Open Real-time Kernel Interface Definition Page 60
Draft 1.0 for Public Comments

7.9. QUEUE__INFO
Obtain information on a queue.
Synopsis
queue_info(gid, max_buff, length, options, messages_waiting
tasks_waiting)
Input Parameters

qgid ¢ queue_id kernel defined queue identifier

Output Parameters

max_buff : integer maximum number of buffers in queue

length : integer length of message buffers in bytes

options : bit_field semaphore create options

tasks_waiting : integer number of tasks waiting on the message
queue

messages_waiting: integer number of messages waiting in the

message queue

Completion Status

OK queue_info operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID queue does not exist
OBJECT_DELETED queue specified has been deleted
NODE_NOT_REACHABLE node on which the queue resides is not
reachable
Description

This operation provides information on the specified message queue. It
returns its maximum number of buffers in bytes, its create options, and
the number of tasks waiting for messages on this queue, respectively
the number of messages waiting in the queue to be read.

The latter two values should be used with care as they are just a snap-
shot of the semaphores's state at the time of executing the operation.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 61
Draft 1.0 for Public Comments

8. EVENTS

Events provide a simple method of task synchronization. Each task has
the same number of events. The maximum number of these is
implementation dependent, but the minimum number is fixed at sixteen.
Events have no identifiers, but are addressed using a task identifier
and a bit-field. A bit-field can indicate any number of a task's
events at once.

A task can wait on any combination of its events, requiring either all
specified events to arrive, or at least one of them, before being
unblocked. Tasks can send any combination of events to a given task.
If the receiving task is not in the same node as the sending task,
then the receiving task must be global.

Sending events in effect sets a one bit latch for each event.
Receiving a combination of events clears the appropriate latches.
This means that if an event is sent more than once before being
received, the second and subsequent sends are not seen.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 62
Draft 1.0 for Public Comments
8.1. EVENT_SEND

Send event(s) to a task.

Synopsis
event_send(tid, event)
Input Parameters

tid : task_id kernel defined task identifier
event : bit_field event(s) to be sent

Output Parameters
<none>

Completion Status

OK event_send operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
OBJECT_DELETED task specified has been deleted
NODE_NOT_REACHABLE node on which semaphore resides is not
reachable
Description

This operation sends the given event(s) to the given task. The
appropriate task event latches are set. If the task is waiting on a
combination of events, a check is made to see if the currently set
latches satisfy the requirements. If this is the case, the given task
receives the event(s) it is waiting on and the appropriate bits are
cleared in the latch.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 63
Draft 1.0 for Public Comments
8.2. EVENT_RECEIVE
Receive event(s).
Synopsis
event_receive(events, options, time_out, events_received)

Input Parameters

events : bit_field event(s) to receive
options : bit_field receive options
time_out : integer max no of ticks to wait

Output Parameters
events_received : bit_field event(s) received

Literal Values

options + ANY return when any of the events is sent
+ NOWAIT do not wait - return immediately if no
events set
time_out = FOREVER wait forever - do not time out

Completion Status

OK event_receive operation successful

ILLEGAL_USE operation not callable from ISR

INVALID PARAMETER a parameter refers to an illegal address

INVALID_OPTIONS invalid options wvalue

TIME_OUT event_receive operation timed out

NO_EVENTS event(s) not set and NOWAIT option given
Description

This operation waits on a given combination of events to occur. By
default, the operation waits until all of the events have been sent.
If the ANY option is set, then the operation waits only until any one
of the events has been sent.

The operation first checks the task's event latches to see if the
required event(s) have already been sent. 1In this case the task
receives the events, which are returned in events_caught, and the
appropriate event latches are cleared. If the ANY option was set, and
more than one of the specified events was sent, all the events sent,
satisfying the events, are received.

If the required event(s) have yet to be sent, and the NOWAIT option has
been specified, the NO_EVENTS completion status is returned. 1If

NOWAIT is not specified then the task is blocked, waiting on the
appropriate events to be sent. A timeout is initiated, unless the
time_out value supplied is FOREVER. If all required events are sent
before the timeout expires, then the events are received and a
successful completion status returned. If the timeout expires, the
TIME_OUT completion status is returned.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 64
Draft 1.0 for Public Comments

9. EXCEPTIONS

ORKID exceptions provide tasks with a method of handling exceptional
conditions asynchronously. Each task has the same number of
exceptions. The maximum number of these is implementation dependent,
but the minimum number is fixed at sixteen. Exceptions have no
identifiers, but are addressed using a task identifier and a bit field,
which can indicate any number of exceptions at once.

Exceptions are identified in the same manner as events. Using a bit
field, any number of exceptions can be raised simultaneously to a task.
Raising an exception sets a one bit latch for each exception. If the
same exception is raised more than once to a task before the task can
catch them, then the second and subsequent raisings are ignored. If the
target task is not in the same node as the raising task, then the
target task must be global.

The 'catching' of exceptions is quite different than that of events,
and involves the activation of the task's Exception Service Routine

(XSR). XSRs have to be declared via the exception_catch operation to
tasks after their creation. A task may change its XSR at any time.

An XSR is activated whenever one or more exceptions are raised to a
task, and the task has not set its NOXHR modal parameter in the active
mode. If the NOXHR parameter is set, the XSR will be activated as soon
as it is cleared. When an XSR is activated, the task's current flow of
execution is interrupted and the XSR entered. The XSR is passed the

bit field indicating which exceptions have been sent as a parameter.
The exact way how to accomplish this is defined in the language
binding. The XSR always catches all exceptions which have been raised,
and all the latches are cleared.

An XSR is treated by the scheduler in exactly the same way as other
parts of the task. The kernel automatically activates a task's

current XSR as detailed above, but the XSR is actually required to
execute only when the task would normally be scheduled to run. The XSR
must deactivate and return to the code which it interrupted with a
special ORKID operation: EXCEPTION_RETURN. While it is active, an XSR
has no special privileges or restrictions other than those necessitated
by its asynchronous execution.

A XSR has its own mode with the same four mode parameters as tasks:
NOXSR, NOTERMINATION, NOPREEMPT and NOINTERRUPT. The mode parameter
given in the exception_catch operation is ored with the active mode at
the time of the XSR's activation. The XSR will enter execution with
this mode, which now becomes the active mode.

An active XSR can itself be interrupted by an exception being raised.
In this case, unless the XSR's modal parameter NOXHR was set, the XSR
is immediately reentered to handle the new exception. Theoretically,
XSR activation can be thus nested to any depth. The kernel only
considers the active mode when making scheduling decisions.

UNAPPROVED DRAFT. All rights reserved by VITA.
Do not specify or claim conformance to this document.

