Debug Extension
to the
Real Time Executive Interface Definition

DRAFT 2.0
Prepared by:
MOTOROLA Microcomputer Division

Abstract:
This specification defines a basic set of functions that constitute the Debug Extension to the Real Time Executive Interface Definition. Draft 2.0 is for public review. MOTOROLA retains the right to modify this definition as appropriate during implementation. Draft 2.0 will be submitted to the VITA technical committee no later than 01/25/88.






                                                                                           PRELIMINARY


DISCLAIMER

This Debug Extension to the Real Time Executive Interface Definition specification is being proposed to be used as the basis for formal standardization by the VME International Trade Association (VITA). However, since the standardization process has just begun, any standard resulting from this document might be different from this document. Any Product designed to this document might not be compatible with the final standard. No responsibility is assumed for such incompatibilities and no liability is assumed for any product built to conform to this document.



While considerable effort has been expended to make this document comprehensive, reliable, and unambiguous, it is still being published in preliminary form for public study and comment.
This document is prepared by Motorola Inc., Microcomputer Division. Interest in the Debug Extension to the RTEID is welcome and encouraged. Any technical questions, suggestions or comments may be directed to:
Motorola, Inc. 
Microcomputer Division 
Dept.: RTEID
2900 South Diablo Way 
Tempe, Arizona 85282 
Tel: (602)438-3500
Fax: (602)438-3581
Tlx: 4998071 (MOTPHE)


                                                                                                          TABLE OF CONTENTS

                                                                                       
                                                                                   1. DEBUG EXTENSIONS...................................................................................
                                                                                      1.1 Debugging Tasks.......................................................................................     
                                                                                            1.1.1   Controlling Tasks............................................................................
                                                                                            1.1.2   Read/Write Memory.......................................................................
                                                                                            1.1.3   Read/Write Registers.....................................................................
                                                                                            1.1.4   Exceptions in Tasks........................................................................ 
                                                                                            1.1.5   The debug_msg message queue...................................................... 
                                                                                            1.1.6   Trace and Breakpoìnt......................................................................
                                                                                                        1.1.6 Trace and Breakpoint............................................................
1.1.6.1 Trace..................................................................................
1.1.6.2 Breakpoints........................................................................
                                                                                            1.1.7   Directives........................................................................................
1.1.8   DB_CONTROL..............................................................................
                                                                                                                    NAME    5
                                                                                                                    SYNOPSIS    5
                                                                                                                    DESCRIPTION    5
                                                                                                                    RETURN VALUE    5
                                                                                                                    ERROR CONDITIONS    5
                                                                                                                    NOTES    6
1.1.9   DB_REMOTE.................................................................................
                        NAME    7
                        SYNOPSIS    7
                        DESCRIPTION    7
                        RETURN VALUE    7
                        ERROR CONDITIONS    7
                        NOTES    8
1.1.10   DB_BLOCK.................................................................................
                          NAME    9
                          SYNOPSIS    9
                          DESCRIPTION    9
                          RETURN VALUE    9
                          ERROR CONDITIONS    9
                          NOTES    9
1.1.11   DB_UNLOCK..............................................................................
                             NAME    10
                             SYNOPSIS    10
                             DESCRIPTION    10
                             RETURN VALUE    10
                             ERROR CONDITIONS    10
                             NOTES    10
1.1.12   DB_GETMEM....................................................................................
                           NAME    11
                           SYNOPSIS    11
                           DESCRIPTION    11


LIST OF FIGURES
                                      FIGURE 1.  General Info Block.............................................................................................................30
                                      FIGURE 2.  Task Info Block..................................................................................................................30
                                      FIGURE 3.  Message Queue Info Block................................................................................................30
                                      FIGURE 4.  Message Info Block...........................................................................................................30
                                      FIGURE 5.  Semaphore Info Block.......................................................................................................31
FIGURE 6.  Region Info Block.............................................................................................................31
FIGURE 7.  Segment Info Block...........................................................................................................31
FIGURE 8.  Partition Info Block...........................................................................................................31
FIGURE 9.  Buffer Info Block..............................................................................................................32



