: 1a000012 bne 70d8 <pthread_rwlock_timedwrlock+0x88>
case OBJECTS_LOCAL:
_CORE_RWLock_Obtain_for_writing(
708c: e5951000 ldr r1, [r5]
(pthread_rwlock_t *__rwlock, _CONST struct timespec *__abstime));
int _EXFUN(pthread_rwlock_unlock,(pthread_rwlock_t *__rwlock));
int _EXFUN(pthread_rwlock_wrlock,(pthread_rwlock_t *__rwlock));
int _EXFUN(pthread_rwlock_trywrlock,(pthread_rwlock_t *__rwlock));
int _EXFUN(pthread_rwlock_timedwrlock,
7090: e3540003 cmp r4, #3
7094: 13a05000 movne r5, #0
7098: 03a05001 moveq r5, #1
709c: e58d3000 str r3, [sp]
70a0: e2800010 add r0, r0, #16
70a4: e1a02005 mov r2, r5
70a8: e59d3004 ldr r3, [sp, #4]
70ac: eb000740 bl 8db4 <_CORE_RWLock_Obtain_for_writing>
do_wait,
ticks,
NULL
);
_Thread_Enable_dispatch();
70b0: eb000d9f bl a734 <_Thread_Enable_dispatch>
if ( !do_wait &&
70b4: e3550000 cmp r5, #0
70b8: 1a000011 bne 7104 <pthread_rwlock_timedwrlock+0xb4>
(_Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE) ) {
70bc: e59f3058 ldr r3, [pc, #88] ; 711c <pthread_rwlock_timedwrlock+0xcc>
70c0: e5933004 ldr r3, [r3, #4]
70c4: e5930034 ldr r0, [r3, #52] ; 0x34
ticks,
NULL
);
_Thread_Enable_dispatch();
if ( !do_wait &&
70c8: e3500002 cmp r0, #2
70cc: 0a000004 beq 70e4 <pthread_rwlock_timedwrlock+0x94>
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
70d0: eb000012 bl 7120 <_POSIX_RWLock_Translate_core_RWLock_return_code>
70d4: ea000000 b 70dc <pthread_rwlock_timedwrlock+0x8c>
_Thread_Enable_dispatch();
if ( !do_wait &&
(_Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE) ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
return EINVAL;
70d8: e3a00016 mov r0, #22
case OBJECTS_ERROR:
break;
}
return EINVAL;
}
70dc: e28dd00c add sp, sp, #12
70e0: e8bd8030 pop {r4, r5, pc}
);
_Thread_Enable_dispatch();
if ( !do_wait &&
(_Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE) ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
70e4: e3540000 cmp r4, #0
70e8: 0afffffa beq 70d8 <pthread_rwlock_timedwrlock+0x88>
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
70ec: e2444001 sub r4, r4, #1
70f0: e3540001 cmp r4, #1
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
70f4: 93a00074 movls r0, #116 ; 0x74
_Thread_Enable_dispatch();
if ( !do_wait &&
(_Thread_Executing->Wait.return_code == CORE_RWLOCK_UNAVAILABLE) ) {
if ( status == POSIX_ABSOLUTE_TIMEOUT_INVALID )
return EINVAL;
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
70f8: 9afffff7 bls 70dc <pthread_rwlock_timedwrlock+0x8c>
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
70fc: eb000007 bl 7120 <_POSIX_RWLock_Translate_core_RWLock_return_code><== NOT EXECUTED
7100: eafffff5 b 70dc <pthread_rwlock_timedwrlock+0x8c> <== NOT EXECUTED
ticks,
NULL
);
_Thread_Enable_dispatch();
if ( !do_wait &&
7104: e59f3010 ldr r3, [pc, #16] ; 711c <pthread_rwlock_timedwrlock+0xcc>
7108: e5933004 ldr r3, [r3, #4]
710c: e5930034 ldr r0, [r3, #52] ; 0x34
if ( status == POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST ||
status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
return ETIMEDOUT;
}
return _POSIX_RWLock_Translate_core_RWLock_return_code(
7110: eb000002 bl 7120 <_POSIX_RWLock_Translate_core_RWLock_return_code>
7114: eafffff0 b 70dc <pthread_rwlock_timedwrlock+0x8c>
000078b8 <pthread_rwlockattr_setpshared>:
int pthread_rwlockattr_setpshared(
pthread_rwlockattr_t *attr,
int pshared
)
{
if ( !attr )
78b8: e3500000 cmp r0, #0
78bc: 0a000008 beq 78e4 <pthread_rwlockattr_setpshared+0x2c>
return EINVAL;
if ( !attr->is_initialized )
78c0: e5903000 ldr r3, [r0]
78c4: e3530000 cmp r3, #0
78c8: 0a000005 beq 78e4 <pthread_rwlockattr_setpshared+0x2c>
return EINVAL;
switch ( pshared ) {
78cc: e3510001 cmp r1, #1
case PTHREAD_PROCESS_SHARED:
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
78d0: 95801004 strls r1, [r0, #4]
return 0;
78d4: 93a00000 movls r0, #0
return EINVAL;
if ( !attr->is_initialized )
return EINVAL;
switch ( pshared ) {
78d8: 912fff1e bxls lr
case PTHREAD_PROCESS_PRIVATE:
attr->process_shared = pshared;
return 0;
default:
return EINVAL;
78dc: e3a00016 mov r0, #22 <== NOT EXECUTED
}
}
78e0: e12fff1e bx lr <== NOT EXECUTED
{
if ( !attr )
return EINVAL;
if ( !attr->is_initialized )
return EINVAL;
78e4: e3a00016 mov r0, #22
78e8: e12fff1e bx lr
00006cc8 <rtems_aio_enqueue>:
* errno - otherwise
*/
int
rtems_aio_enqueue (rtems_aio_request *req)
{
6cc8: e92d41f0 push {r4, r5, r6, r7, r8, lr}
struct sched_param param;
/* The queue should be initialized */
AIO_assert (aio_request_queue.initialized == AIO_QUEUE_INITIALIZED);
result = pthread_mutex_lock (&aio_request_queue.mutex);
6ccc: e59f41c4 ldr r4, [pc, #452] ; 6e98 <rtems_aio_enqueue+0x1d0>
* errno - otherwise
*/
int
rtems_aio_enqueue (rtems_aio_request *req)
{
6cd0: e24dd024 sub sp, sp, #36 ; 0x24
6cd4: e1a06000 mov r6, r0
struct sched_param param;
/* The queue should be initialized */
AIO_assert (aio_request_queue.initialized == AIO_QUEUE_INITIALIZED);
result = pthread_mutex_lock (&aio_request_queue.mutex);
6cd8: e1a00004 mov r0, r4
6cdc: eb000256 bl 763c <pthread_mutex_lock>
if (result != 0) {
6ce0: e2505000 subs r5, r0, #0
6ce4: 1a00002a bne 6d94 <rtems_aio_enqueue+0xcc>
return result;
}
/* _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined,
we can use aio_reqprio to lower the priority of the request */
pthread_getschedparam (pthread_self(), &policy, ¶m);
6ce8: eb000483 bl 7efc <pthread_self>
6cec: e28d101c add r1, sp, #28
6cf0: e1a0200d mov r2, sp
6cf4: eb000380 bl 7afc <pthread_getschedparam>
req->caller_thread = pthread_self ();
6cf8: eb00047f bl 7efc <pthread_self>
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
6cfc: e5963014 ldr r3, [r6, #20]
6d00: e59dc000 ldr ip, [sp]
6d04: e5932014 ldr r2, [r3, #20]
6d08: e062200c rsb r2, r2, ip
req->policy = policy;
req->aiocbp->error_code = EINPROGRESS;
req->aiocbp->return_value = 0;
if ((aio_request_queue.idle_threads == 0) &&
6d0c: e5941068 ldr r1, [r4, #104] ; 0x68
/* _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined,
we can use aio_reqprio to lower the priority of the request */
pthread_getschedparam (pthread_self(), &policy, ¶m);
req->caller_thread = pthread_self ();
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
6d10: e586200c str r2, [r6, #12]
req->policy = policy;
6d14: e59d201c ldr r2, [sp, #28]
req->aiocbp->error_code = EINPROGRESS;
req->aiocbp->return_value = 0;
if ((aio_request_queue.idle_threads == 0) &&
6d18: e3510000 cmp r1, #0
we can use aio_reqprio to lower the priority of the request */
pthread_getschedparam (pthread_self(), &policy, ¶m);
req->caller_thread = pthread_self ();
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
req->policy = policy;
6d1c: e5862008 str r2, [r6, #8]
req->aiocbp->error_code = EINPROGRESS;
6d20: e3a02077 mov r2, #119 ; 0x77
/* _POSIX_PRIORITIZED_IO and _POSIX_PRIORITY_SCHEDULING are defined,
we can use aio_reqprio to lower the priority of the request */
pthread_getschedparam (pthread_self(), &policy, ¶m);
req->caller_thread = pthread_self ();
6d24: e5860010 str r0, [r6, #16]
req->priority = param.sched_priority - req->aiocbp->aio_reqprio;
req->policy = policy;
req->aiocbp->error_code = EINPROGRESS;
6d28: e5832030 str r2, [r3, #48] ; 0x30
req->aiocbp->return_value = 0;
6d2c: e5835034 str r5, [r3, #52] ; 0x34
if ((aio_request_queue.idle_threads == 0) &&
6d30: 1a000002 bne 6d40 <rtems_aio_enqueue+0x78>
6d34: e5942064 ldr r2, [r4, #100] ; 0x64
6d38: e3520004 cmp r2, #4
6d3c: da000017 ble 6da0 <rtems_aio_enqueue+0xd8>
else
{
/* the maximum number of threads has been already created
even though some of them might be idle.
