Open Real-time Kernel Interface Definition Page 37
Draft 2.1

5.4. REGION GET SEG

Get a segment from a region.

Synopsis
region_get_seg(rid, seg _size, seg_addr)
Input Parameters

rid : region_id kernel defined region id
seg_size : integer requested segment size in bytes

Output Parameters
seg_addr ¢ address address of obtained segment

Completion Status

OK reglon get_seg successful

ILLEGAL USE region_ get seg not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ID region does not exist

OBJECT_DELETED -originally existing region has been
deleted before operation

NO_MORE_MEMORY not enough contiguous memory in the
reglon to allocate segment of requested
size

Description

The reglon get seg operation requests a given sized segment from a
given region's free memory. If the kernel cannot fulfil the request
immediately, it returns the completlon status NO_MORE MEMORY, otherwise
the address of the allocated segment is passed back in seg_ addr. The
allocation algorithm is implementation dependent.

Note that the actual size of the segment returned will be more than
the size requested, if the latter is not a multiple of the region's
granularity.

Open Real-time Kernel Interface Definition bPage 38
Draft 2.1

5.5. REGION_RET SEG

Return a segment to its region.

Synopsis
region_ret_seg(rid, seg_addr)
Input Parameters

rid ¢ region_id kernel defined region id
seg_addr ¢ address address of segment to be returned

Output Parameters
<none>

Completion 8tatus

OK region_ret_seg successful

ILLEGAL_USE region_ret_seg not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID region does not exist

OBJECT_DELETED originally existing region has been
deleted before operation

INVALID_ SEGMENT no segment allocated from this region at
seg_addr

Description

This operation returns the given segment to the given region's free
memory. The kernel checks that this segment was previously allocated
from this region, and returns INVALID_SEGMENT if it wasn't.

Open Real-time Kernel Interface Definition Page 39
Draft 2.1

5.6. REGION_INFO

Obtain information on a region.

S8ynopsis

region_info(rid, size, max_segment, granularity, options)
Input Parameters

rid ¢ region_id kernel defined region id

Output Parameters

size : integer length in bytes of cverall area in region
available for segment allocation
max segment: integer length in bytes of maximum segment
- allocatable at time of call
granularity: integer allocation granularity in bytes
options : bit_field region create options

Completion S8tatus

OK region_info successful

ILLEGAL USE region_info not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
INVALID ID region does not exist

OBJECT_DELETED originally existing region has been

deleted before operation
Description

This operation provides information on the specified region. It returns
the size in bytes of the reglon s area for segment allocation, which
may be smaller than the region length given in reglon create due to a
possible formatting overhead. It returns also the size in bytes of the
biggest segment allocatable from the region. This value should be used
with care as it is just a snap-shot of the region's usage at the time
of executing the operation. Finally it returns the region's allocation
granularity and options.

Open Real-time Kernel Interface Definition Page 40
Draft 2.1

6. POOLS

A pool is an area of memory within a shared memory subsystem which is
organized by the kernel into a collection of fixed size buffers. The
area of memory to become a pool is declared to the kernel by a task
when the pool is created, and is thereafter managed by the kernel until
it is explicitly deleted by a task. The task also specifies the size of
the buffers to be allocated from the pool. Any restrictions imposed on
the buffer size are implementation dependent.

Pools are simpler structures than regions, and are intended for use
where speed of allocation is essential. Pools may also be declared
global, and be operated on from more than one node. However, this makes
sense only if the nodes accessing the pool are all in the same shared
memory subsystem, and the pool is in shared memory.

Once the pool has been created, tasks may request buffers one at a time
from it, and can return them in any order. Because the buffers are all
the same size, there is no fragmentation problem in pools. The exact
allocation algorithms are implementation dependent. Addresses of
buffers obtained via pool_get buff are translated to the callers
address map for immediate use.

Observation:

Buffer addresses passed from one node to another in e.g. a message have
to be explicitly translated by the sender via int_to_ext and by the
receiver via ext_to_int.

Open Real-time Kernel Interface Definition Page 41
Draft 2.1

6.1. POOL_CREATE

Create a pool.

