January 22, 1988 Real Time Executive Interface Defnition

3.2.4 Data Structures for Mess#ge Management

Definitions for events and asynchronous signals are as follows:

e

Page 28

S_EXECO0 System Software defined
S_EXEC1 System Software defined
S_EXEC2 System Software defined
S_EXEC3 System Software defined
S_EXEC4 System Software defined
S_EXECS System Software defined
S_EXECS8 System Software defined
S_EXEC7 System Software defined
S_EXECS System Software defined
S_EXEC9 System Software defined
S_EXEC10 System Software defined
S_EXEC11 System Software defined
S_EXEC12 System Software defined
S_EXEC13 System Software defined
S_EXEC14 System Software defined
S_EXEC15 System Software defined
S_USERO User defined

" S_USER1. User defined
S_USER2 User defined
S_USER3 User defined
S_USER4 User defined
S_USERS User defined
S_USERS User defined
S_USER7 User defined
S_USERS User defined
S_USERS9 User defined
S_USER10 User defined
S_USER11 User defined
S_USER12 User defined
S_USER13 User defined
S_USER14 User defined
S_USER15 User defined

Real Time Executive Interface Definition January 22, 1988

3.2.5 Q_CREATE

NAME
g-create — "Create a Message Queue”
SYNOPSIS

#include <message.h>
uint gcreate (name, count, flags, &qid)

uint name; /* user defined 4-byte name */

uint count; /* maximum message and reserved buffer count */
uint flags; /* process method */

uint qid; /* message queue id - returned by this call */

The flags values are:

PRIOR set to process by priority
clear to process by FIFO
GLOBAL set to indicate the queue is a
multiprocessor global resource.
clear to indicate the queue is local

TYPE set to process typed messages
clear to process messages without regard to type
LIMIT set to limit queue entries to number in count field

clear NO limit on queue entries and no reserved buffers
RESVD set to reserve system buffers equal to count when LIMIT is set
clear NO reserved system buffers when LIMIT is set

DESCRIPTION

The g-create directive creates a message queue by allocating and initialising a message queue data
structure. A message queue is created by name. A message ¢id is returned. Subsequent sending
and receiving calls must reference the message queue with its message ¢id.

By setting the PRIOR value in the flags field, tasks waiting for messages in the queue will be
processed by task priority order. Otherwise the tasks waiting for messages will be processed by
first in, first out (FIFO) order.

By setting the TYPE value in the flags field, messages sent to this queue may be processed by
type.

The user may put a limit on the number of messages at the message queue by setting the LIMIT
value in the flags field, and placing the count in the count field. The user may additionally
reserve a number of system message buffers equal to the count in the count field by setting the
RESVD value in the flags field.

By setting the GLOBAL value in the flags field, the message gid will be sent to all processors in

Page 29

January 22, 1988 | Real Time Executive Interface Definition

the system, to be entered into a global resource table. The system is defined as the collection of
interconnected processors. The message queue is always created on the local node. -

The maximum number of message queues that can be in existence at one time is a configuration
parameter.

The maximum number of system message buffers is a configuration parameter.
RETURN VALUE

If the g_create directive succeeds, the ¢id is filled in, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Too many message queues.

No more system message buffers.

NOTES

Not callable from ISR.

Will not cause a preempt..

Page 30

Real Time Executive Interface Definition _ January 22, 1988

3.2.6 Q_IDENT

NAME
g-ident — "Obtain id of a Message Queue”
SYNOPSIS

#include <message.h>
uint q-ident (name, node, &qid)

uint name; /* user defined 4-byte name */
uint node; /® node identifier */
/* 0 indicates any node */
uint qid; /* message queue id - returned by this call */

DESCRIPTION

The g_ident directive allows a task to identify a previously created message queue by name and
receive the message gid to use for send and receive directives for the queue.

If the message queue name is not unique, the message gid returned may not correspond to the
message queue named in this call.

The message queue may exist on the local processor or any remote pr&emr in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g_create).
If the message queue name is not unique within the multiprocessor configuration, a non-sero node
identifier must be specified in the node field.

