Real Time Executive Interface Definition

DRAFT 2.1

Prepared by:

MOTOROLA Microcomputer Division
and

Software Components Group

¥ Abstract:

‘This specification defines a basic set of functions that constitute the Real Time
Executive Interface Definition. Draft 2.1 is for public review, MOTOROLA/SCG
retain the right to modify this definition as appropriate during implementation.
Dr7.ft /2.1 will be submitted to the VITA technical committee no later than
01/25/88.

PRELIMINARY

January 22, 1988

LN DISCLAIMER

;LThis RTEID specification is being proposed to be used as the basis for formal
~standardization by the VME International Trade Association (VITA). However,
Lsince the standardization process has just begun, any standard resulting from
| this document might be different from this document . Any Product designed to

| this document might not be compatible with the final standard. No responsibility
| is.assumed for such incompatibilities and no liability is assumed for any product

' built to conform to this document.

While considerable effort has been expended to make this document
comprehensive, reliable, and unambiguous, it is still being published in
preliminary form for public study and comment.

This document is prepared by Motorola Inc., Microcomputer Division. The
design and development of RTEID is a joint effort of Motorola Inc.,
Microcomputer Division and Software Components Group, Inc. Interest in the
RTEID is welcomed and encouraged any technical questions, suggestions or

comments may be directed to:

Motorola Inc. Software Components Group, Inc.
Microcomputer Division 4655 Old Ironsides Drive
Dept: RTEID Santa Clara, California 95054
2900 South Diablo Way Tel: (408)727-0707 408 - 437 oo
Tempe, Arizona 85282 Fax: (408)727-0904
;elz (6022);438-3500 Tix: 757697 (softcom) , -
ax: (602)438-3581 . . '
Tix: 4998071 (MOTPHE) S G heeT - doch skff

: L\}i&_ M“'J;»’» - SQ\QS

Real Time Executive Interface Definition January 22, 1988

REVISION RECORD
Issue Revision Description Date
1 Initial version. Internal Only. 05/08/87
2 Added semaphores and debug management. 06/01/87
3 Preliminary Draft, limited distribution. 06/17/87
4 Design review of SCG’s comments. 07/24/87
5 SCG/MOT Technical review. 08/20/87
8 SCG/MOT Technical review. 08/28/87
7 SCG/MOT Technical review. 09/14/87
8 SCG/MOT Technical review for Draft 2.1 12/14/87 _ .
9 Added Debug Extensions for Draft 2.1 12/22/87 .
10 Added I/O Interface for Draft 2.1 01/15/88
11 Removed Debug Extensions from Draft 2.1 01/22/88 -
12 Final Draft 2.1 submitted to VITA 01/25/88" :
13
200 el
3 L)
¥ R rod b
50 T
©ooton
 adalingy |

IR

January 22, 1988

Real Time Executive Interface Definition - January 22, 1988

TABLE OF CONTENTS

BrL

1. INTRODUCTION . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o e E R R Y 1
1.1 OVerview . o o ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o o ¢ s s a s s s a s o s s o0 0 00as 1
12 Definitions « « « « ¢« ¢ o ¢ ¢ ¢ ¢ 0 ¢ s 00000 0c00esscesos0eaoon 1
1.3 Typedefs and Structures . « « « o ¢ o « ¢ ¢ o o o o o o o o o o o o s o o o o 1

2. BasicSystem Services . . ¢ ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o s 0 0 0 0 0 6 0 e 0 e s s e o o e 2

3. EXECUTIVEFACILITIES « ¢ ¢« ¢ ¢ ¢ o « o o o s o s s o 0 s o 0 s 6 o 0 00 o 3
31 TaskManagement . ¢« « ¢ ¢ « ¢ ¢ o« o ¢ o o o o o o o 06 o o 6 o o 0 s 0 o0 7

8311 T CREATE ¢ o o o0 0006 s 6o 6 6 060000 aesessess 8
312 T.IDENT ¢ o 6 0 0.'c 606 a5 o o 4 34 o 0 8 8 ¢ o @ a6 o s o . 10
313 T START . ¢ ¢ « ¢ ¢ ¢ 0 0 0006 0c0cooeoesoccseceos 11
314 TRESTART« « . . R T e R PR 13
. 3185 TDDELETE ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 0 06 ¢ 0 s s “ % » e fe i isiis 4 s @ m e i 15
318 T_SUSPEND . ¢ ¢ ¢ ¢ ¢ ¢ « s s s o o o o s . o @iisiie 8w o @ . 18
317 TRESUME« .« « . R 17

3.1.8 T_SETPRI ...
319 TMODE

31.10 T.GETREG & s s 0 ¢ 0 0. 6 5 s s s s o o » & 0 (s ‘o T e e e s e e e e 21
3.1.11 TSETREG ’ o i .

3.2 Message, Event, and Signal Management o © e @ e
3.2.1 Message Manager A EEE
322 EventManager ¢ ¢ ¢ ... e e e e s e .
323 SignalManager . . ¢ ¢ ¢ ¢t ¢ 0 e 0t e e 0t a0 0 e e .
3.2.4 Data Structures for Message Management . . « ¢« ¢« ¢« ¢ ¢ ¢« ¢ o ¢ o o 28
325 QO CREATE . ¢ « ¢ ¢ ¢ ¢ o o o o o ot o o o s o o o o o o oo s

