

Chapter 23: Configuring a System 251

23 Configuring a System

23.1 Introduction

RTEMS must be configured for an application. This configuration information encompasses
a variety of information including the length of each clock tick, the maximum number of each
RTEMS object that can be created, the application initialization tasks, the task scheduling
algorithm to be used, and the device drivers in the application.

Although this information is contained in data structures that are used to RTEMS at system
initialization time, the data structures themselves should only rarely to be generated by
hand. RTEMS provides a macro based system which provides the standard and simple
mechanism to automate the generation of these structures.

The RTEMS header file <rtems/confdefs.h> is the core of the automatic generation of
system configuration. It is based on the idea of setting macros which define configuration
parameters of interest to the application and defaulting or calculating all others. This
variety of macros can automatically produce all of the configuration data required for an
RTEMS application.

Trivia: confdefs is shorthand for a Configuration Defaults.

As a general rule, the application developer only specifies values for the configuration pa-
rameters of interest to them. They define what resources or features they require. In most
cases, when a parameter is not specified, it defaults to zero (0) instances, a standards com-
pliant value, or disabled as appropriate. For example, by default there will be 256 task
priority levels but this can be lowered by the application. This number of priority levels is
required to be standards compliant.

For each configuration parameter in the configuration tables, the macro corresponding to
that field is discussed. It is expected that all systems can be easily configured using the
<rtems/confdefs.h> mechanism. It is also expected that using this mechanism will avoid
internal RTEMS configuration changes impacting applications.

23.2 Default Value Selection Philosophy

The user should be aware that the defaults are intentionally set as low as possible. By
default, no application resources are configured. The <rtems/confdefs.h> file ensures
that at least one application tasks or thread is configured and that at least one of the
initialization task/thread tables is configured.

23.3 Sizing the RTEMS Workspace

The RTEMS Workspace is a user-specified block of memory reserved for use by RTEMS. The
application should NOT modify this memory. This area consists primarily of the RTEMS
data structures whose exact size depends upon the values specified in the Configuration
Table. In addition, task stacks and floating point context areas are dynamically allocated
from the RTEMS Workspace.

The <rtems/confdefs.h> mechanism calculates the size of the RTEMS Workspace auto-
matically. It assumes that all tasks are floating point and that all will be allocated the

252 RTEMS C User’s Guide

mininum stack space. This calculation also automatically includes the memory that will
be allocated for internal use by RTEMS. In the event, there is an under-estimation of the
amount of memoryy required, the CONFIGURE_MEMORY_OVERHEAD is provided as a work-
around.

The starting address of the RTEMS Workspace is determined by the BSP must be aligned on
at least a four-byte boundary. Failure to properly align the workspace area will result in the
rtems_fatal_error_occurred directive being invoked with the RTEMS_INVALID_ADDRESS

error code.

The file <rtems/confdefs.h> will calculate the value that is specified as the work_space_

size parameter of the Configuration Table. There are many parameters the application
developer can specify to help <rtems/confdefs.h> in its calculations. Correctly specifying
the application requirements via parameters such as CONFIGURE_EXTRA_TASK_STACKS and
CONFIGURE_MAXIMUM_TASKS is critical for production software.

The allocation of objects can operate in two modes. The default mode has an object number
ceiling. No more than the specified number of objects can be allocated from the RTEMS
Workspace. The number of objects specified in the particular API Configuration table fields
are allocated at initialisation. The second mode allows the number of objects to grow to
use the available free memory in the RTEMS Workspace.

See Section 23.5.1 [Configuring a System Unlimited Objects], page 254 for more details
about the second mode, which allows for dynamic allocation of objects and therefore does
not provide determinism. This mode is useful mostly for when the number of objects cannot
be determined ahead of time or when porting software for which you do not know the object
requirements.

Note that future versions of RTEMS may not have the same memory requirements per
object. Although the value calculated is sufficient for a particular target processor and
release of RTEMS, memory usage is subject to change across versions and target processors.
To avoid problems, users should accurately specify each configuration parameter and allow
<rtems/confdefs.h> to calculate the memory requirements. The memory requirements
are likely to change each time one of the following events occurs:

• a configuration parameter is modified,

• task or interrupt stack requirements change,

• task floating point attribute is altered,

• RTEMS is upgraded, or

• the target processor is changed.

Failure to provide enough space in the RTEMS Workspace will result in the rtems_fatal_

error_occurred directive being invoked with the appropriate error code.

23.4 Potential Issues with RTEMS Workspace Estimation

The <rtems/confdefs.h> file estimates the amount of memory required for the
RTEMS Workspace. This estimate is only as accurate as the information given to
<rtems/confdefs.h> and may be either too high or too low for a variety of reasons. Some
of the reasons that <rtems/confdefs.h> may reserve too much memory for RTEMS are:

Chapter 23: Configuring a System 253

• All tasks/threads are assumed to be floating point.

Conversely, there are many more reasons, the resource estimate could be too low:

• Task/thread stacks greater than minimum size must be accounted for explicitly by
developer.

• Memory for messages is not included.

• Device driver requirements are not included.

• Network stack requirements are not included.

• Requirements for add-on libraries are not included.

In general, <rtems/confdefs.h> is very accurate when given enough information. However,
it is quite easy to use a library and forget to account for its resources.

23.5 Configuration Example

In the following example, the configuration information for a system with a single message
queue, four (4) tasks, and a time slice fifty (50) milliseconds is as follows:

#include <bsp.h>

#define CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

#define CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

#define CONFIGURE_MICROSECONDS_PER_TICK 1000 /* 1 millisecond */

#define CONFIGURE_TICKS_PER_TIMESLICE 50 /* 50 milliseconds */

#define CONFIGURE_RTEMS_INIT_TASKS_TABLE

#define CONFIGURE_MAXIMUM_TASKS 4

#define CONFIGURE_MAXIMUM_MESSAGE_QUEUES 1

#define CONFIGURE_MESSAGE_BUFFER_MEMORY \

CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(10, sizeof(struct USER_MESSAGE))

#define CONFIGURE_INIT

#include <rtems/confdefs.h>

In this example, only a few configuration parameters are specified. The impact of these are
as follows:

• The example specified CONFIGURE_RTEMS_INIT_TASK_TABLE but did not specify any
additional parameters. This results in a configuration which will begin execution at
single initialization task named Init which is non-preemptible and at priority one
(1).

• By specifying CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER, this application is
configured to have a clock tick device driver. This is required for the passage of
time including delays and wall time. Further configuration details about time are

254 RTEMS C User’s Guide

provided. Per CONFIGURE_MICROSECONDS_PER_TICK and CONFIGURE_TICKS_PER_

TIMESLICE, the user specified they wanted a clock tick to occur each millisecond,
and that the length of a timeslice would be fifty (50) milliseconds.

• By specifying CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER, the application
will include a console device driver. This provides for standard I/O) on at least
/dev/console. Implicitly, the Configuration Defaults header file configures enough
resources for three (3) file descriptors to be used for standard in, out, and error on
a device that supports the POSIX termios interface.

• The example above specifies via CONFIGURE_MAXIMUM_TASKS, that the application
requires a maximum of four (4) concurrently existent Classic API tasks. Similarly,
by specifying CONFIGURE_MAXIMUM_MESSAGE_QUEUES, there may be a maximum of
only one (1) concurrently existent Classic API message queues.

• The most surprising configuration parameter in this example is the use of
CONFIGURE_MESSAGE_BUFFER_MEMORY. Message buffer memory is allocated from the
RTEMS Workspace and must be accounted for. In this example, the single message
queue will have up to twenty (20) messages of type struct USER_MESSAGE.

• The CONFIGURE_INIT constant must be defined in order to make
<rtems/confdefs.h> instantiate the configuration data structures. This
can only be defined in one source file per application that includes
<rtems/confdefs.h> or the symbol table will be instantiated multiple times and
linking errors produced.

This example illustrates that parameters have default values. Among other things, the
application implicitly used the following defaults:

• All unspecified types of communications and synchronization objects in the Classic
and POSIX Threads API have maximums of zero (0).

• The filesystem will be the default filesystem which only supports device nodes.

• The application will have the default number of priority levels.

• The minimum task stack size will be that recommended by RTEMS for the target
architecture.

23.5.1 Unlimited Objects

In real-time embedded systems the RAM is normally a limited, critical resource and dy-
namic allocation is avoided as much as possible to ensure predictable, deterministic exe-
cution times. For such cases, see Section 23.3 [Configuring a System Sizing the RTEMS
Workspace], page 251 for an overview of how to tune the size of the workspace. Frequently
when users are porting software to RTEMS the precise resource requirements of the soft-
ware is unknown. In these situations users do not need to control the size of the workspace
very tightly because they just want to get the new software to run; later they can tune the
workspace size as needed.

The following object classes in the Classic API can be configured in unlimited mode:

• Tasks

• Timers

• Semaphores

Chapter 23: Configuring a System 255

• Message Queues

• Periods

• Barriers

• Partitions

• Regions

• Ports

Additionally, the following object classes from the POSIX API can be configured in unlim-
ited mode:

• Threads

• Mutexes

• Condition Variables

• Keys

• Timers

• Message Queues

• Message Queue Descriptors

• Semaphores

• Barriers

• Read/Write Locks

• Spinlocks

Due to how the POSIX object memory requirements are configured the unlimited object
support does not provide unlimited size declarations for POSIX keys or queued signals.

Users are cautioned that using unlimited objects is not recommended for production soft-
ware unless the dynamic growth is absolutely required. It is generally considered a safer
embedded systems programming practice to know the system limits rather than experience
an out of memory error at an arbitrary and largely unpredictable time in the field.

23.5.2 Per Object Class Unlimited Object Instances

When the number of objects is not known ahead of time, RTEMS provides an auto-extending
mode that can be enabled individually for each object type by using the macro rtems_

resource_unlimited. This takes a value as a parameter, and is used to set the object
maximum number field in an API Configuration table. The value is an allocation unit size.
When RTEMS is required to grow the object table it is grown by this size. The kernel will
return the object memory back to the RTEMS Workspace when an object is destroyed. The
kernel will only return an allocated block of objects to the RTEMS Workspace if at least
half the allocation size of free objects remain allocated. RTEMS always keeps one allocation
block of objects allocated. Here is an example of using rtems_resource_unlimited:

#define CONFIGURE_MAXIMUM_TASKS rtems_resource_unlimited(5)

Object maximum specifications can be evaluated with the rtems_resource_is_unlimited
and rtems_resource_maximum_per_allocation macros.

256 RTEMS C User’s Guide

23.5.3 Unlimited Object Instances

To ease the burden of developers who are porting new software RTEMS also provides the
capability to make all object classes listed above operate in unlimited mode in a simple
manner. The application developer is only responsible for enabling unlimited objects and
specifying the allocation size.

23.5.4 Enable Unlimited Object Instances

CONSTANT: CONFIGURE_OBJECTS_UNLIMITED

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_OBJECTS_UNLIMITED enables rtems_resource_unlimited mode for Classic
API and POSIX API objects that do not already have a specific maximum limit defined.

NOTES:

When using unlimited objects, it is common practice to also specify CONFIGURE_UNIFIED_

WORK_AREAS so the system operates with a single pool of memory for both RTEMS and
application memory allocations.

23.5.5 Specify Unlimited Objects Allocation Size

CONSTANT: CONFIGURE_OBJECTS_ALLOCATION_SIZE

DATA TYPE: integer

RANGE: undefined or positive

DEFAULT VALUE: If not defined and CONFIGURE_OBJECTS_UNLIMITED is defined, the
default value is eight (8).

DESCRIPTION:

CONFIGURE_OBJECTS_ALLOCATION_SIZE provides an allocation size to use for rtems_

resource_unlimited when using CONFIGURE_OBJECTS_UNLIMITED.

NOTES:

By allowing users to declare all resources as being unlimited the user can avoid identifying
and limiting the resources used. CONFIGURE_OBJECTS_UNLIMITED does not support varying
the allocation sizes for different objects; users who want that much control can define the
rtems_resource_unlimited macros themselves.

#define CONFIGURE_OBJECTS_UNLIMITED

#define CONFIGURE_OBJECTS_ALLOCATION_SIZE 5

Chapter 23: Configuring a System 257

23.6 Classic API Configuration

This section defines the Classic API related system configuration parameters supported by
<rtems/confdefs.h>.