The request belongs to one of the active fd chain */
r_chain = rtems_aio_search_fd (&aio_request_queue.work_req,
6d40: e59f0154 ldr r0, [pc, #340] ; 6e9c <rtems_aio_enqueue+0x1d4>
6d44: e5931000 ldr r1, [r3]
6d48: e3a02000 mov r2, #0
6d4c: ebfffeb3 bl 6820 <rtems_aio_search_fd>
req->aiocbp->aio_fildes, 0);
if (r_chain != NULL)
6d50: e2507000 subs r7, r0, #0
6d54: 0a00002e beq 6e14 <rtems_aio_enqueue+0x14c>
{
pthread_mutex_lock (&r_chain->mutex);
6d58: e287401c add r4, r7, #28
6d5c: e1a00004 mov r0, r4
6d60: eb000235 bl 763c <pthread_mutex_lock>
rtems_aio_insert_prio (&r_chain->perfd, req);
6d64: e2870008 add r0, r7, #8
6d68: e1a01006 mov r1, r6
6d6c: ebffff8f bl 6bb0 <rtems_aio_insert_prio>
pthread_cond_signal (&r_chain->cond);
6d70: e2870020 add r0, r7, #32
6d74: eb00011a bl 71e4 <pthread_cond_signal>
pthread_mutex_unlock (&r_chain->mutex);
6d78: e1a00004 mov r0, r4
6d7c: eb00024f bl 76c0 <pthread_mutex_unlock>
if (aio_request_queue.idle_threads > 0)
pthread_cond_signal (&aio_request_queue.new_req);
}
}
pthread_mutex_unlock (&aio_request_queue.mutex);
6d80: e59f0110 ldr r0, [pc, #272] ; 6e98 <rtems_aio_enqueue+0x1d0>
6d84: eb00024d bl 76c0 <pthread_mutex_unlock>
return 0;
}
6d88: e1a00005 mov r0, r5
6d8c: e28dd024 add sp, sp, #36 ; 0x24
6d90: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
/* The queue should be initialized */
AIO_assert (aio_request_queue.initialized == AIO_QUEUE_INITIALIZED);
result = pthread_mutex_lock (&aio_request_queue.mutex);
if (result != 0) {
free (req);
6d94: e1a00006 mov r0, r6 <== NOT EXECUTED
6d98: ebfff0a2 bl 3028 <free> <== NOT EXECUTED
return result;
6d9c: eafffff9 b 6d88 <rtems_aio_enqueue+0xc0> <== NOT EXECUTED
if ((aio_request_queue.idle_threads == 0) &&
aio_request_queue.active_threads < AIO_MAX_THREADS)
/* we still have empty places on the active_threads chain */
{
chain = &aio_request_queue.work_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
6da0: e5931000 ldr r1, [r3]
6da4: e2840048 add r0, r4, #72 ; 0x48
6da8: e3a02001 mov r2, #1
6dac: ebfffe9b bl 6820 <rtems_aio_search_fd>
if (r_chain->new_fd == 1) {
6db0: e5903018 ldr r3, [r0, #24]
6db4: e3530001 cmp r3, #1
if ((aio_request_queue.idle_threads == 0) &&
aio_request_queue.active_threads < AIO_MAX_THREADS)
/* we still have empty places on the active_threads chain */
{
chain = &aio_request_queue.work_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
6db8: e1a07000 mov r7, r0
if (r_chain->new_fd == 1) {
6dbc: 1affffe5 bne 6d58 <rtems_aio_enqueue+0x90>
RTEMS_INLINE_ROUTINE void _Chain_Prepend(
Chain_Control *the_chain,
Chain_Node *the_node
)
{
_Chain_Insert(_Chain_Head(the_chain), the_node);
6dc0: e1a01006 mov r1, r6
6dc4: e2800008 add r0, r0, #8
6dc8: eb00089e bl 9048 <_Chain_Insert>
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
pthread_mutex_init (&r_chain->mutex, NULL);
6dcc: e1a01005 mov r1, r5
chain = &aio_request_queue.work_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
if (r_chain->new_fd == 1) {
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
6dd0: e5875018 str r5, [r7, #24]
pthread_mutex_init (&r_chain->mutex, NULL);
6dd4: e287001c add r0, r7, #28
6dd8: eb0001c4 bl 74f0 <pthread_mutex_init>
pthread_cond_init (&r_chain->cond, NULL);
6ddc: e1a01005 mov r1, r5
6de0: e2870020 add r0, r7, #32
6de4: eb0000cd bl 7120 <pthread_cond_init>
AIO_printf ("New thread \n");
result = pthread_create (&thid, &aio_request_queue.attr,
6de8: e28d0020 add r0, sp, #32
6dec: e2841008 add r1, r4, #8
6df0: e59f20a8 ldr r2, [pc, #168] ; 6ea0 <rtems_aio_enqueue+0x1d8>
6df4: e1a03007 mov r3, r7
6df8: eb000296 bl 7858 <pthread_create>
rtems_aio_handle, (void *) r_chain);
if (result != 0) {
6dfc: e2506000 subs r6, r0, #0
6e00: 1a000020 bne 6e88 <rtems_aio_enqueue+0x1c0>
pthread_mutex_unlock (&aio_request_queue.mutex);
return result;
}
++aio_request_queue.active_threads;
6e04: e5943064 ldr r3, [r4, #100] ; 0x64
6e08: e2833001 add r3, r3, #1
6e0c: e5843064 str r3, [r4, #100] ; 0x64
6e10: eaffffda b 6d80 <rtems_aio_enqueue+0xb8>
} else {
/* or to the idle chain */
chain = &aio_request_queue.idle_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
6e14: e5963014 ldr r3, [r6, #20]
6e18: e59f0084 ldr r0, [pc, #132] ; 6ea4 <rtems_aio_enqueue+0x1dc>
6e1c: e5931000 ldr r1, [r3]
6e20: e3a02001 mov r2, #1
6e24: ebfffe7d bl 6820 <rtems_aio_search_fd>
if (r_chain->new_fd == 1) {
6e28: e5903018 ldr r3, [r0, #24]
6e2c: e3530001 cmp r3, #1
} else {
/* or to the idle chain */
chain = &aio_request_queue.idle_req;
r_chain = rtems_aio_search_fd (chain, req->aiocbp->aio_fildes, 1);
6e30: e1a08000 mov r8, r0
if (r_chain->new_fd == 1) {
6e34: 0a000008 beq 6e5c <rtems_aio_enqueue+0x194>
r_chain->new_fd = 0;
pthread_mutex_init (&r_chain->mutex, NULL);
pthread_cond_init (&r_chain->cond, NULL);
} else
/* just insert the request in the existing fd chain */
rtems_aio_insert_prio (&r_chain->perfd, req);
6e38: e2800008 add r0, r0, #8
6e3c: e1a01006 mov r1, r6
6e40: ebffff5a bl 6bb0 <rtems_aio_insert_prio>
if (aio_request_queue.idle_threads > 0)
6e44: e5943068 ldr r3, [r4, #104] ; 0x68
6e48: e3530000 cmp r3, #0
6e4c: daffffcb ble 6d80 <rtems_aio_enqueue+0xb8>
pthread_cond_signal (&aio_request_queue.new_req);
6e50: e59f0050 ldr r0, [pc, #80] ; 6ea8 <rtems_aio_enqueue+0x1e0><== NOT EXECUTED
6e54: eb0000e2 bl 71e4 <pthread_cond_signal> <== NOT EXECUTED
6e58: eaffffc8 b 6d80 <rtems_aio_enqueue+0xb8> <== NOT EXECUTED
6e5c: e1a01006 mov r1, r6
6e60: e2800008 add r0, r0, #8
6e64: eb000877 bl 9048 <_Chain_Insert>
/* If this is a new fd chain we signal the idle threads that
might be waiting for requests */
AIO_printf (" New chain on waiting queue \n ");
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
pthread_mutex_init (&r_chain->mutex, NULL);
6e68: e1a01007 mov r1, r7
if (r_chain->new_fd == 1) {
/* If this is a new fd chain we signal the idle threads that
might be waiting for requests */
AIO_printf (" New chain on waiting queue \n ");
rtems_chain_prepend (&r_chain->perfd, &req->next_prio);
r_chain->new_fd = 0;
6e6c: e5887018 str r7, [r8, #24]
pthread_mutex_init (&r_chain->mutex, NULL);
6e70: e288001c add r0, r8, #28
6e74: eb00019d bl 74f0 <pthread_mutex_init>
pthread_cond_init (&r_chain->cond, NULL);
6e78: e2880020 add r0, r8, #32
6e7c: e1a01007 mov r1, r7
6e80: eb0000a6 bl 7120 <pthread_cond_init>
6e84: eaffffee b 6e44 <rtems_aio_enqueue+0x17c>
AIO_printf ("New thread \n");
result = pthread_create (&thid, &aio_request_queue.attr,
rtems_aio_handle, (void *) r_chain);
if (result != 0) {
pthread_mutex_unlock (&aio_request_queue.mutex);
6e88: e1a00004 mov r0, r4 <== NOT EXECUTED
6e8c: eb00020b bl 76c0 <pthread_mutex_unlock> <== NOT EXECUTED
return result;
6e90: e1a05006 mov r5, r6 <== NOT EXECUTED
6e94: eaffffbb b 6d88 <rtems_aio_enqueue+0xc0> <== NOT EXECUTED
00006944 <rtems_aio_handle>:
* NULL - if error
*/
static void *
rtems_aio_handle (void *arg)
{
6944: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
6948: e24dd02c sub sp, sp, #44 ; 0x2c
694c: e1a05000 mov r5, r0
6950: e280601c add r6, r0, #28
node = rtems_chain_first (chain);
req = (rtems_aio_request *) node;
/* See _POSIX_PRIORITIZE_IO and _POSIX_PRIORITY_SCHEDULING
discussion in rtems_aio_enqueue () */
pthread_getschedparam (pthread_self(), &policy, ¶m);
6954: e28d8028 add r8, sp, #40 ; 0x28
6958: e28d7004 add r7, sp, #4
if (result == -1) {
req->aiocbp->return_value = -1;
req->aiocbp->error_code = errno;
} else {
req->aiocbp->return_value = result;
req->aiocbp->error_code = 0;
695c: e3a09000 mov r9, #0
/* acquire the mutex of the current fd chain.
we don't need to lock the queue mutex since we can
add requests to idle fd chains or even active ones
if the working request has been extracted from the
chain */
result = pthread_mutex_lock (&r_chain->mutex);
6960: e1a00006 mov r0, r6
6964: eb000334 bl 763c <pthread_mutex_lock>
if (result != 0)
6968: e250a000 subs sl, r0, #0
696c: 1a000022 bne 69fc <rtems_aio_handle+0xb8>
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6970: e5954008 ldr r4, [r5, #8]
RTEMS_INLINE_ROUTINE bool _Chain_Is_empty(
const Chain_Control *the_chain
)
{
return _Chain_Immutable_first( the_chain )
== _Chain_Immutable_tail( the_chain );
6974: e285300c add r3, r5, #12
/* If the locked chain is not empty, take the first
request extract it, unlock the chain and process
the request, in this way the user can supply more
requests to this fd chain */
if (!rtems_chain_is_empty (chain)) {
6978: e1540003 cmp r4, r3
697c: 0a000039 beq 6a68 <rtems_aio_handle+0x124>
node = rtems_chain_first (chain);
req = (rtems_aio_request *) node;
/* See _POSIX_PRIORITIZE_IO and _POSIX_PRIORITY_SCHEDULING
discussion in rtems_aio_enqueue () */
pthread_getschedparam (pthread_self(), &policy, ¶m);
6980: eb00055d bl 7efc <pthread_self>
6984: e1a01008 mov r1, r8
6988: e1a02007 mov r2, r7
698c: eb00045a bl 7afc <pthread_getschedparam>
param.sched_priority = req->priority;
6990: e594300c ldr r3, [r4, #12]
6994: e58d3004 str r3, [sp, #4]
pthread_setschedparam (pthread_self(), req->policy, ¶m);
6998: eb000557 bl 7efc <pthread_self>
699c: e5941008 ldr r1, [r4, #8]
69a0: e1a02007 mov r2, r7
69a4: eb000559 bl 7f10 <pthread_setschedparam>
*/
RTEMS_INLINE_ROUTINE void rtems_chain_extract(
rtems_chain_node *the_node
)
{
_Chain_Extract( the_node );
69a8: e1a00004 mov r0, r4
69ac: eb000990 bl 8ff4 <_Chain_Extract>
rtems_chain_extract (node);
pthread_mutex_unlock (&r_chain->mutex);
69b0: e1a00006 mov r0, r6
69b4: eb000341 bl 76c0 <pthread_mutex_unlock>
switch (req->aiocbp->aio_lio_opcode) {
69b8: e594a014 ldr sl, [r4, #20]
69bc: e59a302c ldr r3, [sl, #44] ; 0x2c
69c0: e3530002 cmp r3, #2
69c4: 0a00001f beq 6a48 <rtems_aio_handle+0x104>
69c8: e3530003 cmp r3, #3
69cc: 0a00001a beq 6a3c <rtems_aio_handle+0xf8>
69d0: e3530001 cmp r3, #1
69d4: 0a00000b beq 6a08 <rtems_aio_handle+0xc4>
default:
result = -1;
}
if (result == -1) {
req->aiocbp->return_value = -1;
69d8: e3e01000 mvn r1, #0 <== NOT EXECUTED
69dc: e58a1034 str r1, [sl, #52] ; 0x34 <== NOT EXECUTED
req->aiocbp->error_code = errno;
69e0: eb00286f bl 10ba4 <__errno> <== NOT EXECUTED
69e4: e5903000 ldr r3, [r0] <== NOT EXECUTED
/* acquire the mutex of the current fd chain.