Ssynopsis
pool_create(name, addr, length, buff size, options, pid)

Input Parameters

name ¢ string user defined pool name
addr ¢ address start address of pool
length ¢ integer length of pool in bytes
buff size : integer pool buffer size in bytes
options : bit_field pool create options

Output Parameters
pid ¢ pool_id kernel defined pool identifier
Literal vValues

options + GLOBAL pool is global within the shared memory
subsysten
+ FORCED_DELETE deletion will go ahead even if there are
unrealeased buffers

Completion Status

OK pool_create successful

ILLEGAL_USE pool_create not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ BUFF_SIZE buff size not supported

INVALID OPTIONS invalid options value

TOO_MANY_ OBJECTS too many pools on the node or in the

system

POOL_OVERLAP area given overlaps an existing pool

Description

This operation declares an area of memory to be organized as a pool by
the kernel. The process of formatting the memory to operate as a pool
may require a memory overhead which may be taken from the new pool. It
can never be assumed that all of the memory in the pool will be
available for allocation. The overhead percentage will be
implementation dependent.

The FORCED_DELETE option governs the deletion possibility of the pool
(see 6.2 pool_delete).

Open Real-time Kernel Interface Definition Page 42

Draft 2.1

6.2. POOL_DELETE

Delete a pool.

8ynopsis

pool_delete(pid)
Input Parameters

pid ¢ pool_id
Output Parameters

<none>

Completion Status
OK
ILLEGAL USE
INVALID PARAMETER
INVALID_ID
OBJECT_DELETED
POOL_IN USE

OBJECT_NOT_LOCAL

Description

kernel defined pool identifier

pool_delete successful

pool_delete not callable from ISR

a parameter refers to an invalid address
pool does not exist

originally existing pool has been deleted
before operation

buffers from this pool are still
allocated

pool_delete not allowed on non-local
pools

Unless the FORCED DELETE option was specified at creation, this
operation first checks whether the pool has any buffers which have not
been returned. If this is the case, then the POOL_IN USE completion

status is returned. If not,

and in any case if FORCED DELETE was

specified, then the pool is deleted from the kernel data structure.

Open Real-time Kernel Interface Definition Page 43
Draft 2.1

6.3. POOL_IDENT

Obtain the identifier of a pool on a given node with a given name.
Ssynopsis

pool_ident(name, nid, pid)
Input Parameters

name : string user defined pool name
nid ¢ node_id node identifier

Output Parameters
pid : pool_id kernel defined pool identifier
Literal Values

nid LOCAL NODE the node containing the calling task

OTHER_NODES all nodes in the system except the local

node
= ALL_NODES all nodes in the system
Completion 8tatus
OK pool_ident successful
ILLEGAL_USE pool_ident not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME NOT_ FOUND pool does not exist on node
NODE_NOT_REACHABLE node is not reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a pool with the given name, and returns its identifier if
found. If OTHER_NODES or ALL NODES is specified, the node search order
is implementation dependent. If there is more than one pool with the
same name, then the pid of the first one found is passed back.

Observation:

This operation may return the pid of a GLOBAL pool that is not in the
same shared memory subsystem as the node containing the calling task.

Open Real-time Kernel Interface Definition Page 44
Draft 2.1

6.4. POOL_GET BUFF

Get a buffer from a pool.

Synopsis

pool_get_buff(pid, buff_ addr)
Input Parameters

pid ¢ pool_id kernel defined pool identifier
Output Parameters

buff addr : address address of obtained buffer

Completion Status

OK pool_get_buff successful

ILLEGAL_USE pool_get_buff not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID pool does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

NO_MORE_MEMORY no more buffers available in pool

POOL_NOT_SHARED pool not in shared memory subsystem

NODE_NOT_REACHABLE node on which pool resides is not
reachable

Description

The pool_get buff requests for a single buffer from the pool's free
memory. If the kernel cannot immediately fulfil the request, it returns
the completion status NO_MORE_MEMORY, otherwise the address of the
allocated buffer is returned. The exact allocation algorithm is
implementation dependent.

Open Real-time Kernel Interface Definition Page 45

Draft 2.1

6.5. POOL_RET BUFF

Return a buffer to its pool.