23.6.1 Specify Maximum Classic API Tasks

CONSTANT: CONFIGURE_MAXIMUM_TASKS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_TASKS is the maximum number of Classic API Tasks that can be
concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

This calculations for the required memory in the RTEMS Workspace for tasks assume
that each task has a minimum stack size and has floating point support enabled. The
configuration parameter CONFIGURE_EXTRA_TASK_STACKS is used to specify task stack re-
quirements ABOVE the minimum size required. See Section 23.10.7 [Configuring a System
Reserve Task/Thread Stack Memory Above Minimum], page 273 for more information about
CONFIGURE_EXTRA_TASK_STACKS.

The maximumm number of POSIX threads is specified by CONFIGURE_MAXIMUM_POSIX_

THREADS. See Section 23.8.1 [Configuring a System Specify Maximum POSIX API Threads],
page 264 for more details.

A future enhancement to <rtems/confdefs.h> could be to eliminate the assumption that
all tasks have floating point enabled. This would require the addition of a new configuration
parameter to specify the number of tasks which enable floating point support.

23.6.2 Disable Classic API Notepads

CONSTANT: CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined and Classic API Notepads are sup-
ported.

DESCRIPTION:

CONFIGURE_DISABLE_CLASSIC_API_NOTEPADS should be defined if the user does not want
to have support for Classic API Notepads in their application.

258 RTEMS C User’s Guide

NOTES:

Disabling Classic API Notepads saves the allocation of sixteen (16) thirty-two bit integers.
This saves sixty-four bytes per task/thread plus the allocation overhead. Notepads are
rarely used in applications and this can save significant memory in a low RAM system.

23.6.3 Specify Maximum Classic API Timers

CONSTANT: CONFIGURE_MAXIMUM_TIMERS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_TIMERS is the maximum number of Classic API Timers that can be
concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.6.4 Specify Maximum Classic API Semaphores

CONSTANT: CONFIGURE_MAXIMUM_SEMAPHORES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_SEMAPHORES is the maximum number of Classic API Semaphores that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.6.5 Specify Maximum Classic API Message Queues

CONSTANT: CONFIGURE_MAXIMUM_MESSAGE_QUEUES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_MESSAGE_QUEUES is the maximum number of Classic API Message
Queues that can be concurrently active.

Chapter 23: Configuring a System 259

NOTES:

This object class can be configured in unlimited allocation mode.

23.6.6 Specify Maximum Classic API Barriers

CONSTANT: CONFIGURE_MAXIMUM_BARRIERS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_BARRIERS is the maximum number of Classic API Barriers that can
be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.6.7 Specify Maximum Classic API Periods

CONSTANT: CONFIGURE_MAXIMUM_PERIODS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_PERIODS is the maximum number of Classic API Periods that can be
concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.6.8 Specify Maximum Classic API Partitions

CONSTANT: CONFIGURE_MAXIMUM_PARTITIONS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_PARTITIONS is the maximum number of Classic API Partitions that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

260 RTEMS C User’s Guide

23.6.9 Specify Maximum Classic API Regions

CONSTANT: CONFIGURE_MAXIMUM_REGIONS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_REGIONS is the maximum number of Classic API Regions that can be
concurrently active.

NOTES:

None.

23.6.10 Specify Maximum Classic API Ports

CONSTANT: CONFIGURE_MAXIMUM_PORTS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_PORTS is the maximum number of Classic API Ports that can be con-
currently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.6.11 Specify Maximum Classic API User Extensions

CONSTANT: CONFIGURE_MAXIMUM_USER_EXTENSIONS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_USER_EXTENSIONS is the maximum number of Classic API User Ex-
tensions that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

Chapter 23: Configuring a System 261

23.7 Classic API Initialization Tasks Table Configuration

The <rtems/confdefs.h> configuration system can automatically generate an Initialization
Tasks Table named Initialization_tasks with a single entry. The following parameters
control the generation of that table.

23.7.1 Instantiate Classic API Initialization Task Table

CONSTANT: CONFIGURE_RTEMS_INIT_TASKS_TABLE

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_RTEMS_INIT_TASKS_TABLE is defined if the user wishes to use a Classic RTEMS
API Initialization Task Table. The table built by <rtems/confdefs.h> specifies the pa-
rameters for a single task. This is sufficient for applications which initialization the system
from a single task.

By default, this field is not defined as the user MUST select their own API for initialization
tasks.

NOTES:

The application may choose to use the initialization tasks or threads table from another
API.

A compile time error will be generated if the user does not configure any initialization tasks
or threads.

23.7.2 Specifying Classic API Initialization Task Entry Point

CONSTANT: CONFIGURE_INIT_TASK_ENTRY_POINT

DATA TYPE: rtems task entry

RANGE: valid method pointer

DEFAULT VALUE: By default the value is Init.

DESCRIPTION:

CONFIGURE_INIT_TASK_ENTRY_POINT is the entry point (a.k.a. function name) of the single
initialization task defined by the Classic API Initialization Tasks Table.

NOTES:

The user must implement the method Init or the method name provided in this configu-
ration parameter.

262 RTEMS C User’s Guide

23.7.3 Specifying Classic API Initialization Task Name

CONSTANT: CONFIGURE_INIT_TASK_NAME

DATA TYPE: rtems name

RANGE: any value

DEFAULT VALUE: By default the value is rtems_build_name(’U’, ’I’, ’1’, ’ ’).

DESCRIPTION:

CONFIGURE_INIT_TASK_NAME is the name of the single initialization task defined by the
Classic API Initialization Tasks Table.

NOTES:

None.

23.7.4 Specifying Classic API Initialization Task Stack Size

CONSTANT: CONFIGURE_INIT_TASK_STACK_SIZE

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: By default value is the configured minimum stack size.

DESCRIPTION:

CONFIGURE_INIT_TASK_STACK_SIZE is the stack size of the single initialization task defined
by the Classic API Initialization Tasks Table.

NOTES:

If the stack size specified is greater than the configured minimum, it must be accounted
for in CONFIGURE_EXTRA_TASK_STACKS. See Section 23.10.7 [Configuring a System Re-
serve Task/Thread Stack Memory Above Minimum], page 273 for more information about
CONFIGURE_EXTRA_TASK_STACKS.

23.7.5 Specifying Classic API Initialization Task Priority

CONSTANT: CONFIGURE_INIT_TASK_PRIORITY

DATA TYPE: rtems task priority

RANGE: 1 to CONFIGURE MAXIMUM PRIORITY

DEFAULT VALUE: By default the value is one (1) which is the highest priority in the
Classic API.

DESCRIPTION:

CONFIGURE_INIT_TASK_PRIORITY is the initial priority of the single initialization task de-
fined by the Classic API Initialization Tasks Table.

Chapter 23: Configuring a System 263

NOTES:

None.

23.7.6 Specifying Classic API Initialization Task Attributes

CONSTANT: CONFIGURE_INIT_TASK_ATTRIBUTES

DATA TYPE: rtems attributes

RANGE: valid task attribute sets

DEFAULT VALUE: By default the tvalue is RTEMS_DEFAULT_ATTRIBUTES.

DESCRIPTION:

CONFIGURE_INIT_TASK_ATTRIBUTES is the task attributes of the single initialization task
defined by the Classic API Initialization Tasks Table.

NOTES:

None.

23.7.7 Specifying Classic API Initialization Task Modes

CONSTANT: CONFIGURE_INIT_TASK_INITIAL_MODES

DATA TYPE: rtems mode

RANGE: valid task mode sets

DEFAULT VALUE: By default the value is RTEMS_NO_PREEMPT.

DESCRIPTION:

CONFIGURE_INIT_TASK_INITIAL_MODES is the initial execution mode of the single initial-
ization task defined by the Classic API Initialization Tasks Table.

NOTES:

None.

23.7.8 Specifying Classic API Initialization Task Arguments

CONSTANT: CONFIGURE_INIT_TASK_ARGUMENTS

DATA TYPE: rtems task argument

RANGE: valid rtems task argument values

DEFAULT VALUE: By default the value is 0.

DESCRIPTION:

CONFIGURE_INIT_TASK_ARGUMENTS is the task argument of the single initialization task
defined by the Classic API Initialization Tasks Table.

NOTES:

None.

264 RTEMS C User’s Guide

23.7.9 Not Using Generated Initialization Tasks Table

CONSTANT: CONFIGURE_HAS_OWN_INIT_TASK_TABLE

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_HAS_OWN_INIT_TASK_TABLE is defined if the user wishes to define their own
Classic API Initialization Tasks Table. This table should be named Initialization_

tasks.

NOTES:

This is a seldom used configuration parameter. The most likely use case is when an appli-
cation desires to have more than one initialization task.

23.8 POSIX API Configuration

The parameters in this section are used to configure resources for the RTEMS POSIX API.
They are only relevant if the POSIX API is enabled at configure time using the --enable-

posix option.

23.8.1 Specify Maximum POSIX API Threads

CONSTANT: CONFIGURE_MAXIMUM_POSIX_THREADS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_THREADS is the maximum number of POSIX API Threads that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

This calculations for the required memory in the RTEMS Workspace for threads assume
that each thread has a minimum stack size and has floating point support enabled. The
configuration parameter CONFIGURE_EXTRA_TASK_STACKS is used to specify thread stack
requirements ABOVE the minimum size required. See Section 23.10.7 [Configuring a System
Reserve Task/Thread Stack Memory Above Minimum], page 273 for more information about
CONFIGURE_EXTRA_TASK_STACKS.

The maximum number of Classic API Tasks is specified by CONFIGURE_MAXIMUM_TASKS.
See Section 23.6.1 [Configuring a System Specify Maximum Classic API Tasks], page 257
for more details.

All POSIX threads have floating point enabled.

Chapter 23: Configuring a System 265

23.8.2 Specify Maximum POSIX API Mutexes

CONSTANT: CONFIGURE_MAXIMUM_POSIX_MUTEXES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_MUTEXES is the maximum number of POSIX API Mutexes that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.8.3 Specify Maximum POSIX API Condition Variables

CONSTANT: CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_CONDITION_VARIABLES is the maximum number of POSIX API
Condition Variables that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.8.4 Specify Maximum POSIX API Keys

CONSTANT: CONFIGURE_MAXIMUM_POSIX_KEYS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_KEYS is the maximum number of POSIX API Keys that can
be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

266 RTEMS C User’s Guide

23.8.5 Specify Maximum POSIX API Timers

CONSTANT: CONFIGURE_MAXIMUM_POSIX_TIMERS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_TIMERS is the maximum number of POSIX API Timers that
can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.8.6 Specify Maximum POSIX API Queued Signals

CONSTANT: CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS is the maximum number of POSIX API
Queued Signals that can be concurrently active.

NOTES:

None.

23.8.7 Specify Maximum POSIX API Message Queues

CONSTANT: CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES is the maximum number of POSIX API Mes-
sage Queues that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

Chapter 23: Configuring a System 267

23.8.8 Specify Maximum POSIX API Message Queue Descriptors

CONSTANT: CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS

DATA TYPE: integer

RANGE: greater than or equal to CONFIGURE_MAXIMUM_POSIX_MESSAGES_

QUEUES

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS is the maximum number of
POSIX API Message Queue Descriptors that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUE_DESCRIPTORS should be greater than or equal
to CONFIGURE_MAXIMUM_POSIX_MESSAGE_QUEUES.

23.8.9 Specify Maximum POSIX API Semaphores

CONSTANT: CONFIGURE_MAXIMUM_POSIX_SEMAPHORES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_SEMAPHORES is the maximum number of POSIX API
Semaphores that can be concurrently active.

NOTES:

None.

23.8.10 Specify Maximum POSIX API Barriers

CONSTANT: CONFIGURE_MAXIMUM_POSIX_BARRIERS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_BARRIERS is the maximum number of POSIX API Barriers
that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

268 RTEMS C User’s Guide

23.8.11 Specify Maximum POSIX API Spinlocks

CONSTANT: CONFIGURE_MAXIMUM_POSIX_SPINLOCKS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_SPINLOCKS is the maximum number of POSIX API Spinlocks
that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.8.12 Specify Maximum POSIX API Read/Write Locks

CONSTANT: CONFIGURE_MAXIMUM_POSIX_RWLOCKS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: The default for this field is 0.

