Open Real-time Kernel Interface Definition Page 1

Draft 2.1

FROM THE CHAIRMAN

Before you lies the draft of VITA's Open Real Time Interface
Definition, known as ORKID. This draft is the result of the activities
of a small working group under the auspices of the Software
Subcommittee of the VITA Technical Committee.

The members of the working group are:

Reed Cardo:za
Alfred Chao
Chris Eck
Wayne Fischer
John Fogelin
Zoltan Hunor
Kim Kempf

Hugh Maaskant
Dick Vanderlin

Eyring Research
Software Components
CERN

FORCE Computers
Wind River Systemns

VITA Europe (secretary)
Microware

Philips (chairman)
Motorola

I would like to thank these members for their efforts. Also I would
like to thank the companies they represent for providing the time and
expenses of these members. Without that support this draft would not

have been possible.

Eindhoven January 1990

Open Real-time Kernel Interface Definition Page 2
Draft 2.1

FOREWORD

The objective of the ORKID standard is to provide a state of the art
open real-time kernel interface definition that on one hand allows
users to create robust and portable code, while on the other hand
allowing implementors the freedom to profilate their compliant
product. Borderline conditions are that the standard:

- be implementable efficiently on a wide range of microprocessors,
- 1imposes no unnecessary hardware or software architecture,
- be open to future developments.

Many existing kernel products have been studied to gain insight in the
requlred functionality. As a result ORKID is, from a functional point
of view, a blend of these kernels. No radical new concepts have been
introduced because there would be no reasonable guarantee that these
could be implemented eff1c1ently. Also they would reduce the
likelihood of acceptance in the user community. This is not to say
that the functionality is meagre, on the contrary: a rich set of
objects and operations has been provided.

One issue still has to be addressed: that of MMU support. Clearly,

now that new microprocessors have integrated MMUs and hence the cost
and performance penalties of MMU support are diminishing, it will be
required in the near future. At this moment, however, it was felt that
more experience is needed with MMUs in real-time environments to
define a standard. It is foreseen that an addendum to this standard
will address MMU support.

Furthermore it is foreseen that a companion driver interface definition
will be published.

Open Real-time Kernel Interface Definition

Draft 2.1

TABLE OF CONTENTS

1. INTRODUCTION

2. ORKID CONCEPTS . . .
2.1. Environment .
2.2. ORKID Objects
2:3
2.4.
2:5,
2.6.
2.7.

NODES8

3.1. NODE_IDENT . .
3.2. NODE_FAIL . .
3.3. NODE_INFO . .
4. TASKS
4.1. TASK CREATE .
4.2. TASK DELETE .
4.3. TASK IDENT . .
4.4. TASK_START . .
4.5. TASK_RESTART .
4.6. TASK_SUSPEND .

4.7.
4.8.
4.9.

TASK . _RESUME

TASK SET MODE

TASK SET PRIORITY

4.10. TASK_READ _NOTE_PAD

4.11. TASK | WRITE NOTE __PAD

4.12. TASK_INFO. . .
REGIONS . . . s
5.1. REGION CREATE

5.2. REGION DELETE

5.3. REGION_IDENT .
5.4. REGION GET SEG
5.5. REGION RET SEG
5.6. REGION_INFO .

POOLS
6.1. POOL CREATE .
6.2. POOL DELETE .
6.3. POOL_IDENT .
6.4. POOL GET BLK .
6.5. POOL_RET BLK .
6.6. POOL_INFO . .

SEMAPHORES
7.1. SEM_CREATE .
7.2. SEM DELETE .
7.3. SEM_IDENT .
7.4. SEM CLAIM .
7.5. SEM_RELEASE
7.6. SEM_INFO . .

e o o e o o o e o o o o o o

e o o o o o o

Naming and Identlflcatlon
ORKID Operations
Multi-processing .
ORKID conformence
Layout of Operation Descriptions

e o o o o o o

e o o o o o o e o o o e o o e o e o e o e e o o o o e o o o e o o o o o o

e o o o o o o

e o o o o o o

e o e o o o e e o o o o o ® o o o o o o o o o o o o

. L] L] . L[] . .

