Open Real-time Kernel Interface Definition Page 63
Draft 2.1

buffer and a successful completion status returned.

If the message queue is empty, and NOWAIT was not spec1f1ed in the
options, then the task is blocked and put on the queue's wait queue.
At that moment the time-out period is started. If the time-out expires
then the TIME_OUT completion status is returned.

If NOWAIT was spec1f1ed and the queue is empty, then the QUEUE_EMPTY
completion status is returned.

If the queue is deleted while the task is waiting on a message from it,
then the QUEUE_DELETED completion status is returned.

Otherwlse, when the task reaches the head of the queue and a message
is sent, or if a message is broadcast while the task is anywhere in
the queue, then the task receives the message and is returned a
successful completion status.

Open Real-time Kernel Interface Definition Page 64
Draft 2.1

8.8. QUEUE FLUSH

Flush all messages on a queue.

S8ynopsis

queue_flush(gid, count)
Input Parameters

gid ¢ queue_id kernel defined queue identifier
Output Parameters

count : integer number of flushed messages

Completion Status

OK queue_flush successful

ILLEGAL_USE queue_flush not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID ID queue does not exist

OBJECT_DELETED originally existing queue has been
deleted before operation

NODE_NOT_REACHABLE node on which queue resides is not
reachable

Description

If there were one or more messages in the specified queue, then they
are removed from the queue, their buffers deallocated and their number
returned in count. If there were no messages in the queue, then a
count of zero is returned.

Open Real-time Kernel Interface Definition Page 65
Draft 2.1

8.9. QUEUE_INFO
Obtain information on a queue.
S8ynopsis
queue_info(qid, max_buff, length, options, messages_waiting,
tasks_waiting)
Input Parameters

gid

queue_id kernel defined queue identifier

Output Parameters

max_buff : integer maximum number of buffers allowed in
qgueue

length ¢ integer length of message buffers in bytes

options : bit_field gqueue create options

tasks_waiting : integer number of tasks waiting on the message
queue

messages_waiting: integer number of messages waiting in the

message queue

Completion Status

OK queue_info successful

ILLEGAL USE queue_info not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid
address

INVALID_ID queue does not exist

OBJECT_DELETED originally existing queue has been
deleted before operation

NODE_NOT_REACHABLE node on which queue resides is not
reachable

Description

This operation provides information on the specified message queue. It
returns its maximum number of buffers, their length in bytes, its
create options, and the number of tasks waiting for messages on this
queue, respectively the number of messages waiting in the queue to be
read. The latter two values should be used with care as they are just a
snap-shot of the queue's state at the time of executing the operation.

Open Real-time Kernel Interface Definition Page 66
Draft 2.1

9. EVENTS

Events provide a simple method of task synchronization. Each task has
the same number of events which is equal to the number of bits in the
basic word length of the corresponding processor. Events have no
identifiers, but are referenced using a task identifier and a bit-
field. The bit-field can indicate any number of a task's events at
once.

A task can wait on any combination of its events, requiring either all
specified events to arrive, or at least one of them, before being
unblocked. Tasks can send any combination of events to a given task. If
the receiving task is not in the same node as the sending task, then
the receiving task must be global.

Sending events in effect sets a one bit latch for each event.
Receiving a combination of events clears the latches corresponding to
the asked for combination. This means that if an event is sent more
than once before being received, the second and subsequent sends are
lost.

Open Real-time Kernel Interface Definition Page 67
Draft 2.1

9.1. EVENT SEND

Send event(s) to a task.

Ssynopsis
event_send(tid, event)
Input Parameters

tid : task_id kernel defined task identifier
event : bit_field event(s) to be sent

Output Parameters
<none>

Completion Status

OK event_send successful

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID task does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

This operation sends the given event(s) to the given task. The
appropriate task event latches are set. If the task is waiting on a
combination of events, a check is made to see if the currently set
latches satisfy the requlrements. If this is the case, the given task
receives the event(s) it is waiting on and the appropriate bits are
cleared in the latch.