DESCRIPTION:

CONFIGURE_MAXIMUM_POSIX_RWLOCKS is the maximum number of POSIX API Read/Write
Locks that can be concurrently active.

NOTES:

This object class can be configured in unlimited allocation mode.

23.9 POSIX Initialization Threads Table Configuration

The <rtems/confdefs.h> configuration system can automatically generate a POSIX Ini-
tialization Threads Table named POSIX_Initialization_threads with a single entry. The
following parameters control the generation of that table.

23.9.1 Instantiate POSIX API Initialization Thread Table

CONSTANT:

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this field is not defined as the user MUST select their
own API for initialization tasks.

Chapter 23: Configuring a System 269

DESCRIPTION:

CONFIGURE_POSIX_INIT_THREAD_TABLE is defined if the user wishes to use a POSIX API
Initialization Threads Table. The table built by <rtems/confdefs.h> specifies the param-
eters for a single thread. This is sufficient for applications which initialization the system
from a single task.

By default, this field is not defined as the user MUST select their own API for initialization
tasks.

NOTES:

The application may choose to use the initialization tasks or threads table from another
API.

A compile time error will be generated if the user does not configure any initialization tasks
or threads.

23.9.2 Specifying POSIX API Initialization Thread Entry Point

CONSTANT: CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT

DATA TYPE: void *(*entry point)(void *)

RANGE: valid method pointer

DEFAULT VALUE: By default the value is POSIX_Init.

DESCRIPTION:

CONFIGURE_POSIX_INIT_THREAD_ENTRY_POINT is the entry point (a.k.a. function name) of
the single initialization thread defined by the POSIX API Initialization Threads Table.

NOTES:

The user must implement the method POSIX_Init or the method name provided in this
configuration parameter.

23.9.3 Specifying POSIX API Initialization Thread Stack Size

CONSTANT: CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: By default value is twice the configured minimum stack size.

DESCRIPTION:

CONFIGURE_POSIX_INIT_THREAD_STACK_SIZE is the stack size of the single initialization
thread defined by the POSIX API Initialization Threads Table.

NOTES:

If the stack size specified is greater than the configured minimum, it must be accounted
for in CONFIGURE_EXTRA_TASK_STACKS. See Section 23.10.7 [Configuring a System Re-
serve Task/Thread Stack Memory Above Minimum], page 273 for more information about
CONFIGURE_EXTRA_TASK_STACKS.

270 RTEMS C User’s Guide

23.9.4 Not Using Generated POSIX Initialization Threads Table

CONSTANT: CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_POSIX_HAS_OWN_INIT_THREAD_TABLE is defined if the user wishes to define
their own POSIX API Initialization Threads Table. This table should be named POSIX_

Initialization_threads.

NOTES:

This is a seldom used configuration parameter. The most likely use case is when an appli-
cation desires to have more than one initialization task.

23.10 Basic System Information

This section defines the general system configuration parameters supported by
<rtems/confdefs.h>.

23.10.1 Separate or Unified Work Areas

CONSTANT: CONFIGURE_UNIFIED_WORK_AREAS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is undefined which specifies that the C Program
Heap and the RTEMS Workspace will be separate.

DESCRIPTION:

When defined, the C Program Heap and the RTEMS Workspace will be one pool of memory.

When not defined, there will be separate memory pools for the RTEMS Workspace and C
Program Heap.

NOTES:

Having separate pools does have some advantages in the event a task blows a stack or writes
outside its memory area. However, in low memory systems the overhead of the two pools
plus the potential for unused memory in either pool is very undesirable.

In high memory environments, this is desirable when you want to use the RTEMS "unlim-
ited" objects option. You will be able to create objects until you run out of all available
memory rather then just until you run out of RTEMS Workspace.

Chapter 23: Configuring a System 271

23.10.2 Length of Each Clock Tick

CONSTANT: CONFIGURE_MICROSECONDS_PER_TICK

DATA TYPE: integer

RANGE: non-zero positive values

DEFAULT VALUE: When not defined, the clock tick quantum is configured to be 10,000
microseconds which is ten (10) milliseconds.

DESCRIPTION:

This constant is used to specify the length of time between clock ticks.

When the clock tick quantum value is too low, the system will spend so much time processing
clock ticks that it does not have processing time available to perform application work. In
this case, the system will become unresponsive.

The lowest practical time quantum varies widely based upon the speed of the target hard-
ware and the architectural overhead associated with interrupts. In general terms, you do
not want to configure it lower than is needed for the application.

The clock tick quantum should be selected such that it all blocking and delay times in the
application are evenly divisible by it. Otherwise, rounding errors will be introduced which
may negatively impact the application.

NOTES:

This configuration parameter has no impact if the Clock Tick Device driver is not configured.

There may be BSP specific limits on the resolution or maximum value of a clock tick
quantum.

23.10.3 Specifying Timeslicing Quantum

CONSTANT: CONFIGURE_TICKS_PER_TIMESLICE

DATA TYPE: integer

RANGE: non-zero positive values

DEFAULT VALUE: If unspecified, this parameter defaults to fifty (50).

DESCRIPTION:

This configuration parameter specifies the length of the timeslice quantum in ticks for each
task.

NOTES:

This configuration parameter has no impact if the Clock Tick Device driver is not configured.

23.10.4 Specifying the Number of Thread Priority Levels

CONSTANT: CONFIGURE_MAXIMUM_PRIORITY

DATA TYPE: integer

272 RTEMS C User’s Guide

RANGE: Valid values for this configuration parameter must be one (1) less
than than a power of two (2) between 4 and 256 inclusively. In other
words, valid values are 3, 7, 31, 63, 127, and 255.

DEFAULT VALUE: By default, RTEMS must support 256 priority levels to be compliant
with various standards. These priorities range from zero (0) to 255.
Thus, the default value for this field is 255.

DESCRIPTION:

This configuration parameter specified the maximum numeric priority of any task in the
system and one less that the number of priority levels in the system.

Reducing the number of priorities in the system reduces the amount of memory allocated
from the RTEMS Workspace.

NOTES:

The numerically greatest priority is the logically lowest priority in the system and will thus
be used by the IDLE task.

Priority zero (0) is reserved for internal use by RTEMS and is not available to applications.

With some schedulers, reducing the number of priorities can reduce the amount of memory
used by the scheduler. For example, the Deterministic Priority Scheduler (DPS) used by
default uses three pointers of storage per priority level. Reducing the number of priorities
from 256 levels to sixteen (16) can reduce memory usage by about three (3) kilobytes.

23.10.5 Specifying the Minimum Task Size

CONSTANT: CONFIGURE_MINIMUM_TASK_STACK_SIZE

DATA TYPE: integer

RANGE: non-zero positive integer

DEFAULT VALUE: When not defined by the application, this is set to the recommended
minimum stack size for this processor.

DESCRIPTION:

The configuration parameter is set to the number of bytes the application wants the mini-
mum stack size to be for every task or thread in the system.

Adjusting this parameter should be done with caution. Examining the actual usage using
the Stack Checker Usage Reporting facility is recommended.

NOTES:

This parameter can be used to lower the minimum from that recommended. This can be
used in low memory systems to reduce memory consumption for stacks. However, this must
be done with caution as it could increase the possibility of a blown task stack.

This parameter can be used to increase the minimum from that recommended. This can
be used in higher memory systems to reduce the risk of stack overflow without performing
analysis on actual consumption.

Chapter 23: Configuring a System 273

23.10.6 Configuring the Size of the Interrupt Stack

CONSTANT: CONFIGURE_INTERRUPT_STACK_SIZE

DATA TYPE: integer

RANGE: non-zero positive integer

DEFAULT VALUE: If not specified, the interrupt stack will be of minimum size. The
default value is the configured minimum task stack size.

DESCRIPTION:

CONFIGURE_INTERRUPT_STACK_SIZE is set to the size of the interrupt stack. The interrupt
stack size is often set by the BSP but since this memory may be allocated from the RTEMS
Workspace, it must be accounted for.

NOTES:

In some BSPs, changing this constant does NOT change the size of the interrupt stack, only
the amount of memory reserved for it.

Patches which result in this constant only being used in memory calculations when the
interrupt stack is intended to be allocated from the RTEMS Workspace would be welcomed
by the RTEMS Project.

23.10.7 Reserve Task/Thread Stack Memory Above Minimum

CONSTANT: CONFIGURE_EXTRA_TASK_STACKS

DATA TYPE: integer

RANGE: Undefined or positive

DEFAULT VALUE: When this is not defined, the default value is 0.

DESCRIPTION:

This configuration parameter is set to the number of bytes the applications wishes to add
to the task stack requirements calculated by <rtems/confdefs.h>.

NOTES:

This parameter is very important. If the application creates tasks with stacks larger then
the minimum, then that memory is NOT accounted for by <rtems/confdefs.h>.

23.10.8 Automatically Zeroing the RTEMS Workspace and C
Program Heap

CONSTANT: CONFIGURE_ZERO_WORKSPACE_AUTOMATICALLY

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: Unless overridden by the BSP, this is not defined by default. The
default is NOT to zero out the RTEMS Workspace or C Program
Heap.

274 RTEMS C User’s Guide

DESCRIPTION:

This macro indicates whether RTEMS should zero the RTEMS Workspace and C Program
Heap as part of its initialization. If defined, the memory regions are zeroed. Otherwise,
they are not.

NOTES:

Zeroing memory can add significantly to system boot time. It is not necessary for RTEMS
but is often assumed by support libraries.

23.10.9 Enable The Task Stack Usage Checker

CONSTANT: CONFIGURED_STACK_CHECKER_ENABLED

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined and thus stack checking is disabled.

DESCRIPTION:

This configuration parameter is defined when the application wishes to enable run-time
stack bounds checking.

NOTES:

In 4.9 and older, this configuration parameter was named STACK_CHECKER_ON.

This increases the time required to create tasks as well as adding overhead to each context
switch.

23.10.10 Specify Application Specific User Extensions

CONSTANT: CONFIGURE_INITIAL_EXTENSIONS

DATA TYPE: List of rtems_extensions_table entries

RANGE: Undefined or a list of one or more user extensions.

DEFAULT VALUE: This value is not defined by default.

DESCRIPTION:

If CONFIGURE_INITIAL_EXTENSIONS is defined by the application, then this application
specific set of initial extensions will be placed in the initial extension table.

NOTES:

None.

23.11 Configuring Custom Task Stack Allocation

RTEMS allows the application or BSP to define its own allocation and deallocation methods
for task stacks. This can be used to place task stacks in special areas of memory or to utilize
a Memory Management Unit so that stack overflows are detected in hardware.

Chapter 23: Configuring a System 275

23.11.1 Custom Task Stack Allocator Initialization

CONSTANT: CONFIGURE_TASK_STACK_ALLOCATOR_INIT

DATA TYPE: method pointer

RANGE: NULL or valid pointer to a method

DEFAULT VALUE: The default value for this field is NULL which indicates that task
stacks will be allocated from the RTEMS Workspace.

DESCRIPTION:

CONFIGURE_TASK_STACK_ALLOCATOR_INIT configures the initialization method for an appli-
cation or BSP specific task stack allocation implementation.

NOTES:

A correctly configured system must configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR

23.11.2 Custom Task Stack Allocator

CONSTANT: CONFIGURE_TASK_STACK_ALLOCATOR

DATA TYPE: method pointer

RANGE: NULL or valid method pointer

DEFAULT VALUE: The default value for this field is NULL which indicates that task
stacks will be allocated from the RTEMS Workspace.

DESCRIPTION:

CONFIGURE_TASK_STACK_ALLOCATOR may point to a user provided routine to allocate task
stacks.

NOTES:

A correctly configured system must configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR

23.11.3 Custom Task Stack Deallocator

CONSTANT: CONFIGURE_TASK_STACK_DEALLOCATOR

DATA TYPE: method pointer

RANGE: undefined or valid pointer

DEFAULT VALUE: The default value for this field is NULL which indicates that task
stacks will be allocated from the RTEMS Workspace.

