
	Name
	Input Parameters
	Output Parameters

	rn_create
rn_ident
rn_delete
rn_getseg
rn_retseg
	name	paddr	length	pagesise	flags
name
rnid
rnid	sise	flags
rnid	segaddr	timeout
	&rnid	&bytes
&rnid

&segaddr

	pt_create
pt_ident
pt_delete
pt_getbuf
pt_retbuf
	name	paddr	length	bsise	flags
name	node
ptid
ptid
ptid	bufaddr
	&ptid	&bnum
&ptid

&bufaddr

	mm_l2p
mm_p2l
mm_pmap
mm_unmap
mm_pread
mm_pwrite
mm_ptcreate
	tid	laddr
tid	paddr
tid	laddr	paddr	length	flags
tid	laddr
paddr	laddr	length
paddr	laddr	length
name	paddr	length	bsise	laddr	flags
	&paddr	&length
&laddr	&length

&ptid	&bnum

	m_ext2int
m_int2ext
	external
internal
	&internal
&external

TABLE 2. Directive Usage
	Name
	Remote
	ISR
	ISR to Remote

	t_create
t_ident
t_start
t_restart
t_delete
t_suspend
t_resume
t_setpri
t_mode
t_getreg
t_setreg
	no
yes
no
no
no
yes
yes
yes
no
yes
yes
	no
yes
no
no
no
no
yes
no
no
yes
yes
	-
yes
-
-
-
-
no
-
-
no
no

	q_create
q_ident
q_delete
q_send
q_urgent
q_broadcast
q_receive
	no
yes
no
yes
yes
yes
yes
	no
yes
no
yes
yes
yes
yes
	-
yes
-
no
no
no
no

	ev_send
ev_receive
	yes
no
	yes
no
	no
-

	as_catch
as_send
as_return
	no
yes
no
	no
yes
no
	-
no
-

	sm_create
sm_ident
sm_delete
sm_p
sm_v
	no
yes
no
yes
yes
	no
yes
no
yes
yes
	-
yes
-
no
no

	tm_set
tm_get
tm_wkafter
tm_wkwhen
tm_evafter
tm_evwhen
tm_cancel
tm_tick
	no
no
no
no
no
no
no
no
	yes
yes
no
no
no
no
no
yes
	no
no
-
-
-
-
-
no

	i_return
	no
	yes
	-

	k_fatal
	no
	yes
	-

	Name
	Remote
	ISR
	ISR to Remote

	rn_create
rn_ident
rn_delete
rn_getseg
rn_retseg
	no
no
no
no
no
	no
yes
no
no
no
	-
yes
-
-
-

	pt_create
pt_ident
pt_delete
pt_getbuf
pt_retbuf
	no
yes
no
yes
yes
	no
yes
no
yes
yes
	-
yes
-
yes
yes

	mm_l2p
mm_p2l
mm_pmap
mm_unmap
mm_pread
mm_pwrite
mm_ptcreate
	no
no
no
no
no
no
no
	yes
no
yes
yes
no
no
no
	no
-
no
no
-
-
-

	m_ext2int
m_int2ext
	no
no
	yes
yes
	no
no

3.1 Task Management
A task is a function that can execute concurrently with other functions within a multitasking environment. A task typically accepts one or more inputs, performs some processing function based on the input, and responds with one or more outputs.
A task is created using the t_create directive. Once a task is created, other tasks can refer to it and act on its behalf in allocating resources to it. A task is started with the t_start directive. Once a task has been restarted, it can execute its function and vie with other tasks for processor time according to its relative priority.
A task may be deleted with the t_delete directive. All knowledge of the task is removed from the system, and other tasks referring to it will be returned an error.
All tasks have a task identifier (tid). The tid is assigned to the task at creation time, and must be used in all subsequent calls to the executive to identify that task. The t_ident directive may be used to obtain the tid of another task when the task name is known.
All tasks have a priority. A task’s priority is a measure of the task’s importance relative to all other tasks within the system and indicate its “need to run” in a multitasking environment where many tasks may be ready to run at any moment. A task is given a priority at creation time. A task’s priority may be changes with the t_setpri directive.
A task’s mode of execution is set up initially with the t_start directive, and may be changed using the t_mode directive. The mode of a task specifies its ability to be preempted, timesliced, to execute in user mode, to execute in supervisor mode at an optional interrupt level, and to disable/enable its asynchronous signal routine.
The task manager provide the pair of directives, t_suspend and t_resume, to control execution of another task.
A task is provided with a set of eight user and eight system defined software registers which may be set with the t_setreg directive, and read with the t_getreg directive.
The directives provided by the task manager are:
	Directive
	Function

	t_create
t_ident
t_delete
t_start
t_restart
t_suspend
t_resume
t_setpri
t_mode
t_getreg
t_setreg
	Create a task
Obtain id of a task
Delete a task
Start a task
Restart a task
Suspend a task
Resume a task
Set task priority
Change task mode
Get task register
Set task register

