Debug Extension
to the

Real Time Executive Interface Definition

DRAFT 2.0
Prepared by:
MOTOROLA Microcomputer Division

Abstract:

This specification defines a basic set of functions that constitute the Debug
Extension to the Real Time Executive Interface Definition. Draft 2.0 is for public
review. MOTOROLA retains the right to modify this definition as appropriate
during implementation. Draft 2.0 will be submitted to the VITA technical
committee no later than 01/25/88.

PRELIMINARY

September 9, 1988

DISCLAIMER

This Debug Extension to the Real Time Executive Interface
Definition specification is being proposed to be used as the basis
for formal standardization by the VME International Trade
Association (VITA). However, since the standardization process
has just begun, any standard resulting from this document might
be different from this document, Any Product designed to this
document might not be compatible with the final standard. No
responsibility is assumed for such incompatibilities and no
liability is assumed for any product built to conform to this
document.

While considerable effort has been expended to make this
document comprehensive, reliable, and unambiguous, it is still
being published in preliminary form for public study and
comment,

This document is prepared by Motorola Inc., Microcomputer
Division. Interest in the Debug Extension to the RTEID is welcome
and encouraged. Any technical questions, suggestions or
comments may be directed to:

Motorola, Inc.
Microcomputer Division
Dept.: RTEID

2900 South Diablo Way
Tempe, Arizona 85282
Tel: (602)438-3500

Fax: (602)438-3581

Tix: 4998071 (MOTPHE)

Debug Extensions to RTEID

1. DEBUG EXTENSIONS

September ¢

TABLE OF CONTENTS

1.1 Debugging Tasks e o s s s s s s s e s e s e e e e e e
1.1.1 Controlling Tasks =« o ¢« ¢« ¢ o ¢ o ¢ o o ¢ o o o 6 ¢ o o o o o o o oo
1.1.2 Read/Write Memory « « « v o ¢ ¢ o o ¢ o o 0 o 0 o o o o oeoewoeoo
1.1.3 Read/Write Registers PR h e B RD AR e %m0
1.1.4 Exceptions in Tasks o s mies s e s e e e s v
1.1.5 The debug_msg message QUEUE =« & o o o « o o o o o o o o o o o o o o
1.1.8 Trace and Breakpoint ¢« . ¢ . . R Y

1.1.7
1.1.8

1.1.6.1 Trace

1.1.6.2 Breakpoints

ooooooooooooooooo

Directives & o v v o o o o o o o o o o o o o o o o o o s 0o o 8 o 0 o

DB_CONTROL

NAME 5

SYNOPSIS 5
DESCRIPTION 5
RETURN VALUE §
ERROR CONDITIONS 5
NOTES &6

DB_REMOTE

NAME 7

SYNOPSIS 7
DESCRIPTION 7
RETURN VALUE 7
ERROR CONDITIONS 7
NOTES 8

1.1.10 DB_BLOCK

SYNOPSIS 9
DESCRIPTION 9
RETURN VALUE 9
ERROR CONDITIONS 9
NOTES 9

1.1.11 DB.UNBLOCK
NAME 10

SYNOPSIS 10
DESCRIPTION 10
RETURN VALUE 10
ERROR CONDITIONS 10
NOTES 10

SYNOPSIS 11
DESCRIPTION 11

ooooooooooo

ooooooooooooooooo

ooooooooooooooooo

S

September 9, 1988 Debug Extensions to RTEID

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

LIST OF FIGURES

General InfoBlock & o « o v o v 0 o . . e o o 0 s o S 30
Task InfoBlock + &« o o v 0o v v v v u © s o e 6 6 s 6 s s s e e e e os 30
Message Queue InfoBlock S o s o e 6 o e s s 6 e e e e e 30
MessageInfoBlock . . « . v v v v v v w0 T R 30
Semaphore Info Block « « « T T T 31
Region InfoBlock 6% . w . oe e @ © o 6 s s 5 6 s s s s s 31
Segment InfoBlock o & ¢ v v v v v vt e 31
PartitionInfoBlock L 31
Buffer InfoBlock « o ¢ v o 0 v v it ot e e e e e e e e 32

-1V -

September 9, 1988 Debug Extensions to RTEID

REVISION RECORD

Issue Revision Description Date
1 Initial version. Internal Only. 06/01/87
2 Draft 2.0, limited distribution. 01/25/88
3

Page 1

September 9, 1988 Debug Extensions to RTEID

1. DEBUG EXTENSIONS

The debug extensions to the RTEID support several features targeted for use in debugging tasks
and interrupt service routines (ISR’s). Since debugging is inherently non-real time, systems run-
ning under debug control may not exhibit true real time performance.

