1.1.9	DB_REMOTE

NAME

db_remote -- "Remote Request"

SYNOPSIS

uint db_remote (cpuid, request, &rval, argl, ..., argN)

uint cpuid; 	/* Identifies remote cpu */
uint request; 	/* Identifies request to be performed */
uint rval;		/* Return value of remote call - returned by this call */
uint argl; 		/* First argument of request */

uint argN; 		/* Last argument of request */

DESCRIPTION

The db_remote directive will cause a directive to be executed on a remote cpu.

The cpuid identifies the remote cpu, the request specifies which RTEID request (including debug extensions) is to be performed, and arg1-argN specify the arguments.

Arg1-argN are the arguments for the request and their meaning is specific to the directive identified by request. Any addresses specific to the calling task are treated as external physical addresses.

RETURN VALUE

If db_remote successfully completes, then rval contains the return value of the remote directive, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid cpuid.

Invalid request.

Other error returns are based on the specific directive identified by request.

NOTES

Thu request operates as if a task on the remote system issues the request on behalf of the caller.
The actual execution or the remote request may be performed by the ISR which processes remote requests, or may be performed by a system task on the target system.

Since not all RTEID directives may be executed on & non-local cpu, the db_remote directive will provide this function. It is especially important for debuggers which need to create tasks and manage resources on the target cpu.

This directive is also needed to access resources that are local to a remote cpu. For example, this directive could be used to suspend a task which does not have the GLOBAL flag set (assuming the task is local to a remote cpu).

Several directives have the address of return buffers as input parameters. The caller or db_remote
must specify addresses which are external to the target processor (designated by cpuid).

1.1.10	DB_BLOCK

NAME

db_block -- "Prevent a Task Under Debug Control from Running"

SYNOPSIS

uint db_block (tid)

uint tid; /* task id as returned from t_create or t_ident */

DESCRIPTION

The db_block directive prevents the task identified in the tid field from executing. The controlling relationship must have been previously established using the db_control directive.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

RETURN VALUE

If db_block is successful, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Task not in controlled state.

Task already blocked.

NOTES

Not callable from ISR.

1.1.11	DB_UNBLOCK

NAME

db_unblock -- "Release a Task"

SYNOPSIS

uint db_unblock (tid)

uint tid; 	/*task id as returned from t_create or t_ident */

DESCRIPTION

Db_unblock allows the task identified by the tid field to resume execution under control of the requesting task. The controlling relationship must have been previously established using the db_control directive.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

RETURN VALUE

If db_unblock is successful, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Task not in controlled state.

Task not blocked.

NOTES

Not callable from ISR.

May cause a preempt.

1.1.12	DB_GETMEM

NAME

db_getmem -- "Get a Task's Memory"

SYNOPSIS

uint db_getmem (tid, laddr, bufaddr, length)

uint tid; 			/* task id as returned from t_create or t_ident */
char *laddr;		/* logical start address */
char *bufaddr;		/* buffer address */
uint length; 		/* length in bytes */

DESCRIPTION

The executive reads memory from the task identified in the tid field, starting at the task's logical address laddr, and copies it to the buffer identified in the bufaddr field for the length identified in length.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create). This directive may be used to transfer data between a logical address belonging to the task identified by the tid and the requesting task's buffer.

RETURN VALUE

If db_getmem successfully read the memory into the buffer, then 0 is returned.

If the memory was not successfully read into the buffer, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Invalid laddr for the task.

Bus Error occurred during the read.

NOTES

Not callable from ISR.

Will not cause a preempt.

There is no requirement that the task identified by the tid be a controlled task.

Db_getmem will attempt to only read the requested data and will not access memory beyond the laddr+length. If length is 1, a byte wide read is performed. If length is 2, a word wide read is performed.

1.1.13	DB_SETMEM

NAME

db_setmem -- "Set & Task's Memory"

SYNOPSIS

uint db_setmem (tid, laddr, bufaddr, length)

uint tid; 			/* task id as returned from t_create or t_ident */
char *laddr;		/* logical start address */
char *bufaddr; 	/* buffer address */
uint length; 		/* length in bytes */

DESCRIPTION

The executive writes memory to the task identified in the tid field from the buffer identified in the bufaddr starting at the task's logical address laddr field for the length identified in length.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

This directive may be used to transfer data between any requesting task's buffer and a logical
address belonging to the task identified by the tid.

RETURN VALUE

If db_setmem successfully writes the memory from the buffer, then 0 is returned.

If the memory was not successfully written from the buffer, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Invalid laddr.

Bus Error occurred during the write.

NOTES

Not callable from ISR.
Will not cause a preempt.

There is no requirement that the task identified by tid be a controlled task.

