[bookmark: _GoBack]4.1. TASK_CREATE
Create a task.
Synopsis
 task_create(name, priority, stack_size, mode, options, tid)
Input parameters
 name : string user defined task name
 priority : integer initial task priority
 stack_size : integer size in bytes of task’s stack
 mode : bit_field initial task mode
 options : bit_field creation options
Output Parameters
 tid : task_id kernel defined task identifier
Literal Values
 mode + NOXSR XSRs cannot be activated
 + NOTERMINATION task cannot be restarted or deleted
 + NOPREEMPT task cannot be preempted
 + NOINTERRUPT task cannot be interrupted
 = ZERO no mode parameter set
 options + GLOBAL the new task will be visible throughout the system
Completion Status
 OK task_create successful
 ILLEGAL_USE task_create not callable from ISR
 INVALID_PARAMETER a parameter refers to an invalid address
 INVALID_PRIORITY invalid priority value
 INVALID_MODE invalid mode value
 INVALID_OPTIONS invalid options value
 TOO_MANY_OBJECTS too many tasks on the node or in the system
 NO_MORE_MEMORY not enough memory to allocate task data structure or task stack
Description
The task_create operation creates a new task in the kernel data structure. Tasks are always created in the node in which the call to task_create was made. The new task does not start executing code -this is achieved with a call to the task_start operation. The tid returned by the kernel is used in all subsequent ORKID operations (except task_ident) to identify the newly created task. If GLOBAL is specified in the options parameter, then the tid can be used anywhere in the system to identify the task, otherwise it can be used only in the node in which the task was created.

4.2. TASK_DELETE
Delete a task.
Synopsis
 task_delete(tid)
Input Parameters
 tid : task_id kernel defined task identifier
Output Parameters
 <none>
Literal values
 tid = SELF the calling task requests its own deletion
Completion Status
OK task_de1ete successful
ILLEGAL_USE task_delete not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
INVALID_ID task does not exist
OBJECT_DELETED originally existing task has been deleted before operation
OBJECT_NOT_LOCAL task_delete not allowed on non­local task
OBJECT_PROTECTED task in NOTERMINATION mode
Description
This operation stops the task identified by the tid parameter and deletes it from its node's kernel data structure. If the task's active mode has the parameter NOTERMINATION set, then the task will not be deleted and the completion status OBJECT_PROTECTED will be returned.
Observation:
The task_delete operation deallocates the task's stack but otherwise performs no ‘clean-up’ of the resources allocated to the task. It is therefore the responsibility of the calling task to ensure that all segments, buffers, etc., allocated to the task to be deleted have been returned.
For situations where one task wants to delete another, the recommended procedure is to ask this task to delete itself, typically using exceptions, or task_restart with a specific argument. In this way the task can release all its resources before deleting itself.

4.3. TASK_IDENT
Obtain the identifier of a task on a given node with a given name.
Synopsis
 task_ident(name, nid, tid)
Input Parameters
 name : string user defined task name
 nid : node_id node identifier
Output Parameters
 tid : task_id kernel defined task identifier
Literal Values
 nid = LOCAL_NODE the node containing the calling task
 = OTHER_NODES all nodes in the system except the local node
 = ALL_NODES all nodes in the system
 name = WHO_AM_I returns tid of calling task
Completion Status
OK task_ident successful
ILLEGAL_USE task_ident not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME_NOT_FOUND task name does not exist on node
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation searches the kernel data structure in the node(s) specified by nid for a task with the given name. If OTHER_NODES or ALL_NODES is specified, the node search order is implementation dependent. If there is more than one task with the same name in the node(s) specified, then the tid of the first one found is returned.

4.4. TASK_START
Start a task.
Synopsis
 task_start(tid, start_addr, arguments)
Input Parameters
tid : task_id kernel defined task identifier
start_addr : * task start address
arguments : * arguments passed to task
Output Parameters
 <none>
Completion status
OK task_start successful
ILLEGAL_USE task_start not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
INVALID_ID task does not exist
OBJECT_DELETED originally existing task has been deleted before operation
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_ALREADY_STARTED task has been started already
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
The task_start operation starts a task at the given address. The task must have been previously created with the task_create operation.
* The specifications of start address and the number and type of arguments are language binding dependent.

4.5. TASK_RESTART
Restart a task.
Synopsis
 task_restart(tid, arguments)
Input Parameters
 tid : task_id kernel defined identifier
 arguments : * arguments passed to task
Output Parameters
 <none>
Literal values
 tid = SELF the calling task restarts itself.
Completion Status
OK task_restart successful
ILLEGAL_USE task_restart not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID task does not exist
OBJECT_DELETED originally existing task has been deleted before operation
INVALID_ARGUMENTS invalid number or type or size of arguments
TASK_NOT_STARTED task has not yet been started
OBJECT_PROTECTED task in NOTERMINATION mode
NODE_NOT_REACHABLE node on which task resides is not reachable
Description
The task_restart operation interrupts the current thread of execution of the specified task and forces the task to restart at the address given in the task_start call which originally started the task. The stack pointer is reset to its original value. No assumption can be made about the original content of the stack at this time. The task restarts executing with the priority and mode specified at task_create. All event and exception latches are clared and no XSRs are defined.
Any resources allocated to the task are not affected during the task_restart operation. The tasks themselves are responsible for the proper management of such resources through task_restart.
If the task's active mode has the parameter NOTERMINATION set, then the task will not be restarted and the completion status OBJECT_PROTECTED will be returned.
* The specification of the number and type of the arguments is language binding dependent.