328 QIDENT ¢ o ¢ ¢ ¢ o ¢ o ¢ o o o o oo e e s e e e e o s e e -) |
327 QDELETE 4 ¢ ¢ ¢ s 0 s 0 6 006 050006 osioessess e o e 32
328 QSEND ¢ & ¢ v ¢ v 0t v o v o o o o0 s o e s s o e e e e e 33
329 QURGENT . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ot e o v e o o o o o oo aosoeeosees 34
3.2.10 QBROADCAST '« + ¢ ¢ ¢ o ¢ o o ¢ o o o o o o o oo oo - |
3211 QRECEIVE ¢ ¢ ¢ ¢ ¢ ¢ 0 o o o o o o e s oo e s 0 e e s e 37
3212 EV.SEND . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o c oo s s 00 s e ase 39
3213 EV.RECEIVE . . . ¢ ¢ ¢ ¢ « ¢ ¢ « & c e e e e s eseseseeeee 40
3214 ASLCATCH . ¢ « ¢ ¢ ¢ ¢ ¢ ¢ o o s o o o o o o s o oo ooeesoes 42
3215 ASSEND ¢ ¢ ¢ ¢ ¢ ¢« o o o o & e e o s 0 s 0 s e e e e e e 44
3218 ASLRETURN . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o s e o o o o o o oo ooeeoeaes 45
3.3 SemaphoreManagement . . « « ¢ ¢ ¢ ¢ ¢ ¢ s o o 0 o s 0 e 0 0 e o « ... 48
331 SM.CREATE« .. . 14
332 SMIDENT . ¢ ¢ v v v o o o o o o oo c e c e e s e s e ess 49
333 SMDELETE e e s e s e e s e s e e e eeees 50
- 334 SMP . . ¢ v et vt v et v oo v e et s e s eeseessss Bl
335 SM_V it ¢ o ottt ottt v oo c e s e s e e osesese 83
3.4 TimeManagement . « ¢ « ¢ ¢ ¢ ¢ ¢ o ¢ o ¢ o o D 1 |
3.4.1 Timebuf Structure T 1.
342 TMSET ¢ ¢ ¢ ¢ ¢ v o o o o v o o v oo o o eTH s e w e e . 56

e e o o s s s e e e e o« o BT

. - 3.4-3 MGET e & o o e s e 70

Real Time Executive Interface Definition

‘.9.5 wRITE . L] L] . . L] Ll L] . . . L . . . Ll . .
‘.9.6 CNm . L] . L . . Ll . L] L Ll .
4.10 Drivel‘ Inteff‘ce in C nguase @ o o o o o o o 0 & o o 0 0 © o 6 5 0 06 e e 0 o

January 22, 1988

108
107
108

3 ¢

January 22, 1988

3.5

3.8

3.7

3.8

3.9

3.4.4

4. /OINTERFACE

4.1 Driver Properties

4.2

4.3
4.4
4.5
4.8
4.7
4.8
4.9

Data Structures.
4.2.1 Driver Address Table. e

4.2.2 Device Data Area Table
Device Initialisation « « « ¢« ¢« ¢« ¢ ¢ ¢ ¢ o o o o o

Parameter Passing

I/O Interface in C Language o
I/O Interface in Assembly Lariguage
Driver Interface in Assembly Language

Real Time Executive Interface Definition

® e o o o o o o o o o e o o

® o o o o o o o e e e o e

ErrorHandling . .« « ¢ ¢« v ¢ 0 0 v 0 v v v v

I/0 Interface Rou

4.9.1
4.9.2
4.9.3
4.9.4

NT ..VQ..‘Q
OPEN

tines in C Language ~ &

® o o ¢ o o o o o o o o o

¢ ® @ o 2 -9 9 o e o o e o

e o o o o .
e o o o .
e o e o o o o
oooooo .
® © o o o o o
® o o o o o o
e o o o o .
e o o . .
e o o o .
e o o o o o o
e © o o o o o
e @ e o o o o

