Debug Extensions to RTEID September 9, 1988

Invalid register number.

Task not created from local node.
NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 17

September 9, 1988

1.1.15 DB_SETREG

NAME

db_setreg — "Set a task’s register"

SYNOPSIS

uint db_setreg (tid, regnum, ®ptr)

uint tid;
uint regnum;

union regval *regptr;

union regval {

The regnum field values are:

D_REGO
D_REG!
D_REG2
D_REG3
D_REG4
D_REG5
D_REGS
D_REG7
A_REGO
A_REG1
A_REG2
A_REG3
A_REG4
A_REGS
A_REGS
A_REG7

H_SR
H_PC
H_VOR
H_USP

Page 18

Debug Extensions to RTEID

/* task id as returned from t_create or t_ident */

/* register number */

uint i;
float f;

Task’s Processor Register DO
Task’s Processor Register D1
Task’s Processor Register D2
Task’s Processor Register D3
Task’s Processor Register D4
Task’s Processor Register D5
Task’s Processor Register D8
Task’s Processor Register D7
Task’s Processor Register A0
Task’s Processor Register Al
Task’s Processor Register A2
Task’s Processor Register A3
Task’s Processor Register A4
Task’s Processor Register A5
Task’s Processor Register A8
Task’s Processor Register A7

Status Register
Program Counter
Vector Offset Register
User Stack Pointer

/* pointer to register value */

Debug Extensions to RTEID September 9, 1988

H_ISP Interrupt Stack Pointer
H_MSP Master Stack Pointer
H_VBR Vector Base Register
H_CACR Cache Control Register
H_CAAR Cache Address Register

H_VBR Vector Base Register
H_CACR Cache Control Register
H_CAAR Cache Address Register

FP_REGO Task’s Processor Register FP0
FP_REG1 Task’s Processor Register FP1
FP_REG2 Task’s Processor Register FP2
FP_REG3 Task’s Processor Register FP3
FP_REG4 Task’s Processor Register FP4
FP_REG5 Task’s Processor Register FP5
FP_REG6 Task’s Processor Register FP6
FP_REG7 Task’s Processor Register FP7

FPCR Task’s Coprocessor Control Register

FPSR Task’s Coprocessor Status Register

FPIAR Task’s Coprocessor Instruction Address Register
DESCRIPTION

The executive sets the register identified in the regnum field for the task identified by the tid with
the value in the regptr field.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
L create).

RETURN VALUE

If db_setreg successfully set the register value, then 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.
Invalid register number.

Task not created from local node.

Page 19

September 9, 1988 Debug Extensions to RTEID

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 20

Debug Extensions to RTEID September 9, 1988

1.2 Debugging systems

Debugging a system is much more complex than debugging a task or collection of tasks. In order
to debug a system, it should be possible to debug the interrupt service routines (ISR’s) which are
part of the system. This causes several problems. The interrupt mask must not be lowered out-
side of an ISR. Additionally, an exception in an ISR may come at any time, and may occur when
any task (with a low enough interrupt mask) is executing. Since the ISR must be blocked from
further execution, the current task is also blocked.

1.2.1 Controlling Systems

The control over a system is established through the use of the db_system directive. This will
assert debug control over the entire system of tasks and ISR’s executing on that particular cpu
board. In order to issue this command, the debugger must not be a task on the cpu board being
debugged’. o ’

When control is established, the type of control is specified by the mode parameter. If all is
specified, then all activity, except for processing directives, is suspended when an exception occurs
in an ISR. If level is specified, then the executive will block further dispatching at the current
level and below (see the db_level command) and continue dispatching tasks whose interrupt mask
is greater than the current level.