3.1.1 T_CREATE
NAME
t_create – “Create a Task”
SYNOPSIS
uint t_create (name, superstk, userstk, priority, flags, &tid)
uint name;	/* user defined 4-byte task name */
uint superstk;	/* supervisor stack sise in bytes */
uint userstk;	/* user stack sise in bytes */
uint priority;	/* task priority */
uint flags;	/* task attributes */
uint tid;	/* task id – return by the call */
Flags is defined as follows:
CMASK	Coprocessor mask
0 = no coprocessor
CLOBAL	set	to indicate the task is a multiprocessor global resource.
	clear	to indicate the task is local
DESCRIPTION
The t_create directive creates a task by allocating and initialising a task data structure. A task is created by name. A task id is returned to the caller in the tid field. The tid must be used in all calls to the executive requiring a tid.
The task is allocated a user stack and supervisor stack as determined by the values in the userstk and superstk fields. A minimum supervisor stack is required, and an error will be returned if the superstk value is too small. There is no minimum user stack required.
By setting the GLOBAL value in the flags field, the tid will be sent to all processors in the sys-tem, to be entered into a global resource table. The system is defined as the collection of inter-connected processors. The task is always created on the local node.
The newly created task will be placed in the dormant state. The t_start directive will make the task ready, in priority order. The executive will support a minimum of 32 priorities.
The maximum number of tasks is a configuration parameter.
RETURN VALUE
If t_create successfully created a task, the tid is filled in, and 0 is returned.

If the call was not successful, an error code is returned.
ERROR CONDITIONS
Too many tasks.
No more memory for stack(s) segment.
Supertik too small.
NOTES
Not callable from ISR.
Will not cause a preempt.

3.1.2 T_IDENT
NAME
t_ident = “Obtain id of task”
SYNOPSIS
uint t_ident (name, node, &tid)
uint name;	/* user defined 4-byte task name */
	/* 0 indicates requesting task */
uint node;	/* node identifier */
/* 0 indicates any node */
uint tid;	/* task id – returned by this call */
DESCRIPTION
This directive allows a task to obtain the tid of itself or another task in the system. The tid must then be used in all calls to the executive requiring a tid.
If the task name is not unique, the tid returned may not correspond to the task named in this call.
The task identifies by its name may exist on the local processor or any remote processor in a multiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see t_create). If the task names is not unique within the multiprocessor configuration, a non-sero node identifier must be specified in the node field.
RETURN VALUE
If t_ident succeeded, the tid is filled in, and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Task with this name does not exist
Invalid node identifier.
NOTES
Can be called from within an ISR.
Will not cause a preempt.

3.1.3 T_START
NAME
t_start – “Start a Task”
SYNOPSIS
uint t_start (tid, saddr, mode, argp)
uint tid;	/* task id as returned from t_create or t_ident */
ptf saddr;	/* start execution address of task */
uint mode;	/* initial mode value of task */
long (*argp)[4];	/* pointer to argument list */
The mode value is defined as follows:
NOPREEMPT	set	to disable preempting
clear	to enable preempting
TSLICE	set	to enable timeslicing
clear	to disable timeslicing
NOASR	set	to disable asynchronous signal processing
clear	to enable asynchronous signal processing
SUPV	set	to execute in supervisor mode
clear	to execute in user mode
LEVEL			interrupt level when SUPV is set
DESCRIPTION
The task identified by the tid is made ready, based on its current priority, to await execution. A task can be started only from the dormant state.
Saddr is the logical address where the task wants to start execution. Mode contains the flag values to enable/disable preempting, timeslicing, asynchronous processing, supervisor mode and an optional interrupt level when the task starts execution.
Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack of the task being started. A fifth argument, the executive’s fatal error handler, is also pushed onto the task’s stack. Should the task attempt to exit the procedure (which normally causes unpredictable behaviour), the executive’s fatal error handler will be executed. The user must take this frame into consideration when calculating the sise of a task’s stack(s).
	fatal

	argp[0]

	argp[1]

	argp[2]

	argp[3]

The task identified by the tid must exist on the local processor, even if the task was created with the GLOBAL flags value set (see t_create).
RETURN VALUE
If t_start successfully started the task, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Task not in dormant state.
Task not created from local node.
NOTES
Not callable from ISR.
May cause a preempt if the task being started has higher priority than the running task, and the preempt mode is in effect.

3.1.4 T_START
NAME
t_restart – “Restart a Task”
SYNOPSIS
uint t_restart (tid, argp)
uint tid;	/* task id as returned from t_create ot t_ident */
long argp[4];	/* pointer to argument list */
DESCRIPTION
The task identified by the tid is made ready. If the task was blocked, the executive unblocks it. The task’s superstk, userstk, and priority are set to their original values established when the task was created using t_create. The task’s start address saddr and mode are set to their original values established when the task was started using t_start. A task can be restarted from any state.
Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack of the task be restarted. This argument list may be different from the original argument list. A fifth argument, the executive’s fatal error handler, is also pushed onto the task’s stack. Should the task attempt to exit the procedure (which normally causes unpredictable behaviour), the executive’s fatal error handler will be executed.
Tasks which anticipate being restarted can use the argument to distinguish between initial startup and a restart.
Due to the capability of this call to unblock a task, this call is useful to delete a task in the sys-tem. Tasks which anticipate being deleted can use the argument to distinguish between initial startup and deletion.
	fatal

	argp[0]

	argp[1]

	argp[2]

	argp[3]

The task identified by the tid must exist on the local processor, even if the task was created with the GLOBAL flags value set (see t_create).
RETURN VALUE
If t_restart successfully restarted the task, then 0 is returned.
If the call was not successful, an error code is returned.