® e o o o o e o o o o o

Page

® o e ©° o o o o o o o o

e e o e o o o o

e e o o

[y '
NROVOOAGRR U

14

16
17

18
21
22
23
24
25
26
27
28
29
30
31
32

33

35
36
37
38
39

40
41
42
43
44
45
46

47
48
49
50
51
52
53

Open Real-time Kernel Interface Definition
Draft 2.1

8. QUEUES . . .

8.1. QUEUE CREATE . . . ¢ « « ¢ o o o o« o o &
8.2. QUEUE DELETE . . . ¢ ¢ ¢ ¢ « « o o o o &
8.3. QUEUE_IDENT . . . ¢ ¢ « ¢ o « o o o o &
8.4. QUEUE SEND ¢ ¢ ¢ ¢ ¢ o o o o o &
8.5. QUEUE JUMP . . . ¢« ¢ ¢ o ¢ « o o o o« o &
8.6. QUEUE BROADCAST . . ¢ « ¢ o « o o o o &
8.7. QUEUE RECEIVE . . . ¢ ¢ ¢ ¢ o« o o o o o«
8.8. QUEUE FLUSH . . ¢ ¢ ¢ ¢« ¢ ¢ o o o o o =«
8.9. QUEUE_INFO . . . ¢ ¢ ¢ o ¢ o o o o o o o

9 . EVENTS . Ll Ll . L . . Ll . Ld . . Ld . .
9.1. EVENT_ SEND . . . ¢ ¢ ¢ ¢ ¢ o o o o o o o
9.2. EVENT RECEIVE ¢« ¢ ¢ « « « &

10. EXCEPTIONS . . .

16.1. EXCEPTION CATCH s = s « 5 + & & ¢ & § 4
10.2. EXCEPTION RAIBE < =« s » s « 5 & 5 & s 4
10.3. EXCEPTION RETURN . . « ¢ « o« o « o « o
1%« CEOCK © s = & & 5 ¢ 5 8 & 5 & % # & % & & & =
131« CLOCK SBT ¢« 5 % s & 5 & & & & & § & & <
13,2 CEOCK GET 3 « & = & s 5 » # & % s = s
113« CLOCK TICK & 5 s 5 s & 5 & 5 & 5 & § &
12 PEMERE s + s % 5 5 5 & & 5 & s m o = s = & »
12.1. TIMER WAKE AFTER . . . « « &« « « « « o &
12.2. TIMER WAKE WHEN « « « « « o
12.3. TIMER_EVENT AFTER . . . « &« « « « « o
12.4. TIMER_EVENT WHEN « &« « « .« .
12.5. TIMER_EVENT EVERY . . . « &« & « o « o
12:6< TIMER CANCEL: & s s « s 4 s & 5 & 5 & & &

13. INTERRUPTE . . . ¢ ¢ ¢ ¢ o o o o o o o o o o
13.1. INT_ ENTER . ¢ ¢ ¢ ¢ ¢ o o o o o o o o &
13 . 2 . INT_RETURN - . Ll . .
14. MISCELLANEOUS « ¢ ¢ o o o o o o o o o o o o o
14.1. INT _TO_EXT . ¢ o ¢ o « o o o o o o o o o
14 . 2 . EXT_TO—INT
A. COMPLETION BTATUSES . . . ¢ ¢ « o o o o o o &
B. MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN ISR
C. SBUMMARY OF ORKID OPERATIONS « « « &

D. C LANGUAGE BINDING . . . ¢ ¢ o o o o o o o o o

. L] L] L[] .

L] . L] L] L] . L] . L[] L]

Page

e o o o o o o

92
89
94
96

Open Real-time Kernel Interface Definition Page 5
Draft 2.1

1. INTRODUCTION

ORKID defines a standard programming interface to real-time kernels.
This interface consists of a set of standard ORKID operation calls,
operating on objects of standard types. An ORKID compliant kernel
manages these objects and implements the operations.

The application areas that ORKID aims at range from embedded systems
to complex multi-processing systems with dynamic program loading. It
is restricted however to real-time environments and only addresses
kernel level functionality.