Open Real-time Kernel Interface Definition Page 68
Draft 2.1

9.2. EVENT_RECEIVE
Receive event(s).
8ynopsis
event_receive(event, options, time_out, event received)

Input Parameters

event : bit_field event(s) to receive
options : bit _field receive options
time_out ¢ integer ticks to wait before timing out

Output Parameters
event_received: bit_field event(s) received

Literal values

options + ANY return when any of the events is sent
+ NOWAIT do not wait - return immediately if no
event (s) set
time_out = FOREVER wait forever - do not time out

Completion Status

OK event_receive successful

ILLEGAL USE event_receive not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ OPTIONS invalid options value

TIME_OUT event_receive timed out

NO_EVENT event (s) not set and NOWAIT option given
Description

This operation blocks a task until a given combination of events
occurs. By default, the task waits until all of the events have been
sent. If the ANY option is set, then the task waits only until at least
one of the events has been sent.

The operation first checks the task's event latches to see if the
required event (s) have already been sent. In this case the task
receives the events, which are returned in event _received, and the
corresponding event latches are cleared. If the ANY optlon was set, and
one or more of the specified events was sent, all the events sent,
satisfying the event paramater, are received. If the required event(s)
have yet to be sent, and the NOWAIT option has been specified, the

NO_ EVENTS completlon status is returned. If NOWAIT is not specified
then the task is blocked, waiting on the appropriate events to be sent.
A timeout is initiated, unless the time out value supplied is FOREVER.
If all required events are sent before the timeout expires, then the
events are received and a successful completion status returned. If the
time-out expires, the TIME OUT completion status is returned.

Open Real-time Kernel Interface Definition Page 69
Draft 2.1

10. EXCEPTIONS

ORKID exceptions provide tasks with a method of handling exceptional
conditions asynchronously. Each task has the same number of
exceptions which is equal to the number of bits in the basic word
length of the corresponding processor. Exceptions have no identifiers,
but are referenced using a task identifier and a bit-field. The bit-
field can indicate any number of a task's exceptions at once.

Using this bit field, any number of exceptions can be raised
simultaneously to a task. Each exception, defined by one bit of the
bit-field, is associated with one specific Exception Service Routine
(XSR). If a task has no XSR defined for any one of the raised
exceptions, then the corresponding exception bits are lost and the
XSR_NOT_SET completion status is returned for the exception raise
operation. Otherwise, raising an exception sets a one bit latch for
each exception. If the same exception is raised more than once to a
task before the task can catch them, then the second and subsequent
raisings are ignored. If the target task is not in the same node as the
raising task, then the target task must be global.

The 'catching' of exceptions is quite different from the receiving of
events, and involves the automatic activation by the scheduler of the
task's XSRs corresponding to every set bit. XSRs have to be declared
via the exception_catch operation by tasks after their creation. A task
may change its XSRs at any time.

An XSR is activated whenever the corresponding exception is raised to a
task, and the task has not set its NOXSR mode parameter in the active
mode. If the NOXSR parameter was set, the XSR will be activated as soon
as it is cleared. When an XSR is activated, the task's current flow of
execution is interrupted, the corresponding latch is cleared and the
XSR entered.

XSR code is executed in exactly the same way as other parts of the
task. While it is executing, an XSR has no special privileges or
restrictions compared to normal task code. The kernel automatically
activates an XSR as detailed above, but the XSR will actually run only
when the task would normally be scheduled to run. The XSR must normally
deactivate and return to the code it interrupted with a special ORKID
operation: exception_return; alternatively it may alter the flow of
execution through the task_restart operation.

Observation:
Raising an exception to a task will not unblock a waiting task.

An XSR has its own mode with the same four mode parameters as tasks:
NOXSR, NOTERMINATION, NOPREEMPT and NOINTERRUPT. The mode parameter
given in the exception_catch operation is ored with the active mode at
the time of the XSR's activation. The XSR will enter execution with
this mode, which now becomes the active mode.