276 RTEMS C User’s Guide

DESCRIPTION:

CONFIGURE_TASK_STACK_DEALLOCATOR may point to a user provided routine to free task
stacks.

NOTES:

A correctly configured system must configure the following to be consistent:

• CONFIGURE_TASK_STACK_ALLOCATOR_INIT

• CONFIGURE_TASK_STACK_ALLOCATOR

• CONFIGURE_TASK_STACK_DEALLOCATOR

23.12 Configuring Memory for Classic API Message Buffers

This section describes the configuration parameters related to specifying the amount of
memory reserved for Classic API Message Buffers.

23.12.1 Calculate Memory for a Single Classic Message API
Message Queue

CONSTANT: CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: This macro is only used as input to

DESCRIPTION:

This is a helper macro which is used to assist in computing the total amount of memory
required for message buffers. Each message queue will have its own configuration with
maximum message size and maximum number of pending messages.

The interface for this macro is as follows:

CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(max_messages, size_per)

Where max_messages is the maximum number of pending messages and size_per is the
size in bytes of the user message.

NOTES:

This macro is only used in support of CONFIGURE_MESSAGE_BUFFER_MEMORY.

23.12.2 Reserve Memory for All Classic Message API Message
Queues

CONSTANT: CONFIGURE_MESSAGE_BUFFER_MEMORY

DATA TYPE: integer summation macro

RANGE: undefined (zero) or calculation resulting in a positive integer

DEFAULT VALUE: By default, this is not defined and zero (0) memory is reserved.

Chapter 23: Configuring a System 277

DESCRIPTION:

This macro is set to the number of bytes the application requires to be reserved for pending
Classic API Message Queue buffers.

NOTES:

The following illustrates how the help macro CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE can
be used to assist in calculating the message buffer memory required. In this example, there
are two message queues used in this application. The first message queue has maximum of
24 pending messages with the message structure defined by the type one_message_type.
The other message queue has maximum of 500 pending messages with the message structure
defined by the type other_message_type.

#define CONFIGURE_MESSAGE_BUFFER_MEMORY \

(CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(\

24, sizeof(one_message_type) + \

CONFIGURE_MESSAGE_BUFFERS_FOR_QUEUE(\

500, sizeof(other_message_type) \

)

23.13 Seldom Used Configuration Parameters

This section describes configuration parameters supported by <rtems/confdefs.h> which
are seldom used by applications. These parameters tend to be oriented to debug-
ging system configurations and providing work-arounds when the memory estimated by
<rtems/confdefs.h> is incorrect.

23.13.1 Specify Memory Overhead

CONSTANT: CONFIGURE_MEMORY_OVERHEAD

DATA TYPE: undefined or integer

RANGE: zero or positive

DEFAULT VALUE: The default value is 0.

DESCRIPTION:

Thie parameter is set to the number of kilobytes the application wishes to add to the
requirements calculated by <rtems/confdefs.h>.

NOTES:

This configuration parameter should only be used when it is suspected that a bug in
<rtems/confdefs.h> has resulted in an underestimation. Typically the memory alloca-
tion will be too low when an application does not account for all message queue buffers or
task stacks.

23.13.2 Do Not Generate Configuration Information

CONSTANT: CONFIGURE_HAS_OWN_CONFIGURATION_TABLE

DATA TYPE: Boolean feature macro.

278 RTEMS C User’s Guide

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

This configuration parameter should only be defined if the application is providing their
own complete set of configuration tables.

NOTES:

None.

23.13.3 Specify Location of RTEMS Workspace

CONSTANT: CONFIGURE_EXECUTIVE_RAM_WORK_AREA

DATA TYPE: pointer

RANGE: NULL or valid pointer

DEFAULT VALUE: By default, this value is not defined indicating that the BSP is to
determine the location of the RTEMS Workspace.

DESCRIPTION:

This configuration parameter is the base address of the RTEMS Workspace.

NOTES:

The BSP is responsible for setting this address. It is highly unlikely that an application
could do this portably and reliably.

23.14 C Library Support Configuration

This section defines the file system and IO library related configuration parameters sup-
ported by <rtems/confdefs.h>.

23.14.1 Enable Malloc Family Statistics

CONSTANT: CONFIGURE_MALLOC_STATISTICS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is undefined by default and Malloc Statistics are disabled.

DESCRIPTION:

This configuration parameter is defined when the application wishes to enable the gathering
of more detailed statistics on the C Malloc Family of routines.

NOTES:

None.

Chapter 23: Configuring a System 279

23.14.2 Specify Maximum Number of File Descriptors

CONSTANT: CONFIGURE_LIBIO_MAXIMUM_FILE_DESCRIPTORS

DATA TYPE: integer

RANGE: Zero or positive

DEFAULT VALUE: If not defined, the default value is either zero (0) or three if
CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER is defined. Three
file descriptors allows RTEMS to support standard input, output,
and error I/O streams on /dev/console.

DESCRIPTION:

This configuration parameter is set to the maximum number of files that can be concurrently
open.

NOTES:

In addition to the actual file descriptor data structures, the RTEMS Libio Support library
requires a Classic API semaphore for each file descriptor as well as one to manage the set.
Thus this configuration parameter implicitly impacts the configured number of Classic API
semaphores configured for the application.

23.14.3 Disable POSIX Termios Support

CONSTANT: CONFIGURE_TERMIOS_DISABLED

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined and resources are reserved for the
termios functionality.

DESCRIPTION:

This configuration parameter is defined if the software implementing POSIX termios func-
tionality is not going to be used by this application.

NOTES:

The termios support library should not be included in an application executable unless it
is directly referenced by the application or a device driver.

23.14.4 Specify Maximum Termios Ports

CONSTANT: CONFIGURE_NUMBER_OF_TERMIOS_PORTS

DATA TYPE: integer

RANGE: zero or positive integer

DEFAULT VALUE: By default, this is set to 1 so a console port can be used.

280 RTEMS C User’s Guide

DESCRIPTION:

This configuration parameter is set to the number of ports using the termios functionality.
Each concurrently active termios port requires resources.

NOTES:

If the application will be using serial ports including, but not limited to, the Console Device
(e.g. CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER), then it is highly likely that this
configuration parameter should NOT be is defined.

23.15 File System Configuration Parameters

This section defines File System related configuration parameters.

23.15.1 Providing Application Specific Mount Table

CONSTANT: CONFIGURE_HAS_OWN_MOUNT_TABLE

DATA TYPE: Undefined or an array of type rtems_filesystem_mount_table_t.

RANGE: Undefined or an array of type rtems_filesystem_mount_table_t.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

This configuration parameter is defined when the application provides their own filesystem
mount table. The mount table is an array of rtems_filesystem_mount_table_t entries
pointed to by the global variable rtems_filesystem_mount_table. The number of entries
in this table is in an integer variable named rtems_filesystem_mount_table_t.

NOTES:

None.

23.15.2 Configure miniIMFS as Root File System

CONSTANT: CONFIGURE_USE_MINIIMFS_AS_BASE_FILESYSTEM

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE:

This value is not defined by default. If no other root file system
configuration parameters are specified, the IMFS will be used as the
root file system.

DESCRIPTION:

This configuration parameter is defined if the application wishes to use the reduced func-
tionality miniIMFS as the root filesystem. This reduced version of the full IMFS does not
include the capability to mount other file system types, but it does support directories,
device nodes, and symbolic links.

Chapter 23: Configuring a System 281

NOTES:

The miniIMFS nodes and is smaller in executable code size than the full IMFS.

23.15.3 Configure devFS as Root File System

CONSTANT: CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This value is not defined by default. If no other root file system
configuration parameters are specified, the IMFS will be used as the
root file system.

DESCRIPTION:

This configuration parameter is defined if the application wishes to use the device-only
filesytem as the root file system.

NOTES:

The device-only filesystem supports only device nodes and is smaller in executable code size
than the full IMFS and miniIMFS.

The devFS is comparable in functionality to the pseudo-filesystem name space provided
before RTEMS release 4.5.0.

23.15.4 Disable File System Support

CONSTANT:

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This value is not defined by default. If no other root file system
configuration parameters are specified, the IMFS will be used as the
root file system.

DESCRIPTION:

CONFIGURE_APPLICATION_DISABLE_FILESYSTEM

NOTES:

This configuration parameter is defined if the application dose not intend to use any kind of
filesystem support. This include the device infrastructure necessary to support printf().

23.16 BSP Specific Settings

This section describes BSP specific configuration settings used by <rtems/confdefs.h>.
The BSP specific configuration settings are defined in <bsp.h>.

282 RTEMS C User’s Guide

23.16.1 Disable BSP Configuration Settings

CONSTANT: CONFIGURE_DISABLE_BSP_SETTINGS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

All BSP specific configuration settings can be disabled by the application with the
CONFIGURE_DISABLE_BSP_SETTINGS option.

NOTES:

None.

23.16.2 Specify BSP Supports sbrk()

CONSTANT: CONFIGURE_MALLOC_BSP_SUPPORTS_SBRK

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This configuration is undefined by default.

DESCRIPTION:

This configuration parameter is defined by a BSP to indicate that it does not allocate all
available memory to the C Program Heap used by the Malloc Family of routines.

If defined, when malloc() is unable to allocate memory, it will call the BSP supplied sbrk()

to obtain more memory.

NOTES:

This parameter should not be defined by the application. Only the BSP knows how it
allocates memory to the C Program Heap.

23.16.3 Specify BSP Specific Idle Task

CONSTANT: BSP_IDLE_TASK_BODY

DATA TYPE: Pointer to method.

RANGE: Null or pointer to method.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

If BSP_IDLE_TASK_BODY is defined by the BSP and CONFIGURE_IDLE_TASK_BODY is not
defined by the application, then this BSP specific idle task body will be used.

Chapter 23: Configuring a System 283

NOTES:

As it has knowledge of the specific CPU model, system controller logic, and peripheral
buses, a BSP specific IDLE task may be capable of turning components off to save power
during extended periods of no task activity

23.16.4 Specify BSP Suggested Value for IDLE Task Stack Size

CONSTANT: BSP_IDLE_TASK_STACK_SIZE

DATA TYPE: integer

RANGE: undefined or positive integer

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

If BSP_IDLE_TASK_STACK_SIZE is defined by the BSP and CONFIGURE_IDLE_TASK_STACK_

SIZE is not defined by the application, then this BSP suggested idle task stack size will be
used.

NOTES:

The order of precedence for configuring the IDLE task stack size is:

• RTEMS default minimum stack size.

• If defined, then CONFIGURE_MINIMUM_TASK_STACK_SIZE.

• If defined, then the BSP specific BSP_IDLE_TASK_SIZE.

• If defined, then the application specified CONFIGURE_IDLE_TASK_SIZE.

23.16.5 Specify BSP Specific User Extensions

CONSTANT: BSP_INITIAL_EXTENSION

DATA TYPE: List of rtems_extensions_table entries

RANGE: Undefined or a list of one or more user extensions.

DEFAULT VALUE: This value is not defined by default.

DESCRIPTION:

If BSP_INITIAL_EXTENSION is defined by the BSP, then this BSP specific initial extension
will be placed as the last entry in the initial extension table.

NOTES:

None.

23.16.6 Specifying BSP Specific Interrupt Stack Size

CONSTANT: BSP_INTERRUPT_STACK_SIZE

DATA TYPE:

RANGE:

DEFAULT VALUE:

284 RTEMS C User’s Guide

DESCRIPTION:

If BSP_INTERRUPT_STACK_SIZE is defined by the BSP and CONFIGURE_INTERRUPT_STACK_

SIZE is not defined by the application, then this BSP specific interrupt stack size will be
used.

NOTES:

None.

23.16.7 Specifying BSP Specific Maximum Devices

CONSTANT: BSP_MAXIMUM_DEVICES

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

If BSP_MAXIMUM_DEVICES is defined by the BSP and CONFIGURE_MAXIMUM_DEVICES is not
defined by the application, then this BSP specific maximum device count will be used. This
option is specific to the device file system (devFS) and should not be confused with the
CONFIGURE_MAXIMUM_DRIVERS option.

NOTES:

This parameter only impacts the devFS and thus is only used by <rtems/confdefs.h>

when CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM is specified.

