Open Real-time Kernel Interface Definition Page
Draft 1.0 for Public Comments

TABLE OF CONTENTS

1. INTRODUCTION . . . o ¢ ¢ o o o o o o« s o o o s o o o o o »

2. ORKID CONCEPTS . . &« « o o o o o o o o o o o o o o o o =
2:.1 Environment
ORKID Objects . . .

2.2. G W o W w e w e s s w e
2.3. Naming and Identlflcatlon B ® & o W m m m os s s s
2.4. ORKID Operations . . .« ¢ ¢ o o o o o o o o o o o o =
2.5, Multi-procCessSing . « « « o o o o o o o o o o o o o
2.6. ORKID compatibility . . F e B W ¥ ¥ % e @ W 6 @& @
2.7. Layout of Operation Descript ONS W o & » w o & = .
3 TASKS: . o s 5 ¢« & s 4 & » & 5 @ S & & & 3 & @& ® % @ .
3.1. TASK_CREATE T
3.2. TASK DELETE © ® ® & e s & @ @ % @ @ @ @
3.3. TASK_IDENT o @ o o w4 @ ® B @ . s @
3.4. TASK_START ¥ % ® O ® @ o W B % m ow B W v s @ @
3.5. TASK_RESTART . .« +. ¢ o « o o o o o o o = # 0w e w e
3.6. TASK_SUSPEND . . e e e e e e e e e e e e e e e e
3.7. TASK_RESUME . W B E @ B % @ o % B e B s .
3.8. TASK_SET_ PRIORITY T B T o S R N
3.9. TASK _SET_MODE . . . e W s o m o e s e s s e &
3.10. TASK_READ_NOTE_PAD i @ ® & % @ s 8 @ & ¥ e @ "
3.11. TASK_WRITE_NOTE_PAD B e ® B R e W% B o § % & @ W
4. REGIONS T T S
4.1. REGION CREATE . . e e m s @ w m om o s m @ @ wm .
4.2. REGION_DELETE R T R
4.3. REGION_IDENT @ W W @ oW W @ e s % 8 & % W
4.4. REGION_GET_SEG . . « « « « o« = “ ®m s w e w W i e s
4.5. REGION_RET_SEG & ® s . e
4.6. REGION_INFO § ® = s . i % % o v w
5. PARTITIONS " o W w8 s o m e s
5.1. PARTITION CREATE O A e o o o s o o o e
5.2. PARTITION_DELETE “ % @ & @ . u %
5.3« PARTITION_IDENT & « « % % s s % @& s s & & & o w @
5.4. PARTITION_GET_BLK o & 8 & ® s e ® @ »
5.5. PARTITION_RET BLK # % 4 & @ .« o .
5.6. PARTITION_INFO . &« &« « @« & o« & @ & s s % & = “ @ @
6. SEMAPHORES ., « & o = s o & o » = o % @ @ s o o & s & & 5
6.1. SEM CREATE . . « « ¢ o o o o o o o o o o o o o @ .
6:2:. SEMDELETE i s % w ¢ s % & &« & % & & & % & & & & & &
6:3: SEM.IDENT « ¢ % w & s # @ & 5 o ™ & # & & § & % & @
Gl SEM P & o o s = i s o o @ o 5 @ 5 s = ® = @ & o @ %
6.5. SEM_ V . . & ¢ 4 ¢ o o o o o o o o o o o o o o o o
6:6:. SEM INFO & ¢ s« s & & s » & & @ % & & s @ & & % & & 3
7. QUEUES . . e e e e e e e e e e e e e e e e e e
7.1. QUEUE CREATE % § @ B g o 8 e e & ® & ® o & o e o
7.2. QUEUE_DELETE & & & B o § § B % F & b @
7.3. QUEUE_IDENT . . . s W & & & @ w & & @ s % @
74 QUEUE.SEND . & % % o s © @ & s s © & & % & o 5% 5 %
7.5. QUEUE_URGENT L

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

e o o o o o o e o & o o o o
e o o o o o o e o e o o e o o o o o
e o o e o e e o e e o o

e o o o o o o

Open Real-time Kernel Interface Definition Page
Draft 1.0 for Public Comments

7.6. QUEUE_BROADCAST« @ = o
7.7. QUEUE_RECEIVE o s . o
7.8. QUEUE_FLUSH 5 % s @ s . : .
7.9. QUEUE_INFO . . . 5 @ v o ® » .