If several exception bits are set at the same time, the Exception
Service Routine corresponding to the highest bit-number set will be

Open Real-time Kernel Interface Definition Page 70
Draft 2.1

activated. After executing the exception return operation in this XSR
the routine corresponding to the bit with the second highest bit-number
will be activated etc. An XSR running without the NOXSR bit in its mode
will be interrupted by an exception of higher prlorlty, i.e. with a
higher bit-number. Exceptions of equal and lower priority will be
latched.

The exception_return operation will return either to the interrupted
task, reinstating its original mode, or to the interrupted XSR with its
origlnal mode. This is also true in case of explicit change of an XSR's
mode via task_set_mode.

Open Real-time Kernel Interface Definition Page 71
Draft 2.1

10.1. EXCEPTION CATCH

Specify a task's Exception Service Routine for a given exception bit.
8ynopsis
exception_catch(bit_number, new_xsr, new_mode, old_xsr, old_mode)

Input Parameters

bit_number : integer exception bit-number
new_xsr ¢ address address of XSR
new_mode ¢ bit_field execution mode to be ored in

Output Parameters

old_xsr : address address of old XSR
old_mode : bit_field mode of old XSR
Literal values
new_xsr = NULL_XSR task henceforth will have no XSR
for the given exception bit
new_mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT task cannot be interrupted
= ZERO no mode set
old_mode same as new_mode
old_xsr = NULL_XSR task previously had no XSR for the given

exception bit

Completion S8tatus

OK exception_catch successful .

ILLEGAL_USE exception_catch not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_MODE invalid mode value

INVALID_BIT invalid exception bit-number
Description

This operation designates a new Exception Service Routine (XSR) for
the exception given by bit_number for the calling task. The task
supplies the start address of the XSR, and the mode which will be ored
to the active mode of the interrupted task or XSR to produce the active
mode of this XSR. If this operation returns a successful completion
status, the exception given by bit_number will henceforth cause the XSR
at the given address to be activated, if the running task does not have
the NOXSR mode set.

The kernel returns the address of the previous XSR and the mode of that

Open Real-time Kernel Interface Definition Page 72
Draft 2.1

XSR for the specified exception.

Note that if a task has no XSR defined for the given exception a call
to exception_catch will return the symbolic value NULL_XSR in old xsr.
This same value can be passed as the new xsr input parameter, which
removes the current XSR for this exception without designating a new
one.

Observation:

This operation can be used for defining the corresponding XSR for the
first time and when a task wishes to use a different XSR temporarily.
Once finished with the temporary XSR, the original one can be simply
reinstated using the old_xsr and old_mode values.

Open Real-time Kernel Interface Definition Page 73
Draft 2.1

10.2. EXCEPTION_RAISE

Raise exception(s) to a task.

S8ynopsis
exception_raise(tid, exception)
Input Parameters

tid
exception

task_id kernel defined task id
bit_field exception(s) to be raised

Output Parameters
<none>

Completion Status

OK exception _raise successful

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ID task does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

XSR_NOT_SET no handler routine for given exception(s)

NODE_NOT REACHABLE node on which task resides is not
reachable

Description

This operatlon raises one or more exceptlons to a task. If the task in
question has XSR(s) defined for the given exceptlon(s), then unless it
has the NOXSR mode value set, the highest priority XSR will be
activated 1mmed1ate1y and w111 run when the task would be normally
scheduled. If NOXSR is set, this XSR will be activated as soon as the
task clears this parameter.

If the task has no XSR(s) for the given exception(s), then this
operation returns the XSR_NOT SET completion status.

Open Real-time Kernel Interface Definition Page 74
Draft 2.1

10.3. EXCEPTION_RETURN

Return from Exception Service Routine.

8ynopsis
exception_return()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
<not applicable>
Description
This operation transfers control from an XSR back to the code which it
interrupted. It has no parameters and does not produce a completion

status. This operation must be used to deactivate an XSR.

The behavior of exception_return when not called from an XSR is
undefined.

Open Real-time Kernel Interface Definition Page 75
Draft 2.1

11. CLOCK

Each ORKID kernel maintains a node clock. This is a single data

object in the kernel data structure which contains the current date and
time. The clock is updated at every tick, the frequency of which is
node dependent. The range of dates the clock is allowed to take is
implementation dependent.