RETURN VALUE

If the g_ident directive succeeds, the gid is filled in, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Named message queue does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 31

T

January 22, 1988 - Real Time Executive Interface Definition

3.2.7 Q_DELETE

NAME
g-delete — "Delete a2 Message Queue”
SYNOPSIS

#include <message.h>
uint q_delete (qid)

uint qid; /* message queue id returned from q-create or q_ident */

DESCRIPTION

The g delete directive deletes the message queue identified by the gid, freeing the data structure.
When a message queue is deleted, it could be in one of three states: empty, tasks waiting for
messages, messages waiting for tasks. If empty, the data structure of the Iessage queue is
returned to the system. If tasks are waiting, each is made ready and given a return code indicat-
ing a deleted message queue. If messages are waiting, then each system message buffer is returned
to the system message buffer pool, and the message it is carrying is therefore lost.

The message queue must exist on the local processor. If the message queue was created with the
GLOBAL flags value set in a multiprocessor configuration, a notification will be sent to all pro-

cessors in the system, so the ¢id can be deleted from the global resource table.

The requester does not have to be the creator of the message queue. Any task knowing the gid
can delete it. a

RETURN VALUE

If the g_delete directive successfully deleted the message queue, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message ¢id is invalid.

Message queue not created from local node.

NOTES

Cannot be called from within an ISR.

May cause a preempt if a task wait-ing at the message queue has a higher priority than the run-

ning task, and the preempt mode is in effect. A preempt will not occur if all tasks waiting at the
Mmessage queue exist on a remote processor in a multiprocessor configuration.

Page 32

Real Time Executive Interface Definition - —) January 22, 1988

3.2.8 Q_SEND)

NAME
gsend — "Send a Message to a Message Queue"
SYNOPSIS

#include <message.h>
uint q_send (qid, buffer)

uint qid; /* message queue id returned from g_create or q_ident */
long (*buffer)[4]; /* pointer to message buffer */

DESCRIPTION

The g_send directive sends a message to the queue identified by the ¢id.

If a task is already waiting at the queue, the message is copied to that task’s indicated receiving
buffer. The waiting task is then made ready. If there is no task waiting, the message is copied to

a system message buffer which is then placed at the end of the message queue.

Once sent, the task’s message buffer may be reused immediately. A message is fixed length, 18-
bytes. ’ : ' '

The message quene may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g_create).

RETURN VALUE

If the ¢_send di.re:ti?e successfully sent a message, then 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message ¢id is invalid.

Out of system message buffers.

Message queue at maximum count.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.
May cause a preempt if a task waiting at the message queue has a higher priority than the run-

ning task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on
a remote processor in a multiprocessor configuration.

Page 33

January 22, 1988 Real Time Executive Interface Definition

3.2.9 Q_URGENT

NAME
g-urgent — "Place an Urgent Message at the Head of a Message Queue"
SYNOPSIS

#include <message.h>
uint gq-urgent (qid, buffer)

uint qid; /* message queue id returned from g_create or q_ident */
2 long (*buffer)[4]; /* pointer to message buffer */

DESCRIPTION

The g_urgent directive sends a message to the queue identified by the gid. This call is the same as
the g_send call, except, if there are other messages at the queue, this message is put at the head of
the queue.

If a task is already waiting at the queue, the message is copied to that task’s indicated receiving
buffer. The task is then made ready. If there is no task waiting, the message is copied to a sys-

tem buffer which is then placed at the head ¢ “the message queue.

Once sent, the task’s message area may be reused immediately. A message is fixed length, 16-
bytes.

The message queue may exist on the local processor or any remote processor in a multiproce;sor
configuration, as long as the queue was created with the GLOBAL flags value set (see q_create).

RETURN VALUE

If the g_urgent directive successfully sent a message, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message ¢id is invalid.

Out of system message buffers.

Message queue at maximum count. -

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.

May cause a preempt if a task waiting at the message queue has a higher priority than the run-
ning task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on

Page 34

Real Time Executive Interface Definition) January 22, 1988

a remote processor in a multiprocessor configuration.

Page 35

January 22, 1988° - Real Time Executive Interface Definition

3.2.10 Q BROADCAST

NAME
qg-broadcast — "Broadcast N Identical Messages to a Message Queue”
SYNOPSIS

#include <message.h>
uint g-broadcast (qid, buffer, &count)

uint qid; /* message queue id returned from gq_create or q_ident */

long (*buffer)[4]; /* pointer to message buffer */

uint count; /* number of tasks made ready - returned by this call */
DESCRIPTION

The g_broadcast directive sends as many messages as necessary to make ready all tasks waiting on
the queue identified by the ¢gid. The number of tasks readied is returned to the caller in count.

Once sent, the task’s message buffer may be reused immediately.

Th: message quene may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the quecue was created with the GLOBAL flags value set (see g_create).