	
	REVISION RECORD
	

	Issue
	Revision Description
	Date

	1
	Initial version. Internal Only.
	06/01/87

	2
	Draft 2.0, limited distribution.
	01/25/88

	3
	
	

	
	
	





1. DEBUG EXTENSIONS
The debug extensions to the RTEID support several features targeted for use in debugging tasks and interrupt service routines (ISR’s). Since debugging is inherently non-real time, systems running under debug control may not exhibit true real time performance.
1.1 Debugging Tasks
Most debugging can be performed by debugging a task or a collection of tasks. In this type of debugging, the actual debug task can reside on the local cpu, or it can be remote if the appropriate GLOBAL flags are set.
1.1.1 Controlling Tasks
The relationship between the debug task and the task being debugged is established using the db_control directive in the “set” mode. The task issuing the db_control directive in the set mode must provide a message queue. This message queue is used to communicate between the executive and the task that issued the db_control directive. After completion of the db_control directive, the task being debugged becomes controlled, and cannot compete for processor time unless directed to execute by the debug task using the db_unblock directive. The db_block directive is used to block execution of the controlled task. The db_control directive in the "clear" mode is used to terminate the relationship between the debug task and the controlled task.
1.1.2 Read/Write Memory
To read and write memory belonging to the controlled task the pair of directives db_getmem and db_setmem are provided. Db_getmem reads memory from an address of the controlled task and copies it to a buffer provided by the debug task for a length specified by the debug task. Db_setmem writes memory to an address of the controlled task copying it from a buffer provided by the debug task for a length specified by the debug task.
1.1.3 Read/Write Registers
To read and write the processor registers belonging to the controlled task the pair of directives db_getreg and db_setreg are provided. Db_getreg reads a register belonging to the controlled task and copies it to a buffer provided by the debug task. Db_setreg writes to a register belonging to the controlled task by copying it from a buffer provided by the debug task.
1.1.4 Exceptions in Tasks
When a controlled task issues an exception, such as a bus error, the executive will prevent further execution by placing the controlled task in a blocked state. The executive will also format a message containing information about the exception and place it on the message queue identified by the debug task in the db_control directive.
1.1.5 The debug_msg message queue
The executive requires the ability to inform the debug task about abnormal activity that occurs when a controlled task executes. This is done by using a message queue specified by the debug task when the db_control directive is issued. This message queue is used to pass information from the executive to the debug task. When a controlled task is running and suffers an exception, the


executive will block further execution of the task, and inform the debug task of the exception by posting a message on the debug_msg queue. The format of the message is:
	Bytes
	Meaning

	0..3
	Task id of task causing exception.

	4..7
	Exceptions vector offset.

	8..11
	Address of the Exception Stack Frame

	12..15
	Program counter at the point of the exception



1.1.6 Trace and Breakpoint
A fundamental feature in debugging a task or ISR is the ability to control its execution. This is typically done either by causing the controlled task to single step one instruction, or by having the controlled task execute up to a particular breakpoint. With the debug extensions to the RTEID, a debugger can provide these features.
1.1.6.1 Trace
In order to single step, or trace, a controlled task, the debugger must manipulate the status register of the controlled task, cause it to resume execution, and then process the resulting exception.
Tracing can be accomplished by the following steps:
1. The debug task prevents further execution of the controlled task by issuing a db_block directive.
2. The controlled task’s status register is read using the db_getreg directive.
3. The debug task sets the trace bit in the status register, and writes it back using the db_setreg directive.
4. The debug task then permits execution of the controlled task by issuing the db_unblock directive.
5. Since the trace bit is set, when the controlled task executes it will take a trace exception.
6. When the trace exception occurs, the executive will block further execution of the controlled task and send a message to the debug task using the debug_msg message queue specified in the db_control directive.
7. The debug task can then receive the message, process it, and continue debugging the task.
1.1.6.2 Breakpoints
Breakpoints are accomplished in a similar fashion.
1. Execution of the controlled task is stopped using the db_block directive.
2. The instruction at the breakpoint locations is read and saved using the db_getmem directive.
3. The instruction is replaced with the breakpoint code using the directive.


