Open Real-time Kernel Interface Definition Page 75
Draft 2.1

11. CLOCK

Each ORKID kernel maintains a node clock. This is a single data

object in the kernel data structure which contains the current date and
time. The clock is updated at every tick, the frequency of which is
node dependent. The range of dates the clock is allowed to take is
implementation dependent.

In a multi-node system, the different node clocks will very likely be
synchronized, although this is not necessarily done automatically by
the kernel. Since nodes could be in different time zones in widely
distributed systems, the node clock specifies the local time zone, so
that all nodes can synchronize their clocks to the same absolute time.

The data structure containing the clock value passed in clock
operations is language binding dependent. It identifies the date

and time down to the nearest tick, along with the local time zone.
The time zone value is defined as the number of hours ahead (positive
value) or behind (negative value) Greenwich Mean Time (GMT).

When the system starts up, the clock may be uninitialised. If this is
the case, attempts at reading it before it has been set result in an
error completion status, rather than returning a random value.

Open Real-time Kernel Interface Definition PbPage 76
Draft 2.1

11.1. CLOCK_SET

Set node time and date.

S8ynopsis

clock_set(clock)
Input Parameters

clock ¢ clock_buff current time and date
Output Parameters

<none>

Completion Status

OK clock_set successful
ILLEGAL_USE clock_set not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_CLOCK invalid clock value
Description

This operation sets the node clock to the specified value. The

kernel checks the supplied date and time in clock_buff to ensure that
they are legal. This is purely a syntactic check, the operation will
accept any legal value. The exact structure of the data supplied is
language binding dependent.

Open Real-time Kernel Interface Definition Page 77
Draft 2.1

11.2. CLOCK_GET

Get node time and date.

Synopsis
clock_get(clock)
Input Parameters
<none>
Output Parameters
clock : clock_buff current time and date

Completion S8tatus

OK clock_get successful

INVALID_ PARAMETER a parameter refers to an invalid address

CLOCK_NOT_SET clock has not been initialized
Description

This operation returns the current date and time in the node clock.
If the node clock has not yet been set, then the CLOCK_NOT_SET
completion status is returned and the contents of clock are
undetermined. The exact structure of the clock buff data returned is
language binding dependent.

Open Real-time Kernel Interface Definition Page 78
Draft 2.1

11.3. CLOCK TICK

Announce a tick to the clock.

8ynopsis
clock_tick()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
OK clock_tick successful
Description
This operation increments the current node time by one tick. There
are no parameters and the operation always succeeds. Nevertheless, the
operation can be meaningless if the clock was not initialized

beforehand. Every node must contain a mechanism which keeps the node
clock up to date by calling upon clock_tick.

Open Real-time Kernel Interface Definition Page 79
Draft 2.1

12. TIMERS

ORKID defines two types of timers. The first type is the sleep timer.
This type allows a task to sleep either for a given period, or up
until a given time, and then wake and continue. Obviously a task can
set only one such timer in operation at a time, and once set, it
cannot be cancelled. These timers have no identifier.

The second type of timer is the event timer. This type allows a task
to send events to itself either after a given period or at a given
time. A task can have more than one event timer running at a time.
Each event timer is assigned an identifier by the kernel when the
event is set. This identifier can be used to cancel the timer.

Timers are purely local objects. They affect only the calling task,
either by putting it to sleep or sending it events. Timers exist only
while they are running. When they expire or are cancelled, they are
deleted from the kernel data structure.

