
January 22, 1988 						 	        Real Time Executive Interface Definition

3.2.3 Q_URGENT

NAME
q_urgent _ “Place an Urgent Message at the Head of a Message Queue"

SYNOPSIS
#include <message.h>
uint q_urgent ( qid, buffer )
uint qid; 		/* message queue id returned from q_create or q_indent */
long (*buffer) [4];	/* pointer to message buffer */

DESCRIPTION
The q_urgent directive sends a message to the queue identified by the qid. This call is the same as the q_send call, except, if there are other messages at the queue, this message is put at the head of the queue.
If a task is already waiting at the queue, the message is copied to that task’s indicated receiving buffer. The task is then made ready. If there is no task waiting; the message is copied to a system which is then placed at the head c ' the message queue.
Once sent, the task’s message area may be reused immediately. A message is fixed length, 16bytes.
The message queue may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the queue was created with the GLOBAL flags value set (see q_create),

RETURN VALUE
If the q_urgcnt directive successfully sent a message, then 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS
Message qid in invalid.
Out of system message buffers.
Message queue at maximum count. -
ISR cannot reference remote node.

NOTES
Can be called from within an ISR, except when the queue was not created from the local node.
May cause a preempt if a task waiting at the message queue has a higher priority than the running task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on
Real Time Executive Interface Definition 					                 January 22, 1988
a remote processor in a multiprocessor configuration.


January 22, 1988						  Real Time Executive Interface Definition

8.2.10 Q_BROADCAST

NAME
q_broadcast -- “Broadcast N Identical Messages to a Message Queue”
 
SYNOPSIS
#include <message.h>
uint q_broadcast ( qid, buffer, &count )
uint qid;		 /* message queue id returned from q_create or q_ident */
long (*buffer) [4];	/* pointer to message buffer */
uint count; 		/* number of tasks made ready - returned by this call */

DESCRIPTION
The q_broadcast directive sends as many messages as necessary to make ready all tasks waiting on the queue identified by the qid. The number of tasks readied is returned to the caller in count.
Once sent, the task’s message buffer may be reused immediately.
The message queue may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the queue was created with the GLOBAL flags value set (see q_create)

RETURN VALUE
If the q_broadcast directive succeeds, the count is filled in with the number of tasks readied, and O is returned. 
II the call was not successful, an error code is returned.

ERROR CONDITIONS
Message qid is invalid.
ISR cannot reference remote node.

NOTES
Can be called from within an ISR, except when the queue was not created from the local node.
May came a preempt if a task waiting at the message queue has a higher priority than the running tank, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on a remote processor in a multiprocessor configuration.


Real Time Executive Interface Definition

3.2.11 Q_RECEIVE

NAME
q_receive -- “Receive a Message from a Message Queue”

SYNOPSIS
#include <message.h>
uint q_receive ( qid, buffer, flags, timeout )
uint qid;		/* message queue id returned from q_create or q_ident */
long (*buffer) [4] 	/* pointer to message buffer */
uint flags;	/* options */
uint timeout 	/* number of ticks to wait */
		/* 0 indicates wait forever */

DESCRIPTION
The q_receive directive allows a task to request a message from the message queue identified by qid.
If there is a message at the message queue, it is copied into the requester’s buffer.
If there is no message at the message queue, then the NOWAIT flag determines what to do. If the NOWAIT flags value is set, the task returns immediately with -1 and the no message at queue error number. If the NOWAIT flags value is clear, the task is put on a wait list for the message queue, according the queue's attributes [FIFO or priority).
The timeout field is used to determine how long to wait. A zero in the timeout field indicates no timeout -- wait forever. A non-zero entry in the timeout field indicates that the task will run after that many ticks, if a message has not been received, or before if a message is received.
When q_receive is called from an ISR, the no wait option is forced by the executive. Thus there will be no waiting for a message. An error will be returned if there is no message.
The message queue may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the queue was created with the GLOBAL flags value set [see q_create].

RETURN VALUE
If the q_receive directive succeeds, then 0 is returned.
If the call was not successful, an error code is returned.



January 22, 1988 					    	  Real Time Executive Interface Definition

ERROR CONDITIONS
Message qid is invalid.
No message at queue ( if no wait is selected ).
Message queue deleted.
Timed out with no message ( if wait and timeout is selected )
ISR cannot reference remote node.

NOTES
Can he called from within an ISR, except when the queue was not created from the local node. The executive will force the options to no wait.
The requesting task may be blocked if there is no message available, and the wait option is selected.