ORKID addresses the issue of multi-processing by defining two levels
of compliance: with and without support for multi-node systems. The
interfaces to the operations are the same in either level.

Section 2, ORKID CONCEPTS8, contains an introduction to the concepts
used in the ORKID standard. Introduced here are the standard ORKID
objects and how they are identified, ORKID operations and ORKID multi-
processing features. Factors affecting the portability of code
developed for ORKID and implementation compliance requirements are
also treated here.

Sections 3 to 14 describe in detail the various standard types of
objects and the operations that manipulate them. There is one section
per type of object. Each section contains a general description of
this type of object, followed by subsections detailing the operations.
The latter are in a programming language independent format. It is
foreseen that for all required programming languages, a language
binding will be defined in a companion standard. The first one,
introduced in conjunction with ORKID, is for the C language. For
syntax, the language binding document is the final authority.

The portability provided by the ORKID standard is at source code
level. This means that, optimally, a program written for one
implementation should run unmodified on another implementation,
requiring only recompilation and relinking. Nevertheless it will be
possible to write ORKID compatible programs, which rely implicitly
so much on the specific behavior of one implementation, that full
portability might be endangered.

The syntax of ORKID operation calls in a real implementation will be
defined in the appropriate language binding. There will be, however,
a one to one correspondence between this standard and each language
binding for all literal values, operation and parameter names, types
and sequence.

Open Real-time Kernel Interface Definition Page 6
Draft 2.1

2.0 ORKID CONCEPTS

ORKID defines the interface to a real-time kernel by defining kernel
object types and operations upon these objects. Furthermore it assumes
an environment, i.e. the computer system, in which these objects exist.
This chapter describes that environment, introduces the various object
types, explains how objects are identified and defines the structure of
the ORKID operation descriptions. Furthermore it addresses the issues
of multi-processing and ORKID compatibility.

2.1. Environment

The computer system environment expected by ORKID is described by the
notion of a system. A system consists of a collection of one or more
interconnected nodes. Each node is a computer with an ORKID compliant
kernel on which application programs can be executed. To ORKID a node
is a single entity, although it may be implemented as a multi-processor
computer there is only one kernel controlling that node (see also 2.5
Multi-Procesing). -

2.2. ORKID Objects

The standard object types defined by ORKID are:

- tasks : single threads of program execution in a node.

- regions ¢ memory areas for dynamic allocation of variable sized
segments.

- pools : memory areas for dynamic allocation of fixed sized
buffers.

- semaphores: mechanisms used for synchronization and to manage
resource allocation amongst tasks.

- dueues ¢ inter task communication mechanisms with implied
synchronisation.
- events ¢ task specific event markers for synchronisation.

- exceptions: task specific exceptional conditions with asynchronous
exception service routines.

- note-pad : task specific integer locations for simple,

unsynchronized data exchange.

current date and time.

software delays and alarms.

- clock
- timers

Tasks are the active entities on a node, the CPU(s) of the node execute
the task's code, or program, under control of the kernel. Many tasks
may exist on a node; they may execute the same or different programs.
The maximum number of tasks on a node or in a system is implementation
dependent. Tasks compete for CPU time and other resources. Besides
task's, Interrupt Service Routines compete for CPU time. Although ORKID
does not define how Interrupt Service Routines are activated, it
provides facilities to deal with them.

Regions are consecutive areas of memory from which tasks may be
allocated segments of varying size for their own purposes. Typically a
region is defined to contain memory of one physical nature such as

Open Real-time Kernel Interface Definition Page 7
Draft 2.1

shared RAM, battery backed-up SRAM etc. The maximum number of regions
on a node is implementation dependent.

Pools are consecutive areas of memory organized as a collection of
fixed sized buffers which may be allocated to tasks. Pools are simpler
than regions and are intended for fast dynamic memory allocation/de-
allocation operations. In contrast to the more complex concept of a
region pools can be operated on across node boundaries. The maximum
number of pools on a node or in a system is implementation dependent.

Semaphores provide a mechanism to synchronize the execution of a task
with the execution of another task or interrupt service routine. They
can be used to provide sequencing, mutual exclusion and resource
management. The maximum number of semaphores on a node or in a system
is implementation dependent.

