6.1. POOL_CREATE
Create a pool.
Synopsis
pool_create(name, addr, length, buff_size, options, pid)
Input Parameters
name 		: string 	user defined pool name
addr 		: address 	start address of pool
length 	: integer 	length of pool in bytes
buff_size 	: integer 	pool buffer size in bytes
options 	: bit_field pool create options
Output Parameters
pid 		: pool_id 	kernel defined pool identifier
Literal Values
options 	+ GLOBAL pool is global within the shared memory subsystem
+ FORCED_DELETE deletion will go ahead even if there are unrealeased buffers
Completion Status
OK 				pool_create successful
ILLEGAL_USE 		pool_create not callable from ISR
INVALID_PARAMETER 	a parameter refers to an invalid address
INVALID_BUFF_SIZE 	buff_size not supported
INVALID_OPTIONS 		invalid options value
TOO_MANY_OBJECTS 		too many pools on the node or in the system
POOL_0VERLAP 		area given overlaps an existing pool
Description
This operation declares an area of memory to be organized as a pool by the kernel. The process of formatting the memory to operate as a pool may require a memory overhead which may be taken from the new pool. It can never be assumed that all of the memory in the pool will be available for allocation. The overhead percentage will be implementation dependent.
The FORCED_DELETE option governs the deletion possibility of the pool (see 6.2 pool_delete)

6.2. POOL_DELETE
Delete a pool.
Synopsis
pool_delete(pid)
Input Parameters
pid 		: pool_id 		kernel defined pool identifier
Output Parameters
	<none>
Completion Status
OK 				pool_delete successful
ILLEGAL_USE 		pool_delete not callable from ISR
INVALID_PARAMETER 	a parameter refers to an invalid address
INVALID_ID 			pool does not exist
OBJECT_DELETED 	originally existing pool has been deleted before operation
POOL_IN_USE 		buffers from this pool are still allocated
OBJECT_NOT_LOCAL 		pool_delete not allowed on non—local pools
Description
Unless the FORCED_DELETE option was specified at creation, this operation first checks whether the pool has any buffers which have not been returned. If this is the case, then the POOL_IN_USE completion status is returned. If not, and in any case if FORCED_DELETE was specified, then the pool is deleted from the kernel data structure.

6.3. POOL_IDENT
Obtain the identifier of a pool on a given node with a given name.
Synopsis
pool_ident(name, nid, pid)
Input Parameters
name 		: string 		user defined pool name
nid 		: node_id 		node identifier
Output Parameters
pid 		: pool_id 		kernel defined pool identifier
Literal Values
nid 	= LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local node
= ALL_NODES all nodes in the system
Completion Status
OK 				pool_ident successful
ILLEGAL_USE 		pool_ident not callable from ISR
INVALID_PARAMETER 	a parameter refers to an invalid address
INVALID_ID 			node does not exist
NAME_NOT_FOUND 	pool does not exist on node
NODE_NOT_REACHABLE 	node is not reachable
Description
This operation searches the kernel data structure in the node(s) specified for a pool with the given name, and returns its identifier if found. If OTHER_NODES or ALL_NODES is specified, the node search order is implementation dependent. If there is more than one pool with the same name, then the pid of the first one found is passed back.
Observation:
This operation may return the pid of a GLOBAL pool that is not in the same shared memory subsystem as the node containing the calling task.

6.3. POOL_GET_BUFF
Get a buffer from a pool.
Synopsis
pool_get_buff(pid, buff_addr)
Input Parameters
pid 		: pool_id 	kernel defined pool identifier
Output Parameters
buff_addr 	: address 	address of obtained buffer
Completion Status
OK 				pool_get_buff successful
ILLEGAL_USE 		pool_get_buff not callable from ISR
INVALID_PARAMETER		a parameter refers to an invalid address
INVALID_ID 			pool does not exist
OBJECT_DELETED 	originally existing task has been deleted before operation
NO_MORE_MEMORY 		no more buffers available in pool
POOL_NOT_SHARED 		pool not in shared memory subsystem
NODE_NOT_REACHABLE 	node on which pool resides is not reachable
Description
The pool_get_buff requests for a single buffer from the pool's free memory. If the kernel cannot immediately fulfil the request, it returns the completion status NO_MORE_MEMORY, otherwise the address of the allocated buffer is returned. The exact allocation algorithm is implementation dependent.

6.5. POOL_RET_BUFF
Return a buffer to its pool.
Synopsis
pool_ret_buff(pid, buff_addr)
Input Parameters
pid 		: pool_id 	kernel defined pool identifier
buff_addr 	: address 	address of buffer to be returned
Output Parameters
<none>
Completion Status
OK 				pool_ret_buff successful
ILLEGAL_USE 		pool_ret_buff not callable from ISR
INVALID_PARAMETER 	a parameter refers to an invalid address
INVALID_ID 			pool does not exist
OBJECT_DELETED 	originally existing pool has been deleted before operation
POOL_NOT_SHARED 		pool not in shared memory sybsystem
INVALID_BUFF 		no buffer allocated from pool at buff_addr
NODE_NOT_REACHABLE 	node on which pool resides is not reachable
Description
This operation returns the given buffer to the given pool's free space. The kernel checks that the buffer was previously allocated from the pool and returns INVALID_BUFF if it wasn't.