Real Time Executive Interface Definition 						             January 22, 1988

3.2.12 EV_SEND

NAME
ev_send -- “Send Event to a Task”

SYNOPSIS
uint ev_send ( tid, event )
uint tid;		 /* task id as returned by t_create or t_ident */
uint event; 	/* event set */

DESCRIPTION
The ev_send directive sends an event to a task. The event field describes the set of events the task wishes to send. Thirty-two events are available. Sixteen are available as system events and sixteen are available as user events.
The task identified by the tid may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see t_create).
Events sent to tasks not waiting for an event are left pending.

RETURN VALUE
If the ev_send directive succeeds, then 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS
Invalid tid.
ISR cannot reference remote node.

NOTES
Can be called from within an ISR, except when the task was not created from the local node.
May cause a preempt if the task waiting for the event has a higher priority than the running task, and the preempt mode is in effect. A preempt will not occur if the task waiting exists on a remote processor in a multiprocessor configuration.


January 22, 1988						  Real Time Executive Interface Definition

3.2.13 EV_RECEIVE

NAME
ev_receive -- “Receive Event”

SYNOPSIS
uint ev_receive ( eventin, flags, timeout, &eventout )
uint eventin; 	/* input event condition */
uint flags; 	/* options */
uint timeout;	/* number of ticks to wait */
 		/* 0 indicates wait forever */
uint eventout; 	/* output events - returned by this call */
The flags values are:
NOWAIT set  	if the task is to return immediately
	  clear	if the task is to wait for event condition 
ANY	  set 	return when any one
		of the indicated events has occurred
	  clear	return when all
		of the indicated events have occurred

DESCRIPTION
The ev_receive directive allows a task to receive an event condition. The event condition to receive is a set of events specified in the euentin field.
The task may elect to wait for the event condition, or return immediately by setting the NOWAIT value in the flags field. The task may elect to receive all of the events, or receive any one of them by setting the ANY value in the flags field.
When pending events satisfy the event condition, the events are cleared and the task will remain running. Otherwise, if the task elects to wait, the task will become blocked. The task will be made ready to run when the event condition is satisfied by new events, or the timeout condition is met.
When pending events do not satisfy the event condition, and the task elect: not to wait, the task returns immediately with -1 and the no event available error number.
If the eventin field is 0, ev_receive will return the pending events, but the events will remain pending.
The timeout field is used to determine how long to wait. A zero in the timeout field indicates no timeout -- wait forever. A non-zero entry in the timeout field indicates that the task will run after that many ticks, if the event condition is not satisfied, or before if the event condition is satisfied. .



Real Time Executive Interface Definition						             January 22, 1988

RETURN VALUE
If the ev_receive directive succeeds, eventout is filled in with the output events, and 0 is returned.
If the call was not successful, an error code is returned. 

ERROR CONDITIONS
Event not satisfied ( if no wait is selected ).
Timed out with no event ( if wait and timeout is selected )

NOTES
Cannot be called from within an ESR.
The requesting task may be blocked if the event condition is not satisfied, and the wait option is selected.



January 22, 1968					  	  Real Time Executive Interface Definition

3.2.14 AS_CATCH

NAME
as_catch -- “Catch Signals"

SYNOPSIS
uint as_catch ( asraddr, mode )
ptf asraddr; 	/* address of Asynchronous Signal Routine (asr) */
 		/* 0 indicates asr is invalid
uint mode;	/* mode value for asr */
The mode value is defined as follows:
NOPREEMPT 	set 	to disable preempting
		clear	to enable preempting
TSLICE		set 	to enable timeslicing
		clear	to disable timeslicing
DISASR		set	to disable asr processing
		clear	to enable asr processing
SUPV		set	to execute in supervisor mode
		clear 	to execute in user mode
LEVEL			interrupt level when SUPV is set

DESCRIPTION
The as_catch directive allows a task to specify what action to take when catching signals.
The asr address is established when as_catch is called with a non-zero address in the asraddr field. Zero is not a valid asr address. The asr is invalidated when as_catch is called with the asraddr field equal zero. Asynchronous signal processing will be discontinued until re-enabled with a valid asr address in another as_catch call.
When a signal is caught, the task is not unblocked. Signals are latched until the task becomes the running task, at which time the task is dispatched to its asr. The task will execute the asr according to the values specified in the mode field. The signal condition will be passed to the task, along with the task’s current PC and mode, on the task’s stack in a signal stack frame. The signal condition contains all of the signals which have been received since the last time the task was executing.
The asr is responsible for saving and restoring all registers it uses.
The as_return directive must be executed to return the task to its previous dispatch address.
Only one asr per task is allowed.

RETURN VALUE
The as_catch directive always succeeds, and returns 0.
Real Time Executive Interface Definition 						             January 22, 1988

ERROR CONDITIONS
None.

NOTES
Cannot be called from within an ISR.
Will not cause a preempt.

[bookmark: _GoBack]