Db_setmem will only read the requested data and will not access memory beyond the
laddr+length. If length is 1, a byte wide read is performed. If length is 2, a word wide read is
performed.

l.l.14	DB_GETREG

NAME

Db_getreg -- "Get a task's register"

SYNOPSIS

uint db_getreg (tid, regnum, ®ptr)
uint tid; 					/* task id as returned from t_create or t_ident */
uint regnum; 				/* register number */
union regval *regptr; 		/* pointer to register value - returned by this call */
union regval {
uint i;
float f;
}

The regnum field values are:

S_STAT 				Task's status byte values:
T_WTMEM 			waiting for memory
T_WTMSG 			waiting on message queue
T_WTEVT 			waiting for event
T_WTSEM 			waiting for semaphore
T_WTTIM 			waiting for timeout
T_WTCTL 			waiting on control
D_REG0 				Task's Processor Register D0
D_REGl 				Task's Processor Register Dl
D_REG2 				Task's Processor Register D2
D_REG3 				Task's Processor Register D3
D_REG4 				Task's Processor Register D4
D_REG5 				Task's Processor Register D5
D_REG6 				Task's Processor Register D6
D_REG7 				Task's Processor Register D7
A_REG0 				Task's Processor Register A0
A_REGl 				Task's Processor Register Al
A_REG2 				Task's Processor Register A2
A_REG3 				Task's Processor Register A3
A_REG4 				Task's Processor Register A4
A_REG5 				Task's Processor Register A5
A-REG6 				Task's Processor Register A6
A-REG7 				Task's Processor Register A7
[bookmark: _GoBack]

H_SR 					Status Register
H_PC 					Program Counter
H_VOR 				Vector Offset Register
H_USP 				User Stack Pointer
H_ISP 					Interrupt Stack Pointer
H_MSP 				Master Stack Pointer
H_VBR 				Vector Base Register
H_CACR 				Cache Control Register
H_CAAR 				Cache Address Register
H_VBR 				Vector Base Register
H_CACR 				Cache Control Register
H_CAAR 				Cache Address Register

FP_REG0 				Task's Processor Register FP0
FP_REGl				Task's Processor Register FPl
FP_REG2				Task's Processor Register FP2
FP_REG3				Task's Processor Register FP3
FP_REG4				Task's Processor Register FP4
FP_REG5				Task's Processor Register FP5
FP_REG6				Task's Processor Register FP6
FP_REG7				Task's Processor Register FP7
FPCR					Task's Coprocessor Control Register
FPSR					Task's Coprocessor Status Register
FPIAR 				Task's Coprocessor Instruction Address Register

DESCRIPTION

The executive returns the register value in the regptr field for the register identified in the regnum field and the task identified by the tid.

The task identified in the tid field may exist on the local processor, or any remote processor in the multiprocessing configuration if the task was created with the GLOBAL flags value set (see t_create).

RETURN VALUE

If db_getreg is successful, regptr is filled in and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

1.1.9

DB_REMOTE

NAME

db_remote

-

-

"Remote Request"

SYNOPSIS

uint db_remote (cpuid, request, &rval,

argl, ..., argN

)

uint cpuid;

/* Identifies remote cpu */

uint request;

/* Identifies request to be performed */

uint rval;

/* Return value of

remote call

-

returned by this call */

uint argl;

/* First argument of request */

uint argN;

/* Last argument of request */

DESCRIPTION

T

he

db_remote

directive will cause a directive

to be executed on a remote cpu

.

The

c

puid

identifies the remote

cpu, the

request

specifies which RTEID request (including debug

extensions) is to be performed, and

arg1

-

argN

specify the arguments

.

A

rg1

-

argN

are the arguments for the request and their meaning is specific to the directive

identified by

request

.

An

y

addresses specific to the calling task are treated as external physical

addresses.

RETURN VALUE

If

db_remote

successfully completes, then

rval

contains the return

value of

the remote directive,

a

nd 0 is returned.

If the call was not successful, an erro

r code is returned.

ERROR CONDITIONS

Invalid

cpuid.

Invalid request.

Other error returns are based on the specific directive identified by

request

.

1.1.9 DB_REMOTE NAME db_remote - - "Remote Request" SYNOPSIS uint db_remote (cpuid, request, &rval, argl, ..., argN) uint cpuid; /* Identifies remote cpu */ uint request; /* Identifies request to be performed */ uint rval; /* Return value of remote call - returned by this call */ uint argl; /* First argument of request */ uint argN; /* Last argument of request */ DESCRIPTION T he db_remote directive will cause a directive to be executed on a remote cpu . The c puid identifies the remote cpu, the request specifies which RTEID request (including debug extensions) is to be performed, and arg1 - argN specify the arguments . A rg1 - argN are the arguments for the request and their meaning is specific to the directive identified by request . An y addresses specific to the calling task are treated as external physical addresses. RETURN VALUE If db_remote successfully completes, then rval contains the return value of the remote directive, a nd 0 is returned. If the call was not successful, an erro r code is returned. ERROR CONDITIONS Invalid cpuid. Invalid request. Other error returns are based on the specific directive identified by request .

