File: | /home/joel/rtems-4.11-work/build/rtems/c/src/../../cpukit/score/cpu/sparc/cpu.c |
Location: | line 295, column 5 |
Description: | Value stored to 'the_size' is never read |
1 | /* |
2 | * SPARC Dependent Source |
3 | * |
4 | * COPYRIGHT (c) 1989-2007. |
5 | * On-Line Applications Research Corporation (OAR). |
6 | * |
7 | * The license and distribution terms for this file may be |
8 | * found in the file LICENSE in this distribution or at |
9 | * http://www.rtems.com/license/LICENSE. |
10 | * |
11 | * $Id: cpu.c,v 1.30 2010/03/27 15:03:09 joel Exp $ |
12 | */ |
13 | |
14 | #ifdef HAVE_CONFIG_H1 |
15 | #include "config.h" |
16 | #endif |
17 | |
18 | #include <rtems/system.h> |
19 | #include <rtems/score/isr.h> |
20 | #include <rtems/rtems/cache.h> |
21 | |
22 | /* |
23 | * This initializes the set of opcodes placed in each trap |
24 | * table entry. The routine which installs a handler is responsible |
25 | * for filling in the fields for the _handler address and the _vector |
26 | * trap type. |
27 | * |
28 | * The constants following this structure are masks for the fields which |
29 | * must be filled in when the handler is installed. |
30 | */ |
31 | |
32 | const CPU_Trap_table_entry _CPU_Trap_slot_template = { |
33 | 0xa1480000, /* mov %psr, %l0 */ |
34 | 0x29000000, /* sethi %hi(_handler), %l4 */ |
35 | 0x81c52000, /* jmp %l4 + %lo(_handler) */ |
36 | 0xa6102000 /* mov _vector, %l3 */ |
37 | }; |
38 | |
39 | /*PAGE |
40 | * |
41 | * _CPU_Initialize |
42 | * |
43 | * This routine performs processor dependent initialization. |
44 | * |
45 | * INPUT PARAMETERS: NONE |
46 | * |
47 | * Output Parameters: NONE |
48 | * |
49 | * NOTE: There is no need to save the pointer to the thread dispatch routine. |
50 | * The SPARC's assembly code can reference it directly with no problems. |
51 | */ |
52 | |
53 | void _CPU_Initialize(void) |
54 | { |
55 | #if (SPARC_HAS_FPU1 == 1) |
56 | Context_Control_fp *pointer; |
57 | |
58 | /* |
59 | * This seems to be the most appropriate way to obtain an initial |
60 | * FP context on the SPARC. The NULL fp context is copied it to |
61 | * the task's FP context during Context_Initialize. |
62 | */ |
63 | |
64 | pointer = &_CPU_Null_fp_context; |
65 | _CPU_Context_save_fp( &pointer ); |
66 | #endif |
67 | |
68 | /* |
69 | * Since no tasks have been created yet and no interrupts have occurred, |
70 | * there is no way that the currently executing thread can have an |
71 | * _ISR_Dispatch stack frame on its stack. |
72 | */ |
73 | _CPU_ISR_Dispatch_disable = 0; |
74 | } |
75 | |
76 | /*PAGE |
77 | * |
78 | * _CPU_ISR_Get_level |
79 | * |
80 | * Input Parameters: NONE |
81 | * |
82 | * Output Parameters: |
83 | * returns the current interrupt level (PIL field of the PSR) |
84 | */ |
85 | |
86 | uint32_t _CPU_ISR_Get_level( void ) |
87 | { |
88 | uint32_t level; |
89 | |
90 | sparc_get_interrupt_level( level )do { register uint32_t _psr_level = 0; do { (_psr_level) = 0; asm volatile( "rd %%psr, %0" : "=r" (_psr_level) : "0" (_psr_level ) ); } while ( 0 ); (level) = (_psr_level & 0x00000F00) >> 8; } while ( 0 ); |
91 | |
92 | return level; |
93 | } |
94 | |
95 | /*PAGE |
96 | * |
97 | * _CPU_ISR_install_raw_handler |
98 | * |
99 | * This routine installs the specified handler as a "raw" non-executive |
100 | * supported trap handler (a.k.a. interrupt service routine). |
101 | * |
102 | * Input Parameters: |
103 | * vector - trap table entry number plus synchronous |
104 | * vs. asynchronous information |
105 | * new_handler - address of the handler to be installed |
106 | * old_handler - pointer to an address of the handler previously installed |
107 | * |
108 | * Output Parameters: NONE |
109 | * *new_handler - address of the handler previously installed |
110 | * |
111 | * NOTE: |
112 | * |
113 | * On the SPARC, there are really only 256 vectors. However, the executive |