CLOSE + ¢« soce v 5 6 % st s sb o b o 58 8 4

READ

- e

Buhd TMWEKWHEN « « » 5 o 5 6. 6.6 5 0 5.65 v 85 & & 4 & e s s »
348 TMEVAFTER . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 0 0o o o oo o e wiee e w6
347 TMEVWHEN . ¢ i i 6 v v v v o e o o o oo oo oo nenenoeos
348 TM.CANCEL .« + v ¢ v v v v e v v vt ot ot oo e oo nenaos
349 TM.TICK. . . v v e ¢ 0 oo .. s e e B S s E BB e e e e
Interrupt Handling & & & ¢ ¢ o ¢ v 0 o v o v o v e o o o e oo e e e
351 LRETURN & ¢ v vt v ot v o v oot oo oo oeooensonoens
Fatal Errors & v v v v it it o et et ettt e et oot
381 K FATAL . v vt i i v vt e e o oot o oo oo oo snoenas
Memory Management « « « ¢ v o o o v v v v v e b e e b e e e e e
371 RegionManager % s e e e e e e e e
3.72 PartitionManager . .« « ¢ . v 4 ittt e e e e e e e e e e e e
373 RN.CREATE . . ¢ ¢ ¢ ¢ ¢ v ¢ v v v v v v « Be B s e e e
374 RNIDENT .. . ¢ v e o o v oo -
375 RNDELETE ...« 2o ... P
378 RN.GETSEG ¢ ¢« « ¢ « o ¢ 4 s 6 5556 occsseeesssss
377 RNRETSEG . .t v v v v v et e e et oo o oo e e o
3.7.8 PT_CREATE " o sl % e W s s s 8w
909 PIIDENT « v s s s s s smmmwan s 8 8 8 56 4 %5 b
3710 PIDELETE « o « « 5 s % 6 56 6.6 6 % 5 5 6 6 5 0 w2 eeesss
3711 PT.GETBUF « « o o 4 s s 5 4 666666 00seeeesasess
3712 PT.RETBUF . . ¢ ¢ ¢ ¢ ¢ o o o« & e e w s w e e e e e
MMUManagement « v ¢ v v vt v v v v v v e v vt et e e e e .
3.8.1 Segments vs. Sections . « I e
382 Regions o w e le s s e e ¥ s s . .. o o
3.83 Partitions « « . ¢ . 000000 e e e e e o o iee @ e w
384 MML2P¢0¢.... e s o w e TN TR 5
385 MMP2L . & v v v v v v o v o v v v v e TR
388 MMPMAP . o o o o5 v 5 5 ¢ 6 5 % % 55 6 5 58 64 %02
3.87 MM.UNMAP e o 6 s e o s s e s e 0 e e e
388 MMPREAD . . ¢ v v v v v o o v o v e v o o oo o o oo us "
389 MMPWRITE . & & ¢ ¢ v 6 i vttt e v e v o e e o o a .o .
3.8.10 MM_PTCREATE oo e W R T E T
Dual-ported Memory .« « « « ¢« ¢ « ¢« o o & TR c e e e e . e
3.9.1 MEXT2INT A T o e s s w0
3.9.2 MINT2EXT400.. O

e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o o o o
e o o o

e o o o

58
59
60
61
62
63
64
85
68
87
68
68
69
70
72
73
74
76
77
79
80
81
82
83
83
83
83
85
86
87
89
90
91
92
94
95
96

97
97
97
98
98
99
99
99

. 100

100

101

101
102
103
104
105

January 22, 1988 Real Time Executive Interface Definition

1. INTRODUCTION
1.1 Overview
This document is intended to serve the following major purposes:

e To serve as a reference source for the definition of the external interfaces to services that are
provided by all Real Time Executive environments. This includes source-code interfaces and
run-time behavior as seen by an application-program. It does not include the details of how
the kernel implements these functions.

e To serve as a complete definition of Real Time Executive external interfaces, so that applica-
tion source-code that conforms to these interfaces, will execute as defined in all Real Time
Executive environments. It is assumed that source-code is recompiled for the proper target
hardware. The basic objective is to facilitate the writing of applications-program source-code
that is directly portable across all Real Time Executive implementations.

This document describes the basic set of functionality that makes up the Base System. This func-
tionality has been structured to provide a minimal, stand alone run-time environment for
application-programs originally written in a high-level language, such as C.

Other extensions to this Base System will be defined as a continuing effort to produce this stan-
dard Real Time Executive Run Time Environment.

It is anticipated that all conforming systems must support the source code interfaces and runtime
behavior of the Base System. A system may conform to some, none, or all of the extensions.

1.2 Definitions

executive That portion of software that constitutes the kernel or performs
specific services on behalf of programs tasks.

Real Time Executive Same as executive.

node A processor within a multiprocessor system configuration.

local node The processor within a multiprocessor system configuration on
which the current operation is being executed.

remote node A processor within a multiprocessor system configuration on
which the current operation is not being executed.

target The destination remote node in a multiprocessor system
configuration.

1.3 Typedefs and Structures

For ease of documentation, the following typedefs are used in this document.
typedef unsigned int uint; /® 32-bit unsigned integer */

typedef void : (*ptf)(); /*® pointer to a function that returns nothing */

January 22, 1988 Real Time Executive Interface Definition

LIST OF TABLES

TABLE 10 Directive’ . . L] . L] L] L] . . . Ll . . L] . . . L . . Ll . . Ll Ll . L] L] Ll 3
TABLE 2. Directive Usage

.o-.oo-.-oooooo-olooooooooooco.5

January 22, 1988 Real Time Executive Interface Definition

2. Basic System Services

The Basic System Services is intended to support a minimal run-time environment for exe-
cutable applications. The Basic System Services defines a set of Real Time Executive com-
ponents needed by applications-programs. This basic set would be supported by any con-
forming system. It defines each component’s source-code interface and run-time behavior,
but does not specify its implementation. Source-code interfaces described are for the C
language.

While only the run-time behavior of these components is supported by the Basic System
Services, the source-code interfaces to these components are defined because an objective of
the Real Time Executive Interface Definition is to facilitate application-program source-code
portability across all Real Time Executive implementations. It is assumed that an
application-program targeted to run on a system that provides only the Basic System Ser-
vices (a run-time environment) would be compiled on a system supporting software develop-
ment.

