Open Real-time Kernel Interface Definition Page 25
Draft 2.1

4.5. TASK RESTART

Restart a task.
8ynopsis

task_restart(tid, arguments)
Input Parameters

tid : task_id kernel defined identifier
arguments : * arguments passed to task

Output Parameters
<none>
Literal values
tid = SELF the calling task restarts itself.

Completion S8tatus

OK task_restart successful
ILLEGAL USE task_restart not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID task does not exist
OBJECT DELETED originally existing task has been deleted
- before operation

INVALID ARGUMENTS invalid number or type or size of

- arguments
TASK_NOT_STARTED task has not yet been started
OBJECT_PROTECTED task in NOTERMINATION mode
NODE_NOT_REACHABLE node on which task resides is not

reachable
Description

The task _restart operation interrupts the current thread of execution
of the specified task and forces the task to restart at the address
given in the task_start call which originally started the task. The
stack pointer is reset to its original value. No assumption can be made
about the original content of the stack at this time. The task restarts
executing with the priority and mode specified at task_create. All
event and exception latches are clared and no XSRs are defined.

Any resources allocated to the task are not affected during the
task_restart operation. The tasks themselves are responsible for the
proper management of such resources through task_restart.

If the task's active mode has the parameter NOTERMINATION set, then the
task will not be restarted and the completion status OBJECT_PROTECTED
will be returned.

* The specification of the number and type of the arguments is language
binding dependent.

Open Real-time Kernel Interface Definition

Draft 2.1

4.6. TASK SUSPEND

Suspend a task.

Synopsis
task_suspend(tid)
Input Parameters
tid : task_id
Output Parameters
<none>
Literal Values
tid = SELF
Completion Status
OK
INVALID_ PARAMETER
INVALID ID
OBJECT_DELETED

OBJECT PROTECTED

TASK ALREADY SUSPENDED

NODE_NOT_REACHABLE

Description

Page 26

kernel defined task identifier

the calling task suspends itself.

task_suspend successful

a parameter refers to an invalid address
task does not exist

originally existing task has been deleted
before operation

task in NOPREEMPT mode

task already suspended

node on which task resides is not
reachable

This operation temporarily suspends the specified task until the
suspension is lifted by a call to task_resume. While it is suspended,
a task cannot be scheduled to run.

If the task's active mode has the parameter NOPREEMPT set the operation
will fail and return the completion status OBJECT_PROTECTED, unless the
task suspends itself. In which case the operation will always be

successful.

Open Real-time Kernel Interface Definition Page 27

Draft 2.1

4.7. TASK RESUME

Resume a suspended task.

S8ynopsis
task_resume(tid)
Input Parameters
tid : task_id
Output Parameters
<none>
Completion S8tatus
OK
INVALID_ PARAMETER
INVALID_ID
OBJECT_DELETED
TASK_NOT_SUSPENDED
NODE . _NOT__ “REACHABLE

Description

kernel defined task identifier

task_resume successful

a parameter refers to an invalid address
task does not exist

originally existing task has been deleted
before operation

task not suspended

node on which task resides is not
reachable

The task_resume operation lifts the task's suspension immediately after
the point at which it was suspended. The task must have been
suspended with a call to the task_suspend operation.

Open Real-time Kernel Interface Definition

Draft 2.1

4.8. TASK SET PRIORITY

Set priority of a task.

8ynopsis

Page 28

task_set_priority(tid, new_prio, old prio)

Input Parameters

tid ¢ task_id
new_prio : integer

Output Parameters
old_prio : integer
Literal values

tid
new_prio

SELF
CURRENT

Completion Status

OK

ILLEGAL USE
INVALID PARAMETER
INVALID_ID
OBJECT_DELETED

INVALID_ PRIORITY
NODE_NOT REACHABLE

Description

kernel defined task id
task's new priority

task's previous priority

the calling task sets its own prlorlty
there will be no change in priority.

task_set priority successful

task_set priority not callable from ISR
a parameter refers to an invalid address
task does not exist

originally existing task has been deleted
before operation

invalid priority value

node on which task resides is not
reachable

This operatlon sets the priority of the specified task to new_prio.
The new_prio parameter is specified as CURRENT if the calling task
merely wishes to find out the current value of the specified task's
priority (see also 4. Task Priority).

Open Real-time Kernel Interface Definition Page 29
Draft 2.1

4.9. TASK SET_MODE

Set mode of own task.