RETURN VALUE

If the ¢_broadcast directive succeeds, the count is filled in with the number of tasks readied, and 0
is returned. ¢

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Message gid is invalid.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.
May cause a preempt if a task waiting at the message queue has a higher priority than the run-

ning task, and the preempt mode is in effect. A preempt will not occur if a task waiting exists on
a remote processor in a multiprocessor configuration.

Page 38

Real Time Executive Interface Definition January 22, 1988

3.2.11 Q_RECEIVE ' .
NAME
q-receive — "Receive a Message from a Message Queue”

SYNOPSIS

#include <message.h>
uint q-receive (gid, buffer, flags, timeout)

uint qid; /* message queue id returned from q-create or q_ident '/
long (*buffer)[d]; /* pointer to message buffer */

uint flags; /* options */

uint timeout; /* number of ticks to wait */

/* 0 indicates wait forever */

The flags values are:

NOWAIT set if the task is to return immediately
clear if the task is to wait for a message

DISCRIPTION

The g_receive directive allows a task to request a message from the message queue identified by
gid.

If there is a message at the message queue, it is copied into the requester’s buffer.
4

If there is no message at the message queue, then the NOWAIT flag determines what to do. If
the NOWAIT flags value is set, the task returns immediately with -1 and the no message at
queue error number. If the NOWAIT flags value is clear, the task is put on a wait list for the
message queue, according the queue’s attributes (FIFO or priority).

The timeout field is used to determine how long to wait. A zero in the timeout field indicates no
timeout — wait forever. A non-sero entry in the timeout field indicates that the task will run

after that many ticks, if a message has not been received, or before if a message is received.

When ¢_receive is called from an ISR, the no wait option is forced by the executive. Thus there
will be no waiting for a message. An error will be returned if there is no message.

The message queue may exist on the local processor or any remote processor in a multiprocessor
configuration, as long as the queue was created with the GLOBAL flags value set (see g—create).

RETURN VALUE
If the g_receive directive succeeds, then 0 is returned.

If the call was not successful, an error code is returned.

Page 37

January 22, 1988 _ Real Time Executive Interfa_éa Definition

ERROR CONDITIONS

Message ¢id is invalid.

No message at quene (if no wait is selected).

Message queue deleted.

Timed out with no message (if wait and timeout is selected).
ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the queue was not created from the local node.
The executive will force the options to no wait.

The requesting task may be blocked if there is no message available, and the wait option is
selected.

Page 38

Real Time Executive Interface Definition - : January 22, 1988

3.2.13 EV_SEND

NAME
ev_send — "Send Event to a Task"
SYNOPSIS
uint ev_send (tid, event)
uint tid; /* task id as returned by t_create or t_ident */
uint event; /* event set */ '
DESCRIPTION
The ev_send directive sends an event to a task. The event field describes the set of events the
task wishes to send. Thirty-two events are available. Sixteen are available as system events and
sixteen are available as user events.
The task identified by the tid may exist on the local -processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
t.create).
Events sent to tasks not waiting for an event are left pending.
RETURN VALUE ‘
If the ev_send directive succeeds, then 0 is returned.
If the call was not successful, an error code is returned. ¢
ERROR CONDITIONS
Invalid tid.
ISR cannot reference remote node.
NOTES
Can be called from within an ISR, except when the task was not created from the local node.
May cause a preempt if the task waiting for the event has a higher priority than the running

task, and the preempt mode is in effect. A preempt will not occur if the task waiting exists on a
remote processor in a multiprocessor configuration.

Page 39

January 22, 1988 _) -~ <" Real Time Executive Interface Definition

3.2:13 EV_RECEIVE

NAME

ev_receive — "Receive Event”

SYNOPSIS

uint ev_receive (eventin, flags, timeout, &eventout)

uint eventin; /* input event condition */
uint flags; /* options */
uint timeout; /* number of ticks to wait */
/* 0 indicates wait forever */
uint eventout; /* output events - returned by this call */

The flags values are:

NOWAIT set if the task is to return immediately
clear if the task is to wait for event condition
ANY set return when any one
o of the indicated events has occurred
clear return when all
of the indicated events have occurred

DESCRIPTION

4
The ev_receive directive allows a task to receive an event condition. The event condition to
receive is a set of events specified in the eventin field.

The task may elect to wait for the event condition, or return immediately by setting the
NOWAIT value in the flags field. The task may elect to receive all of the events, or receive any
one of them by setting the ANY value in the flags field.

