Debug Extensions to RTEID September 9, 1988

Invalid register number.

Task not created from local node.
NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 17

September 9, 1988

1.1.15 DB_SETREG

NAME

db_setreg — "Set a task’s register"”

SYNOPSIS

uint db_setreg (tid, regnum, ®ptr)

uint tid;
uint regnum;

union regval *regptr;

union regval {

The regnum field values are:

D_REGO
D_REG!
D_REG2
D_REG3
D_REG4
D_REG5
D_REGS
D_REG7
A_REGO
A_REG1
A_REG2
A_REG3
A_REG4
A_REGS
A_REGS
A_REG7

H_SR
H_PC
H_VOR
H_USP

Page 18

Debug Extensions to RTEID

/* task id as returned from t_create or t_ident */

/* register number */

uint i;
float f;

Task’s Processor Register DO
Task’s Processor Register D1
Task’s Processor Register D2
Task’s Processor Register D3
Task’s Processor Register D4
Task’s Processor Register D5
Task’s Processor Register D8
Task’s Processor Register D7
Task’s Processor Register A0
Task’s Processor Register Al
Task’s Processor Register A2
Task’s Processor Register A3
Task’s Processor Register A4
Task’s Processor Register A5
Task’s Processor Register A8
Task’s Processor Register A7

Status Register
Program Counter
Vector Offset Register
User Stack Pointer

/* pointer to register value */

Debug Extensions to RTEID September 9, 1988

H_ISP Interrupt Stack Pointer
H_MSP Master Stack Pointer
H_VBR Vector Base Register
H_CACR Cache Control Register
H_CAAR Cache Address Register

H_VBR Vector Base Register
H_CACR Cache Control Register
H_CAAR Cache Address Register

FP_REGO Task’s Processor Register FP0
FP_REG1 Task’s Processor Register FP1
FP_REG2 Task’s Processor Register FP2
FP_REG3 Task’s Processor Register FP3
FP_REG4 Task’s Processor Register FP4
FP_REG5 Task’s Processor Register FP5
FP_REG6 Task’s Processor Register FP6
FP_REG7 Task’s Processor Register FP7

FPCR Task’s Coprocessor Control Register

FPSR Task’s Coprocessor Status Register

FPIAR Task’s Coprocessor Instruction Address Register
DESCRIPTION

The executive sets the register identified in the regnum field for the task identified by the tid with
the value in the regptr field.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
t_create).

RETURN VALUE

If db_setreg successfully set the register value, then 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.
Invalid register number.

Task not created from local node.

Page 19

September 9, 1988 Debug Extensions to RTEID

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 20

Debug Extensions to RTEID September 9, 1988

1.2 Debugging systems

Debugging a system is much more complex than debugging a task or collection of tasks. In order
to debug a system, it should be possible to debug the interrupt service routines (ISR’s) which are
part of the system. This causes several problems. The interrupt mask must not be lowered out-
side of an ISR. Additionally, an exception in an ISR may come at any time, and may occur when
any task (with a low enough interrupt mask) is executing. Since the ISR must be blocked from
further execution, the current task is also blocked.

1.2.1 Controlling Systems

The control over a system is established through the use of the db_system directive. This will
assert debug control over the entire system of tasks and ISR’s executing on that particular cpu
board. In order to issue this command, the debugger must not be a task on the cpu board being
debugged”. - |

When control is established, the type of control is specified by the mode parameter. If all is
specified, then all activity, except for processing directives, is suspended when an exception occurs
in an ISR. If level is specified, then the executive will block further dispatching at the current
level and below (see the db_level command) and continue dispatching tasks whose interrupt mask
is greater than the current level.

1.2.2 Exceptions in ISR’s

When a controlled ISR issues an exception, such as a bus error, the execution of the entire system
must be examined. Further activity of the ISR is suspended and further task dispatching on the
system is performed based on the mode specified in the db_system directive. The executive on the
controlled system will format a message containing information about the exception and place it
on a message queue associated with the debug of the cpu. Note that even if the execution of a
system is blocked, the execution of the directives must still be processed. Since the execution of
directives continues, the debug task may issue a db_remote directive which will permit further
execution of the controlled system.

1. Alternatively, the debugger could be a "higher order® entity, such as the resident debug monitor, on a single
cpu system. This "higher order® entity would perform as a system debugger and be able to issue requests to
the executive as if it were a remote task.

Page 21