23.16.8 BSP Recommends RTEMS Workspace be Cleared

CONSTANT: BSP_ZERO_WORKSPACE_AUTOMATICALLY

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

If BSP_ZERO_WORKSPACE_AUTOMATICALLY is defined by the BSP and CONFIGURE_ZERO_

WORKSPACE_AUTOMATICALLY is not defined by the application, then the workspace will be
zeroed automatically.

NOTES:

Zeroing memory can add significantly to system boot time. It is not necessary for RTEMS
but is often assumed by support libraries.

Chapter 23: Configuring a System 285

23.16.9 Specify BSP Prerequisite Drivers

CONSTANT: CONFIGURE_BSP_PREREQUISITE_DRIVERS

DATA TYPE: array of device drivers

RANGE: Undefined or array of device drivers

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_BSP_PREREQUISITE_DRIVERS is defined if the BSP has device drivers it needs to
include in the Device Driver Table. This should be defined to the set of device driver entries
that will be placed in the table at the FRONT of the Device Driver Table and initialized
before any other drivers INCLUDING any application prerequisite drivers.

NOTES:

CONFIGURE_BSP_PREREQUISITE_DRIVERS is typically used by BSPs to configure common
infrastructure such as bus controllers or probe for devices.

23.17 Idle Task Configuration

This section defines the IDLE task related configuration parameters supported by
<rtems/confdefs.h>.

23.17.1 Specify Application Specific Idle Task Body

CONSTANT: CONFIGURE_IDLE_TASK_BODY

DATA TYPE: method pointer.

RANGE: Undefined or method pointer.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_IDLE_TASK_BODY is set to the method name corresponding to the application
specific IDLE thread body. If not specified, the BSP or RTEMS default IDLE thread body
will be used.

NOTES:

None.

23.17.2 Specify Idle Task Stack Size

CONSTANT: CONFIGURE_IDLE_TASK_STACK_SIZE

DATA TYPE: integer

RANGE: undefined or positive

DEFAULT VALUE: If not specified, the IDLE task will have a stack of the configured
minimum stack size.

286 RTEMS C User’s Guide

DESCRIPTION:

CONFIGURE_IDLE_TASK_STACK_SIZE is set to the desired stack size for the IDLE task.

NOTES:

None.

23.17.3 Specify Idle Task Performs Application Initialization

CONSTANT: CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not the mode of operation and the user is assumed
to provide one or more initialization tasks.

DESCRIPTION:

CONFIGURE_IDLE_TASK_INITIALIZES_APPLICATION is set to indicate that the user has con-
figured NO user initialization tasks or threads and that the user provided IDLE task will
perform application initialization and then transform itself into an IDLE task.

NOTES:

If you use this option be careful, the user IDLE task CANNOT block at all during the
initialization sequence. Further, once application initialization is complete, it must make
itself preemptible and enter an IDLE body loop.

The IDLE task must run at the lowest priority of all tasks in the system.

23.18 Scheduler Algorithm Configuration

This section defines the configuration parameters related to selecting a scheduling algorithm
for an application. For the schedulers built into RTEMS, the configuration is straight-
forward. All that is required is to define the configuration macro which specifies which
scheduler you want for in your application. The currently available schedulers are:

The pluggable scheduler interface also enables the user to provide their own scheduling
algorithm. If you choose to do this, you must define multiple configuration macros.

23.18.1 Use Deterministic Priority Scheduler

CONSTANT: CONFIGURE_SCHEDULER_PRIORITY

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is the default scheduler and specifying this configuration pa-
rameter is redundant.

Chapter 23: Configuring a System 287

DESCRIPTION:

The Deterministic Priority Scheduler is the default scheduler in RTEMS for single core
applications and is designed for predictable performance under the highest loads. It can
block or unblock a thread in a constant amount of time. This scheduler requires a variable
amount of memory based upon the number of priorities configured in the system.

NOTES:

This scheduler may be explicitly selected by defining CONFIGURE_SCHEDULER_PRIORITY al-
though this is equivalent to the default behavior.

23.18.2 Use Simple Priority Scheduler

CONSTANT: CONFIGURE_SCHEDULER_SIMPLE

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

When defined, the Simple Priority Scheduler is used at the thread scheduling algorithm.
This is an alternative scheduler in RTEMS. It is designed to provide the same task scheduling
behaviour as the Deterministic Priority Scheduler while being simpler in implementation
and uses less memory for data management. It maintains a single sorted list of all ready
threads. Thus blocking or unblocking a thread is not a constant time operation with this
scheduler.

This scheduler may be explicitly selected by defining CONFIGURE_SCHEDULER_SIMPLE.

NOTES:

This scheduler is appropriate for use in small systems where RAM is limited.

23.18.3 Use Earliest Deadline First Scheduler

CONSTANT: CONFIGURE_SCHEDULER_EDF

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

The Earliest Deadline First Scheduler (EDF) is an alternative scheduler in RTEMS for single
core applications. The EDF schedules tasks with dynamic priorities equal to deadlines. The
deadlines are declared using only Rate Monotonic manager which handles periodic behavior.
Period is always equal to deadline. If a task does not have any deadline declared or the
deadline is cancelled, the task is considered a background task which is scheduled in case no
deadline-driven tasks are ready to run. Moreover, multiple background tasks are scheduled

288 RTEMS C User’s Guide

according their priority assigned upon initialization. All ready tasks reside in a single ready
queue.

This scheduler may be explicitly selected by defining CONFIGURE_SCHEDULER_EDF.

NOTES:

None.

23.18.4 Use Constant Bandwidth Server Scheduler

CONSTANT: CONFIGURE_SCHEDULER_CBS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

The Constant Bandwidth Server Scheduler (CBS) is an alternative scheduler in RTEMS for
single core applications. The CBS is a budget aware extension of EDF scheduler. The goal
of this scheduler is to ensure temporal isolation of tasks. The CBS is equipped with a set
of additional rules and provides with an extensive API.

This scheduler may be explicitly selected by defining CONFIGURE_SCHEDULER_CBS. See
Chapter 30 [Constant Bandwidth Server Scheduler API], page 377 for more details.

NOTES:

None.

23.18.5 Use Simple SMP Priority Scheduler

CONSTANT: CONFIGURE_SCHEDULER_SIMPLE_SMP

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

The Simple SMP Priority Scheduler is derived from the Simple Priority Scheduler but is
capable of scheduling threads across multiple cores. It is designed to provide the same task
scheduling behaviour as the Deterministic Priority Scheduler while distributing threads
across multiple cores. Being based upon the Simple Priority Scheduler, it also maintains
a single sorted list of all ready threads. Thus blocking or unblocking a thread is not a
constant time operation with this scheduler.

In addition, when allocating threads to cores, the algorithm is not constant time. This
algorithm was not designed with efficiency as a primary design goal. Its primary design
goal was to provide an SMP-aware scheduling algorithm that is simple to understand.

In a configuration with SMP enabled at configure time, it may be explicitly selected by
defining CONFIGURE_SCHEDULER_SIMPLE_SMP.

Chapter 23: Configuring a System 289

NOTES:

This scheduler is only available when RTEMS is configured with SMP support enabled.

This scheduler is currently the default in SMP configurations and is only selected when
CONFIGURE_SMP_APPLICATION is defined.

23.18.6 Configuring a User Provided Scheduler

CONSTANT: CONFIGURE_SCHEDULER_USER

DATA TYPE: Entry points for scheduler

RANGE: Undefined or scheduler entry set

DEFAULT VALUE:

DESCRIPTION:

RTEMS allows the application to provide its own task/thread scheduling algorithm. In
order to do this, one must define CONFIGURE_SCHEDULER_USER to indicate the application
provides its own scheduling algorithm. If CONFIGURE_SCHEDULER_USER is defined then the
following additional macros must be defined:

• CONFIGURE_MEMORY_FOR_SCHEDULER must be defined with the amount of memory
required as a base amount for the scheduler.

• CONFIGURE_MEMORY_PER_TASK_FOR_SCHEDULER(_tasks) must be defined as a for-
mula which computes the amount of memory required based upon the number of
tasks configured.

NOTES:

At this time, the mechanics and requirements for writing a new scheduler are evolving and
not fully documented. It is recommended that you look at the existing Deterministic Pri-
ority Scheduler in cpukit/score/src/schedulerpriority*.c for guidance. For guidance
on the configuration macros, please examine cpukit/sapi/include/confdefs.h for how
these are defined for the Deterministic Priority Scheduler.

23.19 SMP Specific Configuration Parameters

This section defines the SMP related system configuration parameters supported by
<rtems/confdefs.h>. They are only used if the SMP Support (distinct from the Mul-
tiprocessing Support) is enabled at configure time using the --enable-smp option.

Additionally, this class of Configuration Constants are only applicable if CONFIGURE_SMP_
APPLICATION is defined.

23.19.1 Specify Application Uses Multiple Cores (is SMP)

CONSTANT: CONFIGURE_SMP_APPLICATION

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

290 RTEMS C User’s Guide

DESCRIPTION:

CONFIGURE_SMP_APPLICATION must be defined if the application is to make use of multiple
CPU cores in an SMP target system.

NOTES:

None.

23.19.2 Specify Maximum Processors in SMP System

CONSTANT: CONFIGURE_SMP_MAXIMUM_PROCESSORS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_SMP_MAXIMUM_PROCESSORS must be set to the number of CPU cores in the SMP
configuration.

NOTES:

If there are more cores available than configured, the rest will be ignored.

23.20 Device Driver Table

This section defines the configuration parameters related to the automatic generation of
a Device Driver Table. As <rtems/confdefs.h> only is aware of a small set of standard
device drivers, the generated Device Driver Table is suitable for simple applications with
no custom device drivers.

Note that network device drivers are not configured in the Device Driver Table.

23.20.1 Specifying Application Defined Device Driver Table

CONSTANT: CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE

DATA TYPE: Array of device drivers.

RANGE: Undefined or array of device drivers.

DEFAULT VALUE: By default, this is not defined indicating the <rtems/confdefs.h>

is providing the device driver table.

DESCRIPTION:

CONFIGURE_HAS_OWN_DEVICE_DRIVER_TABLE is defined if the application wishes to provide
their own Device Driver Table.

The table must be an array of rtems_driver_address_table entries named Device_

drivers.

NOTES:

It is expected that there the application would only rarely need to do this.

Chapter 23: Configuring a System 291

23.20.2 Specifying the Maximum Number of Device Drivers

CONSTANT: CONFIGURE_MAXIMUM_DRIVERS

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: By default, this is set to the number of device drivers configured us-
ing the CONFIGURE_APPLICATIONS_NEEDS_XXX_DRIVER configuration
parameters.

DESCRIPTION:

CONFIGURE_MAXIMUM_DRIVERS is defined as the number of device drivers per node.

NOTES:

If the application will dynamically install device drivers, then this configuration parameter
must be larger than the number of statically configured device drivers. Drivers configured
using the CONFIGURE_APPLICATIONS_NEEDS_XXX_DRIVER configuration parameters are stat-
ically installed.

23.20.3 Specifying Maximum Devices

CONSTANT: CONFIGURE_MAXIMUM_DEVICES

DATA TYPE: integer

RANGE: undefined or positive integer.

DEFAULT VALUE: Unless BSP_MAXIMUM_DEVICES is set by the BSP, the default value
for this is set to 4. If overridden by the BSP the value is set to the
value specified by the BSP.

DESCRIPTION:

CONFIGURE_MAXIMUM_DEVICES is defined to the number of individual devices that may be
registered in the system.

NOTES:

This parameter only impacts the devFS and thus is only used by <rtems/confdefs.h>

when CONFIGURE_USE_DEVFS_AS_BASE_FILESYSTEM is specified.

23.20.4 Enable Console Device Driver

CONSTANT:

CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

292 RTEMS C User’s Guide

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_CONSOLE_DRIVER is defined if the application wishes to
include the Console Device Driver.

NOTES:

This device driver is responsible for providing standard input and output using /dev/console.

BSPs should be constructed in a manner that allows printk() to work properly without
the need for the console driver to be configured.

23.20.5 Enable Clock Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER is defined if the application wishes to in-
clude the Clock Device Driver.

NOTES:

This device driver is responsible for providing a regular interrupt which invokes the rtems_
clock_tick directive.