4. The debug task then executes the controlled task with the db_unblock directive.
5. The controlled task will execute until it reaches the breakpoint code. At this point it will take an exception.
6. The executive will block further execution of the debug task and post a message to the debug_msg message queue specified in the db_control directive.
7. The debugger will receive the message and perform the appropriate action.

1.1.7 Directives
The directives provided by the debug manager are:

	Directive
	Function

	db_control
	Control a task

	db_remote
	Perform directive on remote cpu

	db_block
	Prevent a task from running

	db_unblock
	Run a task under control

	db_getmem
	Get a task’s memory

	db_setmem
	Set a task’s memory

	db_getreg
	Get a task’s register

	db_setreg
	Set a task’s register





1.1.8 DB_CONTROL
NAME
db_control - “Control a Task During Debug"
SYNOPSIS
unit db_control ( tid, mode, qid)
uint tid;			/* task id as returned from t_create or t_ident */
uint mode;			/* new mode */
uint qid;			/* debug_msg qid */

DESCRIPTION
Db_control is used to establish or remove debug control over a task.
The tid parameter specifies the task to be controlled. This task may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL Bag set (see t_create).

The mode specifies what type of action is to be performed when an exception occurs.
                                        
                                                   DB_TASK_CONTROL set                       to establish control over task
                                                                                           clear                   to remove control over task
These values are mutually exclusive.
The message queue identified by the qid parameter is used by the executive to report exceptions to the debug task. This queue must exist and if debugging is to be done on multiple cpu’s, then this queue must have been created with the GLOBAL flag set.
RETURN VALUE
If db_control successfully completes, 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.


Task already under debug control.
NOTES
Not callable from ISR.
Asserting control over a task will place it in the blocked state.
Removing debug control from a task will unblock the task if it was blocked.
Will not cause a preempt when mode is set.
May cause a preempt when mode is clear by unblocking a higher priority task.


1.1.9	DB_REMOTE
NAME

db_remote -- "Remote Request"

SYNOPSIS

uint db_remote (cpuid, request, &rval, argl, ..., argN)


uint cpuid; 		/* Identifies remote cpu */
uint request; 	/* Identifies request to be performed */
uint rval;		/* Return value of remote call - returned by this call */
uint argl; 		/* First argument of request */

uint argN; 		/* Last argument of request */


DESCRIPTION

The db_remote directive will cause a directive to be executed on a remote cpu.

The cpuid identifies the remote cpu, the request specifies which RTEID request (including debug extensions) is to be performed, and arg1-argN specify the arguments.

Arg1-argN are the arguments for the request and their meaning is specific to the directive identified by request. Any addresses specific to the calling task are treated as external physical addresses.


RETURN VALUE

If db_remote successfully completes, then rval contains the return value of the remote directive, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid cpuid.

Invalid request.

Other error returns are based on the specific directive identified by request.



NOTES

Thu request operates as if a task on the remote system issues the request on behalf of the caller.
The actual execution or the remote request may be performed by the ISR which processes remote requests, or may be performed by a system task on the target system.

Since not all RTEID directives may be executed on & non-local cpu, the db_remote directive will provide this function. It is especially important for debuggers which need to create tasks and manage resources on the target cpu.

This directive is also needed to access resources that are local to a remote cpu. For example, this directive could be used to suspend a task which does not have the GLOBAL flag set (assuming the task is local to a remote cpu).

Several directives have the address of return buffers as input parameters. The caller or db_remote
must specify addresses which are external to the target processor (designated by cpuid).


1.1.10	DB_BLOCK


NAME

db_block -- "Prevent a Task Under Debug Control from Running"

SYNOPSIS

uint db_block ( tid )


uint tid;  /* task id as returned from t_create or t_ident */


DESCRIPTION

The db_block directive prevents the task identified in the tid field from executing. The controlling relationship must have been previously established using the db_control directive.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

RETURN VALUE

If db_block is successful, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Task not in controlled state.

Task already blocked.

NOTES

Not callable from ISR.