we don't need to lock the queue mutex since we can
add requests to idle fd chains or even active ones
if the working request has been extracted from the
chain */
result = pthread_mutex_lock (&r_chain->mutex);
69e8: e1a00006 mov r0, r6 <== NOT EXECUTED
default:
result = -1;
}
if (result == -1) {
req->aiocbp->return_value = -1;
req->aiocbp->error_code = errno;
69ec: e58a3030 str r3, [sl, #48] ; 0x30 <== NOT EXECUTED
/* acquire the mutex of the current fd chain.
we don't need to lock the queue mutex since we can
add requests to idle fd chains or even active ones
if the working request has been extracted from the
chain */
result = pthread_mutex_lock (&r_chain->mutex);
69f0: eb000311 bl 763c <pthread_mutex_lock> <== NOT EXECUTED
if (result != 0)
69f4: e250a000 subs sl, r0, #0 <== NOT EXECUTED
69f8: 0affffdc beq 6970 <rtems_aio_handle+0x2c> <== NOT EXECUTED
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
69fc: e3a00000 mov r0, #0
6a00: e28dd02c add sp, sp, #44 ; 0x2c
6a04: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
pthread_mutex_unlock (&r_chain->mutex);
switch (req->aiocbp->aio_lio_opcode) {
case LIO_READ:
AIO_printf ("read\n");
result = pread (req->aiocbp->aio_fildes,
6a08: e59ac008 ldr ip, [sl, #8]
6a0c: e59a0000 ldr r0, [sl]
6a10: e28a100c add r1, sl, #12
6a14: e8910006 ldm r1, {r1, r2}
6a18: e59a3004 ldr r3, [sl, #4]
6a1c: e58dc000 str ip, [sp]
6a20: eb002b63 bl 117b4 <pread>
break;
default:
result = -1;
}
if (result == -1) {
6a24: e3700001 cmn r0, #1
6a28: 0a000056 beq 6b88 <rtems_aio_handle+0x244>
req->aiocbp->return_value = -1;
req->aiocbp->error_code = errno;
} else {
req->aiocbp->return_value = result;
6a2c: e5943014 ldr r3, [r4, #20]
6a30: e5830034 str r0, [r3, #52] ; 0x34
req->aiocbp->error_code = 0;
6a34: e5839030 str r9, [r3, #48] ; 0x30
6a38: eaffffc8 b 6960 <rtems_aio_handle+0x1c>
req->aiocbp->aio_nbytes, req->aiocbp->aio_offset);
break;
case LIO_SYNC:
AIO_printf ("sync\n");
result = fsync (req->aiocbp->aio_fildes);
6a3c: e59a0000 ldr r0, [sl] <== NOT EXECUTED
6a40: eb001afd bl d63c <fsync> <== NOT EXECUTED
break;
6a44: eafffff6 b 6a24 <rtems_aio_handle+0xe0> <== NOT EXECUTED
req->aiocbp->aio_nbytes, req->aiocbp->aio_offset);
break;
case LIO_WRITE:
AIO_printf ("write\n");
result = pwrite (req->aiocbp->aio_fildes,
6a48: e59ac008 ldr ip, [sl, #8]
6a4c: e59a0000 ldr r0, [sl]
6a50: e28a100c add r1, sl, #12
6a54: e8910006 ldm r1, {r1, r2}
6a58: e59a3004 ldr r3, [sl, #4]
6a5c: e58dc000 str ip, [sp]
6a60: eb002b9d bl 118dc <pwrite>
(void *) req->aiocbp->aio_buf,
req->aiocbp->aio_nbytes, req->aiocbp->aio_offset);
break;
6a64: eaffffee b 6a24 <rtems_aio_handle+0xe0>
struct timespec timeout;
AIO_printf ("Chain is empty [WQ], wait for work\n");
pthread_mutex_unlock (&r_chain->mutex);
pthread_mutex_lock (&aio_request_queue.mutex);
6a68: e59fb138 ldr fp, [pc, #312] ; 6ba8 <rtems_aio_handle+0x264>
struct timespec timeout;
AIO_printf ("Chain is empty [WQ], wait for work\n");
pthread_mutex_unlock (&r_chain->mutex);
6a6c: e1a00006 mov r0, r6
6a70: eb000312 bl 76c0 <pthread_mutex_unlock>
pthread_mutex_lock (&aio_request_queue.mutex);
6a74: e1a0000b mov r0, fp
6a78: eb0002ef bl 763c <pthread_mutex_lock>
if (rtems_chain_is_empty (chain))
6a7c: e5953008 ldr r3, [r5, #8]
6a80: e1540003 cmp r4, r3
6a84: 0a000002 beq 6a94 <rtems_aio_handle+0x150>
}
}
/* If there was a request added in the initial fd chain then release
the mutex and process it */
pthread_mutex_unlock (&aio_request_queue.mutex);
6a88: e59f0118 ldr r0, [pc, #280] ; 6ba8 <rtems_aio_handle+0x264>
6a8c: eb00030b bl 76c0 <pthread_mutex_unlock>
6a90: eaffffb2 b 6960 <rtems_aio_handle+0x1c>
pthread_mutex_unlock (&r_chain->mutex);
pthread_mutex_lock (&aio_request_queue.mutex);
if (rtems_chain_is_empty (chain))
{
clock_gettime (CLOCK_REALTIME, &timeout);
6a94: e28d1020 add r1, sp, #32
6a98: e3a00001 mov r0, #1
6a9c: eb00014a bl 6fcc <clock_gettime>
timeout.tv_sec += 3;
6aa0: e59d3020 ldr r3, [sp, #32]
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&r_chain->cond,
6aa4: e2854020 add r4, r5, #32
pthread_mutex_lock (&aio_request_queue.mutex);
if (rtems_chain_is_empty (chain))
{
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
6aa8: e2833003 add r3, r3, #3
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&r_chain->cond,
6aac: e1a00004 mov r0, r4
6ab0: e1a0100b mov r1, fp
6ab4: e28d2020 add r2, sp, #32
pthread_mutex_lock (&aio_request_queue.mutex);
if (rtems_chain_is_empty (chain))
{
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
6ab8: e58d3020 str r3, [sp, #32]
timeout.tv_nsec = 0;
6abc: e58da024 str sl, [sp, #36] ; 0x24
result = pthread_cond_timedwait (&r_chain->cond,
6ac0: eb0001e1 bl 724c <pthread_cond_timedwait>
&aio_request_queue.mutex,
&timeout);
/* If no requests were added to the chain we delete the fd chain from
the queue and start working with idle fd chains */
if (result == ETIMEDOUT) {
6ac4: e3500074 cmp r0, #116 ; 0x74
6ac8: 1affffee bne 6a88 <rtems_aio_handle+0x144>
6acc: e1a00005 mov r0, r5
6ad0: eb000947 bl 8ff4 <_Chain_Extract>
rtems_chain_extract (&r_chain->next_fd);
pthread_mutex_destroy (&r_chain->mutex);
6ad4: e1a00006 mov r0, r6
6ad8: eb000234 bl 73b0 <pthread_mutex_destroy>
pthread_cond_destroy (&r_chain->cond);
6adc: e1a00004 mov r0, r4
6ae0: eb00015b bl 7054 <pthread_cond_destroy>
free (r_chain);
6ae4: e1a00005 mov r0, r5
6ae8: ebfff14e bl 3028 <free>
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6aec: e59b5054 ldr r5, [fp, #84] ; 0x54
pthread_cond_destroy (&r_chain->cond);
free (r_chain);
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
6af0: e59f20b4 ldr r2, [pc, #180] ; 6bac <rtems_aio_handle+0x268>
6af4: e1550002 cmp r5, r2
6af8: 0a00000d beq 6b34 <rtems_aio_handle+0x1f0>
}
}
/* Otherwise move this chain to the working chain and
start the loop all over again */
AIO_printf ("Work on idle\n");
--aio_request_queue.idle_threads;
6afc: e59f30a4 ldr r3, [pc, #164] ; 6ba8 <rtems_aio_handle+0x264>
6b00: e5932068 ldr r2, [r3, #104] ; 0x68
++aio_request_queue.active_threads;
6b04: e5933064 ldr r3, [r3, #100] ; 0x64
}
}
/* Otherwise move this chain to the working chain and
start the loop all over again */
AIO_printf ("Work on idle\n");
--aio_request_queue.idle_threads;
6b08: e59fc098 ldr ip, [pc, #152] ; 6ba8 <rtems_aio_handle+0x264>
6b0c: e2422001 sub r2, r2, #1
++aio_request_queue.active_threads;
6b10: e2833001 add r3, r3, #1
6b14: e1a00005 mov r0, r5
}
}
/* Otherwise move this chain to the working chain and
start the loop all over again */
AIO_printf ("Work on idle\n");
--aio_request_queue.idle_threads;
6b18: e58c2068 str r2, [ip, #104] ; 0x68
++aio_request_queue.active_threads;
6b1c: e58c3064 str r3, [ip, #100] ; 0x64
6b20: eb000933 bl 8ff4 <_Chain_Extract>
node = rtems_chain_first (&aio_request_queue.idle_req);
rtems_chain_extract (node);
r_chain = (rtems_aio_request_chain *) node;
rtems_aio_move_to_work (r_chain);
6b24: e1a00005 mov r0, r5
6b28: ebffff6f bl 68ec <rtems_aio_move_to_work>
6b2c: e285601c add r6, r5, #28
6b30: eaffffd4 b 6a88 <rtems_aio_handle+0x144>
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
6b34: e59b2068 ldr r2, [fp, #104] ; 0x68
--aio_request_queue.active_threads;
6b38: e59b3064 ldr r3, [fp, #100] ; 0x64
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
6b3c: e2822001 add r2, r2, #1
--aio_request_queue.active_threads;
6b40: e2433001 sub r3, r3, #1
clock_gettime (CLOCK_REALTIME, &timeout);
6b44: e28d1020 add r1, sp, #32
/* If the idle chain is empty sleep for 3 seconds and wait for a
signal. The thread now becomes idle. */
if (rtems_chain_is_empty (&aio_request_queue.idle_req)) {
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
6b48: e58b2068 str r2, [fp, #104] ; 0x68
--aio_request_queue.active_threads;
6b4c: e58b3064 str r3, [fp, #100] ; 0x64
clock_gettime (CLOCK_REALTIME, &timeout);
6b50: e3a00001 mov r0, #1