Page 2

Real Time Executive Interface Definition

3. EXECUTIVE FACILITIES

January 22, 1988

The facilities of the executive have been grouped by function, and are discussed in the following

. paragraphs.
TABLE 1. Directives

Name Input Parameters QOutput Parameters
t_create name superstk userstk priority flags &tid
t_ident name node &tid
t_start tid saddr mode argp
t_restart tid argp :
t_delete tid
t_suspend tid
t_resume tid
t_setpri tid priority &ppriority
t_mode mode mask &pmode
t_getreg tid regnum ®val
t_setreg tid regnum _ regval
q-create name count flags &qid
q-ident name node &qid
q-delete qid -,
g-send" qid - buffer
q-urgent qid buffer
q-broadcast | qid . buffer &count
q_receive qid buffer flags timeout
ev_send tid event
ev_receive eventin flags timeout &eventout
as_catch asraddr mode
as_send tid signal
as_return
sm_create name count flags &smid
sm_ident name node &smid
sm_delete smid
sm_p smid flags timeout
sm_v smid
tm_set timebuf
tm_get timebuf
tm_wkafter | ticks
tm_wkwhen | timebuf
tm_evafter ticks event &tmid
tm_evwhen timebuf event &tmid
tm_cancel tmid
tm_tick
iLreturn
k_fatal errcode

Page 3

January 22, 1988

Real Time Executive Interface Definition

Name Input Parameters Qutput Parameters

rn_create name paddr length pagesise flags &rnid &bytes

ro_ident name &rnid :

rn_delete rnid

ro_getseg rnid sigse flags timeout &segaddr

rn_retseg rnid segaddr

pt_create name paddr length bsise flags &ptid &bnum
ptident name node &ptid

pt—delete ptid

pt—getbuf ptid &bufaddr

pt_retbuf ptid bufaddr

mm_12p tid laddr &paddr &length
mm_p2l tid paddr &laddr &length
mm_pmap tid laddr paddr length flags

mm_unmap tid laddr

mm_pread paddr laddr length

mm_pwrite paddr laddr length

mm_ptcreate | name paddr length bsise laddr flags | &ptid &bnum
m_ext2int external &internal

m_int2ext internal &external

Page 4

Real Time Executive Interface Definition

TABLE 2. Directive Usage

Name Remote | ISR | ISR to Remote
t_create no no -
t_ident yes yes yes
t_start no no -
t_restart no no -
t_delete no no -
t_suspend yes no -
t_resume yes yes no
t_setpri yes no -
t_mode no no -
t_getreg yes yes no
t.setrgi yes yes no
q-create no no -
q-ident yes yes yes
q-delete no no -
q-send yes yes no
q-urgent yes yes no
q-broadcast yes yes no
q_receive yes yes no
ev_send yes yes no
ev_receive yes no -
as_catch no no -
as_send yes yes no
as_return no no -
sm_create no no -
sm_ident yes yes yes
sm_delete no no -
sm_p yes yes no
sm_v yes yes no
tm_set yes yes no
tm_get no yes no
tm_wkafter no no -
tm_wkwhen no no -
tm_evafter no no -
tm_evwhen no no -
tm_cancel no no -
tm_tick no yes no
ireturn no yes -
k_fatal no yes -

January 22, 1988

Page 5

January 22, 1988

Real Time Executive Interface Definition

Name Remote | ISR | ISR to Remote iy
rn_create no no - '
rn_ident (yesy | yes | yes
ro_delete “no no -
rn_getseg no no -
ro_retseg no no -
pt_create no no -
pt-ident yes yes yes
pt—delete no no -
pt_getbuf yes yes yes
pt_retbuf yes yes yes
mm_12p no yes no
mm_p2l no no -
mm_pmap no yes no
mm_unmap no yes no
mm_pread no no -
mm_pwrite no no -
mm_ptcreate no no -
¢ m_ext2int no yes no
m_int2ext no yes no

Real Time Executive Interface Definition January 22, 1988

3.1 Task Management

A task is a function that can execute concurrently with other functions within a multitasking
environment. A task typically accepts one or more inputs, performs some processing function
based on the input, and responds with one or more outputs.

A task is created using the t_create directive. Once a task is created, other tasks can refer to it
and act on its behalf in allocating resources to it. A task is started with the t_start directive.
Once a task has been started, it can execute its function and vie with other tasks for processor
time ucordmg to its relative priority.

A task may be deleted with the t_delete directive. All knowledge of the task is removed from the
system, and other tasks referring to it will be returned an error.

All tasks have a task identifier (tid). The tid is assigned to the task at creation time, and must
be used in all subsequent calls to the executive to identify that task. The t_ident directive may
be used to obtain the tid of another task when the task name is known.

All tasks have a priority. A task’s priority is a measure of the task’s importance relative ta all
other tasks within the system and indicate its "need to run” in a multitasking environment where
many, tasks may be ready to run at any moment. A task is given a priority at creation time. A
task’s priority may be changed with the t_setpri directive.

A task’s mode of execution is set up initially with the t_start directive, and may be changed using
the t_mode directive. The mode of a task specifies its ability to be preempted, timesliced, to exe-
cute in user mode, to execute in supervisor mode at an optional interrupt ‘level, and to
disable/enable its asynchronous sigr.al routine.

The task manager provides the pair of directives, t_suspend and t_resume, to control execution of
another task.

A task is provided with a set of eight user and eight system defined software registers which may
be set with the t_setreg directive, and read with the t_getreg directive.