In a multi-node system, the different node clocks will very likely be
synchronized, although this is not necessarily done automatically by
the kernel. Since nodes could be in different time zones in widely
distributed systems, the node clock specifies the local time zone, so
that all nodes can synchronize their clocks to the same absolute time.

The data structure containing the clock value passed in clock
operations is language binding dependent. It identifies the date

and time down to the nearest tick, along with the local time zone.
The time zone value is defined as the number of hours ahead (positive
value) or behind (negative value) Greenwich Mean Time (GMT).

When the system starts up, the clock may be uninitialised. If this is
the case, attempts at reading it before it has been set result in an
error completion status, rather than returning a random value.

Open Real-time Kernel Interface Definition PbPage 76
Draft 2.1

11.1. CLOCK_SET

Set node time and date.

S8ynopsis

clock_set(clock)
Input Parameters

clock ¢ clock_buff current time and date
Output Parameters

<none>

Completion Status

OK clock_set successful
ILLEGAL_USE clock_set not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_CLOCK invalid clock value
Description

This operation sets the node clock to the specified value. The

kernel checks the supplied date and time in clock_buff to ensure that
they are legal. This is purely a syntactic check, the operation will
accept any legal value. The exact structure of the data supplied is
language binding dependent.

Open Real-time Kernel Interface Definition Page 77
bDraft 2.1

11.2. CLOCK_GET

Get node time and date.

Synopsis
clock_get(clock)
Input Parameters
<none>
Output Parameters
clock : clock_buff current time and date

Completion S8tatus

OK clock_get successful

INVALID PARAMETER a parameter refers to an invalid address

CLOCK_NOT_SET clock has not been initialized
Description

This operation returns the current date and time in the node clock.
If the node clock has not yet been set, then the CLOCK_NOT_SET
completion status is returned and the contents of clock are
undetermined. The exact structure of the clock_buff data returned is
language binding dependent.

Open Real-time Kernel Interface Definition Page 78
Draft 2.1

11.3. CLOCK TICK

Announce a tick to the clock.

8ynopsis
clock_tick()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
OK clock_tick successful
Description
This operation increments the current node time by one tick. There
are no parameters and the operation always succeeds. Nevertheless, the
operation can be meaningless if the clock was not initialized

beforehand. Every node must contain a mechanism which keeps the node
clock up to date by calling upon clock_tick.

Open Real-time Kernel Interface Definition Page 79
Draft 2.1

12. TIMERS

ORKID defines two types of timers. The first type is the sleep timer.
This type allows a task to sleep either for a given period, or up
until a given time, and then wake and continue. Obviously a task can
set only one such timer in operation at a time, and once set, it
cannot be cancelled. These timers have no identifier.

The second type of timer is the event timer. This type allows a task
to send events to itself either after a given period or at a given
time. A task can have more than one event timer running at a time.
Each event timer is assigned an identifier by the kernel when the
event is set. This identifier can be used to cancel the timer.

Timers are purely local objects. They affect only the calling task,
either by putting it to sleep or sending it events. Timers exist only
while they are running. When they expire or are cancelled, they are
deleted from the kernel data structure.

Open Real-time Kernel Interface Definition Page 80
Draft 2.1

12.1. TIMER_WAKE_AFTER

Wake after a specified time interval.

S8ynopsis

timer_wake_after(ticks)
Input Parameters

ticks : integer number of ticks to wait
Output Parameters

<none>

Completion Status

OK timer_wake_after successful
ILLEGAL_USE timer_wake_after not callable from ISR
Description

This operation causes the calling task to be blocked for the given
number of ticks. The task is woken after this interval has expired,
and is returned a successful completion status. If the node clock is
set using the clock_set operation during this interval, the number of
ticks left does not change.

Open Real-time Kernel Interface Definition Page 81
Draft 2.1

12.2. TIMER WAKE_WHEN

Wake at a specified wall time and date.

