Open Real-time Kernel Interface Definition
Draft 2.1

8. QUEUES

8.1. QUEUE CREATE . ¢« ¢« « o o s o s o o o o o
8.2. QUEUE DELETE . . . ¢ « ¢ ¢ o « o o o o &
8.3. QUEUE_IDENT . . . ¢ ¢ « ¢ o o o o o o &
8.4. QUEUE SEND ¢ ¢ ¢ ¢ ¢ o o o o o &
8.5. QUEUE JUMP . . . o ¢ ¢ o ¢ « o o o o o &
8.6. QUEUE BROADCAST . . « ¢ ¢ o« « o o o o &
8.7. QUEUE RECEIVE . . . ¢ ¢ ¢ « o« o o o o o«
8.8. QUEUE FLUSH . . ¢ ¢ ¢ ¢ ¢ ¢ o o o o o =«
8.9. QUEUE_INFO . . . ¢ ¢ ¢ o ¢ o o o o o o &

9 L] BVENT 8 Ll L L] Ll L L . Ll Ll L . Ll Ll Ll . Ll - L] . L
9,1 EVENT BEND « « » s v s 5 s & 5 & » % & 4
9.2. EVENT RECEIVE . . . « « « « « o . .

10. EXCEPTIONS . . .

10.1. EXCEPTION CATCH .+ « + « « o o « o « o
10.2. EXCEPTION RAISE . .+ « ¢ « « o« o « o o &
10.3. EXCEPTION RETURN . . « « « o o « o « o
1%. CEOCK s s + s & 3 ¥ & & & & & & & 5 & # « # »
11.1« CLOCK BBT « & % s & % % & & & & & = 5 &
132« CHOCK GET s = s & o s & s = 2 » s = % 3
13.3. CLOCK TICK s % s s s & 2 & s % s & & 4
12 TIMERB & + 5 + 5 & 5 s & s & s o = = s = & »
12.1. TIMER WAKE AFTER . . . « « &« « « « « o &
12.2. TIMER WAKE WHEN « « « « « o
12.3. TIMER_EVENT AFTER . . . « &« « « « « o
12.4. TIMER_EVENT WHEN « « « « . .
12.5. TIMER_EVENT EVERY . . . « &« & « o « o
12.6. TIMER CANCEL: s « s = 5 « s 4 s & s & 5 3

13. INTERRUPTE ¢ ¢ o o o o o o o o o o o
13.1. INT_ ENTER . ¢ ¢ ¢ ¢ ¢ o o o o o o o o &
13 . 2 . INT_RETURN Ll . Ll L .
14. MISCELLANEOUS o+ ¢ ¢ o & o o o 3 o o & o o o o
14.1. INT TO_EXT . ¢ &« ¢ o o o o o o o o o o =
14 . 2 . EXT_TO—INT Ll Ll .
A. COMPLETION BTATUSES . . . « ¢ « o o o o o o &
B. MINIMUM REQUIREMENTS8 FOR OPERATIONS FROM AN ISR
C. SBUMMARY OF ORKID OPERATIONS « « « &

D. C LANGUAGE BINDING . . . ¢ ¢ o « o o o o o o o

. L] L] . . . L] . L[] L]

Page

e e e e o e ® o o o

92
89
94
96

Open Real-time Kernel Interface Definition Page 5
Draft 2.1

1. INTRODUCTION

ORKID defines a standard programming interface to real-time kernels.
This interface consists of a set of standard ORKID operation calls,
operating on objects of standard types. An ORKID compliant kernel
manages these objects and implements the operations.

The application areas that ORKID aims at range from embedded systems
to complex multi-processing systems with dynamic program loading. It
is restricted however to real-time environments and only addresses
kernel level functionality.

ORKID addresses the issue of multi-processing by defining two levels
of compliance: with and without support for multi-node systems. The
interfaces to the operations are the same in either level.

Section 2, ORKID CONCEPTS8, contains an introduction to the concepts
used in the ORKID standard. Introduced here are the standard ORKID
objects and how they are identified, ORKID operations and ORKID multi-
processing features. Factors affecting the portability of code
developed for ORKID and implementation compliance requirements are
also treated here.

Sections 3 to 14 describe in detail the various standard types of
objects and the operations that manipulate them. There is one section
per type of object. Each section contains a general description of
this type of object, followed by subsections detailing the operations.
The latter are in a programming language independent format. It is
foreseen that for all required programming languages, a language
binding will be defined in a companion standard. The first one,
introduced in conjunction with ORKID, is for the C language. For
syntax, the language binding document is the final authority.

The portability provided by the ORKID standard is at source code
level. This means that, optimally, a program written for one
implementation should run unmodified on another implementation,
requiring only recompilation and relinking. Nevertheless it will be
possible to write ORKID compatible programs, which rely implicitly
so much on the specific behavior of one implementation, that full
portability might be endangered.

The syntax of ORKID operation calls in a real implementation will be
defined in the appropriate language binding. There will be, however,
a one to one correspondence between this standard and each language
binding for all literal values, operation and parameter names, types
and sequence.

Open Real-time Kernel Interface Definition Page 6
Draft 2.1

2.0 ORKID CONCEPTS

ORKID defines the interface to a real-time kernel by defining kernel
object types and operations upon these objects. Furthermore it assumes
an environment, i.e. the computer system, in which these objects exist.
This chapter describes that environment, introduces the various object
types, explains how objects are identified and defines the structure of
the ORKID operation descriptions. Furthermore it addresses the issues
of multi-processing and ORKID compatibility.