6b54: eb00011c bl 6fcc <clock_gettime>
timeout.tv_sec += 3;
6b58: e59d3020 ldr r3, [sp, #32]
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&aio_request_queue.new_req,
6b5c: e28b0004 add r0, fp, #4
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
--aio_request_queue.active_threads;
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
6b60: e2833003 add r3, r3, #3
timeout.tv_nsec = 0;
result = pthread_cond_timedwait (&aio_request_queue.new_req,
6b64: e1a0100b mov r1, fp
6b68: e28d2020 add r2, sp, #32
AIO_printf ("Chain is empty [IQ], wait for work\n");
++aio_request_queue.idle_threads;
--aio_request_queue.active_threads;
clock_gettime (CLOCK_REALTIME, &timeout);
timeout.tv_sec += 3;
6b6c: e58d3020 str r3, [sp, #32]
timeout.tv_nsec = 0;
6b70: e58da024 str sl, [sp, #36] ; 0x24
result = pthread_cond_timedwait (&aio_request_queue.new_req,
6b74: eb0001b4 bl 724c <pthread_cond_timedwait>
&aio_request_queue.mutex,
&timeout);
/* If no new fd chain was added in the idle requests
then this thread is finished */
if (result == ETIMEDOUT) {
6b78: e3500074 cmp r0, #116 ; 0x74
6b7c: 0a000003 beq 6b90 <rtems_aio_handle+0x24c>
6b80: e59b5054 ldr r5, [fp, #84] ; 0x54 <== NOT EXECUTED
6b84: eaffffdc b 6afc <rtems_aio_handle+0x1b8> <== NOT EXECUTED
break;
default:
result = -1;
}
if (result == -1) {
6b88: e594a014 ldr sl, [r4, #20] <== NOT EXECUTED
6b8c: eaffff91 b 69d8 <rtems_aio_handle+0x94> <== NOT EXECUTED
/* If no new fd chain was added in the idle requests
then this thread is finished */
if (result == ETIMEDOUT) {
AIO_printf ("Etimeout\n");
--aio_request_queue.idle_threads;
6b90: e59b3068 ldr r3, [fp, #104] ; 0x68
6b94: e2433001 sub r3, r3, #1
pthread_mutex_unlock (&aio_request_queue.mutex);
6b98: e1a0000b mov r0, fp
/* If no new fd chain was added in the idle requests
then this thread is finished */
if (result == ETIMEDOUT) {
AIO_printf ("Etimeout\n");
--aio_request_queue.idle_threads;
6b9c: e58b3068 str r3, [fp, #104] ; 0x68
pthread_mutex_unlock (&aio_request_queue.mutex);
6ba0: eb0002c6 bl 76c0 <pthread_mutex_unlock>
return NULL;
6ba4: eaffff94 b 69fc <rtems_aio_handle+0xb8>
0000671c <rtems_aio_init>:
* 0 - if initialization succeeded
*/
int
rtems_aio_init (void)
{
671c: e92d4070 push {r4, r5, r6, lr}
int result = 0;
result = pthread_attr_init (&aio_request_queue.attr);
6720: e59f00e8 ldr r0, [pc, #232] ; 6810 <rtems_aio_init+0xf4>
6724: eb00042b bl 77d8 <pthread_attr_init>
if (result != 0)
6728: e2505000 subs r5, r0, #0
672c: 0a000001 beq 6738 <rtems_aio_init+0x1c>
aio_request_queue.active_threads = 0;
aio_request_queue.idle_threads = 0;
aio_request_queue.initialized = AIO_QUEUE_INITIALIZED;
return result;
}
6730: e1a00005 mov r0, r5 <== NOT EXECUTED
6734: e8bd8070 pop {r4, r5, r6, pc} <== NOT EXECUTED
result = pthread_attr_init (&aio_request_queue.attr);
if (result != 0)
return result;
result =
6738: e59f00d0 ldr r0, [pc, #208] ; 6810 <rtems_aio_init+0xf4>
673c: e1a01005 mov r1, r5
6740: eb000437 bl 7824 <pthread_attr_setdetachstate>
pthread_attr_setdetachstate (&aio_request_queue.attr,
PTHREAD_CREATE_DETACHED);
if (result != 0)
6744: e3500000 cmp r0, #0
6748: 1a00001c bne 67c0 <rtems_aio_init+0xa4>
pthread_attr_destroy (&aio_request_queue.attr);
result = pthread_mutex_init (&aio_request_queue.mutex, NULL);
674c: e59f40c0 ldr r4, [pc, #192] ; 6814 <rtems_aio_init+0xf8>
6750: e3a01000 mov r1, #0
6754: e1a00004 mov r0, r4
6758: eb000364 bl 74f0 <pthread_mutex_init>
if (result != 0)
675c: e3500000 cmp r0, #0
6760: 1a00001e bne 67e0 <rtems_aio_init+0xc4>
pthread_attr_destroy (&aio_request_queue.attr);
result = pthread_cond_init (&aio_request_queue.new_req, NULL);
6764: e59f00ac ldr r0, [pc, #172] ; 6818 <rtems_aio_init+0xfc>
6768: e3a01000 mov r1, #0
676c: eb00026b bl 7120 <pthread_cond_init>
if (result != 0) {
6770: e2505000 subs r5, r0, #0
6774: 1a000020 bne 67fc <rtems_aio_init+0xe0>
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
6778: e59f209c ldr r2, [pc, #156] ; 681c <rtems_aio_init+0x100>
rtems_chain_initialize_empty (&aio_request_queue.work_req);
rtems_chain_initialize_empty (&aio_request_queue.idle_req);
aio_request_queue.active_threads = 0;
aio_request_queue.idle_threads = 0;
aio_request_queue.initialized = AIO_QUEUE_INITIALIZED;
677c: e3a01a0b mov r1, #45056 ; 0xb000
head->previous = NULL;
6780: e3a03000 mov r3, #0
tail->previous = head;
6784: e2820008 add r0, r2, #8
6788: e2426004 sub r6, r2, #4
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
678c: e282c00c add ip, r2, #12
6790: e281100b add r1, r1, #11
head->previous = NULL;
tail->previous = head;
6794: e584005c str r0, [r4, #92] ; 0x5c
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
6798: e5842048 str r2, [r4, #72] ; 0x48
head->previous = NULL;
679c: e584304c str r3, [r4, #76] ; 0x4c
tail->previous = head;
67a0: e5846050 str r6, [r4, #80] ; 0x50
)
{
Chain_Node *head = _Chain_Head( the_chain );
Chain_Node *tail = _Chain_Tail( the_chain );
head->next = tail;
67a4: e584c054 str ip, [r4, #84] ; 0x54
head->previous = NULL;
67a8: e5843058 str r3, [r4, #88] ; 0x58
}
rtems_chain_initialize_empty (&aio_request_queue.work_req);
rtems_chain_initialize_empty (&aio_request_queue.idle_req);
aio_request_queue.active_threads = 0;
67ac: e5843064 str r3, [r4, #100] ; 0x64
aio_request_queue.idle_threads = 0;
67b0: e5843068 str r3, [r4, #104] ; 0x68
aio_request_queue.initialized = AIO_QUEUE_INITIALIZED;
67b4: e5841060 str r1, [r4, #96] ; 0x60
return result;
}
67b8: e1a00005 mov r0, r5
67bc: e8bd8070 pop {r4, r5, r6, pc}
PTHREAD_CREATE_DETACHED);
if (result != 0)
pthread_attr_destroy (&aio_request_queue.attr);
result = pthread_mutex_init (&aio_request_queue.mutex, NULL);
67c0: e59f404c ldr r4, [pc, #76] ; 6814 <rtems_aio_init+0xf8> <== NOT EXECUTED
result =
pthread_attr_setdetachstate (&aio_request_queue.attr,
PTHREAD_CREATE_DETACHED);
if (result != 0)
pthread_attr_destroy (&aio_request_queue.attr);
67c4: e59f0044 ldr r0, [pc, #68] ; 6810 <rtems_aio_init+0xf4> <== NOT EXECUTED
67c8: eb0003f9 bl 77b4 <pthread_attr_destroy> <== NOT EXECUTED
result = pthread_mutex_init (&aio_request_queue.mutex, NULL);
67cc: e3a01000 mov r1, #0 <== NOT EXECUTED
67d0: e1a00004 mov r0, r4 <== NOT EXECUTED
67d4: eb000345 bl 74f0 <pthread_mutex_init> <== NOT EXECUTED
if (result != 0)
67d8: e3500000 cmp r0, #0 <== NOT EXECUTED
67dc: 0affffe0 beq 6764 <rtems_aio_init+0x48> <== NOT EXECUTED
pthread_attr_destroy (&aio_request_queue.attr);
67e0: e2840008 add r0, r4, #8 <== NOT EXECUTED
67e4: eb0003f2 bl 77b4 <pthread_attr_destroy> <== NOT EXECUTED
result = pthread_cond_init (&aio_request_queue.new_req, NULL);
67e8: e59f0028 ldr r0, [pc, #40] ; 6818 <rtems_aio_init+0xfc> <== NOT EXECUTED
67ec: e3a01000 mov r1, #0 <== NOT EXECUTED
67f0: eb00024a bl 7120 <pthread_cond_init> <== NOT EXECUTED
if (result != 0) {
67f4: e2505000 subs r5, r0, #0 <== NOT EXECUTED
67f8: 0affffde beq 6778 <rtems_aio_init+0x5c> <== NOT EXECUTED
pthread_mutex_destroy (&aio_request_queue.mutex);
67fc: e59f0010 ldr r0, [pc, #16] ; 6814 <rtems_aio_init+0xf8> <== NOT EXECUTED
6800: eb0002ea bl 73b0 <pthread_mutex_destroy> <== NOT EXECUTED
pthread_attr_destroy (&aio_request_queue.attr);
6804: e59f0004 ldr r0, [pc, #4] ; 6810 <rtems_aio_init+0xf4> <== NOT EXECUTED
6808: eb0003e9 bl 77b4 <pthread_attr_destroy> <== NOT EXECUTED
680c: eaffffd9 b 6778 <rtems_aio_init+0x5c> <== NOT EXECUTED
00006bb0 <rtems_aio_insert_prio>:
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6bb0: e1a03000 mov r3, r0
6bb4: e4932004 ldr r2, [r3], #4
rtems_chain_node *node;
AIO_printf ("FD exists \n");
node = rtems_chain_first (chain);
if (rtems_chain_is_empty (chain)) {
6bb8: e1520003 cmp r2, r3
* NONE
*/
void
rtems_aio_insert_prio (rtems_chain_control *chain, rtems_aio_request *req)
{
6bbc: e1a0c001 mov ip, r1
rtems_chain_node *node;
AIO_printf ("FD exists \n");