When pending events satisfy the event condition, the events are cleared and the task will remain
running. Otherwise, if the task elects to wait, the task will become blocked. The task will be
made ready to run when the event condition is satisfied by new events, or the timeout condition is
met.

When pending events do not satisfly the event condition, and the task elects not to wait, the task
returns immediately with -1 and the no event available error number.

If the eventin field is 0, ev_receive will return the pending events, but the events will remain
pending.

The timeout field is used to determine how long to wait. A zero in the timeout field indicates no
timeout — wait forever. A non-sero entry in the timeout field indicates that the task will run
after that many ticks, if the event condition is not satisfied, or before if the event condition is
satisfied.

Page 40

Real Time Executive Interface Definition _ . January 22, 1988

RETURN VALUE

If the en_receive directive succeeds, eventout is filled in with the- output events, and 0 is returned.
If the call was not successful, an error code is returned.

ERROR CONDITIONS

Event not satisfied (if no wait is selected).

Timed out with no event (if wait and timeout is selected)-

NOTES |

Cannot be called from within an ISR.

The requesting task may be blocked if the event condition is not satisfied, and the wait option is
selected.

Page 41

January 22, 1988 Real Time Executive Interface Definition

3.2.14 AS_CATCH

NAME
as_catch — "Catch Signals®
SYNOPSIS
uint as_catch (asraddr, mode)
ptf asraddr; /* address of Asynchronous Signal Routine (asr) */
/* 0 indicates asr is invalid */
uint mode; /* mode value for asr */
The mode value is defined as follows:

NOPREEMPT set to disable preempting
clear to enable preempting

TSLICE set to enable timeslicing
clear to disable timeslicing
DISASR set to disable asr processing
clear to enable asr processing
SUPV set to execute in supervisor mode
' clear to execute in user mode
" LEVEL interrupt level when SUPYV is set

DESCRIPTION

The cs_catch directive allows a task to specify what action to take when catching signals.

The asr address is established when as_cateh is called with a non-sero address in the asraddr field.
Zero is not a valid asr address. The asr is invalidated when as_cateh is called with the asraddr
field equal sero. Asynchronous signal processing will be discontinued until re-enabled with a valid
asr address in another sa_catch call.

When a signal is caught, the task is not unblocked. Signals are latched until the task becomes
the running task, at which time the task is dispatched to its asr. The task will execute the asr
according to the values specified in the mode field. The signal condition will be passed to the
task, along with the the task’s current PC and mode, on the task’s stack in a signal stack frame.
The signal condition contains all of the signals which have been received since the last time the
task was executing.

The asr is responsible for saving and restoring all registers it uses.

The as_return directive must be executed to return the task to its previous dispatch address.

Only one asr per task is allowed.

RETURN VALUE

The as_cateh directive always succeeds, and returns 0.

Page 42

Real Time Executive Interface Definition —

ERROR CONDITIONS

None.

NOTES

Cannot be called from within an ISR.

Will not cause a preempt.

January 22, 1988

Page 43

e

January 22, 1988 ' Real Time Executive Interface Definition

3.2.15 AS_SEND

NAME

as_send — "Send Signal to a Task"

SYNOPSIS

uint as_send (tid, signal)

uint tid; /* task id as returned by t_create or t_ident */

uint signal; /* signal set */
DESCRIPTION
The as_send directive sends signals to a task. The signal field describes the set of signals it wishes
to send. Thirty-two signals are available. Sixteen are available as system signals and sixteen are
available as user signals.
The signal set must be sent to tasks which have specified an asr using the as_cateh directive. If
the task identified by the tid does not have a valid asr, the caller returns with the invalid asr
error.
When a signal is sent to a task with a valid and enabled asr, the task will be dispatched to the
asr address when it becomes the running task. Signals sent to a blocked task are latched until
the task becomes the running task. Duplicate signals are not queued.
The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set {see
t_create).
RETURN VALUE
If the as_send directive successfully sent the signal, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid asr.
ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created from the local node.

