[bookmark: _GoBack]

Open Real-time Kernel Interface Definition Page 75 Draft 2.1
11. CLOCK
Each ORKID kernel maintains a node clock. This is a single data object in the kernel data structure which contains the current date and time. The clock is updated at every tick, the frequency of which is node dependent. The range of dates the clock is allowed to take is implementation dependent.
In a multi—node system, the different node clocks will very likely be synchronized, although this is not necessarily done automatically by the kernel. Since nodes could be in different time zones in widely distributed systems, the node clock specifies the local time zone, so that all nodes can synchronize their clocks to the same absolute time.
The data structure containing the clock value passed in clock operations is language binding dependent. It identifies the date
and time down to the nearest tick, along with the local time zone. The time zone value is defined as the number of hours ahead (positive value) or behind (negative value) Greenwich Mean Time (GMT).
When the system starts up, the clock may be uninitialised. If this is the case, attempts at reading it before it has been set result in an error completion status, rather than returning a random value.

Open Real-time Kernel Interface Definition Page 76 Draft 2.1
11.1. CLOCK_SET
Set node time and date.
Synopsis
clock_set(clock)
Input Parameters
clock : clock_buff current time and date
Output Parameters
<none>
Completion Status
OK clock_set successful
ILLEGAL_USE clock_set not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
INVALID_CLOCK invalid clock value
Description
This operation sets the node clock to the specified value. The kernel checks the supplied date and time in clock_buff to ensure that they are legal. This is purely a syntactic check, the operation will accept any legal value. The exact structure of the data supplied is language binding dependent.

Open Real-time Kernel Interface Definition Page 77 Draft 2.1
11.2. CLOCK_GET
Get node time and date.
Synopsis
c1ock_get(clock)
Input Parameters
<none>
Output Parameters
clock : clock_buff current time and date
Completion Status
OK c1ock_get successful
INVALID_PARAMETER a parameter refers invalid address
CLOCK_NOT_SET clock has not been initialized
Description
This operation returns the current date and time in the node clock. If the node clock has not yet been set, then the CLOCK_NOT_SET completion status is returned and the contents of clock are undetermined. The exact structure of the c1ock_buff data returned is language binding dependent.

Open Real—time Kernel Interface Definition Page 78
11.3. CLOCK_TlCK
Announce a tick to the clock.
Synopsis
c1ock_tick()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
OK lock_tick successful
Description
This operation increments the current node time by one tick. There
are no parameters and the operation always succeeds. Nevertheless, the operation can be meaningless if the clock was not initialized beforehand. Every node must contain a mechanism which keeps the node clock up to date by calling upon clock_tick.

Open Real-time Kernel Interface Definition Page 79 Draft 2.1
12. TIMERS
ORKID defines two types of timers. The first type is the sleep timer. This type allows a task to sleep either for a given period, or up until a given time, and then wake and continue. Obviously a task can set only one such timer in operation at a time, and once set, it cannot be cancelled. These timers have no identifier.
The second type of timer is the event timer. This type allows a task to send events to itself either after a given period or at a given time. A task can have more than one event timer running at a time. Each event timer is assigned an identifier by the kernel when the event is set. This identifier can be used to cancel the timer.
Timers are purely local objects. They affect only the calling task, either by putting it to sleep or sending it events. Timers exist only while they are running. When they expire or are cancelled, they are deleted from the kernel data structure.

Open Real-time Kernel Interface Definition Page 80 Draft 2.1
12.1 . TIMER_WAKE_AFTER
Wake after a specified time interval.
Synopsis
timer_wake_after(ticks)
Input Parameters
ticks : integer number of ticks to wait
Output Parameters
<none>
Completion Status
OK timer_wake_after successful
ILLEGAL_USE timer_wake_after not callable from ISR
Description
This operation causes the calling task to be blocked for the given number of ticks. The task is woken after this interval has expired, and is returned a successful completion status. If the node clock is set using the clock_set operation during this interval, the number of ticks left does not change.

Open Real—time Kernel Interface Definition Page 81 Draft 2.1
12.2. TlMER_WAKE_WHEN
Wake at a specified wall time and date.
Synopsis
timer_wake_when(clock)
Input Parameters
clock : c1ock_buff time and date to wake
Output Parameters
<none>
Completion Status
OK timer_wake_when successful
ILLEGAL_USE timer_wake_when not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
INVALID_CLOCK invalid clock value
CLOCK_NOT_SET clock has not been initialized
Description
This operation causes the calling task to be blocked up until a given date and time. The task is woken at this time, and is returned a successful completion status. The kernel checks the supplied clock_buf data for validity. The exact structure of that data is language binding dependent.
If the node clock is set while the timer is running, the wall time at which the task is woken remains valid. If the node time is set to after the timer wake time, then the timer is deemed expired and the task is woken immediately and returned a successful completion status.

Open Real-time Kernel Interface Definition Page 82 Draft 2.1
12.3. TIMER_EVENT_AFTER
Send event after a specified time interval.
Synopsis
timer_event_after(ticks, event, tmid)
Input Parameters
ticks : integer number of ticks to wait
event : bit_field event to send
Output Parameters
tmid : timer_id kernel defined timer identifier
Completion Status
OK timer_event_after successful ILLEGAL_USE timer_event_after not callable from ISR INVALID_PARAMETER a parameter refers to an invalid address TOO_MANY_OBJECTS too many timers on the node
Description
This operation starts an event timer which will send the given events to the calling task after the specified number of ticks. The kernel returns an identifier which can be used to cancel the timer. If the node clock is set using the clock_set operation during this interval, the number of ticks left does not change.

Open Real-time Kernel Interface Definition Page 83 Draft 2.1
12.4. TlMER_EVENT_WHEN
Send event at the specified wall time and date.
Synopsis
timer_event_when(clock, event, tmid)
Input Parameters
clock : clock buff time and date to send event event : bit_field event(s) to send
Output Parameters
tmid : timer_id kernel defined timer identifier
Completion Status
OK timer_event_when successful
ILLEGAL_USE timer_event_when not callable from ISR
INVALID_PARAMETER A parameter refers to an invalid address
INVALID:CLOCK invalid clock value
TOO MANY OBJECTS too many timers on the node
CLOEK_NOT_SET clock has not been initialized
Description
This operation starts an event timer which will send the given events to the calling task at the given date and time. The kernel returns an identifier which can be used to cancel the timer.
If the node clock is set while the timer is running, the wall time at which the event(s) are sent remains valid. If the node time is set to after the value specified in the clock parameter, then the timer is deemed expired and the events are sent to the calling task immediately.

Open Real-time Kernel Interface Definition Page 84 Draft 2.1
12.5. TIMER_EVENT_EVERY
Send periodic event.
Synopsis
timer_event_every(ticks, event, tmid)
Input Parameters
ticks : integer number of ticks to wait between events
event : bit_field event to send
Output Parameters
tmid : timer_id kernel defined timer identifier
Completion Status
OK timer_event_every successful
ILLEGAL_USE timer event_every not callable from ISR INVALID_PARAMETER a parameter refers to an invalid address TOO_MANY_OBJECTS too many timers on the node
Description
This operation starts an event timer which will periodically send the given events to the calling task with the periodicity specified by the number of ticks. The kernel returns an identifier which can be used to cancel the timer. If the node clock is set using the clock_set operation during the life time of the timer, the number of ticks left until the next event does not change.
Observation:
This provides a drift—free mechanism for sending an event at periodic intervals.