Queues are used for intertask communication, allowing tasks to send
information to one another with implied synchronisation. The maximum
number of queues on a node or in a system is implementation dependent.

Events are task specific markers that allow a task to buffer until an
event, or some combination thereof occurs, therefore they form a simple
synchronisation mechanism. Each task has the same, fixed number of
events which is equal to the number of bits in the basic word length of
the corresponding processor.

Exceptions too are task specific conditions. Unlike events they are
handled asynchronously by the task, meaning that when an exception is
raised for a task that task's flow of control is interrupted to execute
the code designated to be the exception service routines (XSR).
Exceptions are intended to handle exceptional conditions without
constantly having to check for them. In general exceptions should not
be misused as a synchronisation mechanism. Each task has the same,
fixed number of exceptions which is equal to the number of bits in the
basic word length of the corresponding processor.

Note-pad locations are task specific variables that can be read or
written without any form of synchronisation or protection. The size of
a node-pad location is equal to the basic word size of the
corresponding processor. Each task has the same, fixed number of note-
pads. The actual number is implementation dependent, but the minimum
number is fixed at sixteen.

The clock is a mechanism maintaining the current date and time on each
node.

Timers come in two forms. The first type of timer is the delay timer
that allows a task to delay its execution for a specific amount of time
or until a given clock value. The second type of timer is the event
timer. This timer will, upon expiration, send an event to the task that
armed it. As with the delay timer it can expire after a specific amount
of time has elapsed or when a given clock value has passed. The maximum
number of timers on a node is implementation dependent, in all cases a
delay timer must be available to each task.

Open Real-time Kernel Interface Definition Page 10
Draft 2.1

- A shared memory system consists of a set of nodes connected via
shared memory.

- A non-shared memory system consists of a set of nodes connected by a
network.

It is also possible to have a mixture of these two schemes where a non-
shared memory system may contain one or more sets of nodes connected
via shared memory. These sets of nodes are called shared memory
subsystems.

The behavior of a networked ORKID implementation should be consistent
with the behavior of a shared memory ORKID system. Specifically, all
operations on objects in remote nodes must return their completion
status only after the respective operation actually completed.

System Configuration

This standard does not specify how nodes are configured or how they
are assigned identifiers. However, it is recognized that the
availability of nodes in a running system can be dynamic. In
addition, it is possible but not mandatory that nodes can be added to
and deleted from a running system.

Levels of Compliance

ORKID defines two levels of compliance, a kernel may be either single
node ORKID compliant or multiple node ORKID compliant. The former type
of kernel supports systems with a single node only, while the latter
supports systems with multiple nodes.

The syntax of ORKID operation calls does not change with the level of
compliance. All 'node' operations must behave sanely in a single node
ORKID implementation, i.e. the behavior is that of a multiple node
configuration with only one active node.

Globality of objects

Most objects of a node can be created with the GLOBAL option. Only
global objects are visible to and accessible from other nodes. Their
identifiers can be found via ident operations executed on another node.
All operations on these objects, with the exception of the deletions,
can equally be executed accross node boundaries. Delete operations on
remote objects will return the OBJECT_NOT_ LOCAL completion status.

Remote operations on non-global objects will return the INVALID_ID
completion status.

Observation:

The above suggests that identifiers in multiple-node kernels will
encode the node_id of the node on which the object was created.

Open Real-time Kernel Interface Definition Page 11
Draft 2.1

2.6 ORKID Conformence

There are several places in this standard where the exact algorithms

to be used are defined by the implementor of the compliant kernel.
Although each operation has a defined functionality, the method used to
achieve that functionality may cause behavioral differences.

For example, ORKID does not define the kernel scheduling algorithm,
especially when several ready tasks have the same priority. This may
lead to tasks being scheduled differently in different implementations,
which may lead to possible different behavior.

Another example is the segment allocation algorithm. Different
kernels may handle fragmentation in different ways, leading to cases
where one implementation can fulfil a segment request, but another
returns an error, since it has left the region more fragmented.

