Open Real-time Kernel Interface Definition Page 65
Draft 1.0 for Public Comments
9.1. EXCEPTION_CATCH
Specify a task's asynchronous exception handling routine.
Synopsis

exception_catch(new_XSR, mode, old_XSR, old_mode)
Input Parameters

new_XSR
mode

: address address of exception handling routine
: bit_field startup execution mode of XSR

Output Parameters

old_XSR
old_mode

address address of previous XSR
bit-filed mode associated with old XSR

Literal Values

new_XSR = NULL_XSR task henceforth will have no XSR
mode + NOXHR XSR cannot be activated
+ NOTERMINATION task cannot be restarted or deleted
+ NOPREEMPT task cannot be preempted
+ NOINTERRUPT interrupt handling routine cannot be
activated
old_XSR = NULL_XSR task previously had no XSR

Completion Status

OK exceptions_catch operation successful
ILLEGAL_USE operation not callable from ISR
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ADDRESS new_XSR refers to an illegal address
INVALID_MODE invalid mode value

Description

This operation designates a new exception handling routine (XSR) for
the current task. The task supplies the start address of the XSR, and
the mode in which it will be started. If this operation returns a
successful completion status, an exception sent to the task will
henceforth cause the XSR at the given address to be activated.

The kernel returns the address of the previous XSR and the mode
associated with that XSR.

Observation:

This can be used when a task wishes to use a different XSR temporarily.
Once finished with the temporary XSR, the original one can be simply
reinstated.

Note that if tasks are created without an XSR in a particular

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 66
Draft 1.0 for Public Comments

implementation, the first call to exception_catch will return the
symbolic value NULL_XSR in old_XSR. This same value can be passed as
the new_XSR input parameter, which removes the current XSR from the
task without designating a new one.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 67
Draft 1.0 for Public Comments
9.2. EXCEPTION_RAISE

Raise exceptions to a task.

Synopsis
exception_raise(tid, exceptions)
Input Parameters

tid ¢ task_id kernel defined task id
exceptions : bit_field exceptions to be raised

Output Parameters
<none>

Completion Status

OK exceptions_send operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
XSR_NOT_SET task has no exception handler routine
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This operation raises one or more exceptions to a task. If the task in
question has an XSR, then unless it has the NOXHR modal parameter set,
the XSR will be activated immediately and run not later than the task
would normally be scheduled. If NOXHR is set, the XSR will be activated
as soon as the task clears this parameter.

If the task has no current XSR, then this operation returns the
XSR_NOT_SET completion status.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 68
Draft 1.0 for Public Comments
9.3. EXCEPTION_RETURN

Return from Asynchronous Exception Handling Routine.

Synopsis
exception_return()
Input Parameters
<none>
Output Parameters
<none>
Completion Status
<not applicable>
Description
This operation transfers control from an XSR back to the code which it
interrupted. It has no parameters and does not produce a completion

status. This operation must be used to deactivate an XSR.

The behavior of exception_return when not called from an XSR is
undefined.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 69
Draft 1.0 for Public Comments

10. CLOCK

Each ORKID kernel maintains a node clock. This is a single data

object in the kernel data structure which contains the current date and
time. The clock is updated at every tick, the frequency of which is
node dependent. The range of dates the clock is allowed to take is
implementation dependent.

In a multi-node system, the different node clocks will very likely be
synchronized, although this is not necessarily done automatically by
the kernel. Since nodes could be in different time zones in widely
distributed systems, the node clock specifies the local time zone, so
that all nodes can synchronize their clocks to the same absolute time.

The data structure containing the clock value passed in clock
operations is language binding dependent. It identifies the date

and time down to the nearest tick, along with the local time zone.
The time zone value is defined as the number of hours ahead (positive
value) or behind (negative value) Greenwich Mean Time (GMT).

When the system starts up, the clock may be uninitialised. If this is
the case, attempts at reading it before it has been set result in an
error completion status, rather than returning a random value.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