If neither the Clock Driver not Benchmark Timer is enabled and the configuration parame-
ter CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER is not defined, then a compile
time error will occur.

23.20.6 Enable the Benchmark Timer Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER is defined if the application wishes to in-
clude the Timer Driver. This device driver is used to benchmark execution times by the
RTEMS Timing Test Suites.

NOTES:

If neither the Clock Driver not Benchmark Timer is enabled and the configuration parame-
ter CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER is not defined, then a compile
time error will occur.

Chapter 23: Configuring a System 293

23.20.7 Specify Clock and Benchmark Timer Drivers Are Not
Needed

CONSTANT: CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_APPLICATION_DOES_NOT_NEED_CLOCK_DRIVER is defined when the application
does NOT want the Clock Device Driver and is NOT using the Timer Driver. The inclusion
or exclusion of the Clock Driver must be explicit in user applications.

NOTES:

This configuration parameter is intended to prevent the common user error of using the
Hello World example as the baseline for an application and leaving out a clock tick source.

23.20.8 Enable Real-Time Clock Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_RTC_DRIVER is defined if the application wishes to include
the Real-Time Clock Driver.

NOTES:

Most BSPs do not include support for a real-time clock. This is because many boards do
not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link
time error for an undefined symbol.

23.20.9 Enable the Watchdog Device Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_WATCHDOG_DRIVER is defined if the application wishes to
include the Watchdog Driver.

294 RTEMS C User’s Guide

NOTES:

Most BSPs do not include support for a watchdog device driver. This is because many
boards do not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link
time error for an undefined symbol.

23.20.10 Enable the Graphics Frame Buffer Device Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_FRAME_BUFFER_DRIVER is defined if the application wishes
to include the BSP’s Frame Buffer Device Driver.

NOTES:

Most BSPs do not include support for a Frame Buffer Device Driver. This is because many
boards do not include the required hardware.

If this is defined and the BSP does not have this device driver, then the user will get a link
time error for an undefined symbol.

23.20.11 Enable Stub Device Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default, this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_NEEDS_STUB_DRIVER is defined if the application wishes to in-
clude the Stub Device Driver.

NOTES:

This device driver simply provides entry points that return successful and is primarily a
test fixture. It is supported by all BSPs.

23.20.12 Specify Application Prerequisite Device Drivers

CONSTANT: CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS

DATA TYPE: device driver entry structures

RANGE: Undefined or set of device driver entry structures

DEFAULT VALUE: By default,this is not defined.

Chapter 23: Configuring a System 295

DESCRIPTION:

CONFIGURE_APPLICATION_PREREQUISITE_DRIVERS is defined if the application has device
drivers it needs to include in the Device Driver Table. This should be defined to the set of
device driver entries that will be placed in the table at the FRONT of the Device Driver
Table and initialized before any other drivers EXCEPT any BSP prerequisite drivers.

NOTES:

In some cases, it is used by System On Chip BSPs to support peripheral buses beyond
those normally found on the System On Chip. For example, this is used by one RTEMS
system which has implemented a SPARC/ERC32 based board with VMEBus. The VMEBus
Controller initialization is performed by a device driver configured via this configuration
parameter.

23.20.13 Specify Extra Application Device Drivers

CONSTANT: CONFIGURE_APPLICATION_EXTRA_DRIVERS

DATA TYPE: device driver entry structures

RANGE: Undefined or set of device driver entry structures

DEFAULT VALUE: By default,this is not defined.

DESCRIPTION:

CONFIGURE_APPLICATION_EXTRA_DRIVERS is defined if the application has device drivers it
needs to include in the Device Driver Table. This should be defined to the set of device
driver entries that will be placed in the table at the END of the Device Driver Table.

NOTES:

None.

23.20.14 Enable /dev/null Device Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_NULL_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default,this is not defined.

DESCRIPTION:

This configuration variable is specified to enable /dev/null device driver.

NOTES:

This device driver is supported by all BSPs.

296 RTEMS C User’s Guide

23.20.15 Enable /dev/zero Device Driver

CONSTANT: CONFIGURE_APPLICATION_NEEDS_ZERO_DRIVER

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: By default,this is not defined.

DESCRIPTION:

This configuration variable is specified to enable /dev/zero device driver.

NOTES:

This device driver is supported by all BSPs.

23.21 Multiprocessing Configuration

This section defines the multiprocessing related system configuration parameters supported
by <rtems/confdefs.h>. They are only used if the Multiprocessing Support (distinct
from the SMP support) is enabled at configure time using the --enable-multiprocessing
option.

Additionally, this class of Configuration Constants are only applicable if CONFIGURE_MP_
APPLICATION is defined.

23.21.1 Specify Application Will Use Multiprocessing

CONSTANT: CONFIGURE_MP_APPLICATION

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

This configuration parameter must be defined to indicate that the application intends to be
part of a multiprocessing configuration. Additional configuration parameters are assumed
to be provided.

NOTES:

This has no impact unless RTEMS was configured and built using the --enable-

multiprocessing option.

23.21.2 Configure Node Number in Multiprocessor Configuration

CONSTANT: CONFIGURE_MP_NODE_NUMBER

DATA TYPE: integer

RANGE: positive integer

DEFAULT VALUE: If not defined, it is set to NODE_NUMBER which is assumed to be set
by the compilation environment.

Chapter 23: Configuring a System 297

DESCRIPTION:

CONFIGURE_MP_NODE_NUMBER is the node number of this node in a multiprocessor system.

NOTES:

In the RTEMS Multiprocessing Test Suite, the node number is derived from the Makefile
variable NODE_NUMBER. The same code is compiled with the NODE_NUMBER set to different
values. The test programs behave differently based upon their node number.

23.21.3 Configure Maximum Node in Multiprocessor
Configuration

CONSTANT: CONFIGURE_MP_MAXIMUM_NODES

DATA TYPE: integer

RANGE: positive

DEFAULT VALUE: The default is two (2).

DESCRIPTION:

CONFIGURE_MP_MAXIMUM_NODES is the maximum number of nodes in a multiprocessor sys-
tem.

NOTES:

None.

23.21.4 Configure Maximum Global Objects in Multiprocessor
Configuration

CONSTANT: CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS

DATA TYPE: integer

RANGE: positive

DEFAULT VALUE: The default is 32.

DESCRIPTION:

CONFIGURE_MP_MAXIMUM_GLOBAL_OBJECTS is the maximum number of concurrently active
global objects in a multiprocessor system.

NOTES:

This value corresponds to the total number of objects which can be created with the RTEMS_
GLOBAL attribute.

23.21.5 Configure Maximum Proxies in Multiprocessor
Configuration

CONSTANT: CONFIGURE_MP_MAXIMUM_PROXIES

DATA TYPE: integer

RANGE: undefined or positive

DEFAULT VALUE: The default is 32.

298 RTEMS C User’s Guide

DESCRIPTION:

CONFIGURE_MP_MAXIMUM_PROXIES is the maximum number of concurrently active
thread/task proxies on this node in a multiprocessor system.

NOTES:

Since a proxy is used to represent a remote task/thread which is blocking on this node.
This configuration parameter reflects the maximum number of remote tasks/threads which
can be blocked on objects on this node.

See Section 24.2.5 [Multiprocessing Manager Proxies], page 303 for more details.

23.21.6 Configure MPCI in Multiprocessor Configuration

CONSTANT: CONFIGURE_MP_MPCI_TABLE_POINTER

DATA TYPE: pointer to rtems_mpci_table

RANGE: undefined or valid pointer

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_MP_MPCI_TABLE_POINTER is the pointer to the MPCI Configuration Table. The
default value of this field is &MPCI_table.

NOTES:

RTEMS provides a Shared Memory MPCI Device Driver which can be used on any Multi-
processor System assuming the BSP provides the proper set of supporting methods.

23.21.7 Do Not Generate Multiprocessor Configuration Table

CONSTANT: CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_HAS_OWN_MULTIPROCESSING_TABLE is defined if the application wishes to pro-
vide their own Multiprocessing Configuration Table. The generated table is named
Multiprocessing_configuration.

NOTES:

This is a configuration parameter which is very unlikely to be used by an application. If
you find yourself wanting to use it in an application, please reconsider and discuss this on
the RTEMS Users mailing list.

Chapter 23: Configuring a System 299

23.22 Ada Tasks

This section defines the system configuration parameters supported by
<rtems/confdefs.h> related to configuring RTEMS to support a task using Ada
tasking with GNAT/RTEMS.

These configuration parameters are only available when RTEMS is built with the --enable-
ada configure option and the application specifies CONFIGURE_GNAT_RTEMS.

Additionally RTEMS includes an Ada language binding to the Classic API which has a
test suite. This test suite is enabled only when --enable-tests and --enable-expada are
specified on the configure command.

23.22.1 Specify Application Includes Ada Code

CONSTANT: CONFIGURE_GNAT_RTEMS

DATA TYPE: Boolean feature macro.

RANGE: Defined or undefined.

DEFAULT VALUE: This is not defined by default.

DESCRIPTION:

CONFIGURE_GNAT_RTEMS is defined to inform RTEMS that the GNAT Ada run-time is to
be used by the application.

NOTES:

This configuration parameter is critical as it makes <rtems/confdefs.h> configure the
resources (POSIX API Threads, Mutexes, Condition Variables, and Keys) used implicitly
by the GNAT run-time.

23.22.2 Specify the Maximum Number of Ada Tasks.

CONSTANT: CONFIGURE_MAXIMUM_ADA_TASKS

DATA TYPE: integer

RANGE: undefined or positive

DEFAULT VALUE: By default, when CONFIGURE_GNAT_RTEMS is defined, this is set to
20.

DESCRIPTION:

CONFIGURE_MAXIMUM_ADA_TASKS is the number of Ada tasks that can be concurrently active
in the system.

NOTES:

None.

300 RTEMS C User’s Guide

23.22.3 Specify the Maximum Fake Ada Tasks

CONSTANT:

DATA TYPE: integer

RANGE: zero or positive

DEFAULT VALUE: By default, this is undefined which implies zero (0) fake Ada Tasks.

DESCRIPTION:

CONFIGURE_MAXIMUM_FAKE_ADA_TASKS is the number of fake Ada tasks that can be concur-
rently active in the system. A fake Ada task is a non-Ada task that makes calls back into
Ada code and thus implicitly uses the Ada run-time.

NOTES:

None.

23.23 Configuration Data Structures

It is recommended that applications be configured using <rtems/confdefs.h> as it is sim-
pler and insulates applications from changes in the underlying data structures. However,
it is sometimes important to understand the data structures that are automatically filled
in by the configuration parameters. This section describes the primary configuration data
structures.

If the user wishes to see the details of a particular data structure, they are are advised to
look at the source code. After all, that is one of the advantages of RTEMS.