S8ynopsis
task_set_mode(new_mode, mask, old_mode)
Input Parameters

new_mode : bit_field new task mode settings
mask : bit_field significant bits in mode

Output Parameters
cld_mode : bit_field task's previous mode

Literal Values

new mode + NOXSR XSRs cannot be activated
- + NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT task cannot be interrupted
= ZERO no mode parameter set
old_mode same as new_mode
mask + NOXSR change XSR mode bit
+ NOTERMINATION change NOTERMINATION mode bit
+ NOPREEMPT change NOPREEMPT mode bit
+ NOINTERRUPT change NOINTERRUPT mode bit
= ALL change all mode bits
= ZERO change no mode bits

Completion Status

OK task_set_mode successful
ILLEGAL_USE task_set_mode not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_MODE invalid mode or mask value

Description

This operation sets a new active mode for the task or its XSR. If
called from a task's XSR then the XSR mode is changed, otherwise the
main task's mode is changed.

The mode parameters which are to be changed are given in mask. If a
parameter is to be set then it is also given in mode, otherwise it is
left out. For both mask and mode, the logical OR (!) of the symbolic
values for the mode parameters are passed to the operation.

For example, to clear NOINTERRUPT and set NOPREEMPT, mask =
NOINTERRUPT ! NOPREEMPT, and mode = NOPREEMPT. To return the current
mode without altering it, the mask should simply be set to ZERO.

Open Real-time Kernel Interface Definition bPage 30

Draft 2.1

4.10. TASK READ NOTE_PAD

Read one of a task's note-pad locations.

S8ynopsis

task_read note_pad(tid, loc_number, loc_value)

Input Parameters

tid ¢ task_id
loc_number : integer

Output Parameters
loc_value : word
Literal Values
tiad = SELF
Completion Status
OK
INVALID PARAMETER
INVALID_ID
OBJECT_DELETED
INVALID_ LOCATION
NODE_NOT REACHABLE

Description

kernel defined task id
note-pad location number

note-pad location value
the calling task reads its own note-pad

task_read_note_pad successful

a parameter refers to an invalid address
task does not exist

originally existing task has been deleted
before operation

note-pad number does not exist

node on which task resides is not
reachable

This operation returns the value contained in the specified note-pad
location of the task identified by tid (see also 4. Task Note-Pads).
ORKID compliant kernels have a minimum of 16 note-pad locations,
indexed via loc_number starting at one.

Open Real-time Kernel Interface Definition Page 31

Draft 2.1

4.11. TASK_WRITE_NOTE_PAD

Write one of a task's note-pad locations.

Synopsis

task_write_note_pad(tid, loc_number, loc_value)

Input Parameters
tid : task_id
loc_number : integer
loc_value : word
Output Parameters
<none>

Literal values

tid = SELF

Completion S8tatus

OK
INVALID PARAMETER
INVALID_ ID
OBJECT_DELETED

INVALID LOCATION
NODE_NOT_ REACHABLE

Description

kernel defined task id
note-pad location number
note-pad location value

the calling task writes into its own
note-pad.

task_write_note pad successful

a parameter refers to an invalid address
task does not exist

originally existing task has been deleted
before operation

note-pad number does not exist

node on which task resides is not
reachable

This operation writes the specified value into the specified note-pad
location of the task identified by tid (see also 4. Task Note-Pads).
ORKID compliant kernels have a minimum of 16 note-pad locations,
indexed via loc_number starting at one.

Open Real-time Kernel Interface Definition Page 32
Draft 2.1

4.12 TASK_INFO

Obtain information on a task.

8ynopsis
task_info(tid, priority, mode, options, event, exception, state)
Input Parameters

tid : task_id kernel defined task id

Output Parameters

priority : integer task priority
mode : bit_field task mode
options : bit_field task options
event : bit_field event(s) latched for task
exception : bit field exception(s) latched for task
state : integer task's execution state
Literal Values
tid = SELF the calling task requests information on
: itself
state = RUNNING task is executing
READY task is ready for execution
BLOCKED task is blocked
SUSPENDED task is suspended

Completion Status

OK task_info successful

ILLEGAL _USE task_info not callable from ISR

INVALID_PARAMETER a parameter refers to an invalid address

INVALID_ID task does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

This operation provides information on the specified task. It returns
the task's priority, mode, options, event and exception latches and the
execution state. The latched bits in the task's event and exception
bit_fields are returned without interfering with the state of these
latches. The task execution state indicates the state from the
scheduler's point of view. If the task is blocked and subsequently
suspended the SUSPENDED state will be passed back. All return values
except options reflect the dynamic state of a task and should be used
with care as they are just snapshots of this state at the time of
executing the operation.

