If mm_ptcreate successfully created the partition, the ptid and bnum are filled in and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Too many partitions.
NOTES
Not callable from ISR.
Will not cause a preempt.

3.9 Dual-ported Memory
Dual-ported memory is commonly found in multiprocessor systems. The executive provides a method for converting internal addresses to external, and external addresses to internal, to accommodate the use of dual-ported memory and allow tasks to exchange addresses between processors.
The internal address will be defined as the address of a memory resource, relative to the local node which needs to access the memory resource.
The external address will be defined as the address of a memory resource, relative to a remote node which needs to access the memory resource.
The directives provided for dual-ported memory are:

	Directive
	Function

	m_ext2int
	Convert external address

	m_int2ext
	Convert internal address

3.9.1 M_EXT2INT
NAME
m_ext2int – “Convert external address to internal address”
SYNOPSIS
uint m_ext2int (external, &internal)
char *external;		/* external address */
char *internal;		/* internal address - returned by this call */
DESCRIPTION
The m_ext2int call is used to convert the physical address contained in external into an internal address, so it can be used by the local node. The internal address is returned to the caller in internal.
The external (VMEbus) address is normally an address received by the local node, and the requester may not know whether its internal (local) or not. If the address contained in external is internal, the returned address will be same as the address in external.
RETURN VALUE
The m_ext2int directive always succeeds, the internal address is returned in internal, and 0 is returned.
ERROR CONDITIONS
None.
NOTES
Can be called from within an ISR.
Will not cause a preempt.
In a MMU system, a task will need to execute mm_p2l following this call to obtain a logical internal address.

3.9.2 M_INT2EXT
NAME
m_int2ext – “Convert internal address to external address”
SYNOPSIS
uint m_int2ext (internal, &external)

char *internal;		/* internal address */
char *external;		/* external address - returned by this call */

DESCRIPTION
The m_int2ext call is used to convert the physical address contained in internal into an external address, so it can pass the address to a remote node within the system. The external address is returned to the requester in external.
The internal address is a physical address accessible by the local node within its dual-ported memory, and the external (VMEbus) address will be different.
RETURN VALUE
The m_int2ext directive always succeeds, the external address is returned in external, and 0 is returned.
ERROR CONDITIONS
None.
NOTES
Can be called from within an ISR.
Will not cause a preempt.
In a MMU system, a task will need to execute mm_l2p preceding this call to obtain a physical address.

4. I/O INTERFACE
This section describes a set of I/O Interface services for the RTEID. These services provide a well defined mechanism for installing and calling device drivers. They provide a structured methodology for writing drivers which both simplifies and assists in the development of drivers and enhances their portabi1ity between RTEID based systems. The RTEID does not make any assumptions about the construction or operation of a driver itself.
The directives provided by the I/O Interface are:
	Directive
	Description

	de_init
	Initialize a device driver

	de_open
	Open a device for I/O

	de_close
	Close a device

	de_read
	Read from a device

	de_write
	Write to a device

	de_cntrl
	Special device services

4.1 Driver Properties
Device drivers shall have the following properties:
1. A driver is always called by a task and is considered to run on behalf of the task which called it.
2. A driver can make any and all RTEID calls, including additional I/O calls. I/O calls may not be called from within the driver’s ISR.
3. If the driver makes a blocking service call, (e.g. q_receive), the calling task blocks.
4. Drivers always execute in supervisor mode regardless of the mode of the caller. Designers should account for driver stack usage when determining supervisor stack sizes for new tasks.
5. A driver may temporarily enter user mode but must return to supervisor mode prior to exiting.
6. Other than item (4) shove, drivers retain the mode of the calling task. Thus on entry they have the same interrupt mask level, preemption, asr and time-slicing status as the caller. The driver may change any or all of these but is responsible for restoring them prior to exiting.

4.2 Data Structures
The data structures used by drivers which are supported by the I/O Interface are:
· Driver Address Table
- Used by the I/O Interface to locate the driver’s INIT, OPEN, CLOSE, READ, WRITE, and CNTR routines.

· Device Data Area Table
- Used by the I/O Interface to locate driver’s data area for the driver’s OPEN, CLOSE, READ, WRITE, and CNTRL routines.

4.2.1 Driver Address Table
When a task makes an I/O Interface call, the executive must locate the driver associated with the specified device (major number) and operation (i.e. READ). It does so via a Driver Address Table provided by the user. The physical address of the table and the number of devices are specified to the executive via configuration parameters.
The Driver Address Table for a system with N devices can be described by the following declarations:
struct drvaddr
{
int (*init_driver)();
int (*open_driver)();
int (*close_driver)();
int (*read_driver)();
int (*write_driver)();
int (*cntrl_driver)();
int resvd1;
int resvd2;
}
As shown, the Driver Address Table is an array of N structures, one for each device. Each structure contains eight entries. The first six entries contain pointers to functions (routines) within the driver associated with the device. The last two entries are reserved for future use.
4.2.2 Device Data Area Table
Many, if not most, devices need a data area where the device driver can store information specific to the device. Although a statically allocated area can be used, it is usually more convenient to dynamically allocate this area when the device is initialized. The I/O Interface contains services to support such dynamic allocation.
The Device Data Area Table is supplied and maintained by the I/O Interface. The table contains one long word entry for each device in the system. The entry is used to maintain the address of the data area for the device.
The device driver’s INIT routine is responsible for allocating the device’s data area and returning its address to the I/O Interface. This memory can come from any source - static data, a region, or a partition. On exit, the INIT routine must return the address of the data area to the I/O Interface. The I/O Interface saves this address in the Device Data Area Table. Whenever a device driver routine (other than INIT) is called, the I/O Interface passes the data area address to the driver.