S8ubsets and Extensions

ORKID compliant kernels must implement all operations and objects as
defined in this document; no subsets are permitted. Any ORKID compliant
implementation may add extensions to give functionality in addition to
that defined by this standard. Clearly, a task which uses non-standard
extensions is unlikely to be portable to a standard system. In all
cases, a kernel which claims compliance to ORKID should have all
extensions clearly marked in its documentation.

Observation:

Hooks for user written extensions to the kernel will ease adaptation of
ORKID compliant kernels to specific needs.

Undefined and Optional Items

There are several items which ORKID does not define but leaves up to
the implementation.

ORKID does not define how system or node start-up is accomplished;
this will obviously lead to differences in behavior, especially in
multiple node systems.

ORKID does not define the word length. On this depends the size of
integer parameters and bit-fields. These will be defined in the
language binding along with all the other data structures, and so
should not cause problems. It is envisaged that ORKID should be
scalable - in other words it should be implementable on hardware with a
different word length without loss of portability.

ORKID does not define the maximum number of task note-pad locations.
The minimum number is sixteen.

ORKID does not define the range of priority values. But it defines
the literal HIGH_PRIORITY to improve portability.

ORKID defines neither inter-kernel communication methods nor kernel

Open Real-time Kernel Interface Definition Page 12
Draft 2.1

data structure implementations. This means that there is no requirement
that one implementation must co-operate with other implementations
within a system. In general, all the nodes in a system will run the
same kernel implementation on nodes with the same integer size.

ORKID does not define whether object identifiers need be uniqgue only
at the current time, or must be unique throughout the system lifetime.
A task which assumes the latter may have problems with an
implementation which provides the former.

ORKID does not define the size limits on granularity for regions and
buffer size for pools.

ORKID does not define any restrictions on the execution of operations
within Interrupt Service Routines (ISRs). It does however define a
minimum requirement of operations that must be supported.

ORKID defines a number of completion statuses. If an implementation
does check for the condition corresponding to one of these statuses,
then it must return the appropriate status.

ORKID does not define which completion status will be returned if
multiple conditions apply.

ORKID does not define the encoding (binary value) of completion
statuses, options and other symbolic values. But these values must
be defined in the language binding.

ORKID does not define the maximum message length supported by a given
implementation.

ORKID does not define the encoding of port designations in multi-port
memory.

2.7. Layout of Operation Descriptions

The remainder of this standard is divided into one section per ORKID
object type. Each section contains a detailed description of this

type of object, followed by subsections containing descriptions of the
relevant ORKID operations.

These operation descriptions are layed out in a formal manner, and
contain information under the following headings:

S8ynopsis

This is a pseudo-language call to the operation giving its standard
name and its list of parameters. Note that the language bindings
define the actual names which are used for operations and parameters,
but the order of the parameters in the call is defined here.

Input Parameters

Those parameters which pass data to the operation are given here in
the format:

Open Real-time Kernel Interface Definition Page 13
Draft 2.1

<parameter name> : <parameter type> commentary

The actual names to be used for parameters and their types are given
definitively in the language bindings.

Output Parameters

Those parameters which return data from the operation are given here
in the same format as for input parameters. Note that the types given
here are simply the types of the data actually passed, and take no
account of the mechanism whereby the data arrives back in the calling
program. The actual parameter names and types to be used are given
definitively in the language bindings.

Literal Values

Under this heading are given literal values which are used with given
parameters. They are presented in the following two formats:

<parameter name> = <literal value> commentary
<parameter name> + <literal value> commentary

The first format indicates that the parameter is given exactly the
indicated literal value if the parameters should affect the function
desired in the commentary. The second format indicates that more than
one such literal value for this parameter may be combined (logical

or) and passed to or returned from the operation. If none of the
defined conditions is set, the value of the parameter must be zero. The
literal ZERO is defined in ORKID for initializing options and mode to
this value.

Completion S8tatus

Under this heading are listed all of the possible standard completion
statuses that the operation may return.

Description
The last heading contains a description of the functionality of the

operation. This description should not be interpreted as a recipe for
implementation.