The directives provided by the task manager are:

Directive Function
t_create Create a task

t_ident Obtain id of a task
t_delete Delete a task
t_start Start a task

t_restart Restart a task
t_suspend | Suspend a task
t_resume Resume a task
t_setpri Set task priority
t_mode Change task mode
t_getreg Get task register
t_setreg | Set task register

- Page 7

January 22, 1988 Real Time Executive Interface Definition

3.1.1 T_-CREATE

NAME
t_create — "Create a Task"
SYNOPSIS

uint t_create (name, superstk, userstk, priority, flags, &tid)

uint name; /* user defined 4-byte task name */
uint superstk; /* supervisor stack sise in bytes */
uint userstk; /* user stack sise in bytes */

uint priority; /* task priority */

uint flags; /* task attributes */

uint tid; /* task id - returned by this call */

14

Flags is defined as follows:

CMASK Coprocessor mask
0 = no coprocessor
GLOBAL set to indicate the task is a
multiprocessor global resource.
clear to indicate the task is local

DESCRIPTION

The t_create directive creates a task by allocating and initialising a task data struciure. A task
is created by name. A task id is returned to the caller in the tid field. The tid must be used in
all calls to the executive requiring a tid.

The task is allocated a user stack and supervisor stack as determined by the values in the userstk
and superstk fields. A minimum supervisor stack is required, and an error will be returned if the
superstk value is too small. There is no minimum user stack required.

By setting the GLOBAL value in the flags field, the tid will be sent to all processors in the sys-
tem, to be entered into a global resource table. The system is defined as the collection of intercon-
nected processors. The task is always created on the local node.

The newly created task will be placed in the dormant state. The t_start directive will make the
task ready, in priority order. The executive will support a minimum of 32 priorities.

The maximum number of tasks is a configuration parameter. -

" RETURN VALUE

If t_create successfully created a task, the tid is filled in, and 0 is returned.

Page 8

Real Time Executive Interface Definition January 22, 1988

If the call was not successful, an error code is returned.
ERROR CONDITIONS

Too many tasks.

No more memory for stack(s) segment.

Superstk too small.

Invalid priority.

NOTES

Not callable from ISR.

Will not cause a preempt.

Page 9

January 22, 1988 Real Time Executive Interface Definition

3.1.2 TIDENT

NAME
t_ident — "Obtain id of a task"
SYNOPSIS
uint t_ident (name, node, &tid)
uint name; /* user defined 4-byte task name */
/* 0 indicates requesting task */
uint node; /* node identifier */
/* 0 indicates any node */
uint tid; /* task id - returned by this call */

DESCRIPTION

This directive allows a task to obtain the tid of itself or another task in the system. The tid must
_ then be used in all calls to the executive requiring a tid.

If the task name is not unique, the tid returned may not correspond to the task named in this
call. :

The task identified by its name may exist on the local processor or any remote processor in a
multiprocessor configuration, as long as the task was created with the GLOBAL flags value set
(see t_create). If the task name is not unique within the multiprocessor configuration, a non-gero
node identifier must be specified in the node field.

RETURN VALUE

If t_ident succeeded, the #d is filled in, and 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Task with this name does not exist.

Invalid node identifier.

NOTES

Can be called from within an ISR.

Will not cause a preempt.

Page 10

Real Time Executive Interface Definition January 22, 1988

3.1.3 T_START

NAME
t_start — "Start a Task"
SYNOPSIS

uint t_start (tid, saddr, mode, argp)

uint tid; /* task id as returned from t_create or t_ident */
ptf saddr; /* start execution address of task */
uint mode; /* initial mode value of task */

long (*argp)(4]; /* pointer to argument list */

The mode value is defined as follows:

T NOPREEMPT set to disable preempting
clear to enable preempting
TSLICE set to enable timeslicing
clear to disable timeslicing
NOASR set to disable asynchronous signal processing
clear to enable asynchronous signal processing
SUPV set to execute in supervisor mode
clear to execute in user mode
LEVEL interrupt level when SUPV is set
DESCRIPTION

The task identified by the tid is made ready, based on its current priority, to await execution. A
task can be started only from the dormant state.

Saddr is the logical address where the task wants to start execution. Mode contains the flag
values to enable/disable preempting, timeslicing, asynchronous processing, supervisor mode and
an optional interrupt level when the task starts execution.

Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack of the
task being started. A fifth argument, the executive’s fatal error handler, is also pushed onto the
task’s stack. Should the task attempt to exit the procedure (which normally causes unpredictable
behavior), the executive’s fatal error handler will be executed. The user must take this frame into
consideration when calculating the size of a task’s stack(s).

fatal

January 22, 1988 Real Time Executive Interface Definition
The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create).

RETURN VALUE

If ¢ start successfully started the task, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid #d.

Task not in dormant state.

Task not created from local node.

NOTES

Not ;alhble from ISR.

May cause a preempt if the task being started has a higher priority than the running task, and
the preempt mode is in effect.

Page 12

If t_restart successfully restarted the task, then 0 is returned.

Real Time Executive Interface Definition January 22, 1988

3.1.4 T_RESTART

NAME
t_restart — "Restart a Task"
SYNOPSIS

uint t_restart (tid, argp)

uint tid; /* task id as returned from t_create or t_ident */
long argp[4]; /* pointer to argument list */

DESCRIPTION

The task identified by the ¢id is made ready. If the task was blocked, the executive unblocks it.
The task’s superstk, userstk, and priority are set to their original values established when the task
was created using t.create. The task’s start address saddr and mode are set to their original
values established when the task was started using t_start. A task can be restarted from any
state.