node = rtems_chain_first (chain);
if (rtems_chain_is_empty (chain)) {
6bc0: 0a00000f beq 6c04 <rtems_aio_insert_prio+0x54>
rtems_chain_prepend (chain, &req->next_prio);
} else {
AIO_printf ("Add by priority \n");
int prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
while (req->aiocbp->aio_reqprio > prio &&
6bc4: e5910014 ldr r0, [r1, #20]
if (rtems_chain_is_empty (chain)) {
AIO_printf ("First in chain \n");
rtems_chain_prepend (chain, &req->next_prio);
} else {
AIO_printf ("Add by priority \n");
int prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
6bc8: e5921014 ldr r1, [r2, #20]
while (req->aiocbp->aio_reqprio > prio &&
6bcc: e5900014 ldr r0, [r0, #20]
6bd0: e5911014 ldr r1, [r1, #20]
6bd4: e1510000 cmp r1, r0
6bd8: ba000002 blt 6be8 <rtems_aio_insert_prio+0x38>
6bdc: ea000006 b 6bfc <rtems_aio_insert_prio+0x4c>
6be0: e1520003 cmp r2, r3 <== NOT EXECUTED
6be4: 0a000007 beq 6c08 <rtems_aio_insert_prio+0x58> <== NOT EXECUTED
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6be8: e5922000 ldr r2, [r2] <== NOT EXECUTED
int prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
while (req->aiocbp->aio_reqprio > prio &&
!rtems_chain_is_tail (chain, node)) {
node = rtems_chain_next (node);
prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
6bec: e5921014 ldr r1, [r2, #20] <== NOT EXECUTED
rtems_chain_prepend (chain, &req->next_prio);
} else {
AIO_printf ("Add by priority \n");
int prio = ((rtems_aio_request *) node)->aiocbp->aio_reqprio;
while (req->aiocbp->aio_reqprio > prio &&
6bf0: e5911014 ldr r1, [r1, #20] <== NOT EXECUTED
6bf4: e1510000 cmp r1, r0 <== NOT EXECUTED
6bf8: bafffff8 blt 6be0 <rtems_aio_insert_prio+0x30> <== NOT EXECUTED
RTEMS_INLINE_ROUTINE void rtems_chain_insert(
rtems_chain_node *after_node,
rtems_chain_node *the_node
)
{
_Chain_Insert( after_node, the_node );
6bfc: e5920004 ldr r0, [r2, #4]
6c00: e1a0100c mov r1, ip
6c04: ea00090f b 9048 <_Chain_Insert>
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6c08: e1a02003 mov r2, r3 <== NOT EXECUTED
6c0c: eafffffa b 6bfc <rtems_aio_insert_prio+0x4c> <== NOT EXECUTED
000068ec <rtems_aio_move_to_work>:
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
68ec: e59f204c ldr r2, [pc, #76] ; 6940 <rtems_aio_move_to_work+0x54>
68f0: e5923048 ldr r3, [r2, #72] ; 0x48
rtems_chain_node *node;
node = rtems_chain_first (&aio_request_queue.work_req);
temp = (rtems_aio_request_chain *) node;
while (temp->fildes < r_chain->fildes &&
68f4: e590c014 ldr ip, [r0, #20]
* NONE
*/
void
rtems_aio_move_to_work (rtems_aio_request_chain *r_chain)
{
68f8: e1a01000 mov r1, r0
rtems_chain_node *node;
node = rtems_chain_first (&aio_request_queue.work_req);
temp = (rtems_aio_request_chain *) node;
while (temp->fildes < r_chain->fildes &&
68fc: e5930014 ldr r0, [r3, #20]
6900: e150000c cmp r0, ip
6904: aa000009 bge 6930 <rtems_aio_move_to_work+0x44>
6908: e282204c add r2, r2, #76 ; 0x4c
690c: e1530002 cmp r3, r2
6910: 1a000002 bne 6920 <rtems_aio_move_to_work+0x34>
6914: ea000005 b 6930 <rtems_aio_move_to_work+0x44> <== NOT EXECUTED
6918: e1530002 cmp r3, r2
691c: 0a000005 beq 6938 <rtems_aio_move_to_work+0x4c>
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6920: e5933000 ldr r3, [r3]
rtems_chain_node *node;
node = rtems_chain_first (&aio_request_queue.work_req);
temp = (rtems_aio_request_chain *) node;
while (temp->fildes < r_chain->fildes &&
6924: e5930014 ldr r0, [r3, #20]
6928: e150000c cmp r0, ip
692c: bafffff9 blt 6918 <rtems_aio_move_to_work+0x2c>
6930: e5930004 ldr r0, [r3, #4]
6934: ea0009c3 b 9048 <_Chain_Insert>
6938: e1a03002 mov r3, r2 <== NOT EXECUTED
693c: eafffffb b 6930 <rtems_aio_move_to_work+0x44> <== NOT EXECUTED
00006c10 <rtems_aio_remove_fd>:
* Output parameters:
* NONE
*/
void rtems_aio_remove_fd (rtems_aio_request_chain *r_chain)
{
6c10: e92d41f0 push {r4, r5, r6, r7, r8, lr}
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6c14: e5904008 ldr r4, [r0, #8]
RTEMS_INLINE_ROUTINE bool _Chain_Is_tail(
Chain_Control *the_chain,
const Chain_Node *the_node
)
{
return (the_node == _Chain_Tail(the_chain));
6c18: e280600c add r6, r0, #12
rtems_chain_control *chain;
rtems_chain_node *node;
chain = &r_chain->perfd;
node = rtems_chain_first (chain);
while (!rtems_chain_is_tail (chain, node))
6c1c: e1540006 cmp r4, r6
{
rtems_chain_extract (node);
rtems_aio_request *req = (rtems_aio_request *) node;
node = rtems_chain_next (node);
req->aiocbp->error_code = ECANCELED;
6c20: 13a0808c movne r8, #140 ; 0x8c
req->aiocbp->return_value = -1;
6c24: 13e07000 mvnne r7, #0
rtems_chain_control *chain;
rtems_chain_node *node;
chain = &r_chain->perfd;
node = rtems_chain_first (chain);
while (!rtems_chain_is_tail (chain, node))
6c28: 1a000001 bne 6c34 <rtems_aio_remove_fd+0x24>
6c2c: e8bd81f0 pop {r4, r5, r6, r7, r8, pc} <== NOT EXECUTED
{
rtems_chain_extract (node);
rtems_aio_request *req = (rtems_aio_request *) node;
node = rtems_chain_next (node);
6c30: e1a04005 mov r4, r5
*/
RTEMS_INLINE_ROUTINE void rtems_chain_extract(
rtems_chain_node *the_node
)
{
_Chain_Extract( the_node );
6c34: e1a00004 mov r0, r4
6c38: eb0008ed bl 8ff4 <_Chain_Extract>
req->aiocbp->error_code = ECANCELED;
6c3c: e5943014 ldr r3, [r4, #20]
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6c40: e5945000 ldr r5, [r4]
rtems_chain_extract (node);
rtems_aio_request *req = (rtems_aio_request *) node;
node = rtems_chain_next (node);
req->aiocbp->error_code = ECANCELED;
req->aiocbp->return_value = -1;
free (req);
6c44: e1a00004 mov r0, r4
while (!rtems_chain_is_tail (chain, node))
{
rtems_chain_extract (node);
rtems_aio_request *req = (rtems_aio_request *) node;
node = rtems_chain_next (node);
req->aiocbp->error_code = ECANCELED;
6c48: e5838030 str r8, [r3, #48] ; 0x30
req->aiocbp->return_value = -1;
6c4c: e5837034 str r7, [r3, #52] ; 0x34
free (req);
6c50: ebfff0f4 bl 3028 <free>
rtems_chain_control *chain;
rtems_chain_node *node;
chain = &r_chain->perfd;
node = rtems_chain_first (chain);
while (!rtems_chain_is_tail (chain, node))
6c54: e1550006 cmp r5, r6
6c58: 1afffff4 bne 6c30 <rtems_aio_remove_fd+0x20>
6c5c: e8bd81f0 pop {r4, r5, r6, r7, r8, pc}
00006c60 <rtems_aio_remove_req>:
* AIO_NOTCANCELED - if request was not canceled
* AIO_CANCELED - if request was canceled
*/
int rtems_aio_remove_req (rtems_chain_control *chain, struct aiocb *aiocbp)
{
6c60: e92d4010 push {r4, lr}
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6c64: e4903004 ldr r3, [r0], #4
* AIO_CANCELED - if request was canceled
*/
int rtems_aio_remove_req (rtems_chain_control *chain, struct aiocb *aiocbp)
{
if (rtems_chain_is_empty (chain))
6c68: e1530000 cmp r3, r0
return AIO_ALLDONE;
6c6c: 03a00002 moveq r0, #2
* AIO_CANCELED - if request was canceled
*/
int rtems_aio_remove_req (rtems_chain_control *chain, struct aiocb *aiocbp)
{
if (rtems_chain_is_empty (chain))
6c70: 1a000003 bne 6c84 <rtems_aio_remove_req+0x24>
6c74: e8bd8010 pop {r4, pc}
}
}
AIO_printf ("Thread finished\n");
return NULL;
}
6c78: e5933000 ldr r3, [r3] <== NOT EXECUTED
rtems_chain_node *node = rtems_chain_first (chain);
rtems_aio_request *current;
current = (rtems_aio_request *) node;
while (!rtems_chain_is_tail (chain, node) && current->aiocbp != aiocbp) {
6c7c: e1530000 cmp r3, r0 <== NOT EXECUTED
6c80: 0a00000e beq 6cc0 <rtems_aio_remove_req+0x60> <== NOT EXECUTED
6c84: e5932014 ldr r2, [r3, #20]
6c88: e1520001 cmp r2, r1
return AIO_ALLDONE;
rtems_chain_node *node = rtems_chain_first (chain);
rtems_aio_request *current;
current = (rtems_aio_request *) node;
6c8c: e1a04003 mov r4, r3
while (!rtems_chain_is_tail (chain, node) && current->aiocbp != aiocbp) {
6c90: 1afffff8 bne 6c78 <rtems_aio_remove_req+0x18>
6c94: e1a00003 mov r0, r3
6c98: eb0008d5 bl 8ff4 <_Chain_Extract>
if (rtems_chain_is_tail (chain, node))
return AIO_NOTCANCELED;
else
{
rtems_chain_extract (node);