8ynopsis

pool_ret_buff(pid, buff_ addr)

Input Parameters

pid : pool_id
buff addr : address

Output Parameters
<none>

Completion Status
OK
ILLEGAL USE
INVALID PARAMETER
INVALID_ID
OBJECT_DELETED

POOL_NOT_SHARED
INVALID_ BUFF

NODE_NOT REACHABLE

Description

kernel defined pool identifier
address of buffer to be returned

pool_ret_ buff successful

pool_ret buff not callable from ISR

a parameter refers to an invalid address
pool does not exist

originally existing pool has been deleted
before operation

pool not in shared memory sybsystem

no buffer allocated from pool at

buff addr

node on which pool resides is not
reachable

This operation returns the given buffer to the given pool's free space.
The kernel checks that the buffer was previously allocated from the
pool and returns INVALID_ BUFF if it wasn't.

Open Real-time Kernel Interface Definition Page 46

Draft 2.1

6.6. POOL_INFO

Obtain information on a pool.

S8ynopsis

pool_info(pid, buffers, free_buffers, buff size, options)

Input Parameters
pid ¢ pool-id

Output Parameters

buffers : integer
free_buffers: integer
buff size : integer
options : bit_field

Completion status

OK
ILLEGAL USE
INVALID_ PARAMETER
INVALID_ID

OBJECT DELETED

NODE_NOT_REACHABLE

Description

kernel defined pool identifier

number of buffers in the pool
number of free buffers in the pool
pool buffer size in bytes

pool create options

pool_info successful

pool_info not callable from ISR

a parameter refers to an invalid address
pool does not exist

originally existing pool has been deleted
before operation

node on which the pool resides is not
reachable

This operation provides information on the specified pool. It returns
its overall number of buffers, the number of free buffers in the pool,
its buffer size in bytes and options. The number of free buffers in the
pool should be used with care as it is just a snap-shot of the pools's
usage at the time of executing the operation.

Open Real-time Kernel Interface Definition Page 47
Draft 2.1

7. SEMAPHORES

The semaphores defined in ORKID are standard Dijkstra counting
semaphores. Semaphores provide for the fundamental need of
synchronization in multi-tasking systems, i.e. mutual exclusion,
resource management and sequencing.

Semaphore Behavior
The following should not be understood as a recipe for implementations.

During a sem_claim operation, the semaphore count is decremented by
one. If the resulting semaphore count is greater than or equal to zero,
then the calling task continues to execute. If the count is less than
zero, the task blocks from processor usage and is put on a waiting
queue for the semaphore. During a sem release operation, the semaphore
count is incremented by one. If the resultlng semaphore count is less
than or equal to zero, then the first task in the waiting queue for
this semaphore is unblocked and is made eligible for processor usage.

S8emaphore Usage

Mutual exclusion is achieved by creatlng a counting semaphore with an
initial count of one. A resource is guarded with this semaphore by
requiring all operations on the resource to be proceeded by a sem_claim

operation. Thus, if one task has claimed a resource, all other tasks
requiring the resource will be blocked until the task releases the
resource with a sem_release operation.

In situations where multiple copies of a resource exist, the semaphore
may be created with an initial count equal to a number of copies. A
resource is claimed with the sem claim operation. When all available
copies of the resource have been claimed, a task requlrlng the resource
will be blocked until return of one of the claimed copies is announced
by a sem_release operation.

Sequencing is achieved by creating a semaphore with an initial count of
zero. A task may pend the arrival of another task by performing a

sem claim operation when it reaches a synchronlzatlon point. The other
task performs a sem_release operation when it reaches its
synchronization point, unblocking the pending task.

8emaphore Options
ORKID defines the following option symbols, which may be combined.

+ GLOBAL Semaphores created with the GLOBAL option set are
visible and accessible from any node in the system.

+ FIFO Semaphores with the FIFO option set enter additional
tasks at the end of their waltlng queue. Without this
option, the tasks are enqueued in order of task
priorlty. ORKID does not require reorderlng of semaphore
waiting queues when a waiting task has his priority
changed.

Open Real-time Kernel Interface Definition

Draft 2.1

7.1. SEM_CREATE

Create a semaphore.