2.1. Environment

The computer system environment expected by ORKID is described by the
notion of a system. A system consists of a collection of one or more
interconnected nodes. Each node is a computer with an ORKID compliant
kernel on which application programs can be executed. To ORKID a node
is a single entity, although it may be implemented as a multi-processor
computer there is only one kernel controlling that node (see also 2.5
Multi-Procesing). -

2.2. ORKID Objects

The standard object types defined by ORKID are:

- tasks : single threads of program execution in a node.

- regions ¢ memory areas for dynamic allocation of variable sized
segments.

- pools : memory areas for dynamic allocation of fixed sized
buffers.

- semaphores: mechanisms used for synchronization and to manage
resource allocation amongst tasks.

- dueues ¢ inter task communication mechanisms with implied
synchronisation.
- events : task specific event markers for synchronisation.

- exceptions: task specific exceptional conditions with asynchronous
exception service routines.

- note-pad : task specific integer locations for simple,
unsynchronized data exchange.

- clock ¢ current date and time.

- timers ¢ software delays and alarms.

Tasks are the active entities on a node, the CPU(s) of the node execute
the task's code, or program, under control of the kernel. Many tasks
may exist on a node; they may execute the same or different programs.
The maximum number of tasks on a node or in a system is implementation
dependent. Tasks compete for CPU time and other resources. Besides
task's, Interrupt Service Routines compete for CPU time. Although ORKID
does not define how Interrupt Service Routines are activated, it
provides facilities to deal with them.

Regions are consecutive areas of memory from which tasks may be
allocated segments of varying size for their own purposes. Typically a
region is defined to contain memory of one physical nature such as

Open Real-time Kernel Interface Definition Page 7
Draft 2.1

shared RAM, battery backed-up SRAM etc. The maximum number of regions
on a node is implementation dependent.

Pools are consecutive areas of memory organized as a collection of
fixed sized buffers which may be allocated to tasks. Pools are simpler
than regions and are intended for fast dynamic memory allocation/de-
allocation operations. In contrast to the more complex concept of a
region pools can be operated on across node boundaries. The maximum
number of pools on a node or in a system is implementation dependent.

Semaphores provide a mechanism to synchronize the execution of a task
with the execution of another task or interrupt service routine. They
can be used to provide sequencing, mutual exclusion and resource
management. The maximum number of semaphores on a node or in a system
is implementation dependent.

Queues are used for intertask communication, allowing tasks to send
information to one another with implied synchronisation. The maximum
number of queues on a node or in a system is implementation dependent.

Events are task specific markers that allow a task to buffer until an
event, or some combination thereof occurs, therefore they form a simple
synchronisation mechanism. Each task has the same, fixed number of
events which is equal to the number of bits in the basic word length of
the corresponding processor.

Exceptions too are task specific conditions. Unlike events they are
handled asynchronously by the task, meaning that when an exception is
raised for a task that task's flow of control is interrupted to execute
the code designated to be the exception service routines (XSR).
Exceptions are intended to handle exceptional conditions without
constantly having to check for them. In general exceptions should not
be misused as a synchronisation mechanism. Each task has the same,
fixed number of exceptions which is equal to the number of bits in the
basic word length of the corresponding processor.

Note-pad locations are task specific variables that can be read or
written without any form of synchronisation or protection. The size of
a node-pad location is equal to the basic word size of the
corresponding processor. Each task has the same, fixed number of note-
pads. The actual number is implementation dependent, but the minimum
number is fixed at sixteen.

The clock is a mechanism maintaining the current date and time on each
node.

Timers come in two forms. The first type of timer is the delay timer
that allows a task to delay its execution for a specific amount of time
or until a given clock value. The second type of timer is the event
timer. This timer will, upon expiration, send an event to the task that
armed it. As with the delay timer it can expire after a specific amount
of time has elapsed or when a given clock value has passed. The maximum
number of timers on a node is implementation dependent, in all cases a
delay timer must be available to each task.

Open Real-time Kernel Interface Definition Page 10
Draft 2.1

- A shared memory system consists of a set of nodes connected via
shared memory.

- A non-shared memory system consists of a set of nodes connected by a
network.

It is also possible to have a mixture of these two schemes where a non-
shared memory system may contain one or more sets of nodes connected
via shared memory. These sets of nodes are called shared memory
subsystems.

The behavior of a networked ORKID implementation should be consistent
with the behavior of a shared memory ORKID system. Specifically, all
operations on objects in remote nodes must return their completion
status only after the respective operation actually completed.

System Configuration

This standard does not specify how nodes are configured or how they
are assigned identifiers. However, it is recognized that the
availability of nodes in a running system can be dynamic. In
addition, it is possible but not mandatory that nodes can be added to
and deleted from a running system.

Levels of Compliance

ORKID defines two levels of compliance, a kernel may be either single
node ORKID compliant or multiple node ORKID compliant. The former type
of kernel supports systems with a single node only, while the latter
supports systems with multiple nodes.

The syntax of ORKID operation calls does not change with the level of
compliance. All 'node' operations must behave sanely in a single node
ORKID implementation, i.e. the behavior is that of a multiple node
configuration with only one active node.

Globality of objects

Most objects of a node can be created with the GLOBAL option. Only
global objects are visible to and accessible from other nodes. Their
identifiers can be found via ident operations executed on another node.
All operations on these objects, with the exception of the deletions,
can equally be executed accross node boundaries. Delete operations on
remote objects will return the OBJECT_NOT_ LOCAL completion status.

Remote operations on non-global objects will return the INVALID_ID
completion status.

Observation:

The above suggests that identifiers in multiple-node kernels will
encode the node_id of the node on which the object was created.