1.1.11	DB_UNBLOCK

NAME

db_unblock -- "Release a Task"

SYNOPSIS

uint db_unblock ( tid )

uint tid; 	/*task id as returned from t_create or t_ident */


DESCRIPTION

Db_unblock allows the task identified by the tid field to resume execution under control of the requesting task. The controlling relationship must have been previously established using the db_control directive.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

RETURN VALUE

If db_unblock is successful, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Task not in controlled state.

Task not blocked.

NOTES

Not callable from ISR.

May cause a preempt.


1.1.12	DB_GETMEM


NAME

db_getmem -- "Get a Task's Memory"

SYNOPSIS

uint db_getmem (tid, laddr, bufaddr, length )


uint tid; 			/* task id as returned from t_create or t_ident */
char *laddr;			/* logical start address */
char *bufaddr;		/* buffer address */
uint length; 		/* length in bytes */


DESCRIPTION

The executive reads memory from the task identified in the tid field, starting at the task's logical address laddr, and copies it to the buffer identified in the bufaddr field for the length identified in length.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create). This directive may be used to transfer data between a logical address belonging to the task identified by the tid and the requesting task's buffer.

RETURN VALUE

If db_getmem successfully read the memory into the buffer, then 0 is returned.

If the memory was not successfully read into the buffer, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Invalid laddr for the task.

Bus Error occurred during the read.


NOTES

Not callable from ISR.

Will not cause a preempt.

There is no requirement that the task identified by the tid be a controlled task.

Db_getmem will attempt to only read the requested data and will not access memory beyond the laddr+length. If length is 1, a byte wide read is performed. If length is 2, a word wide read is performed.


1.1.13	DB_SETMEM


NAME

db_setmem -- "Set & Task's Memory"

SYNOPSIS

uint db_setmem (tid, laddr, bufaddr, length )

uint tid; 				/* task id as returned from t_create or t_ident */
char *laddr;				/* logical start address */
char *bufaddr; 			/* buffer address */
uint length; 			/* length in bytes */


DESCRIPTION

The executive writes memory to the task identified in the tid field from the buffer identified in the bufaddr starting at the task's logical address laddr field for the length identified in length.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

This directive may be used to transfer data between any requesting task's buffer and a logical
address belonging to the task identified by the tid.

RETURN VALUE

If db_setmem successfully writes the memory from the buffer, then 0 is returned.

If the memory was not successfully written from the buffer, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Invalid laddr.

Bus Error occurred during the write.

NOTES

Not callable from ISR.


Will not cause a preempt.

There is no requirement that the task identified by tid be a controlled task.

Db_setmem will only read the requested data and will not access memory beyond the laddr+length. If length is 1, a byte wide read is performed. If length is 2, a word wide read is performed.


l.l.14	DB_GETREG

NAME

Db_getreg -- "Get a task's register"

SYNOPSIS

uint db_getreg ( tid, regnum, &regptr )
uint tid; 					/* task id as returned from t_create or t_ident */
uint regnum; 				/* register number */
union regval *regptr; 		/* pointer to register value - returned by this call */
union regval { 
uint i;
float f;
}

The regnum field values are:

S_STAT 				Task's status byte values:
T_WTMEM 			waiting for memory
T_WTMSG 			waiting on message queue
T_WTEVT 			waiting for event
T_WTSEM 			waiting for semaphore
T_WTTIM 			waiting for timeout
T_WTCTL 			waiting on control
D_REG0 				Task's Processor Register D0
D_REGl 				Task's Processor Register Dl
D_REG2 				Task's Processor Register D2
D_REG3 				Task's Processor Register D3
D_REG4 				Task's Processor Register D4
D_REG5 				Task's Processor Register D5
D_REG6 				Task's Processor Register D6
D_REG7 				Task's Processor Register D7
A_REG0 				Task's Processor Register A0
A_REGl 				Task's Processor Register Al
A_REG2 				Task's Processor Register A2
A_REG3 				Task's Processor Register A3
A_REG4 				Task's Processor Register A4
A_REG5 				Task's Processor Register A5
A-REG6 				Task's Processor Register A6
A-REG7 				Task's Processor Register A7
[bookmark: _GoBack]