8ynopsis

Page 48

sem_create(name, init_count, options, sid)

Input Parameters

name : string
init_count : integer
options : bit_field

Output Parameters

sid : sem_id
Literal Values

options + GLOBAL

+ FIFO

Completion Status

OK
ILLEGAL_USE
INVALID_PARAMETER
INVALID_COUNT
INVALID_OPTIONS
TOO_MANY OBJECTS

Description

user defined semaphore name
initial semaphore count
semaphore create options

kernel defined semaphore identifier

the new semaphore will be visible
throughout the system

tasks will be queued in first in first
out order

sem_create successful

sem_create not callable from ISR

a parameter refers to an invalid address
initial count is negative

invalid options value

too many semaphores on the node or in the
system

This operation creates a new semaphore in the kernel data structure,
and returns its identifier. The semaphore is created with its count at
the value given by the init_count parameter. The task queue, 1n1t1a11y
empty, will be ordered by task prlorlty, unless the FIFO option is set,
in which case it will be first in first out.

Open Real-time Kernel Interface Definition Page 49

Draft 2.1

7.2. SEM_DELETE

Delete a semaphore.

S8ynopsis
sem_delete(sid)
Input Parameters
sid : sem_id
Output Parameters
<none>
Completion S8tatus
OK
ILLEGAL_USE
INVALID_ PARAMETER
INVALID_ID
OBJECT_ DELETED

OBJECT_NOT_LOCAL

Description

kernel defined semaphore identifier

sem_delete successful

sem_delete not callable from ISR

a parameter refers to an invalid address
semaphore does not exist

originally existing semaphore has been
deleted before operation

sem_delete not allowed on non-local
semaphore

The sem_delete operation deletes a semaphore from the kernel

data structure. The semaphore is deleted immediately, even though there
are tasks waiting in its queue. These latter are all unblocked and are
returned the SEMAPHORE DELETED completion status.

Open Real-time Kernel Interface Definition Page 50
Draft 2.1

7.3. SEM _IDENT

Obtain the identifier of a semaphore on a given node with a given
name.

Synopsis
sem_ident(name, nid, sid)
Input Parameters

name ¢ string user defined semaphore name
nid ¢ node_id node identifier

Output Parameters
sid : sem_id kernel defined semaphore identifier
Literal values

nid

LOCAL_NODE the node containing the calling task
OTHER_NODES all nodes in the system except the local

node
= ALL NODES all nodes in the system
Completion S8tatus
OK sem_ident successful
ILLEGAL USE sem_ident not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME NOT_FOUND semaphore does not exist on node
NODE_NOT_ REACHABLE node is not reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a semaphore with the given name, and returns its
identifier if found. If OTHER_NODES or ALL NODES is specified, the node
search order is implementation dependent. If there is more than one
semaphore with the same name in the node(s) specified, then the sid of
the first one found is returned.

Open Real-time Kernel Interface Definition Page 51
Draft 2.1

7.4. SEM_CLAIM
Claim a semaphore (P operation).
8ynopsis

sem_claim(sid, options, time_out)

Input Parameters

sid ¢ sem_id kernel defined semaphore identifier
options : bit_field semaphore wait options
time_out : integer ticks to wait before timing out

Output Parameters
<none>

Literal values

options + NOWAIT do not wait - return immediately if
semaphore not available
time_out = FOREVER wait forever - do not time out

Completion Status

OK sem_claim successful

ILLEGAL USE sem_claim not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID semaphore does not exist

OBJECT_DELETED originally existing semaphore has been
deleted before operation

TIME_OUT sem_claim timed out

SEMAPHORE_DELETED semaphore deleted while blocked in

sem claim
SEMAPHORE NOT AVAILABLE semaphore unavailable with NOWAIT option

SEMAPHORE_UNDERFLOW semaphore counter underflowed
NODE_NOT_ REACHABLE node on which semaphore resides is not
- reachable
Description

This operation performs a claim from the given semaphore. It first
checks if the NOWAIT option has been specified and the counter is zero
or less, in which case the SEMAPHORE NOT AVAILABLE completion status
is returned. Otherwise, the counter 1Is decreased. If the counter is
now zero or more, then the claim is successful, otherwise the calling
task is put on the semaphore queue. If the counter underflowed the
SEMAPHORE UNDERFLOW completion status is returned. If the semaphore is
deleted while a task is waiting on its queue, then the task is
unblocked and the sem claim operation returns the SEMAPHORE DELETED
completion status to the task. Otherwise the task is blocked either
until the timeout expires, in which case the TIME OUT completion status
is returned, or until the task reaches the head of the queue and
another task performs a sem_release operation on this semaphore,
leading to the return of the successful completion status.