current->aiocbp->error_code = ECANCELED;
6c9c: e5943014 ldr r3, [r4, #20]
6ca0: e3a0208c mov r2, #140 ; 0x8c
6ca4: e5832030 str r2, [r3, #48] ; 0x30
current->aiocbp->return_value = -1;
6ca8: e3e02000 mvn r2, #0
free (current);
6cac: e1a00004 mov r0, r4
return AIO_NOTCANCELED;
else
{
rtems_chain_extract (node);
current->aiocbp->error_code = ECANCELED;
current->aiocbp->return_value = -1;
6cb0: e5832034 str r2, [r3, #52] ; 0x34
free (current);
6cb4: ebfff0db bl 3028 <free>
}
return AIO_CANCELED;
6cb8: e3a00000 mov r0, #0
6cbc: e8bd8010 pop {r4, pc}
node = rtems_chain_next (node);
current = (rtems_aio_request *) node;
}
if (rtems_chain_is_tail (chain, node))
return AIO_NOTCANCELED;
6cc0: e3a00001 mov r0, #1 <== NOT EXECUTED
current->aiocbp->return_value = -1;
free (current);
}
return AIO_CANCELED;
}
6cc4: e8bd8010 pop {r4, pc} <== NOT EXECUTED
000073c0 <rtems_io_register_driver>:
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
73c0: e59f3150 ldr r3, [pc, #336] ; 7518 <rtems_io_register_driver+0x158>
73c4: e593c000 ldr ip, [r3]
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
73c8: e59f314c ldr r3, [pc, #332] ; 751c <rtems_io_register_driver+0x15c>
if ( rtems_interrupt_is_in_progress() )
73cc: e35c0000 cmp ip, #0
rtems_status_code rtems_io_register_driver(
rtems_device_major_number major,
const rtems_driver_address_table *driver_table,
rtems_device_major_number *registered_major
)
{
73d0: e92d4030 push {r4, r5, lr}
73d4: e1a04000 mov r4, r0
rtems_device_major_number major_limit = _IO_Number_of_drivers;
73d8: e5930000 ldr r0, [r3]
if ( rtems_interrupt_is_in_progress() )
return RTEMS_CALLED_FROM_ISR;
73dc: 13a00012 movne r0, #18
rtems_device_major_number *registered_major
)
{
rtems_device_major_number major_limit = _IO_Number_of_drivers;
if ( rtems_interrupt_is_in_progress() )
73e0: 18bd8030 popne {r4, r5, pc}
return RTEMS_CALLED_FROM_ISR;
if ( registered_major == NULL )
73e4: e3520000 cmp r2, #0
73e8: 0a00003f beq 74ec <rtems_io_register_driver+0x12c>
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
if ( driver_table == NULL )
73ec: e3510000 cmp r1, #0
if ( registered_major == NULL )
return RTEMS_INVALID_ADDRESS;
/* Set it to an invalid value */
*registered_major = major_limit;
73f0: e5820000 str r0, [r2]
if ( driver_table == NULL )
73f4: 0a00003c beq 74ec <rtems_io_register_driver+0x12c>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
73f8: e591c000 ldr ip, [r1]
73fc: e35c0000 cmp ip, #0
7400: 0a000036 beq 74e0 <rtems_io_register_driver+0x120>
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
7404: e1500004 cmp r0, r4
7408: 9a000027 bls 74ac <rtems_io_register_driver+0xec>
rtems_fatal_error_occurred( 99 );
}
}
#endif
_Thread_Dispatch_disable_level += 1;
740c: e59f010c ldr r0, [pc, #268] ; 7520 <rtems_io_register_driver+0x160>
7410: e590c000 ldr ip, [r0]
7414: e28cc001 add ip, ip, #1
7418: e580c000 str ip, [r0]
return RTEMS_INVALID_NUMBER;
_Thread_Disable_dispatch();
if ( major == 0 ) {
741c: e3540000 cmp r4, #0
7420: 1a000023 bne 74b4 <rtems_io_register_driver+0xf4>
static rtems_status_code rtems_io_obtain_major_number(
rtems_device_major_number *major
)
{
rtems_device_major_number n = _IO_Number_of_drivers;
7424: e593c000 ldr ip, [r3]
rtems_device_major_number m = 0;
/* major is error checked by caller */
for ( m = 0; m < n; ++m ) {
7428: e35c0000 cmp ip, #0
742c: 0a000030 beq 74f4 <rtems_io_register_driver+0x134>
7430: e59fe0ec ldr lr, [pc, #236] ; 7524 <rtems_io_register_driver+0x164>
7434: e59e3000 ldr r3, [lr]
7438: ea000003 b 744c <rtems_io_register_driver+0x8c>
743c: e2844001 add r4, r4, #1
7440: e15c0004 cmp ip, r4
7444: e2833018 add r3, r3, #24
7448: 9a000005 bls 7464 <rtems_io_register_driver+0xa4>
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
744c: e5930000 ldr r0, [r3]
7450: e3500000 cmp r0, #0
7454: 1afffff8 bne 743c <rtems_io_register_driver+0x7c>
7458: e5930004 ldr r0, [r3, #4]
745c: e3500000 cmp r0, #0
7460: 1afffff5 bne 743c <rtems_io_register_driver+0x7c>
}
/* Assigns invalid value in case of failure */
*major = m;
if ( m != n )
7464: e15c0004 cmp ip, r4
7468: 1084c084 addne ip, r4, r4, lsl #1
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
746c: e5824000 str r4, [r2]
if ( m != n )
7470: 11a0c18c lslne ip, ip, #3
7474: 0a00001f beq 74f8 <rtems_io_register_driver+0x138>
}
*registered_major = major;
}
_IO_Driver_address_table [major] = *driver_table;
7478: e59e5000 ldr r5, [lr]
747c: e1a0e001 mov lr, r1
7480: e8be000f ldm lr!, {r0, r1, r2, r3}
7484: e085c00c add ip, r5, ip
7488: e8ac000f stmia ip!, {r0, r1, r2, r3}
748c: e89e0003 ldm lr, {r0, r1}
7490: e88c0003 stm ip, {r0, r1}
_Thread_Enable_dispatch();
7494: eb0007a7 bl 9338 <_Thread_Enable_dispatch>
return rtems_io_initialize( major, 0, NULL );
7498: e3a01000 mov r1, #0
749c: e1a00004 mov r0, r4
74a0: e1a02001 mov r2, r1
}
74a4: e8bd4030 pop {r4, r5, lr}
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
74a8: ea00216e b fa68 <rtems_io_initialize>
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
if ( major >= major_limit )
return RTEMS_INVALID_NUMBER;
74ac: e3a0000a mov r0, #10
_IO_Driver_address_table [major] = *driver_table;
_Thread_Enable_dispatch();
return rtems_io_initialize( major, 0, NULL );
}
74b0: e8bd8030 pop {r4, r5, pc}
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
74b4: e59fe068 ldr lr, [pc, #104] ; 7524 <rtems_io_register_driver+0x164>
74b8: e084c084 add ip, r4, r4, lsl #1
74bc: e59e3000 ldr r3, [lr]
74c0: e1a0c18c lsl ip, ip, #3
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
74c4: e793000c ldr r0, [r3, ip]
74c8: e3500000 cmp r0, #0
_Thread_Enable_dispatch();
return sc;
}
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
74cc: e083300c add r3, r3, ip
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
74d0: 0a00000b beq 7504 <rtems_io_register_driver+0x144>
major = *registered_major;
} else {
rtems_driver_address_table *const table = _IO_Driver_address_table + major;
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
74d4: eb000797 bl 9338 <_Thread_Enable_dispatch>
return RTEMS_RESOURCE_IN_USE;
74d8: e3a0000c mov r0, #12
74dc: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
74e0: e591c004 ldr ip, [r1, #4]
74e4: e35c0000 cmp ip, #0
74e8: 1affffc5 bne 7404 <rtems_io_register_driver+0x44>
if ( driver_table == NULL )
return RTEMS_INVALID_ADDRESS;
if ( rtems_io_is_empty_table( driver_table ) )
return RTEMS_INVALID_ADDRESS;
74ec: e3a00009 mov r0, #9
74f0: e8bd8030 pop {r4, r5, pc}
if ( rtems_io_is_empty_table( table ) )
break;
}
/* Assigns invalid value in case of failure */
*major = m;
74f4: e5824000 str r4, [r2] <== NOT EXECUTED
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
74f8: eb00078e bl 9338 <_Thread_Enable_dispatch>
*major = m;
if ( m != n )
return RTEMS_SUCCESSFUL;
return RTEMS_TOO_MANY;
74fc: e3a00005 mov r0, #5
if ( major == 0 ) {
rtems_status_code sc = rtems_io_obtain_major_number( registered_major );
if ( sc != RTEMS_SUCCESSFUL ) {
_Thread_Enable_dispatch();
return sc;
7500: e8bd8030 pop {r4, r5, pc}
static inline bool rtems_io_is_empty_table(
const rtems_driver_address_table *table
)
{
return table->initialization_entry == NULL && table->open_entry == NULL;
7504: e5933004 ldr r3, [r3, #4]
7508: e3530000 cmp r3, #0
750c: 1afffff0 bne 74d4 <rtems_io_register_driver+0x114>
if ( !rtems_io_is_empty_table( table ) ) {
_Thread_Enable_dispatch();
return RTEMS_RESOURCE_IN_USE;
}
*registered_major = major;
7510: e5824000 str r4, [r2]
7514: eaffffd7 b 7478 <rtems_io_register_driver+0xb8>
00005d04 <rtems_object_get_api_class_name>:
)
{
const rtems_assoc_t *api_assoc;
const rtems_assoc_t *class_assoc;
if ( the_api == OBJECTS_INTERNAL_API )
5d04: e3500001 cmp r0, #1
const char *rtems_object_get_api_class_name(
int the_api,
int the_class
)
{
5d08: e52de004 push {lr} ; (str lr, [sp, #-4]!)
