Open Real-time Kernel

Draft 2.1

queue_delete
queue_ident
queue_ ~send
queue_jump
queue_ ~broadcast
queue_receive

queue_flush
queue_info
Event Operations

event_send
event_receive

Exception Operations

exception_catch
exceptlon raise
exceptlon return

Clock Operations

clock_set
clock _get
clock tick

Timer Operations

timer_wake _after
timer wake _when
timer event after
timer event when
timer event every
timer_cancel

Interrupt Operations

int_enter
int_return

PN PN N

e T T T N N

(
(

Interface Definition Page 95

qid)

name, nid, qid)

gid, msg_ buff msg_length)

qid, msg_buff, msg length)

qld msg_buff, msg_length, count)

qid, msg_buff, buff length, options, time_out,

msg_length)

gid, count)

gid, max buff, length, options, messages _waiting,
tasks_waiting)

tid, event)

event, options, time_out, event_received)

bit_number, new_xsr, new _mode, old_xsr, old mode)
tid, exception)

clock)
clock)

ticks)
clock)
ticks, event, tmid)
clock, event, tmid)
ticks, event, tmid)
tmid)

)
)

Miscellaneous Operations

int_to_ext
ext_to_int

(
(

int_addr, port, ext addr)
ext_addr, port, int_addr)

Open Real-time Kernel Interface Definition Page 96
Draft 2.1

#ifndef ORKID_H
#define ORKID H 1

D. ORKID: C LANGUAGE BINDING

This file contains the C language binding standard for VITA's "Open
Real- tlme Kernel Interface Definition", henceforth called ORKID. The
file is in the format of a C language header file, and is intended to be
a common starting point for system developers wishing to produce an
ORKID compliant kernel.

The ORKID C language binding consists of four sections, containing type
specifications, function declarations, completion status codes and
special symbol codes. The character sequence ??? has been used
throughout wherever the coding is implementation dependent.

Of the four sections in this standard, only the function declarations
are completely defined. 1In the other sections, only the type names and
constant symbols are defined by this standard - all types and values are
implementation dependent.

Both ANSI C and non-ANSI C have been used for this header file.
Defining the symbol ANSI will cause the ANSI versions to be used,
otherwise the non-ANSI versions will be used. Full prototyping has beex
smployed for the ANSI function declarations.

Open Real-time Kernel Interface Definition Page 97
Draft 2.1

/*
ORKID TYPE SPECIFICATIONS

This section of the ORKID C language binding contains typedef
definitions for the types used in operation arguments in the main ORKID
standard. The names are the same as those in the ORKID standard. Only
the names, and in clock_buff the order of the structure members, are
gefined by this standard. The actual types are implementation dependent.

typedef unsigned int prio ;
typedef unsigned int word ;
typedef unsigned int bit_field ;
typedef ??? task_id ;

typedef ??? node_id ;

typedef ??? region id ;

typedef ??? pool_id ;

typedef ??? sema_id ;
typedef ??? queue_id ;
typedef ??? timer_id ;
typedef ??? cb_year ;
typedef ??? cb_month ;
typedef ??? cb_day ;
typedef ??? cb_hours ;
typedef 2?? cb_minutes ;
typedef ??? cb_seconds ;
typedef ??? cb_ticks ;
typedef ?2?? cb_time_zone ;
typedef ??? clock_buff ;

Open Real-time Kernel Interface Definition Page 98
Draft 2.1

/*
ORKID OPERATION DECLARATIONS

This section of the ORKID C language binding contains function
declarations for all the operations defined in the main ORKID standard,
and is subdivided according to the subsections in this standard.

Each subdivision contains a list of function declarations and a list of
symbol definitions. The function names have been kept to six characters
for the sake of linker compatibility. Of these six characters, the
first two are always 'OK', and the third designates the ORKID object
type on which the operation works. The symbol definitions link the full
names of the operations given in the ORKID standard (in lower case) to
the appropriate abbreviation.

The lists of function declarations are split in two. If the symbol
__ANSI___ has been defined, then all the functions are declared to the
ANSI C standard using full prototyping, with parameter names also
included. This latter is not necessary, but not illegal. It shows the
correspondence between arguments in this and the main ORKID standard,
the names being identical. If the symbol __ ANSI has not been defined,
then the functions are declared without prototyping.

The correspondence between the C types and arguments and those defined
in the ORKID standard are mostly obvious. However, the following
comments concerning task_start/restart and exception_catch are perhaps
necessary.

A task start address is translated into a function with one argument -a
pointer to anything. The task's startup arguments are given as a pointer
to anything and a length. The actual arguments will be contained in a
programmer defined data type, a copy of which will be passed to the new
task. The following is an example of a declaration of a task's main
program and a call to start that task (the necessary task creation call
is not included):

typedef struct { int argl, arg2, arg3 } argblock ; /*can contain
argblock *argp ; anything*/

void taskmain(argblock *taskargs, int arg_size) { ... } ; /*main
task program#*/

status = oktsta(tid, taskmain, *argp, size_of(argblock)) ;
/*start the task*/

Open Real-time Kernel Interface Definition Page 99
Draft 2.1

An XSR address also becomes a function with one argument - this time a
bitfield. The previous XSR address output parameter becomes a pointer
to such a function. The following is an example of the declaration of
an XSR and a call to exception_catch to set it up:

void taskxsr(bit_field exception_caught) { ... } ; /*XSR
declaration*/

void (*oldxsr) () ;

status = okxcat(taskxsr, NOXSR, oldxsr) ; /*set up taskxsr as XSR*/
*/ with NOXSR mode parameter