6.6. POOL_INFO
Obtain information on a pool.
Synopsis
pool_info(pid, buffers, free_buffers, buff_size, options)
Input Parameters
pid 		: pool-id 		kernel defined pool identifier
Output Parameters
buffers 	: integer 		number of buffers in the pool
free_buffers: integer 		number of free buffers in the pool
buff_size 	: integer 		pool buffer size in bytes
options 	: bit_field 	pool create options
Completion Status
OK 					pool_info successful
ILLEGAL_USE 			pool_info not callable from ISR
INVALID_PARAMETER 		a parameter refers to an invalid address
INVALID_ID 				pool does not exist
OBJECT_DELETED 	originally existing pool has been deleted before operation
NODE_NOT_REACHABLE node on which the pool resides is not reachable
Description
This operation provides information on the specified pool. It returns its overall number of buffers, the number of free buffers in the pool, its buffer size in bytes and options. The number of free buffers in the pool should be used with care as it is just a snap—shot of the pools's usage at the time of executing the operation.

7. SEMAPHORES
The semaphores defined in ORKID are standard Dijkstra counting semaphores. Semaphores provide for the fundamental need of synchronization in multi—tasking systems, i.e. mutual exclusion, resource management and sequencing.
Semaphore Behavior
The following should not be understood as a recipe for implementations.
During a sem_claim operation, the semaphore count is decremented by one. If the resulting semaphore count is greater than or equal to zero, then the calling task continues to execute. If the count is less than zero, the task blocks from processor usage and is put on a waiting queue for the semaphore. During a sem_release operation, the semaphore count is incremented by one. If the resulting semaphore count is less than or equal to zero, then the first task in the waiting queue for this semaphore is unblocked and is made eligible for processor usage.
Semaphore Usage
Mutual exclusion is achieved by creating a counting semaphore with an initial count of one. A resource is guarded with this semaphore by requiring all operations on the resource to be proceeded by a sem_claim
operation. Thus, if one task has claimed a resource, all other tasks requiring the resource will be blocked until the task releases the resource with a sem_release operation.
In situations where multiple copies of a resource exist, _the semaphore may be created with an initial count equal to a number of copies. A resource is claimed with the sem_claim operation. When all available copies of the resource have been claimed, a task requiring the resource will be blocked until return of one of the claimed copies is announced by a sem_release operation.
Sequencing is achieved by creating a semaphore with an initial count of zero. A task may pend the arrival of another task by performing a sem_claim operation when it reaches a synchronization point. The other task performs a sem_release operation when it reaches its synchronization point, unblocking the pending task.
Semaphore Options
ORKID defines the following option symbols, which may be combined.
+ GLOBAL 	Semaphores created with the GLOBAL option set are visible and accessible from any node in the system.
+ FIFO 	Semaphores with the FIFO option set enter additional tasks at the end of their waiting queue. Without this option, the tasks are enqueued in order of task priority. ORKID does not require reordering of semaphore waiting queues when a waiting task has his priority changed.

7.1. SEM_CREATE
Create a semaphore.
Synopsis
sem_create(name, init_count, options, sid)
Input Parameters
name 		: string 		user defined semaphore name
init_count 	: integer 		initial semaphore count
options 	: bit_field 	semaphore create options
Output Parameters
sid 		: sem_id 		kernel defined semaphore identifier
Literal Values
options + GLOBAL 	the new semaphore will be visible throughout the system
+ FIFO 	tasks will be queued in first in first out order
Completion Status
OK 					sem_create successful
ILLEGAL_USE 			sem_create not callable from ISR
INVALID_PARAMETER 		a parameter refers to an invalid address
INVALID_COUNT 			initial count is negative
INVALID_OPTIONS 			invalid options value
TOO_MANY_OBJECTS 	too many semaphores on the node or in the system
Description
This operation creates a new semaphore in the kernel data structure, and returns its identifier. The semaphore is created with its count at the value given by the init_count parameter. The task queue, initially empty, will be ordered by task priority, unless the FIFO option is set, in which case it will be first in first out.

7.2. SEM_DELETE
Delete a semaphore.
Synopsis
sem_delete(sid)
Input Parameters
sid 		: sem_id 	kernel defined semaphore identifier
Output Parameters
<none>
Completion Status
OK 				sem_delete successful
ILLEGAL_USE 		sem delete not callable from ISR
INVALID_PARAMETER 	a parameter refers to an invalid address
INVALID_ID 			semaphore does not exist
OBJECT_DELETED 	originally existing semaphore has been deleted before operation
0BJECT_NOT_LOCAL 		sem_delete not allowed on non-local semaphore

Description
The sem_delete operation deletes a semaphore from the kernel data structure. The semaphore is deleted immediately, even though there are tasks waiting in its queue. These latter are all unblocked and are returned the SEMAPHORE_DELETED completion status.

7.3. SEM_IDENT
Obtain the identifier of a semaphore on a given node with a given name.
Synopsis
sem_ident(name, nid, sid)
Input Parameters
name 		: string 		user defined semaphore name
nid 		: node_id 		node identifier
Output Parameters
sid 		: sem_id 		kernel defined semaphore identifier
Literal Values
nid 	= LOCAL_NODE 	the node containing the calling task
= OTHER_NODES 	all nodes in the system except the local node
= ALL_NODES 	all nodes in the system
Completion Status
OK 					sem_ident successful
ILLEGAL_USE 			sem_ident not callable from ISR
INVALID_PARAMETER 		a parameter refers to an invalid address
INVALID_ID 				node does not exist
NAME_NOT_FOUND 			semaphore does not exist on node
NODE_NOT_REACHABLE 		node is not reachable
Description
This operation searches the kernel data structure in the node(s) specified for a semaphore with the given name, and returns its identifier if found. If OTHER_NODES or ALL_NODES is specified, the node search order is implementation dependent. If there is more than one semaphore with the same name in the node(s) specified, then the sid of the first one found is returned.