B. EVENTS . . &2 o o« s = = o 5 2 & s s o 2 o « & o » & 3 o =
8.1. EVENT_SEND . . . &« ¢ ¢ ¢ ¢ o o o o o o o o o o o o o
8.2. EVENT RECEIVE & « s % % u & s & & s & % % s % & #

9. EXCEPTIONS
9.1. EXCEPTION_CATCH .
9.2. EXCEPTION_RAISE .
9.3. EXCEPTION_RETURN .

* o o o
.
.
.
e e o o
e o o o
.
* e e e
e o o o
e o o o
* o
o o
o e
e e o o
.

10, CEOCK « « « o » » % w & s % ® » ® % % « & & % 5 % % 0
10.1. CLOCK_SET . . &« © ¢ « « o o o o o o« o« o o « «
10:2: CLOCK BET & « & & + % o & 5 % = & & & w & &
10.3. CLOCK_TICK s B ow BB R @ R B @ N s @ & @

11. TIMERS
11.1. TIMER_WAKE_AFTER . : o .
11.2. TIMER WAKE_WHEN
11.3. TIMER_EVENT_AFTER . . .

11.4. TIMER_EVENT_WHEN .
11.5. TIMER_CANCEL . .

e o o o o o
.
.
.

e e e e

12. INTERRUPTS ¢ ¢ v ¢ o o« o o o o o o o« o« o o« o
12:1. INT ENTER =& s & % s % & & & % & & % & % s @ @
12.2. INT_EXIT o« B e s e o & 8 ® s ® e 8 @ 6 & & @

A. RETURN CODES § B & 8 B B e @ O B W § % & OB 8 @ & @ @

B. MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN ISR

C. MINIMUM REQUIREMENTS FOR OPERATIONS FROM AN XSR .

D. SUMMARY OF ORKID OPERATIONS « « « « « « « .

E. C LANGUAGE BINDING ¢ ¢« ¢ « & ¢ ¢« o« o o o o o o o =

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 5
Draft 1.0 for Public Comments

1. INTRODUCTION

ORKID defines a standard programming interface to real-time kernels.
This interface consists of a set of standard ORKID operation calls,
defining operations on objects of standard types. An ORKID compliant
kernel manages these objects and implements the operations.

The application area that ORKID addresses ranges from embedded systems
to complex multi-processing systems with dynamic program loading. It
is restricted however to real-time environments and only addresses
kernel level functionality. As such it addresses a different segment
than the real-time extensions to POSIX P1003.4, although some
overlaps may OCcCur.

ORKID addresses the issue of multi-processing by defining two levels
of compliance: with and without support for multi-node systems. The
interfaces to the operations are the same in either level.

Section 2, ORKID PRINCIPLES, contains an introduction to the concepts
used in the ORKID standard. Introduced here are the standard ORKID
objects and how they are identified, ORKID operations and ORKID multi-
processing features. Factors affecting the portability of code
developed for ORKID and implementation compliance requirements are
also treated here.

Sections 3 to 12 describe in detail the various standard types of
object and the operations that manipulate them. There is one section
per type of object. Each section contains a general description of
this type of object, followed by subsections detailing the operations.
The latter are in a programming language independent format. It is
foreseen that for all required programming languages, a language
binding will be defined in a companion standard. The first one,
introduced in conjunction with ORKID, will be for the C language. For
syntax, the language binding document is the final authority.

The portability provided by the ORKID standard is at source code
level. This means that, optimally, a program written for one
implementation should run unmodified on another implementation,
requiring only recompilation and relinking. In practice there are
many reasons why this might not be true in all cases.

