Open Real-time Kernel Interface Definition 				Page 65 Draft 2.1
[bookmark: _GoBack]8.9. QUEUE_INFO
Obtain information on a queue.
Synopsis
queue_info(qid, max buff, length, options, messages_waiting,
tasks_waIting)
Input Parameters
qid 		: queue_id 	kernel defined queue identifier
Output Parameters
max_buff 		: integer 	maximum number of buffers allowed in
 					queue
length 		: integer 	length of message buffers in bytes
options 		: bit_field 	queue create options
tasks_waiting 	: integer 	number of tasks waiting on the message
 					queue
messages_waiting 	: integer 	number of messages waiting in the
 					message queue
Completion Status
OK 					queue_info successful
ILLEGAL_USE 				queue_info not callable from ISR
INVALID_PARAMETER 			a parameter refers to an invalid
 					address
INVALID_ID 				queue does not exist
OBJECT_DELETED 			originally existing queue has been deleted
 					before operation
NODE_NOT_REACHABLE 			node on which queue resides is not reachable
Description
This operation provides information on the specified message queue. It returns its maximum number of buffers, their length in bytes, its create options, and the number of tasks waiting for messages on this queue, respectively the number of messages waiting in the queue to be read. The latter two values should be used with care as they are just a snap-shot of the queue's state at the time of executing the operation.

Open Real-time Kernel Interface Definition 				Page 66 Draft 2.1
9. EVENTS
Events provide a simple method of task synchronization. Each task has the same number of events which is equal to the number of bits in the basic word length of the corresponding processor. Events have no identifiers, but are referenced using a task identifier and a bit-field. The bit-field can indicate any number of a task's events at once.
A task can wait on any combination of its events, requiring either all specified events to arrive, or at least one of them, before being unblocked. Tasks can send any combination of events to a given task. If the receiving task is not in the same node as the sending task, then the receiving task must be global.
Sending events in effect sets a one bit latch for each event. Receiving a combination of events clears the latches corresponding to the asked for combination. This means that if an event is sent more than once before being received, the second and subsequent sends are lost.

Open Real-time Kernel Interface Definition 				Page 67 Draft 2.1
9.1. EVENT_SEND
Send event(s) to a task.
Synopsis
event_send(tid, event)
Input Parameters
tid 			: task_id 		kernel defined task identifier
event 			: bit_field 		event(s) to be sent
Output Parameters
<none>
Completion Status
OK 						event_send successful
INVALID_PARAMETER 				a parameter refers to an invalid address
INVALIDIID 					task does not exist
OBJECT_DELETED 				originally existing task has been deleted
 						before operation
NODE__NOT_REACHABLE 				node on which task resides is not
 						reachable
Description
This operation sends the given event(s) to the given task. The appropriate task event latches are set. If the task is waiting on a combination of events, a check is made to see if the currently set latches satisfy the requirements. If this is the case, the given task receives the event(s) it is waiting on and the appropriate bits are cleared in the latch.

Open Real-time Kernel Interface Definition 				Page 68 Draft 2.1
9.2. EVENT_RECElVE
Receive event(s).
Synopsis
event_receive(event, options, time_out, event_received)
Input Parameters
event 		: bit_field 		event(s) to receive
options 	: bit_field 		receive options
time_out 	: integer 		ticks to wait before timing out
Output Parameters
event_received: bit_field 		event(s) received
Literal Values
options	+ ANY 			return when any of the events is sent
 		+ NOWAIT		do not wait - return immediately if no event(s)
 					set
time_out 	= FOREVER 		wait forever - do not time out
Completion 8tatus
OK 					event_receive successful
ILLEGAL_USE 				event_receive not callable from ISR
INVALID_PARAMETER			a parameter refers to an invalid address
INVALID_OPTIONS 			invalid options value
TIME_OUT				event__receive timed out
NO_EVENT				event(s) not set and NOWAIT option given
Description
This operation blocks a task until a given combination of events occurs. By default, the task waits until all of the events have been sent. If the ANY option is set, then the task waits only until at least one of the events has been sent.
The operation first checks the task's event latches to see if the required event(s) have already been sent. In this case the task receives the events, which are returned in event_received, and the corresponding event latches are cleared. If the ANY option was set, and one or more of the specified events was sent, all the events sent, satisfying the event parameter, are received. If the required event(s) have yet to be sent, and the NOWAIT option has been specified, the NO__EVENTS completion status is returned. If NOWAIT is not specified then the task is blocked, waiting on the appropriate events to be sent. A timeout is initiated, unless the time_out value supplied is FOREVER. If all required events are sent before the timeout expires, then the events are received and a successful completion status returned. If the time—out expires, the TIME_0UT completion status is returned.