1.1 Debugging Tasks

Most debugging can be performed by debugging a task or a collection of tasks. In this type of
debugging, the actual debug task can reside on the local cpu, or it can be remote if the appropri-
ate GLOBAL flags are set.

1.1.1 Controlling Tasks

The relationship between the debug task and the task being debugged is established using the
db_control directive in the "set" mode. The task issuing the db_control directive in the set mode
must provide a message queue. This message queue is used to communicate between the executive
and the task that issued the db_control directive. After completion of the db_control directive,
the task being debugged becomes controlled, and cannot compete for processor time unless
directed to execute by the debug task using the db_unblock directive. The db_block directive is
used to block execution of the controlled task. The db_control directive in the "clear"™ mode is
used to terminate the relationship between the debug task and the controlled task.

1.1.2 Read/Write Memory

To read and write memory belonging to the controlled task the pair of directives db_getmem and
db_setmem are provided. Db_getmem reads memory from an address of the controlled task and
copies it to a buffer provided by the debug task for a length specified by the debug task.
Db_setmem writes memory to an address of the controlled task copying it from a buffer provided
by the debug task for a length specified by the debug task.

1.1.3 Read/Write Registers

To read and write the processor registers belonging to the controlled task the pair of directives
db_getreg and db_setreg are provided. Db_getreg reads a register belonging to the controlled task
and copies it to a buffer provided by the debug task. Db_setreg writes to a register belonging to
the controlled task by copying it from a buffer provided by the debug task.

1.1.4 Exceptions in Tasks

When a controlled task issues an exception, such as a bus error, the executive will prevent further
execution by placing the controlled task in a blocked state. The executive will also format a mes-
sage containing information about the exception and place it on the message queue identified by
the debug task in the db_control directive. '

1.1.5 The debug_msg message queue

The executive requires the ability to inform the debug task about abnormal activity that occurs
when a controlled task executes. This is done by using a message queue specified by the debug
task when the db_control directive is issued. This message queue is used to pass information from
the executive to the debug task. When a controlled task is running and suffers an exception, the

Page 2

Debug Extensions to RTEID September 9, 1988

executive will block further execution of the task, and inform the debug task of the exception by
posting a message on the debug_msg queue. The format of the message is:

Bytes | Meaning

0..3 | Task id of task causing exception.
4..7 | Exceptions vector offset.
8..11 | Address of the Exception Stack Frame
12..15 | Program counter at the point of the exception

1.1.8 Trace and Breakpoint

A fundamental feature in debugging a task or ISR is the ability to control its execution. This is
typically done either by causing the controlled task to single step one instruction, or by having
the controlled task execute up to a particular breakpoint. With the debug extensions to the
RTEID, a debugger can provide these features.

1.1.6.1 Trace

In order to single step, or trace, a controlled task, the debugger must manipulate the status regis-
ter of the controlled task, cause it to resume execution, and then process the resulting exception.

Tracing can be accomplished by the following steps:

1.

The debug task prevents further execution of the controlled task by issuing a db_block direc-
tive.

b
The controlled task’s status register is read using the # getreg directive.

: Ab
The debug task sets the trace bit in the status register, and writes it back using the j_setreg
directive.

The debug task then permits execution of the controlled task by issuing the db_unblock
directive.

Since the trace bit is set, when the controlled task executes it will take a trace exception.

When the trace exception occurs, the executive will block further execution of the controlled
task and send a message to the debug task using the debug_msg message queue specified in
the db_control directive.

The debug task can then receive the message, process it, and continue debugging the task.

1.1.6.2 Breakpoints

Breakpoints are accomplished in a similar fashion.

1.
2.
3.

Execution of the controlled task is stopped using the db_block directive.
The instruction at the breakpoint locations is read and saved using the db_getmem directive.

The instruction is replaced with the breakpoint code using the db_setmem directive.

Page 3

September 9, 1988

Debug Extensions to RTEID

4. The debug task then executes the controlled task with the db_unblock directive.

5. The controlled task will execute until it reaches the breakpoint code. At this point it will

take an exception.

8. The executive will block further execution of the debug task and post a message to the
debug_masg message queue specified in the db_control directive.

7. The debugger will receive the message and perform the appropriate action.

1.1.7 Directives

The directives provided by the debug manager are:

Directive

Function

db_control
db_remote
db_block
db_unblock
db_getmem
db_setmem
db_getreg
db_setreL

Control a task

Perform directive on remote cpu
Prevent a task from running
Run a task under control

Get a task’s memory

Set a task’s memory

Get a task’s register

Set a task’s register

Page 4

Debug Extensions to RTEID September 9, 1988
1.1.8 DB_CONTROL

NAME
db_control -- "Control a Task During Debug"
SYNOPSIS

uint db_control (tid, mode, qid)

uint tid; /* task id as returned from t_create or t_ident */
uint mode; /* new mode */
uint qid; /* debug_msg qid */

DESCRIPTION

Db_control is used to establish or remove debug control over a task.