The operation, when called from an Exception Service Routine (XSR),
returns this XSR's mode.

Open Real-time Kernel Interface Definition Page 33
Draft 2.1

5. REGIONS

A region is an area of memory within a node which is organized by the
kernel into a collection of segments of varying size. The area of
memory to become a region is declared to the kernel by a task when the
region is created, and is thereafter managed by the kernel until it is
explicitly deleted by a task.

Each region has a granularity, defined when the region is created. The
actual size of segments allocated is always a multiple of the
granularity, although the required segment size is given in bytes.

Once a region has been created, a task is free to claim variable sized
segments from it and return them in any order. The kernel will do its
best to satisfy all requests for segments, although fragmentation may
cause a segment request to be unsuccessful, despite there being more
than enough total memory remaining in the region. The memory
management algorithms used are implementation dependent.

Regions, as opposed to pools, tasks, etc., are only locally accessible.
In other words, regions cannot be declared global and a task cannot
access a region on another node. This does not stop a task from using
the memory in a region on another node, for example in an area of
memory shared between the nodes, but all claiming of segments must be
done by a co-operating task in the appropriate node and the address
passed back. This address has to be explicitly translated by the sender
via int_to_ext and by the receiver via ext_to_int.

Observation:

Regions are intended to provide the first subdivisions of the
physical memory available to a node. These subdivisions may reflect
differing physical nature of the memory, giving for example a region
of RAM, a region of battery backed-up SRAM, a region of shared memory,
etc. Regions may also subdivide memory into areas for different uses,
for example a region for kernel use and a region for user task use.

Open Real-time Kernel Interface Definition Page 34
Draft 2.1

5.1. REGION_CREATE

Create a region.

8ynopsis
region_create(name, addr, length, granularity, options, rid)

Input Parameters

name ¢ string user defined region name

addr ¢ address start address of the region
length : integer length of region in bytes
granularity: integer allocation granularity in bytes
options : bit_field region create options

Output Parameters

rid ¢ region_id kernel defined region identifier
Literal values

options + FORCED_DELETE deletion will go ahead even if there are

unreleased segments
Completion Status

OK region_create successful

ILLEGAL USE region_create not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID GRANULARITY granularity not supported

INVALID_ OPTIONS invalid options value

TOO_MANY OBJECTS too many regions on the node

REGION_OVERLAP area given overlaps an existing region
Description

This operation declares an area of memory to be organized as a region
by the kernel. The process of formatting the memory to operate as a
region may require a memory overhead which may be taken from the new
region itself. It can never be assumed that all of the memory in the
region will be available for allocation. The overhead percentage will
be implementation dependent.

The FORCED_DELETE option governs the deletion possibility of the
region. (see 5.2. region_delete)

Open Real-time Kernel Interface Definition Page 35
pDraft 2.1

5.2. REGION DELETE

Delete a region.

8ynopsis
region_delete(rid)
Input Parameters
rid ¢ region_id kernel defined region identifier
Output Parameters
<none>
Literal Values

options + FORCED_DELETE deletion will go ahead even if there are
unreleased segments

Completion Status

OK reglon delete successful

ILLEGAL_USE region_delete not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_ID region does not exist

OBJECT_DELETED originally existing region has been
deleted before operation

REGION_IN_USE segments from this region are still
allocated

Description

Unless the FORCED DELETE option was spec1f1ed at creation, this
operation first checks whether the region has any segments which have
not been returned. If this is the case, then the REGION IN _USE
completion status is returned. If not, and in any case 1f FORCED _DELETE
was specified, then the region is deleted from the kernel data
structure.

Open Real-time Kernel Interface Definition Page 36
Draft 2.1

5.3. REGION IDENT

Obtain the identifier of a region with a given name.

8ynopsis
region_ident(name, rid)
Input Parameters
name ¢ string user defined region name
Output Parameters
rid : region_id kernel defined region identifier

Completion S8tatus

OK region_ident successful

ILLEGAL USE region_ident not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

NAME_NOT_FOUND region name does not exist on node
Description

This operation searches the kernel data structure in the local node for
a region with the given name, and returns its identifier if found. If
there is more than one region with the same name, the kernel will
return the identifier of the first one found.