Open Real-time Kernel Interface Definition Page 52
Draft 2.1

7.5. SEM _RELEASE

Release a semaphore (V operation).

S8ynopsis

sem_release(sid)
Input Parameters

sid : sem_id kernel defined semaphore identifier
Output Parameters

<none>

Completion Status

OK sem_release successful

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ID semaphore does not exist

OBJECT_DELETED originally existing semaphore has been
deleted before operation

SEMAPHORE OVERFLOW semaphore counter overflowed

NODE_NOT_REACHABLE node on which semaphore resides is not
reachable

Description

This operation increments the semaphore counter by one. If the
resulting semaphore count is less than or equal to zero then the first
task in the semaphore queue is unblocked, and returned the successful
completion status. If the counter overflowed the SEMAPHORE_OVERFLOW
completion status is returned.

Open Real-time Kernel Interface Definition Page 53

Draft 2.1

7.6. SEM_INFO

Obtain information on a semaphore.

S8ynopsis

sem_info(sid, options, count, tasks_waiting)

Input Parameters
sid : sem-id

Output Parameters

options : bit_field
count : integer
tasks_waiting: integer

Completion Status

OK

ILLEGAL_USE
INVALID PARAMETER
INVALID_ID

OBJECT DELETED

NODE_NOT_ REACHABLE

Description

kernel defined semaphore identifier

semaphore create options
semaphore count at time of call
number of tasks waiting in the semaphore

gueue

sem_info successful

sem_info not callable from ISR

a parameter refers to an invalid address
semaphore does not exist

originally existing semaphore has been
deleted before operation

node on which semaphore resides is not
reachable

This operation provides information on the specified semaphore. It
returns its create options, the value of it's counter, and the number
of tasks waiting on the semaphore queue. The latter two values should
be used with care as they are just a snap-shot of the semaphore's
state at the time of executing the operation.

Open Real-time Kernel Interface Definition Page 58
Draft 2.1

8.3. QUEUE_IDENT

Obtain the identifier of a queue on a given node with a given name.

Synopsis
queue_ident(name, nid, qid)
Input Parameters

name ¢ string user defined queue name
nid ¢ node_id node identifier

Output Parameters
gid ¢ queue_id kernel defined queue identifier

Literal Values

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
= ALL_NODES all nodes in the system
Completion Status
OK queue_ident successful
ILLEGAL_USE queue_ident not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME NOT_FOUND queue name does not exist on node
NODE_NOT_ REACHABLE node is not reachable

Description

This operation searches the kernel data structure in the node(s)
specified for a queue with the given name, and returns its identifier
if found. If OTHER_NODES or ALL NODES is spe01f1ed the node search
order is 1mp1ementat10n dependent. If there is more than one queue with
the same name in the node(s) specified, then the gid of the first one
found is returned.

Open Real-time Kernel Interface Definition Page 59
Draft 2.1

8.4. QUEUE SEND

Send a message to a given queue.

Synopsis
queue_send(qid, msg_buff, msg_length)

Input Parameters

gid ¢ gueue_id kernel defined queue identifier
msg_buff ¢ address message starting address
msg_length : integer length of message in bytes

Output Parameters
<none>

Completion S8tatus

OK queue_send successful

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID queue does not exist

OBJECT_DELETED originally existing queue has been
deleted before operation

INVALID_ LENGTH message length greater than queue's
buffer length

QUEUE_FULL no more buffers available

NODE_NOT_REACHABLE node on which queue resides is not
reachable

Description

This operations sends a message to a gqueue.

If the queue's wait queue contains a number of tasks waiting on
messages, then the message is delivered to the task at the head of the
wait queue. This task is then removed from the wait queue, unblocked
and will be returned a successful completion status along with the
message. Otherwise the message is appended at the end of the queue.

