Open Real-time Kernel Interface Definition bPage 36
Draft 2.1

5.3. REGION IDENT

Obtain the identifier of a region with a given name.

8ynopsis
region_ident(name, rid)
Input Parameters
name ¢ string user defined region name
Output Parameters
rid : region_id kernel defined region identifier

Completion Status

OK region_ident successful

ILLEGAL USE region_ident not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

NAME NOT_FOUND region name does not exist on node
Description

This operation searches the kernel data structure in the local node for
a region with the given name, and returns its identifier if found. If
there is more than one region with the same name, the kernel will
return the identifier of the first one found.

Open Real-time Kernel Interface Definition Page 37
Draft 2.1

5.4. REGION GET SEG

Get a segment from a region.

Synopsis
region_get_seg(rid, seg _size, seg_addr)
Input Parameters

rid
seg_size

: region_id kernel defined region id
: integer requested segment size in bytes

Output Parameters

seg_addr ¢ address address of obtained segment

Completion Status

OK reglon get_seg successful

ILLEGAL USE region_ get seg not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ID region does not exist

OBJECT_DELETED -originally existing region has been
deleted before operation

NO_MORE_MEMORY not enough contiguous memory in the
reglon to allocate segment of requested
size

Description

The reglon get seg operation requests a given sized segment from a
given region's free memory. If the kernel cannot fulfil the request
immediately, it returns the completlon status NO_MORE MEMORY, otherwise
the address of the allocated segment is passed back in seqg_ addr. The
allocation algorithm is implementation dependent.

Note that the actual size of the segment returned will be more than
the size requested, if the latter is not a multiple of the region's
granularity.

Open Real-time Kernel Interface Definition Page 38
Draft 2.1

5.5. REGION_RET SEG

Return a segment to its region.

Synopsis
region_ret_seg(rid, seg_addr)
Input Parameters

rid : region_id kernel defined region id
seg_addr ¢ address address of segment to be returned

Output Parameters
<none>

Completion 8tatus

OK region_ret_seg successful

ILLEGAL_USE region_ret_seg not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID region does not exist

OBJECT_DELETED originally existing region has been
deleted before operation

INVALID SEGMENT no segment allocated from this region at
seg_addr

Description

This operation returns the given segment to the given region's free
memory. The kernel checks that this segment was previously allocated
from this region, and returns INVALID_SEGMENT if it wasn't.

Open Real-time Kernel Interface Definition Page 39
Draft 2.1

5.6. REGION_INFO

Obtain information on a region.

S8ynopsis

region_info(rid, size, max_segment, granularity, options)
Input Parameters

rid ¢ region_id kernel defined region id

Output Parameters

size : integer length in bytes of cverall area in region
available for segment allocation
max segment: integer length in bytes of maximum segment
- allocatable at time of call
granularity: integer allocation granularity in bytes
options : bit_field region create options

Completion 8tatus

OK region_info successful

ILLEGAL USE region_info not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID ID region does not exist

OBJECT_DELETED originally existing region has been

deleted before operation
Description

This operation provides information on the specified region. It returns
the size in bytes of the reglon s area for segment allocation, which
may be smaller than the region length given in reglon create due to a
possible formatting overhead. It returns also the size in bytes of the
biggest segment allocatable from the region. This value should be used
with care as it is just a snap-shot of the region's usage at the time
of executing the operation. Finally it returns the region's allocation
granularity and options.

Open Real-time Kernel Interface Definition Page 40
Draft 2.1

6. POOLS

A pool is an area of memory within a shared memory subsystem which is
organized by the kernel into a collection of fixed size buffers. The
area of memory to become a pool is declared to the kernel by a task
when the pool is created, and is thereafter managed by the kernel until
it is explicitly deleted by a task. The task also specifies the size of
the buffers to be allocated from the pool. Any restrictions imposed on
the buffer size are implementation dependent.

Pools are simpler structures than regions, and are intended for use
where speed of allocation is essential. Pools may also be declared
global, and be operated on from more than one node. However, this makes
sense only if the nodes accessing the pool are all in the same shared
memory subsystem, and the pool is in shared memory.

Once the pool has been created, tasks may request buffers one at a time
from it, and can return them in any order. Because the buffers are all
the same size, there is no fragmentation problem in pools. The exact
allocation algorithms are implementation dependent. Addresses of
buffers obtained via pool_get buff are translated to the callers
address map for immediate use.

Observation:

Buffer addresses passed from one node to another in e.g. a message have
to be explicitly translated by the sender via int_to_ext and by the
receiver via ext_to_int.

