September 9, 1988

1.2.8 Directives

Debug Extensions to RTEID

The following directives are used for system debugging:

Page 22

Directive Function
db_system | Control a system
db_level Set minimum Processor mask level

Debug Extensions to RTEID September 9, 1988

1.2.4 DB_SYSTEM

NAME
db_system -- "Control a System During Debug"
SYNOPSIS

uint db_system (cpu, mode)

uint cpu; /* Designates a cpu in the system */
uint mode; /* new mode */

DESCRIPTION

The epu parameter uniquely identifies a cpu in the system.

The mode parameter indicates what processing may continue in the system after an exception
occurs at some point within the system. Valid mode settings are:

DB_SYSTEM_CONTROL to establish control over system
DB_SYSTEM_RELEASE to remove control over system

DB_LEVEL block tasking at level of ISR
DB_ALL block all task dispatching
DB_CONTINUE continue execution on the system

If an exception occurs while a task is executing, then that task is blocked and a message is sent to
the debug task. If DB_LEVEL was specied as the mode, then only this task will be blocked. If
DB_ALL was specified as the mode, then all dispatching will be suspended until a db_system
command is specified with mode set to DB_CONTINUE.

If an exception occurs while an ISR is executing, further system activity is indicated by the mode
parameter. If DB_LEVEL is specified for the mode parameter, then when an exception occurs in
an ISR, the executive will issue a db_level directive with the level set to that of the current inter-
rupt priority mask. This will keep the executive from dispatching tasks whose interrupt priority
mask is less than this value, and will also block interrupts at this level or less. Interrupts and
tasks whose level is greater will occur normally.

If the mode parameter is DB_ALL and an exception occurs within an ISR, then all further
activity on this system will be blocked. The only exception to this is that remote requests for
RTEID directives (including debug extensions) will be serviced by the executive. The executive
will become unblocked when the debug task (remotly) issues a db_unblock for the cpu_id
corresponding to the system. At this point, the ISR that caused the exception will continue exe-
cution.

Page 23

September 9, 1988 Debug Extensions to RTEID

Issuing a db_system directive with mode set to DB_CONTINUE will cause the execution of the
system to continue.

RETURN VALUE

If db_system is successful, then 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid cpu.

Invalid mode.
NOTES

When first establishing control over a system, the mode parameter must include
DB_SYSTEM_CONTROL and may also include either DB_ALL or DB_LEVEL.

Once control has been established, the type of control may be changed by specifying a different
mode.

Page 24

Debug Extensions to RTEID September 9, 1988

1.2.6 DB_LEVEL

NAME
db_level -- "Set the Minimum Mask Level"
SYNOPSIS

uint db_level (level, &plevel)

uint level; /* Minimum Processor Interrupt mask level*/
uint plevel; /* Previous level - returned by this call */

DESCRIPTION

The db_level directive specifies a minimum interrupt priority mask level for further execution of
the tasks and ISR’s executing on the local cpu.

The level value is the minimum interrupt level for all tasks in the system. The executive will
never set the status register’s interrupt mask to a value less than level. Furthermore, the execu-
tive will never dispatch a task whose status register’s interrupt mask is less than level.

RETURN VALUE

If db_level is successful, then the previous minimum level is returned in plevel and 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Level is not in a valid range (0..7).

The interrupt mask of the current task is less than level.
NOTES

May cause a preempt.

Page 25

September 9, 1988 Debug Extensions to RTEID

1.3 System Monitoring

Debugging a system involves more than debugging a collection of tasks; the performance of the
entire system needs to be monitored and tuned. The db_get_id directive will return a unique
identifier for items of particular types, or items in particular queues. The db_get_item directive
will get information about items specified by the identifier. The information block will contain
data about the system as well as some history (such as total number of calls to a directive) about
the execution of the system. It is important to note that gathering statistics about the system
will add a small amount of overhead to all of the calls.

The db_get_id directive requires an item_id as an input parameter. If the value of item_id is sero,
then the first item of the specified class would be returned. If the item is non-sero, then the next
item past the specified item_id will be returned. This can be used to loop through all items in a
particular class. For example, to examine all tasks in the system, the following C code could be
used:

for(item_id=0; item_id=get_item(item_id, TASK, 0);)

{
}

process(item_id);

The class parameter specifies what type of item id to return and the third parameter is used to
specify additional information (such as which message queue).

1.8.1 Directives

The directives provided by the system monitoring are:

| Directive Function

db_get_id Get identifier for an item
db_get_item | Get information about an item

Page 26

