Open Real-time Kernel Interface Definition Page 16
Draft 2.1

3.2. NODE_FAIL
Indicates fatal node failure to the system.
S8ynopsis

node_fail(nid, code, options)

Input Parameters

nid : node_id system defined node identifier
code ¢ integer type of error detected
options : bit_field failure options

Output Parameters
<none>
Literal Values
options + TOTAL all nodes should be stopped

Completion Status

OK node_fail successful
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
OBJECT_NOT_LOCAL node_fail on remote node not allowed from
ISR
NODE_NOT_REACHABLE node is not reachable
Description

This operation indicates a fatal failure of the type given by code in
the node identified by nid to the system. If the TOTAL option is set
all nodes of the system should be stopped, otherwise only the node
identified by nid is stopped. The operation does not return if, as a
result of the operation, the local node is stopped.

Observation:
The value in code can be transferred to a certain memory location or

even displayed by hardware in the failing node to ease post mortem
analysis of the failure.

Open Real-time Kernel Interface Definition bPage 17
Draft 2.1

3.3 NODE_INFO
Obtain information on a node.
Synopsis
node_info(nid, ticks_per_sec)
Input Parameters
nid : node_id system defined node identifier
Output Parameters
ticks_per_sec: integer number of ticks per second for node clock

Completion S8tatus

OK node_info successful
ILLEGAL_USE node_info not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NODE_NOT_REACHABLE node is not reachable
Description

This operation obtains the number of ticks per second for the clock on
the node identified by nid.

Observation:

For efficiency all delay times are specified in ticks. The value of
ticks_per sec allows tasks to convert between seconds and ticks.

Open Real-time Kernel Interface Definition Page 18
Draft 2.1

4. TASKS

Tasks are single threads of program execution. Within a node, a
number of tasks may run concurrently, competing for CPU time and other
resources. ORKID does not define the number of tasks allowed per

node or in a system. Tasks are created and deleted dynamically by
existing tasks.

Tasks are allocated CPU time by a part of the kernel called the
scheduler. The exact behavior of the scheduler is implementation
dependent, but it must have the minimum functionality described in the
following paragraphs.

Throughout its lifetime, each task has a current priority and a current
mode, which may change over time. A task may also have an exception
service routine which has to be declared to it at runtime.

Task Exception Service Routine

A task may designate Exception Service Routine (XSR) to handle
exceptions which have been raised for that task. A task can have one
XSR defined for every bit in the exception bit-field. XSRs can be
redefined dynamically. The purpose of XSRs is to deal with exceptions
which have been raised for the task. It is recommended that exceptions
be reserved for errors and other abnormal conditions which arise.

A task's XSRs are activated asynchronously. This means that they are
not called explicitly by the task code, but automatically by the
scheduler whenever one or more exceptions are sent to the task. Thus
an XSR may be entered at any time during task execution. (But see
'Task Modes' below.) A task's XSR runs at the same priority as the
task; it is only executed when the task normally would have been
scheduled to the running state. Exceptions are latched on a single
level. Multiple occurrences of the same exception before the next
execution of the XSR will be seen as a single exception.

Task Priority

A task's priority determines its importance in relation to the

other tasks within the node. Priority is a numeric parameter and can
take any value in the range 1 to HIGH_PRIORITY. Priority HIGH PRIORITY
is 'highest' or 'most important' and priority 1 is 'lowest' or 'least
important'. There may be any number of tasks with the same priority.

Priorities are assigned to tasks by the creating task and can be
changed later dynamically. They affect the way in which task scheduling
occurs. Although the exact scheduling algorithm is outside the scope of
this standard, in general the higher the priority of a task, the more
likely it is to receive CPU time.

Task Modes

A task's mode determines certain aspects of the behavior of the
kernel in respect to the task. The mode is made up by the combination
of a number of mode parameters, each of which determines a single
aspect of kernel behavior.

Open Real-time Kernel Interface Definition Page 19
Draft 2.1

This standard defines four values for a mode parameter, and an ORKID
compliant kernel may add others. A given mode is specified by a bit-
field, similarly to events and exceptions. Each bit of a mode bit-field
specifies a single mode value. The bit for each value is identified by
a standard symbolic value - the mapping of these symbols to numeric
values is implementation dependent. The four standard mode values are
as follows:

+ NOXSR This value affects only tasks with defined XSRs.
When it is set, the task's XSRs will not be activated
when exceptions are raised. Instead, exceptions will
be latched until this value is cleared, after which
the XSRs will be scheduled normally. Exceptions sent
to a task without defined corresponding XSRs are
lost.

+ NOTERMINATION When this value is set, the task is protected from
forced deletion or restart by other tasks.
NOTERMINATION allows a task to complete a section of
code without risk of deletion or restart, and yet
still allows other tasks to be scheduled.

+ NOPREEMPT When this value is set, the task will retain
control of it's CPU either until it clears the
value, or until it blocks itself by an ORKID
operation call. In this latter case, when the task
is eventually re-scheduled, the NOPREEMPT value
will still be set in its mode. In this mode the task
is also protected from being suspended by another
task. This value does not preclude activation of XSRs
or ISRs.

+ NOINTERRUPT Tasks with this value set will not be interrupted.
Observation:

The NOINTERRUPT mode value does not preclude the execution of Interrupt
Service Routines (ISR) by another processor in a multiple-processor
node and therefor should not be used to obtain mutual exclusion with
ISR code.

Observation:

A typical extension for certain processor architectures will be a
SUPERVISOR mode value.

The behavior of a task is determined by the task's active mode. When a
task is not executing an Exception Service Routine the mode specified

~ in the task_create operation or the last task_set mode operation is the

active mode. Upon the activation of a task's XSR a new active mode is

constructed by oring the old active mode with the mode specified in the

exception_catch operation.

After returning to the interrupted task this one will continue in its

old active mode (see also 10. Exceptions).

Open Real-time Kernel Interface Definition Page 20
Draft 2.1

Observation:

An XSR should, in general, not reset any mode value via the
task_set_mode operation that was set at the time of it's activation.
This would lower the task's protection in an unforeseeable way.

Task Note-Pads

Every task has a fixed number of note-pad locations. These are simply
'word' locations which are accessible at all times by their own

task, by all other tasks on the same node, and if the task was created
with the GLOBAL option set, by all tasks on all nodes. The size of a
note-pad location is equal to the basic word length of the
corresponding processor. The note-pad is very simple, having only two
operations -one to read and one to write a location.