const rtems_assoc_t *api_assoc;
const rtems_assoc_t *class_assoc;
if ( the_api == OBJECTS_INTERNAL_API )
5d0c: 0a00000d beq 5d48 <rtems_object_get_api_class_name+0x44>
api_assoc = rtems_object_api_internal_assoc;
else if ( the_api == OBJECTS_CLASSIC_API )
5d10: e3500002 cmp r0, #2
5d14: 0a000004 beq 5d2c <rtems_object_get_api_class_name+0x28>
api_assoc = rtems_object_api_classic_assoc;
#ifdef RTEMS_POSIX_API
else if ( the_api == OBJECTS_POSIX_API )
5d18: e3500003 cmp r0, #3
api_assoc = rtems_object_api_posix_assoc;
5d1c: 059f003c ldreq r0, [pc, #60] ; 5d60 <rtems_object_get_api_class_name+0x5c>
if ( the_api == OBJECTS_INTERNAL_API )
api_assoc = rtems_object_api_internal_assoc;
else if ( the_api == OBJECTS_CLASSIC_API )
api_assoc = rtems_object_api_classic_assoc;
#ifdef RTEMS_POSIX_API
else if ( the_api == OBJECTS_POSIX_API )
5d20: 0a000002 beq 5d30 <rtems_object_get_api_class_name+0x2c>
api_assoc = rtems_object_api_posix_assoc;
#endif
else
return "BAD API";
5d24: e59f0038 ldr r0, [pc, #56] ; 5d64 <rtems_object_get_api_class_name+0x60>
5d28: e49df004 pop {pc} ; (ldr pc, [sp], #4)
const rtems_assoc_t *class_assoc;
if ( the_api == OBJECTS_INTERNAL_API )
api_assoc = rtems_object_api_internal_assoc;
else if ( the_api == OBJECTS_CLASSIC_API )
api_assoc = rtems_object_api_classic_assoc;
5d2c: e59f0034 ldr r0, [pc, #52] ; 5d68 <rtems_object_get_api_class_name+0x64>
else if ( the_api == OBJECTS_POSIX_API )
api_assoc = rtems_object_api_posix_assoc;
#endif
else
return "BAD API";
class_assoc = rtems_assoc_ptr_by_local( api_assoc, the_class );
5d30: eb0013a8 bl abd8 <rtems_assoc_ptr_by_local>
if ( class_assoc )
5d34: e3500000 cmp r0, #0
return class_assoc->name;
5d38: 15900000 ldrne r0, [r0]
api_assoc = rtems_object_api_posix_assoc;
#endif
else
return "BAD API";
class_assoc = rtems_assoc_ptr_by_local( api_assoc, the_class );
if ( class_assoc )
5d3c: 149df004 popne {pc} ; (ldrne pc, [sp], #4)
return class_assoc->name;
return "BAD CLASS";
5d40: e59f0024 ldr r0, [pc, #36] ; 5d6c <rtems_object_get_api_class_name+0x68>
}
5d44: e49df004 pop {pc} ; (ldr pc, [sp], #4)
{
const rtems_assoc_t *api_assoc;
const rtems_assoc_t *class_assoc;
if ( the_api == OBJECTS_INTERNAL_API )
api_assoc = rtems_object_api_internal_assoc;
5d48: e59f0020 ldr r0, [pc, #32] ; 5d70 <rtems_object_get_api_class_name+0x6c>
else if ( the_api == OBJECTS_POSIX_API )
api_assoc = rtems_object_api_posix_assoc;
#endif
else
return "BAD API";
class_assoc = rtems_assoc_ptr_by_local( api_assoc, the_class );
5d4c: eb0013a1 bl abd8 <rtems_assoc_ptr_by_local>
if ( class_assoc )
5d50: e3500000 cmp r0, #0
return class_assoc->name;
5d54: 15900000 ldrne r0, [r0]
api_assoc = rtems_object_api_posix_assoc;
#endif
else
return "BAD API";
class_assoc = rtems_assoc_ptr_by_local( api_assoc, the_class );
if ( class_assoc )
5d58: 149df004 popne {pc} ; (ldrne pc, [sp], #4)
5d5c: eafffff7 b 5d40 <rtems_object_get_api_class_name+0x3c> <== NOT EXECUTED
0000d9f8 <rtems_task_mode>:
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
d9f8: e92d4ff0 push {r4, r5, r6, r7, r8, r9, sl, fp, lr}
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
d9fc: e2525000 subs r5, r2, #0
rtems_status_code rtems_task_mode(
rtems_mode mode_set,
rtems_mode mask,
rtems_mode *previous_mode_set
)
{
da00: e1a04000 mov r4, r0
da04: e1a06001 mov r6, r1
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
da08: 03a00009 moveq r0, #9
ASR_Information *asr;
bool is_asr_enabled = false;
bool needs_asr_dispatching = false;
rtems_mode old_mode;
if ( !previous_mode_set )
da0c: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
da10: e59f9148 ldr r9, [pc, #328] ; db60 <rtems_task_mode+0x168>
da14: e5997004 ldr r7, [r9, #4]
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
da18: e5d7a074 ldrb sl, [r7, #116] ; 0x74
if ( !previous_mode_set )
return RTEMS_INVALID_ADDRESS;
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
da1c: e59780f8 ldr r8, [r7, #248] ; 0xf8
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
da20: e597307c ldr r3, [r7, #124] ; 0x7c
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
da24: e35a0000 cmp sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
da28: e5d8b008 ldrb fp, [r8, #8]
executing = _Thread_Executing;
api = executing->API_Extensions[ THREAD_API_RTEMS ];
asr = &api->Signal;
old_mode = (executing->is_preemptible) ? RTEMS_PREEMPT : RTEMS_NO_PREEMPT;
da2c: 03a0ac01 moveq sl, #256 ; 0x100
da30: 13a0a000 movne sl, #0
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
da34: e3530000 cmp r3, #0
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
da38: 138aac02 orrne sl, sl, #512 ; 0x200
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
da3c: e35b0000 cmp fp, #0
da40: 03a0bb01 moveq fp, #1024 ; 0x400
da44: 13a0b000 movne fp, #0
old_mode |= _ISR_Get_level();
da48: ebffeebe bl 9548 <_CPU_ISR_Get_level>
if ( executing->budget_algorithm == THREAD_CPU_BUDGET_ALGORITHM_NONE )
old_mode |= RTEMS_NO_TIMESLICE;
else
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
da4c: e18bb000 orr fp, fp, r0
old_mode |= _ISR_Get_level();
da50: e18ba00a orr sl, fp, sl
*previous_mode_set = old_mode;
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
da54: e3160c01 tst r6, #256 ; 0x100
old_mode |= RTEMS_TIMESLICE;
old_mode |= (asr->is_enabled) ? RTEMS_ASR : RTEMS_NO_ASR;
old_mode |= _ISR_Get_level();
*previous_mode_set = old_mode;
da58: e585a000 str sl, [r5]
/*
* These are generic thread scheduling characteristics.
*/
if ( mask & RTEMS_PREEMPT_MASK )
da5c: 0a000003 beq da70 <rtems_task_mode+0x78>
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
da60: e3140c01 tst r4, #256 ; 0x100
da64: 13a03000 movne r3, #0
da68: 03a03001 moveq r3, #1
da6c: e5c73074 strb r3, [r7, #116] ; 0x74
if ( mask & RTEMS_TIMESLICE_MASK ) {
da70: e3160c02 tst r6, #512 ; 0x200
da74: 1a000028 bne db1c <rtems_task_mode+0x124>
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
da78: e3160080 tst r6, #128 ; 0x80
da7c: 1a00002f bne db40 <rtems_task_mode+0x148>
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
da80: e2166b01 ands r6, r6, #1024 ; 0x400
da84: 0a000012 beq dad4 <rtems_task_mode+0xdc>
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
da88: e3140b01 tst r4, #1024 ; 0x400
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
da8c: e5d82008 ldrb r2, [r8, #8]
* Output:
* *previous_mode_set - previous mode set
* always return RTEMS_SUCCESSFUL;
*/
rtems_status_code rtems_task_mode(
da90: 13a03000 movne r3, #0
da94: 03a03001 moveq r3, #1
is_asr_enabled = false;
needs_asr_dispatching = false;
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
da98: e1520003 cmp r2, r3
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
da9c: 03a06000 moveq r6, #0
if ( mask & RTEMS_ASR_MASK ) {
is_asr_enabled = _Modes_Is_asr_disabled( mode_set ) ? false : true;
if ( is_asr_enabled != asr->is_enabled ) {
daa0: 0a00000b beq dad4 <rtems_task_mode+0xdc>
asr->is_enabled = is_asr_enabled;
daa4: e5c83008 strb r3, [r8, #8]
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
daa8: e10f3000 mrs r3, CPSR
daac: e3832080 orr r2, r3, #128 ; 0x80
dab0: e129f002 msr CPSR_fc, r2
{
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
dab4: e5981018 ldr r1, [r8, #24]
information->signals_pending = information->signals_posted;
dab8: e5982014 ldr r2, [r8, #20]
information->signals_posted = _signals;
dabc: e5881014 str r1, [r8, #20]
rtems_signal_set _signals;
ISR_Level _level;
_ISR_Disable( _level );
_signals = information->signals_pending;
information->signals_pending = information->signals_posted;
dac0: e5882018 str r2, [r8, #24]
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
dac4: e129f003 msr CPSR_fc, r3
_ASR_Swap_signals( asr );
if ( _ASR_Are_signals_pending( asr ) ) {
dac8: e5986014 ldr r6, [r8, #20]
dacc: e3560000 cmp r6, #0
/*
* This is specific to the RTEMS API
*/
is_asr_enabled = false;
needs_asr_dispatching = false;
dad0: 13a06001 movne r6, #1
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
dad4: e59f3088 ldr r3, [pc, #136] ; db64 <rtems_task_mode+0x16c>
dad8: e5933000 ldr r3, [r3]
dadc: e3530003 cmp r3, #3
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
dae0: 13a00000 movne r0, #0
needs_asr_dispatching = true;
}
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
dae4: 18bd8ff0 popne {r4, r5, r6, r7, r8, r9, sl, fp, pc}
{
Thread_Control *executing;
executing = _Thread_Executing;
if ( are_signals_pending ||
dae8: e3560000 cmp r6, #0
bool are_signals_pending
)
{
Thread_Control *executing;
executing = _Thread_Executing;
daec: e5993004 ldr r3, [r9, #4]
if ( are_signals_pending ||
daf0: 1a000015 bne db4c <rtems_task_mode+0x154>
daf4: e59f2064 ldr r2, [pc, #100] ; db60 <rtems_task_mode+0x168>
daf8: e5922008 ldr r2, [r2, #8]
dafc: e1530002 cmp r3, r2
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
}
return RTEMS_SUCCESSFUL;
db00: 01a00006 moveq r0, r6
db04: 08bd8ff0 popeq {r4, r5, r6, r7, r8, r9, sl, fp, pc}
(!_Thread_Is_heir( executing ) && executing->is_preemptible) ) {
db08: e5d33074 ldrb r3, [r3, #116] ; 0x74
db0c: e3530000 cmp r3, #0
db10: 1a00000d bne db4c <rtems_task_mode+0x154>
db14: e1a00006 mov r0, r6 <== NOT EXECUTED
}
db18: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc} <== NOT EXECUTED
*/
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
db1c: e2143c02 ands r3, r4, #512 ; 0x200
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
db20: 159f3040 ldrne r3, [pc, #64] ; db68 <rtems_task_mode+0x170>
db24: 15933000 ldrne r3, [r3]
if ( mask & RTEMS_PREEMPT_MASK )
executing->is_preemptible = _Modes_Is_preempt(mode_set) ? true : false;
if ( mask & RTEMS_TIMESLICE_MASK ) {
if ( _Modes_Is_timeslice(mode_set) ) {
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_RESET_TIMESLICE;
db28: 13a02001 movne r2, #1
db2c: 1587207c strne r2, [r7, #124] ; 0x7c
executing->cpu_time_budget = _Thread_Ticks_per_timeslice;
db30: 15873078 strne r3, [r7, #120] ; 0x78
} else
executing->budget_algorithm = THREAD_CPU_BUDGET_ALGORITHM_NONE;
db34: 0587307c streq r3, [r7, #124] ; 0x7c
}
/*
* Set the new interrupt level
*/
if ( mask & RTEMS_INTERRUPT_MASK )
db38: e3160080 tst r6, #128 ; 0x80
db3c: 0affffcf beq da80 <rtems_task_mode+0x88>
*/
RTEMS_INLINE_ROUTINE void _Modes_Set_interrupt_level (
Modes_Control mode_set
)
{
_ISR_Set_level( _Modes_Get_interrupt_level( mode_set ) );
db40: e2040080 and r0, r4, #128 ; 0x80
db44: ebffee7a bl 9534 <_CPU_ISR_Set_level>
db48: eaffffcc b da80 <rtems_task_mode+0x88>
_Thread_Dispatch_necessary = true;
db4c: e3a03001 mov r3, #1
db50: e5c93010 strb r3, [r9, #16]
}
}
if ( _System_state_Is_up( _System_state_Get() ) ) {
if (_Thread_Evaluate_is_dispatch_needed( needs_asr_dispatching ) )
_Thread_Dispatch();
db54: ebffe8be bl 7e54 <_Thread_Dispatch>
}
return RTEMS_SUCCESSFUL;
db58: e3a00000 mov r0, #0
db5c: e8bd8ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp, pc}
00008af8 <sem_timedwait>:
int sem_timedwait(
sem_t *sem,
const struct timespec *abstime
)
{
8af8: e92d4010 push {r4, lr}
8afc: e24dd004 sub sp, sp, #4
8b00: e1a04000 mov r4, r0
*
* If the status is POSIX_ABSOLUTE_TIMEOUT_INVALID,
* POSIX_ABSOLUTE_TIMEOUT_IS_IN_PAST, or POSIX_ABSOLUTE_TIMEOUT_IS_NOW,
* then we should not wait.