114 | * has no easy, fast, reliable way to determine which traps are synchronous |
115 | * and which are asynchronous. By default, synchronous traps return to the |
116 | * instruction which caused the interrupt. So if you install a software |
117 | * trap handler as an executive interrupt handler (which is desirable since |
118 | * RTEMS takes care of window and register issues), then the executive needs |
119 | * to know that the return address is to the trap rather than the instruction |
120 | * following the trap. |
121 | * |
122 | * So vectors 0 through 255 are treated as regular asynchronous traps which |
123 | * provide the "correct" return address. Vectors 256 through 512 are assumed |
124 | * by the executive to be synchronous and to require that the return address |
125 | * be fudged. |
126 | * |
127 | * If you use this mechanism to install a trap handler which must reexecute |
128 | * the instruction which caused the trap, then it should be installed as |
129 | * an asynchronous trap. This will avoid the executive changing the return |
130 | * address. |
131 | */ |
132 | |
133 | void _CPU_ISR_install_raw_handler( |
134 | uint32_t vector, |
135 | proc_ptr new_handler, |
136 | proc_ptr *old_handler |
137 | ) |
138 | { |
139 | uint32_t real_vector; |
140 | CPU_Trap_table_entry *tbr; |
141 | CPU_Trap_table_entry *slot; |
142 | uint32_t u32_tbr; |
143 | uint32_t u32_handler; |
144 | |
145 | /* |
146 | * Get the "real" trap number for this vector ignoring the synchronous |
147 | * versus asynchronous indicator included with our vector numbers. |
148 | */ |
149 | |
150 | real_vector = SPARC_REAL_TRAP_NUMBER( vector )((vector) % 256); |
151 | |
152 | /* |
153 | * Get the current base address of the trap table and calculate a pointer |
154 | * to the slot we are interested in. |
155 | */ |
156 | |
157 | sparc_get_tbr( u32_tbr )do { (u32_tbr) = 0; asm volatile( "rd %%tbr, %0" : "=r" (u32_tbr ) : "0" (u32_tbr) ); } while ( 0 ); |
158 | |
159 | u32_tbr &= 0xfffff000; |
160 | |
161 | tbr = (CPU_Trap_table_entry *) u32_tbr; |
162 | |
163 | slot = &tbr[ real_vector ]; |
164 | |
165 | /* |
166 | * Get the address of the old_handler from the trap table. |
167 | * |
168 | * NOTE: The old_handler returned will be bogus if it does not follow |
169 | * the RTEMS model. |
170 | */ |
171 | |
172 | #define HIGH_BITS_MASK0xFFFFFC00 0xFFFFFC00 |
173 | #define HIGH_BITS_SHIFT10 10 |
174 | #define LOW_BITS_MASK0x000003FF 0x000003FF |
175 | |
176 | if ( slot->mov_psr_l0 == _CPU_Trap_slot_template.mov_psr_l0 ) { |
177 | u32_handler = |
178 | (slot->sethi_of_handler_to_l4 << HIGH_BITS_SHIFT10) | |
179 | (slot->jmp_to_low_of_handler_plus_l4 & LOW_BITS_MASK0x000003FF); |
180 | *old_handler = (proc_ptr) u32_handler; |
181 | } else |
182 | *old_handler = 0; |
183 | |
184 | /* |
185 | * Copy the template to the slot and then fix it. |
186 | */ |
187 | |
188 | *slot = _CPU_Trap_slot_template; |
189 | |
190 | u32_handler = (uint32_t) new_handler; |
191 | |
192 | slot->mov_vector_l3 |= vector; |
193 | slot->sethi_of_handler_to_l4 |= |
194 | (u32_handler & HIGH_BITS_MASK0xFFFFFC00) >> HIGH_BITS_SHIFT10; |
195 | slot->jmp_to_low_of_handler_plus_l4 |= (u32_handler & LOW_BITS_MASK0x000003FF); |
196 | |
197 | /* need to flush icache after this !!! */ |
198 | |
199 | rtems_cache_invalidate_entire_instruction(); |
200 | |
201 | } |
202 | |
203 | /*PAGE |
204 | * |
205 | * _CPU_ISR_install_vector |
206 | * |
207 | * This kernel routine installs the RTEMS handler for the |
208 | * specified vector. |
209 | * |
210 | * Input parameters: |
211 | * vector - interrupt vector number |
212 | * new_handler - replacement ISR for this vector number |
213 | * old_handler - pointer to former ISR for this vector number |
214 | * |
215 | * Output parameters: |
216 | * *old_handler - former ISR for this vector number |
217 | * |
218 | */ |
219 | |
220 | void _CPU_ISR_install_vector( |
221 | uint32_t vector, |
222 | proc_ptr new_handler, |