Page 44

January 22, 1988 Real Time Executive Interface Definition

3.2.16 AS_SEND

NAME
as_send — "Send Signal to a Task"
SYNOPSIS
uint as_send (tid, signal)

uint tid; /* task id as returned by t_create or t_ident */

uint signal; /* signal set */
DESCRIPTION
The aa_send directive sends signals to a task. The signal field describes the set of signals it wishes
to send. Thirty-two signals are available. Sixteen are available as system signals and sixteen are
available as user signals.
The signal set must be sent to tasks which have specified an asr using the as_cateh directive. If
the task identified by the tid does not have a valid asr, the caller returns with the invalid asr
error.
W'he.:n a signal is sent to a lask with a valid and enabled asr, the task will be dispatched to the
asr address when it becomes the running task. Signals sent to a blocked task are latched until
the task becomes the running task. Duplicate signals are not queued.
The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
t.create). '
RETURN VALUE
If the asa_send directive successfully sent the signal, then 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid asr.
ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created from the local node.

Page 44

o

Real Time Executive Interface Definition - January-22, 1988

3.2.16 AS_RETURN

NAME

as_return — "Return from Signal Routine®
SYNOPSIS

void as_return ()

DESCRIPTION

The as_return must be used by tasks to return from an asynchronous signal routine (asr).
RETURN VALUE

None.

ERROR CONDITIONS

Not in asr.

NOTES

This call is only used to return from an asr. Refer to the as_catch and as_send directives.

Page 45 .

January 22,1988 _ 2 Real Time Execut_if_e Interface Definition

3.3 Semaphore Management

The semaphore manager provides a set of directives to use in arbitrating access to a shared
resource (many-to-one). The semaphores primitives provided can be used to fulfill different sets of
requirements:

1. To control access to a single resource that is either available or not, the user can create a
semaphore with an initial value of 1.

2. To control access to a pool of "n" resources where at any moment "m" of those resources
are available (0 <=m <= n) and "n-m" are not, the user can create a semaphore with
an initial value of "n".

Arbitrating access to shared resources requires signaling that a predefined event has occurred.
Sophisticated synchronisation also requires a counter to record the number of events sent but not
yet received, and a list of tasks awaiting receipt of the event.

The semaphore data structure fulfills all the previous requirements. A semaphore possesses a
name to distinguish it from the other semaphores within the system, a semaphore id to enable
quick access to the semaphore, the requisite semaphore count variable to count the events, and a
list of waiting tasks. In addition to the semaphore count variable, the semaphore contains an ini-
tial count, used as an initial assignment value for the semaphore count.

The synchronisation rules for semaphores ‘ar: :

1. The sem'aphore count is decremented by 1, when a task does a sm_p operation. The task
continues execution if the count is then greater than or equal to zero. If the count is less
than sero, the task is put on a waiting list for the semaphore.

2. The semaphore count is incremented by one when a task does a sm_v operation. If the
count is less than or equal to zero, the first task in the semaphore waiting list is placed in
the ready state.

The directives provided by the semaphore manager are:

Directive Function

sm create | Get a semaphore

sm_ident Obtain the id of a Semaphore
sm_delete | Delete a semaphore

sm_p Access semaphore

sm_v Release semaphore

Page 46

Real Time Executive Interface Definition = January 22, 1988

3.3.1 SM_CREATE

NAME

sm_create — "Create a Semaphore”
SYNOPSIS

#include <semaphore.h>

uint sm_create (name, count, flags, &smid)

uint name; /* semaphore name */

uint count; /* initial count */

uint flags; /* semaphore flags */

uint smid; /* semaphore id - returned by this call */

The flags field values are:

PRIOR set to process wait list by priority
clear to process wait list by FIFO
GLOBAL set to indicate the semaphore is a
multiprocessor global resource.
clear to indicate the semaphore is local.

DESCRIPTION p
The sm_create directive creates a semaphore and assigns it an initial count equal to the value in
the count field. The semaphore id is returned in smid. The smid must be used in subsequent

sm_p, sm_v, and sm_delete calls.

By setting the PRIOR value in the flags field, tasks waiting on a semaphore will be processed in
task priority order. Otherwise the tasks will be processed in first in, first out (FIFO) order.

By setting the GLOBAL value in the flags field, the smid will be sent to all processors in the sys-
tem, to be entered into a global resource table. The system is defined as the collection of intercon-

nected processors. The semaphore is always created on the local node.

The maximum number of semaphores that can be in existence at one time is a configuration
parameter.

RETURN VALUE
If am_create successfully created the semaphore, the smid is filled in, and 0 is returned.

If the semaphore was not successfully created, an error code is returned.
ERROR CONDITIONS

Too many semaphores.

Page 47

— January 22, 1988 - Real Time Executive Interface Definition

NOTES L
Not callable from ISR.

Will not cause a preempt.

Page 48

