Open Real-time Kernel Interface Definition Page 25
Draft 1.0 for Public Comments
3.10. TASK READ_NOTE_PAD

Read one of a task's note-pad locations.

Synopsis
task_read_note_pad(tid, loc_number, loc_value)
Input Parameters

tid : task_id kernel defined task id
loc_number : lnum note-pad location number

Output Parameters
loc_value : integer note-pad location value
Literal Values
tid = SELF The calling task reads its own notepad

Completion Status

OK task_read_note_pad operation successful
INVALID_PARAMETER a parameter refers to an illegal address
INVALID_ID task does not exist
INVALID_LOCATION note-pad number does not exist
NODE_NOT_REACHABLE node on which task resides is not
reachable
Description

This operation returns the value contained in the specified notepad
location of the task identified by tid. (see also 3. Task Notepads)

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 26
Draft 1.0 for Public Comments

3.11. TASK _WRITE_NOTE_PAD

Write one of a task's note-pad locations.

Synopsis

task_write_note_pad(tid, loc_number, loc_value)

Input Parameters

tid : task_id

loc_number : lnum

loc_value : integer

Output Parameters
<none>

Literal Values

tid = SELF

Completion Status

OK
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED
INVALID_LOCATION
NODE_NOT_REACHABLE

Description

kernel defined task id
note-pad location number
note-pad location value

The calling task writes into its own
notepad

task_write_note_pad operation successful
a parameter refers to an illegal address
task does not exist

task specified has been deleted

note-pad number does not exist

node on which task resides is not
reachable

This operation writes the specified value into the specified notepad
location of the task identified by tid. (see also 3. Task Notepads

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 27
Draft 1.0 for Public Comments

4. REGIONS

A region is an area of memory within a node which is organized by an
ORKID compliant kernel into a pool of segments of varying size. The
area of memory to become a region is declared to the kernel by a task
when the region is created, and is thereafter managed by the kernel
until it is explicitly deleted by a task.

Each region has a granularity, defined when the region is created. The
actual size of segments allocated is always a multiple of the
granularity, although the required segment size is given in bytes.

Once a region has been created, a task is free to claim variable sized
segments from it and return them in any order. The kernel will do its
best to satisfy all requests for segments, although fragmentation may
cause a segment request to be unsuccessful, despite there being more
than enough total memory remaining in the region. The memory
management algorithms used are implementation dependent.

Regions, as opposed to partitions, tasks, etc., are only locally
accessible. In other words, regions cannot be declared global and a
task cannot access a region on another node. This does not stop a
task from using the memory in a region on another node, for example in
an area of memory shared between the nodes, but all claiming of
segments must be done by a co-operating task in the appropriate node
and the address passed back.

Observation:

Regions are intended to provide the first subdivisions of the

physical memory available to a node. These subdivisions may reflect
differing physical nature of the memory, giving for example a region
of RAM, a region of ROM, a region of shared memory, etc.. Regions may
also subdivide memory into areas for different uses, for example a
region for kernel use and a region for user task use.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 28
Draft 1.0 for Public Comments

4.1. REGION_CREATE

Create a region.

Synopsis
region_create(name, addr, length, granularity, options, rid)

Input Parameters

name : string user defined region name

addr ¢ address start address of the region
length : integer length of region in bytes
granularity: integer allocation granularity in bytes
options : bit_field region create options

Output Parameters
rid : region_id kernel defined region identifier

Completion Status

OK region_create operation successful

ILLEGAL_USE operation not callable from XSR or ISR

INVALID_PARAMETER a parameter refers to an illegal address

INVALID_ADDRESS area given not within actual memory

present

INVALID_GRANULARITY granularity not supported

INVALID_OPTIONS invalid options value

TOO_MANY_REGIONS too many regions on the node

REGION_OVERLAP area given overlaps an existing region
Description

This operation declares an area of memory to be organized as a region
by the kernel. The process of formatting the memory to operate as a
region may require a memory overhead which may be taken from the new
region itself. It can never be assumed that all of the memory in the
region will be available for allocation. The overhead percentage will
be implementation dependent.

Observation:
Currently ORKID defines no options, the parameter is there as a place

holder for future extensions and implementations desiring to provide
additional options.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

Open Real-time Kernel Interface Definition Page 29
Draft 1.0 for Public Comments

4.2. REGION_DELETE

Delete a region.

Synopsis

region_delete(rid, options)

Input Parameters

rid : region_id
options : bit_field

Output Parameters
<none>
Literal Values

options + FORCED_DELETE

Completion Status

OK

ILLEGAL_USE
INVALID_PARAMETER
INVALID_ID
OBJECT_DELETED
INVALID_OPTIONS
REGION_IN_USE

Description

kernel defined region identifier
region deletion options

deletion will go ahead even though there
are unreleased segments

region_delete operation successful
operation not callable from ISR

a parameter refers to an illegal address
region does not exist

region specified has been deleted
invalid options value

segments from this region are still
allocated

Unless the FORCED_DELETE option was specified, this operation first
checks whether the region has any segments which have not been
returned. If this is the case, then the REGION_IN USE completion

status is returned. If not,

and in any case if FORCED_DELETE was

specified, then the region is deleted from the kernel data structure.

UNAPPROVED DRAFT. All rights reserved by VITA
Do not specify or claim conformance to this document.