4.3 Device Installation
During system initialization, the executive automatically calls the driver’s INIT routine for each device. They are called sequentially, beginning with device 0 and ending with the last device in the system.
Since drivers can only be called by tasks, the executive calls the driver’s INIT routine on behalf of a system initialization task, defined by configuration parameters. The mode of the system initialization task (also a configuration parameter) is used as the mode while the executive calls the INIT routines of the drivers. If the driver’s INIT routine makes a RTEID call which blocks, control is passed to an idle task provided by the executive until an interrupt unblocks the driver.
Although the driver’s INIT routine is always called at system startup, it may also be called by a task a either to re-initialize a driver or when a new device driver is dynamically loaded.
4.4 Parameter Passing
All directives except de_init require a user provided parameter block. The format and content of the parameter block depends on and is determined entirely by the particular driver and device it controls. Its function is to pass input parameters to the driver.
In a system with an MMU, the address of the parameter block is a logical address. The I/O Interface will convert it to a physical address before passing it to the driver. Within the parameter block, addresses may be either logical or physical, as defined by the driver. The I/O Interface does not examine or translate any fields within the parameter block.

4.5 Interface in C Language
The I/O Interface may be called in the C language as follows:
	Function
	Parameters

	de_init
	(dev)

	de_open
	(dev, argp, &rval)

	de_close
	(dev, argp, &rval)

	de_read
	(dev, argp, &rval)

	de_write
	(dev, argp, &rval)

	de_cntrl
	(dev, argp, &rval)

dev is a 32-bit device number formatted as follows:
bits 31-16	= major device number
bits 15-0	= minor device number
argp is a pointer to a parameter block which contains device and operation specific parameters. The format and contents of the block is determined by the driver.

rval is an output parameter in which READ, WRITE and CNTRL routines may return information about the call.
4.6 I/O Interface In Assembly Language
The I/O Interface may be called by loading parameters into specific CPU registers and executing a TRAP instruction. The following assembly language interface is used:
INPUT
D0.W = function number as follows:
1 = INIT
2 = OPEN
3 = CLOSE
4 = READ
5 = WRITE
6 = CNTRL
7 = RESVD1
8 = RESVD2
D1.L = Device number (major and minor)
A0.L = Pointer to parameter block (except INIT)
OUTPUT
D0.L = Error code - 0 indicates successful return
D1.L = Return value from OPEN, CLOSE, READ, WRITE and CNTRL
A1.L = Address of device data area (INIT only)

4.7 Driver Interface in Assembly Language
The I/O Interface calls the user provided driver using the following assembly language convention:
INPUT
D0.L = tid
D1.L = Device number (major and minor)
A0.L = Physical address of parameter block (except INIT)
A1.L = Physical address of device data area (except INIT)
OUTPUT
DO.L = Error code - 0 indicates successful return
D1.L = Return value from OPEN, CLOSE, READ, WRITE and CNTRL
A1.L = Address of device data area (INIT only)

4.8 Error Handling
There are a number of errors which can occur during a driver call. In general, there are two types:
1. Errors detected by the I/O Interface.
2. Error: detected and returned by the driver.
All I/O Interface generated errors are detected prior to calling the driver. In these cases, the I/O supervisor loads register D0 with an error code and returns to the caller without ever passing control to the driver. To distinguish between I/O Interface errors and driver errors, error codes below 10000H (16-bit values) are reserved for use by the I/O Interface. Below is a list of the errors which are detected by the I/O Interface:
Illegal Function Code
Illegal Major Device Number
Illegal to call driver from ISR
Illegal parameter block address (MMU version only)

Drivers should always return error codes which are greater than 10000H (non-zero in the upper 16-bits).
Error codes returned from the driver’s INIT routine are ignored by the executive. If a driver’s INIT encounters a fatal error during system startup, the k_fatal directive may be used.
4.9 I/O Interface Routines in C Language
The I/O Interface routines as called in the C language are described in the following pages.

4.9.1 INIT
NAME
de_init — “Initialize a Device Driver”
SYNOPSIS
uint de_init (dev)

uint dev;	/* 32-bit device number */

DESCRIPTION
The INIT routine will be called during system initialization. The function of INIT is to setup the hardware as necessary and to initialize the driver dependent variables. If the driver needs to allocate a data area for its use, it would do so in the INIT routine. The address of this data area is saved in the Device Data Area Table by the I/O Interface.
RETURN VALUE
If the call succeeds, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
To be defined.
NOTES
Not callable from ISR.