Open Real-time Kernel Interface Definition bPage 14
Draft 2.1

3. NODES

Nodes are the building bricks of ORKID systems, referenced by a node
identifier and contalnlng a single set of ORKID data structures. Nodes
will typically contain a single CPU, but multi-CPU nodes are equally
possible.

Spec1fy1ng how nodes are created and configured is outside the scope of
this standard. However, certain basic operations for node handling will
be needed in all ORKID implementations and are defined in the following
sections.

Open Real-time Kernel Interface Definition Page 15
Draft 2.1

3.1. NODE_IDENT

Obtain the identifier of a node with a given name.
S8ynopsis
node_ident(name, nid)
Input Parameters
name : string user defined node name
Output Parameters
nid : node_id system defined node identifier
Literal Values
name = WHO_AM I returns nid of calling task

Completion Status

OK node_ident successful
ILLEGAL_USE node_ident not callable from ISR
INVALID_PARAMETER a parameter refers to an invalid address
NAME_NOT_FOUND no node with this name

Description

This operation returns the node identifier for the node with the given
name. No assumption is made on how this identifier is obtained. It
there is more than one mode with the same name in the system, then the
nid of the first one found is returned.

Open Real-time Kernel Interface Definition Page 16
Draft 2.1

3.2. NODE_FAIL
Indicates fatal node failure to the system.
S8ynopsis

node_fail(nid, code, options)

Input Parameters

nid : node_id system defined node identifier
code ¢ integer type of error detected
options : bit_field failure options

Output Parameters
<none>
Literal Values
options + TOTAL all nodes should be stopped

Completion Status

OK node_fail successful
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
OBJECT_NOT_LOCAL node_fail on remote node not allowed from
ISR
NODE_NOT_REACHABLE node is not reachable
Description

This operation indicates a fatal failure of the type given by code in
the node identified by nid to the system. If the TOTAL option is set
all nodes of the system should be stopped, otherwise only the node
identified by nid is stopped. The operation does not return if, as a
result of the operation, the local node is stopped.

Observation:
The value in code can be transferred to a certain memory location or

even displayed by hardware in the failing node to ease post mortem
analysis of the failure.

Open Real-time Kernel Interface Definition bPage 17
Draft 2.1

3.3 NODE_INFO
Obtain information on a node.
Synopsis
node_info(nid, ticks_per_sec)
Input Parameters
nid : node_id system defined node identifier
Output Parameters
ticks_per_sec: integer number of ticks per second for node clock

Completion S8tatus

OK node_info successful
ILLEGAL_USE node_info not callable from ISR
INVALID PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist :
NODE_NOT_REACHABLE node is not reachable

Description

This operation obtains the number of ticks per second for the clock on
the node identified by nid.

Observation:

For efficiency all delay times are specified in ticks. The value of
ticks_per sec allows tasks to convert between seconds and ticks.

Open Real-time Kernel Interface Definition Page 18
Draft 2.1

4. TASKS

Tasks are single threads of program execution. Within a node, a
number of tasks may run concurrently, competing for CPU time and other
resources. ORKID does not define the number of tasks allowed per

node or in a system. Tasks are created and deleted dynamically by
existing tasks.

Tasks are allocated CPU time by a part of the kernel called the
scheduler. The exact behavior of the scheduler is implementation
dependent, but it must have the minimum functionality described in the
following paragraphs.

Throughout its lifetime, each task has a current priority and a current
mode, which may change over time. A task may also have an exception
service routine which has to be declared to it at runtime.

Task Exception Service Routine

A task may designate Exception Service Routine (XSR) to handle
exceptions which have been raised for that task. A task can have one
XSR defined for every bit in the exception bit-field. XSRs can be
redefined dynamically. The purpose of XSRs is to deal with exceptions
which have been raised for the task. It is recommended that exceptions
be reserved for errors and other abnormal conditions which arise.

A task's XSRs are activated asynchronously. This means that they are
not called explicitly by the task code, but automatically by the
scheduler whenever one or more exceptions are sent to the task. Thus
an XSR may be entered at any time during task execution. (But see
'Task Modes' below.) A task's XSR runs at the same priority as the
task; it is only executed when the task normally would have been
scheduled to the running state. Exceptions are latched on a single
level. Multiple occurrences of the same exception before the next
execution of the XSR will be seen as a single exception.