Argp is a pointer to a list of four arguments. These arguments are pushed onto the stack-of the
task being ~estarted. This argument list may be different from the original argument list. A fifth
argument, the executive’s fatal error handler, is also pushed onto the task’s stack. Should the
task attempt to exit the procedure (which normally causes unpredictable behavior), the
executive’s fatal error handler will be executed.

Tasks which anticipate being restarted can use the arguments to distinguish between initial
startup and a restart.

Due to the capability of this call to unblock a task, this call is useful to delete a task in the sys-
tem. Tasks which anticipate being deleted can use the arguments to distinguish between initial
startup and deletion.

fatal

L
=[S

The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create). :

RETURN VALUE

Page 13

January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS
Invalid tid.

Task has never been started.
Task not created from local node.
NOTES

Not callable from ISR.

May cause a preempt if the task being restarted has a higher priority than the running task, and
the preempt mode is in effect.

Page 14

Real Time Executive Interface Definition January 22, 1988

3.1.5 T_DELETE

NAME
t_delete — "Delete a Task"
SYNOPSIS
uint t_delete (tid)
uint tid; /* task id as returned from t_create or t_ident .}
/* 0 indicates requesting task */
DESCRIPTION

This directive allows a task to delete itself, or the task identified in the tid field. The executive
halts execution of the task and frees the task data structure.

¥
The task identified by the tid must exist on the local processor, even if the task was created with
the GLOBAL flags value set (see t_create).

RETURN VALUE

If the task identified in the tid field is the requesting task, then t_delete always succeeds, and
there is no return.

If the task identified in the tid field is not the requesting task, and t_delete successfully deleted the
task, then 0 is returned to the requesting task.

If the task identified in the tid field is not the requesting task, and the call was not successful, an
error code is returned to the requesting task.

ERROR CONDITIONS

Invalid tid.

Task not created on local node.

NOTES

Not callable from ISR.

A new task is scheduled when the requesting task deletes itself, and there is no return.

Tasks are responsible for returning resources to the executive before deleting itself. It is sug-

gested that a task needing to delete another task use as_send or L restart to inform the task to
return its resources and then delete itself.

Page 15

January 22, 1988 Real Time Executive Interface Definition

3.1.6 T_SUSPEND

NAME
t_suspend — "Suspend Task"
SYNOPSIS
uint t_suspend (tid)

uint tid; /* task id as returned from t_create or t_ident */

/* 0 indicates requesting task */

DESCRIPTION
The executive will prevent future execution of the task identified in the tid field. The task
identjfied by the tid is placed in a suspended state. The suspended state is in addition to the
other wait states; waiting for memory, for a message, for an event, for a semaphore, or for a

timeout.

The t_resume directive issueq by another task removes the suspended state. The task is made
ready unless blocked by any ozher wait state. ‘

The task identified by the ¢tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
tcreate).

RETURN VALUE

If the task identified in the tid field is the requesting task, then t_suspend always succeeds and
returns 0 when the task runs.

If the task identified in the tid field is not the requesting task, and t_suspend successfully put the
task in the suspend state, then 0 is returned to the requesting task.

If the task identified in the tid field is not the requesting task, and the call was not successful, an
error code is returned to the requesting task.

ERROR CONDITIONS
Invalid tid.

Task already suspended.
NOTES

Not callable from ISR.

The running task will be blocked if suspending itself.

Real Time Executive Interface Definition January 22, 1988

3.1.7 T_RESUME

NAME
t_resume — "Resume a Task"
SYNOPSIS

uint t_resume (tid)
uint tid; /* task id as returned from t_create or t_ident */

DESCRIPTION

The t_resume directive removes the task identified in the tid field from the suspended state.

If the task was waiting for memory, for a message, for an event, for a semaphore, or for a
timeout, then the task will not be scheduled. Otherwise, the task is scheduled to await execution.
If the task is the highest priority ready to run task, it will cause a preempt.

The task identified by the tid may exist on the local processor or any remote brocessor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL_ﬂags value set (see
tcreate). ‘) :
RETURN VALUE

If tresume successfully resumed the task, then 0 is returned.

If the call was not successful, an error code is returned.

ERROR CONDITIONS

Invalid tid.

Task not suspended.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

May cause a preempt if the the resumed task is ready to run and has a higher priority than the

running task, and the preempt mode is in effect. A preempt will not occur if the resumed task
exists on a remote processor in a multiprocessor configuration.