The syntax of ORKID operation calls in a real implementation will be
defined in the appropriate language binding. There will be, however,
a one to one correspondence between this standard and each language
binding for all literal values, operation names and parameter names
and types.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 6
Draft 1.0 for Public Comments

2. ORKID CONCEPTS

ORKID defines the interface to a real-time kernel by defining kernel
object types and operations upon these objects. Furthermore it assumes
an environment, i.e. the computer system, in which these objects exist.
This chapter describes that environment, introduces the various object
types, explains how objects are identified and defines the structure of
the ORKID operation descriptions. Furthermore it addresses the issues
of

multi-processing and ORKID compatibility.

2.1 Environment

The computer system environment expected by ORKID is described by the
notion of a system. A system consists of a collection of one or more
interconnected nodes. Each node is a computer with an ORKID compliant
kernel on which application programs can be executed. To ORKID a node
is a single entity, although it may be implemented as a multi-processor
computer there is only one kernel controlling that node.

2.2 ORKID Objects

The standard ORKID object types defined by ORKID are:

- tasks: single threads of program execution in a node.

- regions: memory areas for dynamic allocation of variable sized
segments.

- partitions: memory areas for dynamic allocation of fixed sized
blocks.

- semaphores: mechanisms used for synchronization and to manage
resource allocation amongst tasks.

- queues: inter task communication mechanisms with implied
synchronization.
- events: task specific event markers for synchronization.

- exceptions: task specific exceptional conditions with an
asynchronous service routine.

- notepad: task specific integer locations for simple,
unsynchronized data exchange.

- calendar: current date and time.

- timers: software delays and alarms.

Tasks are the active entities on a node, the CPU(s) of the node execute
the task's code, or program, under control of the kernel. Many tasks
may exist on a node; they may execute the same or different programs.
The maximum number of tasks on a node or in a system is implementation
dependent. Tasks compete for CPU time and other resources. Next to
tasks interrupt service routines compete for CPU time. Although ORKID
does not define how interrupt service routines are activated, it
provides facilities to deal with them.

Regions are consecutive chunks of memory from which tasks may allocate
segments of varying size for their own purposes. Typically a region
consists of memory of one physical nature such as shared RAM, battery

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 7
Draft 1.0 for Public Comments

backed-up SRAM etc. The maximum number of regions on a node are
implementation dependent.

Partitions are consecutive chunks of memory organized as a pool of
fixed sized blocks which tasks may allocate. Partitions are simpler
than regions and are intended for fast dynamic memory allocation /
de-allocation operations. The maximum number of partitions on a node is
implementation dependent.

Semaphores provide a mechanism to synchronize the execution of a task
with the execution of another task or interrupt service routine. They
can be used to provide sequencing, mutual exclusion and resource
management. The maximum number of semaphores on a node or in a system
is implementation dependent.

Queues provide a mechanism for intertask communication, allowing tasks
to send information to one another with implied synchronization. The
maximum number of queues on a node or in a system is implementation
dependent.

Events are task specific event markers that allow a task to block until
the event, or a specific combination thereof occurs, therefore they
form a simple synchronization mechanism. Each task has the same, fixed
number of events. The actual number is implementation dependent, but
the minimum number is fixed at sixteen.

Exceptions too are tasks specific conditions. Unlike events they are
handled asynchronously by the task, meaning that when an exception is
raised for a task that task's flow of control is interrupted to execute
the code designated to be the exception service routine (XSR).
Exceptions are intended to handle exceptional conditions without
constantly having to check for them. In general exceptions should not
be misused as a synchronization mechanism. Each task has the same,
fixed number of exceptions. The actual number is implementation
dependent, but the minimum number is fixed at sixteen.

Notepad locations are task specific integer variables that can be read
or written without any form of synchronization or protection. Each task
has the same, fixed number of notepads. The actual number is
implementation dependent, but the minimum number is fixed at sixteen.

The calendar is a mechanism maintaining the current date and time on
each node.

Timers come in two forms. The first type of timer is the delay timer
that allows a task to delay its execution for a specific amount of time
or until a given calendar value. The second type of timer is the event
timer. This timer will, upon expiration, sent an event to the task that
armed it. As with the delay timer it can expire after a specific
amount of time has elapsed or when a given calendar value has passed.
The maximum number of timers on a node is implementation dependent, in
all cases a delay timer must be available to each task.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