223 | proc_ptr *old_handler |
224 | ) |
225 | { |
226 | uint32_t real_vector; |
227 | proc_ptr ignored; |
228 | |
229 | /* |
230 | * Get the "real" trap number for this vector ignoring the synchronous |
231 | * versus asynchronous indicator included with our vector numbers. |
232 | */ |
233 | |
234 | real_vector = SPARC_REAL_TRAP_NUMBER( vector )((vector) % 256); |
235 | |
236 | /* |
237 | * Return the previous ISR handler. |
238 | */ |
239 | |
240 | *old_handler = _ISR_Vector_table[ real_vector ]; |
241 | |
242 | /* |
243 | * Install the wrapper so this ISR can be invoked properly. |
244 | */ |
245 | |
246 | _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored ); |
247 | |
248 | /* |
249 | * We put the actual user ISR address in '_ISR_vector_table'. This will |
250 | * be used by the _ISR_Handler so the user gets control. |
251 | */ |
252 | |
253 | _ISR_Vector_table[ real_vector ] = new_handler; |
254 | } |
255 | |
256 | /*PAGE |
257 | * |
258 | * _CPU_Context_Initialize |
259 | * |
260 | * This kernel routine initializes the basic non-FP context area associated |
261 | * with each thread. |
262 | * |
263 | * Input parameters: |
264 | * the_context - pointer to the context area |
265 | * stack_base - address of memory for the SPARC |
266 | * size - size in bytes of the stack area |
267 | * new_level - interrupt level for this context area |
268 | * entry_point - the starting execution point for this this context |
269 | * is_fp - TRUE if this context is associated with an FP thread |
270 | * |
271 | * Output parameters: NONE |
272 | */ |
273 | |
274 | void _CPU_Context_Initialize( |
275 | Context_Control *the_context, |
276 | uint32_t *stack_base, |
277 | uint32_t size, |
278 | uint32_t new_level, |
279 | void *entry_point, |
280 | bool_Bool is_fp |
281 | ) |
282 | { |
283 | uint32_t stack_high; /* highest "stack aligned" address */ |
284 | uint32_t the_size; |
285 | uint32_t tmp_psr; |
286 | |
287 | /* |
288 | * On CPUs with stacks which grow down (i.e. SPARC), we build the stack |
289 | * based on the stack_high address. |
290 | */ |
291 | |
292 | stack_high = ((uint32_t)(stack_base) + size); |
293 | stack_high &= ~(CPU_STACK_ALIGNMENT16 - 1); |
294 | |
295 | the_size = size & ~(CPU_STACK_ALIGNMENT16 - 1); |
Value stored to 'the_size' is never read | |
296 | |
297 | /* |
298 | * See the README in this directory for a diagram of the stack. |
299 | */ |
300 | |
301 | the_context->o7 = ((uint32_t) entry_point) - 8; |
302 | the_context->o6_sp = stack_high - CPU_MINIMUM_STACK_FRAME_SIZE0x60; |
303 | the_context->i6_fp = 0; |
304 | |
305 | /* |
306 | * Build the PSR for the task. Most everything can be 0 and the |
307 | * CWP is corrected during the context switch. |
308 | * |
309 | * The EF bit determines if the floating point unit is available. |
310 | * The FPU is ONLY enabled if the context is associated with an FP task |
311 | * and this SPARC model has an FPU. |
312 | */ |
313 | |
314 | sparc_get_psr( tmp_psr )do { (tmp_psr) = 0; asm volatile( "rd %%psr, %0" : "=r" (tmp_psr ) : "0" (tmp_psr) ); } while ( 0 ); |
315 | tmp_psr &= ~SPARC_PSR_PIL_MASK0x00000F00; |
316 | tmp_psr |= (new_level << 8) & SPARC_PSR_PIL_MASK0x00000F00; |
317 | tmp_psr &= ~SPARC_PSR_EF_MASK0x00001000; /* disabled by default */ |
318 | |
319 | #if (SPARC_HAS_FPU1 == 1) |
320 | /* |
321 | * If this bit is not set, then a task gets a fault when it accesses |
322 | * a floating point register. This is a nice way to detect floating |
323 | * point tasks which are not currently declared as such. |
324 | */ |
325 | |
326 | if ( is_fp ) |
327 | tmp_psr |= SPARC_PSR_EF_MASK0x00001000; |
328 | #endif |
329 | the_context->psr = tmp_psr; |
330 | |
331 | /* |
332 | * Since THIS thread is being created, there is no way that THIS |
333 | * thread can have an _ISR_Dispatch stack frame on its stack. |
334 | */ |
335 | the_context->isr_dispatch_disable = 0; |
336 | } |