		List of Figures

		Preface

		Overview

		Introduction

		Real-time Application Systems

		Real-time Executive

		RTEMS Application Architecture

		RTEMS Internal Architecture

		User Customization and Extensibility

		Portability

		Memory Requirements

		Audience

		Conventions

		Manual Organization

		Key Concepts

		Introduction

		Objects

		Object Names

		Object IDs

		Thirty-Two Object ID Format

		Sixteen Bit Object ID Format

		Object ID Description

		Communication and Synchronization

		Time

		Memory Management

		RTEMS Data Types

		Introduction

		List of Data Types

		Scheduling Concepts

		Introduction

		Scheduling Algorithms

		Priority Scheduling

		Deterministic Priority Scheduler

		Simple Priority Scheduler

		Simple SMP Priority Scheduler

		Earliest Deadline First Scheduler

		Constant Bandwidth Server Scheduling (CBS)

		Scheduling Modification Mechanisms

		Task Priority and Scheduling

		Preemption

		Timeslicing

		Manual Round-Robin

		Dispatching Tasks

		Task State Transitions

		Initialization Manager

		Introduction

		Background

		Initialization Tasks

		System Initialization

		The Idle Task

		Initialization Manager Failure

		Operations

		Initializing RTEMS

		Shutting Down RTEMS

		Directives

		INITIALIZE_DATA_STRUCTURES - Initialize RTEMS Data Structures

		INITIALIZE_BEFORE_DRIVERS - Perform Initialization Before Device Drivers

		INITIALIZE_DEVICE_DRIVERS - Initialize Device Drivers

		INITIALIZE_START_MULTITASKING - Complete Initialization and Start Multitasking

		SHUTDOWN_EXECUTIVE - Shutdown RTEMS

		Task Manager

		Introduction

		Background

		Task Definition

		Task Control Block

		Task States

		Task Priority

		Task Mode

		Accessing Task Arguments

		Floating Point Considerations

		Per Task Variables

		Building a Task Attribute Set

		Building a Mode and Mask

		Operations

		Creating Tasks

		Obtaining Task IDs

		Starting and Restarting Tasks

		Suspending and Resuming Tasks

		Delaying the Currently Executing Task

		Changing Task Priority

		Changing Task Mode

		Notepad Locations

		Task Deletion

		Directives

		TASK_CREATE - Create a task

		TASK_IDENT - Get ID of a task

		TASK_SELF - Obtain ID of caller

		TASK_START - Start a task

		TASK_RESTART - Restart a task

		TASK_DELETE - Delete a task

		TASK_SUSPEND - Suspend a task

		TASK_RESUME - Resume a task

		TASK_IS_SUSPENDED - Determine if a task is Suspended

		TASK_SET_PRIORITY - Set task priority

		TASK_MODE - Change the current task mode

		TASK_GET_NOTE - Get task notepad entry

		TASK_SET_NOTE - Set task notepad entry

		TASK_WAKE_AFTER - Wake up after interval

		TASK_WAKE_WHEN - Wake up when specified

		ITERATE_OVER_ALL_THREADS - Iterate Over Tasks

		TASK_VARIABLE_ADD - Associate per task variable

		TASK_VARIABLE_GET - Obtain value of a per task variable

		TASK_VARIABLE_DELETE - Remove per task variable

		Interrupt Manager

		Introduction

		Background

		Processing an Interrupt

		RTEMS Interrupt Levels

		Disabling of Interrupts by RTEMS

		Operations

		Establishing an ISR

		Directives Allowed from an ISR

		Directives

		INTERRUPT_CATCH - Establish an ISR

		INTERRUPT_DISABLE - Disable Interrupts

		INTERRUPT_ENABLE - Enable Interrupts

		INTERRUPT_FLASH - Flash Interrupts

		INTERRUPT_IS_IN_PROGRESS - Is an ISR in Progress

		Clock Manager

		Introduction

		Background

		Required Support

		Time and Date Data Structures

		Clock Tick and Timeslicing

		Delays

		Timeouts

		Operations

		Announcing a Tick

		Setting the Time

		Obtaining the Time

		Directives

		CLOCK_SET - Set date and time

		CLOCK_GET - Get date and time information

		CLOCK_GET_TOD - Get date and time in TOD format

		CLOCK_GET_TOD_TIMEVAL - Get date and time in timeval format

		CLOCK_GET_SECONDS_SINCE_EPOCH - Get seconds since epoch

		CLOCK_GET_TICKS_PER_SECOND - Get ticks per second

		CLOCK_GET_TICKS_SINCE_BOOT - Get ticks since boot

		CLOCK_GET_UPTIME - Get the time since boot

		CLOCK_GET_UPTIME_TIMEVAL - Get the time since boot in timeval format

		CLOCK_GET_UPTIME_SECONDS - Get the seconds since boot

		CLOCK_SET_NANOSECONDS_EXTENSION - Install the nanoseconds since last tick handler

		CLOCK_TICK - Announce a clock tick

		Timer Manager

		Introduction

		Background

		Required Support

		Timers

		Timer Server

		Timer Service Routines

		Operations

		Creating a Timer

		Obtaining Timer IDs

		Initiating an Interval Timer

		Initiating a Time of Day Timer

		Canceling a Timer

		Resetting a Timer

		Initiating the Timer Server

		Deleting a Timer

		Directives

		TIMER_CREATE - Create a timer

		TIMER_IDENT - Get ID of a timer

		TIMER_CANCEL - Cancel a timer

		TIMER_DELETE - Delete a timer

		TIMER_FIRE_AFTER - Fire timer after interval

		TIMER_FIRE_WHEN - Fire timer when specified

		TIMER_INITIATE_SERVER - Initiate server for task-based timers

		TIMER_SERVER_FIRE_AFTER - Fire task-based timer after interval

		TIMER_SERVER_FIRE_WHEN - Fire task-based timer when specified

		TIMER_RESET - Reset an interval timer

		Rate Monotonic Manager

		Introduction

		Background

		Rate Monotonic Manager Required Support

		Period Statistics

		Rate Monotonic Manager Definitions

		Rate Monotonic Scheduling Algorithm

		Schedulability Analysis

		Assumptions

		Processor Utilization Rule

		Processor Utilization Rule Example

		First Deadline Rule

		First Deadline Rule Example

		Relaxation of Assumptions

		Further Reading

		Operations

		Creating a Rate Monotonic Period

		Manipulating a Period

		Obtaining the Status of a Period

		Canceling a Period

		Deleting a Rate Monotonic Period

		Examples

		Simple Periodic Task

		Task with Multiple Periods

		Directives

		RATE_MONOTONIC_CREATE - Create a rate monotonic period

		RATE_MONOTONIC_IDENT - Get ID of a period

		RATE_MONOTONIC_CANCEL - Cancel a period

		RATE_MONOTONIC_DELETE - Delete a rate monotonic period

		RATE_MONOTONIC_PERIOD - Conclude current/Start next period

		RATE_MONOTONIC_GET_STATUS - Obtain status from a period

		RATE_MONOTONIC_GET_STATISTICS - Obtain statistics from a period

		RATE_MONOTONIC_RESET_STATISTICS - Reset statistics for a period

		RATE_MONOTONIC_RESET_ALL_STATISTICS - Reset statistics for all periods

		RATE_MONOTONIC_REPORT_STATISTICS - Print period statistics report

		Semaphore Manager

		Introduction

		Background

		Nested Resource Access

		Priority Inversion

		Priority Inheritance

		Priority Ceiling

		Building a Semaphore Attribute Set

		Building a SEMAPHORE_OBTAIN Option Set

		Operations

		Creating a Semaphore

		Obtaining Semaphore IDs

		Acquiring a Semaphore

		Releasing a Semaphore

		Deleting a Semaphore

		Directives

		SEMAPHORE_CREATE - Create a semaphore

		SEMAPHORE_IDENT - Get ID of a semaphore

		SEMAPHORE_DELETE - Delete a semaphore

		SEMAPHORE_OBTAIN - Acquire a semaphore

		SEMAPHORE_RELEASE - Release a semaphore

		SEMAPHORE_FLUSH - Unblock all tasks waiting on a semaphore

		Barrier Manager

		Introduction

		Background

		Automatic Versus Manual Barriers

		Building a Barrier Attribute Set

		Operations

		Creating a Barrier

		Obtaining Barrier IDs

		Waiting at a Barrier

		Releasing a Barrier

		Deleting a Barrier

		Directives

		BARRIER_CREATE - Create a barrier

		BARRIER_IDENT - Get ID of a barrier

		BARRIER_DELETE - Delete a barrier

		BARRIER_OBTAIN - Acquire a barrier

		BARRIER_RELEASE - Release a barrier

		Message Manager

		Introduction

		Background

		Messages

		Message Queues

		Building a Message Queue Attribute Set

		Building a MESSAGE_QUEUE_RECEIVE Option Set

		Operations

		Creating a Message Queue

		Obtaining Message Queue IDs

		Receiving a Message

		Sending a Message

		Broadcasting a Message

		Deleting a Message Queue

		Directives

		MESSAGE_QUEUE_CREATE - Create a queue

		MESSAGE_QUEUE_IDENT - Get ID of a queue

		MESSAGE_QUEUE_DELETE - Delete a queue

		MESSAGE_QUEUE_SEND - Put message at rear of a queue

		MESSAGE_QUEUE_URGENT - Put message at front of a queue

		MESSAGE_QUEUE_BROADCAST - Broadcast N messages to a queue

		MESSAGE_QUEUE_RECEIVE - Receive message from a queue

		MESSAGE_QUEUE_GET_NUMBER_PENDING - Get number of messages pending on a queue

		MESSAGE_QUEUE_FLUSH - Flush all messages on a queue

		Event Manager

		Introduction

		Background

		Event Sets

		Building an Event Set or Condition

		Building an EVENT_RECEIVE Option Set

		Operations

		Sending an Event Set

		Receiving an Event Set

		Determining the Pending Event Set

		Receiving all Pending Events

		Directives

		EVENT_SEND - Send event set to a task

		EVENT_RECEIVE - Receive event condition

		Signal Manager

		Introduction

		Background

		Signal Manager Definitions

		A Comparison of ASRs and ISRs

		Building a Signal Set

		Building an ASR Mode

		Operations

		Establishing an ASR

		Sending a Signal Set

		Processing an ASR

		Directives

		SIGNAL_CATCH - Establish an ASR

		SIGNAL_SEND - Send signal set to a task

		Partition Manager

		Introduction

		Background

		Partition Manager Definitions

		Building a Partition Attribute Set

		Operations

		Creating a Partition

		Obtaining Partition IDs

		Acquiring a Buffer

		Releasing a Buffer

		Deleting a Partition

		Directives

		PARTITION_CREATE - Create a partition

		PARTITION_IDENT - Get ID of a partition

		PARTITION_DELETE - Delete a partition

		PARTITION_GET_BUFFER - Get buffer from a partition

		PARTITION_RETURN_BUFFER - Return buffer to a partition

		Region Manager

		Introduction

		Background

		Region Manager Definitions

		Building an Attribute Set

		Building an Option Set

		Operations

		Creating a Region

		Obtaining Region IDs

		Adding Memory to a Region

		Acquiring a Segment

		Releasing a Segment

		Obtaining the Size of a Segment

		Changing the Size of a Segment

		Deleting a Region

		Directives

		REGION_CREATE - Create a region

		REGION_IDENT - Get ID of a region

		REGION_DELETE - Delete a region

		REGION_EXTEND - Add memory to a region

		REGION_GET_SEGMENT - Get segment from a region

		REGION_RETURN_SEGMENT - Return segment to a region

		REGION_GET_SEGMENT_SIZE - Obtain size of a segment

		REGION_RESIZE_SEGMENT - Change size of a segment

		Dual-Ported Memory Manager

		Introduction

		Background

		Operations

		Creating a Port

		Obtaining Port IDs

		Converting an Address

		Deleting a DPMA Port

		Directives

		PORT_CREATE - Create a port

		PORT_IDENT - Get ID of a port

		PORT_DELETE - Delete a port

		PORT_EXTERNAL_TO_INTERNAL - Convert external to internal address

		PORT_INTERNAL_TO_EXTERNAL - Convert internal to external address

		I/O Manager

		Introduction

		Background

		Device Driver Table

		Major and Minor Device Numbers

		Device Names

		Device Driver Environment

		Runtime Driver Registration

		Device Driver Interface

		Device Driver Initialization

		Operations

		Register and Lookup Name

		Accessing an Device Driver

		Directives

		IO_REGISTER_DRIVER - Register a device driver

		IO_UNREGISTER_DRIVER - Unregister a device driver

		IO_INITIALIZE - Initialize a device driver

		IO_REGISTER_NAME - Register a device

		IO_LOOKUP_NAME - Lookup a device

		IO_OPEN - Open a device

		IO_CLOSE - Close a device

		IO_READ - Read from a device

		IO_WRITE - Write to a device

		IO_CONTROL - Special device services

		Fatal Error Manager

		Introduction

		Background

		Operations

		Announcing a Fatal Error

		Directives

		FATAL_ERROR_OCCURRED - Invoke the fatal error handler

		FATAL - Invoke the fatal error handler with error source

		EXCEPTION_FRAME_PRINT - Prints the exception frame

		FATAL_SOURCE_DESCRIPTION - Returns a description for a fatal source

		INTERNAL_ERROR_DESCRIPTION - Returns a description for an internal error code

		Board Support Packages

		Introduction

		Reset and Initialization

		Interrupt Stack Requirements

		Processors with a Separate Interrupt Stack

		Processors Without a Separate Interrupt Stack

		Device Drivers

		Clock Tick Device Driver

		User Extensions

		Multiprocessor Communications Interface (MPCI)

