Open Real-time Kernel Interface Definition Page 21
Draft 2.1

4.1. TASK CREATE
Create a task.
Synopsis
task_create(name, priority, stack_size, mode, options, tid)

Input parameters

name : string user defined task name
priority : integer initial task priority
stack_size : integer size in bytes of task's stack
mode : bit_field initial task mode

options : bit_field creation options

Output Parameters

tid ¢ task_id kernel defined task identifier

Literal values

mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT task cannot be interrupted
= ZERO no mode parameter set
options + GLOBAL the new task will be visible throughout
the system

Completion Status

OK task_create successful

ILLEGAL USE task_create not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ PRIORITY invalid priority value

INVALID MODE invalid mode value

INVALID_OPTIONS invalid options value

TOO_MANY_ OBJECTS too many tasks on the node or in the
system

NO_MORE_MEMORY not enough memory to allocate task data

structure or task stack

Description

The task_create operation creates a new task in the kernel data
structure. Tasks are always created in the node in which the call to
task_create was made. The new task does not start executing code -this
is achieved with a call to the task_start operation. The tid returned
by the kernel is used in all subsequent ORKID operations (except
task_ident) to identify the newly created task. If GLOBAL is specified
in the options parameter, then the tid can be used anywhere in the

system to identify the task, otherwise it can be used only in the node
in which the task was created.

Open Real-time Kernel Interface Definition bPage 22
Draft 2.1

4.2. TASK DELETE

Delete a task.

S8ynopsis
task_delete(tid)
Input Parameters
tid : task_id kernel defined task identifier
Output Parameters
<none>
Literal values

tid = SELF the calling task requests its own
deletion

Completion Status

OK task_delete successful
ILLEGAL_USE task_delete not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID task does not exist
OBJECT_DELETED originally existing task has been deleted
before operation

OBJECT_NOT_LOCAL task_delete not allowed on non-local task
OBJECT_PROTECTED task in NOTERMINATION mode

Description

This operation stops the task identified by the tid parameter and
deletes it from its node's kernel data structure. If the task's active
mode has the parameter NOTERMINATION set, then the task will not be
deleted and the completion status OBJECT_PROTECTED will be returned.

Observation:

The task_delete operation deallocates the task's stack but otherwise
performs no 'clean-up' of the resources allocated to the task. It is
therefore the responsibility of the calling task to ensure that all
segments, buffers, etc., allocated to the task to be deleted have been
returned.

For situations where one task wants to delete another, the recommended
procedure is to ask this task to delete itself, typically u51ng
exceptions, or task_restart with a specific argument In this way the
task can release all its resources before deleting itself.

Open Real-time Kernel Interface Definition Page 23
Draft 2.1

4.3 TASK IDENT

Obtain the identifier of a task on a given node with a given name.

Synopsis
task_ident(name, nid, tid)
Input Parameters

name
nid

: string user defined task name
¢ node_id node identifier

Output Parameters

tid : task_id kernel defined task identifier

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
= ALL_NODES all nodes in the system
name = WHO_AM I returns tid of calling task
Completion Status
OK task_ident successful
ILLEGAL_USE task_ident not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME NOT_FOUND task name does not exist on node
NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

This operation searches the kernel data structure in the node(s)
specified by nid for a task with the given name. If OTHER NODES or
ALL_NODES is spec1f1ed the node search order is 1mp1ementat10n
dependent. If there is more than one task with the same name in the
node(s) specified, then the tid of the first one found is returned.

Open Real-time Kernel Interface Definition Page 24
Draft 2.1

4.4. TASK_START

Start a task.

S8ynopsis
task_start(tid, start_addr, arguments)

Input Parameters

tid : task_id kernel defined task identifier
start_addr : * task start address
arguments : * arguments passed to task

Output Parameters
<none>

Completion Status

OK task_start successful

ILLEGAL_USE task_start not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID task does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

INVALID ARGUMENTS invalid number or type or size of
arguments

TASK_ALREADY STARTED task has been started already

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

The task_start operation starts a task at the given address. The task
must have been previously created with the task_create operation.

* The specifications of start address and the number and type of
arguments are language binding dependent.

Open Real-time Kernel Interface Definition bPage 25
Draft 2.1

4.5. TASK RESTART

Restart a task.
8ynopsis

task_restart(tid, arguments)
Input Parameters

tid
arguments

task_id kernel defined identifier
* arguments passed to task

Output Parameters
<none>
Literal values
tid = SELF the calling task restarts itself.

Completion S8tatus

OK task_restart successful

ILLEGAL USE task_restart not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID task does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

INVALID ARGUMENTS invalid number or type or size of

- arguments

TASK_NOT_STARTED task has not yet been started

OBJECT_PROTECTED task in NOTERMINATION mode

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

The task restart operation interrupts the current thread of execution
of the specified task and forces the task to restart at the address
given in the task start call which originally started the task. The
stack pointer is reset to its original value. No assumption can be made
about the original content of the stack at this time. The task restarts
executing with the priority and mode specified at task_create. All
event and exception latches are clared and no XSRs are defined.

Any resources allocated to the task are not affected during the
task_restart operation. The tasks themselves are responsible for the
proper management of such resources through task_restart.

If the task's active mode has the parameter NOTERMINATION set, then the
task will not be restarted and the completion status OBJECT_PROTECTED
will be returned.

* The specification of the number and type of the arguments is language
binding dependent.