Open Real-time Kernel Interface Definition 				Page 69 Draft 2.1
10. EXCEPTIONS
ORKID exceptions provide tasks with a method of handling exceptional conditions asynchronously. Each task has the same number of exceptions which is equal to the number of bits in the basic word length of the corresponding processor. Exceptions have no identifiers, but are referenced using a task identifier and a bit-field. The bit-field can indicate any number of a task's exceptions at once.
Using this bit field, any number of exceptions can be raised simultaneously to a task. Each exception, defined by one bit of the bit-field, is associated with one specific Exception Service Routine (XSR) . If a task has no XSR defined for any one of the raised exceptions, then the corresponding exception bits are lost and the XSR_NOT_SET completion status is returned for the exception_raise operation. Otherwise, raising an exception sets a one bit latch for each exception. If the same exception is raised more than once to a task before the task can catch them, then the second and subsequent raisings are ignored. If the target task is not in the same node as the raising task, then the target task must be global.
The 'catching' of exceptions is quite different from the receiving of events, and involves the automatic activation by the scheduler of the task's XSRs corresponding to every set bit. XSRs have to be declared via the exception_catch operation by tasks after their creation. A task may change its XSRs at any time.
An XSR is activated whenever the corresponding exception is raised to a task, and the task has not set its NOXSR mode parameter in the active mode. If the NOXSR parameter was set, the XSR will be activated as soon as it is cleared. When an XSR is activated, the task's current flow of execution is interrupted, the corresponding latch is cleared and the XSR entered.
XSR code is executed in exactly the same way as other parts of the task. While it is executing, an XSR has no special privileges or restrictions compared to normal task code. The kernel automatically activates an XSR as detailed above, but the XSR will actually run only when the task would normally be scheduled to run. The XSR must normally deactivate and return to the code it interrupted with a special ORKID operation: exception_return; alternatively it may alter the flow of execution through the task_restart operation.
Observation:
Raising an exception to a task will not unblock a waiting task.
An XSR has its own mode with the same four mode parameters as tasks: NOXSR, NOTERMINATION, NOPREEMPT and NOINTERRUPT. The mode parameter given in the exception_catch operation is ored with the active mode at the time of the XSR's activation. The XSR will enter execution with this mode, which now becomes the active mode.
If several exception bits are set at the same time, the Exception Service Routine corresponding to the highest bit-number set will be

Open Real—time Kernel Interface Definition 				Page 70 Draft 2.1
activated. After executing the exception_return operation in this XSR the routine corresponding to the bit with the second highest bit-number will be activated etc. An XSR running without the NOXSR bit in its mode will be interrupted by an exception of higher priority, i.e. with a higher bit-number. Exceptions of equal and lower priority will be latched.
The exception_return operation will return either to the interrupted task, reinstating its original mode, or to the interrupted XSR with its original mode. This is also true in case of explicit change of an XSR's mode via task_set_mode.

Open Real-time Kernel Interface Definition 				Page 71 Draft 2.1
10.1 . EXCEPTION_CATCH
Specify a task's Exception Service Routine for a given exception bit.
Synopsis
exception_catch(bit_number, new_xsr, new_mode, old_xsr, old_mode)
Input Parameters
bit_number : integer 		exception bit-number
new_xsr : address 		address of XSR
new_mode : bit_field 		execution mode to be ored in
Output Parameters
old_xsr : address 		address of old XSR
old_mode : bit_field		mode of old XSR
Literal Values
new_xsr	= NULL_XSR		task henceforth will have no XSR
					for the given exception bit
new_mode 	+ NOXSR		XSRs cannot be activated
		+ NOTERMINATION	task cannot be restarted or deleted
		+ NOPREEMPT		task cannot be preempted
		+ NOINTERRUPT		task cannot be interrupted
		= ZERO			no mode set
old__mode 				same as new__mode
o1d_xsr 	= NULL_XSR 		task previously had no XSR for the given
						exception bit
Completion Status
OK 					exception_catch successful
ILLEGAL__USE 				exception_catch not callable from ISR
INVALID__PARAMETER 			a parameter refers to an invalid address
INVALID__MODE 			invalid mode value
INVALID_BIT 				invalid exception bit-number
Description
This operation designates a new Exception Service Routine (XSR) for the exception given by bit_number for the calling task. The task supplies the start address of the XSR, and the mode which will be ored to the active mode of the interrupted task or XSR to produce the active mode of this XSR. If this operation returns a successful completion status, the exception given by bit_number will henceforth cause the XSR at the given address to be activated, if the running task does not have the NOXSR mode set.
The kernel returns the address of the previous XSR and the mode of that
Open Real-time Kernel Interface Definition 				Page 72 Draft 2.1
XSR for the specified exception.
Note that if a task has no XSR defined for the given exception a call to exception_catch will return the symbolic value NULL_XSR in old_xsr. This same value can be passed as the new_xsr input parameter, which removes the current XSR for this exception without designating a new one.
Observation:
This operation can be used for defining the corresponding XSR for the first time and when a task wishes to use a different XSR temporarily. Once finished with the temporary XSR, the original one can be simply reinstated using the old_xsr and old_mode values.

Open Real—time Kernel Interface Definition 				Page 73 Draft 2.1
10.2. EXCEPTION_RAISE
Raise exception(s) to a task.
Synopsis
exception_raise(tid, exception)
Input Parameters
tid		: task_id		kernel defined task id
exception	: bit_field		exception(s) to be raised
Output Parameters
<none>
Completion Status
OK 					exception_raise successful
INVALID_PARAMETER 			a parameter refers to an invalid address
INVALID_ID 				task does not exist
OBJECT_DELETED			originally existing task has been deleted
					before operation
XSR_NOT_SET				no handler routine for given exception(s)
NODE_NOT_REACHABLE			node on which task resides is not reachable
Description
This operation raises one or more exceptions to a task. If the task in question has XSR(s) defined for the given exception(s), then unless it has the NOXSR mode value set, the highest priority XSR will be activated immediately and will run when the task would be normally scheduled. If NOXSR is set, this XSR will be activated as soon as the task clears this parameter.
If the task has no XSR(s) for the given exception(s), then this operation returns the XSR_NOT_SET completion status.

Open Real-time Kernel Interface Definition 				Page 74 Draft 2.1
10.3. EXCEPTION_RETURN
Return from Exception Service Routine.
Synopsis
exception_return()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
<not applicable>
Description
This operation transfers control from an XSR back to the code which it interrupted. It has no parameters and does not produce a completion status. This operation must be used to deactivate an XSR.
The behavior of exception_return when not called from an XSR is undefined.

