Open Real-time Kernel Interface Definition Page 51
Draft 2.1

7.4. SEM_CLAIM
Claim a semaphore (P operation).
8ynopsis

sem_claim(sid, options, time_out)

Input Parameters

sid ¢ sem_id kernel defined semaphore identifier
options : bit_field semaphore wait options
time_out ¢ integer ticks to wait before timing out

Output Parameters
<none>

Literal values

options + NOWAIT do not wait - return immediately if
semaphore not available
time_out = FOREVER wait forever - do not time out

Completion Btatus

OK sem_claim successful

ILLEGAL USE sem_claim not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID semaphore does not exist

OBJECT_DELETED originally existing semaphore has been
deleted before operation

TIME_OUT sem_claim timed out

SEMAPHORE_DELETED semaphore deleted while blocked in

sem_claim
SEMAPHORE NOT AVAILABLE semaphore unavailable with NOWAIT option

SEMAPHORE_UNDERFLOW semaphore counter underflowed
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This operation performs a claim from the given semaphore. It first
checks if the NOWAIT option has been specified and the counter is zero
or less, in which case the SEMAPHORE NOT AVAILABLE completion status
is returned. Otherwise, the counter 1s decreased. If the counter is
now zero or more, then the claim is successful, otherwise the calling
task is put on the semaphore queue. If the counter underflowed the
SEMAPHORE UNDERFLOW completion status is returned. If the semaphore is
deleted while a task is waiting on its queue, then the task is
unblocked and the sem claim operation returns the SEMAPHORE DELETED
completion status to the task. Otherwise the task is blocked either
until the timeout expires, in which case the TIME OUT completion status
is returned, or until the task reaches the head of the queue and
another task performs a sem_release operation on this semaphore,
leading to the return of the successful completion status.

Open Real-time Kernel Interface Definition Page 52
Draft 2.1

7.5. SEM _RELEASE

Release a semaphore (V operation).

S8ynopsis

sem_release(sid)
Input Parameters

sid : sem_id kernel defined semaphore identifier
Output Parameters

<none>

Completion Status

OK sem_release successful

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID ID semaphore does not exist

OBJECT_DELETED originally existing semaphore has been
deleted before operation

SEMAPHORE_OVERFLOW semaphore counter overflowed

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation increments the semaphore counter by one. If the
resulting semaphore count is less than or equal to zero then the first
task in the semaphore queue is unblocked, and returned the successful
completion status. If the counter overflowed the SEMAPHORE_ OVERFLOW
completion status is returned.

Open Real-time Kernel Interface Definition Page 53

Draft 2.1

7.6. SEM_INFO

Obtain information on a semaphore.

Ssynopsis

sem_info(sid, options, count, tasks_waiting)

Input Parameters
sid : sem-id

Output Parameters

options : bit _field
count : integer
tasks_waiting: integer

Completion Status

OK

ILLEGAL_USE
INVALID PARAMETER
INVALID_ID

OBJECT DELETED

NODE_NOT_ REACHABLE

Description

kernel defined semaphore identifier

semaphore create options

semaphore count at time of call

number of tasks waiting in the semaphore
gueue

sem_info successful

sem_info not callable from ISR

a parameter refers to an invalid address
semaphore does not exist

originally existing semaphore has been
deleted before operation

node on which semaphore resides is not
reachable

This operation provides information on the specified semaphore. It
returns its create options, the value of it's counter, and the number
of tasks waiting on the semaphore queue. The latter two values should
be used with care as they are just a snap-shot of the semaphore's
state at the time of executing the operation.

Open Real-time Kernel Interface Definition Page 58
Draft 2.1

8.3. QUEUE_IDENT

Obtain the identifier of a queue on a given node with a given name.

Synopsis
queue_ident(name, nid, qid)
Input Parameters

name ¢ string user defined queue name
nid ¢ node_id node identifier

Output Parameters
gid ¢ queue_id kernel defined queue identifier

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
= ALL_NODES all nodes in the system
Completion Status
OK queue_ident successful
ILLEGAL_USE queue_ident not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME NOT_FOUND gqueue name does not exist on node
NODE_NOT_ REACHABLE node is not reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a queue with the given name, and returns its identifier
if found. If OTHER_NODES or ALL NODES is spec1f1ed the node search
order is 1mp1ementatlon dependent. If there is more than one queue with
the same name in the node(s) specified, then the gid of the first one
found is returned.

Open Real-time Kernel Interface Definition Page 59
Draft 2.1

8.4. QUEUE SEND

Send a message to a given queue.

Synopsis
queue_send(qid, msg_buff, msg_length)

Input Parameters

gid ¢ gueue_id kernel defined queue identifier
msg_buff ¢ address message starting address
msg_length : integer length of message in bytes

Output Parameters
<none>

Completion S8tatus

OK queue_send successful

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID queue does not exist

OBJECT_DELETED originally existing queue has been
deleted before operation

INVALID_ LENGTH message length greater than queue's
buffer length

QUEUE_FULL no more buffers available

NODE_NOT_REACHABLE node on which queue resides is not
reachable

Description

This operations sends a message to a queue.

If the queue's wait queue contains a number of tasks waiting on
messages, then the message is delivered to the task at the head of the
wait queue. This task is then removed from the wait queue, unblocked
and will be returned a successful completion status along with the
message. Otherwise the message is appended at the end of the queue.

If the maximum queue length has been reached, then the QUEUE_FULL
completion status is returned.