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
8b04: e1a00001 mov r0, r1
8b08: e1a0100d mov r1, sp
8b0c: eb00169f bl e590 <_POSIX_Absolute_timeout_to_ticks>
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
8b10: e3500003 cmp r0, #3
8b14: 0a000005 beq 8b30 <sem_timedwait+0x38>
do_wait = false;
lock_status = _POSIX_Semaphore_Wait_support( sem, do_wait, ticks );
8b18: e1a00004 mov r0, r4 <== NOT EXECUTED
8b1c: e3a01000 mov r1, #0 <== NOT EXECUTED
8b20: e59d2000 ldr r2, [sp] <== NOT EXECUTED
8b24: eb0019b5 bl f200 <_POSIX_Semaphore_Wait_support> <== NOT EXECUTED
lock_status == POSIX_ABSOLUTE_TIMEOUT_IS_NOW )
rtems_set_errno_and_return_minus_one( ETIMEDOUT );
}
return lock_status;
}
8b28: e28dd004 add sp, sp, #4
8b2c: e8bd8010 pop {r4, pc}
*/
status = _POSIX_Absolute_timeout_to_ticks( abstime, &ticks );
if ( status != POSIX_ABSOLUTE_TIMEOUT_IS_IN_FUTURE )
do_wait = false;
lock_status = _POSIX_Semaphore_Wait_support( sem, do_wait, ticks );
8b30: e1a00004 mov r0, r4
8b34: e3a01001 mov r1, #1
8b38: e59d2000 ldr r2, [sp]
8b3c: eb0019af bl f200 <_POSIX_Semaphore_Wait_support>
8b40: eafffff8 b 8b28 <sem_timedwait+0x30>
00006340 <sigaction>:
struct sigaction *oact
)
{
ISR_Level level;
if ( oact )
6340: e2523000 subs r3, r2, #0
*oact = _POSIX_signals_Vectors[ sig ];
6344: 159f20c4 ldrne r2, [pc, #196] ; 6410 <sigaction+0xd0>
int sigaction(
int sig,
const struct sigaction *act,
struct sigaction *oact
)
{
6348: e92d4070 push {r4, r5, r6, lr}
634c: e1a05001 mov r5, r1
ISR_Level level;
if ( oact )
*oact = _POSIX_signals_Vectors[ sig ];
6350: 10801080 addne r1, r0, r0, lsl #1
6354: 10822101 addne r2, r2, r1, lsl #2
int sigaction(
int sig,
const struct sigaction *act,
struct sigaction *oact
)
{
6358: e1a04000 mov r4, r0
ISR_Level level;
if ( oact )
*oact = _POSIX_signals_Vectors[ sig ];
635c: 18920007 ldmne r2, {r0, r1, r2}
6360: 18830007 stmne r3, {r0, r1, r2}
if ( !sig )
6364: e3540000 cmp r4, #0
6368: 0a000023 beq 63fc <sigaction+0xbc>
static inline bool is_valid_signo(
int signo
)
{
return ((signo) >= 1 && (signo) <= 32 );
636c: e2443001 sub r3, r4, #1
rtems_set_errno_and_return_minus_one( EINVAL );
if ( !is_valid_signo(sig) )
6370: e353001f cmp r3, #31
6374: 8a000020 bhi 63fc <sigaction+0xbc>
*
* NOTE: Solaris documentation claims to "silently enforce" this which
* contradicts the POSIX specification.
*/
if ( sig == SIGKILL )
6378: e3540009 cmp r4, #9
637c: 0a00001e beq 63fc <sigaction+0xbc>
/*
* Evaluate the new action structure and set the global signal vector
* appropriately.
*/
if ( act ) {
6380: e3550000 cmp r5, #0
6384: 0a00001a beq 63f4 <sigaction+0xb4>
static inline uint32_t arm_interrupt_disable( void )
{
uint32_t arm_switch_reg;
uint32_t level;
__asm__ volatile (
6388: e10f6000 mrs r6, CPSR
638c: e3863080 orr r3, r6, #128 ; 0x80
6390: e129f003 msr CPSR_fc, r3
* Unless the user is installing the default signal actions, then
* we can just copy the provided sigaction structure into the vectors.
*/
_ISR_Disable( level );
if ( act->sa_handler == SIG_DFL ) {
6394: e5953008 ldr r3, [r5, #8]
6398: e3530000 cmp r3, #0
639c: 0a000009 beq 63c8 <sigaction+0x88>
_POSIX_signals_Vectors[ sig ] = _POSIX_signals_Default_vectors[ sig ];
} else {
_POSIX_signals_Clear_process_signals( sig );
63a0: e1a00004 mov r0, r4
63a4: eb001772 bl c174 <_POSIX_signals_Clear_process_signals>
_POSIX_signals_Vectors[ sig ] = *act;
63a8: e59f3060 ldr r3, [pc, #96] ; 6410 <sigaction+0xd0>
63ac: e8950007 ldm r5, {r0, r1, r2}
63b0: e0844084 add r4, r4, r4, lsl #1
63b4: e0834104 add r4, r3, r4, lsl #2
63b8: e8840007 stm r4, {r0, r1, r2}
static inline void arm_interrupt_enable( uint32_t level )
{
ARM_SWITCH_REGISTERS;
__asm__ volatile (
63bc: e129f006 msr CPSR_fc, r6
* now (signals not posted when SIG_IGN).
* + If we are now ignoring a signal that was previously pending,
* we clear the pending signal indicator.
*/
return 0;
63c0: e3a00000 mov r0, #0
63c4: e8bd8070 pop {r4, r5, r6, pc}
* we can just copy the provided sigaction structure into the vectors.
*/
_ISR_Disable( level );
if ( act->sa_handler == SIG_DFL ) {
_POSIX_signals_Vectors[ sig ] = _POSIX_signals_Default_vectors[ sig ];
63c8: e0844084 add r4, r4, r4, lsl #1
63cc: e59f3040 ldr r3, [pc, #64] ; 6414 <sigaction+0xd4>
63d0: e1a04104 lsl r4, r4, #2
63d4: e0833004 add r3, r3, r4
63d8: e8930007 ldm r3, {r0, r1, r2}
63dc: e59f302c ldr r3, [pc, #44] ; 6410 <sigaction+0xd0>
63e0: e0834004 add r4, r3, r4
63e4: e8840007 stm r4, {r0, r1, r2}
63e8: e129f006 msr CPSR_fc, r6
* now (signals not posted when SIG_IGN).
* + If we are now ignoring a signal that was previously pending,
* we clear the pending signal indicator.
*/
return 0;
63ec: e3a00000 mov r0, #0
63f0: e8bd8070 pop {r4, r5, r6, pc}
63f4: e1a00005 mov r0, r5 <== NOT EXECUTED
}
63f8: e8bd8070 pop {r4, r5, r6, pc} <== NOT EXECUTED
* NOTE: Solaris documentation claims to "silently enforce" this which
* contradicts the POSIX specification.
*/
if ( sig == SIGKILL )
rtems_set_errno_and_return_minus_one( EINVAL );
63fc: eb00238e bl f23c <__errno>
6400: e3a03016 mov r3, #22
6404: e5803000 str r3, [r0]
6408: e3e00000 mvn r0, #0
640c: e8bd8070 pop {r4, r5, r6, pc}
00008938 <sigwait>:
int sigwait(
const sigset_t *set,
int *sig
)
{
8938: e92d4010 push {r4, lr}
893c: e1a04001 mov r4, r1
int status;
status = sigtimedwait( set, NULL, NULL );
8940: e3a01000 mov r1, #0
8944: e1a02001 mov r2, r1
8948: ebffff7f bl 874c <sigtimedwait>
if ( status != -1 ) {
894c: e3700001 cmn r0, #1
8950: 0a000005 beq 896c <sigwait+0x34>
if ( sig )
8954: e3540000 cmp r4, #0
*sig = status;
8958: 15840000 strne r0, [r4]
return 0;
895c: 13a00000 movne r0, #0
int status;
status = sigtimedwait( set, NULL, NULL );
if ( status != -1 ) {
if ( sig )
8960: 18bd8010 popne {r4, pc}
*sig = status;
return 0;
8964: e1a00004 mov r0, r4 <== NOT EXECUTED
}
return errno;
}
8968: e8bd8010 pop {r4, pc} <== NOT EXECUTED
if ( sig )
*sig = status;
return 0;
}
return errno;
896c: eb0022ee bl 1152c <__errno>
8970: e5900000 ldr r0, [r0]
8974: e8bd8010 pop {r4, pc}