1.2.2 Exceptions in ISR’s

When a controlled ISR issues an exception, such as a bus error, the execution of the entire system
must be examined. Further activity of the ISR is suspended and further task dispatching on the
system is performed based on the mode specified in the db_system directive. The executive on the
controlled system will format a message containing information about the exception and place it
on a message queue associated with the debug of the cpu. Note that even if the execution of a
system is blocked, the execution of the directives must still be processed. Since the execution of
directives continues, the debug task may issue a db_remote directive which will permit further
execution of the controlled system.

1. Alternatively, the debugger could be a "higher order® entity, such as the resident debug monitor, on a single
cpu system. This "higher order® entity would perform as a system debugger and be able to issue requests to
the executive as if it were a remote task.

Page 21

September 9, 1988

1.2.8 Directives

Debug Extensions to RTEID

The following directives are used for system debugging:

Page 22

Directive Function
db_system | Control a system
db_level Set minimum Processor mask level

Debug Extensions to RTEID September 9, 1988

1.2.4 DB_SYSTEM

NAME
db_system -- "Control a System During Debug"
SYNOPSIS

uint db_system (cpu, mode)

uint cpu; /* Designates a cpu in the system */
uint mode; /* new mode */

DESCRIPTION

The epu parameter uniquely identifies a cpu in the system.

The mode parameter indicates what processing may continue in the system after an exception
occurs at some point within the system. Valid mode settings are:

DB_SYSTEM_CONTROL to establish control over system
DB_SYSTEM_RELEASE to remove control over system

DB_LEVEL block tasking at level of ISR
DB_ALL block all task dispatching
DB_CONTINUE continue execution on the system

If an exception occurs while a task is executing, then that task is blocked and a message is sent to
the debug task. If DB_LEVEL was specied as the mode, then only this task will be blocked. If
DB_ALL was specified as the mode, then all dispatching will be suspended until a db_system
command is specified with mode set to DB_CONTINUE.

If an exception occurs while an ISR is executing, further system activity is indicated by the mode
parameter. If DB_LEVEL is specified for the mode parameter, then when an exception occurs in
an ISR, the executive will issue a db_level directive with the level set to that of the current inter-
rupt priority mask. This will keep the executive from dispatching tasks whose interrupt priority
mask is less than this value, and will also block interrupts at this level or less. Interrupts and
tasks whose level is greater will occur normally.

If the mode parameter is DB_ALL and an exception occurs within an ISR, then all further
activity on this system will be blocked. The only exception to this is that remote requests for
RTEID directives (including debug extensions) will be serviced by the executive. The executive
will become unblocked when the debug task (remotly) issues a db_unblock for the cpu_id
corresponding to the system. At this point, the ISR that caused the exception will continue exe-
cution.

Page 23

September 9, 1988 Debug Extensions to RTEID

Issuing a db_system directive with mode set to DB_CONTINUE will cause the execution of the
system to continue.

RETURN VALUE

If db_system is successful, then 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid cpu.

Invalid mode.
NOTES

When first establishing control over a system, the mode parameter must include
DB_SYSTEM_CONTROL and may also include either DB_ALL or DB_LEVEL.

Once control has been established, the type of control may be changed by specifying a different
mode.

Page 24

Debug Extensions to RTEID September 9, 1988

1.2.6 DB_LEVEL

NAME
db_level -- "Set the Minimum Mask Level"
SYNOPSIS

uint db_level (level, &plevel)

uint level; /* Minimum Processor Interrupt mask level*/
uint plevel; /* Previous level - returned by this call */

DESCRIPTION

The db_level directive specifies a2 minimum interrupt priority mask level for further execution of
the tasks and ISR’s executing on the local cpu.

The level value is the minimum interrupt level for all tasks in the system. The executive will
never set the status register’s interrupt mask to a value less than level. Furthermore, the execu-
tive will never dispatch a task whose status register’s interrupt mask is less than level.

RETURN VALUE

If db_level is successful, then the previous minimum level is returned in plevel and 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Level is not in a valid range (0..7).

The interrupt mask of the current task is less than level.
NOTES

May cause a preempt.