Task Priority

A task's priority determines its importance in relation to the

other tasks within the node. Priority is a numeric parameter and can
take any value in the range 1 to HIGH PRIORITY. Priority HIGH_PRIORITY
is 'highest' or 'most important' and priority 1 is 'lowest' or 'least
important'. There may be any number of tasks with the same priority.

Priorities are assigned to tasks by the creating task and can be
changed later dynamically. They affect the way in which task scheduling
occurs. Although the exact scheduling algorithm is outside the scope of
this standard, in general the higher the priority of a task, the more
likely it is to receive CPU time.

Task Modes

A task's mode determines certain aspects of the behavior of the
kernel in respect to the task. The mode is made up by the combination
of a number of mode parameters, each of which determines a single
aspect of kernel behavior.

Open Real-time Kernel Interface Definition Page 19
Draft 2.1

This standard defines four values for a mode parameter, and an ORKID
compliant kernel may add others. A given mode is specified by a bit-
field, similarly to events and exceptions. Each bit of a mode bit-field
specifies a single mode value. The bit for each value is identified by
a standard symbolic value - the mapping of these symbols to numeric
values is implementation dependent. The four standard mode values are
as follows:

+ NOXSR This value affects only tasks with defined XSRs.
When it is set, the task's XSRs will not be activated
when exceptions are raised. Instead, exceptions will
be latched until this value is cleared, after which
the XSRs will be scheduled normally. Exceptions sent
to a task without defined corresponding XSRs are
lost.

+ NOTERMINATION When this value is set, the task is protected from
forced deletion or restart by other tasks.
NOTERMINATION allows a task to complete a section of
code without risk of deletion or restart, and yet
still allows other tasks to be scheduled.

+ NOPREEMPT When this value is set, the task will retain
control of it's CPU either until it clears the
value, or until it blocks itself by an ORKID
operation call. In this latter case, when the task
is eventually re-scheduled, the NOPREEMPT value
will still be set in its mode. In this mode the task
is also protected from being suspended by another
task. This value does not preclude activation of XSRs
or ISRs.

+ NOINTERRUPT Tasks with this value set will not be interrupted.
Observation:

The NOINTERRUPT mode value does not preclude the execution of Interrupt
Service Routines (ISR) by another processor in a multiple-processor
node and therefor should not be used to obtain mutual exclusion with
ISR code.

Observation:

A typical extension for certain processor architectures will be a
SUPERVISOR mode value.

The behavior of a task is determined by the task's active mode. When a
task is not executing an Exception Service Routine the mode specified

~ in the task_create operation or the last task_set mode operation is the

active mode. Upon the activation of a task's XSR a new active mode is

constructed by oring the old active mode with the mode specified in the

exception_catch operation.

After returning to the interrupted task this one will continue in its

old active mode (see also 10. Exceptions).

Open Real-time Kernel Interface Definition Page 20
Draft 2.1

Observation:

An XSR should, in general, not reset any mode value via the
task_set_mode operation that was set at the time of it's activation.
This would lower the task's protection in an unforeseeable way.

Task Note-Pads

Every task has a fixed number of note-pad locations. These are simply
'word' locations which are accessible at all times by their own

task, by all other tasks on the same node, and if the task was created
with the GLOBAL option set, by all tasks on all nodes. The size of a
note-pad location is equal to the basic word length of the
corresponding processor. The note-pad is very simple, having only two
operations -one to read and one to write a location.