4.6. TASK_SUSPEND
Suspend a task.
Synopsis
 task_suspend(tid)
Input Parameters
 tid : task_id kernel defined task identifier
Output Parameters
 <none>
Literal values
 tid = SELF the calling task suspends itself.
Completion Status
 OK task_suspend successful
 INVALID_PARAMETER a parameter refers to an invalid address
 INVALID_ID task does not exist
 OBJECT_DELETED originally existing task has been deleted before operation
 OBJECT_PROTECTED task in NOPREEMPT mode
 TASK_ALREADY_SUSPENDED task already suspended
 NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation temporarily suspends the specified task until the suspension is lifted by a call to task_resume. While it is suspended, a task cannot be scheduled to run.
If the task's active mode has the parameter NOPREEMPT set the operation will fail and return the completion status OBJECT_PROTECTED, unless the task suspends itself. In which case the operation will always be successful.

4.7. TASK_RESUME
Resume a suspended task.
Synopsis
 task_resume(tid)
Input Parameters
 tid : task_íd kernel defined task identifier
Output Parameters
 <none>
Completion Status
 OK task_resume successful
 INVALID_PARAMETER a parameter refers to an invalid address
 INVALID_ID task does not exist
 OBJECT__DELETED originally existing task has been deleted before operation
 TASK_NOT_SUSPENDED task not suspended
 NODE_NOT_REACHABLE node on which task resides is not reachable
Description
The task_resume operation lifts the task's suspension immediately after the point at which it was suspended. The task must have been suspended with a call to the task_suspend operation.

4.8. TASK_SET_PRIORITY
Set priority of a task.
Synopsis
 task_set_priority(tid, new_prio, old_prio)
Input Parameters
 tid : task_id kernel defined task id
 new_prio : integer task’s new priority
Output Parameters
 old_prio : integer task’s previous priority
Literal values
 tid = SELF the calling task sets its own priority.
 new_prio = CURRENT there will be no change in priority
Completion Status
 OK task_set_priority successful
 ILLEGAL_USE task_set_priority not callable from ISR
 INVALID_PARAMETER a parameter refers to an invalid address
 INVALID_ID task does not exist
 OBJECT_DELETED originally existing task has been deleted before operation
 INVALID_PRIORITY invalid priority value
 NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation sets the priority of the specified task to new_prio. The new_prio parameter is specified as CURRENT if the calling task merely wishes to find out the current value of the specified task's priority (see also 4. Task Priority).

4.9. TASK_SET_MODE
Set mode of own task.
Synopsis
 task_set_mode(new_mode, mask, old_mode)
Input Parameters
 new_mode : bit_field new task mode settings
 mask : bit_field significant bits in mode
Output Parameters
 old_mode : bit_field task's previous mode
Literal Values
 new_mode + NOXSR XSRs cannot be activated
 + NOTERMINATION task cannot be restarted or deleted
 + NOPREEMPT task cannot be preempted
 + NOINTERRUPT task cannot be interrupted
 = ZERO no mode parameter set
 old_mode same as new_mode
 mask + NOXSR change XSR mode bit
 + NOTERMINATION change NOTERMINATION mode bit
 + NOPREEMPT change NOPREEMPT mode bit
 + NOINTERRUPT change NOINTERRUPT mode bit
 = ALL change all mode bits
 = ZERO change no mode bits
Completion Status
 OK task_set_mode successful
 ILLEGAL_USE task_set_mode not callable from ISR
 INVALID_PARAMETER a parameter refers to an invalid address
 INVALID__MODE invalid mode or mask value
Description
This operation sets a new active mode for the task or its XSR. If called from a task's XSR then the XSR mode is changed, otherwise the main task's mode is changed.
The mode parameters which are to be changed are given in mask. If a parameter is to be set then it is also given in mode, otherwise it is left out. For both mask and mode, the logical OR (!) of the symbolic values for the mode parameters are passed to the operation.
For example, to clear NOINTERRUPT and set NOPREEMPT, mask = NOINTERRUPT ! NOPREEMPT, and mode = NOPREEMPT. To return the current mode without altering it, the mask should simply be set to ZERO.

4.10. TASK_READ_NOTE_PAD
Read one of a task's note-­pad locations.
Synopsis
 task_read_note_pad(tid, loc_number, loc_value)
Input Parameters
 tid : task_id kernel defined task id
 loc_number : integer note-pad location number
Output Parameters
 loc_value : word note-pad location value
Literal Values
 tid = SELF the calling task reads its own note-pad
Completion Status
 OK task_read_note_pad successful
 INVALID_PARAMETER a parameter refers to an invalid address
 INVALID_ID task does not exist
 OBJECT_DELETED originally existing task has been deleted before operation
 INVALID_LOCATION note-pad number does not exist
 NODE_NOT_REACHABLE node on which task resides is not reachable
Description
This operation returns the value contained in the specified note-pad location of the task identified by tid (see also 4. Task Note­-Pads). ORKID compliant kernels have a minimum of 16 note-pad locations, indexed via loc_number starting at one.