H_SR 					Status Register
H_PC 					Program Counter
H_VOR 				Vector Offset Register
H_USP 				User Stack Pointer
H_ISP 					Interrupt Stack Pointer
H_MSP 				Master Stack Pointer
H_VBR 				Vector Base Register
H_CACR 				Cache Control Register
H_CAAR 				Cache Address Register
H_VBR 				Vector Base Register
H_CACR 				Cache Control Register
H_CAAR 				Cache Address Register

FP_REG0 				Task's Processor Register FP0
FP_REGl				Task's Processor Register FPl
FP_REG2				Task's Processor Register FP2
FP_REG3				Task's Processor Register FP3
FP_REG4				Task's Processor Register FP4
FP_REG5				Task's Processor Register FP5
FP_REG6				Task's Processor Register FP6
FP_REG7				Task's Processor Register FP7
FPCR					Task's Coprocessor Control Register
FPSR					Task's Coprocessor Status Register
FPIAR 				Task's Coprocessor Instruction Address Register


DESCRIPTION

The executive returns the register value in the regptr field for the register identified in the regnum field and the task identified by the tid.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flags value set (see t_create).

RETURN VALUE

If db_getreg is successful, regptr is filled in and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.


Invalid register number.
Task not created from local node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.
Will not cause a preempt.


1.1.15 DB_SETREG
NAME
db_setreg – “Set a task’s register”
SYNOPSIS
uint db_setreg ( tid, regnum, &regptr )
uint tid;	/* task id as returned from t_create ot t_ident */
uint regnum;	/*register number */
union regval *regptr;	/* pointer to register value */
union regval {
	uint i;
	float f;
}
The regnum field values are:
D_REG0	Task’s Processor Register D0
D_REG1	Task’s Processor Register D1
D_REG2	Task’s Processor Register D2
D_REG3	Task’s Processor Register D3
D_REG4	Task’s Processor Register D4
D_REG5	Task’s Processor Register D5
D_REG6	Task’s Processor Register D6
D_REG7	Task’s Processor Register D7
A_REG0	Task’s Processor Register A0
A_REG1	Task’s Processor Register A1
A_REG2	Task’s Processor Register A2
A_REG3	Task’s Processor Register A3
A_REG4	Task’s Processor Register A4
A_REG5	Task’s Processor Register A5
A_REG6	Task’s Processor Register A6
A_REG7	Task’s Processor Register A7
H_SR	Status Register
H_PC	Program Counter
H_VOR	Vector Offset Register
H_USP	User Stack Pointer



H_ISP	Interrupt Stack Pointer
H_MSP	Master Stack Pointer
H_VBR	Vector Base Register
H_CACR	Cache Control Register
H_CAAR	Cache Address Register
H_VBR	Vector Base Register
H_CACR	Cache Control Register
H_CAAR	Cache Address Register
FP_REG0	Task’s Processor Register FP0
FP_REG1	Task’s Processor Register FP1
FP_REG2	Task’s Processor Register FP2
FP_REG3	Task’s Processor Register FP3
FP_REG4	Task’s Processor Register FP4
FP_REG5	Task’s Processor Register FP5
FP_REG6	Task’s Processor Register FP6
FP_REG7	Task’s Processor Register FP7
FPCR	Task’s Coprocessor Control Register
FPSR	Task’s Coprocessor Status Register
FPIAR	Task’s Coprocessor Instruction Address Register
DESCRIPTION
The executive sets the register identified in the regnum field for the task identified by the tid with the value in the regptr field.
The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flags value set (see t_create).
RETURN VALUE
If db_setreg successfully set the register value, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid register number.
Task not created from local node.



NOTES
Can be called from within an ISR, except when the task was not created on the local node.
Will not cause a preempt.