Page 17

January 22, 1988 Real Time Executive Interface Definition

3.1.8 T_SETPRI

NAME
t_setpri — "Set Task Priority"
SYNOPSIS
uint t_setpri (tid, priority, &ppriority)

uint tid; /* task id as returned from t_create or t_ident */

/* 0 indicates requesting task */
uint priority; /* task priority */
/* 0 indicates current priority */
uint ppriority; /* previous priority - returned by this call */
0

DESCRIPTION &~
This directive clnn,(s the current priority of the task identified in the tid field to the new value
specified by taskattr. A task may change its own priority or the priority of another task. The
task will be scheduled according to the new nriority.
Priority level sero is reserved by the system, and may not be used. as a priority. If zero is
specified in the priority.field, the task’s current priority will be returned. The executive will sup-
port a minimum of 32 priorities.
The task identified by the tid may exist on the local processor or any remote processor in a mul-
tiprocessor configuration, as long as the task was created with the GLOBAL flags value set (see
t_create).
RETURN VALUE
If t_setpri successfully changed the task priority, the ppriority is filled in, and 0 is returned.
If the call was not successful, an error code is returned.
ERROR CONDITIONS
Invalid tid.
Invalid priority.
NOTES
Not callable from ISR.
May cause a preempt if the running task lowers its own priority, or raises the priority of another

task, and the preempt mode is in-effect. A preempt will not occur if the task having its priority
raised exists on a remote processor in a multiprocessor configuration.

Page 18

Real Time Executive Interface Definition January 22, 1988

3.1.9 T MODE

NAME
t_mode — "Change Task Mode"
SYNOPSIS
uint t_mode (mode, mask, &pmode)
uint mode; /* new mode */

uint mask; /* mask */
uint pmode; /* previous mode - returned by this call */

The mode and mask values are defined as follows:

NOPREEMPT set to disable preempting
clear to enable preempting

TSLICE set to enable timeslicing
clear to disable timeslicing
NOASR set to disable asynchronous signal processing
N clear “to enable asynchronous signal processing
SUPV set to execute in jupervisor mode
clear to execute in user mode
LEVEL interrupt level when SUPV is set
DESCRIPTION

T_mode enables and disables several modes of execution for the calling task. A task may
enable/disable timeslicing, enable/disable preempting, enable/disable asynchronous signal process-
ing, or execute in supervisor mode at an optional interrupt level.

Tasks have the ability to process signals asynchronously. Any task with a valid asynchronous
signal routine (asr) which needs to temporarily disable asynchronous processing should use this
directive.

To change a particular mode, the user must indicate which mode is being changed by setting the
appropriate value in the mask parameter, and then set the appropriate value in the mode parame-
ter to the new mode. For example, if the user only wants to change the preempt mode charac-
teristic, he would set the mask value to NOPREEMPT and the mode value to NOPREEMPT
to disable preempting, or the mode field to 0 to enable preempting.

If the preempt mode is not in effect, timeslicing will not take place.
RETURN VALUE
The t_mode call always succeeds, pmode is filled in, and 0 is returned.

NOTES]) B

Page 19

January 22, 1988 Real Time Executive Interface Definition

Not callable from ISR.
May cause a preempt if the running task enables preempting.

Refer to as_catch for discussion on receiving asynchronous signals.

Page 20

Real Time Executive Interface Definition January 22, 1988

3.1.10 T_.GETREG

NAME
t_getreg — "Get a task’s register”
SYNOPSIS

uint t_getreg (tid, regnum, ®val)

uint tid; /* task id as returned from t_create or t_ident */
uint regnum; /* register number */
uint regval; /* register value - returned by this call */

The regnum field values are:

; S_REGO0 System defined register 0
S_.REG1 System defined register 1
S_REG2 System defined register 2
S_REG3 System defined register 3
S_REG4 System defined register 4
S_REGS System defined register 5
S_REG8 System defined register 8
S_REG7 System defined register 7

U_REGO User defined register 0
U_REG1 User defined register 1
U_REG2 User defined register 2
U_REG3 User defined register 3
U_REG4 User defined register 4
U_REGS5 User defined register 5
U_REG8 User defined register 8
U_REG7 User defined register 7

DESCRIPTION

The executive returns the register value in the regval field for the register identified in the regnum
field and the task identified by the tid.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
t_create).

RETURN VALUE

If t_getreg is successful, rcg_val is filled in, and O is returned. -

" If the call was not successfu!! an error code is returned.

Page 21

AN

January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS
Invalid tid.

Invalid register number.

ISR cannot reference remote node.
NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 22

Real Time Executive Interface Definition January 22, 1988

3.1.11 T_SETREG

NAME
t_setreg — "Set a task’s register”
SYNOPSIS

uint t_setreg (tid, regnum, regval)

uint tid; /* task id as returned from t_create or t_ident */
uint regnum; /* register number */
uint regval; /* register value */

The regnum field values are:

S_.REG0 System defined register 0
S_REG1 System defined register 1
S_REG2 System defined register 2
S_REG3 System defined register 3
~ S_.REG4 System defined register 4
S_REG5 System defined register 5
S_REG8 System defined register 8
S_REG7 System defined register 7

U_REGO User defined register 0
U_REG1 User defined register 1
U_REG2 User defined register 2
U_REG3 User defined register 3
U_REG4 User defined register 4
U_REGS User defined register 5
U_REG8 User defined register 8
U_REG7 User defined register 7

DESCRIPTION

The executive sets the register identified in the regnum field for the task identified by the tid with
the value in the regval field.

The task identified in the tid field may exist on the local processor, or any remote processor in the
multiprocessing configuration if the task was created with the GLOBAL flags value set (see
t_create).

RETURN VALUE .
If t_setreg successfully set the register value, 0 is returned.

If the call was not successful, an error code is returned. -

Page 23

January 22, 1988 Real Time Executive Interface Definition

ERROR CONDITIONS

Invalid tid.

Invalid register number.

ISR cannot reference remote node.