Page 25

September 9, 1988 Debug Extensions to RTEID

1.3 System Monitoring

Debugging a system involves more than debugging a collection of tasks; the performance of the
entire system needs to be monitored and tuned. The db_get_id directive will return a unique
identifier for items of particular types, or items in particular queues. The db_get_item directive
will get information about items specified by the identifier. The information block will contain
data about the system as well as some history (such as total number of calls to a directive) about
the execution of the system. It is important to note that gathering statistics about the system
will add a small amount of overhead to all of the calls.

The db_get_id directive requires an item_id as an input parameter. If the value of item_id is sero,
then the first item of the specified class would be returned. If the item is non-sero, then the next
item past the specified item_id will be returned. This can be used to loop through all items in a
particular class. For example, to examine all tasks in the system, the following C code could be
used:

for(item_id=0; item_id=get_item(item_id, TASK, 0);)

{
}

process(item_id);

The class parameter specifies what type of item id to return and the third parameter is used to
specify additional information (such as which message queue).

1.8.1 Directives

The directives provided by the system monitoring are:

| Directive Function

db_get_id Get identifier for an item
db_get_item | Get information about an item

Page 26

Debug Extensions to RTEID September 9, 1988

1.3.2 DB_GET_ID

NAME
db_get_id -- "Get an Item Identifier"
SYNOPSIS

wint db_get_id (item_id, &ret_id, class, arg)

uint item_id; /* Previous item_id */
/* 0 requests first item */
uint ret_id; /* Returned item_id - returned by this call */

uint class; /* Class of item */
uint arg; /* Argument as defined by class */
DESCRIPTION

The db_get_id directive allows the debug task to receive a unique identifier as defined by item_id
and class, to be returned in ret_td.

Jtem_id must be the unique id of the appropriate type from the list or queue specified by class,
possibly further qualified by the arg parameter. If stem_id is zero, then an identifier for the first
element of the list or queue specified by class is returned. If stem_id is non zero, then the next
item past stem_id is returned in ret_id.

Class specifies the list or queue that item_id is to be taken from. Arg can further specify how the
selection is done by selecting a specific list or queue.

Valid class values and the appropriate value for arg are given in the following table.

Class Value Returned item id Meaning of arg
TASK task id

MESSAGE_QUE message queue id

SEMAPHORE semaphore id

REGION region id

PARTITION partition id

MESSAGE message id message queue id
TASK_IN_MESQ task id message queue id
TASK_IN_SEMQ task id semaphore id
TASK_IN_SEGQ task id region id
SEGMENT segment id region id
BUFFER buffer id partition id

Page 27

September 9, 1988 Debug Extensions to RTEID

RETURN VALUE

If db_get_id succeeds, the stem_id for the item in the class is returned in ret_id, and 0 is returned.

If db_get_id succeeds, and there are no more items of the appropriate class, then an error code is
returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

No more items in this class.
Invalid class identifier.
Item_id not in class.

Invalid arg.
NOTES

For example, to process a queue, the get_id function is called first with a 0 item_id to get the first
item in the queue. Subsequent calls use the last value of item_id in order to get the next item in
the queue.

Page 28

Debug Extensions to RTEID September 9, 1988

1.3.3 DB_GET_ITEM

NAME
db_get_item -- "Get Information About an Item"
SYNOPSIS

uint db_get_item (item_id, class, buffer, &size)

uint item_id; /* Item_id */

uint class; /* Class of item */
char *buffer; /* address of buffer for returned data */
uint sise; /* Size of item - returned by this call */

DESCRIPTION

Db_get_stem copies an item description into buffer, and returns the size of the item description in
size. The exact format of the data in buffer depends on the class parameter.

Item_1d is a unique identifier for the item within the class.

Class specifies the type of item. Valid classes are:

Class returned data
GENERAL general info block

TASK task info block
MESSAGE_QUE message queue info block
MESSAGE message info block
SEMAPHORE semaphore info block
REGION region info block
SEGMENT segment info block
PARTITION partition info block
BUFFER buffer info block

RETURN VALUE

If db_get_item is successful, then 0 is returned.
If the call was not successful, an error code is returned.