1.2 Debugging systems
Debugging a system is much more complex than debugging a task or collection of tasks. In order to debug a system, it should be possible to debug the interrupt service routines (ISR’s) which are part of the system. This causes several problems. The interrupt mask must not be lowered outside of an ISR. Additionally, an exception in an ISR may come at any time, and may occur when any task (with a low enough interrupt mask) is executing. Since the ISR must be blocked from further execution, the current task is also blocked.
1.2.1 Controlling Systems
The control over a system is established through the use of the db_system directive. This will assert debug control over the entire system of tasks and ISR’s executing on that particular cpu board. In order to issue this command, the debugger must not be a task on the cpu board being debugged1.
When control is established, the type of control is specified by the mode parameter. If all is specified, then all activity, except for processing directives, is suspended when an exception occurs in an ISR. If level is specified, then the executive will block further dispatching at the current level and below (see the db_level command) and continue dispatching tasks whose interrupt mask is greater than the current level.
1.2.2 Exceptions in ISR’s
When a controlled ISR issues an exception, such as a bus error, the execution of the entire system must be examined. Further activity of the ISR is suspended and further task dispatching on the system is performed based on the mode specified in the db_system directive. The executive on the controlled system will format a message containing information about the exception and place it on a message queue associated with the debug of the cpu. Note that even if the execution of a system is blocked, the execution of the directives must still be processed. Since the execution of directive continues, the debug task may issue a db_remote directive which will permit further execution of the controlled system.
____________
1 Alternatively, the debugger could be a “higher order” entity, such as the resident debug monitor, on a single cpu system. This “higher order” entity would perform as a system debugger and be able to issue requests to the executive as if it were a remote task.


1.2.3 Directives
The following directives are used for system debugging:
	Directive
	Function

	db_system
db_level
	Control a system
Set minimum Processor mask level





1.2.4 DB_SYSTEM

NAME

db_system – “Control a System During Debug”
SYNOPSIS

uint db_system ( cpu, mode )
uint cpu;	/* Designates a cpu in the system */
uint mode;	/* new mode */
DESCRIPTION

The cpu parameter uniquely identifies a cpu in the system.
The mode parameter indicates what processing may continue in the system after an exception occurs at some point within the system. Valid mode settings are:
DB_SYSTEM_CONTROL	to establish control over system
DB_SYSTEM_RELEASE	to remove control over system
DB_LEVEL	block tasking at level of ISR
DB_ALL	block all task dispatching
DB_CONTINUE	continue execution on the system
If an exception occurs while a task is executing, then that task is blocked and a message is sent to the debug task. If DB_LEVEL was specified as the mode, then only this task will be blocked. If DB_ALL was specified as the mode, then all dispatching will be suspended until a db_system command is specified with the mode set to DB_CONTINUE.
If an exception occurs while an ISR is executing, further system activity is indicated by the mode parameter. If DB_LEVEL is specified for the mode parameter, then when an exception occurs in an ISR, the executive will issue a db_level directive with the level set to that of the current interrupt priority mask. This will keep the executive from dispatching task whose interrupt priority mask is less than this value, and will also block interrupts at this level or less. Interrupts and tasks whose level is greater will occur normally.
If the mode parameter is DB_ALL and an exception occurs within an ISR, then all further activity on this system will be blocked. The only exception to this is that remote requests for RTEID directives (including debug extensions) will be services by the executive. The executive will become unblocked when the debug task (remotely) issues a db_unblock for the cpu_id corresponding to the system. At this point, the ISR that caused the exception will continue execution.


Issuing a db_system directive with mode set to DB_CONTINUE will cause the execution of the system to continue.
RETURN VALUE

If db_system is successful, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid cpu.
Invalid mode.
NOTES

When first establishing control over a system, the mode parameter must include DB_SYSTEM_CONTROL and may also include either DB_ALL or DB_LEVEL.
Once control has been established, the type of control may be changed by specifying a different mode.


1.2.5 DB_LEVEL

NAME

db_level – “Set the Minimum Mask Level”
SYNOPSIS

uint db_level ( level, &plevel )
uint level;	/* Minimum Processor Interrupt mask level */
uint plevel;	/* Previous level – returned by this call */
DESCRIPTION

The db_level directive specifies a minimum interrupt priority mask level for further execution of the tasks and ISR’s executing on the local cpu.
The level value is the minimum interrupt level for all tasks in the system. The executive will never set the status register’s interrupt mask to a value less than level. Furthermore, the executive will never dispatch a task whose status register’s interrupt mask is less than level.
RETURN VALUE

If db_level is successful, then the previous minimum level is returned in plevel and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS

Level is not in a valid range (0..7).
The interrupt mask of the current task is less than level.
NOTES

May cause a preempt.


