Open Real-time Kernel Interface Definition Page 70
Draft 1.0 for Public Comments
10.1. CLOCK_SET

Set node time and date.

Synopsis

clock_set(clock)
Input Parameters

clock : clock_buf current time and date
Output Parameters

<none>

Completion Status

OK clock_set operation successful
ILLEGAL_USE operation not callable from XSR or ISR
INVALID_ PARAMETER a parameter refers to an illegal address
INVALID_CLOCK invalid clock value

Description

This operation sets the node clock to the specified value. The

kernel checks the supplied date and time in clock_buf to ensure that
they are legal. This is purely a syntactic check - the operation will
accept any legal value. The exact structure of the data supplied is
language binding dependent.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 71
Draft 1.0 for Public Comments
10.2. CLOCK_GET

Get node time and date.

Synopsis
clock_get(clock)
Input Parameters
<none>
Output Parameters
clock : clock_buf current time and date

Completion Status

OK clock_get operation successful

INVALID_PARAMETER a parameter refers to an illegal address

CLOCK_NOT_SET clock has not been initialized
Description

This operation returns the current date and time in the node clock.
If the node clock has not yet been set, then the CLOCK_NOT_SET
completion status is returned. The exact structure of the clock_buf
data returned is language binding dependent.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Upen Real-time Kernel Interface Definition Page 72
Draft 1.0 for Public Comments
10.3. CLOCK_TICK

Announce a tick to the clock.

Synopsis
clock_tick()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
OK clock_tick operation successful
Description
This operation increments the current node time by one tick. There
are no parameters and the operation always succeeds. Every node must

contain a mechanism which keeps the node clock up to date by calling
upon CLOCK_TICK.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 73
Draft 1.0 for Public Comments

11. TIMERS

ORKID defines two types of timers. The first type is the sleep timer.
This type allows a task to sleep either for a given period, or up
until a given time, and then wake and continue. Obviously a task can
set only one such timer in operation at a time, and once set, it
cannot be cancelled. These timers have no identifier.

The second type of timer is the event timer. This type allows a task
to send events to itself either after a given period or at a given
time. A task can have more than one event timer running at a time.
Each event timer is assigned an identifier by the kernel when the
event is set. This identifier can be used to cancel the timer.

Timers are purely local objects. They affect only the calling task,
either by putting it to sleep or sending it events. Timers exist only
while they are running. When they expire or are cancelled, they are
deleted from the kernel data structure.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 74
Draft 1.0 for Public Comments
11.1. TIMER WAKE_AFTER

Wake after a specified time interval.

Synopsis

timer_wake_after(ticks)
Input Parameters

ticks ¢ integer number of ticks to wait
Output Parameters

<none>

Completion Status

OK timer_wake_after operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_PARAMETER a parameter refers to an illegal address
Description

This operation causes the calling task to be blocked for the given
number of ticks. The task is woken after this interval has expired,
and is returned a successful completion status. If the node clock is
set using the clock_set operation during this interval, the number of
ticks left does not change.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