S8ynopsis

timer_wake_when(clock)
Input Parameters

clock ¢ clock_buff time and date to wake
Output Parameters

<none>

Completion Status

OK timer_wake_when successful

ILLEGAL_ USE timer wake_when not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_CLOCK invalid clock value

CLOCK_NOT_SET clock has not been initialized
Description

This operation causes the calling task to be blocked up until a given
date and time. The task is woken at this time, and is returned a
successful completion status. The kernel checks the supplied
clock_buf data for validity. The exact structure of that data is
language binding dependent.

If the node clock is set while the timer is running, the wall time at
which the task is woken remains valid. If the node time is set to after
the timer wake time, then the timer is deemed expired and the task is
woken immediately and returned a successful completion status.

Open Real-time Kernel Interface Definition Page 82
Draft 2.1

12.3. TIMER_EVENT_AFTER

Send event after a specified time interval.

Ssynopsis
timer_event_after(ticks, event, tmid)
Input Parameters

ticks : integer number of ticks to wait
event : bit_field event to send

Output Parameters
tmid : timer_id kernel defined timer identifier

Completion Status

OK timer_event_after successful
ILLEGAL_USE timer event after not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
TOO_MANY OBJECTS too many timers on the node

Description

This operation starts an event timer which will send the given events
to the calling task after the specified number of ticks. The kernel
returns an identifier which can be used to cancel the timer. If the
node clock is set using the clock_set operation during this interval,
the number of ticks left does not change.

Open Real-time Kernel Interface Definition Page 83
Draft 2.1

12.4. TIMER_EVENT_WHEN

Send event at the specified wall time and date.

Ssynopsis
timer event_when(clock, event, tmid)
Input Parameters

clock ¢ clock buff time and date to send event
event : bit_field event(s) to send

Output Parameters
tmid ¢ timer_id kernel defined timer identifier

Completion S8tatus

OK timer event_when successful

ILLEGAL_USE timer_event_when not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_CLOCK invalid clock value

TOO MANY OBJECTS too many timers on the node

CLOCK_NOT_SET clock has not been initialized
Description

This operation starts an event timer which will send the given events
to the calling task at the given date and time. The kernel returns an
identifier which can be used to cancel the timer.

If the node clock is set while the timer is running, the wall time at
which the envent(s) are sent remains valid. If the node time is set to
after the value specified in the clock parameter, then the timer is
deemed expired and the events are sent to the calling task immediately.

Open Real-time Kernel Interface Definition Page 84
Draft 2.1

12.5. TIMER_EVENT_EVERY

Send periodic event.

8ynopsis
timer_event_every(ticks, event, tmid)
Input Parameters

ticks ¢ integer number of ticks to wait between events
event : bit_field event to send

Output Parameters
tmid ¢ timer_id kernel defined timer identifier

Completion Status

OK timer_event_every successful
ILLEGAL_USE timer_event_every not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
TOO_MANY_ OBJECTS too many timers on the node

Description

This operation starts an event timer which will periodically send the
given events to the calling task with the periodicity specified by the
number of ticks. The kernel returns an identifier which can be used to
cancel the timer. If the node clock is set using the clock_set
operation during the life time of the timer, the number of ticks left
until the next event does not change.

Observation:

This provides a drift-free mechanism for sending an event at periodic
intervals.

Open Real-time Kernel Interface Definition Page 85
Draft 2.1

12.6. TIMER_CANCEL

Cancel a running event timer.

8ynopsis

timer cancel(tmid)
Input Parameters

tmid : timer_id kernel defined timer identifier
Output Parameters

<none>

Completion Status

OK timer_cancel successful

ILLEGAL USE timer_cancel not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ ID timer does not exist

OBJECT_DELETED originally existing timer expired or has

been canceled before operation
Description

This operation cancels an event timer previously started using the
timer_event_after, timer_event_ when or timer_ event_every operations.

Open Real-time Kernel Interface Definition Page 86
Draft 2.1

13. INTERRUPTS

ORKID defines two operations which bracket interrupt service code. It
is up to each implementor to decide what functionality to put in these
operations.

Observation:

The kernel may use int_enter and int_return to distinguish if Interrupt
Service Routine code or task code is being executed. Typically
int_return will be useed to decide if a scheduling action must take
place in kernels with preemptive scheduling.