The tid parameter specifies the task to be controlled. This task may exist on the local processor,
or any remote processor in the multiprocessing configuration if the task was created with the
GLOBAL flag set (see t_create).

The mode specifies what type of action is to be performed when an exception occurs.

DB_TASK_CONTROL set to establish control over task
clear to remove control over task

These values are mutually exclusive.

The message queue identified by the ¢id parameter is used by the executive to report exceptions to
the debug task. This queue must exist and if debugging is to be done on multiple cpu’s, then this
queue must have been created with the GLOBAL flag set.

RETURN VALUE

If db_control successfully completes, 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.

Page 5

September 9, 1988 Debug Extensions to RTEID

Task already under debug control.

NOTES

Not callable from ISR.

Asserting control over a task will place it in the blocked state.

Removing debug control from a task will unblock the task if it was blocked.
Will not cause a preempt when mode is set.

May cause a preempt when mode is clear by unblocking a higher priority task.

Page 8

Debug Extensions to RTEID September 9, 1988

1.1.9 DB_REMOTE

NAME
db_remote -- "Remote Request"
SYNOPSIS

uint db_remote (cpuid, request, &rval, argl, ..., argN)

uint cpuid; /* ldentifies remote cpu */
uint request; /* Identifies request to be performed */
uint rval; /* Return value of remote call - returned by this call */
uint argl; /* First argument of request */
uint argN; /* Last argument of request */
DESCRIPTION

The db_remote directive will cause a directive to be executed on a remote cpu.

The cpuid identifies the remote cpu, the request specifies which RTEID request (including debug
extensions) is to be performed, and argl-argN specify the arguments.

Argl-argN are the arguments for the request and their meaning is specific to the directive

identified by request. Any addresses specific to the calling task are treated as external physical
addresses.

RETURN VALUE

If db_remote successfully completes, then rval contains. the return value.of the remote directive,
and 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid cpuid.
Invalid request.

Other error returns are based on the specific directive identified by request.

Page 7

September 9, 1988 Debug Extensions to RTEID

NOTES

This request operates as if a task on the remote system issues the request on behalf of the caller.
The actual execution of the remote request may be performed by the ISR which processes remote
requests, or may be performed by a system task on the target system.

Since not all RTEID directives may be executed on a non-local cpu, the db_remote directive will
provide this function. It is especially important for debuggers which need to create tasks and
manage resources on the target cpu.

This directive is also needed to access resources that are local to a remote cpu. For example, this
directive could be used to suspend a task which does not have the GLOBAL flag set (assuming

the task is local to a remote cpu).

Several directives have the address of return buffers as input parameters. The caller of db_remote
must specify addresses which are external to the target processor (designated by cpuid).

Page 8

Debug Extensions to RTEID September 9, 1988
1.1.10 DB_BLOCK

NAME
db_block -- "Prevent a Task Under Debug Control from Running"
SYNOPSIS

wint db_block (tid)

uint tid; /* task id as returned from t_create or t_ident */

DESCRIPTION

The db_block directive prevents the task identified in the tid field from executing. The controlling
relationship must have been previously established using the db_control directive.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

RETURN VALUE

If db_block is successful, then 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.
Task not in controlled state.

Task already blocked.
NOTES

Not callable from ISR.

Page 9

September 9, 1988 Debug Extensions to RTEID

i.1.11 DB_UNBLOCK

NAME
db_unblock — "Release a Task"”
SYNOPSIS

uint db_unblock (tid)

uint tid; /* task id as returned from t_create or t_ident */

DESCRIPTION

Db_unblock allows the task identified by the tid field to resume execution under control of the
requesting task. The controlling relationship must have been previously established using the
db_control directive.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

RETURN VALUE

If db_unblock is successful, then 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.
Task not in controlled state.

Task not blocked.
NOTES

Not callable from ISR.

May cause a preempt.

Page 10

Debug Extensions to RTEID September 9, 1988

1.1.12 DB_GETMEM

NAME
db_getmem -- "Get a Task’s Memory"
SYNOPSIS

wint db_getmem (tid, laddr, bufaddr, length)

uint tid; /* task id as returned from t_create or t_ident */
char *laddr; /* logical start address */
char *bufaddr; /* buffer address */
uint length; /* length in bytes */
DESCRIPTION

The executive reads memory from the task identified in the tid field, starting at the task’s logical
address laddr, and copies it to the buffer identified in the bufaddr field for the length identified in
length.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).

