Open Real-time Kernel Interface Definition Page 46

Draft 2.1

6.6. POOL_INFO

Obtain information on a pool.

S8ynopsis

pool_info(pid, buffers, free_buffers, buff size, options)

Input Parameters
pid ¢ pool-id

Output Parameters

buffers ¢ integer
free_buffers: integer
buff size : integer
options : bit_field

Completion Status

OK
ILLEGAL USE
INVALID_ PARAMETER
INVALID_ID

OBJECT DELETED

NODE_NOT_REACHABLE

Description

kernel defined pool identifier

number of buffers in the pool
number of free buffers in the pool
pool buffer size in bytes

pool create options

pool_info successful

pool_info not callable from ISR

a parameter refers to an invalid address
pool does not exist

originally existing pool has been deleted
before operation

node on which the pool resides is not
reachable

This operation provides information on the specified pool. It returns
its overall number of buffers, the number of free buffers in the pool,
its buffer size in bytes and options. The number of free buffers in the
pool should be used with care as it is just a snap-shot of the pools's
usage at the time of executing the operation.

Open Real-time Kernel Interface Definition Page 47
Draft 2.1

7. SEMAPHORES

The semaphores defined in ORKID are standard Dijkstra counting
semaphores. Semaphores provide for the fundamental need of
synchronization in multi-tasking systems, i.e. mutual exclusion,
resource management and sequencing.

Semaphore Behavior
The following should not be understood as a recipe for implementations.

During a sem_claim operation, the semaphore count is decremented by
one. If the resulting semaphore count is greater than or equal to zero,
then the calling task continues to execute. If the count is less than
zero, the task blocks from processor usage and is put on a waiting
queue for the semaphore. During a sem release operation, the semaphore
count is incremented by one. If the resultlng semaphore count is less
than or equal to zero, then the first task in the waiting queue for
this semaphore is unblocked and is made eligible for processor usage.

S8emaphore Usage

Mutual exclusion is achieved by creatlng a countlng semaphore with an
initial count of one. A resource is guarded with this semaphore by
requiring all operations on the resource to be proceeded by a sem_claim

operation. Thus, if one task has claimed a resource, all other tasks
requiring the resource will be blocked until the task releases the
resource with a sem_release operation.

In situations where multiple copies of a resource exist, the semaphore
may be created with an initial count equal to a number of copies. A
resource is claimed with the sem claim operation. When all available
copies of the resource have been claimed, a task requlrlng the resource
will be blocked until return of one of the claimed copies is announced
by a sem_release operation.

Sequencing is achieved by creating a semaphore with an initial count of
zero. A task may pend the arrival of another task by performing a

sem claim operation when it reaches a synchronlzatlon point. The other
task performs a sem release operation when it reaches its
synchronization point, unblocking the pending task.

8emaphore Options
ORKID defines the following option symbols, which may be combined.

+ GLOBAL Semaphores created with the GLOBAL option set are
visible and accessible from any node in the system.

+ FIFO Semaphores with the FIFO option set enter additional
tasks at the end of their waiting queue. Without this
option, the tasks are enqueued in order of task
priorlty. ORKID does not require reorderlng of semaphore
waiting queues when a waiting task has his priority
changed.

Open Real-time Kernel Interface Definition

Draft 2.1

7.1. SEM_CREATE

Create a semaphore.

8ynopsis

Page 48

sem_create(name, init_count, options, sid)

Input Parameters

name : string
init_count : integer
options : bit_field

Output Parameters

sid : sem_id
Literal Values

options + GLOBAL

+ FIFO

Completion Status

OK
ILLEGAL_USE
INVALID_PARAMETER
INVALID_COUNT
INVALID_OPTIONS
TOO_MANY OBJECTS

Description

user defined semaphore name
initial semaphore count
semaphore create options

kernel defined semaphore identifier

the new semaphore will be visible
throughout the system

tasks will be queued in first in first
out order

sem_create successful

sem_create not callable from ISR

a parameter refers to an invalid address
initial count is negative

invalid options value

too many semaphores on the node or in the
system

This operation creates a new semaphore in the kernel data structure,
and returns its identifier. The semaphore is created with its count at
the value given by the init_count parameter. The task queue, 1n1t1a11y
empty, will be ordered by task prlorlty, unless the FIFO option is set,
in which case it will be first in first out.

Open Real-time Kernel Interface Definition Page 49

Draft 2.1

7.2. SEM_DELETE

Delete a semaphore.

Synopsis
sem_delete(sid)
Input Parameters
sid : sem_id
Output Parameters
<none>
Completion Status
OK
ILLEGAL_USE
INVALID PARAMETER
INVALID_ID
OBJECT_ DELETED

OBJECT_NOT_LOCAL

Description

kernel defined semaphore identifier

sem_delete successful

sem_delete not callable from ISR

a parameter refers to an invalid address
semaphore does not exist

originally existing semaphore has been
deleted before operation

sem_delete not allowed on non-local
semaphore

The sem_delete operation deletes a semaphore from the kernel

data structure. The semaphore is deleted immediately, even though there
are tasks waiting in its queue. These latter are all unblocked and are
returned the SEMAPHORE DELETED completion status.

Open Real-time Kernel Interface Definition Page 50
Draft 2.1

7.3. SEM _IDENT

Obtain the identifier of a semaphore on a given node with a given
name.

Synopsis
sem_ident(name, nid, sid)
Input Parameters

name ¢ string user defined semaphore name
nid ¢ node_id node identifier

Output Parameters
sid : sem_id kernel defined semaphore identifier
Literal values

nid

LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local

node
= ALL_NODES all nodes in the system
Completion S8tatus
OK sem_ident successful
ILLEGAL_ USE sem_ident not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME_NOT_FOUND semaphore does not exist on node
NODE_NOT_ REACHABLE node is not reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a semaphore with the given name, and returns its
identifier if found. If OTHER_NODES or ALL NODES is specified, the node
search order is implementation dependent. If there is more than one
semaphore with the same name in the node(s) specified, then the sid of
the first one found is returned.