		Tightly-Coupled Systems

		Loosely-Coupled Systems

		Systems with Mixed Coupling

		Heterogeneous Systems

		User Extensions Manager

		Introduction

		Background

		Extension Sets

		TCB Extension Area

		Extensions

		TASK_CREATE Extension

		TASK_START Extension

		TASK_RESTART Extension

		TASK_DELETE Extension

		TASK_SWITCH Extension

		TASK_BEGIN Extension

		TASK_EXITTED Extension

		FATAL Error Extension

		Order of Invocation

		Operations

		Creating an Extension Set

		Obtaining Extension Set IDs

		Deleting an Extension Set

		Directives

		EXTENSION_CREATE - Create a extension set

		EXTENSION_IDENT - Get ID of a extension set

		EXTENSION_DELETE - Delete a extension set

		Configuring a System

		Introduction

		Default Value Selection Philosophy

		Sizing the RTEMS Workspace

		Potential Issues with RTEMS Workspace Estimation

		Configuration Example

		Unlimited Objects

		Per Object Class Unlimited Object Instances

		Unlimited Object Instances

		Enable Unlimited Object Instances

		Specify Unlimited Objects Allocation Size

		Classic API Configuration

		Specify Maximum Classic API Tasks

		Disable Classic API Notepads

		Specify Maximum Classic API Timers

		Specify Maximum Classic API Semaphores

		Specify Maximum Classic API Message Queues

		Specify Maximum Classic API Barriers

		Specify Maximum Classic API Periods

		Specify Maximum Classic API Partitions

		Specify Maximum Classic API Regions

		Specify Maximum Classic API Ports

		Specify Maximum Classic API User Extensions

		Classic API Initialization Tasks Table Configuration

		Instantiate Classic API Initialization Task Table

		Specifying Classic API Initialization Task Entry Point

		Specifying Classic API Initialization Task Name

		Specifying Classic API Initialization Task Stack Size

		Specifying Classic API Initialization Task Priority

		Specifying Classic API Initialization Task Attributes

		Specifying Classic API Initialization Task Modes

		Specifying Classic API Initialization Task Arguments

		Not Using Generated Initialization Tasks Table

		POSIX API Configuration

		Specify Maximum POSIX API Threads

		Specify Maximum POSIX API Mutexes

		Specify Maximum POSIX API Condition Variables

		Specify Maximum POSIX API Keys

		Specify Maximum POSIX API Timers

		Specify Maximum POSIX API Queued Signals

		Specify Maximum POSIX API Message Queues

		Specify Maximum POSIX API Message Queue Descriptors

		Specify Maximum POSIX API Semaphores

		Specify Maximum POSIX API Barriers

		Specify Maximum POSIX API Spinlocks

		Specify Maximum POSIX API Read/Write Locks

		POSIX Initialization Threads Table Configuration

		Instantiate POSIX API Initialization Thread Table

		Specifying POSIX API Initialization Thread Entry Point

		Specifying POSIX API Initialization Thread Stack Size

		Not Using Generated POSIX Initialization Threads Table

		Basic System Information

		Separate or Unified Work Areas

		Length of Each Clock Tick

		Specifying Timeslicing Quantum

		Specifying the Number of Thread Priority Levels

		Specifying the Minimum Task Size

		Configuring the Size of the Interrupt Stack

		Reserve Task/Thread Stack Memory Above Minimum

		Automatically Zeroing the RTEMS Workspace and C Program Heap

		Enable The Task Stack Usage Checker

		Specify Application Specific User Extensions

		Configuring Custom Task Stack Allocation

		Custom Task Stack Allocator Initialization

		Custom Task Stack Allocator

		Custom Task Stack Deallocator

		Configuring Memory for Classic API Message Buffers

		Calculate Memory for a Single Classic Message API Message Queue

		Reserve Memory for All Classic Message API Message Queues

		Seldom Used Configuration Parameters

		Specify Memory Overhead

		Do Not Generate Configuration Information

		Specify Location of RTEMS Workspace

		C Library Support Configuration

		Enable Malloc Family Statistics

		Specify Maximum Number of File Descriptors

		Disable POSIX Termios Support

		Specify Maximum Termios Ports

		File System Configuration Parameters

		Providing Application Specific Mount Table

		Configure miniIMFS as Root File System

		Configure devFS as Root File System

		Disable File System Support

		BSP Specific Settings

		Disable BSP Configuration Settings

		Specify BSP Supports sbrk()

		Specify BSP Specific Idle Task

		Specify BSP Suggested Value for IDLE Task Stack Size

		Specify BSP Specific User Extensions

		Specifying BSP Specific Interrupt Stack Size

		Specifying BSP Specific Maximum Devices

		BSP Recommends RTEMS Workspace be Cleared

		Specify BSP Prerequisite Drivers

		Idle Task Configuration

		Specify Application Specific Idle Task Body

		Specify Idle Task Stack Size

		Specify Idle Task Performs Application Initialization

		Scheduler Algorithm Configuration

		Use Deterministic Priority Scheduler

		Use Simple Priority Scheduler

		Use Earliest Deadline First Scheduler

		Use Constant Bandwidth Server Scheduler

		Use Simple SMP Priority Scheduler

		Configuring a User Provided Scheduler

		SMP Specific Configuration Parameters

		Specify Application Uses Multiple Cores (is SMP)

		Specify Maximum Processors in SMP System

		Device Driver Table

		Specifying Application Defined Device Driver Table

		Specifying the Maximum Number of Device Drivers

		Specifying Maximum Devices

		Enable Console Device Driver

		Enable Clock Driver

		Enable the Benchmark Timer Driver

		Specify Clock and Benchmark Timer Drivers Are Not Needed

		Enable Real-Time Clock Driver

		Enable the Watchdog Device Driver

		Enable the Graphics Frame Buffer Device Driver

		Enable Stub Device Driver

		Specify Application Prerequisite Device Drivers

		Specify Extra Application Device Drivers

		Enable /dev/null Device Driver

		Enable /dev/zero Device Driver

		Multiprocessing Configuration

		Specify Application Will Use Multiprocessing

		Configure Node Number in Multiprocessor Configuration

		Configure Maximum Node in Multiprocessor Configuration

		Configure Maximum Global Objects in Multiprocessor Configuration

		Configure Maximum Proxies in Multiprocessor Configuration

		Configure MPCI in Multiprocessor Configuration

		Do Not Generate Multiprocessor Configuration Table

		Ada Tasks

		Specify Application Includes Ada Code

		Specify the Maximum Number of Ada Tasks.

		Specify the Maximum Fake Ada Tasks

		Configuration Data Structures

		Multiprocessing Manager

		Introduction

		Background

		Nodes

		Global Objects

		Global Object Table

		Remote Operations

		Proxies

		Multiprocessor Configuration Table

		Multiprocessor Communications Interface Layer

		INITIALIZATION

		GET_PACKET

		RETURN_PACKET

		RECEIVE_PACKET

		SEND_PACKET

		Supporting Heterogeneous Environments

		Operations

		Announcing a Packet

		Directives

		MULTIPROCESSING_ANNOUNCE - Announce the arrival of a packet

		Stack Bounds Checker

		Introduction

		Background

		Task Stack

		Execution

		Operations

		Initializing the Stack Bounds Checker

		Checking for Blown Task Stack

		Reporting Task Stack Usage

		When a Task Overflows the Stack

		Routines

		STACK_CHECKER_IS_BLOWN - Has Current Task Blown Its Stack

		STACK_CHECKER_REPORT_USAGE - Report Task Stack Usage

		CPU Usage Statistics

		Introduction

		Background

		Operations

		Report CPU Usage Statistics

		Reset CPU Usage Statistics

		Directives

		cpu_usage_report - Report CPU Usage Statistics

		cpu_usage_reset - Reset CPU Usage Statistics

		Object Services

		Introduction

		Background

		APIs

		Object Classes

		Object Names

		Operations

		Decomposing and Recomposing an Object Id

		Printing an Object Id

		Directives

		BUILD_NAME - Build object name from characters

		OBJECT_GET_CLASSIC_NAME - Lookup name from id

		OBJECT_GET_NAME - Obtain object name as string

		OBJECT_SET_NAME - Set object name

		OBJECT_ID_GET_API - Obtain API from Id

		OBJECT_ID_GET_CLASS - Obtain Class from Id

		OBJECT_ID_GET_NODE - Obtain Node from Id

		OBJECT_ID_GET_INDEX - Obtain Index from Id

		BUILD_ID - Build Object Id From Components

		OBJECT_ID_API_MINIMUM - Obtain Minimum API Value

		OBJECT_ID_API_MAXIMUM - Obtain Maximum API Value

		OBJECT_API_MINIMUM_CLASS - Obtain Minimum Class Value

		OBJECT_API_MAXIMUM_CLASS - Obtain Maximum Class Value

		OBJECT_GET_API_NAME - Obtain API Name

		OBJECT_GET_API_CLASS_NAME - Obtain Class Name

		OBJECT_GET_CLASS_INFORMATION - Obtain Class Information

		Chains

		Introduction

		Background

		Nodes

		Controls

		Operations

		Multi-threading

		Creating a Chain

		Iterating a Chain

		Directives

		Initialize Chain With Nodes

		Initialize Empty

		Is Null Node ?

		Head

		Tail

		Are Two Nodes Equal ?

		Is the Chain Empty

		Is this the First Node on the Chain ?

		Is this the Last Node on the Chain ?

		Does this Chain have only One Node ?

		Returns the node count of the chain (unprotected)

		Is this Node the Chain Head ?

		Is this Node the Chain Tail ?

		Extract a Node

		Get the First Node

		Insert a Node

		Append a Node

		Prepend a Node

		Timespec Helpers

		Introduction

		Background

		Time Storage Conventions

		Operations

		Set and Obtain Timespec Value

		Timespec Math

		Comparing struct timespec Instances

		Conversions and Validity Check

		Directives

		TIMESPEC_SET - Set struct timespec Instance

		TIMESPEC_ZERO - Zero struct timespec Instance

		TIMESPEC_IS_VALID - Check validity of a struct timespec instance

		TIMESPEC_ADD_TO - Add Two struct timespec Instances

		TIMESPEC_SUBTRACT - Subtract Two struct timespec Instances

		TIMESPEC_DIVIDE - Divide Two struct timespec Instances

		TIMESPEC_DIVIDE_BY_INTEGER - Divide a struct timespec Instance by an Integer

		TIMESPEC_LESS_THAN - Less than operator

		TIMESPEC_GREATER_THAN - Greater than operator

		TIMESPEC_EQUAL_TO - Check equality of timespecs

		TIMESPEC_GET_SECONDS - Get Seconds Portion of struct timespec Instance

		TIMESPEC_GET_NANOSECONDS - Get Nanoseconds Portion of the struct timespec Instance

		TIMESPEC_TO_TICKS - Convert struct timespec Instance to Ticks

		TIMESPEC_FROM_TICKS - Convert Ticks to struct timespec Representation

		Constant Bandwidth Server Scheduler API

		Introduction

		Background

		Constant Bandwidth Server Definitions

		Handling Periodic Tasks

		Registering a Callback Function

		Limitations

		Operations

		Setting up a server

		Attaching Task to a Server

		Detaching Task from a Server

		Examples

		Directives

		CBS_INITIALIZE - Initialize the CBS library

		CBS_CLEANUP - Cleanup the CBS library

		CBS_CREATE_SERVER - Create a new bandwidth server

		CBS_ATTACH_THREAD - Attach a thread to server

		CBS_DETACH_THREAD - Detach a thread from server

		CBS_DESTROY_SERVER - Destroy a bandwidth server

		CBS_GET_SERVER_ID - Get an ID of a server

		CBS_GET_PARAMETERS - Get scheduling parameters of a server

		CBS_SET_PARAMETERS - Set scheduling parameters

		CBS_GET_EXECUTION_TIME - Get elapsed execution time

		CBS_GET_REMAINING_BUDGET - Get remaining execution time

		CBS_GET_APPROVED_BUDGET - Get scheduler approved execution time

		Directive Status Codes

		Example Application

		Glossary

		Command and Variable Index

		Concept Index