NOTES

Can be called from within an ISR, except when the task was not created on the local node.

Will not cause a preempt.

Page 24

Real Time Executive Interface Definition January 22, 1988

3.2 Message, Event, and Signal Management

The executive supports communication and synchronisation between tasks using messages and
events. Asynchronous communication is supported using signals.

3.2.1 Message Manager

The message queue is the data structure supporting inter-task communication and synchroniza-
tion. One or more tasks may send messages to the message queue, and one or more tasks may
request messages from the queue.

Message queues are created at run time using the g_create directive. The creator assigns a 4-byte
name and attributes to the queue. The attributes define whether tasks waiting on messages from
the queue will wait first-in, first-out (FIFO), or by task priority, and whether the queue will limit
the number of messages queued to a specified maximum, or allow an unlimited number of mes-
sages.

A message queue is identified by both a name, assigned by the creator, and a message queue id (
qzd), assigned by the executive at g_create time. The g¢id is returned to the caller by the g_create
directive, and must be used by tasks to send and receive messages from the message queue. Tasks
other than the task which created the message queue can obtain the gid by using the g¢_ident
directive.

Messages are sent to the message queue from any tack which knows the gid, using the ¢_send,
" g-urgent, and ¢_broadcast directives. :

When a message arrives at the queue, it will be copied into one of two places. If there is one or
more tasks waiting at the queue, then the message is copied into the message buffer belonging to
the waiting task. The task is removed from the wait list and is made ready. If there are no tasks
waiting at the queue, then the message is copied into a system message buffer (the executive main-
tains a pool of system message buffers for this purpose). This system message buffer is entered
into the message queue. If the message was sent using ¢g_send, the message is entered at the tail
of the queue. If the message was sent using g_urgent, the message is entered at the head of the
queue. The ¢_broadcast directive sends a message to all tasks waiting at the queue, so they
become ready to run. The count of readied tasks is returned to the caller.

Messages are received from the message queue using the g_receive directive. When this directive

is called, and a message is in the queue, the message is copied to the task’s message buffer, and

the directive is complete. When no message is in the queue, there are several ways to proceed. If

the calling task asked to wait, the task will be entered into the queue’s wait list according the

quene’s attributes (FIFO or priority). If the calling task asked to wait with timeout, the task will

be entered into a timeout list. If the calling task asked not to wait, the task will be returned to
with an error code for no message available.

Message queues can be deleted by tasks knowing the gid using the g_delete directive. If any mes-
sages are queued, the executive will claim and return the system message buffers to the system
message buffer pool. If any tasks are waiting on the queue, then the executive will remove them
from the wait list and make them ready. Waiting tasks will return from the g¢_receive directive
with the message queue deleted error.

The message manager defines a tﬁessage as being fixed length, 18-bytes. The content of the mes-
sage is user defined. It may be used to carry data, pointers to data, or '_‘991__',158 at all.

Page 25

January 22, 1988 Real Time Executive Interface Definition

The directives provided by the message manager are:

Directive Function

—_—
q-create Create queue
q-ident Obtain id of a queue
q—delete Delete queue
q-send Send message
q-urgent Urgent message
q-broadcast | Broadcast message
g_receive Receive message

3.2.2 Event Manager

Although inter-task synchronisation can be accomplished using the message queue, the executive
also provides a second, higher performance method of inter-task synchronisation, using events.

Events are different from messages in that they are directed at other tasks. They are also
different from messages in that they carry no information, and they cannot be queued. The final
difference is tasks can wait for several events at one time, but cannot wait on multiple message
queues at one time.

Every task in the system has the ability to send and receive events. Events are simply bits
encoded into’s event mask. Thirty-two events are available; sixteen will be available as system
events and sixteen will be available as user events. A task can send one or more events to another
task using the ew_send directive. The tid of the destination task is required as input, along with
the event set. ‘

A task can receive events using the ev_receive directive. The events to receive are input to the
directive, along with an option to wait on all of the events, or just one of them. If the events are
already pending, then the event mask is cleared before returning to the calling task. If the event
condition cannot be satisfied, and the calling task asked to wait, the task will be blocked. If the
calling task asked to wait with timeout, the task will be entered into a timeout list. Tasks that
do not want to wait for the event condition must specify this as an option. If the event condition
was not pending, then an error code for event condition not met is returned.

The directives provided by the event manager are:

Directive Function

ev_send Send event
ev_receive | Receive event

Page 28

Real Time Executive Interface Definition January 22, 1988

3.2.3 Signal Manager -

Asyiichronou communication is supported through the use of signals.

Signals, like events, are simply bits encoded into a signal mask. Thirty-two signals are available;
sixteen will be available as system signals and sixteen will be available as user signals.

A task can send one or more signals to another task usm; the aa_send directive. If the receiving
task has set up an asynchronous signal routine (ur) using the as_cateh directive, the task will be
dispatched to the signal routine.

A task may asynchronously receive signals by establishing an asynchronous signal routine (asr) to
catch them using the asa_cateh directive. When a signal is caught, the task will be dispatched to
the asr address when it becomes the running task. The signal condition will be passed to the task
to enable it to determine what signals occurred.

The as_return directive must be executed to return the task to its previous dispatch address.

The directives provided by the signal manager are:

Directive | Function

as_catch Catch signal
as_send Send signal
as_return | Return from signal

Page 27