1.3 SYSTEM Monitoring

Debugging a system involves more than debugging a collection of tasks; the performance of the entire system needs to be monitored and tuned. The db_get_id directive will return a unique identifier for items of particular types, or items in particular queues. The db_get_item directive will get information about items specified by the identifier. The information block will contain data about the system as well as some history (such as total number of calls to a directive) about the execution of the system. It is important to note that gathering statistics about the system will add a small amount of overhead to all of the calls.
The db_get_id directive requires an item_id as an input parameter. If the value of item_id is zero, then the first item of the specified class would be returned. If the item is non-zero, then the next item past the specified item_id will be returned. This can be used to loop through all items in a particular class. For example, to examine all tasks in the system, the following C code could be used:
for( item_id==0; item_id==get_item(item_id, TASK, 0); )
{
	process(item_id);
}
The class parameter specifies what type of item id to return and the third parameter is used to specify additional information (such as which message queue).
1.3.1 Directives
The directives provided by the system monitoring are:
	Directive
	Function

	db_get_id
db_get_item
	Get identifier for an item
Get information about an item





1.8.2 DB_GET_ID

NAME

db_get_id -- "Get an Item Identifier"

SYNOPSIS

uint db_get_id (item_id, &ret_id, class, arg)

	uint item_id;				/* Previous item_id */
								/* 0 requests first item */
	uint ret_id;					/* Returned item_id – returned by this call */
	uint class;					/* Class of item */
	uint arg;					/* Argument as defined by class */

DESCRIPTION

The db_get_id directive allows the debug task to receive a unique identifier as defined by item_id and class, to be returned in ret_id.

Item_id must be the unique id of the appropriate type from the list or queue specified by class, possibly further qualified by the arg parameter. If item_id is zero, then an identifier for the first element of the list or queue specified by class is returned. If item_id is non zero, then the next item past item_id is returned in ret_id.

Class specifies the list or queue that item_id is to be taken from. Arg can further specify how the selection is done by selecting a specific list or queue.

Valid class values and the appropriate value for arg are given in the following table.

	Class Value
	Returned item id
	Meaning of arg

	TASK
	task id
	

	MESSAGE_QUE
	message queue id
	

	SEMAPHORE
	semaphore id
	

	REGION
	region id
	

	PARTITION
	partition id
	

	MESSAGE
	message id
	message queue id

	TASK_IN_MESQ
	task id
	message queue id

	TASK_IN_SEMQ
	task id
	semaphore id

	TASK_IN_SEGQ
	task id
	region id

	SEGMENT
	segment id
	region id

	BUFFER
	buffer id
	partition id





RETURN VALUE

If db_get_id succeeds, the item_id for the item in the class is returned in ret_id, and 0 is returned.

If db_get_id succeeds, and there are no more items of the appropriate class, then an error code is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

No more items in this class.

Invalid class identifier.

Item_id not in class,

Invalid arg.

NOTES

For example, to process a queue, the get_id function is called first with a 0 item_id to get the first item in the queue. Subsequent calls use the last value of item_id in order to get the next item in the queue.


1.8.3 DB_GET_ITEM

NAME

db_get_item -- “Get Information About an Item”

SYNOPSIS

uint db_get_item ( item_id, class, buffer, &size )

		uint item_id;	/* Item_id */
		uint class;		/* Class of item */
		char *buffer;	/* address of buffer for returned data */
		uint size;		/* Size of item – returned by this call */

DESCRIPTION

Db_get_item copies an item description into buffer and returns the size of the item description in size. The exact format of the data in buffer depends on the class parameter.

Item_id is a unique identifier for the item within the class.

Class specifies the type of item. Valid classes are:

	Class
	returned data

	GENERAL
	general info block

	TASK
	task info block

	MESSAGE_QUE
	message queue info block

	MESSAGE
	message info block

	SEMAPHORE
	semaphore info block

	REGION
	region info block

	SEGMENT
	segment info block

	PARTITION
	partition info block

	BUFFER
	buffer info block



RETURN VALUE

If db_get_item is successful, then 0 is returned.

