Open Real-time Kernel Interface Definition Page 75
Draft 1.0 for Public Comments
11.2. TIMER_WAKE_WHEN

Wake at a specified wall time.

Synopsis

timer_wake_when(clock)
Input Parameters

clock : clock_buf time and date to wake
Output Parameters

<none>

Completion Status

OK timer_wake_when operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_CLOCK invalid clock value

Description

This operation causes the calling task to be blocked up until a given
date and time. The task is woken at this time, and is returned a
successful completion status. The kernel checks the supplied
clock_buf data for validity. The exact structure of that data is
language binding dependent.

If the node clock is set while the timer is running, the wall time at
which the task is woken remains valid. If the node time is set to after
the timer wake time, then the timer is deemed expired and the task is
woken immediately and returned a successful completion status.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 76
Draft 1.0 for Public Comments
11.3. TIMER_EVENT AFTER

Send event after a specified time interval.

Synopsis
timer_event_after(ticks, event, tmid)
Input Parameters

ticks : integer number of ticks to wait
event : bit_field event to send

Output Parameters
tmid : timer_id kernel defined timer identifier

Completion Status

OK timer_event_after operation successful
INVALID_ PARAMETER a parameter refers to an illegal address
TOO_MANY_TIMERS too many timers on the node

Description

This operation starts an event timer which will send the given events
to the calling task after the specified number of ticks. The kernel

returns an identifier which can be used to cancel the timer. If the

node clock is set using the clock_set operation during this interval,
the number of ticks left does not change.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 77
Draft 1.0 for Public Comments
11.4. TIMER_EVENT_ WHEN

Send event at the specified wall time and date.

Synopsis
timer_event_when(clock, event, tmid)
Input Parameters

clock
event

clock_buf time and date to send event
bit_field event(s) to send

Output Parameters
tmid : timer_id kernel defined timer identifier

Completion Status

OK timer_event_when operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_CLOCK invalid clock value
TOO_MANY_TIMERS too many timers on node

Description

This operation starts an event timer which will send the given events
to the calling task at the given date and time. The kernel returns an
identifier which can be used to cancel the timer.

If the node clock is set while the timer is running, the wall time at
which the task is woken remains valid. If the node time is set to after
the timer wake time, then the timer is deemed expired and the events
are sent to the calling task immediately .

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 78
Draft 1.0 for Public Comments
11.5. TIMER CANCEL

Cancel a running event timer.

Synopsis

timer_cancel(tmid)
Input Parameters

tmid : timer_id kernel defined timer identifier
Output Parameters

<none>

Completion Status

OK timer_cancel operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID timer does not exist

Description

This operation cancels an event timer previously started using the
timer_event_after or timer_event_when operations. The user specifies
the timer using the identifier returned by these operations. If the
given timer has expired or has been cancelled, the INVALID_ID
completion status is returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 79
Draft 1.0 for Public Comments

12. INTERRUPTS

ORKID defines two operations which bracket interrupt handler code. It
is up to each implementor to decide what functionality, to put in these
operations.

Observation:

The kernel may use int_enter and int_exit with an Interrupt Service
Routine code or task code is being executed. Typically int_exit will be
used to decide if a scheduling action must take place in pre-emptive
kernels.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