Buffer is filled in with various structures depending on the class parameter. The following infor-
mation block structures are used:

Page 29

September 9, 1988

gib

uint
uint
uint
uint

struct

uint
uint
uint
uint

tib
uint

struct

uint
uint
uint
uint
uint
uint
uint
uint
ptf

struct
uint
uint
uint
uint
uint
uint

struct

Page 30

mgqib

{

num_tasks;
num_maque;
num_sema;
num_regions;

num_partitions;

num_ready;
num_calls;
num_inter;
ticks;
min_level;

{

name;

id;

mode;

prio;

stat;
events_pending;
events_waiting;
signals;
timeout;
asr_addr;

{

name;

id;
num_mess;
num_tasks;
total_mess;
total_urg;

Fi

message {
long

text[4];

Debug Extensions to RTEID

/* Total number of tasks */

/* Total number of message queues */

/* Total number of semaphores */

/* Total number of regions */

/* Total number of partitions */

/* Sise of ready list */

/* Total number of RTEID calls made */
/* Total number of v_returns */

/* Number of ticks on clock */

/* Minimum Processor Mask */

Figure 1. General Info Block

/* Task’s name */

/* Task’s Task id */

/* Task’s current mode */

/* Task’s current priority */

/* Task’s current status */

/* Events pending for the task */

/* Task’s event condition from ev_receive */

/* Task’s pending signals */
/* Task’s current timeout value */
/* Task’s ASR address */

Figure 2. Task Info Block

/* Message Queue’s name */

/* Message Queue’s id */

/* Number of messages in queue */

/* Number of tasks waiting on messages */
/* Total messages ever placed in this queue */
/* Total number of urgent messages */

gure 3. Message Queue Info Block

/* Message text (16 bytes) */

Figure 4. Message Info Block

Debug Extensions to RTEID

struct smib

uint
uint
uint
uint
uint
uint

struct rib
uint
uint
uint
uint
uint
uint

uint
uint
uint

struct sgib
uint
uint
uint

struct pib
uint
uint
uint
uint
uint
uint
uint
uint
uint

{

name;
id;

value;
num_tasks;
total_v;
total_p;

{

name;

id;
page_size;
paddr;
length;
attributes;
num_segs;
num_tasks;
total_getseg;
total_retseg;

{

September 9, 1988

/* Semaphore’s name */

/* Semaphore’s id */

/* Semaphore’s current value */

/* Number of tasks waiting on this Semaphore */
/* Total number of sm_v operations */

/* Total number of sm_p operations */

Figure 6. Semaphore Info Block

/* Region’s name */

/* Region’s id */

/* Region’s page size */

/* Region’s physical start address */

/* Region’s length */

/* Region’s attributes */

/* Number of allocated segments */

/* Number of tasks waiting for a segment */
/* Total number of rn_getseg */

/* Total number of rn_retseg */

Figure 6. Region Info Block

address; /* Address of the Segment */
size; /* Size of the Segment */
attrib; /* Segment Attributes (RDONLY) */

{

name;

id;

bsize;

bnum;
bavail;
paddr;

flags;
total_getbuf;
total_retbuf;

Figure 7. Segment Info Block

/* Name of the Partition */

/* 1d of the Partition */

/* Buffer size */

/* Total number of buffers in the Partition */
/* Number of available buffers */

/* Physical start of the Partition */

/* Partitions flags */

/* Total number of pt_getbuf calls */

/* Total number of pt_retbuf calls */

Figure 8. Partition Info Block

Page 31

September 9, 1988 Debug Extensions to RTEID

struct bib
uint addr; /* Physical address of buffer */

Figure 9. Buffer Info Block

ERROR CONDITIONS

NOTES

Page 32