If the call was not successful, an error code is returned.

Buffer is filled in with various structures depending on the class parameter. The following information block structures are used:


struct 	gib	{
	uint	num_tasks;			/* Total number of tasks */
	uint	num_mque;			/* Total number of message queues */
	uint	num_sema;			/* Total number of semaphores */
	uint	num_regions;			/* Total number of regions */
	uint	num_partitions;		/*Total number of partitions */
	uint	num_ready;			/* Size of ready list */
	uint	num_calls;			/* Total number of RTEID calls made */
	uint	num_inter;			/* Total number of v_returns */
	uint	ticks;				/* Number of ticks on clock */
	uint	min_level;			/* Minimum Processor Mask */
}

Figure 1. General Info Block

struct	tib	{
	uint	name;				/* Task’s name */
	uint	id;					/* Task’s Task id */
	uint	mode;				/* Task’s current mode */
	uint	prio;				/* Task’s current priority */
	uint	stat;				/* Task’s current status */
	uint	events_pending		/* Events pending for the task */
	uint	events_waiting;		/* Task’s event condition from ev_receive */
	uint	signals;				/* Task’s pending signals */
	uint	timeout;				/* Task’s current timeout value */
	ptf	asr_addr;			/* Task’s ASR address */
}

Figure 2. Task Info Block

struct	mqib	{
	uint	name;				/* Message Queue’s name */
	uint	id;					/* Message Queue’s id */
	uint	num_mess;			/* Number of messages in queue */
	uint	num_tasks;			/* Number of tasks waiting on messages */
	uint	total_mess;			/* Total messages ever placed in this queue */
	uint	total_urg;			/* Total number of urgent messages */
}

Figure 3. Message Queue Info Block

struct	message	{
	long		text[4];		/* Message text (16 bytes) */
}
Figure 4. Message Info Block


struct	smib	{
	uint	name;			/* Semaphore’s name */
	uint	id;				/* Semaphore’s id */
	uint	value;			/* Semaphore’s current value */
	uint	num_tasks;		/* Number of tasks waiting on this Semaphore */
	uint	total_v;			/* Total number of sm_v operations */
	uint	total_p;			/* Total number of sm_p operations */
}

Figure 5. Semaphore Info Block

struct	rib	{
	uint	name;			/* Region’s name */
	uint	id;				/* Region’s id */
	uint	page_size;		/* Region’s page size */
	uint	paddr;			/* Region’s physical start address */
	uint	length;			/* Region’s length */
	uint	attributes;		/* Region’s attributes */
	uint	num_segs;		/* Number of allocated segments */
	uint	num_tasks;		/* Number of tasks waiting for a segment */
	uint	total_getseg;	/* Total number of rn_getseg */
	uint	total_retseg;	/* Total number of rn_retseg */
}

Figure 6. Region Info Block

struct	pib	{
	uint	name;			/* Name of the Partition */
	uint	id;				/* Id of the Partition */
	uint	bsize;			/* Buffer size */
	uint	bnum;			/* Total number of buffers in the Partition */
	uint	bavail;			/* Number of available buffers */
	uint	paddr;			/* Physical start of the Partition */
	uint	flags;			/* Partitions flags */
	uint	total_getbuf;	/* Total number of pt_getbuf calls */
	uint	total_retbuf;	/* Total number of pt_retbuf calls */
}
Figure 8. Partition Info Block

struct	bib	{
	uint	addr;	/* Physical address of buffer */
}
Figure 9. Buffer Info Block

ERROR CONDITIONS


NOTES



Debug Extension

 

to the

 

Real Time Executive Interface Definition

 

 

DRAFT 2.0

 

Prepared by:

 

MOTOROLA Microcomputer Division

 

 

Abstract:

 

This specification defines a basic set of functions that constitute the Debug Extension to the Real Time Executive Interface

 

Definition. Draft 2.0 is for public review. 

MOTOROLA retains the right to modify this definition as appropriate during implementation. Draft 2.0 will be submitted to the

 

VITA technical committee no later 

than 01/25/88.

 

 

 

 

 

 

 

                              

                                                             

PRELIMINARY

 

 

 