Open Real-time Kernel Interface Definition Page 21
Draft 2.1

4.1. TASK CREATE
Create a task.
Synopsis
task_create(name, priority, stack_size, mode, options, tid)

Input parameters

name : string user defined task name
priority : integer initial task priority
stack_size : integer size in bytes of task's stack
mode : bit_field initial task mode

options : bit_field creation options

Output Parameters
tid ¢ task_id kernel defined task identifier

Literal Values

mode + NOXSR XSRs cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT task cannot be interrupted
= ZERO no mode parameter set
options + GLOBAL the new task will be visible throughout
the system

Completion Status

OK task_create successful

ILLEGAL USE task_create not callable from ISR

INVALID_ PARAMETER a parameter refers to an invalid address

INVALID_PRIORITY invalid priority value

INVALID MODE invalid mode value

INVALID_OPTIONS invalid options value

TOO_MANY_OBJECTS too many tasks on the node or in the
system

NO_MORE_MEMORY not enough memory to allocate task data

structure or task stack

Description

The task_create operation creates a new task in the kernel data
structure. Tasks are always created in the node in which the call to
task_create was made. The new task does not start executing code -this
is achieved with a call to the task_start operation. The tid returned
by the kernel is used in all subsequent ORKID operations (except
task_ident) to identify the newly created task. If GLOBAL is specified
in the options parameter, then the tid can be used anywhere in the

system to identify the task, otherwise it can be used only in the node
in which the task was created.

Open Real-time Kernel Interface Definition bPage 22
Draft 2.1

4.2. TASK DELETE
Delete a task.

S8ynopsis
task_delete(tid)
Input Parameters
tid : task_id kernel defined task identifier
Output Parameters
<none>
Literal values

tid = SELF the calling task requests its own
deletion

Completion Status

OK task_delete successful
ILLEGAL_USE task_delete not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID task does not exist
OBJECT_DELETED originally existing task has been deleted
before operation

OBJECT_NOT_LOCAL task_delete not allowed on non-local task
OBJECT_PROTECTED task in NOTERMINATION mode

Description

This operation stops the task identified by the tid parameter and
deletes it from its node's kernel data structure. If the task's active
mode has the parameter NOTERMINATION set, then the task will not be
deleted and the completion status OBJECT_PROTECTED will be returned.

Observation:

The task_delete operation deallocates the task's stack but otherwise
performs no 'clean-up' of the resources allocated to the task. It is
therefore the responsibility of the calling task to ensure that all
segments, buffers, etc., allocated to the task to be deleted have been
returned.

For situations where one task wants to delete another, the recommended
procedure is to ask this task to delete itself, typically u51ng
exceptions, or task_restart with a specific argument In this way the
task can release all its resources before deleting itself.

Open Real-time Kernel Interface Definition bPage 23
Draft 2.1

4.3 TASK IDENT

Obtain the identifier of a task on a given node with a given name.

Synopsis
task_ident(name, nid, tid)
Input Parameters

name
nid

: string user defined task name
¢ node_id node identifier

Output Parameters

tid : task_id kernel defined task identifier

Literal VvValues

nid = LOCAL_NODE the node containing the calling task
= OTHER_NODES all nodes in the system except the local
node
= ALL_NODES all nodes in the system
name = WHO_AM I returns tid of calling task
Completion Status
OK task_ident successful
ILLEGAL_USE task_ident not callable from ISR
INVALID_ PARAMETER a parameter refers to an invalid address
INVALID_ID node does not exist
NAME NOT_FOUND task name does not exist on node
NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

This operation searches the kernel data structure in the node(s)
specified by nid for a task with the given name. If OTHER NODES or
ALL_NODES is spec1f1ed the node search order is 1mp1ementat10n
dependent. If there is more than one task with the same name in the
node(s) specified, then the tid of the first one found is returned.

Open Real-time Kernel Interface Definition Page 24
Draft 2.1

4.4. TASK START

Start a task.

Synopsis
task_start(tid, start_addr, arguments)

Input Parameters

tid : task_id kernel defined task identifier
start_addr : * task start address
arguments : * arguments passed to task

Output Parameters
<none>

Completion Status

OK task_start successful

ILLEGAL_USE task_start not callable from ISR

INVALID PARAMETER a parameter refers to an invalid address

INVALID_ID task does not exist

OBJECT_DELETED originally existing task has been deleted
before operation

INVALID ARGUMENTS invalid number or type or size of
arguments

TASK_ALREADY STARTED task has been started already

NODE_NOT_REACHABLE node on which task resides is not
reachable

Description

The task_start operation starts a task at the given address. The task
must have been previously created with the task_create operation.

* The specifications of start address and the number and type of
arguments are language binding dependent.