If the maximum queue length has been reached, then the QUEUE_FULL
completion status is returned.

Open Real-time Kernel Interface Definition Page 60
Draft 2.1

8.5. QUEUE JUMP

Send a message to the head of a given queue.

S8ynopsis
queue_jump(qid, msg_buff, msg_length)

Input Parameters

gid ¢ queue_id kernel defined queue identifier
msg_buff ¢ address message starting address
msg_length : integer length of message in bytes

Output Parameters
<none>

Completion S8tatus

OK gueue_jump successful

INVALID PARAMETER a parameter refers to an invalid address

INVALID ID gueue does not exist

OBJECT_DELETED originally existing queue has been
deleted before operation

INVALID_LENGTH message length greater than queue's
buffer length

QUEUE_FULL no more buffers available

NODE_NOT_ REACHABLE node on which queue resides is not
reachable

Description

This operations sends a message to the head of a queue.

If the queue's wait queue contains a number of tasks waiting on
messages, then the message is delivered to the task at the head of the
wait queue. This task is then removed from the wait queue, unblocked
and will be returned a successful completion status along with the
message. Otherwise the message is prepended at the head of the queue.

If the maximum queue length has been reached, then the QUEUE_FULL
completion status is returned.

Open Real-time Kernel Interface Definition Page 61
Draft 2.1

8.6. QUEUE_BROADCAST

Broadcast message to all tasks blocked on a queue.

8ynopsis
queue_broadcast(gid, msg_buff, msg_length, count)

Input Parameters

gid ¢ queue_id kernel defined queue identifier
msg_buff ¢ address message starting address
msg_length : integer message length in bytes

Output Parameters
count : integer number of unblocked tasks

Completion Status

OK queue_broadcast successful
ILLEGAL USE queue_broadcast not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID queue does not exist
OBJECT DELETED originally existing queue has been
- deleted before operation
INVALID_ LENGTH message length greater than queue's
buffer length
NODE NOT REACHABLE node on which queue resides is not
- reachable
Description

This operation sends a message to all tasks waiting on a queue.

If the wait queue is empty, then no messages are sent, no tasks are
unblocked and the count passed back will be zero. If the wait queue
contains a number of tasks waiting on messages, then the message is
delivered to each task in the wait queue. All tasks are then removed
from the wait queue, unblocked and returned a successful completion
status. The number of tasks unblocked is passed back in the count
parameter.

This operation is atomic with respect to other operations on the queue.

Open Real-time Kernel Interface Definition Page 62

Draft 2.1

8.7. QUEUE_RECEIVE

Receive a message from a queue.

S8ynopsis

queue_receive(qid, msg_buff, buff length, options, time out,

msg_length)

Input Parameters

gid ¢ qQueue_id
msg_buff ¢ address
buff length: integer
options : bit_field
time_out : integer

Output Parameters
msg_length : integer
Literal values

options + NOWAIT

time_out = FOREVER
Completion Status

OK

ILLEGAL USE
INVALID_ PARAMETER
INVALID ID
OBJECT_DELETED

INVALID_ LENGTH
INVALID OPTIONS
TIME_ OUT
QUEUE_DELETED
QUEUE_EMPTY
NODE_NOT_REACHABLE

Description

kernel defined queue identifier
starting address of receive buffer
length of receive buffer in bytes
qgueue receive options

ticks to wait before timing out

received message length in bytes

do not wait - return immediately if no
message in queue

wait forever - do not time out

queue_receive successful
queue_receive not callable from ISR
a parameter refers to an invalid address
qgueue does not exist

originally existing queue has been
deleted before operation

receive buffer smaller than queue's
message buffer

invalid options value

qgueue-receive timed out

queue deleted while blocked in
queue_receive

gueue empty with NOWAIT option

node on which queue resides is not
reachable

This operation receives a message from a given queue. The operation
first checks if the receive buffer is smaller than the queue's message
buffer. If this is the case the INVALID LENGTH completion status is

returned.

Otherwise, if there are one or more messages on the queue, then the
message at the head of the queue is removed and copied into the receive