This directive may be used to transfer data between a logical address belonging to the task
identified by the tid and the requesting task’s buffer.

RETURN VALUE

If db_getmem successfully read the memory into the buffer, then 0 is returned.

If the memory was not successfully read into the buffer, an error code is returned.

ERROR CONDITIONS

Invalid tid.
Invalid laddr for the task.

Bus Error occurred during the read.

Page 11

September 9, 1988 Debug Extensions to RTEID

NOTES

Not callable from ISR.

Will not cause a preempt.

There is no requirement that the task identified by the tid be a controlled task.

Db_getmem will attempt to only read the requested data and will not access memory beyond the

laddr+length. If length is 1, a byte wide read is performed. If length is 2, a word wide read is
performed.

Page 12

Debug Extensions to RTEID September 9, 1988

1.1.13 DB_SETMEM

NAME
db_setmem - "Set a Task’s Memory"
SYNOPSIS

uint db_setmem (tid, laddr, bufaddr, length)

uint tid; /* task id as returned from t_create or t_ident */
char *laddr; /* logical start address */
char *bufaddr; /* buffer address */
uint length; /* length in bytes */
DESCRIPTION

The executive writes memory to the task identified in the #id field from the buffer identified in the
bufaddr starting at the task’s logical address laddr field for the length identified in length.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flag set (see t_create).
This directive may be used to transfer data between any requesting task’s buffer and a logical
address belonging to the task identified by the tid.

RETURN VALUE

If db_setmem successfully writes the memory from the buffer, then 0 is returned.

If the memory was not successfully written from the buffer, an error code is returned.
ERROR CONDITIONS

Invalid t:d.
Invalid laddr.

Bus Error occurred during the write.
NOTES

Not callable from ISR.

Page 13

September 9, 1988 Debug Extensions to RTEID

Will not cause a preempt.
There is no requirement that the task identified by tid be a controlled task.
Db_setmem will only read the requested data and will not access memory beyond the

laddr+length. If length is 1, a byte wide read is performed. If length is 2, a word wide read is
performed.

Page 14

Debug Extensions to RTEID

1.1.14 DB_GETREG

NAME

db_getreg - "Get a task’s register"

SYNOPSIS

uint db_getreg (tid, regnum, ®ptr)

uint tid;
uint regnum;

union regval *regptr;

union regval {

The regnum field values are:

S_STAT
T-WTMEM
T_-WTMSG
T-WTEVT
T_-WTSEM
T-WTTIM
T-WTCTL

D_REGO

D_REG1

D_REG2

D_REG3

D_REG4

D_REGS5

D_REGS6

D_REG?7

A_REGO

A _REG1

A _REG2

A _REG3

A _REG4

A_REGS5

September 9, 1988

/* task id as returned from t_create or t_ident */

/* register number */

/* pointer to register value - returned by this call */

uint i;
fioat f;

Task’s status byte values:
waiting for memory
waiting on message queue
waiting for event
waiting for semaphore
waiting for timeout
waiting on control

Task’s Processor Register DO

Task’s Processor Register D1

Task’s Processor Register D2

Task’s Processor Register D3

Task’s Processor Register D4

Task’s Processor Register D5

Task’s Processor Register D6

Task’s Processor Register D7

Task’s Processor Register A0

Task’s Processor Register Al

Task’s Processor Register A2

Task’s Processor Register A3

Task’s Processor Register A4

Task’s Processor Register A5

Page 15

September 9, 1988 Debug Extensions to RTEID

A REGS Task’s Processor Register A8

A_REG?7 Task’s Processor Register A7

H_SR Status Register

H_PC Program Counter

H_VOR Vector Offset Register

H_USP User Stack Pointer

H_ISP Interrupt Stack Pointer

H_MSP Master Stack Pointer

H_VBR Vector Base Register

H_CACR Cache Control Register

H_CAAR Cache Address Register

H_VBR Vector Base Register

H_CACR Cache Control Register

H_CAAR Cache Address Register

FP_REGO Task’s Processor Register FP0

FP_REG1 Task’s Processor Register FP1

FP_REG2 Task’s Processor Register FP2

FP_REG3 Task’s Processor Register FP3

FP_REG4 Task’s Processor Register FP4

FP_REGS Task’s Processor Register FP5

FP_REGS Task’s Processor Register FP8

FP_REG7 Task’s Processor Register FP7

FPCR Task’s Coprocessor Control Register

FPSR Task’s Coprocessor Status Register

FPIAR Task’s Coprocessor Instruction Address Register
DESCRIPTION

The executive returns the register value in the regptr field for the register identified in the regnum
field and the task identified by the tid.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
t_create).

RETURN VALUE

If db_getreg is successful, regptr is filled in and 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Invalid tid.

Page 18

